
PARALLEL ALGORITHMS FOR SHORTEST PATH PROBLEM

ON TIME DEPENDENT GRAPHS

by

Mehmet Akif Ersoy

B.S., Computer Engineering, Boğaziçi University, 2012

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2015

ii

PARALLEL ALGORITHMS FOR SHORTEST PATH PROBLEM

ON TIME DEPENDENT GRAPHS

APPROVED BY:

Prof. Can Özturan

(Thesis Supervisor)

Assist. Prof. Ali Haydar Özer

Assoc. Prof. Haluk O. Bingöl

DATE OF APPROVAL: 16.12.2015

iii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Can Özturan for his guidance and

passion during this research. His vision and expertise in this field made this work

possible.

I would also like to thank Assoc. Prof. Dr. Haluk O. Bingöl and Asst. Prof. Dr.

Ali Haydar Özer for their participation in my thesis jury and their precious feedbacks.

I am also thankful to my colleagues at TÜBİTAK BİLGEM for their encourage-

ments and making the working environment such a great place to work. I have learned

a lot from them about work and non-work related subjects.

Last but not least, I would like to thank my family. First, I want to thank my

twin brother, Oğuzhan, for always being there for me. I could not think my life without

him. I would like to thank my sister, Esra, for always keeping an eye on me and never

withholding her assistance when I need her. I want to thank my father, İbrahim, whom

I owe everything that I have now and will have in the future. I have learned many

things from him that are too many to count here. Lastly, I would like to dedicate this

thesis to my mother, Ayşe, who raised me with unconditional love and care, and I will

always feel her best wishes in my entire life.

iv

ABSTRACT

PARALLEL ALGORITHMS FOR SHORTEST PATH

PROBLEM ON TIME DEPENDENT GRAPHS

Shortest path problem in time dependent graphs has become a popular prob-

lem in recent years. Ever since the smart phones became an inseparable part of our

lives, the applications on those devices started to provide many functionalities which

make human life much easier. Navigation applications are one of them. State of the

art navigation applications benefit from real time traffic data besides the map data.

Therefore, it becomes a necessity to solve the problem of shortest path with real time

data, i.e., on time dependent graphs.

Various sequential algorithms for the shortest path problem in time dependent

graphs are appearing in the literature. However, these algorithms mostly suffer from

the following two problems: long running times or huge memory requirements. These

problems of the previously proposed algorithms are making them unsuitable for navi-

gation applications which run on real time data and which need fast response times. In

order to speed-up the running time of the sequential algorithm, without requiring much

more memory, for shortest path problem with time dependent flow speed model, we

propose parallel algorithms based on Modified Dijkstra algorithm. We develop three

different parallel implementations by using Cuda and OpenMP: These are (i) a Cuda

based version, (ii) an OpenMP based version and (iii) a hybrid Cuda and OpenMP

based version. We get up to 10-fold speedup in the OpenMP version, and 17-fold speed

up in the other two versions.

v

ÖZET

ZAMANA BAĞIMLI ÇİZGELERDE EN KISA YOL

PROBLEMİ İÇİN PARALEL ALGORİTMALAR

Zamana bağımlı çizgeler için en kısa yol problemi son yıllarda oldukça popülerleşti.

Akıllı telefonlar hayatımızın ayrılamaz bir parçası olduğundan beri, bu telefonlardaki

uygulamalar insan hayatını kolaylaştıran birçok olanak sağlıyor. Navigasyon uygu-

lamaları da bunlardan biridir. Son teknoloji ürünü olan yer bulma uygulamaları

harita verisinin yanında gerçek zamanlı trafik verilerinden de yararlanmaktadırlar.

Dolayısıyla, en kısa yol problemini gerçek zamanlı verilerde, yani zamanla değişen

çizgelerde çözmek artık bir gereklilik olmuştur.

Zamana bağımlı çizgelerde en kısa yol problemi için literatürde çeşitli ardışıl al-

goritmalar bulunmaktadır. Ancak, bu algoritmalar genellikle iki problemin sıkıntısını

çekmektedirler: yürütüm sürelerinin uzun olması veya çok fazla bellek gereksinimi.

Önceden sunulan algoritmalardaki bu problemler, onların, gerçek zamanlı verilerle

çalışan ve hızlı yanıt sürelerine ihtiyaç duyan dolaşım uygulamalarında kullanılmasını

mümkün kılmamaktadır. Zamana bağımlı akış hızı modeli içeren en kısa yol seri al-

goritmasının, çok daha fazla bellek gerektirmeden, yürütüm süresinin hızlandırılması

için ”Değiştirilmiş Dijkstra” algoritmasını temel alarak paralel algoritmalar öneriyoruz.

Cuda ve OpenMP kullanarak 3 farklı paralel gerçekleştirme geliştirdik: Bunlar (i)

Cuda tabanlı uyarlama, (ii) OpenMP tabanlı uyarlama ve (iii) Cuda ve OpenMP ta-

banlı karma uyarlama. OpenMP uyarlamasında 10 kat, diğer uyarlamalarda da 17 kat

hızlanma elde edilmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Related Work . 1

1.2. Contributions of the Thesis . 3

2. PRELIMINARIES . 5

2.1. Graphs . 5

2.1.1. Road Map Graphs . 5

2.1.2. Depth-First Traversal . 6

2.1.3. Time Dependent Graphs . 7

2.1.4. FIFO Property . 9

2.2. Shortest Path Problem . 10

2.2.1. One-to-One . 11

2.2.2. One-to-All . 11

2.2.3. All-to-One . 12

2.2.4. All-to-All (All Pairs) . 12

2.2.5. Dijkstra’s Algorithm . 13

2.3. Parallel Programming Performance Metrics 14

3. SHORTEST PATH PROBLEM ON TIME

DEPENDENT GRAPHS . 16

3.1. Shortest Path Algorithms on TDG with Varying Edge Lengths 16

3.2. Parallel Algorithms . 19

3.3. Flow-Speed Model . 19

3.4. Modified Dijkstra Algorithm . 21

vii

4. PARALLEL ALGORITHMS FOR SHORTEST PATH PROBLEM ON TIME

DEPENDENT GRAPHS . 23

4.1. Time Consuming Parts of Sequential Modified Dijkstra Algorithm . . . 23

4.2. Graph Data Structures . 24

4.3. OpenMP Based Implementation . 26

4.4. Cuda/Thrust Based Implementation on a GPU 29

4.5. OpenMP and Cuda Hybrid Implementation 31

5. EXPERIMENTS AND RESULTS . 34

5.1. Performance Metrics and the Test Environment 34

5.2. Input Graph Generation . 34

5.3. Results . 36

5.3.1. Run Times Observations for Parallel Algorithms 36

5.3.2. Comparison of Algorithms’ Run Times 37

5.3.3. Speedup . 41

5.3.3.1. Relative Speedup . 43

5.3.4. Efficiency . 45

5.3.5. Scalability . 46

5.4. Discussion . 47

6. CONCLUSIONS . 49

APPENDIX A: TEST GRAPHS INFORMATION 51

APPENDIX B: TEST RESULTS . 55

REFERENCES . 59

viii

LIST OF FIGURES

Figure 2.1. Recursive Depth-First Search Algorithm. 6

Figure 2.2. A running example of Depth-First Search Algorithm. 7

Figure 2.3. A TDG and its time dependent edge lengths vary over time. . . . 8

Figure 2.4. An example of a time dependent graph without FIFO property. . 10

Figure 2.5. Dijkstra Algorithm. 13

Figure 3.1. An illustration of time-expanded graph generation. 17

Figure 3.2. Modified Dijkstra Algorithm. 22

Figure 3.3. Function for calculating arrival time. 22

Figure 4.1. An example of CSR format representation of a graph. 25

Figure 4.2. Graph class and Node structure. 26

Figure 4.3. OpenMP implementation of Modified Dijkstra Algorithm. 27

Figure 4.4. Example of minimum distance update in OpenMP implementation. 27

Figure 4.5. Function for finding an unvisited node with minimum arrival time

using OpenMP. 28

Figure 4.6. Modified Dijkstra Cuda implementation. 30

ix

Figure 4.7. Function for finding an unvisited node with minimum arrival time

using Cuda/Thrust. 30

Figure 4.8. Compare Key Value structure. 31

Figure 4.9. Modified Dijkstra Hybrid implementation. 32

Figure 5.1. Parallel algorithms’ run times with respect to the number of edges

in graph. 37

Figure 5.2. Parallel algorithms’ run times with respect to the number of nodes

in graph. 38

Figure 5.3. Algorithm run times for small and medium sized graphs. 39

Figure 5.4. Algorithm run times for large graphs. 40

Figure 5.5. Speedup of parallel algorithms against sequential algorithm. . . . 42

Figure 5.6. Speedups of parallel algorithms with respect to the number of ver-

tices and the number of edges in graphs. 44

Figure 5.7. OpenMP Algorithm speedups with respect to the number of threads

used. 45

Figure 5.8. OpenMP Algorithm efficiency with respect to the number of threads

used. 46

x

LIST OF TABLES

Table 5.1. Test environment specifications. 35

Table 5.2. Small and medium sized graphs used in Figure 5.3. 39

Table 5.3. Large graphs used in Figure 5.4. 40

Table 5.4. Scalability of OpenMP Algorithm. 47

Table A.1. Test graphs information. 52

Table B.1. Sequential and parallel algorithms run times in seconds. 56

xi

LIST OF SYMBOLS

A(i) Adjacency list of vertex i

d Destination node

E Set of edges of G

|E| Number of edges in the edge set of E

|EC | Number of edges created

ei An edge from the set E

|ER| Number of edges left after unreachable vertices are removed

fk Start time of kth time interval

fkij Start time of kth time interval on edge (i, j)

G Graph

(i, j) Edge from vertex i to vertex j

k Index of current time interval

K Thousand (= 103)

lij Length of edge (i, j)

lij(t) Length of edge (i, j) at time t

Lreachables List of reachable nodes

M Million (= 106)

n Number of nodes in G

Pathsd(t) Shortest path from node s to node d starting at time t

pred(i) Predecessor node of node i in the shortest path from s to i

s Source node

S Set of visited vertices

Sp Speedup

ti Current minimum time to get from s to vertex i

Ts Serial run time of an algorithm

Tp Parallel run time of an algorithm

U Set of unvisited vertices

V Set of vertices of G

xii

|V | Number of vertices in the vertex set of V

|VC | Number of vertices created

vi A vertex from the set of V

vij Velocity of a vehicle on edge (i, j)

vkij Flow-speed on edge (i, j) at kth time interval

|VR| Number of vertices left after unreachable ones are removed

wij Weight of edge (i, j)

wij(t) Weight of edge (i, j) at time t

ε A Very Small Positive Number

η Efficiency

xiii

LIST OF ACRONYMS/ABBREVIATIONS

CSR Compressed Row Storage

DFS Depth-First Search

DOT Decreasing Order of Time

FIFO First-In-First-Out

MD Modified Dijkstra

TDG Time Dependent Graphs

TDSPP Time Dependent Shortest Path Problem

1

1. INTRODUCTION

In the last decade, with the advances in technology, navigation systems which

helped people to get from point A to point B as fast as possible, has also changed

greatly. A few years ago, most of the navigation devices were using only pre-installed

maps to determine the route. These devices converted the map paths to graphs such

that nodes are the destinations in the map and the edges are the paths between them.

They were updating their graphs only if a road was added to or removed from the area

they are handling. The shortest path route calculated using these old devices mostly

did not change for a fixed pair of source and destination points and thus they were

not very efficient since they were not taking into consideration the number of cars that

were using those routes and causing lots of traffic jams.

In these days, state of the art navigation programs mostly benefit from (i) real-

time data gathered through some devices installed on cars or trucks by companies that

have an agreement with them or (ii) from camera data placed on mostly used route

paths or (iii) from satellite data [1]. Hence, nowadays, navigation programs run on

data which change in time. It is not enough for navigation programs to just use path

information. They also have to take into consideration the other cars in their routes

and traffic jams in areas where they travel. Thus, efficient solutions to the shortest

path problem on time dependent graphs are required for navigation applications.

1.1. Related Work

A time dependent graph (TDG) is a graph in which its structure and parameters

may change over time. Some of the previous works approach TDG as there are some

nodes/edges additions/deletions in the graph, some other papers consider TDG so that

the edge-delay, which is the total time spent to get from start of the edge to end of the

edge in a given time, changes in time [2, 3]. In this work, we take the model proposed

by Sung et al. [4], where the speed of a vehicle travels changes in time intervals. This

approach is more realistic one in the perspective of cars traveling in urban roads.

2

A commonly satisfied property in time dependent graphs is called the FIFO

(First-In-First-Out) property which is also named as the non-passing property in the

literature. This property states that if the same route from node i to node j is traveled

then the one that leaves earlier from node i, arrives earlier at node j than the one that

leaves later. This property is a realistic assumption that we also see in daily traffic.

The FIFO property enables us to develop efficient and polynomial algorithms for time

dependent shortest path problem (TDSPP) [5]. TDSPP is an NP-hard problem on

TDG without the FIFO [6] property. In this work, we consider TDG in which the

FIFO property holds.

The use of traditional graph algorithms are not designed for the time dependent

graphs and hence they can not help us in new applications that employ dynamic graphs.

In the last decades, there some research in the area of algorithms for TDG [4, 5, 7, 8]

have been carried out. However, these new algorithms should run very efficiently on

large graphs, since they are to be used in real-time devices that require fast response

times. There can be thousands of new route queries in a minute in large cities. These

devices should be able to answer these queries with the fastest route and also provide

a time of arrival with a small range of error.

In the literature, there are some works on shortest path algorithms on TDGs that

make the algorithm run more efficiently. Many of these works improve the running time

of the algorithm but they enormously increase the memory usage which make them

unsuitable for the devices. One of the methods used here is time expansion method.

The algorithm first transforms TDG to a time independent graph and then solves the

problem using traditional algorithms for static graphs. However, this method generates

huge graphs and, in general, results non-polynomial algorithms run times [3, 7]. Also,

these works, study on the TDSPP problem from one source node to a target node.

There are some works done in order to speed up the TDSPP by exploiting graph

pre-processing before running the actual algorithm. Goldberg et al. [9], propose a

landmark-based ALT algorithm on static graphs. This algorithm chooses a small num-

ber of landmarks and computes shortest paths between them in the pre-processing

3

stage. It then utilizes this information to find lower bounds on the shortest paths from

one source to a target node and reduces the total number of nodes to be visited in

order to reach the destination node. Ohshima et al. [8], presents a modified version of

this algorithm which runs on dynamic graphs. With the help of some preprocessing,

they achieve up to 4-fold speed up when compared to the Modified Dijkstra algorithm

that was first proposed by Dreyfus [10] to solve the shortest path problem on time

dependent graphs. This algorithm also work on TDSPP as defined from one source

node to one destination node in the graph.

A lot of work appear on the parallelization of algorithms for shortest path problem

on graphs which are not time dependent [11]. There are also some works which provide

parallel programming in TDSPP. These works consider the TDG model in which the

edge-lengths are time dependent [12–14]. However, we are not aware of any previous

works that considers parallelization of the shortest path problem from a source node

to all other nodes in time dependent graphs, which use flow-speed model.

1.2. Contributions of the Thesis

In this thesis, we consider the problem of TDSPP from a single source node to all

other nodes in the graph. In real life, navigation applications can utilize our parallel

algorithms to calculate shortest paths from central locations of cities to all other places

beforehand so that people searching for these paths can be informed about latest travel

times.

We use the time dependent flow-speed model defined in [4]. We develop three

parallel algorithms for the shortest path problem defined in this model: (i) an OpenMP

version, (ii) a Cuda version for GPUs and (iii) a hybrid Cuda and OpenMP hybrid

implementation. To the best of our knowledge, this is the first study of GPU-based

parallelization work on the time dependent shortest path problem. We also analyze

these algorithms with respect to the performance metrics defined for parallel computer

systems.

4

In Chapter 2, we review the background material on graphs, shortest path al-

gorithms and parallel processing performance metrics. Chapter 3 presents the back-

ground work on time dependent graphs and algorithms. Chapter 4 presents the three

parallel algorithms we developed for time dependent graphs. In this chapter, we also

present the data structures used. Chapter 5 presents the performance results of our

algorithms based on tests carried on several graphs generated using the Graph500 ref-

erence code [15]. Finally, Chapter 6 concludes the thesis with a discussion of results

and possible future work.

5

2. PRELIMINARIES

This chapter provides preliminary information on graphs, traditional shortest

path problems and parallel programming performance metrics.

2.1. Graphs

Let G = (V,E) be a directed graph, where V = {v1, v2, ..., vn} is a set of vertices

and E = {e1, e2, ..., em} ⊆ V × V is a set of directed edges. Here, ei = (u, v) means

that u is the beginning vertex and v is the ending vertex of the edge ei . Note that,

(u, v) and (v, u) represent distinct edges of G and having (u, v) ∈ E does not imply

that (v, u) ∈ E and vice versa. Also, more than one edge having the same beginning

and ending vertices is not allowed in directed graphs. Let lij be the length of an edge

from vertex i to vertex j. We also let A(i) denote the adjacency list of vertex i, where

each element of A(i) is the ending vertices of edges coming out of vertex i. Therefore,

j ∈ A(i) ⇐⇒ (i, j) ∈ E. Throughout the thesis, the followings terms are used

interchangeably:

• vertex, node

• edge, arc

• edge length, edge weight

• adjacency list, neighbour list

2.1.1. Road Map Graphs

Road map graphs are utilized while solving real life problems such as finding a

path from one city to another. In road map graphs vertices corresponds to intersections

and edges correspond to road segments.

In road map graphs, there is a notion of a car traveling through the map. Let vij

be the fixed velocity of the car on the edge (i, j). Then, the travel time of the car to

6

pass an edge (i, j) ∈ E is calculated as lij/vij.

2.1.2. Depth-First Traversal

Depth-first search(DFS) is used to traverse or search a graph. The algorithm

starts from a given node (or root when used in tree) and tries to go as much as possible

in a branch so that it returns to another branch after all the nodes visited in that

branch.

The recursive algorithm of DFS is given in [16]. Pseudocode of the algorithm is

presented in the Figure 2.1.

Function DFS

1: Inputs: Graph G, node v

2: Goal: To visit all nodes that can be reached in graph

3: Output: Lreachables, list of all nodes in G which are reachable from node v

4: set v as visited, and put node v to Lreachables list

5: for each node w in neighbor list of node v do

6: if w is not labeled as visited then

7: call Function DFS(G,w) recursively.

8: end if

9: end for

10: return Lreachables

Figure 2.1. Recursive Depth-First Search Algorithm.

Example of a running DFS algorithm is presented in Figure 2.2. In the figure,

straight lines are representing edges between nodes in the graph. Dotted lines shows

the nodes visited in the order of DFS algorithm visits them. Algorithm starts from

node A and the result of the algorithm is Lreachables = A,B,E, F,G,C,D.

7

A

F

B

D

G

E

C

1

2

3 4

5

6

7

8 9

10 11

Figure 2.2. A running example of Depth-First Search Algorithm.

2.1.3. Time Dependent Graphs

Let G = (V,E) be a time dependent graph (TDG), where the elements in G

changes in time. This change could be in one these forms: removal of an existing

vertex from V or addition of a new vertex to the set of V . The same actions can be

taken on edges.

Another approach considered in studying time dependent graphs is to think of

edge lengths as a time dependent variable. In this approach, length of an edge is

represented as lij(t), where i is the starting node of edge, j is the ending node of edge

and t is the time. This method is used widely [2, 3, 8, 10, 17].

An example TDG with edge lengths that change with respect to time is shown

in Figure 2.3. This figure consists of following 6 figures:

(a) a TDG, G(V,E), with edge lengths that change with respect to the time;

(b) Length of edge (s, 1) at time t, ls1(t),

(c) Length of edge (s, 2) at time t, ls2(t),

(d) Length of edge (1, 2) at time t, l12(t),

8

1

2

ds

0 1 2 3 4
0

1

2

3

4

5

Time

E
dg

e
Le

ng
th

(a) A TDG, G(V,E). (b) Length of edge (s, 1) at time t.

0 1 2 3 4
0

1

2

3

4

5

Time

E
dg

e
Le

ng
th

0 1 2 3 4
0

1

2

3

4

5

Time
E

dg
e

Le
ng

th

(c) Length of edge (s, 2) at time t. (d) Length of edge (1, 2) at time t.

0 1 2 3 4
0

1

2

3

4

5

Time

E
dg

e
Le

ng
th

0 1 2 3 4
0

1

2

3

4

5

Time

E
dg

e
Le

ng
th

(e) Length of edge (1, d) at time t. (f) Length of edge (2, d) at time t.

Figure 2.3. A TDG and its time dependent edge lengths vary over time.

(e) Length of edge (1, d) at time t, l1d(t),

(f) Length of edge (2, d) at time t, l2d(t).

In the graph depicted in Figure 2.3, the shortest path from node s to node d is the

route of s − 1 − d if the starting time t is 0 and the vehicle’s speed is always 1. The

time that elapses while going from node s to node d is calculated as Pathsd(t = 0) =

ls1(t = 0) + l1d(t = t1), where t1 is the time taken from node s to node 1. Then,

Pathsd(t = 0) = ls1(0) + l1d(1) = 1 + 2 = 3.

Sung et al. [4] propose another model to time dependent graphs. This model

considers flow speeds of arcs as time dependent parameters. The velocity of a car

9

traveling through the edge (i, j) at time t is denoted by vij(t). This model is analyzed

in Section 3.3.

2.1.4. FIFO Property

FIFO property, also called non-passing property, says that if two cars (a and b)

travel from vertex i to vertex j, the one (e.g car a) which departs from i earlier than

the other (e.g car b) arrives at j earlier than the other (i.e. car b). A time dependent

graph ensures FIFO property, if all the edges in the graph satisfy the FIFO property.

We can formulate this as follows: Let wij(t) be the traveling time on edge (i, j) at time

t. The arc (i, j) has FIFO property if:

t1 < t2 =⇒ t1 + wij(t1) < t2 + wij(t2) for all 0 < t1 < t2.

Orda et al. [18] shows that, FIFO property can be achieved in non-FIFO networks

by allowing waiting at the vertices. This can be achieved by defining minimum waiting

times on starting vertices of edges which break the FIFO property. However, this is

an expensive process as we need examine all time intervals to decide the minimum

waiting time for a vertex. Also, waiting times in vertices are not preferred by most of

the applications. On the other hand, FIFO property is a reasonable assumption in the

case of real life traffic routes. Because in general, we exit a path after the cars which

entered this path before us.

Kaufman et al. [19] and Orda et al. [18] show that the shortest path problem

in time dependent networks is polynomially solvable. Sherali et al. [6] proves that

when the FIFO property is not ensured, the problem of finding shortest path becomes

NP-hard.

Orda et al. [18] gave an example of a simple non-fifo graph where the shortest

path includes infinite number of edges. The example graph is presented in Figure 2.4,

where the length of the edges are defined as follows:

10

1

2

3

Figure 2.4. An example of a time dependent graph without FIFO property.

l12(t) = l21(t) =

1− t

2
0 ≤ t < 1,

1 otherwise.

, l13(t) =

3− 2t, 0 ≤ t < 1,

1, otherwise.

When we examine to the shortest path from vertex 1 to vertex 3 at time t = 0,

the resulting shortest path is (1, 2, 1, 2, 1, 2, 1, ..., 1, 2, ..., 3), even if the shortest path

length is 2 the path includes infinite number of edges.

2.2. Shortest Path Problem

Shortest path problem is stated as finding a path from a source vertex s to a

destination vertex d in a graph so that sum of the lengths of edges in that path is

minimum among other paths from s to d. Let P = {vi, v,..., vj} be a path from node vi

to node vj, such that every consecutive pair of vertices in the path is in E ((vk, vk+1) ∈ E

for i ≤ k ≤ j). With respect to the path P , the distance from vi to vj is calculated by∑j
k=i lvkvk+1

. Shortest path problems can be classified into the following four groups:

(i) One-to-One,

(ii) One-to-All,

(iii) All-to-One,

(iv) All-to-All (All pairs).

11

2.2.1. One-to-One

Shortest path problem from one source node to a target node. All of the min-

imum arrival times from the source node to other nodes in graph are not necessarily

calculated.

One technique to the increase the efficiency of the algorithm is to reduce the

search space of the algorithm. Goldberg et al. [9] presented a landmark based ALT

algorithm which basically diminishes the number of visited vertices for getting from the

source node to the destination node. ALT algorithm based on choosing pre-calculated

landmarks to define a temporary distance labels for nodes. Performance of the algo-

rithm depends on the landmark selection. Both of the papers [8,9] describe some ways

to choose landmarks properly.

2.2.2. One-to-All

Shortest path problem from one source node to all other nodes in the graph.

Solving one-to-all problem results a shortest-path tree in which the source node is the

root of the tree and the path distance from root to another node in tree is the shortest

path distance in graph.

Dijkstra’s algorithm [20], which is explained in Section 2.2.5, is the most famous

algorithm to solve One-to-All shortest path problem. Note that, the original Dijkstra’s

algorithm finds shortest path between two nodes, but generally it is used to find one-

to-all shortest paths in graphs.

Bellman-Ford(also named Bellman-Ford-Moore [21]) algorithm is another well-

known algorithm which solves shortest path problem from a single source node to all

other nodes in graph [22–24]. This algorithm is slower than Dijkstra’s algorithm but

it has the ability to solve this problem in graphs with negative weights.

The one-to-all shortest path problem in time dependent graphs is the main focus

12

of this thesis as it is the subject of solving in parallel programming methodology.

Modified Dijkstra algorithm is used to solve this problem which explained later in

Section 3.4.

2.2.3. All-to-One

Shortest path problem from all nodes to a target node in the graph. This problem

is useful when considering a real life case in which people from all around the city try

to reach the most centralized part of the city. If those people use navigation devices

or applications, the application should be able to calculate all-to-one shortest path

problem in order to respond quickly to the queries coming from users.

Chabini et al. [25, 26] proposed the DOT algorithm to all-to-one fastest paths

problem for all departure time intervals in time dependent graphs. The algorithm is

proved to has the optimal running time which is the complexity of the problem [25–27].

2.2.4. All-to-All (All Pairs)

This problem calculates minimum arrival times from a node to all other nodes

for each node. So, minimum arrival times calculated for all-pairs in the graph. The

well known Floyd-Warshall algorithm [28] solves the all-pairs shortest path problem

in a positive or negative weighted graph, though it does not reveal the shortest paths’

routes. Run time complexity of this algorithm is O(|V |3), where |V | is the number of

vertices in graph.

Pettie et al. [29] proposed a new algorithm to all-pairs shortest path with real-

weighted graphs. The method makes an approximation to minimum arrival times and

make use of this information when calculating the real values. This algorithm runs in

O(|E||V | + |V |2loglog|V |), where |V | is the number of vertices and |E| is the number

of edges in the graph.

13

2.2.5. Dijkstra’s Algorithm

Dijkstra’s algorithm [20] is an algorithm which finds shortest paths between nodes

in a graph. The run time complexity of the algorithm is O(|V |2).

Algorithm Dijsktra

1: Initialize

2: S ← ∅

3: U ← V

4: ti =∞ for each vertex i ∈ V

5: ts = 0

6: pred(s) = 0

7: while |S| < n do

8: let i ∈ U be a vertex for which ti = min{tj : j ∈ U}

9: S ← S ∪ {i}

10: U ← U − {i}

11: for each(i, j) ∈ A(i), where j ∈ U do

12: alt← ti + lij

13: if tj > alt then

14: tj ← alt

15: pred(j)← i

16: end if

17: end for

18: end while

19: return t[] and pred[]

Figure 2.5. Dijkstra Algorithm.

In the pseudocode of the algorithm given in Figure 2.5 the following notation is

used:

• S is the set of visited vertices, so far, in graph

• U is the set of unvisited vertices, so far, in graph

14

• s is the source node

• V is the set of vertices in graph

• n is the number of vertices in graph

• ti is the current minimum distance of node i to the source node s

• pred(i) is the predecessor vertex of node i in the shortest path route from s to i

• A(i) is the list of adjacencies of node i

• alt is the alternative route time that is tested for the fastest route from vertex s

to j

2.3. Parallel Programming Performance Metrics

The following definitions are taken from [30–32].

Serial run time is the time elapsed between the beginning and the end of the

program on a sequential computer. It is denoted by Ts. Parallel run time of an

algorithm is the time passed from the beginning of parallel execution to the end of last

processing component of the parallel implementation. It is denoted by Tp.

Speedup(Sp) is the ratio of time taken to run the sequential program on a single

processing unit to the time taken to run the parallel program on a parallel computer.

In an ideal system, Sp should be equal to the number of processors running on the

computer. It is formulated as:

Sp =
serial execution time

parallel execution time
=
Ts
Tp

Efficiency(η) is another metric which is closely related to the speedup metric. It

is defined as the ratio of speedup to the number of processors used in parallel execution.

In an ideal system, η should be equal to 1.

η =
Sp

p
=

Ts
pTp

15

Scalability is used to address the change in the performance of the program as

the problem size and the number of processing units increase. Scalability measures the

program run time performance with respect to increasing workloads and the number

processing units at the same rate.

16

3. SHORTEST PATH PROBLEM ON TIME

DEPENDENT GRAPHS

One of the most studied problem on time dependent graphs is the shortest path

problem. In this chapter, we review the previous work that appears in the literature.

The problem that is mostly studied on TDGs involve graphs in which lengths of edges

are time dependent.

3.1. Shortest Path Algorithms on TDG with Varying Edge Lengths

One of the proposed methods for solving TDSPP is to use time expanded graphs.

This method converts the time dependent graph to a static graph. It creates a copy of

each element of TDG for each time instance. This results in very large static graphs.

When the number of time intervals increase, this method needs to create a huge graph

and the algorithm run time can become non-polynomial [8]. Time expansion method

is often used where the FIFO property does not hold. This model converts a time

dependent graph to a static graph where we can use other algorithms used in static

graphs.

In the Figure 3.1, an example of time-expanded graph is shown. The upper

graph, G(V,E), at the figure is a TDG with edge delays vary in time, the edge delays

are placed at the edges for time t = 0, 1, 2. The bottom graph, GE(VE, EE), is the

time-expanded graph of G(V,E). For each time period, nodes and edges in G(V,E) are

duplicated for graph GE(VE, EE). Dotted lines in GE(VE, EE) connects the duplicate

nodes created for each time period. In this figure, it can be seen that converting

G(V,E) to GE(VE, EE) increases graph size enormously, but resulting expanded graph

GE is a time independent graph.

Some research has been done in order to speed up the TDSPP by exploiting pre-

processing of the graph before running the algorithm. Goldberg et al. [9], proposes

17

2

3

41

1,1,2

1,1,2

2,3,2

3,2,3

(a) A TDG, G(V,E), with edge delays vary in time.

1 1 1 1 1 1

2 2 2 2 2 2

3 3 3 3 3 3

4 4 4 4 4 4

t=0 t=1 t=2 t=3 t=4 t=5

(b) Expanded graph GE(VE, EE) of graph G(V,E).

Figure 3.1. An illustration of time-expanded graph generation.

18

landmark-based ALT algorithm on static graphs. This algorithm chooses a small num-

ber of landmarks and computes shortest paths among them as part of preprocessing.

It, then, utilizes this information to find lower bounds to the problem of shortest path

from one source to a target node and reduces the total number of nodes to visit in order

to reach the destination node. Ohshima et al. [8], present a modified version of this

algorithm which runs on dynamic graphs. With the help of some preprocessing, they

achieve up to 4 times speed up with respect to the Modified Dijkstra algorithm which

was first proposed by Dreyfus [10] in order to solve shortest path problem on TDGs.

This algorithms also work for one source node to one destination node TDSPP on the

graph. They assume graphs with time-dependent edge lengths and FIFO property.

Ding et al. [2] and Kanoulas et al. [17] study shortest path problem on time

dependent graphs for a given starting interval from the source node. That is, they

examine the least total travel time from a source node vs to a destination node vd with

the departure time from vs given as a time interval input. They find the best departure

time which results in the shortest time to get from vs to vd. Note that waiting time in

vs is not considered in the time calculation. Kanoulas et al. [17] propose an algorithm

which is an extension of A* algorithm. Their approach is to expand the graph by using

expanded nodes set and a priority queue list which at first consists only of the source

node and then expanded by taking neighbors of the element in priority queue. Ding

et al. [2] propose a Dijkstra based algorithm for FIFO and non-FIFO graphs. The

algorithm consists of two steps: time refinement and path selection respectively. In the

first step, it calculates earliest arrival times for all nodes when departing from source

node at any time in the given interval. The second step chooses the optimal path with

an optimal starting time.

Chabini et al. [25, 26] proposes Decreasing Order of Time (DOT) algorithm for

all-to-one fastest paths problem for all departure times and proves that it has the

optimal worst-case running time complexity for this problem. They assume the edge

lengths are time dependent variables but will be static after a finite number of time

intervals M . Let S = {t0, t1, ..., tM−1} be time intervals. Then the problem becomes

a static shortest path problem when the departure time is greater than tM−1. Their

19

method calculates fastest arrival time with static shortest path problem for time tM−1.

Then, they calculate the fastest paths starting from time tM−2 to time t0. DOT name

comes from this approach. The running complexity of DOT algorithm is O(SPP +

|V |M + |E|M) [26], where SPP is the static shortest path problem, |V | is the number

of vertices and |E| is the number of edges in the graph.

3.2. Parallel Algorithms

Chabini and Ganugapati [12] propose parallel algorithms based for the DOT

algorithm given by [25, 26]. Because the DOT algorithm has the optimal run time

complexity for the problem of all-to-one fastest paths for all departure times, they

try to improve the performance of this algorithm by investigating parallel implemen-

tations of DOT algorithm. They implement distributed and shared memory parallel

implementations that achieve approximately 4 fold speedup with 6 processors on input

graphs with 1000 nodes, 3000 edges and 100 time intervals [12].

Tremblay et al. [13] also proposes parallelization works for the DOT algorithm

and the time dependent least time path algorithm given by [33]. They achieve up to

13 fold speedup on 15 processors [13]. Also, Ziliaskopoulos et al. [14] examine parallel

designs for the algorithm given in [33]. They improve the algorithm run time by

achieving 2 fold speedup on shared memory implementation with 4 CPUs, and achieve

7 fold speedup with message passing algorithm using parallel virtual machine (PVM).

In theses parallel algorithms, they consider the cases where the time varying travel

times for edges will be constant after a known time interval.

3.3. Flow-Speed Model

Flow-Speed Model is introduced by Sung et al. in [4]. The main idea that dis-

tinguishes this model from the other models used on TDGs is that the flow speed on

each edge depends on the time interval instead of time dependent edge lengths that is

considered in most of the TDG problems in previous works.

20

Let G = (V,E) be a graph, where V is the set of vertices and E is the set of

edges and lij is the non-negative length of the edge (i, j). Consider dividing the time

horizon into K time intervals in which an interval represented by [fk, fk+1), where

k = 0, 1, ..., K − 1 and 0 ≤ f0 < f1 < ... < fk−2 < fk−1. Let vk(i,j) be the non-negative

flow speed on the edge (i, j) in the time interval [fk, fk+1). For each vertex j ∈ V , define

a value tj = mini 6=j{T (ti, (i, j))}, where T (ti, (i, j)) is the travel time from vertex i to

j starting at time ti. Then, the purpose of this model becomes finding values of tj for

all vertices j ∈ V , where the starting time from the starting node given as ts.

Theorem 3.1. Assume that two vehicles departing from vertex s at times t1 and t2

and they arrive the vertex d at time T (t1) and T (t2) respectively. Then, the following

must be provided in flow-speed model [4]:

if t1 ≤ t2 =⇒ T (t1) ≤ T (t2).

Proof. [4]: Let us assume that t1 ∈ [fi, fi+1), t2 ∈ [fj, fj+1), T (t1) ∈ [fk, fk+1) and

T (t2) ∈ [fm, fm+1), where i ≤ j ≤ k,m, and the length of the arc (s, d) is ls,d. Then,

consider the length of edge (s, d) as a summation of the interval times multiplied by

velocities of the vehicle at that interval until the vehicle reaches the node d:

ls,d = vm(i,j)
(T (t2)− fm) + vm−1(i,j)(fm − fm−1) + ...+ vj(fj+1 − t2)

= vk(i,j)(T (t1)− fk) + vk−1(i,j)(fk − fk−1) + ...+ vi(fi+1 − t1)

≥ vk(i,j)(T (t1)− fk) + vk−1(i,j)(fk − fk−1) + ...+ vj(fj+1 − t2),

since i ≤ j and t1 ≤ t2. This means

vm(i,j)
(T (t2)− fm) ≥ vk(i,j)(T (t1)− fk),

where k = m, or

vm(i,j)
(T (t2)− fm) + vm−1(i,j)(fm − fm−1) + ...+ vk(i,j)(fk+1 − fk) ≥ vk(i,j)(T (t1)− fk),

21

where k < m, or

vm(i,j)
(T (t2)− fm) ≥ vk(i,j)(T (t1)− fk) + vk−1(i,j)(fk − fk−1) + ...+ vm(i,j)

(fm+1 − fm),

where k > m. The third inequality function contradicts with the assumption of vk(i,j) ≥

0 because T (t2) < fm+1, then k ≤ m. Therefore, we conclude that T (t1) ≤ T (t2).

Theorem 3.1 proves that flow-speed model ensures the FIFO property.

3.4. Modified Dijkstra Algorithm

The algorithm that we work on is similar to Dijkstra based algorithm which was

first proposed by Dreyfus et al. in [10] for edge-length varying TDGs. Sung et al. [4]

present Modified Dijkstra (MD) algorithm for solving problems using the flow-speed

model on time dependent graphs. They take the complexity of Dijkstra’s algorithm

as O(|V |2 + |E|), where |V | is the number of vertices and |E| is the number of edges

in graph. MD algorithm’s run time complexity is O(|V |2 + |E|K) [4], where K is the

maximum number of time intervals scanned in ArrivalTime function that is presented

in Figure 3.3.

There are two differences between MD algorithm and Dijkstra’s algorithm. The

first difference is that updating the neighbours of the node with the smallest arrival

time amongst unvisited nodes differs in these two algorithms. In MD algorithm, there

could be an update for each neighbour of that node without taking into consideration

whether that neighbour is visited yet or not. On the other hand, Dijkstra’s algorithm

only updates unvisited neighbours. The second difference between these two algorithms

is calculating the time passed to get from the node which has the smallest arrival time

amongst the unvisited nodes to a neighbour of that node. This difference is because of

the fact that MD algorithm deals with TDGs whereas Dijkstra’s algorithm solves the

shortest path problem for static graphs. ArrivalTime function in the MD algorithm

calculates the arrival time to a neighbour by considering the current time.

22

Algorithm Modified Dijkstra

1: S ← ∅;U ← V

2: ti =∞ for each vertex i ∈ V

3: ts = 0 and pred(s) = 0

4: while |S| < n do

5: let i ∈ U be a vertex for which ti = min{tj : j ∈ U}

6: S ← S ∪ {i}

7: U ← U − {i}

8: for each(i, j) ∈ A(i) do

9: if tj > ArrivalT ime(ti, (i, j)) then

10: tj = ArrivalT ime(ti, (i, j)) and pred(j)← i

11: end if

12: end for

13: end while

Figure 3.2. Modified Dijkstra Algorithm.

ArrivalTime(ti, (i, j)) Function

1: Arclength← lij

2: let k ∈ {0, 1, 2, ..., K} be an index for which fk(i,j) ≤ ti < fk+1(i,j)

3: Arclength← Arclength− vk(i,j) × (fk+1(i,j) − ti)

4: while Arclength > 0 do

5: k ← k + 1

6: Arclength← Arclength− vk(i,j) × (fk+1(i,j) − fk(i,j))

7: end while

8: ArrivalT ime(ti, (i, j))← fk+1(i,j) + Arclength/vk(i,j)

9: return

Figure 3.3. Function for calculating arrival time.

23

4. PARALLEL ALGORITHMS FOR SHORTEST PATH

PROBLEM ON TIME DEPENDENT GRAPHS

The major challenge of the shortest path problem on TDG is that the solution

requires a lot of time and memory. To address this challenge, we resort to parallelization

of the algorithm for multi-core and GPU systems. Parallel programming is carried out

using OpenMP and Cuda. In this work, MD algorithm is taken as a sequential solution

to the shortest path problem on TDG and parallelized.

4.1. Time Consuming Parts of Sequential Modified Dijkstra Algorithm

First, we implement a sequential version of MD algorithm in order to detect

most time consuming parts of the algorithm. We use a CPU profiler program called

Very Sleepy [34] to analyze the sequential implementation of the MD algorithm. Very

Sleepy program shows the current working processes in the computer as a list. We

implement and run sequential MD algorithm on Visual Studio and in the mean time,

find our process on the list provided by Very Sleepy program. After double-clicking

on the process, the program starts to collect data about the running process. When

the process finishes, Very Sleepy shows all the function calls in the order of decreasing

total elapsed time in the functions.

In the MD algorithm, we observe that there are mainly two parts of this algorithm

which consumes most of the run time of the program and which can be parallelized

without causing too much overhead. The analysis results show that the most time

consuming part of this algorithm is finding an unvisited node with the smallest arrival

time. This is shown on the 5th line of the MD algorithm pseudo code given in Figure 3.2.

Another time consuming part is where we update minimum arrival times of every

neighbour of the node with the smallest arrival time amongst the unvisited nodes and

calculate the arrival times of these neighbours while updating. This part is the for loop

on lines 8-12 in Figure 3.2.

24

4.2. Graph Data Structures

When working with large graphs, the algorithms require large computer memory

and run times. In our implementation, we try to reduce the memory usage by using

Compressed row Storage (CSR) format for storing our graph and its related properties.

CSR format is widely used for storage of large graphs and sparse matrices. An example

of CSR format storage is given at Figure 4.1.

Figure 4.2 shows the members of the Graph class and the node structure that

are used to implement the data structures in C++. In the Graph class, nodes vector

stores the information of each node. xadj vector holds the number of edges coming out

from each node respectively to the nodes vector order. Similarly, adjncy vector holds

the end points of the edges for each node respectively. Lastly, adjwgt vector holds the

weights (lengths) of those edges.

In order to reduce the running time of the algorithms, we do not implement a

node as a class. In this way, we can get rid of the constructor and destructor calls and

other unnecessary time consuming overheads because of using the class structure. We

represent a node as a structure. This also saves program memory.

In our shortest path algorithms, we calculate shortest paths from a source node to

all other nodes in the graph. We first remove unreachable nodes from the source node

in the graph before running any algorithm to find shortest paths. We use depth-first

search to find the reachable nodes from the start node, and remove the unreachable

ones. The time taken to find the reachable nodes is not included in the algorithm’s

reported run times because this is done only once before the algorithm starts and all of

the algorithms can be run after this step. This is a small time to be concerned about

and since it has nothing to do with the shortest path algorithm’s run time performance,

we do not include it in the reported results.

25

1

3

2

4

5

14

2

3 4

2

7

6

12

15

2

Graph

 nodes

 xadj

2 3 4 3 1 4 4 5 4 5 adjncy

3 2 14 4 2 7 12 15 2 6
 adjwgt

0 3 6 9 8 10

1 2 3 5 4

Figure 4.1. An example of CSR format representation of a graph.

26

class Graph{

vector<Node> nodes ;

vector<int> xadj ;

vector<int> adjncy ;

vector<double> adjwgt ;

th rus t : : d ev i c e ve c to r<Node> nodesD ; // only in cuda implementat ions

}

struct Node {

int nodeId ;

int predecessorNodeId ;

int minArrTime ;

bool i s V i s i t e d ;

int po s i t i o n ; // i n s e r t i o n order number

}

Figure 4.2. Graph class and Node structure.

4.3. OpenMP Based Implementation

In our OpenMP implementation, we parallelize (i) the finding of the unvisited

node with minimum distance and (ii) the updating of minimum arrival times of the

neighbours of that node. When we update the minimum arrival time for a node,

we compare the current arrival time of the updated node with the new calculated

arrival time. New arrival time is the sum of current time and the time passed to get

from current minimum distanced node to neighbour node. Therefore, updating of the

arrival times of each neighbour are independent from each other. Hence, we can safely

parallelize this part without considering any race condition between threads.

In Figure 4.4, an example given which demonstrates how distances of neighbors of

the current node updated with different threads. In this figure, i represents the node we

found in FindMinArrT imedUnvisitedNode OpenMP function, and 1, 2, 3, 4, 5, 6, 7, 8

are represents the neighbors of that node. Let say we have 3 threads, namely T1, T2, T3

and assume that updating a node’s minimum arrival time take the same time for each

27

Algorithm OpenMP Modified Dijsktra

1: S ← ∅;U ← V

2: ti =∞ for each vertex i ∈ V

3: ts = 0 and pred(s) = 0

4: while |S| < n do

5: i = FindMinArrTimedUnvisitedNode OpenMP

6: S ← S ∪ {i}

7: U ← U − {i}

#pragma omp parallel shared{nodei} private{nodej}

8: for each(i, j) ∈ A(i) do

9: if tj > ArrivalT ime(ti, (i, j)) then

10: tj = ArrivalT ime(ti, (i, j)) and pred(j)← i

11: end if

12: end for

13: end while

Figure 4.3. OpenMP implementation of Modified Dijkstra Algorithm.

1

2

i

3

4

5

6

78

T1

T1

T1

T2

T3

T2

T3

T2

Figure 4.4. Example of minimum distance update in OpenMP implementation.

28

Function FindMinArrTimedUnvisitedNode OpenMP

1: int nodeId, t nodeId

2: double minArr, t minArr

3: nodeId← −1,minArr ←MAX DISTANCE

4: #pragma omp parallel reduction(+:count)

shared{minArr, nodeId} private{t nodeId, t minArr}

5: t nodeId← nodeId, t minArr ← minArr

6: #pragma omp for

7: for each i ∈ U do

8: count← count+ 1

9: if i.minArrT ime < t minArr then

10: t minArr ← i.minArrT ime and t nodeId← i.nodeId

11: end if

12: end for

13: #pragma omp critical

14: if t minArr < minArr then

15: minArr ← t minArr and nodeId← t nodeId

16: end if

17: return i where i.nodeId equals nodeId

Figure 4.5. Function for finding an unvisited node with minimum arrival time using

OpenMP.

29

thread. Then, T1 updates minimum arrival times for nodes 1, 4, 7 by calculating passed

times to go through edges (i, 1), (i, 4), (i, 7); T2 updates nodes 2, 5, 8 with calculating

elapsed times on edges (i, 2), (i, 5), (i, 8); and T3 updates arrival times of nodes 3, 6

using edges (i, 3), (i, 6) respectively. Note that, when considering updates of minimum

arrival times of neighbours for a node, update of an edge does not have any influence

over the other edges because the distance calculation of each one is independent from

the others.

Finding of the minimum distanced unvisited node is done by using the parallel

reduction operator in OpenMP. After the reduction, we apply a critical region where

we only compare the arrival times gathered by each processor. This critical region does

not cause a considerable problem in program running time.

4.4. Cuda/Thrust Based Implementation on a GPU

In our Cuda implementation also, we try to minimize the time where we find

the element with minimum distance from among all the unvisited elements (i.e. line 5

in Modified Dijkstra’s Algorithm in Figure 3.2). Because it is where the most of the

running time is consumed, and it is appropriate to run it in parallel on a GPU. We

used thrust :: min element function from the Cuda/Thrust library to find the element

with minimum distance in a thrust :: device vector < Node >. We need to define a

binary predicate that is used for comparison by Thrust. Here, we consider not only

the minimum distance criterion for the element but also whether the element has been

visited or not. This predicate is shown in the Figure 4.8.

30

Algorithm Cuda Modified Dijsktra

1: S ← ∅;U ← V

2: ti =∞ for each vertex i ∈ V

3: ts = 0 and pred(s) = 0

4: while |S| < n do

5: i = FindMinArrTimedUnvisitedNode Cuda

6: S ← S ∪ {i}

7: U ← U − {i}

8: for each(i, j) ∈ A(i) do

9: if tj > ArrivalT ime(ti, (i, j)) then

10: tj = ArrivalT ime(ti, (i, j)) and pred(j)← i

11: end if

12: end for

13: end while

Figure 4.6. Modified Dijkstra Cuda implementation.

Function FindMinArrTimedUnvisitedNode Cuda

1: iterator iSmallest, iBegin

2: iBegin← nodes.begin()

3: iSmallest← thrust :: min element(nodesD,Compare Key V alue)

4: return thrust :: distance(iBegin, iSmallest)

Figure 4.7. Function for finding an unvisited node with minimum arrival time using

Cuda/Thrust.

31

// b inary p r ed i c a t e used by t h r u s t

struct Compare Key Value

{

bool operator () (const Node &lhs , const Node &rhs) const

{

i f (rhs . i sV i s i t e d)

return true ;

i f (l h s . i sV i s i t e d)

return fa l se ;

return (l h s . minArrTime < rhs . minArrTime) ;

}

}

Figure 4.8. Compare Key Value structure.

4.5. OpenMP and Cuda Hybrid Implementation

We also provide a hybrid implementation of shortest path algorithm based on both

Cuda and OpenMP. In this version, we store the graph in nodes and nodesD vectors

because one is used from OpenMP and the other one is used from Cuda functions. We

use Cuda for finding the unvisited element with minimum distance. We use thrust ::

min element function which is defined in thrust/extrema class in a similar fashion as

we use it in our Cuda implementation. On the other hand, this hybrid implementation

differs from the Cuda version in that, it uses the returned result to get the position of

the element in our nodes vector. Then, it uses OpenMP to update the arrival times

of the neighbours of the current node. Finally, it updates the nodesD vector by only

updating the changed members of the nodes vector. Note that, the update of the Cuda

vector nodesD is not in the OpenMP parallel code region. Hence there are no race

conditions among the threads while the Cuda vector is updated.

Hybrid algorithm runs faster than the Cuda version because it uses OpenMP

parallelization in the process of updating neighbors of the minimum distanced unvisited

node. This is a small improvement when we consider very large graphs, since most of the

32

Algorithm Cuda and OpenMP (Hybrid) Modified Dijsktra

1: S ← ∅;U ← V

2: ti =∞ for each vertex i ∈ V

3: ts = 0 and pred(s) = 0

4: thrust :: copy(nodesD, nodes)

5: while |S| < n do

6: i = FindMinArrTimedUnvisitedNode Cuda

7: S ← S ∪ {i}

8: U ← U − {i}

9: #pragma omp parallel shared{nodei} private{nodej}

10: for each(i, j) ∈ A(i) do

11: if tj > ArrivalT ime(ti, (i, j)) then

12: tj = ArrivalT ime(ti, (i, j)) and pred(j)← i

13: end if

14: end for

15: for each(i, j) ∈ A(i) do

16: nodesD.at(j.position)← nodes.at(j.position)

17: end for

18: end while

Figure 4.9. Modified Dijkstra Hybrid implementation.

33

running time is spent on the finding minimum distanced element. As will be shown in

the next experiments and results chapter, this algorithm runs faster than the OpenMP

implementation too. However, the hybrid version has a drawback ; it needs to store

the graph data both in std :: vector on the host as well as in thrust :: device vector

on the GPU. Therefore, it requires twice as much memory than the two versions.

34

5. EXPERIMENTS AND RESULTS

Our goal is to improve the running time performance of the MD algorithm given

by Sung et al. in [4]. Performance is the main issue of TDSPP algorithms, so we try to

reduce algorithm run time using parallel processing. We compare our parallel imple-

mentations with our implementation of the sequential MD algorithm. We give metrics

that we use to evaluate performance our parallel algorithms. We provide information

on the tests and the hardware environment on which we carried out our tests. After

that, we show the results obtained from our tests with respect to the performance

metrics.

5.1. Performance Metrics and the Test Environment

In this section, we describe performance metrics, and test environment and in-

put parameters we used in our test. We illustrate the performance of our parallel

implementations using the following metrics, which are defined in Section 2.3:

• Running time of the three implementations,

• Speedup of parallel implementations over the sequential implementation,

• Efficiency of our OpenMP implementation,

• Scalability of our OpenMP implementation.

Testing environment specifications are in the Table 5.1. In the result figures be-

low, unless it is stated otherwise, OpenMP and hybrid implementations are tested using

all of the 12 processors of the computer. We do not turn on optimization parameters

while compiling and running our implementations.

5.2. Input Graph Generation

For our test cases, we use Graph500 reference code to generate random graphs.

This code generates a graph with vertices and edges between them. We provide two

35

Table 5.1. Test environment specifications.

Parameter Computer Specifications

Operating System Debian 7.9 - i686 GNU/Linux

Host Memory 8 GB Memory

Host CPU 12 Cores - Intel(R) Xeon(R) CPU X5660 @ 2.80GHz

Accelerator NVIDIA Corporation GF110 [GeForce GTX 580]

inputs to the graph generation algorithm:

(i) The number of vertices to be generated in base 2 logarithm : We create test

graphs by giving this input in the range 10 to 22 (i.e. number of vertices in the

range 210 to 222).

(ii) Maximum number of edges to be generated: We provide this input as 4,8,16,32,64

times the number of vertices to be generated.

After creating graphs with the Graph500 program, we use the DFS algorithm,

described in Section 2.1.2, to find reachable nodes from the first node. After that,

we remove all the unreachable nodes from graph before running any algorithm. The

information about the generated graphs using Graph500 and the resulting graphs after

removing unreachable nodes can be found at Appendix A.

Then, we set random integer weights (edge lengths) for each edge in the range 1

to 10 units using the C rand() function. To be able to test time dependent graphs, we

generate random integer velocities in the range 1 to 4 (units per time interval) on edges

so that the velocity of a car going through an edge changes in every time interval. This

interval can be set as well, but in our tests we set the time interval to 1.

36

5.3. Results

In this section we give the results of our tests for the metrics of run time, speedup,

efficiency and scalability. In the tables about graph sizes used in our tests, |VR| means

the number of reachable nodes and |ER| means the remaining number of edges after

unreachable nodes are removed. Note that, all results of our tests can be found in

Appendix B.

5.3.1. Run Times Observations for Parallel Algorithms

Firstly, we test our parallel algorithms under different sizes of graphs to observe

the change in their running times. We achieve this by running our algorithms with

increasing numbers of nodes and edges in the input graph. In order to observe the

performance due to the change in the number of edges we used graphs which have the

same ratio of the number of edges to the number of nodes in (in this case, the ratio

is approximately 8). The graphs used in Figure 5.1 and Figure 5.2 are: G20, G24,

G35, G37, G41, G42 and G45. More information about these graphs can be found in

Appendix A.

In Figure 5.1, run times of the Cuda, OpenMP and hybrid algorithms are plotted

against the different number of edges in the input graph. It is inferred that OpenMP

algorithm runs faster than the other implementations involving Cuda in small and

medium sized inputs where the number of edges changes from 200K to 4M. However,

when the number of edges go up to 5M, the Cuda implementations run faster than

the OpenMP version. As can be seen in the rest of the results, run times of the Cuda

and hybrid algorithms are very close to each other. In the Figures 5.1 and 5.2, plots

of these algorithms overlap.

37

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

Number of Edges

T
im

e(
se

co
nd

s)

Cuda
OpenMp
Cuda&OpenMP

Figure 5.1. Parallel algorithms’ run times with respect to the number of edges in

graph.

In the Figure 5.2, it can be observed that the run times of algorithms increase

when the number of nodes grows. It can be seen that OpenMP runs faster than Cuda

and hybrid algorithm in small and medium sized graphs. However, after the number

of vertices reaches 500K and more then the OpenMP implementation takes more time

than the two Cuda based algorithms. In this figure, the ratio between the number of

edges and the number of nodes is preserved as in Figure 5.1.

5.3.2. Comparison of Algorithms’ Run Times

We test the sequential, OpenMP, Cuda and hybrid algorithms with respect to

different size of graphs. Input graphs used in this section’s figures are shown in Table 5.2

and Table 5.3 respectively, and also detailed information about the graphs and their

run times can be found in Appendix A and B.

In Figure 5.3, we test those four algorithms with small and medium sized graphs.

In the very small graphs the sequential algorithm runs faster than the Cuda and hybrid

algorithm. However, when we increase the graph size a little, we can see that the

38

10
4

10
5

10
6

10
7

10
0

10
1

10
2

10
3

10
4

Number of Nodes

T
im

e(
se

co
nd

s)

Cuda
Cuda&OpenMP
OpenMP

Figure 5.2. Parallel algorithms’ run times with respect to the number of nodes in

graph.

sequential algorithm run time is increasing rapidly with the graph size, but the parallel

algorithms’ run times does not increase as much as the sequential algorithm. It can

also be seen that, although the run time of OpenMP algorithm is smaller then the

rest of the algorithms, OpenMP algorithm’s run time increases more than the Cuda

algorithms.

In Figure 5.4, we try to observe the algorithms’ run times on large graphs where

the number of edges vary between 4M to 24M. As can be seen in Figure 5.4, OpenMP

algorithm runs slightly slower than two other parallel algorithms. On the other hand,

Cuda and hybrid(Cuda and OpenMP) algorithms’ run times are almost the same. The

difference between those algorithms is because of the neighbor update process after

finding the minimum distanced unvisited node, which can be seen from Figure 4.9. If

the number of neighbours to update is small for a node, the OpenMP parallel instruc-

tions cannot achieve a good efficiency due to small parallelism and thread management

overhead.

39

G19 G21 G24 G25 G35 G29 G37 G40
10

0

10
1

10
2

10
3

10
4

Input Graphs

T
im

e(
se

co
nd

s)

Sequential
Cuda
Cuda&OpenMP
OpenMP

Figure 5.3. Algorithm run times for small and medium sized graphs.

Table 5.2. Small and medium sized graphs used in Figure 5.3.

Graph |VR| |ER|

G19 22,740 628,033

G21 35,069 450,770

G24 51,030 418,251

G25 72,737 1,124,437

G35 102,093 896,498

G29 146,411 2,636,679

G37 245,143 2,061,600

G40 319,769 1,567,005

40

G38 G39 G41 G42 G44 G45 G46
10

0

10
1

10
2

10
3

10
4

10
5

Input Graphs

T
im

e(
se

co
nd

s)

Sequential
Cuda
Cuda&OpenMP
OpenMP

Figure 5.4. Algorithm run times for large graphs.

Table 5.3. Large graphs used in Figure 5.4.

Graph |VR| |ER|

G38 323,929 4,314,274

G39 409,860 9,007,004

G41 486,299 3,762,438

G42 583,850 5,785,179

G44 834,701 5,385,893

G45 1,164,208 11,606,886

G46 1,527,605 23,990,183

41

5.3.3. Speedup

When evaluating speedup performance, we consider all graphs used in our tests

except for those which has a very small run time close to zero (i.e. ε). Therefore,

we use graphs G17 − G46 given in Table A.1. First we order the graphs with respect

to their run times in sequential algorithm. The graph with the smallest run time is

the first element of the list. The ordered list of graphs with respect to the sequential

algorithm run times for the set of G17 − G46 are: G17, G18, G19, G20, G32, G21,

G22, G23, G33, G24, G25, G34, G26, G27, G35, G28, G29, G36, G30, G31, G37, G40,

G38, G39, G41, G42, G44, G43, G45 and G46 respectively.

In Figure 5.5, the parallel algorithm speedups with respect to the increasing

order of sequential run time are plotted. The ratio of the number of edges divided

by the number of vertices for each graph is also presented in this figure. OpenMP

algorithm starts with a speedup value of around 7 on small graphs. After the graph

size increases, OpenMP algorithm reaches its maximum speedup which is just above

10. On the other hand, it can be seen from this figure that Cuda and hybrid algorithm

starts with a speedup of 1 and ends up with a speedup of 17. As the graph size

increases the ratio of run times between sequential and the Cuda algorithms increase.

Also, note that speedups of the the hybrid algorithm and the Cuda algorithm are

close to each other. This is because the difference between those two algorithms is the

updating of the arrival times of the neighbours after finding the node with the smallest

arrival time. Therefore, the difference between speedups of these two Cuda algorithms

increases when there are more neighbors to update, which also means when the ratio

of the number of edges to the number of vertices increases.

G
17 - 10.0

G
18 - 16.6

G
19 - 27.6

G
20 - 7.7

G
32 - 2.4

G
21 - 12.8

G
22 - 21.2

G
23 - 35.7

G
33 - 3.6

G
24 - 8.1

G
25 - 15.4

G
34 - 5.6

G
26 - 25.8

G
27 - 43.5

G
35 - 8.7

G
28 - 11.0

G
29 - 18.0

G
36 - 5.4

G
30 - 29.9

G
31 - 50.7

G
37 - 8.4

G
40 - 4.9

G
38 - 13.3

G
39 - 21.9

G
41 - 7.7

G
42 - 9.9

G
44 - 6.4

G
43 - 20.3

G
45 - 9.9

G
46 - 15.7

Input graphs in the order of sequential algorithm run times
and their ratio's of the number of edges to the number of vertices

0

2

4

6

8

10

12

14

16

18

20
S

pe
ed

up

Cuda
Cuda&OpenMP
OpenMP

.

Figure 5.5. Speedup of parallel algorithms against sequential algorithm.

43

In Figure 5.6, speedups of our three parallel implementations are shown with

respect to the number of vertices and the number of edges in graphs using the same

graphs in Figure 5.5. In Figures 5.5 and 5.6, fluctuations in speedups of Cuda and

hybrid results are because of the ratio of number of edges to the number of vertices in

the graph changes. An increase in this ratio causes the speedups of Cuda and hybrid

implementations to decrease as the graph size increased, because the Cuda implemen-

tations mostly benefit from finding the minimum distanced unvisited node. So, an

increase in number of vertices while the number of edges does not change has more

speedup effect on Cuda algorithms than an increase in the number of edges while the

number of vertices does not change in a graph. Note that, hybrid implementation

uses OpenMP when updating neighbours of the minimum distanced node, therefore,

the hybrid implementation’s speedup does not decrease as much as the the Cuda im-

plementation speedup while the ratio of number of edges to the number of vertices

increasing. However, in the hybrid implementation there is a copy overhead from host

vector to device vector after the update process, which also results in decrease in the

speedup. Note that, OpenMP implementation speedup is also decrease when the ratio

of the number of edges to the number of nodes increases, but, because it has no copy

overhead as in the hybrid implementation, the effect is smaller than those in other

parallel algorithms.

5.3.3.1. Relative Speedup. We observe the OpenMP algorithm speedup results with

different number of processors to work with. We test the small, the medium and the

big sized graphs using 1, 2, 4, 6, 8, 10 and 12 number of threads. The results are shown

in Figure 5.7. We order the graphs in between G17 − G46 in ascending order of the

sequential algorithm run time as we did in Section 5.3.3. The graph with the smallest

run time is the first element of the list. We create 3 sets using this list:

(i) Small Graphs: G17, G18, G19, G20, G32, G21, G22, G23, G33 and G24

(ii) Medium Graphs: G25, G34, G26, G27, G35, G28, G29, G36, G30 and G31

(iii) Large Graphs: G37, G40, G38, G39, G41, G42, G44, G43, G45 and G46,

44

2.5
2

1.5

Number of Edges in Graph

×107

0

2

4

1

6

8

0

10

S
pe

ed
up

12

2

14

16

18

4

Number of Vertices in Graph
×105

6 0.58 10 12 014 16

(a) Cuda

2.5
2

1.5

Number of Edges in Graph

×107

0

2

4

10

6

8

2

S
pe

ed
up 10

12

4

14

Number of Vertices in Graph
×105

6

16

0.5

18

8 10 12 014 16

(b) Cuda&OpenMP

2.5
2

1.5

×107

Number of Edges in Graph

0
1

2

0

4

6

2

S
pe

ed
up

8

4

Number of Vertices in Graph
×105

10

0.56

12

8 10 12 014 16

(c) OpenMP

Figure 5.6. Speedups of parallel algorithms with respect to the number of vertices

and the number of edges in graphs.

45

After that, we calculate the average running time of the graphs in each set for the

OpenMP algorithm with using 1,2,4,6,8,10,12 number of threads respectively. Then,

we calculate OpenMP algorithm speedups for each graph set with the thread counts of

1,2,4,6,8,10,12. We reach up to 10 times faster running time on 12 threads than what

we have with 1 thread. It can be seen in Figure 5.7 that, in particular for medium and

large graphs, the behaviour of OpenMP algorithm run time is similar to the change in

the number of threads. As can be seen from this figure, the number of threads and

OpenMP algorithm speedup are roughly linearly proportional to each other. Therefore,

it can be expected that increasing the number of processors even after 12 will continue

to achieve a good efficiency in terms of runtime.

1 2 4 6 8 10 12
Number of Threads

2

4

6

8

10

12

S
pe

ed
up

Small Graphs
Medium Graphs
Large Graphs

Figure 5.7. OpenMP Algorithm speedups with respect to the number of threads used.

5.3.4. Efficiency

In our OpenMP implementations we also examine the efficiency metric which is

defined as the ratio of speedup to the number of processors used in program run time.

In an ideal system, the efficiency should be one.

In the Figure 5.8, the following notation is used for legends:

• OpenMP12: OpenMP algorithm with 12 threads used.

• OpenMP10: OpenMP algorithm with 10 threads used.

• OpenMP8: OpenMP algorithm with 8 threads used.

46

• OpenMP6: OpenMP algorithm with 6 threads used.

• OpenMP4: OpenMP algorithm with 4 threads used.

• OpenMP2: OpenMP algorithm with 2 threads used.

Small Graphs Medium Graphs Large Graphs
Graph Sets

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

E
ffi

ci
en

cy

OpenMP
12

OpenMP
10

OpenMP
8

OpenMP
6

OpenMP
4

OpenMP
2

Figure 5.8. OpenMP Algorithm efficiency with respect to the number of threads used.

We use the same graph input sets (Small, Medium and Large Graphs) that we use

in Section 5.3.3.1). The efficiency of our OpenMP implementation is shown in Figure

5.8. Every line in the graph corresponds to an OpenMP algorithm efficiency with a

constant number of threads. The following results can be inferred from this figure:

(i) For Large Graphs set, all of the efficiency results for different number of threads

that we have tested are above or close 0.85, which is a good efficiency result.

(ii) For Medium Graphs set, all of the efficiency results for different number of threads

that we have tested are above or close 0.75.

(iii) For Small Graphs set, all of the efficiency results for different number of threads

that we have tested are above or close 0.65.

(iv) For each line, the results for each thread count, as the input size grows, the

efficiency increases too. This means that as the graph size increase the total idle

time for threads decrease.

5.3.5. Scalability

Scalability measures the performance of the program while the input and the

processor size increases at the same ratio. Because that the graphs we are testing are

47

the graphs with unreachable nodes removed, it is hard to produce those graphs which

have the same ratio of number of nodes to number of edges as in Graph500.

Therefore, we use 3 graphs, namely G20, G24 and G35, to examine our OpenMP

implementation’s scalability. Those graphs have twice as many number of reachable

nodes and edges in the given order above. Then, we compare the efficiency of these

graphs under 2, 4 and 8 threads respectively. Therefore, as we increase the graph size

twice, we increase the number of threads twice as many too.

The results are shown in the Table 5.4. In this table, Ts is the sequential algorithm

run time in seconds, Tp is the OpenMP algorithm run time in seconds with given number

of threads and η is the efficiency.

Table 5.4. Scalability of OpenMP Algorithm.

Graph |VR| |ER| |ER|/|VR| # of threads Ts Tp η

G20 26,798 206,590 7.7 2 18 11 0.81

G24 51,030 418,251 8.1 4 64 19 0.84

G35 102,093 896,498 8.7 8 258 39 0.82

Results show that, as we increase the graph size and the number of processor by

2 and efficiency of algorithm is almost the same (range in between 0,81 and 0,84).

5.4. Discussion

OpenMP algorithm runs faster than sequential algorithm without taking into

consideration of graph size. However, there is an increase in the algorithm speedup

from 7 up to 10 while we increase the input graph size. This is because increasing

graph size makes the program run more efficiently so that the total idle time of the

processors with respect to the total run time will decrease.

Cuda and hybrid algorithms mostly benefit from finding the unvisited node with

48

minimum arrival time faster than the OpenMP algorithm. As we can see in the figures

at Section 5.3, Cuda algorithms increase the speedup ratios when graph size increases

up to 17. On the other hand, as the graph size increases the speedup gap between Cuda

and Cuda&OpenMP algorithms also increases. This is because, there is an additional

parallelization section in the hybrid algorithm so that arrival times of the neighbors

of the unvisited minimum arrival timed nodes are also updated in parallel. When the

number of neighbors is small, the effect of parallelization can not be perceived because

there is also an overhead of the copying all of the updated nodes to the thrust ::

device vector.

49

6. CONCLUSIONS

In this thesis, we present efficient parallel algorithms for shortest path problem

from one node to all other nodes on time dependent graphs. We implement parallel

algorithms in Cuda, OpenMP and hybrid Cuda and OpenMP. We evaluate these algo-

rithms in terms of algorithm run times with respect to the sequential algorithm. For

testing, we use an extensive set of graphs which have number of edges between 200K

and 24M, and have number of nodes between 22K and 1.5M. We achieve up to 10-fold

speedup with 12 processor in our OpenMP implementation, and 17-fold speedup in

Cuda implementations. It is observed that OpenMP implementation has better per-

formance when the number of nodes in the graph is around or smaller than 400K. On

the other hand, Cuda and hybrid algorithms are good choices when the number of

nodes in the graph is larger than 450K. Also, we can say that as the ratio between

number of edges and number of nodes in a graph increases the hybrid algorithm be-

comes a little more efficient than the Cuda algorithm. If the memory constraint is not

an issue, then hybrid algorithm can be a preferred solution on dense graphs.

In this thesis, we are mainly concerned about the parallelization of the shortest

path problem with time dependent flow speed model on TDG. Our efforts focused

on parallelization and not on optimization of the original sequential algorithm. In

sequential implementations, heap based data structures provide faster mechanism for

finding minimum elements in traditional shortest path problems on non-time dependent

graphs. Due to:

(i) Requirement of the MD algorithm to update nodes’ minimum arrival times (shown

between 8-12 lines on Figure 3.2): If a heap structure is used to store minimum

arrival times for nodes, then, updating a node’s minimum arrival time would re-

quire that updated node is searched in the heap and removed, and after that new

updated value inserted to the heap. Since, searching operation is very costly in

heap structures,

(ii) The fact that heap data structures introduce synchronization overheads when

50

parallel accesses are performed,

we did not use heaps in our parallel algorithms. When testing performance, we use

as sequential algorithm, our parallel implementation running on one thread. As a

future work, we aim to optimize the sequential MD algorithm implementation on time

dependent flow speed model using self-balancing search trees. We will store the node

id’s with the key of their current minimum distances in the self-balancing search trees.

This will improve the search time to find the unvisited node with minimum distance.

We also intend to evaluate this approach in our parallel implementations.

51

APPENDIX A: TEST GRAPHS INFORMATION

In this Appendix, we give our generated graphs’ information. For the legends in

table headers, following notation is used:

• Graph : Input graph to be used in tests.

• logV : log2 of number of vertices to be generated.

• |E|/|V | : The ratio of number of edges divided by number of vertices to be

created.

• |VC | : Number of vertices created.

• |EC | : Number of edges created.

• |VR| : Number of reachable vertices.

• |ER| : Number of reachable edges.

• |ER|/|VR| : The ratio of the number of reachable edges divided by the number of

reachable vertices(one digit shown after the decimal separator).

We used graph500 [15] to generate our test graphs. Input of the reference code

is log of number of vertices to be generated and the limit of edges to be created. So,

logVtoBeGenerated
and |E|/|V | are used in graph500 program. |VC | and |EC | informations

are about the generated graph. |VR| and |ER| are the remaining number of vertices

and edges after we remove the unreachable nodes in graphs.

52

Table A.1. Test graphs information.

Graph logV |E|/|V | |VC | |EC | |VR| |ER| |ER|/|VR|

G01 10 8 805 6,072 112 168 1.5

G02 10 16 880 10,624 198 428 2.1

G03 10 32 946 17,846 326 1,327 4.0

G04 10 64 986 28,798 503 4,038 8.0

G05 11 8 1,540 12,810 556 1,587 2.8

G06 11 16 1,716 22,882 869 4,655 5.3

G07 11 32 1,855 39,278 1,091 9,064 8.3

G08 11 64 1,952 65,365 1,380 20,670 14.9

G09 13 16 6,466 102,301 892 2,095 2.3

G10 13 32 7,099 183,486 2,300 12,773 5.5

G11 13 64 7,529 319,739 3,138 30,235 9.6

G12 14 8 10,965 114,243 4,199 17,731 4.2

G13 14 16 12,603 213,074 5,979 39,127 6.5

G14 14 32 13,816 388,548 7,541 78,399 10.4

G15 14 64 14,826 690,810 8,943 152,948 17.1

G16 15 8 21,079 233,974 12,256 76,896 6.2

53

Table A.1. Test graphs information (cont.).

Graph logV |E|/|V | |VC | |EC | |VR| |ER| |ER|/|VR|

G17 15 16 24,203 441,320 16,036 161,832 10.0

G18 15 32 26,942 816,631 19,654 327,037 16.6

G19 15 64 29,017 1,474,812 22,740 628,033 27.6

G20 16 8 40,398 477,504 26,798 206,590 7.7

G21 16 16 46,836 909,685 35,069 450,770 12.8

G22 16 32 52,292 1,701,797 42,087 895,957 21.2

G23 16 64 56,796 3,118,334 48,149 1,722,340 35.7

G24 17 8 77,522 971,405 51,030 418,251 8.1

G25 17 16 90,332 1,864,629 72,737 1,124,437 15.4

G26 17 32 101,534 3,523,793 86,495 2,236,552 25.8

G27 17 64 110,874 6,535,667 98,567 4,292,432 43.5

G28 18 8 148,833 1,969,774 118,329 1,307,774 11.0

G29 18 16 174,017 3,806,052 146,411 2,636,679 18.0

G30 18 32 197,033 7,253,209 173,399 5,188,036 29.9

G31 18 64 216,447 13,601,052 197,090 9,992,620 50.7

G32 19 8 285,234 3,985,147 28,023 67,795 2.4

54

Table A.1. Test graphs information (cont.).

Graph logV |E|/|V | |VC | |EC | |VR| |ER| |ER|/|VR|

G33 19 16 335,774 7,741,316 50,467 186,147 3.6

G34 19 32 381,828 14,862,744 75,304 424,621 5.6

G35 19 64 421,772 28,136,604 102,093 896,498 8.7

G36 20 8 547,314 8,042,773 172,325 933,288 5.4

G37 20 16 646,508 15,699,276 245,143 2,061,600 8.4

G38 20 32 739,428 30,341,529 323,929 4,314,274 13.3

G39 20 64 821,615 57,898,073 409,860 9,007,004 21.9

G40 21 4 853,956 8,214,909 319,769 1,567,005 4.9

G41 21 8 1,049,061 16,207,313 486,299 3,762,438 7.7

G42 21 16 1,244,280 31,767,836 583,850 5,785,179 9.9

G43 21 32 1,431,016 61,722,713 866,253 17,585,481 20.3

G44 22 4 1,630,278 16,492,891 834,701 5,385,893 6.4

G45 22 8 2,009,000 32,620,535 1,164,208 11,606,886 9.9

G46 22 16 2,396,019 64,153,052 1,527,605 23,990,183 15.7

55

APPENDIX B: TEST RESULTS

In this appendix, we give the explicit results of all tests we have run in order to

observe the performance of our implementations.

For the legends in table headers, following notation is used:

• Graph : Input graph used in tests.

• Sequential : Sequential algorithm run time in seconds.

• Cuda : Cuda algorithm run time in seconds.

• Cuda&OpenMP12 : Cuda&OpenMP algorithm run time in seconds in which 12

processors used.

• OpenMP12 : OpenMP algorithm run time in seconds in which 12 processors

used.

• OpenMP10 : OpenMP algorithm run time in seconds in which 10 processors

used.

• OpenMP8 : OpenMP algorithm run time in seconds in which 8 processors used.

• OpenMP6 : OpenMP algorithm run time in seconds in which 6 processors used.

• OpenMP4 : OpenMP algorithm run time in seconds in which 4 processors used.

• OpenMP2 : OpenMP algorithm run time in seconds in which 2 processors used.

Information about graphs used in our tests can be found at Table A.1. Note that,

ε is used for the test results in the range of 0 < ε < 1.

56

Table B.1. Sequential and parallel algorithms run times in seconds.

Graph Sequential Cuda Cuda&OpenMP12 OpenMP12 OpenMP10 OpenMP8 OpenMP6 OpenMP4 OpenMP2

G01 ε ε 1 ε ε ε ε ε ε

G02 ε ε ε ε ε ε ε ε ε

G03 ε ε ε ε ε ε ε ε ε

G04 ε 1 ε ε ε ε ε ε ε

G05 ε ε ε ε ε ε ε ε ε

G06 ε ε ε ε ε ε ε ε 1

G07 ε 1 1 ε ε ε ε ε ε

G08 1 ε ε ε 1 ε ε ε ε

G09 ε ε ε ε ε ε ε ε ε

G10 ε 1 1 1 ε ε ε ε ε

G11 ε 2 1 ε ε ε 1 ε ε

G12 1 1 2 ε ε ε ε ε ε

G13 1 3 2 ε ε 1 ε ε ε

G14 1 3 3 1 ε ε 1 1 1

G15 2 5 4 1 1 ε 1 1 1

G16 4 5 5 ε 1 1 1 1 2

57

Table B.1. Sequential and parallel algorithms run times in seconds (cont.).

Graph Sequential Cuda Cuda&OpenMP12 OpenMP12 OpenMP10 OpenMP8 OpenMP6 OpenMP4 OpenMP2

G17 7 8 7 1 1 2 2 2 4

G18 10 12 10 1 2 2 2 3 6

G19 14 17 14 2 3 3 3 4 8

G20 18 13 13 2 3 3 4 5 11

G21 30 20 19 4 4 6 7 10 17

G22 44 30 26 6 7 8 10 14 26

G23 58 44 35 8 10 10 14 19 34

G24 64 27 27 8 8 10 12 19 36

G25 132 48 45 15 17 20 27 38 73

G26 187 70 62 21 25 30 38 55 107

G27 243 103 85 30 34 39 51 74 140

G28 347 78 76 35 43 52 65 97 190

G29 533 115 104 55 66 79 102 152 289

G30 747 165 144 81 92 114 146 215 413

G31 968 244 200 106 123 148 193 279 528

58

Table B.1. Sequential and parallel algorithms run times in seconds (cont.).

Graph Sequential Cuda Cuda&OpenMP12 OpenMP12 OpenMP10 OpenMP8 OpenMP6 OpenMP4 OpenMP2

G32 19 12 13 2 3 3 4 5 10

G33 63 24 25 7 8 9 11 17 32

G34 140 41 41 15 18 21 26 40 72

G35 258 62 60 27 32 39 51 72 133

G36 735 110 112 75 84 104 137 197 364

G37 1,484 185 182 150 179 216 279 390 743

G38 2,634 294 282 264 304 373 479 692 1,347

G39 4,266 460 427 423 500 586 782 1,127 2,141

G40 2,557 255 259 248 288 360 466 646 1,240

G41 5,988 494 494 588 695 849 1,074 1,498 2,842

G42 8,724 675 671 862 951 1,152 1,534 2,181 4,153

G43 19,162 1,389 1,303 1,916 2,136 2,621 3,454 4,953 9,711

G44 17,814 1,157 1,127 1,721 1,928 2,386 3,120 4,426 8,674

G45 34,610 2,098 2,080 3,421 3,816 4,639 6,097 8,662 17,334

G46 59,673 3,488 3,557 5,888 6,518 8,034 10,589 15,516 30,535

59

REFERENCES

1. Larsen, S. ø., H. Koren and R. Solberg, “Traffic Monitoring Using Very High

Resolution Satellite Imagery”, Photogrammetric Engineering & Remote Sensing ,

Vol. 75, No. 7, pp. 859–869, 2009.

2. Ding, B., J. X. Yu and L. Qin, “Finding Time-Dependent Shortest Paths Over

Large Graphs”, Proceedings of the 11Th International Conference on Extending

Database Technology: Advances in Database Technology , pp. 205–216, Acm, 2008.

3. Brodal, G. S. and R. Jacob, “Time-Dependent Networks as Models to Achieve Fast

Exact Time-Table Queries”, Electronic Notes in Theoretical Computer Science,

Vol. 92, pp. 3–15, 2004.

4. Sung, K., M. G. Bell, M. Seong and S. Park, “Shortest Paths in a Network with

Time-Dependent Flow Speeds”, European Journal of Operational Research, Vol.

121, No. 1, pp. 32–39, 2000.

5. Dean, B. C., “Shortest Paths in Fifo Time-Dependent Networks: Theory and

Algorithms”, Rapport Technique, Massachusetts Institute of Technology , 2004.

6. Sherali, H. D., K. Ozbay and S. Subramanian, “The Time-Dependent Shortest

Pair of Disjoint Paths Problem: Complexity, Models, and Algorithms”, Networks ,

Vol. 31, No. 4, pp. 259–272, 1998.

7. Hauwert, G., Time Dependent Optimization Problems in Networks , Ph.D. Thesis,

Universiteit Leiden, 2010.

8. Ohshima, T., A Landmark Algorithm for the Time-Dependent Shortest Path Prob-

lem, Ph.D. Thesis, Citeseer, 2008.

9. Goldberg, A. V. and C. Harrelson, “Computing the Shortest Path: A Search Meets

60

Graph Theory”, Proceedings of the Sixteenth Annual Acm-Siam Symposium on

Discrete Algorithms , pp. 156–165, Society for Industrial and Applied Mathematics,

2005.

10. Dreyfus, S. E., “An Appraisal of Some Shortest-Path Algorithms”, Operations

Research, Vol. 17, No. 3, pp. 395–412, 1969.

11. Kumar, V. and V. Singh, “Scalability of Parallel Algorithms for the All-Pairs

Shortest-Path Problem”, Journal of Parallel and Distributed Computing , Vol. 13,

No. 2, pp. 124–138, 1991.

12. Chabini, I. and S. Ganugapati, “Parallel Algorithms for Dynamic Shortest Path

Problems”, International Transactions in Operational Research, Vol. 9, No. 3, pp.

279–302, 2002.

13. Tremblay, N. and M. Florian, “Temporal Shortest Paths: Parallel Computing Im-

plementations”, Parallel Computing , Vol. 27, No. 12, pp. 1569–1609, 2001.

14. Ziliaskopoulos, A., D. Kotzinos and H. S. Mahmassani, “Design and Implemen-

tation of Parallel Time-Dependent Least Time Path Algorithms for Intelligent

Transportation Systems Applications”, Transportation Research Part C: Emerging

Technologies , Vol. 5, No. 2, pp. 95–107, 1997.

15. Bader, D., J. Berry, S. Kahan, R. Murphy, J. Riedy and J. Will-

cock, The Graph 500 List: Graph 500 Reference Implementations , 2010,

http://www.graph500.org/referencecode, [Accessed November 2015].

16. Cormen, T. H., C. E. Leiserson, R. L. Rivest and C. Stein, “Introduction to Algo-

rithms Second Edition”, The Knuth-Morris-Pratt Algorithm”, Year , 2001.

17. Kanoulas, E., Y. Du, T. Xia and D. Zhang, “Finding Fastest Paths on a Road

Network with Speed Patterns”, Data Engineering, 2006. Icde’06. Proceedings of

the 22Nd International Conference On, pp. 10–10, IEEE, 2006.

61

18. Orda, A. and R. Rom, “Shortest-Path and Minimum-Delay Algorithms in Networks

with Time-Dependent Edge-Length”, Journal of the Acm (Jacm), Vol. 37, No. 3,

pp. 607–625, 1990.

19. Kaufman, D. E. and R. L. Smith, “Fastest Paths in Time-Dependent Networks for

Intelligent Vehicle-Highway Systems Application∗”, Journal of Intelligent Trans-

portation Systems , Vol. 1, No. 1, pp. 1–11, 1993.

20. Dijkstra, E. W., “A Note on Two Problems in Connexion with Graphs”, Nu-

merische Mathematik , Vol. 1, No. 1, pp. 269–271, 1959.

21. Bang-Jensen, J. and G. Z. Gutin, Digraphs: Theory, Algorithms and Applications ,

Springer Science & Business Media, 2008.

22. Bellman, R., On a Routing Problem, Tech. rep., Dtic Document, 1956.

23. Ford Jr, L. R., Network Flow Theory , Tech. rep., Dtic Document, 1956.

24. Moore, E. F., The Shortest Path Through a Maze, Bell Telephone System., 1959.

25. Chabini, I., A New Algorithm for Shortest Paths in Discrete Dynamic Networks ,

Tech. rep., 1997.

26. Chabini, I., “Discrete Dynamic Shortest Path Problems in Transportation Appli-

cations: Complexity and Algorithms with Optimal Run Time”, Transportation

Research Record: Journal of the Transportation Research Board , , No. 1645, pp.

170–175, 1998.

27. Ganugpati, S. V., Dynamic Shortest Paths Algorithms: Parallel Implementations

and Application to the Solution of Dynamic Traffic Assignment Models , Ph.D.

Thesis, Massachusetts Institute of Technology, 1998.

28. Floyd, R. W., “Algorithm 97: Shortest Path”, Communications of the Acm, Vol. 5,

No. 6, p. 345, 1962.

62

29. Pettie, S., “A New Approach to All-Pairs Shortest Paths on Real-Weighted

Graphs”, Theoretical Computer Science, Vol. 312, No. 1, pp. 47–74, 2004.

30. Sahni, S. and V. Thanvantri, Parallel Computing: Performance Metrics and Mod-

els , Tech. rep., 1995.

31. Grama, A., A. Gupta, G. Karypis and V. Kumar, “Introduction to Parallel Com-

puting”, Introduction to Parallel Computing, 2Nd Edn, by A. Grama Et Al. Pear-

son Education Limited, Harlow, England (Isbn: 978-0-201-64865-2), Vol. 1, 2003.

32. Gupta, A. and V. Kumar, “Isoefficiency Function: A Scalability Metric for Parallel

Algorithms and Architectures”, IEEE Transactions on Parallel and Distributed

Systems , Vol. 4, No. 8, pp. 922–932, 1993.

33. Ziliaskopoulos, A. K. and H. S. Mahmassani, “Time-Dependent, Shortest-Path Al-

gorithm for Real-Time Intelligent Vehicle Highway System Applications”, Trans-

portation Research Record , pp. 94–94, 1993.

34. Mitton, R., Very Sleepy , 2014, http://www.codersnotes.com/sleepy/, [Accessed

November 2015].

