
KEYWORD SEARCH BY SYMBOLIC INDEXING

by

Leda Sarı

B.S, in Electrical and Electronics Engineering, Boğaziçi University, 2013

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2016

ii

KEYWORD SEARCH BY SYMBOLIC INDEXING

APPROVED BY:

Assoc. Prof. Murat Saraçlar

(Thesis Supervisor)

Prof. Levent Arslan

Assoc. Prof. Taylan Cemgil

DATE OF APPROVAL: 11.01.2016

iii

ACKNOWLEDGEMENTS

I am very grateful to my advisor Assoc. Prof. Murat Saraçlar, for his invaluable

guidance, great support and close interest in this work. Without discussions with him

and his help at any time, this work could not be accomplished.

I would like to thank to Prof. Levent Arslan, from whom I took my first speech

processing course, and Assoc. Prof. Taylan Cemgil for their participation to my thesis

committee and for their comments on this work.

I am grateful to Prof. Ayşın Ertüzün for being my undergraduate project advisor,

giving the first feelings of doing research and for her support during my studies.

I owe special thanks to Prof. Bülent Sankur for providing us the BUSIM Lab as

well as for sharing his intellectual point of view.

I would like to thank Speech Processing Group members especially to Erinç Dikici

for being one of my lab neighbors and always kindly answering my questions about

practical and technical issues as well as for his useful comments on my paperwork; to

Batuhan Gündoğdu and Gözde Çetinkaya for their useful discussions and collaboration

on the keyword search project. I would like to thank my other lab neighbor Burcu

Tepekule for sharing the early mornings with me and also to current and previous

colleagues at BUSIM including but not limited to Mehmet Yamaç, Sinem Aslan, Sezer

Ulukaya and WCL members Öykü Tuncel, Can Altay, Alican Gök, Ceren Sevinç and

İlhan Yıldırım for their friendship and support.

I would like to thank Bhuvana Ramabhadran and Abhinav Sethy for answering

our questions about setups developed by the IBM Attila toolkit.

I would also like to thank my parents Berç and Jülyet Sarı, who have supported

me with their endless love and understanding throughout my life.

iv

This study uses the IARPA Babel Program base period language collection re-

leases babel105b-v0.4 and babel202b-v1.0d, and is supported by the Intelligence Ad-

vanced Research Projects Activity (IARPA) via Department of Defense U.S. Army

Research Laboratory (DoD/ARL) contract number W911NF-12-C-0012. The U.S.

Government is authorized to reproduce and distribute reprints for Governmental pur-

poses notwithstanding any copyright annotation thereon. Disclaimer: The views and

conclusions contained herein are those of the authors and should not be interpreted

as necessarily representing the official policies or endorsements, either expressed or

implied, of IARPA, DoD/ARL, or the U.S. Government.

v

ABSTRACT

KEYWORD SEARCH BY SYMBOLIC INDEXING

The aim of keyword search (KWS) is to locate written queries in large amount of

audio data such as archived news broadcasts, audio/video lectures, recorded customer

call-center data or conversational speech. State of the art KWS approaches are based

on indexing automatic speech recognition (ASR) lattices. However, for languages hav-

ing only a limited amount of transcribed audio, the ASR performance decreases which

in turn reduces the KWS performance. Another problem with ASR based KWS sys-

tems is searching for out-of-vocabulary (OOV) keywords which are not covered by the

ASR vocabulary. One common approach is expanding the keyword using a confusion

model (CM) and searching for similar words along with the original. In this work, the

KWS index is generated using symbolic representations of the data instead of ASR

lattices. These symbols are obtained by encoding the search data posteriorgram which

is generated using the deep neural network (DNN) output of the ASR system. In the

experiments performed on the low resource language datasets of the IARPA Babel

Program, we show that when combined with existing ASR lattice based KWS sys-

tems, the proposed system improves the KWS performance measured in terms of term

weighted value (TWV), especially for OOV queries. In order to handle OOV queries,

a discriminative approach for training the CM is also introduced which directly aims

at maximizing the TWV for OOV queries. We explore the influence of discriminative

training on both an existing ASR lattice based system and the symbolic index based

system under low resource settings.

vi

ÖZET

SİMGESEL DİZİNLEMEYLE ANAHTAR SÖZCÜK

ARAMA

Anahtar sözcük arama (ASA) sisteminin amacı yazılı olarak verilen sorguların

arşivlenmiş haber bültenleri, ses ya da video biçimindeki ders kayıtları, müşteri hizmet-

lerinin kayıt altına alınmış telefon görüşmeleri gibi sesli veriler içindeki yerlerinin sap-

tanmasıdır. Mevcut en iyi ASA sistemleri otomatik konuşma tanıma (OKT) sistemi

örülerini dizinlemeye dayanır. Fakat, yazılandırılmış konuşma verisi az olan dillerde,

OKT sisteminin başarımı dolayısıyla da ASA başarımı düşer. OKT tabanlı sistemlerde

diğer bir problem de OKT dağarcığında bulunmayan dağarcık-dışı (DD) sözcüklerin

aranmasıdır. Genellikle kullanılan bir yöntem anahtar sözcüğü bir karışıklık mod-

eliyle (KM) genişletip benzer kelimeleri de orijinal haliyle birlikte aramaktır. Bu

çalışmada, ASA dizini verinin OKT tanıma örüsü gösterimi yerine verinin simgesel

gösteriminden oluşturulmuştur. Bu simgeler OKT sisteminin derin yapay sinir ağı

çıktısından oluşturulan arama verisi posteriorgramının kodlanmasıyla elde edilmiştir.

IARPA Babel Programı’nın az kaynaklı dil verileri üzerinde yapılan deneylerde, önerilen

sistemin OKT örüsü tabanlı mevcut bir ASA sistemiyle birleştirildiğinde terim ağırlıklı

değer (TAD) ile ölçülen ASA başarımını özellikle DD sorgular için artırdığı gösterilmiştir.

DD sözcüklerin aranmasında KM için doğrudan DD sorgularda TAD’yi enbüyüklemeyi

hedefleyen bir ayırıcı eğitim yöntemi tanıtılmıştır. Ayırıcı eğitimin, kaynağı az olan

dillerde, hem mevcut OKT tanıma örüsü hem de simgesel dizinlemeye dayalı ASA

sistemlerine etkisi incelenmiştir.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . v

ÖZET . vi

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS . xiv

LIST OF ACRONYMS/ABBREVIATIONS . xvi

1. INTRODUCTION . 1

2. KEYWORD SEARCH SYSTEMS . 4

2.1. LVCSR Output Based Search . 5

2.1.1. Automatic Speech Recognition 6

2.1.2. Weighted Finite State Transducers 8

2.1.3. ASR Output Representation . 8

2.1.4. Indexing . 10

2.1.5. Search . 14

2.2. Alternative Approaches for KWS . 18

2.2.1. Pattern Matching Approaches 18

2.2.2. HMM Based Keyword-Filler Models 20

2.2.3. Point Process Models . 20

2.2.4. Discriminative Approaches for KWS 21

2.3. KWS Task Evaluation . 23

2.3.1. KWS Performance Evaluation 23

2.3.2. Score Normalization . 26

2.3.3. System Combination . 28

2.3.4. BABEL Database . 29

3. SYMBOLIC INDEX BASED KWS . 32

3.1. Symbolic Index Based Search . 32

3.1.1. Posteriorgram Representation of the Data 34

3.1.2. Symbolic Representation of the Search Data 35

viii

3.1.3. Symbolic Representation of the Query 36

3.1.4. Query Posteriorgram Generation 37

3.1.5. Confusion Model Generation . 39

3.2. Experiments . 40

3.2.1. Experiments on the Turkish Dataset 40

3.2.1.1. Individual System Performance 41

3.2.1.2. System Combination 49

3.2.2. Experiments on the Swahili Dataset 55

4. DISCRIMINATIVE TRAINING OF THE CONFUSION MODEL 63

4.1. Discriminative Training of the CM for LVSCR Lattice Based KWS . . 64

4.1.1. Experiments . 67

4.2. Discriminative Training of the CM for Symbolic Index Based KWS . . 70

4.2.1. Experiments . 72

5. CONCLUSIONS AND FUTURE DIRECTIONS 76

5.1. Conclusions . 76

5.2. Future Directions . 77

APPENDIX A: DERIVATION OF WEIGHT UPDATES 79

A.1. Deriving the Update Equation . 79

A.2. Learning the Threshold (θ) of the Sigmoid Function 85

A.3. Simplifications to the Training Procedure 85

REFERENCES . 87

ix

LIST OF FIGURES

Figure 2.1. An example lattice. 9

Figure 2.2. CN of the lattice shown in Figure 2.1. 10

Figure 2.3. Lattices (a,c) and the corresponding pre-processed WFSTs (b,d)

for two utterances in the database. 12

Figure 2.4. Factor generation for the first utterance. 12

Figure 2.5. Result of factor merging for the first utterance. 13

Figure 2.6. Index of the dataset, union of TFTs of the utterances. 13

Figure 2.7. A CM example. 16

Figure 2.8. Expansion of the query “mama”. 17

Figure 2.9. An example phonetic posteriorgram. 19

Figure 2.10. An example DET curve. 26

Figure 3.1. Overview of the posteriorgram based KWS setup. 33

Figure 3.2. Query FSA with the loop structures. 37

Figure 3.3. Query posteriorgrams according to vector and duration modeling. 38

Figure 3.4. Optional silence modeling for multi-word keywords 38

x

Figure 3.5. Overview of the unsupervised KWS setup. 40

Figure 3.6. Overview of the supervised KWS setup. 41

Figure 3.7. 3-state left-to-right HMM with begin (b), middle (m) and end (e)

states. 43

Figure 3.8. TWV versus γ in score normalization. 48

Figure 3.9. TWV versus the CM pruning threshold. 50

Figure 4.1. Effect of α and θ on sigmoid approximation to TWV. 68

Figure 4.2. Increase in the approximated TWV during iterations for the LVCSR

based setup. 71

Figure 4.3. Increase in the approximated TWV during iterations for the sym-

bolic index based setup. 73

xi

LIST OF TABLES

Table 2.1. Distribution of IV and OOV keywords according to query length

given in number of words. 30

Table 3.1. MTWV for all, IV and OOV queries depending on the supervised

(S) or unsupervised (U) setup . 42

Table 3.2. MTWV of search results and the FER in confusion matrix depend-

ing on the posteriorgram type and codebook generation 44

Table 3.3. MTWV for all, IV and OOV queries depending on confusion matrix

normalization . 45

Table 3.4. Number of hits and STWV as the number of best paths changes . 45

Table 3.5. Change in MTWV depending on the score normalization 47

Table 3.6. Effect of using an optional silence in multiword queries on MTWV 49

Table 3.7. Performance of the combined system for the (un)supervised setup . 50

Table 3.8. Performance of the combined system depending on the posterior-

gram and codebook . 51

Table 3.9. Performance of the combined system depending on the CM normal-

ization . 52

Table 3.10. Performance of the combined system depending on n in n-best . . 52

xii

Table 3.11. Performance of the combined system depending on the score nor-

malization . 53

Table 3.12. Performance of the combined system when γ normalization is applied 54

Table 3.13. Performance of the combined system depending on the word bound-

ary representation . 55

Table 3.14. MTWV for all, IV and OOV queries depending on γ in the super-

vised setup for Swahili . 57

Table 3.15. Performance of the combined system for Swahili depending on γ

when binary queries are used . 58

Table 3.16. MTWV and STWV for Swahili depending the on the query repre-

sentation . 60

Table 3.17. Performance of the combined systems for Swahili depending on

query representation . 60

Table 3.18. MTWV for Swahili QbyE system depending on the rescoring method 62

Table 3.19. Effect of rescoring QbyE results on system combination for Swahili 62

Table 4.1. MTWV for the cases where no CM or a randomly initialized CM is

used . 69

Table 4.2. Relative increase in MTWV when the CM is updated at each step

(Upd1 + Search) and updated after 2 steps (Upd2 + Search) . . . 69

xiii

Table 4.3. Individual results of discriminative CM training in the symbolic

index based system for Turkish . 74

Table 4.4. Combined results of discriminative CM training in the symbolic

index based system for Turkish . 75

xiv

LIST OF SYMBOLS

cqr(i, o) Count of the CM weight with (i, o) input-output labels on a

path from q to r

C(i, o) Number of frames labeled with o instead of the true symbol i

in the confusion matrix

CM Confusion model WFST

d(.) Distance measure used in k-means

D Total distortion in k-means clustering

fgs Frequency of observing g along with s

g Grapheme

Hq Set of all hypotheses h for the query q

i Input symbol of an arc in FST

I(.) Indicator function

k Index of the unit in a posteriorgram

K Total number of classes in a posteriorgram

l(πqr(m)) Input-output label pair of the arc πqr(m)

L Pronunciation lexicon

L−1 Inverse of the pronunciation lexicon

n Number of the shortest paths in FST n-best operation

ntps Number of trials per second of speech

N Total number of utterances in a dataset

Nq Total number of hits for a query q

Ncor Number of correct detections

Nspur Number of spurious detections

Ntrue True number of occurrences in the corpus

NNT Number of non-target trials

o Output symbol of an arc in FST

pqh Unnormalized score of hypothesis h for query q

pqh Normalized score of hypothesis h for query q

p1 Score of the highest scoring hit of a query

xv

PFA Probability of false alarms

Pmiss Probability of miss

q A single query or keyword

Q The set of queries or keywords

Q Query WFST

Q′ Expanded query WFST

r Proxy word confused with the original query q

s HMM states

sqh Log-domain score of hypothesis h for query q

Sk Set of states associated with unit k

t Time index in a posteriorgram

T Total number of frames in an audio file

Tspeech Total amount of speech in the test data

wqr Total confusion weight from q to r

wgs Weight used to convert the state level posterior of s to

graphemic one g

xt Feature vector for the t-th frame of the audio

yt(k) Posterior probability of class k at time t in a posteriorgram

Y Posteriorgram of an audio file

α Shape parameter of the sigmoid function

α′ Scaling factor used in KST normalization

β TWV parameter

γ(q, h) The truth value of hypothesis h for query q

θ Decision threshold

ηw Step size in the CM weight update equation

πqr WFST path from q to r

πqr(m) mth arc on the path πqr

σ(p, θ) Sigmoid function for a given θ

xvi

LIST OF ACRONYMS/ABBREVIATIONS

ASR Automatic Speech Recognition

ATWV Actual Term Weighted Value

CD Context Dependent

CI Context Independent

CM Confusion Model

CN Confusion Network

DET Detection-Error Tradeoff Curve

DNN Deep Neural Network

DTW Dynamic Time Warping

FER Frame Error Rate

FOM Figure of Merit

FST Finite State Transducer

HMM Hidden Markov Model

GMM Gaussian Mixture Model

G2P Grapheme-to-Phoneme

IR Information Retrieval

IV In-Vocabulary

KST Keyword Specific Thresholding

KWS Keyword Search

LSTM Long-Short Term Memory

LVCSR Large Vocabulary Continuous Speech Recognition

MTWV Maximum Term Weighted Value

OOV Out-Of-Vocabulary

OTWV Optimum Term Weighted Value

PPM Point Process Model

ROC Receiver Operating Characteristics

QbyE Query-by-Example

SI Speaker Independent

xvii

STD Spoken Term Detection

STO Sum-To-One Normalization

STWV Supremum Term Weighted Value

TFT Timed Factor Transducer

VQ Vector Quantization

WFSA Weighted Finite State Acceptor

WFST Weighted Finite State Transducer

1

1. INTRODUCTION

As the recording capabilities of smart devices increase and become more afford-

able, the amount of spoken data such as archived news broadcasts, audio/video lec-

tures, recorded customer call-center data or conversational speech increases rapidly.

Therefore, retrieving the necessary information from large amounts of data becomes a

challenging task.

Keyword search (KWS) is a speech processing application which aims at detecting

and locating given written keywords, or queries, in large amount of audio data. The

keywords to be searched can be a single-word query or they can include several words

like a phrase and the search data are neither transcribed nor segmented. As the output

of a KWS system the list of hits is returned for each keyword or query. These hits

show the beginning and ending time of the keyword in the audio file and a detection

score.

One of the most common approaches to KWS is initially transcribing the audio

search data to words using a large vocabulary continuous speech recognition (LVCSR)

system and then applying text retrieval methods to the word transcriptions. In these

systems, the lattices obtained LVCSR system that include word hypothesis for the input

speech are indexed and KWS is performed using this index. The index is a mapping

from the words to the utterances that allows identifying the utterances in which the

keyword is uttered during search operation. Although there are large number of words

in the LVCSR lexicon, there can be words, in particular query terms, that are not

covered by the lexicon which are called out-of-vocabulary (OOV) terms. Rarely used

words of a language, foreign words or proper nouns are some possible candidates for

OOV words. Especially in low resource languages for which only a limited amount of

transcribed data is available to train a LVCSR system, the pronunciation lexicon is also

limited. Therefore, in such languages the frequency of OOV words are higher. OOV

rate is also higher for agglutinative languages like Turkish, Zulu or for endangered

languages for which only a limited amount of data can be obtained.

2

The performance a LVCSR dependent KWS system for OOV queries is worse

than the in-vocabulary (IV) ones since LVSCR system cannot output a result for the

former which in turn prevents the search of the OOV keywords and returning an empty

result. In order to deal with OOV problem in KWS, commonly used approaches are

using sub-word units and applying query expansion techniques. Since OOV queries

can be represented in terms of sub-word units, using a sub-word based LVCSR system

instead of a word based one are preferred. The sub-word units can be phones, syllables

or word-fragments. Hybrid systems that combines different types of sub-word systems

are also used in KWS tasks [1–3]. Although sub-word systems increase the number

of detections, they also lead to higher number of false alarms. The second approach

for dealing with the OOV problem is expanding the query to a similar keyword and

searching for both the original and the expanded versions of the query to increase

the number of returned results by overcoming the possible transcription errors of the

LVCSR system or converting the OOV words into IV ones for which results can be

obtained from the recognition system. One way of expanding the queries is applying

a confusion model (CM) to the query [4, 5]. The CM models substitutions, insertions

and deletions. These two approaches can be combined as in [5, 6]. For example, a

phonetic LVCSR system can include a phone CM that change some of the phones with

alternative ones, insert or delete a few phones from the phonetic representation of the

query.

There is also query-by-example (QbyE) spoken term detection (STD) task which

aims to find the time spans in the utterances relevant to the keyword. The difference

between these tasks is that queries are acoustic examples such as audio snippets or the

spoken version of the query in QbyE-STD whereas the queries are in written form in

KWS. Since the final goals are similar, techniques or audio representations used in one

of these systems can be exploited in the other one. For instance, posteriorgram repre-

sentation of the audio which is effectively used in QbyE-STD task [7,8] can be exploited

in KWS framework. The posteriorgram shows the posterior probability of each pho-

netic class for each frame in an utterance and is obtained through a LVSCR system [8].

Thus, instead of indexing the LVCSR lattices, the information in posteriorgrams can

be used to obtain a KWS index as will be shown in this thesis.

3

The are two main contributions of this thesis to the KWS systems. The first

contribution is the development of an index based KWS system that uses symbolic

representation of the data obtained from their posteriorgrams instead of word or sub-

word unit based indices generated from the LVCSR lattices. We especially concentrate

on KWS for conversational data in low resource languages for which we have large

number of OOV keywords. The second contribution is development of a discriminative

approach for training a CM for expanding OOV queries that directly maximizes the

KWS performance criterion.

The rest of the thesis is organized as follows: Chapter 2 gives a brief overview

of LVCSR systems and summarizes previous approaches for KWS. In Chapter 3, the

symbolic index based KWS system will be introduced. This system makes use of the

posteriorgram representation of the speech data and an index for the search data is

generated as in LVCSR based approaches. In addition, query representation and its

expansion using a symbolic CM will be described. After summarizing the proposed

KWS system, experimental results will demonstrate the effect of parameters of the

building blocks used in the system. Moreover, the KWS results will be combined with

LVCSR based baseline systems to show that we can improve the KWS performance

for OOV queries. In Chapter 4, a discriminative approach for training the CM will

be introduced, and experimental results will be demonstrated on an existing LVSCR

based KWS system. In Section 4.2, the ideas presented at the beginning of Chapter 4

and Chapter 3 will be combined and we will show that by discriminative training of the

CM, we can also improve the KWS performance of the symbolic index based system.

Finally, in Chapter 5, the results will be summarized and possible directions for further

research will be given.

4

2. KEYWORD SEARCH SYSTEMS

In the KWS task, the aim is to locate written queries which are not known be-

forehand in spoken content. A general approach to KWS is to use an automatic speech

recognition (ASR) system to obtain phonetic or textual description represented as lat-

tices from which an index is generated and then information retrieval techniques are

used for search [2, 3, 6, 9]. When the ASR system achieves low word error rate, then

the text retrieval system will successfully find the query terms. However, in real world

situations such as varying acoustic and channel conditions of the recordings, short ut-

terances, spontaneous speech in telephone conversations which is full of hesitations,

ungrammatical sentences, foreign words, etc., ASR performance degrades which in

turn reduces the overall KWS performance. In the low-resource setting, there are not

enough transcribed data to obtain reliable ASR output so the error rates are higher

and the search results are not reliable. Therefore, a semi-supervised or unsupervised

approach can be adopted rather than supervised methods which require large amount

of annotated data. And these methods usually do not include an ASR component. Un-

supervised methods in KWS are usually based on pattern matching, that is finding the

best alignments between two sequences of feature vectors. For this purpose a dynamic

programming technique, namely dynamic time warping (DTW) and its variants such as

segmental DTW [10] are widely used. Graph based techniques exploiting the acoustic

similarity of speech intervals are other methods for KWS in zero resource setting [11].

There are also posteriorgram based methods such as Gaussian posteriorgrams [12] that

do not require transcriptions since they are based on modeling acoustic features with

Gaussian mixture model (GMM) in an unsupervised manner. They are widely used in

QbyE KWS tasks where the queries are also in spoken form.

As mentioned above, there are several approaches proposed for retrieving written

or spoken keywords from spoken content. In this chapter, these approaches will be

categorized into five groups:

5

(i) LVCSR output based search

(ii) Pattern matching approaches

(iii) HMM based keyword-filler models

(iv) Point Process Models (PPM)

(v) Discriminative approaches

Since the index-based approach introduced in this thesis is closely related to the

LVCSR based KWS, these systems will be described first in detail. In the following

sections, the rest of the approaches will be summarized. Later in this chapter, the

evaluation of the KWS outputs and post-processing of the results such as score nor-

malization and system combination which aims at improving the KWS performance

will be given. Then the database and the limited resource conditions of the task that

we have worked on under the IARPA Babel Program will be given.

2.1. LVCSR Output Based Search

These systems are cascade of an LVCSR system, that converts the speech sig-

nals into text, and a text information retrieval system. The basic approach is to obtain

lattices from LVSCR system instead of a single best word sequence to overcome recogni-

tion errors. Then an index is generated from these lattices so as to compactly represent

the speech data to be searched. Finally, the query is searched over the index.

Most of the KWS approaches utilize a speech recognizer at some stage of the

system, for example an index to be searched is generated using the ASR lattices [2,13]

or a phonetic representation of the data is obtained using an ASR component as in the

posteriorgram based approaches [14, 15]. Therefore, ASR systems will be summarized

first. Although there are different aspects of ASR such as vocabulary size, speaker

dependency and continuity of spoken data, i.e. words uttered without stops in between

versus words uttered in isolation, most of the research is focused on LVSCR. In LVCSR,

large vocabulary implies a vocabulary size larger than 5000 words and continuous

indicates that there are no pauses in between the words. Speaker independent systems

aim at recognizing speech from any speaker whereas speaker dependent (SI) systems

6

apply normalizations per speaker to limit the acoustic variability across speakers and

to optimize the recognition system.

2.1.1. Automatic Speech Recognition

The goal of ASR is to decode the word string, W , given the acoustic observation

sequence, A, by maximizing its posterior probability:

Ŵ = arg max
W

P (W | A) (2.1)

= arg max
W

P (A | W)P (W) (2.2)

where the second row follows from Bayes’ rule and Ŵ is the estimated sequence of

words. The P (A | W) term in Equation 2.2, is the likelihood of the acoustic observation

given the word sequence W and is computed by an acoustic model, P (W) is the prior

probability of sequence W and it is given by the language model, which depends on

the syntactic and semantic constraints of the language [16].

An ASR system consists of the following basic components [17]: Acoustic front-

end transforms the speech input into A using signal processing methods. In this step,

features such as perceptual linear prediction (PLP) or mel-frequency cepstral coeffi-

cients (MFCC) are extracted. Then an acoustic model is used to compute P (A | W)

and language model is used to estimate P (W). The language model estimates the

probability of a word given the previous words and constrains the speech recognition

search space by giving a higher probability to the most likely word sequences in the

language [18]. Finally, to determine the desired word sequence Ŵ , all possible word

sequences must be searched over, given the acoustic data A. Since the search space is

large, a decoding algorithm is applied.

Most speech recognition systems use hidden Markov models (HMMs) to deal

with the temporal variability of speech and GMMs are used to model the probability

distributions of acoustic features that are associated with each state of the HMM.

7

That is the observation densities at each state are modeled by GMMs. There were

also artificial neural network based methods to predict HMM states from windows of

acoustic features. These neural networks were limited to a single hidden layer due to

scarce computational resources and their performances were not significantly better

than GMM-HMMs [19]. However over the last few years, advances in both machine

learning algorithms and computer hardware have led to efficient methods for training

deep neural networks (DNNs) that contain many layers of hidden units and a very large

output layer [20]. A large output layer is important because the number of HMM states

can be large. Recent studies showed that the use of DNNs, can outperform GMMs at

acoustic modeling when dealing with large datasets and large vocabularies [20].

DNNs are multi-layered extensions of neural networks and has several hidden

layers. Neural networks are composed of computation elements called neurons that

take a weighted sum of their inputs and apply a nonlinearity to the sum to generate its

output [21]. The input layer just presents the input data from the outside world, the

hidden layers consist of neurons that take their input from the outputs of their previous

layers. The final layer can have one or more neurons applying different nonlinearities

before generating the final output of the DNN depending on the application. For

instance, in multiclass classification applications such as phone classification, softmax

nonlinearity is used which tries to mimic the posterior probability of the classes given

the input. If there are K classes, then the output layer will have K neurons. Moreover,

if the inputs to the output layer neurons are denoted by ak, k ∈ {1, · · · , K}, then the

softmax output yk of the k-th neuron can be written as

yk =
exp(ak)∑K
k′=1 exp(ak′)

(2.3)

Since
∑K

k=1 yk = 1 and yk ≥ 0, DNN outputs yk can be treated as the posterior

probability of class k given the input. In particular, if the acoustic input feature xt is

the DNN input at time t, then yk = P (k|xt).

8

2.1.2. Weighted Finite State Transducers

As the LVSCR lattice structure and the index is in weighted finite-state trans-

ducer (WFST) form, a brief overview of WFSTs will be given in this section. A detailed

review of the WFST related concepts can be found in [22,23].

A WFST is composed of finite number of states, a subset of them are initial

or final states. Each arc between the states of the WFST contains an input and an

output label which are either an ε symbol or an element of a finite input and output

alphabet, respectively, and a weight is associated with the arc. Weights in a WFST

may represent probabilities, durations, penalties, etc. Especially, probabilistic WFSTs

are widely used in speech processing applications [22]. In addition, weight functions

are defined for initial and final states. Weighted finite-state acceptors (WFSA) are

defined similar to WFSTs except that the output labels of the arcs are the same as

their input labels and thus the arcs of an WFSA can be represented using a single label

and a weight.

A path in a WFST is a sequence of arcs such that the ending state of an arc is the

beginning state of the next arc. A successful path is defined as a path from an initial

state to a final state of the WFST [24]. The weight of a path is found by multiplying

the weights of the arcs on the path. The weight of mapping an input sequence to an

output sequence is calculated by accumulating the weights of the paths in the WFST

that has the same input and output strings on its input and output labels. A string

is said to be accepted by an WFST if there exists a successful path whose input label

sequence is the same string [22].

2.1.3. ASR Output Representation

For a given speech utterance, an ASR system generates hypotheses based on the

acoustic data. In LVCSR based KWS systems [2,3,9,13], an inverted index which maps

units (words, phones, other sub-word units etc.) to the utterances is generated using

these hypotheses. There are different possibilities to represent these hypotheses which

9

will be used in indexation. These are

• One-best hypothesis

• Lattice structure

• Confusion Network (CN)

The simplest way is to take only the one-best hypothesis for the utterance which

does not allow any alternative hypotheses. If the ASR system is reliable, i.e. it has

a low error rate, this single hypothesis leads to a sufficient KWS performance with

lower search time as the search space will be small. But for the low-resource language

settings, we have limited amount of labeled data which has high error rates, alternative

hypotheses should also be indexed.

One method to represent the alternatives is generating a lattice structure. These

lattices are in WFST form that associate weights with hypotheses which are used to

rank them [24]. Since there is a large number of hypotheses, its information content

is richer. However, it includes some erroneous hypotheses along with the true ones. A

lattice structure is shown in Figure 2.1.

0

1bir/0.15

bu/0.25 2
bugun/0.6

gun/0.65

gunlerde/0.35 3gittim/1

Figure 2.1. An example lattice.

CNs which are also called sausages are also used for representing multiple hy-

potheses in KWS applications [9, 25, 26]. CNs have a linear structure and consist of

confusion bins. These bins correspond to consecutive time intervals. For each time

interval, there is a set of arcs where each arc carry the word (or sub-word) hypothesis

and a probability or a cost associated with it. CNs are usually derived from lattices by

clustering arcs with similar timing to form a confusion bin. Thus, each confusion bin

has a start and an end time which are determined from the arcs in that cluster and

they are constructed such that the end time of a bin is the beginning time of the next

10

interval bin. Figure 2.2 shows the CN structure of the lattice shown in Figure 2.1. Here

‘DEL’ denotes a skip symbol and ‘<s>’ and ‘</s>’ are used for marking utterance

boundaries. In [9], CN WFSTs are constructed such that the timing information can

also be encoded into the output labels of the arcs, which allows a way of generating an

index to be used in KWS.

0 1<s>/1 2

bir/0.15

bu/0.25

DEL/0.6
3

gun/0.26

gunlerde/0.14

bugun/0.6
4gittim/1 5</s>/1

Figure 2.2. CN of the lattice shown in Figure 2.1.

Once the alternative recognition hypotheses are determined, the next step is to

generate an index that will allow an efficient search mechanism.

2.1.4. Indexing

Index is a compact structure that retains the necessary information of search

data and serves as a look-up block for efficient search. In KWS application, the index

is a map from words to utterances along with the begin-end times of the word in

that utterance. Moreover, the index can include a reliability score for each entry that

indicates the level of confidence that the word is uttered in the corresponding utterance.

The indices generated for KWS purpose store all substrings encountered in the

LVSCR lattices. Thus when a keyword matches to particular substring in the index,

it can be retrieved.

The output of a LVSCR system is a WFST with words labeling the weighted arcs.

Timed factor transducer (TFT) described in [13] converts these LVSCR lattices into

an index that keeps the information regarding the begin-end times of words, a score

along with the word/sub-word unit and utterance information. The difference between

this indexing scheme and previous approaches for indexing such as factor transducers

and modified factor transducers is that TFT approach includes timing info and this

11

information is kept on the arc weights rather than on the output labels of the arcs [13].

Initially the WFST having the same input labels and overlapping time spans

are clustered and the cluster identity are kept on the output labels. For all states a

forward probability and a backward probability that represents the shortest distance

from that state to the final states are calculated. Then for all distinct input-output

sequence of paths in the WFST the probability of observing that sequence is calculated

by adding up the weights of the paths having that sequence in their labels according

to the semiring used. The minimum of begin times and the maximum of the end times

of these paths are used to determine the begin-end time of the current input-output

label sequence. A new start and an end state is added to the transducer thus all states

have an incoming arc from the new initial state having epsilon on their labels and an

outgoing arc from all states to the new final state. This structure allows searching for

all possible substrings of a string that is accepted by the WFST.

After generating the factor transducer described above, paths carrying the same

factors or overlapping occurrences are merged by adding their probabilities. Then the

result is optimized by applying determinization, meaning that each state at most one

transition labeled with a input given label, and minimization, i.e. finding an equivalent

transducer with the minimal number of states. At the end, the TFT for an utterance

is obtained.

The index for an entire dataset is constructed by taking the union of all TFTs

obtained for different utterances and then optimizing the resulting index by deter-

minization and minimization.

Suppose that we have two utterances in our database and their lattice represen-

tations (Figures 2.3(a) and 2.3(c)) are preprocessed such that the output labels of the

arcs denote the cluster identifier where each input-output pair represents an arc cluster

representing overlapping start and end time pairs. Then we have structures similar to

the ones shown in Figures 2.3(b) and 2.3(d). Figure 2.4 shows the factor transducer

for the first utterance where there is new initial and final states. Figure 2.5 depicts

12

the result of factor merging and optimization for the first utterance. After doing same

operations to the second utterance and taking the union of both WFSTs, the index for

the whole dataset shown in Figure 2.6 is generated.

0

1a/0.5

2b/0.5

b/1

3a/1

(a) Lattice 1

0

1a:1/0.5

2b:1/0.5

b:1/1

3a:2/1

(b) Pre-processed lattice 1

0

1b/0.333

2a/0.667

a/1

3b/1

(c) Lattice 2

0

1b:1/0.333

2a:1/0.667

a:1/1

3b:2/1

(d) Pre-processed lattice 2

Figure 2.3. Lattices (a,c) and the corresponding pre-processed WFSTs (b,d) for two

utterances in the database.

0

1<eps>:0/1,0,0

2

<eps>:0/0.5,1,0

3<eps>:0/1,2,0
4

<eps>:0/1,3,0

a:1/0.5,0,0
b:1/0.5,0,0

5

<eps>:1/1,0,0

b:1/1,0,0

<eps>:1/1,0,1

a:2/1,0,0

<eps>:1/1,0,2
<eps>:1/1,0,3

Figure 2.4. Factor generation for the first utterance.

The main advantage of the index described here is its flexibility, especially ac-

cepting various query models. Its WFST form allows searching for different queries

represented with WFSTs in different forms. For example, multiword queries having an

optional silence between words by adding arcs between the states at the word boundary

changes the linear structure of the basic query WFSA but the index can still accept

these types of queries. Therefore, the index does not need to be changed depending

on the query. This results in an efficient mechanism because indexing is more time

consuming than query WFST generation most of the time. The index is also compu-

tationally efficient because its search complexity is linear in the query length.

13

0

1a:<eps>/1,0,1

2
b:<eps>/1,0,2

b:<eps>/0.5,0,1 4

1:1/0.5,0,0

3:1/1,2,2

2:1/1,0,0

3

a:<eps>/1,0,1 3:1/1,0,0

Figure 2.5. Result of factor merging for the first utterance.

0

1a:<eps>/1,0,1

2

b:<eps>/1,0,1

3b:<eps>/1,0,1

7

<eps>:1/1,2,2

<eps>:1/0.5,0,0

<eps>:2/1,0,1

<eps>:2/1,2,2

<eps>:2/0.333,0,0

<eps>:1/1,0,1

4

a:<eps>/1,0,1

<eps>:1/0.5,0,0

<eps>:2/1,0,1

5
a:<eps>/0.5,0,1

<eps>:1/1,0,0

<eps>:2/0.333,0,0

<eps>:1/1,0,1

6

b:<eps>/0.333,0,1 <eps>:2/1,0,0

Figure 2.6. Index of the dataset, union of TFTs of the utterances.

14

2.1.5. Search

Search step of the index based systems consists of query representation which will

produce the query WFST of the written query and searching over the index which can

be in word or sub-word level. Since both the query and the index are in WFST form,

composition operation gives the matching substrings in the database. In the TFT

framework, begin and end time information can be extracted from the arc weights and

the utterance identity can be retrieved from the output label of the arc leading to the

final state. As there can possibly be multiple matching paths, a shortest path operation

is also applied to keep only the paths with the lowest cost or highest probability.

If KWS is performed on a word-level index and if the words in the query are in

the LVCSR vocabulary, then the query WFSA includes the words as the labels on its

arcs. If we are using sub-word units like the phonemes and generating a phonetic index,

the orthographic query is first converted into a sequence of phones. For IV queries, the

lexicon is used to find the phonetic description of the keyword. On the other hand, if

the query is OOV, i.e. it has at least one word that is not covered by the ASR vocab-

ulary, a grapheme-to-phoneme system (G2P) is required in order to find the phonetic

representation of the query. G2P conversion algorithms can be based on deterministic

rules or statistics obtained from the spoken data and its orthographic transcription [27].

For example, Sequitur G2P tool described in [28] is based on statistical joint modeling.

For OOV queries a matching pattern in the index cannot be found because there

will not be a matching element corresponding to the OOV word. However, since the

index is in WFST form that can accept any type of WFST as query, the query can be

transformed to different forms in order to get search results for OOV queries. Since

the sub-word units are building blocks of the words, the OOVs can be represented in

terms of these units. Therefore, one way to handle OOV keywords is using sub-word

units in indexing and searching for the sub-word level representation of the query in

this index. A sub-word index is generated either by generating a sub-word lattice from

the ASR system or by converting a word lattice into a sub-word lattice [2]. If both the

word and sub-word level indices are generated, there are different possible strategies

15

for KWS. For example,

(i) Search the keyword in each index and then combine the search results.

(ii) Search the word index for IV words and the sub-word index for OOV words.

(iii) Search the keywords in the word index, if no result is returned, search the sub-

word index.

Another option for handling OOV queries is expanding the lexicon by adding

automatically generated pronunciations of a large number of words to the LVCSR

lexicon [29,30]. The augmented lexicon can be used before lattice and index generation

or it can be used in representing query. These systems aim at reducing the OOV rate

to improve the KWS performance. However, the augmented lexicon still might not

include the OOVs with respect to the original lexicon. If the OOV keywords can be

anticipated before, this method can be useful, but since we do not know the OOV

keywords beforehand, this approach might not be practical in real KWS applications.

The third way of tackling the OOV problem is expanding the query by generating

alternative forms of it and searching for all these alternatives along with the original

query in order to increase the number of hits. These alternatives will be acoustically

similar to the original queries and will also help overcoming the errors in the ASR

system in addition to dealing with the OOV queries. These alternatives are generated

using CMs which are also represented as WFSTs [5,6,9,29]. In the most general form,

CM models insertions, deletions and substitutions. Their WFST representation usually

has a single state with self-loops. The input-output label pairs on the arcs of the WFST

correspond to the units that are substituted with each other or if the input (output)

symbol is “ε” it models an insertion (deletion). In a phone-based system these units

correspond to phones whereas in a symbolic system, the CM models the confusions of

the symbols. The weights or costs on the arcs denote the negative log-probability of

insertion, deletion or substitution depending on the input-output label pair.

An example CM is shown in Figure 2.7. As in this example, weights on the arcs

of a CM need not to be symmetric. For example, if the substitution of “a:e” has a

16

weight of 2.53, the substitution “e:a” can have a weight of 3.17.

Figure 2.7. A CM example.

As in the case of indices, the CMs can be at different levels. For example, a word

level CM along with a word index can be used or the WFST of a query in phonetic

level can be expanded with a phonetic CM and then be searched in phonetic index.

If Q and CM denote the query FSA and the CM, respectively, and ◦ indicates the

WFST composition operation, the expanded queries Q′ can be summarized as

Q′ = n-best(Q ◦ CM) (2.4)

Alternatively, we can have the index in word level and the CM in the phonetic level. In

that case, the word representation of the keyword is first mapped to phonetic sequence

using the lexicon/G2P, then the phonetic CM is applied to obtain the expanded query.

Since our index is in word level, the expanded query should be mapped back to words.

If the LVCSR lexicon is used during this stage, this method maps OOV words to IV

words for which we can obtain search results. If L denotes the pronunciation lexicon

that maps words to phones and if L−1 denotes the inverse of L, i.e. mapping phone

sequences to words, the expanded queries Q′w are generated by

Q′w = n-best(Qw ◦ L ◦ CMp ◦ L−1) (2.5)

17

In Equation 2.5, subscripts w, p are used to denote the word and phone level represen-

tations in the corresponding WFSTs. If we have a phonetic index, the last composition

is not required which will become equivalent to Equation 2.4. In the case where we

are using an augmented lexicon [30] as mentioned previously, L will be the augmented

lexicon and the inverse lexicon will still be the inverted version of the original lexicon

used in the ASR system thus mapping OOV words to IV words.

Figure 2.8 shows how the expanded query WFSTs are generated. In Figure 2.8(a)

the linear FSA for the keyword “mama” is shown. Using the CM shown in Figure 2.7,

the composition operation in Equation 2.5 will result in Figure 2.8(b). At this point,

“baba”, “mana”, “bana”, “nane” are among alternative queries. If we apply the n-best

operation for n=5, and project the output labels, we get Figure 2.8(c) where only 5

possible confusions with the least costs are kept such as “mana”.

0 1m:m 2a:a 3m:m 4a:a

(a) Query FSA (Q)

0 1

m:b/1.46

m:m

m:n/1.65
2a:e/2.53

a:a
3

m:b/1.46

m:m

m:n/1.65
4a:e/2.53

a:a

(b) WFST after composition with CM (Q ◦ CM)

0

6

m:m

b:b/1.46

n:n/1.65

7m:m

8

m:m

4
a:a

3a:a

5a:a

12 a:ab:b/1.46

m:m

n:n/1.65

(c) 5-best result of composition (Q′) after projecting output labels

Figure 2.8. Expansion of the query “mama”.

Once the expanded query is generated, it is searched over the index using WFST

composition operation as described before.

18

2.2. Alternative Approaches for KWS

After reviewing the KWS methods based on LVCSR output, in this section other

spoken content retrieval applications that do not necessarily depend on the ASR output

will be summarized. These methods either use pattern matching, keyword-filler models

or develop a discriminative method for KWS.

2.2.1. Pattern Matching Approaches

These approaches directly work on acoustic data or features extracted from them

and they do not necessarily rely on an ASR system. They try to find the pattern, i.e.

sequence of feature vectors that represents data, in the database that is most similar to

the query pattern. Pattern matching is usually achieved by DTW which is a dynamic

programming method.

In QbyE-STD, as the queries are spoken, both the query and the search data

are in the same domain therefore it is suitable to use pattern matching approaches.

Initial studies directly use audio features whereas in recent studies DTW based pattern

matching methods are applied to different representations of audio data such as poste-

riorgrams. Posteriorgram is a time versus class representation of the input signal. In

speech processing, the time axis corresponds to different frames of the audio whereas

the classes can correspond to different units such as phones, HMM states or different

Gaussians in a GMM depending on the application. As the vectors in a posteriorgram

are posterior probabilities, each vector in the posteriorgram adds up to 1. Figure 2.9

shows an example phonetic posteriorgram of an utterance where the classes correspond

to phones. In this figure, darker values correspond to higher probabilities. The ad-

vantage of using posteriorgram representation of audio is that it allows the data to be

represented in a speaker-independent statistical manner as opposed to directly using

spectral features which are speaker dependent [7]. Moreover, if the posteriorgrams are

generated from neural networks trained in a multilingual fashion as in [31], they can

also provide a language independent representation.

19

0 50 100 150 200 250
Time

0
10
20
30
40

Ph
on

es

0.0

0.5

1.0

Figure 2.9. An example phonetic posteriorgram.

Variants of DTW algorithm such as segmental DTW [10] and subsequence DTW

[32] are also used in QbyE-STD tasks. In [8], DTW algorithm is applied to the pho-

netic posteriorgrams obtained from a phonetic recognizer in order to locate queries in a

QbyE-STD task. In this case, the patterns for query and test utterances are their pos-

teriorgrams. In [12], a GMM is trained and each speech frame is represented with the

posterior probabilities of the Gaussian components. Then the Gaussian posteriorgrams

of the audio to be searched and the spoken queries are matched using segmental DTW.

In addition to Gaussian posteriorgrams, segmental DTW is also used on posteriorgrams

generated from deep belief networks in QbyE-STD systems described in [7].

The main drawbacks of DTW based pattern matching approaches to spoken

KWS are their computational demand and memory requirement and their search time

is significantly higher than the index look-up approaches [8]. Several methods have

been proposed to deal with these problems such as lower bound estimates for distance

calculation in DTW algorithm [7] or locality sensitive hashing to find an approximate

similarity matrix and speed up the system [33]. For example, in [34], ideas from

image processing such as Hough transform is used to perform an initial fast analysis

of the similarity or distance matrix to roughly find matching regions and then results

are refined with complete DTW steps. However, there are still points where further

optimization is possible to improve the performance of these approximate methods for

pattern matching with DTW in QbyE-STD applications [32].

20

2.2.2. HMM Based Keyword-Filler Models

HMM-based KWS approaches consist of training a generative model and different

decoding strategies are proposed for keyword detection. These methods consist of three

components: a keyword model, a background model and a filler model. The keyword

and background are modeled separately and the filler model represents the non-keyword

portions of the signal. Each utterance is modeled with HMMs such that the keyword

model is preceded and followed by non-keyword segments [35]. Keyword detection is

based on obtaining the HMM state sequence that yields the highest likelihood for the

given observation using Viterbi decoding. If the resulting state sequence passes through

the keyword model, then the keyword is decided to be detected. In order to overcome

possible mismatches between different models, likelihood ratio approaches are also used

for keyword search in HMM-based KWS systems. In these approaches, the likelihood

ratio of a garbage-keyword-garbage model to the likelihood of garbage-only model is

compared against a threshold in order to give a detection decision. HMM-based models

do not directly aim at maximizing the KWS performance during model training which

is one of the drawbacks of these approaches [36].

2.2.3. Point Process Models

Although posteriorgram representations are widely used along with DTW algo-

rithms to find the matching patterns between queries and test utterances as described

in Section 2.2.1, this representation is also used in an index based approach. However,

this index is not generated from LVCSR lattices but from posteriorgram events [37].

The search is performed using likelihood ratio of these events under PPM [38]. Pho-

netic posteriorgrams are modeled in a sparse way as a set of phonetic or acoustic

events. The arrival of phonetic events along time collectively define the temporal point

pattern and PPM framework uses this representation of speech signals [38–40]. The

“index” in PPM systems, is just the collection of these acoustic events [37]. Arrivals of

these events are modeled by two Poisson processes one corresponding to a background

model and the other one to a foreground model. Once the index is generated from the

posteriorgram, KWS is performed using a detector function. This function is basically

21

the likelihood ratio of the point pattern for the query given the word is uttered in

the search data (foreground model) to the case where the query is not uttered (back-

ground model). This detector function is evaluated around the events in the PPM

index within the keyword duration which is obtained from training instances. In addi-

tion to whole word search, subword unit search followed by word models is also applied

for handling OOV queries. Due to their event based approach, the PPM KWS systems

differ from frame-based DTW approaches applied to posteriorgrams and HMM-based

methods [38]. In [41], PPM outputs are combined with LVCSR based KWS results in

a low resource setting and an improvement in the KWS performance is observed for

both IV and OOV queries.

2.2.4. Discriminative Approaches for KWS

These methods directly tackle the KWS problem instead of using a LVCSR system

first. The main idea is to focus on KWS performance rather than the error rate of a

LVSCR system which usually does not correlate with the search performance. There

are KWS approaches based on large margin methods such as support vector machines

and other discriminative methods that directly train a system for a pre-defined set

of keywords which are usually based on neural networks. Recurrent neural networks

(RNNs) such as long-short term memory (LSTM) [42] neural networks and deep neural

networks are also used in discriminative approaches. These systems search for a given

set of keywords and they require positive and negative examples, i.e. some utterances

containing the keyword and some that do not. This is the major drawback of these

systems because they are not applicable to the cases where we do not know the keywords

beforehand as in our task. Moreover, in the low resource setting queries might not be

encountered in the training data and can be OOV, therefore we cannot have positive

labeled data even if we know the queries.

In [36], the large margin discriminative training learning approach aims at attain-

ing a high area under the receiver operating characteristics (ROC) curve by learning

a keyword spotter function. This function takes the acoustic features of the search

data and a query and outputs a weighted sum of the features maximized over all pos-

22

sible alignments of the keyword in the data. Then, this output value represents the

confidence that the keyword is uttered in that acoustic data. In this method a sup-

port vector machine like approach is followed which tries to maximize the difference

between the features of utterances in which the keyword is uttered and those in which

the keywords are not uttered.

In [43], a particular type of RNN, namely LSTM and an algorithm that finds

the most likely labeling of unsegmented sequential data are used. The RNN structure

allows the incorporation of the information over long time spans to estimate the prob-

ability of the presence of a keyword in the speech signal. System training requires a

list of keywords in the order in which they appear in the input speech data along with

the data itself. Search is based on decoding the input sequence.

In [44], the ideas from the above mentioned studies are combined where bidi-

rectional LSTM network outputs are used as one of the acoustic features in the large

margin approach of [36].

Based on the success of LSTMs for sequence modeling tasks, in [45], LSTM

network is used as the feature extractor in a QbyE task. In this system, the activations

from the last hidden layer just before the softmax layer of the LSTM network are

stacked over a fixed number of frames thus embedding audio segments of different

length into a fixed dimensional space. Same type of features are also extracted for the

keywords to be searched and then cosine distance is used as the matching procedure.

Although they used both phonetic and whole word labels as the network output, they

found that the word modeling is a better approach.

Another discriminative approach for KWS is the “Deep KWS” framework de-

scribed in [46] for a QbyE application. In this work, acoustic features of the data are

fed into a DNN which is trained to directly predict the keywords or subword units of

the keywords. Thus frame-based keyword label posteriors are obtained and then the

noisy posteriors are smoothed and a confidence score for the hit is calculated using the

smoothed posteriors.

23

Although the main KWS approach followed in this thesis is closely related to

the index based approaches using LVCSR output, here a single string is used to repre-

sent each utterance instead of a lattice or CN structure. Another difference is in data

representation which is based on the encoding of search data posteriorgram. The pos-

teriogram representation is inspired from the QbyE-STD approaches that use pattern

matching techniques over them. Moreover, the discriminative training of the CM that

directly tries to maximize the KWS performance criterion instead of LVCSR accuracy

resembles the discriminative approaches to KWS.

2.3. KWS Task Evaluation

The KWS systems described above return a lit of hits that indicate the location

of the query in the search data. These lists are usually post-processed to achieve higher

performance. Another way of improving the KWS performance is combining the results

of different KWS systems by making use of diversity. Therefore, in this section, the

definitions of the performance criteria reported in this thesis will be given and then

score normalization and system combination techniques will be reviewed.

2.3.1. KWS Performance Evaluation

The output of a KWS system includes the list of hypotheses returned by the

search system for each keyword. The search results contain the following information:

the name of the file in which the keyword is supposed to be uttered, the begin time of

the keyword in that utterance, its duration and a reliability score. These scores can

then be post-processed and a threshold can be applied such that if the hypothesis has

a score greater than this threshold, the hypothesis is decided to be a hit otherwise it is

treated as not detected. Threshold based decision rule allows us to differentiate between

the correctly detected keywords from false alarms. The KWS system performance is

computed based on the actual decisions obtained after thresholding.

Once the ground truth, i.e. the exact locations of the keywords in the search

data are known, the hits can be categorized into correct detections and false alarms.

24

In addition to the false alarms, the other type of error is missed detections. Missed

hypotheses are the ones which are not returned by the KWS system although the

keyword is uttered in the search file.

For evaluating the performance of a KWS system, the initial step is to align the

hypotheses for keyword occurrences returned by the system with the ground truth

which is the true occurrences of the keywords in the search data determined by the

begin and end times. The alignment operation allows a temporal tolerance, usually

taken as 0.5 seconds, and checks the overlapping system and reference occurrences. If

a reference is not mapped to any system hypotheses, it signals a miss or if a system

hypothesis has not a reference occurrence for the keyword, a false alarm is declared as

the alignment output.

The next step is calculating the performance metrics. The Term Weighted Value

(TWV) given in Equation 2.6 is defined by NIST in 2006 for Spoken Term Detection

Evaluation [47] and it is a widely used KWS system performance measure in recent

studies. It is a single metric evaluated at a particular operating point in the Detection

error tradeoff (DET) curve which depicts the tradeoff between the probabilities of

missed detections (Pmiss) versus false alarms (PFA) for different decision thresholds θ.

TWV(θ) = 1− 1

|Q|
∑
q∈Q

Pmiss(q, θ) + βPFA(q, θ) (2.6)

In Equation 2.6, Q is the set of query terms, |Q| is the total number of queries

and the weight β takes into account both the prior probability of a keyword and the

relative costs of false alarms and misses and is set to 999.9 as in [47]. Miss (Pmiss) and

false alarm (PFA) probabilities in Equation 2.6 are determined using

Pmiss = 1− Ncor(q, θ)

Ntrue(q)
(2.7)

PFA =
Nspur(q, θ)

NNT(q)
(2.8)

25

In Equation 2.7, Ntrue(q) is the true number of occurrences of the query term q in

the corpus, Ncor(q, θ) is the number of correct (true) detections of the term q with a

detection score greater than or equal to the threshold θ. Keywords that do not occur

in the search data (Ntrue(q) = 0) are excluded from TWV calculation. In Equation 2.8,

Nspur(q, θ) is the number of spurious (incorrect) detections of q with a detection score

greater than or equal to θ. NNT(q) is the number of opportunities for incorrect detection

of q in the corpus. In detection tasks, the instances of the objects are discrete items.

However, KWS in continuous speech does not have discrete occurrences. Therefore,

the total number of possible false alarm instances or the “Non-Target” term trials for

a query NNT(q) are calculated using

NNT(q) = Tspeech ∗ ntps − Ntrue(q) = K− Ntrue(q)

where ntps is the number of trials per second of speech (arbitrarily set to 1), and Tspeech

is the total amount of speech in the test data (in seconds), thus K is a constant.

As seen from Equation 2.6, the benefit of correctly finding a term depends on its

frequency in the search data (Ntrue(q)) but cost of a false alarm is almost independent

to the term frequency since Tspeech ∗ ntps >> Ntrue(q) and NNT(q) is almost constant.

Therefore, TWV metric emphasizes recall of rare terms. Since OOV keywords usually

have low frequency, correctly locating an OOV keyword contributes to TWV more.

The maximum value that TWV can get is 1 and it corresponds to correctly

detecting all of the queries, with no false alarms. For systems returning an empty hit

list, TWV is 0 and TWV can get negative values. The TWV for a given threshold

is called the actual TWV (ATWV). The maximum TWV obtained from all possible

threshold values is called the maximum TWV (MTWV) so it is the optimal point on

the DET curve. Although, MTWV is primarily used for evaluation in this thesis, other

performance measures such as oracle TWV (OTWV) and supremum TWV (STWV)

are also used which are modified versions of TWV given in Equation 2.6. OTWV

is calculated using separate thresholds for each query that give the MTWV for that

particular query. STWV is found by taking search scores for the correct detections and

26

false alarms as 1 and 0, respectively, thus neglecting the effects of false alarms [48]. In

this thesis, Framework for Detection Evaluations (F4DE) Toolkit [49] provided by NIST

is used which performs the occurrence alignment by Hungarian method for bipartite

graph matching and calculates both ATWV and MTWV [48].

An example DET curve is shown in Figure 2.10 where the line on the top right

shows the random performance and the curve at the lower left part shows the 0.3 iso-

TWV. Filled and empty dots on the system performance curve denotes the ATWV

and MTWV, respectively.

5

10

20

40

60

80

90

95

98

.0001 .001 .004.01.02 .05 .1 .2 .5 1 2 5 10 20 40

P
M

is
s

(in
 %

)

PFA (in %)

0.300

Random Performance
Iso-TWV lines

Occurrence: Act TWV=0.3603 PMiss= 0.534 PFA=0.00011 Thr=0.0500
Max TWV=0.3696 PMiss= 0.546 PFA=0.00008 Thr=0.0604

Figure 2.10. An example DET curve.

In the experiments presented in the following sections, MTWV is reported instead

of the actual TWV for a certain threshold since the emphasis is not on finding a single

threshold to be used in different systems. In combination experiments OTWV and

STWV are also reported along with MTWV.

2.3.2. Score Normalization

Due to the characteristics of the keywords, the scores for different queries can

be diverse. However, system hypotheses for different keywords should be comparable

27

to each other since the KWS performance is evaluated based on the decisions given

according to a global detection threshold. In order to achieve higher TWV, score

normalization techniques such as sum-to-one (STO) normalization, keyword-specific

thresholding (KST), or machine learning methods that discovers a mapping from raw

scores to the normalized ones, have been applied to the raw system scores and KWS

performance is measured using the normalized scores [50,51].

Sum-to-one Normalization: STO normalization scales the scores such that the

sum of all the normalized scores of query is one [50]. If h denotes a single hypothesis

in the set of all hits for the query q, Hq, then the STO normalized scores pqh can be

written in terms of unnormalized scores pqh using the following equation.

pqh =
pqh∑

h∈Hq p
q
h

=
pqh
Zq

(2.9)

According to Equation 2.9, normalized scores of keywords with small number of detec-

tions will be boosted since the denominator will be small for those keywords. This in

turn makes the scores more likely to be above the decision threshold and helps reducing

the probability of miss.

Gamma Correction: When the dynamic range of scores is high, γ correction is

applied with STO normalization. This normalization changes the scores and thus the

global threshold results in a different TWV after score normalization. The following

equation shows γ correction where pqh denotes the score of hit h of query q and pqh,γ is

the normalized score.

pqh,γ =
(pqh)

γ∑
h∈Hq(p

q
h)
γ

(2.10)

Here γ = 1.0 corresponds to the case where STO is applied alone, γ = 0 leads to

uniform scores for all hits of a query. In that case, the hits of a query which has many

hits will have low scores for each hit.

28

Keyword Specific Thresholding: According to the KWS performance criterion,

the TWV, if a detection of query q has a raw score of pqh, disregarding this hypothesis

has a risk of miss proportional to
pqh

Ntrue(q)
and a risk of false alarm of

β(1−pqh)
T−Ntrue(q)

. Then

the keyword specific threshold should be chosen such that the latter risk is smaller and

the threshold is obtained by making these risks equal as given in Equation 2.11 [52].

θ(q) =
Ntrue

T/β + β−1
β
Ntrue

(2.11)

However, Ntrue(q) is not known during KWS so an estimate for it is required. In [52],

it is estimated from the sum of the raw scores of all the detections of the keyword q

and the result is multiplied by a boosting factor α′ determined from a validation set.

N̂true(q) = α′
∑
h

pqh (2.12)

Then an exponential transformation is applied to the scores in order to be able to use

a global decision threshold for all keywords. The exponent is determined as the log

ratio of the global threshold θ to the KST [51]:

pqh = (pqh)
log(θ)

log(θ(q)) (2.13)

2.3.3. System Combination

In general, system combination aims to obtain a combined system with better

performance than the individual performances of its constituent systems by exploiting

the diversity among these systems. In this study, by system combination, we imply a

“late fusion” which means that we integrate the final KWS retrieval results rather than

an “early fusion” in the input representation stage or a combination of different LVCSR

systems that use different units (word or sub-word) or different methods (GMM-HMM,

DNN) in the KWS systems. In case of KWS, diversity of the systems results from their

responses to different types of queries such as query length, number of words in the

29

query, or being an IV or OOV query. For instance, a system may be better at locating

multi-word queries but having a low overall performance can be combined with another

one achieving better performance for single word queries and the performance of the

combined system can exceed the individual systems.

The general steps of system combination is aligning the hypotheses of different

systems based on overlap of their time-spans within a tolerance, then calculating a

merged score for the corresponding hypotheses and assigning a final begin-end time

pair to the combined hypothesis for each keyword. The main difference between com-

bination schemes arises from the way they calculate combined scores. Score normaliza-

tion can also be incorporated into this step before combining scores in order to bring

different scores to the same scale.

Some methods only select the extreme values (min or max) of the coinciding hits

whereas others use a weighted sum of their scores. The weights can be 1, corresponding

to summation only or the weights can be proportional to TWV performance of the

individual systems. The combination scheme used in this thesis is CombMNZ which

takes the sum of the scores and then scales it with the number of systems contributing

to that sum which has a non-zero score for that hypothesis [50].

2.3.4. BABEL Database

In [53], the aim of the IARPA Babel project is stated as “The Babel Program

will develop agile and robust speech recognition technology that can be rapidly applied

to any human language in order to provide effective search capability for analysts to

efficiently process massive amounts of real-world recorded speech.”

The KWS experiments in this thesis are performed on IARPA Babel Program’s

databases. In the Babel project, new languages packs are released each year. These

languages are low-resourced languages, i.e. only a limited amount of transcribed speech

data is available. For example, Turkish, Cantonese, Pashto, Tagalog and Vietnamese

constitute the first set of languages released. The data collection only contains conver-

30

sational speech recorded under different channel conditions and covers multiple aspects

such as different dialects which might result from recordings from different geographical

regions, in recent years some scripted data become available. There is also diversity in

gender, age groups, topics in the conversations, recording conditions (mobile/landline

phones). Depending on the amount of transcribed data, there are different types of

language packs (LP) in this database: Full LP and Limited LP. A very limited LP is

also introduced in 2015 [54]. There are 80 and 10 hours of transcribed training data

in full and limited LPs, respectively. In some of the packs, additional untranscribed

audio data is available. There are also 10-hour transcribed development data and 10-

hour evaluation data. The purpose of development data is parameter tuning for the

models trained on training data. Transcriptions for evaluation data are not provided

neither for Full LP nor for Limited LP. A pronunciation lexicon is also provided in both

packs. In the very limited LP, only 3-hour transcribed data are available. However,

language specific web data and multilingual feature extraction can be used. For KWS

purposes, development and evaluation keyword sets are also provided in orthographic

form but these are assumed to be not known during lattice generation and indexing.

These keywords can include foreign words that are used in daily life, including words

borrowed from other languages. For example, in Swahili dataset we can encounter

English keywords such as ‘in fact’, ‘aunty’ etc.

Table 2.1. Distribution of IV and OOV keywords according to query length given in

number of words.

Turkish Swahili

Length IV OOV IV OOV

1 91 79 1310 139

2 78 9 760 46

3 50 - 172 -

4 - - 37 1

5 - - 9 1

6 - - 4 1

Total 219 88 2292 188

31

The KWS performance is measured by different forms of TWV as given in

Section 2.3.1. In the experiments, Turkish limited LP dataset (babel105b-v0.4)

which is among the base period languages of the Babel program is used. For the

posteriorgram based KWS system, some experiments are also performed on Swahili

(babel202b-v1.0d).

The lexicon for Turkish has 10110 and 41320 words in limited and full LP, re-

spectively. Similarly, the lexicon for Swahili contains 8656 and 25289 words. Table 2.1

shows the lengths of IV and OOV queries in number of words in the development set

queries for Turkish and Swahili. The OOV rate of the keywords is 28.7% for Turkish

and 7.6% for Swahili. The number of letters in Turkish keywords ranges from 3 to 23

where the shortest keyword is “Ali” and the longest one is “çocukların dersleri nasıl”.

In Swahili, number of letters in the keyword ranges from 2 to 35, “ma” is one of the

shortest keywords and “sikudhania ni huyo tunje mwingine kutoka” is the longest.

32

3. SYMBOLIC INDEX BASED KWS

In this chapter, a symbolic index based KWS system will be introduced. The

indexing scheme here is based on lattice indexing framework described in [13,24]. The

main difference here is that each utterance represented as a single string of symbols

instead of alternative hypotheses. The symbols used in this system does not neces-

sarily correspond to phonetic units depending on the encoding of the data. Moreover,

we employ the posteriorgram representation which is frequently used in QbyE-STD

applications instead of KWS for written queries. Thus, we combine ideas from two

different directions in spoken content retrieval. In the following sections, the KWS

system will be described and the experimental results will be given for Turkish and

Swahili datasets in the Babel program. Some of the results presented in this chapter

along with the KWS results of a DTW-based system are combined with an LVCSR

based system, and in [14,15] we showed that we can improve the MTWV especially for

OOV queries.

3.1. Symbolic Index Based Search

The symbolic KWS system mainly consists of two steps which are indexing and

search. In the first step which is the offline step, the search data is summarized into

an index generated from the symbolic representation of the search data. In the search

step which is the online step, written queries are prepared for search and then FST

index-based search is applied. The general KWS setup is shown in Figure 3.1.

Basically, vector quantization (VQ) is applied to the search data posteriorgram

thus they are encoded into a symbolic sequence. Then the index is generated using

these symbolic sequences which are in the form of strings instead of lattices or sausages

used in LVCSR based KWS systems. This index contains the start, end time and

utterance identity information for all symbol substrings in the dataset as described

in Section 2.1.4. Once the text-based query arrives, it is converted into a phonetic

sequence using a pronunciation lexicon for IV queries and a G2P system for OOV

33

Search
posteriorgram

Encoding Indexing

Text-based
query

Query
modeling

Query
expansion

Index-based
search

Score
normalization

Search
results

symbols

index

query

o
ffl

in
e

o
n

lin
e

Figure 3.1. Overview of the posteriorgram based KWS setup.

queries that are not covered by the lexicon. Then query posteriorgrams are generated

for the queries and they are vector quantized. Thus, symbolic representations of the

queries are obtained. Then query FSAs are generated and expanded using a symbol-

level CM which is in WFST form. At this point, expanded queries are in WFST form

and ready for search in the WFST index. Initial search results are obtained by taking

the n-best paths of the composition of the query WFST with the index. If Q,CM and I

show the query WFST, CM and the index, respectively, search results are summarized

as in Equation 3.1 where ◦ denotes the FST composition operation:

Results = n-best(Q ◦ CM ◦ I) (3.1)

Once the initial list of hits including keyword name, utterance name, begin and end

times in the utterance and a score associated with that hit are obtained, score normal-

ization is applied to the hit list to obtain the final search results and these are used in

measuring the KWS performance.

In the following subsections, posteriogram representation of the data will be re-

viewed, then each step in KWS will be described in detail along with various methods

used in those steps. For example, an unsupervised or a supervised setup can be used

in codebook generation, or there are different options for query WFST generation.

34

3.1.1. Posteriorgram Representation of the Data

The posteriorgram is denoted by a matrix Y = [y1,y2, · · · ,yt, · · · ,yT] where t

denotes the time index and T is the total number of time frames in the data. In this

study, we use DNN-based posteriorgrams because they can be directly obtained from

the DNN output layer and they are more robust to variations in the acoustic features.

For example, in Gaussian posteriorgram generation, which is based on GMMs trained

on the acoustic features, the calculation of the posterior probability of each Gaussian

component for each frame is required. [12]. In the DNN-based method, posteriorgram

Y of a set of acoustic feature vectors X = [x1,x2, · · · ,xt, · · · ,xT] is obtained by feeding

them into the DNN of the LVCSR system. Each column of Y, yt, is a posteriorgram

vector which has dimension of K equal to the number of classes. When DNN applies

softmax nonlinearity in its final layer withK nodes, each element of these vectors, yt(k),

are interpreted as the posterior for class k at time t, the equality given in Equation 3.2

holds:

K∑
k=1

yt(k) =
K∑
k=1

P(k|xt) = 1 ∀t ∈ {1, · · · , T} (3.2)

In Eq. 3.2, xt, t = 1, 2, · · · , T is the feature vector of frame t in the audio and T is the

total number frames. Although K is fixed for all utterances in a dataset for a given

system, T can differ for different utterances with posteriorgrams Yn depending on their

lengths.

From the output of the DNN, the posterior trajectories of HMM states are ob-

tained which gives the state-level posteriorgram. These states can be context dependent

(CD) or context independent (CI) depending on the output targets of the DNN. When

we have the CD state-level posteriorgram, the posterior probabilities of all states in

the decision tree of a phone are added to obtain the phone-level posteriorgram. Sup-

pose that we have the posterior probability of each state s (1 ≤ s ≤ S) at each time

frame t, for 1 ≤ t ≤ T , that is pt(s), then pt(k), the posterior of each phonetic unit

35

k, 1 ≤ k ≤ K where K is the number of phones, is computed by

pt(k) =
∑
∀s∈Sk

pt(s) (3.3)

In this equation Sk denotes the set of states associated with phone k.

When the ASR is graphemic, that is based on letters, we can also generate

graphemic posteriorgrams. In these systems, we can have a single decision tree, in

which case there is not a one-to-one relation between the CD states and the graphemes.

Therefore, first we need to find a mapping between states and graphemes to generate

the graphemic posteriograms. We take both state and grapheme-level alignments of

the training data, then we find the frequencies of graphemes corresponding to each

state in the training data. Then we normalize these frequencies (fgs) to obtain weights

of observing the grapheme g due to state s, wgs and calculate the posterior of g at time

t by using the weights wgs and the posterior probability (P (s|t)) of state s at time t

which we get from the softmax output layer of the DNN. In Equation 3.5, we assume

that g is conditionally independent of t given the state s.

wgs =
fgs∑
g′ fg′s

(3.4)

P (g|t) =
∑
s

P (g|s)P (s|t) =
∑
s

wgsP (s|t) (3.5)

3.1.2. Symbolic Representation of the Search Data

Our KWS index is generated from strings of symbols assigned to each time frame.

The basic way of obtaining a symbolic representation of the posteriorgram is to per-

form VQ. The aim of VQ is to obtain a set of codewords such that when the data is

quantized the total distortion calculated using a distance metric is minimized. The set

of codewords and an associated symbol with each of them collectively define the VQ

codebook. Once the codebook is learned, new vectors can be encoded with the symbol

of the closest codeword in the codebook.

36

In unsupervised codebook generation, k-means clustering is applied to the vectors

in the search data posteriorgram to get the codewords. Then each frame is labeled with

the label of the closest VQ codeword. The k-means algorithm tries to minimize the

Euclidean distance between data points and their cluster centers. In this method, the

codewords or the cluster centers are initialized randomly, each vector in the data is

assigned to the cluster of the closest center, then the cluster centers are updated to the

mean of the vectors assigned to that cluster. Although the algorithm converges to a

local optimum, by repeating the algorithm using different initializations of the cluster

centers and choosing the output that gives the minimum average distance, the global

optimum can approximately be achieved.

In the supervised approach for codebook generation, the posteriorgram and the

phonetic alignment of the training data are used. Then, using the posteriorgram vectors

having the same phonetic label, a separate VQ codebook corresponding to each phone

is generated. In this setup, if number of codewords in k-means is chosen as 1, it

corresponds to using the average posteriorgram vector for each phonetic label. Then

the codebook size will be equal to the number of phones in the system and there will

be one-to-one correspondence between codewords and phones since each codeword will

be the average posteriorgram of a particular phone.

3.1.3. Symbolic Representation of the Query

As opposed to the QbyE KWS systems where queries are in spoken form, in our

work, we have written queries. These queries are first converted into a sequence of

phonemes using the lexicon for IV queries and the output of a G2P system for OOV

queries. Depending on the codebook generation setup, there are two approaches. The

first one is generating the posteriorgram representation of the query and applying VQ to

it as in obtaining the symbolic representation of the search data. The second approach

is directly using the phonetic sequence of the query as its symbolic representation.

The latter approach is applicable only when the codebook is generated in a supervised

manner or when we have a transducer that maps phones to symbols directly. Once we

get the symbolic sequence of the query, a linear FSA is constructed where each arc has

37

a symbol as its input label which is the same as the output label of the arc.

3.1.4. Query Posteriorgram Generation

Since the posteriorgram is a sequence of posterior vectors, we have to model

posterior vectors and the duration in order to generate a posteriorgram. The vectors are

either modeled as binary vectors or average vectors and minimum or average duration

is used for duration modeling.

In binary posteriorgram generation, the vector corresponding to a phone is con-

structed using a unit vector. These vectors contain a single 1 at the position which

corresponds to the phone and other elements of the vector are 0.

In average posteriorgram generation, each symbol in the phonetic sequence of the

query is represented by an average vector corresponding to that symbol. The average

vector for each phone is obtained simply by averaging the posterior vectors of the

frames labeled with that phone in the training posteriorgrams.

The second dimension of the posteriorgram is time. Therefore, a duration model

is needed which determines how many times the vector must be repeated in the posteri-

orgram. For duration modeling, a minimum duration is imposed by repeating the same

posteriorgram vector for a certain number of times, for instance 3 frames. Since the

query WFST will be constructed after assigning symbols to the posteriorgram, mini-

mum duration restriction is modeled in WFST construction by using loop structures

in the query FSA. Figure 3.2 shows the FSA for the keyword “Ali”. This FSA will

require at least 3 matching frames in the index for each symbol which is taken as the

phonemes in this example. Another option for duration modeling is using the average

0 1
a:a

2
a:a

3
a:a

a:a

4
l:l

5
l:l

6
l:l

l:l

7
i:i

8
i:i

9
i:i

i:i

Figure 3.2. Query FSA with the loop structures.

38

duration information for each phone obtained from the training data. In this case, the

average number of consecutive frames labeled with a particular phone is taken as its

average duration.

Figure 3.3 shows the binary posteriorgram, average posteriorgram with mini-

mum duration and average posteriorgram with average duration for the example query

“meslek”. In these figures, darker colors represent posterior probabilities which are

close to 1. In the binary posteriorgram, only one of the symbols have non-zero prob-

ability whereas in the rest of the figures there is a distribution over symbols. When

average duration is used, each symbol can have different durations but in minimum

duration modeling equal number of frames are associated with each symbol of the

query.

(a) Binary vector,

minimum duration

(b) Average vector,

minimum duration

(c) Average vector,

average duration

Figure 3.3. Query posteriorgrams according to vector and duration modeling.

For handling multi-word keywords, an optional silence is used meaning that the

matching pattern can have the words one after the other without any additional symbol

in between or there can be symbols corresponding to the silence element (phone or

grapheme). For example, optional silence modeling for the keyword “bos ver” is shown

in Figure 3.4 where we allow one frame silence in between the words.

0 1
b:b

2
o:o

3
s:s

4<SIL>:<SIL>

5v:v

v:v

6
e:e

7
r:r

Figure 3.4. Optional silence modeling for multi-word keywords

39

3.1.5. Confusion Model Generation

CM generation consists of determining the list of confusion pairs (i, o) and the cost

of each confusion. In the unsupervised setup, using the Euclidean distances between

codebook entries, possible confusions are determined from the nearest neighbor of each

codeword. The confusion cost is taken as the distance between two codewords. Thus,

if two codewords are close to each other, their distance and therefore the confusion cost

will be smaller.

In the supervised setup, we use phonetic alignment of the training data, then

we encode the training data posteriorgram and get the symbolic sequence of the same

data. Then a confusion matrix is generated by counting the number of symbols assigned

instead of each phone. This matrix gives an estimate of the confusion probabilities.

Then the confusions having probability less than a threshold are discarded and the

remaining confusions are incorporated into the CM and their costs are calculated as

the negative logarithm of the probability. Thus, if a confusion has a probability which is

close to 1, it will have a lower cost and this confusion will be allowed frequently. In order

to get the confusion probabilities, the confusion matrix can be normalized in different

ways. Assuming that C(i, o) is the number of frames labeled with o instead of the

true symbol i, we can interpret the weights of the CM as the conditional probabilities

P (o|i), P (i|o), as the joint probability P (i, o) or the CM can be scaled such that the

maximum element in the matrix C becomes 1.

P (o|i) =
C(i, o)

C(i)
=

C(i, o)∑
oC(i, o)

(3.6)

P (i|o) =
C(i, o)

C(o)
=

C(i, o)∑
iC(i, o)

(3.7)

P (i, o) =
C(i, o)∑
i,oC(i, o)

(3.8)

Cmax(i, o) =
C(i, o)

maxi,oC(i, o)
(3.9)

Equations 3.6-3.9 correspond to normalizing the confusion matrix C row-wise, column-

wise, in a joint manner and scaling the matrix with the maximum element, respectively.

40

Search
posteriorgram

Quantization Indexing
Index-based

search

Codebook
generation

CM
generation

Text-based
query

Query
generation

Query
expansion

Lexicon G2P

Score
normalization

Search
results

symbols index

symbols

query

codebook

codebook

codebook CM

Figure 3.5. Overview of the unsupervised KWS setup.

After describing the components in the proposed KWS system, the setups are

summarized in Figures 3.5 and 3.6. These figures show the setups where both the

codebook and the CM are generated in an unsupervised and supervised manner, re-

spectively.

3.2. Experiments

In this section the performance of the symbolic index based KWS system will

be given and the effect of choices for the building blocks of the system will be inves-

tigated. The results will be demonstrated for Turkish (babel105b-v0.4) and Swahili

(babel202b-v1.0d) datasets in the Babel program. In addition to individual perfor-

mances, their combinations with an LVSCR lattice based KWS system will be given

to show that there is an improvement over the baseline especially for OOV keywords.

3.2.1. Experiments on the Turkish Dataset

In this section, KWS search results are presented for Turkish Limited LP data.

In the following experiments, the effect of using different setups for the basic building

41

Search
posteriorgram

Quantization Indexing
Index-based

search

Train
posteriorgram

Train
alignment

Average
post. calc.

CM
generation

Text-based
query

Query
generation

Query
expansion

Lexicon G2P

Score
normalization

Search
results

symbols index

symbols

query

CM

tr symbols

codebook

Figure 3.6. Overview of the supervised KWS setup.

blocks shown in Figure 3.1 are investigated using posteriorgrams generated for different

units such as phonemes and states.

Posteriorgram generation, finding the symbolic representation of the data, index-

ing and search is developed based on the building blocks in the Kaldi toolkit [55]. In

the following experiments, the Babel recipe of the Kaldi toolkit is used as our baseline

LVCSR based system for Turkish [56]. For an overview of the pipeline, the reader is

referred to [57]. The DNN from which we generate the posteriorgrams uses p-norm

activations as the nonlinearity of the hidden nodes. It results in 62% WER on the

10-hour development set in Turkish limited LP dataset that we are using in the KWS

experiments.

3.2.1.1. Individual System Performance. In this section, individual system performan-

ces are presented in terms of MTWV calculated over all queries, IV and OOV queries

separately.

Table 3.1 shows the KWS performance obtained by using different setups for VQ

codebook and CM generation when phonetic posteriorgrams are used. In this table, U

42

Table 3.1. MTWV for all, IV and OOV queries depending on the supervised (S) or

unsupervised (U) setup.

Posteriorgram VQ CM Query All IV OOV

Phonetic U U Bin/Avg 0.0213 0.0266 0.0098

Phonetic S U Bin/Avg 0.0227 0.0237 0.0228

Phonetic S S Bin/Avg 0.0414 0.0394 0.0554

and S denote the unsupervised and supervised setups, respectively, and the last three

columns show MTWV calculated over all queries, IV and OOV queries separately. From

this table, we observe that using a supervised setup in codebook generation improves

the MTWV performance as compared to the fully unsupervised case. When CM is also

generated in a supervised manner, the best results are achieved for both IV and OOV

queries. The relative improvement in MTWV over all queries by using a supervised

CM instead of an unsupervised one (82.3%) is greater than the relative improvement

resulting from using a supervised codebook instead of an unsupervised one (6.6%). The

same argument also holds for MTWV over OOV queries 143% versus 133%. Since, the

symbolic index in this setup does not include score, only the CM weights contribute

to the search scores. Therefore, the choice of CM including its weights and allowed

confusions directly influence the KWS performance. That is why, the effect of using a

supervised CM is more pronounced. In addition, in the supervised CM case, we get the

possible confusions by learning from the errors in the training data which allows us to

overcome those errors during search. Since there is a one-to-one relation between VQ

labels and the phonetic alignments in the supervised setup, we can calculate a frame

error rate (FER) by comparing the two strings representing the encoded data and the

alignment. We define FER as the ratio of number of frames assigned to a different label

by VQ to total number of frames and take the average over utterances in the training

data. In the fully supervised experiment of Table 3.1, the FER is found to be 47.02%.

Regarding to the query generation method, it is observed that the symbolic rep-

resentation for the phonetic sequence of the query become the same. Therefore, their

43

WFST representations are the same implying that the search results will be the same.

In the experiments below, unless otherwise stated, binary queries are used due to their

simplicity.

In the above experiments, the best results are obtained when both codebook and

the CM are generated in a supervised manner. Therefore, in the following experiments

the fully supervised setup is used and KWS is performed using posteriorgrams at dif-

ferent granularities. Moreover, in VQ generation, different number of average vectors,

i.e. the codebook entries, are obtained corresponding to each unit. These units are

phones or the begin (b), middle (m) and end (e) states corresponding to each phone

in a 3-state left-to-right HMM representation of the phones as in Figure 3.7. Instead

of CI phones or CI states, CD phones or CD states can be used.

b m e

Figure 3.7. 3-state left-to-right HMM with begin (b), middle (m) and end (e) states.

In Table 3.2, the first column shows the posteriorgram type used in the experi-

ment, the codebooks are generated such that there is an average vector corresponding

to each unit written in the second column. The third column shows the VQ codebook

size, the fourth column shows the FER (in %) for the confusion matrices used in CM

generation. Finally, MTWV for all, IV and OOV queries are given in the last three

columns. For example, in the third experiment given in Table 3.2, average CD state-

level posteriorgram vectors corresponding to each phone are taken as the codewords

and the codebook size is 43 because there are 43 phones for Turkish in this dataset.

Using this codebook, the FER for training data is 49.7%.

According to Table 3.2, the best result is obtained when the phonetic posterior-

grams are used with a codebook consisting of codewords associated with each phone.

In the experiments, it is observed that when the codebook size is larger than the num-

ber of units in the posteriorgram, KWS performance is lower than the case where the

44

Table 3.2. MTWV of search results and the FER in confusion matrix depending on

the posteriorgram type and codebook generation.

Postgram VQ
Codebook

Size
FER (%)

MTWV

All IV OOV

Phonetic Phone 43 47.02 0.0414 0.0394 0.0554

Phonetic 3-state 131 81.88 0.0072 0.0086 0.0052

CD State Phone 43 49.70 0.0227 0.0255 0.0209

CD State 3-state 131 53.72 0.0249 0.0315 0.0094

codebook size is smaller. This is observed both in the supervised setup and in the

unsupervised setup where different values of k in k-means is used. For example, when

using phonetic posteriograms if we have a codebook at the 3-state-level which leads to a

codebook of size 131 instead of a phonetic one with size 43, KWS performance is lower

when we use the larger codebook. When we have a large codebook and working with

a lower dimensional posteriorgram, we have less number of basis vectors spanning that

space but we have a larger codebook which has more than necessary vectors. In that

case, some codewords will be a combination of the basis vectors and will increase the

error rate after quantization because the probability of assigning a vector to a different

vector will be higher. This effect is also reflected by the FERs given in Table 3.2, as

the codebook size increases while working on a certain type of posteriorgram, the FER

also increases.

As mentioned in the supervised CM generation, there are different possible nor-

malization options for the confusion matrix while generating the CM. In Table 3.3,

phonetic posteriorgrams are used in the supervised setup but in each case different

normalizations given in Equations 3.6-3.9 are applied.

Since the matrices are pruned after normalization, the allowed confusions change

depending on the normalization type. In column normalization case, types of confusions

differ as compared to row normalization, and the allowed confusions result in better

45

Table 3.3. MTWV for all, IV and OOV queries depending on confusion matrix

normalization.

CM All IV OOV

P (o|i) 0.0414 0.0394 0.0554

P (i|o) 0.0305 0.0224 0.0641

P (i, o) 0.0205 0.0176 0.0415

Cmax(i, o) 0.0222 0.0180 0.0449

matches and KWS improves especially for OOV queries. As shown in this table, joint

and maximum normalization lead to similar results, since after normalization both

matrices become a scaled version of the other. Therefore, the possible confusions will

be the same but weights of the CM will be different. However, in MTWV calculation

except the threshold leading to MTWV, their performances become similar.

As shown in Equation 3.1, the search is done using FST composition and the

search results are obtained by taking the n-best (shortest, least cost) path of the

resulting WFST. Unless otherwise stated, 100-best is taken in the experiments. In the

results shown in Table 3.4, the effect of the number of best paths taken is investigated.

The n-best operations are applied to the results obtained from the fully supervised

system shown in Table 3.1. In Table 3.4, number of hits and STWV are included.

Table 3.4. Number of hits and STWV as the number of best paths changes.

n-best
Number

of hits
STWV

100 16833 0.1501

250 26598 0.1604

500 40041 0.1818

750 51958 0.1886

1000 62612 0.1946

46

As the number of paths increases, the number of results also increases. Therefore,

additional correct hits are detected which leads to increase in STWV. However, they

are accompanied by additional false alarms. That is why the increase in STWV is not

reflected to MTWV which is almost constant at 0.0414, 0.0394, 0.0554 for all, IV and

OOV queries in all cases. As shown in the second column of Table 3.4, the total number

of hits does not increase linearly with n. Another point to note is that the number of

hits per query does not necessarily increase linearly with n because the overlapping hits

in time are represented with a single hit and additional paths might only contribute to

those hits. Since our index is frame-based, this effect is frequently observed because if

we find a match spanning certain number of frames, and a longer segment consisting

of that hit and a few more leading and/or trailing frames with zero cost will also be

among the best paths but in system evaluation, they will be counted as a single hit.

In addition, we might not have sufficient (more than n) number of paths in which case

increasing n will not change the number of hits.

Table 3.5 shows the effect of score normalization on MTWV. As the search scores

are completely determined from the weights in the CM, the frame level matching gives

lower scores for longer hits. To normalize against this effect, the negative log of scores

are divided to the number of frames for the match. This normalization is shown in

the first column. Another normalization is KST which is described in Section 2.3.2.

Second column in Table 3.5 shows the effect of the boosting parameter α′ in KST. Only

in the second row of the table, both types of normalizations are used. In all cases, STO

is applied after the given normalization. In Table 3.5, ’+’ and ’-’ in the first column

shows whether query length normalization is applied or not. Although the MTWVs

are less sensitive to the parameter α′ used in the estimation of the Ntrue, using query

length normalization led to lower MTWV. Our frame-based CM and the query WFST

with a loop structure result in matches where different confusions are used different

number of times consecutively. Simply dividing the score with the total length treats

their repetition counts as if they are same. This situation might distort the scores and

the threshold leading to MTWV which in turn might result in a lower performance.

Another type of normalization is applying γ correction along with STO normal-

47

Table 3.5. Change in MTWV depending on the score normalization.

Query

length
KST (α′) All IV OOV

+ - 0.0248 0.0260 0.0313

+ 1.5 0.0228 0.0185 0.0369

- 1.5 0.0410 0.0387 0.0530

- 2.0 0.0410 0.0386 0.0536

- 0.2 0.0396 0.0390 0.0558

- 0.02 0.0391 0.0406 0.0486

ization. Figure 3.8 shows the change in MTWV as γ changes for the supervised setup

given in Table 3.1. When γ is close to 0, scores are uniform and scores of queries

with large number of hits tend to become lower than threshold which reduces correct

decisions. When γ becomes larger than 1, small scores in the unnormalized hits be-

come almost zero which again reduces the number of correct hits above the threshold

and therefore the MTWV. In this setup, we get the highest MTWV (0.0431) over all

queries at 0.095. After that point MTWV for OOV queries increase for a while but

the overall performance does not improve. Since STWV calculation only considers the

truth value of the hit, STWV remains the same at 0.1501, 0.1510, 0.1477 for all, IV and

OOV queries for all values of γ. Although for each setup we can find an optimal γ,

this value is not generalizable and since the optimal MTWV is usually close the STO

normalized version (γ = 1), STO is preferred.

In constructing our query FST, we use minimum duration. Another possibility

is using average duration of each phone where the durations are determined using the

phonetic alignment of the training data by counting the consecutive frames labeled

with each phone. Thus, we determine the number of repetitions of each vector in

the query posteriorgram. Such queries necessitate longer matches with possibly the

same symbol. However, a slightly noisy frame in the search data might be mapped

into another symbol which prevents a possible match of the query. Therefore, average

48

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.001 0.01 0.1 1

T
W

V

γ

MTWV
MTWV-IV

MTWV-OOV

Figure 3.8. TWV versus γ in score normalization.

duration modeling reduces the detection rate. When we experiment with the duration,

we get MTWV of 0.0 when we use average durations. That is why, minimum duration

modeling is preferred in the experiments where we allow longer matches due to the

loop structure in the query FST.

In the FSA representation of the query, multiword queries are handled by either

forcing an arc with the silence symbol in between the words or the FSA is constructed

such that the silence symbol is optional. In Table 3.6, ‘Required’ and ‘Optional’ cor-

respond to these two methods. In this table, their effects on MTWV is shown for two

setups which differ only in their CM normalization. Both of them use the supervised

codebook and supervised CM and binary posteriorgrams are used in query representa-

tion. According to the table, gain comes from IV queries and there is not a significant

change in MTWV over OOV queries. As there are higher number IV queries than

OOVs, this improvement also reflected to the MTWV over all queries. Forcing silence

requires a match index which has either silence or some symbol that is confusable with

the silence symbol according to the CM. This situation restricts the search space and

leads to less number of detections. If we make the word boundary information optional,

we also allow direct transition from one word to the other which is a quite possible

situation because consecutive words are rarely spoken in isolation. The advantage of

49

optional silence is clearly seen in IV queries because most of the multiword queries are

IV (128 out of 137 multiword queries) as given in Table 2.1.

Table 3.6. Effect of using an optional silence in multiword queries on MTWV.

Word

boundary
CM All IV OOV

Required P (o|i) 0.0414 0.0394 0.0554

Optional P (o|i) 0.0478 0.0524 0.0502

Required P (i|o) 0.0305 0.0224 0.0641

Optional P (i|o) 0.0472 0.0447 0.0638

In supervised CM generation, a threshold is applied in order to prune the CM

and limit the number of possible confusions. If the threshold is high, there are few

confusions which reduces the number of hits. On the other hand, if the threshold is

low, there are many confusions which lead to higher number of false alarms along with

many correct detections and since there are higher number of matches search time

increases as we decrease the CM pruning threshold. Figure 3.9 shows how MTWV and

STWV change as the CM threshold increases. Increase in STWV with the decreasing

threshold shows that the correct detection rate increases. This also affects the MTWV

which also increases with lower thresholds.

3.2.1.2. System Combination. In this subsection, KWS results of combined systems

will be presented. In the combination, the baseline system is Kaldi Babel recipe [56]

and in combination either all results of the proposed system or only the results for

OOV keywords are combined with the baseline which is denoted by subscript OOV

notation. For combination, we use CombMNZ method described in Section 2.3.3. The

baseline system uses a word-level index generated from ASR lattices. OOV keywords

are first converted to phonetic sequence using Sequitur G2P software [28] then a pho-

netic CM is applied which is generated by comparing the phonetic alignment and the

50

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.01 0.1

T
W

V

CM pruning threshold (θ)

MTWV
MTWV-IV

MTWV-OOV
STWV

STWV-IV
STWV-OOV

Figure 3.9. TWV versus the CM pruning threshold.

best path on the phonetic lattice. By converting OOV words to acoustically similar

IV words as in Equation 2.5, KWS is performed on the word index. Finally, KST

normalization is applied to the raw system output. Although the overall MTWV does

Table 3.7. Performance of the combined system for the (un)supervised setup.

System
MTWV OTWV STWV

All IV OOV All IV OOV All IV OOV

B 0.3745 0.4500 0.1887 0.4157 0.4896 0.2240 0.6624 0.7567 0.4220

B + UU 0.3452 0.4260 0.1843 0.4654 0.5410 0.2727 0.6729 0.7606 0.4493

B + UUoov 0.3640 0.4500 0.1843 0.4285 0.4896 0.2727 0.6701 0.7567 0.4493

B + SU 0.3514 0.4222 0.1916 0.4649 0.5367 0.2815 0.6824 0.7595 0.4855

B + SUoov 0.3723 0.4500 0.1916 0.4310 0.4896 0.2815 0.6803 0.7567 0.4855

B + SS 0.3650 0.4321 0.2184 0.4796 0.5424 0.3195 0.6924 0.7704 0.4935

B + SSoov 0.3786 0.4500 0.2184 0.4417 0.4896 0.3195 0.6826 0.7567 0.4935

not increase for most of the setups in Table 3.7, increase in STWV suggests that the

symbolic index-based system introduces additional hits to the baseline but due to the

mismatch between scores, this is not reflected to an increase in MTWV. As in the

51

individual systems, the supervised setup (SS) that uses the phonetic posteriorgrams

and a codebook with a codeword per phone achieves the best combined result. In this

setup, there is 15.7% relative improvement in MTWV over OOV queries. Table 3.8

Table 3.8. Performance of the combined system depending on the posteriorgram and

codebook.

System
MTWV STWV

All IV OOV All IV OOV

B 0.3745 0.4500 0.1887 0.6624 0.7567 0.4220

B + Ph-Ph 0.3650 0.4321 0.2184 0.6924 0.7704 0.4935

B + Ph-Phoov 0.3786 0.4500 0.2184 0.6826 0.7567 0.4935

B + St-Ph 0.3417 0.4216 0.1622 0.6738 0.7582 0.4586

B + St-Phoov 0.3613 0.4500 0.1622 0.6727 0.7567 0.4586

B + St-3St 0.3646 0.4396 0.1820 0.6736 0.7588 0.4563

B + St-3Stoov 0.3704 0.4500 0.1820 0.6721 0.7567 0.4563

shows the combination of the supervised setups in which different VQ codebooks and

posteriorgrams are used. The pairwise notation in the table denotes the posteriogram

type and VQ type where Ph, St, 3St are used for phonetic units, CD states and states

in the 3-state HMM of each phone. As in the individual results, the best performance

is achieved in the Ph-Ph case.

Table 3.9 shows the effect of CM generation method on combination. As in

Table 3.3, columnwise normalization P (i|o) leads to the best result by increasing the

number of correct hits in the combination. In this case, 21.6% relative improvement is

observed in MTWV over OOV queries as compared to the baseline.

Table 3.10 shows the effect of the number of paths taken after searching over the

index. Although the individual MTWV performances are flat, combination of n = 750

improves the MTWV over OOV queries by 0.7% as compared to n = 100 case and

16.5% as compared to the baseline. Increasing n increases the STWV as in Table 3.4.

52

Table 3.9. Performance of the combined system depending on the CM normalization.

System
MTWV STWV

All IV OOV All IV OOV

B 0.3745 0.4500 0.1887 0.6624 0.7567 0.4220

B + P (o|i) 0.3650 0.4321 0.2184 0.6924 0.7704 0.4935

B + P (o|i)oov 0.3786 0.4500 0.2184 0.6826 0.7567 0.4935

B + P (i|o) 0.3697 0.4349 0.2295 0.6980 0.7724 0.5081

B + P (i|o)oov 0.3823 0.4500 0.2295 0.6867 0.7567 0.5081

B + P (i, o) 0.3744 0.4437 0.2075 0.6846 0.7688 0.4699

B + P (i, o)oov 0.3799 0.4500 0.2075 0.6759 0.7567 0.4699

B + Cmax(i, o) 0.3723 0.4409 0.2055 0.6853 0.7679 0.4748

B + Cmax(i, o)oov 0.3793 0.4500 0.2055 0.6773 0.7567 0.4748

Table 3.10. Performance of the combined system depending on n in n-best.

System
MTWV STWV

All IV OOV All IV OOV

B + 250 0.3635 0.4305 0.2180 0.6964 0.7747 0.4967

B + 250oov 0.3794 0.4500 0.2180 0.6834 0.7567 0.4967

B + 500 0.3618 0.4272 0.2187 0.7025 0.7783 0.5092

B + 500oov 0.3801 0.4500 0.2187 0.6870 0.7567 0.5092

B + 750 0.3615 0.4256 0.2198 0.7035 0.7787 0.5119

B + 750oov 0.3799 0.4500 0.2198 0.6877 0.7567 0.5119

B + 1000 0.3611 0.4244 0.2195 0.7048 0.7787 0.5161

B + 1000oov 0.3798 0.4500 0.2195 0.6889 0.7567 0.5161

53

Table 3.11 shows the effect of score normalization on combination. The notation

in this table is same as Table 3.5 and a ‘+’ in the third column denotes OOV-only

combination. As in the individual performances shown in Table 3.5, changing α′ can

improve MTWV over OOV queries but in combination there is a decrease in MTWV

for IV queries. Although the MTWV over OOV queries are always better than the

baseline system, query length normalization results in the smallest improvement among

the systems given in the table. In Table 3.11, STWV results are not included because

Table 3.11. Performance of the combined system depending on the score

normalization.

System MTWV

Query

length

KST

(α′)

Combine

OOV
All IV OOV

+ - - 0.3594 0.4291 0.2037

+ - + 0.3637 0.4500 0.2037

+ 1.5 - 0.3619 0.4302 0.1975

+ 1.5 + 0.3656 0.4500 0.1975

- 1.5 - 0.3587 0.4260 0.2094

- 1.5 + 0.3769 0.4500 0.2094

- 2.0 - 0.3583 0.4265 0.2101

- 2.0 + 0.3748 0.4500 0.2101

- 0.2 - 0.3580 0.4229 0.2143

- 0.2 + 0.3773 0.4500 0.2143

- 0.02 - 0.3534 0.4200 0.2084

- 0.02 + 0.3719 0.4500 0.2084

in all cases the hit lists are the same and the difference is in score normalization. Since

STWV is not based on the score, STWV are the same in each case. When all results

from the symbolic index based KWS are combined with the baseline STWV over all,

IV and OOV queries are 0.6922, 0.7702 and 0.4935, respectively. When only the results

for OOV queries are combined, they are 0.6826, 0.7567 and 0.4935.

54

As discussed previously, γ correction is applied to scores while doing STO nor-

malization. As shown in Figure 3.8, for the supervised setup γ = 0.095 leads to the

highest MTWV. When we combine those results with the baseline, we get the values

shown in the last two lines of Table 3.12. Baseline results, and the combination of the

supervised setup are also included in table which were reported in Table 3.7, previ-

ously. Although individual system performance in the γ = 0.095 case is better than

the SS case, combination is not improved because γ value changes the range of the

scores which might not in line with the range of scores in the baseline system. The

score mismatch affects the combined scores and therefore the MTWV.

Table 3.12. Performance of the combined system when γ normalization is applied.

System
MTWV STWV

All IV OOV All IV OOV

B 0.3745 0.4500 0.1887 0.6624 0.7567 0.4220

B + SS 0.3650 0.4321 0.2184 0.6924 0.7704 0.4935

B + SSoov 0.3786 0.4500 0.2184 0.6826 0.7567 0.4935

B + γ = 0.095 0.3556 0.4251 0.2041 0.6924 0.7704 0.4935

B + γ = 0.095oov 0.3687 0.4500 0.2041 0.6826 0.7567 0.4935

Table 3.13 shows the KWS performance of the combination of individual results

given in Table 3.6 and the baseline. As discussed previously, using an optional word

boundary (O) improves the results for IV queries as compared to required word bound-

ary (R) which is also observed from STWV-IV column of the table. If we compare the

setups that use CM with P (o|i) normalization denoted by ‘oi’ in the table, we can

see that using optional silence leads to higher TWVs for all queries and IV queries.

However, the same conclusion does not hold in the setups where CM with P (i|o) nor-

malization denoted by ‘io’ is used. In this case, the main improvement is in OOV

queries as a result of the CM. Even in the individual results given in Table 3.6, the last

two experiments have higher MTWV over OOV queries. As we are mainly interested

in improving the OOV performance, these results supports the claim that CM is an

55

important block of the KWS system.

Table 3.13. Performance of the combined system depending on the word boundary

representation.

System
MTWV STWV

All IV OOV All IV OOV

B + R-oi 0.3650 0.4321 0.2184 0.6924 0.7704 0.4935

B + R-oioov 0.3786 0.4500 0.2184 0.6826 0.7567 0.4935

B + O-oi 0.3657 0.4328 0.2194 0.6959 0.7753 0.4935

B + O-oioov 0.3788 0.4500 0.2194 0.6826 0.7567 0.4935

B + R-io 0.3697 0.4349 0.2295 0.6980 0.7724 0.5081

B + R-iooov 0.3823 0.4500 0.2295 0.6867 0.7567 0.5081

B + O-io 0.3664 0.4305 0.2292 0.6980 0.7724 0.5081

B + O-iooov 0.3822 0.4500 0.2292 0.6867 0.7567 0.5081

3.2.2. Experiments on the Swahili Dataset

In the base period of the Babel program, the systems were phonetic but in the fol-

lowing years, the amount of transcribed speech data decreased. Therefore, the systems

became graphemic since obtaining phonetic pronunciation lexicons for low resource

languages can be difficult.

The DNN from which our graphemic posteriorgrams are calculated is trained by

the Babel team of IBM Research. The setup is developed using IBM Attila toolkit [58].

The network is trained using multilingual features as only 3 hours of transcribed data

is available for the target language Swahili. In the very limited LP condition, text data

from web is also exploited for lexicon expansion and language modeling to improve the

ASR performance which also improves the KWS performance. Still, the ASR perfor-

mance has WER of around 60%. For KWS, word-level lattices are used in indexing.

IV queries are represented at word level and the grapheme level whereas OOV queries

56

are only represented at the grapheme level. Query expansion by a CM is applied only

to the graphemic FSTs of queries longer than three letters to prevent false alarms since

the CM also models deletions. The queries are searched for in the index via WFST

composition. Results are obtained in cascaded fashion, that is if any token results for

a query are present, they are used; otherwise, the grapheme results are used. This

system is used as our baseline in system combination experiments.

For our experiments, we get state-level posteriorgrams using the DNN described

above and we calculated graphemic posteriorgrams using Equations 3.4 and 3.5.

The best results for Turkish are obtained by using the supervised setup with

phonetic codebooks. In the graphemic Swahili system, a similar setup is used with

graphemic codebook, i.e. using the graphemic alignment of the training data and its

graphemic posteriorgram, an average vector is calculated. Due to words borrowed from

English and French, the grapheme inventory of Swahili (babel202b-v1.0d) is larger

than the alphabet of the language itself. For example, letters ‘x’ and ‘q’ are not used

in the language but some words originating from English can contain them. Similarly,

á and é are borrowed from French words. Therefore, we cannot encounter some of the

graphemes in the training data and have codebook entries consisting of zeros. These

vectors are taken to be binary where the 1 is located at the position corresponding

to the grapheme. Using this codebook, the symbolic equivalent of the data and the

index is generated. In the search phase of the graphemic system, we express the query

as a sequence graphemes and generate the query WFST using the symbolic sequence

of the query. Table 3.14 shows the MTWV calculated over all, IV and OOV queries

in the supervised graphemic system depending on the score normalization parameter

γ, STWV is 0.1968 in all cases. The best MTWV performances for all queries and

OOV queries are obtained when γ = 0.1 and γ = 0.3, respectively. The CM in this

experiment is also generated in a supervised manner with P (o|i) normalization with a

pruning threshold of 0.02.

These individual results of the symbolic index based KWS system are also com-

bined a LVCSR lattice based baseline system (‘B’) described above which is developed

57

Table 3.14. MTWV for all, IV and OOV queries depending on γ in the supervised

setup for Swahili.

γ All IV OOV

0.1 0.0826 0.0847 0.0582

0.3 0.0802 0.0811 0.0746

1.0 0.0692 0.0698 0.0680

using the IBM Attila toolkit. As in the combinations for Turkish, two types of combi-

nations are used. In the first case, both IV and OOV results are merged. In the second

case denoted by oov, only the OOV results of the proposed system is combined with

the baseline.

Table 3.15 shows the combination results for Swahili. Here the baseline system

performs well and improving its performance is a challenge. However, we do not make

use of any additional information like web or multilingual data as in the baseline so

the systems are not comparable. Here we show whether we can improve the baseline

by introducing hits. When the supervised symbolic index based KWS setup is used

to search for binary queries, and if we investigate the effect of score normalization

parameter for γ ∈ 0.1, 0.3, 1.0, the increase in STWV for IV queries show that we

can locate additional hits for IV queries but we cannot introduce new OOV hits to

the baseline. Therefore, in the combination number of FAs increase and our hits may

distort the scores of the overlapping hits in the baseline which hinders an improvement

in the combined results. Although γ = 0.3 led to the best OOV performance for the

symbolic KWS system alone as shown in Table 3.14, in combination it does not lead

to the best performance. If only STO is applied (γ = 1.0), no improvement is observed

even if we only merge our OOV results with the baseline.

Although the individual performance of the KWS system is close to the Turkish

phonetic system, no improvement is observed in combination as the baseline is quite

successful. Therefore, a change in query representation is made by using example

58

Table 3.15. Performance of the combined system for Swahili depending on γ when

binary queries are used.

System
MTWV OTWV STWV

All IV OOV All IV OOV All IV OOV

B 0.5701 0.5747 0.5210 0.6908 0.6932 0.6617 0.8182 0.8174 0.8270

B + 0.1 0.5181 0.5226 0.4749 0.6328 0.6344 0.6124 0.8202 0.8197 0.8270

B + 0.1oov 0.5627 0.5740 0.4749 0.6864 0.6924 0.6124 0.8172 0.8165 0.8270

B + 0.3 0.4908 0.4958 0.4476 0.6400 0.6418 0.6184 0.8202 0.8197 0.8270

B + 0.3oov 0.5599 0.5740 0.4476 0.6869 0.6924 0.6184 0.8172 0.8165 0.8270

B + 1.0 0.5062 0.5121 0.4509 0.6614 0.6626 0.6464 0.8202 0.8197 0.8270

B + 1.0oov 0.5641 0.5740 0.4509 0.6890 0.6924 0.6464 0.8172 0.8165 0.8270

posteriogram segments as our query posteriograms as if we are doing a QbyE search.

Instead of using the graphemic sequence directly as our symbolic representation, we

get example segments either from the training or the search data. In order to get the

symbolic representation of the query, we quantize the example posteriorgram segment

and find a WFST which is closest to our graphemic query WFST used before. Then

we search for the expanded version of this query WFST in the index. The example

posteriorgrams can be extracted either from training or search data. In the first case,

we use the word level alignment of the training data to get the segments for IV queries.

In the second case, we take the highest scoring hit of the baseline, which performs well,

for each query and take the posteriorgram segment corresponding to the hypothesized

file and the time interval. Then we generate the query WFST as described below.

A linear FSA that contains the symbols assigned to the frames of the example

posteriorgram can be searched in the index but directly using this FSA would be too

restrictive. Instead, a query WFST which is closer to our original query structure is

obtained and then its expanded version is searched over the index. If Q denotes the

query FSA that includes loops and imposes minimum duration, CM is the CM and

O is the linear FSA generated using the observation symbols, i.e. the symbol string

assigned to the example posteriorgram segment, an WFST (Q̂) that is closer to Q and

59

O is calculated as follows

Q̂ = 1-best(Q ◦ CM ◦O) (3.10)

One point to note here is that, if we take our examples from the training data, O

cannot always be obtained only using the confusions in the original CM. In that case,

a CM which is generated from the same confusion matrix but with a lower pruning is

used because the lower threshold allows higher number confusions and a WFST Q̂ can

be found. However, in expanding Q̂, we still use the original CM.

Table 3.16 shows the KWS results for Swahili. In addition to the binary query

case (‘Bin’), QbyE results where examples are taken from training (‘Train’) or devel-

opment (‘Dev’) data are also shown. In the QbyE systems, for the queries without

any examples, we used hits from the binary representation which is denoted by ‘Con-

catenation’ in Table 3.16. In addition, we combined all results from QbyE and binary

queries which is denoted by ‘Merge’ in the table. In the ‘Merge’ case, we take the

overlapping hits into account and a query with example can have hits resulting from

both QbyE and binary search results. We observe that when we get the examples

from development data, QbyE performs better than the binary query case and when

we combine the two, we achieve the highest performance. However, we do not see any

improvement when our examples come from the training data.

When we combine the results given Table 3.16 with the baseline, we get TWVs

shown in Table 3.17. Although QbyE works better in the individual system, we still

do not observe an improvement when we combine our search results with the LVCSR

lattice based baseline. As we observe from STWV results, we introduce additional

correct hits for IV queries but the results are not reflected to the MTWV. We also

observed that the performance with query examples taken from the training data is

lower and if we look at the symbolic representation of the example posteriorgrams, the

assigned symbols are frequently mapped to the noisy codebook entries which might

result from the mismatch between the acoustic conditions between training and search

data.

60

Table 3.16. MTWV and STWV for Swahili depending the on the query

representation.

System Combination Source
MTWV STWV

All IV OOV All

Bin - - 0.0692 0.0698 0.0680 0.1968

Bin + QbyE Concatenation Train 0.0507 0.0494 0.0680 0.1712

Bin + QbyE Merge Train 0.0636 0.0637 0.0680 0.2334

QbyE - Dev 0.2631 0.2619 0.2786 0.2730

Bin + QbyE Concatenation Dev 0.2669 0.2652 0.2887 0.2918

Bin + QbyE Merge Dev 0.2733 0.2731 0.2864 0.3708

Table 3.17. Performance of the combined systems for Swahili depending on query

representation.

System Comb Source
MTWV STWV

All IV OOV All IV OOV

B - - 0.5701 0.5747 0.5210 0.8182 0.8174 0.8270

B + Bin - - 0.5062 0.5121 0.4509 0.8202 0.8197 0.8270

B + Binoov - - 0.5641 0.5740 0.4509 0.8172 0.8165 0.8270

B + QbyE - Dev 0.5653 0.5703 0.5147 0.8181 0.8173 0.8270

B + QbyEoov - Dev 0.5692 0.5740 0.5147 0.8172 0.8165 0.8270

B + (QbyE + Bin) Concat Train 0.5027 0.5079 0.4509 0.8280 0.8281 0.8270

B + (QbyE + Bin)oov Concat Train 0.5641 0.5747 0.4509 0.8172 0.8174 0.8270

B + (QbyE + Bin) Merge Train 0.4966 0.5012 0.4509 0.8289 0.8291 0.8270

B + (QbyE + Bin)oov Merge Train 0.5641 0.5747 0.4509 0.8172 0.8174 0.8270

B + (QbyE + Bin) Concat Dev 0.5433 0.5481 0.4975 0.8186 0.8179 0.8270

B + (QbyE + Bin)oov Concat Dev 0.5671 0.5747 0.4975 0.8172 0.8174 0.8270

B + (QbyE + Bin) Merge Dev 0.5197 0.5248 0.4634 0.8211 0.8206 0.8270

B + (QbyE + Bin)oov Merge Dev 0.5652 0.5747 0.4634 0.8172 0.8174 0.8270

61

When we determine our query examples from the baseline system, the hits re-

turned by the symbolic index based KWS will contain the example itself. If we look

at the highest scoring hits of the proposed KWS system, they point to the locations

where examples are taken except for five keywords. These queries are very short ones

like “eh”, “ma”, “ana”, and they tend to occur frequently even within other words in

the language. For the rest, the system returns the example as a hit with a different

score than the baseline since the scoring mechanisms are different. In order to deal

with score mismatch problem in combination, the hits are rescored using the score

of the best hit in the baseline. If the best hit of the proposed method overlaps with

that of the baseline, score of the baseline is taken as our score, otherwise our score

remained as is. The rest of the hits of each keyword are normalized so that the total

score of the hits of each query add up to 1. For normalization, either uniform scores

are assigned to the rest, or the rest of the scores of a keyword are scaled to add up to

1 minus the best score for that query. Assuming that the scores of a query are ordered

as p1 > p2 > ... > pNq where Nq is the total number of hits, and let p′1 be the new score

of the highest scoring hit, then the rest of the hits, p′m, will be determined according

to Equation 3.12.

p′m =
1− p′1
Nq − 1

(Uniform rescoring) (3.11)

p′m =
pm(1− p′1)∑Nq

m′=2 pm′
(Rescaling) (3.12)

Tables 3.18 and 3.19 show the individual and combined results, respectively. In

these tables, ‘Uniform’ and ‘Scaled’ denote uniform rescoring and rescaling of scores,

respectively. In both tables, uniform scaling performs slightly better than rescaling but

no improvement is observed in the combined results. Although the individual TWVs

are lower than the STO-normalized scores for QbyE given in Table 3.16, there is about

1% relative improvement in the combined results.

62

Table 3.18. MTWV for Swahili QbyE system depending on the rescoring method.

Rescoring All IV OOV

Uniform 0.2564 0.2551 0.2780

Scaled 0.2526 0.2509 0.2750

Table 3.19. Effect of rescoring QbyE results on system combination for Swahili.

System
MTWV OTWV STWV

All IV OOV All IV OOV All IV OOV

B + QbyE 0.5653 0.5703 0.5147 0.6897 0.6919 0.6617 0.8181 0.8173 0.8270

B + QbyEoov 0.5692 0.5740 0.5147 0.6901 0.6924 0.6617 0.8172 0.8165 0.8270

B + Uniform 0.5541 0.5579 0.5198 0.6829 0.6847 0.6612 0.8181 0.8173 0.8270

B + Uniformoov 0.5695 0.5740 0.5198 0.6901 0.6924 0.6612 0.8172 0.8165 0.8270

B + Scaled 0.5540 0.5579 0.5188 0.6812 0.6829 0.6603 0.8181 0.8173 0.8270

B + Scaledoov 0.5694 0.5740 0.5188 0.6900 0.6924 0.6603 0.8172 0.8165 0.8270

63

4. DISCRIMINATIVE TRAINING OF THE CONFUSION

MODEL

In this chapter, a discriminative training procedure for CM which aims at max-

imizing the KWS performance criterion, MTWV is introduced. The CM generated is

then used in an LVSCR lattice based system where the CM is used to map OOV queries

to IV words in order to overcome the OOV problem in KWS. Some of the results of

these experiments can also be found in [59]. Then, the discriminative training approach

is applied to the CM of the symbolic index based system introduced in Chapter 3. As

the symbolic index has a linear string form instead of lattices, simplifications will occur

in the update equations of the training procedure. The experiments for the simplified

version are performed on the posteriorgram based KWS system that uses the super-

vised setup on the Turkish dataset. The results are also combined with the LVCSR

lattice based baseline system to show that we can improve the results by changing the

weights of the CM.

If the keyword is represented as WFSA, its expanded version is obtained by

composing the query WFSA with CM from right as in Equation 2.4. Then, the search

results obtained for the expanded query are taken as the results for the original query.

In the phonetic system, the query q is first converted into a sequence of phonemes,

the query WFSA is generated, the CM is applied and then the confused sequence is

converted back to words so that we can search for them in word-based index as given

in Equation 2.5. Let r denote the confused version (proxy) of q after applying the CM

and converting back to word by following path πqr in the composition of query WFSA

and the CM. Then the scores sqh for hypothesis h resulting from searching for r, which

is in log-domain, is the combination of the confusion weight wqr from the path πqr and

the weight coming from the index nqh for the hypothesis h, which is equivalent to the

64

log-probability of detecting the word r in the index, as given in Equation 4.1

sqh = −log(pqh) = wqr + nqh (4.1)

However, if q has multiple pronunciations, then the r term can be obtained in

multiple ways by using different confusions for different pronunciations and following

different paths πqr′ for the same query. In that case, wqr takes all the contributions

from πqr′ as explained in Appendix A.1.

4.1. Discriminative Training of the CM for LVSCR Lattice Based KWS

CM does not only allow searching for alternatives but also affects the KWS system

performance because the weight on the CM contributes to the overall search scores

along with the weights coming from the index WFST as described above. Therefore,

the aim of training a CM is to learn the weights on the arcs of the CM so that KWS

performance can increase by changing the search scores.

In KWS task at hand, our performance criterion is TWV as described in Sec-

tion 2.3.1. Therefore, in discriminative training of the CM we try to maximize the

TWV, directly. In [5], similar ideas are followed to maximize the figure-of-merit (FOM),

which is the detection rate averaged over the range of 0 to 10 false alarms per query

per hour, instead of the TWV.

Let pqh denote the STO normalized score for hypothesis h of the query q, then

TWV can be written as

TWV =
1

|Q|
∑
q∈Q

∑
h∈Hq

I(pqh ≥ θ)

{
I(h ∈ H+

q)

Ntrue(q)
− β

I(h ∈ H−q)

K− Ntrue(q)

}
(4.2)

where I(.) denotes the indicator function which becomes 1 when its argument evaluates

to true and it is 0 otherwise, Hq denotes the set of hypotheses for query q and finally H+
q

65

andH−q respectively indicate the subsets ofHq that are located correctly and incorrectly

with respect to the ground truth and only consider the time span disregarding the

decision score.

If gradient ascent method is chosen for the weight learning during the discrimi-

native training, the CM weight corresponding to the substitution of input label i with

output label o, namely w(i, o) can be updated using a step size ηw as follows:

w(i, o)←− w(i, o) + ηw∇w(i, o) where ∇w(i, o) =
∂TWV

∂w(i, o)
(4.3)

According to Equation 4.3, the amount of update requires the calculation of the deriva-

tive of the objective function, TWV, with respect to w(i, o). Since only pqh terms depend

on the weights, in order to calculate ∂TWV
∂w(i,o)

, only the derivative of the I(pqh ≥ θ) in Equa-

tion 4.2 is required. However, the indicator function is not differentiable. One possible

solution is to use an approximation to the I(.) function as in [5] where the indicator

functions are approximated by a sigmoid function. The sigmoid function σ() given in

Equation 4.4 has two parameters α and θ. The steepness of the sigmoid function is

determined by α, the larger it becomes, the better σ() approximates the indicator. The

θ parameter acts as the threshold in the indicator function I(pqh ≥ θ).

I(pqh ≥ θ) ≈ σ(pqh;α, θ) =
1

1 + exp (−α(pqh − θ))
(4.4)

Using the sigmoid approximation, the approximate TWV can be written as

TWV ≈ 1

|Q|
∑
q∈Q

∑
h∈Hq

σ(pqh;α, θ)

{
I(h ∈ H+

q)

Ntrue(q)
− β

I(h ∈ H−q)

K− Ntrue(q)

}
(4.5)

Then instead of calculating ∂TWV
∂w(i,o)

, we can take the partial derivative of smooth ap-

proximation of the TWV given in the above equation. For notational simplicity let

γ(q, h) =

{
I(h ∈ H+

q)

Ntrue(q)
− β

I(h ∈ H−q)

K− Ntrue(q)

}
(4.6)

66

After substituting the expressions into the definitions and following steps given in

Appendix A.1, the derivative of the approximate TWV can be found as

∂TWV

∂w(i, o)
≈ 1

|Q|
∑
q∈Q

∑
h

ασ(pqh;α, θ)(1− σ(pqh;α, θ))·∑
(q,r)

Zr
Zq

(
pqh − p

r
hI(r ∈ Rh)

)∑
r′∈r

e−wqr′cqr′(i, o)

 γ(q, h) (4.7)

In Eq. 4.7, cqr′(i, o) denotes the number of occurrences of weight w(i, o) in the path πqr′ ,

Zq and Zr denote the normalization factors during STO for q and r terms, respectively,

r′ denotes r terms that are obtained via different paths due to multiple pronunciations

and wqr′ term is the weight of this path.

In order to learn the weights of the CM, we have to know the paths from a query

term q to its confused version r. To get these paths, which are sequences of input-

output phone labels along with the associated weight, the arcs of the composition of

query WFSA and the CM are traversed and the information of visited paths are stored

during query processing. The list of r terms corresponding to each q are obtained using

the i : o labels of the phones while traversing a path starting from a query q. The crucial

aim of this step is to obtain the count of each weight w(i, o) on each path from q to r,

i.e. finding cqr(i, o) terms in Equation 4.7. Then the r terms are searched over the index

without applying the CM to obtain the contribution of the index to the search score

of an h resulting from r. The search scores of these terms constitute the part of the

scores for the original queries that come from the index only. Since STO normalization

is applied to scores, in the original pipeline we have the normalized scores. However,

the normalization factors should be known for the optimization problem as shown

in Equation 4.7. Therefore, we keep these normalization factors while obtaining the

normalized scores. Once the normalized scores, their normalization factors, counts of

the weights on paths from q to r are calculated and the ground truth for the hypotheses

are obtained from the alignment file of the scoring system, one can proceed to the

optimization step (Equations 4.3 and 4.7). In addition, the optimization step requires

properly chosen parameters α and θ for the sigmoid approximation and a step size ηw.

67

After updating the CM, the new CM should be used in the KWS pipeline and

new search scores should be obtained to continue to CM learning with the updated

scores. However, re-searching the index will be time consuming and it will increase

the time complexity of discriminative training. Therefore, assuming that the r terms

corresponding to a query q, and therefore paths πq,r and weight counts (cqr) leading to

r terms remain the same, we first update w(i, o) using Equation 4.3, then search scores

and their normalization factors are updated according to the weights obtained in the

previous step and we continue to optimization using the updated scores obtained from

Equations. 4.8-4.10:

pqh ←−
∑
r

exp

(
−

πqr∑
m=1

wqr(im, om)− nhr

)
(4.8)

Zq ←−
∑
h∈Hq

pqh (4.9)

pqh ←−
pqh
Zq

(4.10)

After proceeding certain number of iterations, we get the final CM weights and apply

it to the original KWS system. In the following section, results will presented.

4.1.1. Experiments

In the experiments, Turkish limited LP database is used where we searched over

10-hour development data. The LVSCR system, lattice generation and indexation is

based on IBM Attila speech recognition toolkit [58]. The details of the baseline system

can be found in [4,60]. The baseline LVSCR system is based on DNN with CD HMM

state targets and the DNN has five layers. The word-level index is generated from the

lattices and the IV and OOV queries are handled separately in the KWS setup. IV

queries are directly searched within the word-level index whereas OOV queries are first

mapped into IV words by applying G2P conversion, applying a phonetic CM and then

mapping back to words. Then, this query WFST is searched within the word level

index. Then the IV and OOV results are concatenated.

68

For WFST based operations like obtaining the list of r terms corresponding to

query q and extracting the (i, o) label pair counts by traversing the WFST paths from

q to r, OpenFST toolkit [23] is used. Then these components are embedded into the

baseline setup described above to extract the sufficient information for discriminative

training of the CM.

In the experiments, the effects of the steepness parameter α and threshold θ

of the sigmoid approximation is observed. Since we try to maximize the MTWV, the

threshold giving MTWV has to be calculated. However, depending on α, the maximum

of approximated TWV differs. Moreover, if STO normalized scores are used during

TWV calculation all scores will be between 0 and 1, then optimal threshold above 1

will not be meaningful since all scores will be below the threshold. Therefore, proper

choice of α is required. Figure 4.1 shows how the sigmoid approximation of TWV

changes as α and θ changes. According to this figure, α > 10 so that we can have an

optimal θ for MTWV calculation.

0.0 0.5 1.0 1.5 2.0
θ

5

10

15

20

25

α

Figure 4.1. Effect of α and θ on sigmoid approximation to TWV.

Since our aim is to improve the results for OOV queries, MTWV is not only

reported for all queries but also for OOV queries only. As shown in Table 4.1, if we

do not use any CM, we get 0.0 MTWV for OOVs because we cannot find any hit for

them. However, even if we use a random CM, we can achieve positive MTWV for OOV

queries. In this random CM, the cost of confusing a symbol with itself is set to 0 as this

is not a confusion indeed, and the costs, which are negative log-probabilities, of the

69

rest of the confusions of that symbol are normalized such that their total probability

is fixed to a certain value, for example 0.2 in our case.

Table 4.1. MTWV for the cases where no CM or a randomly initialized CM is used.

All OOV

No CM 0.3285 0.0000

Random CM 0.3311 0.0266

During training, we either use the CM updated after each pass over the hit list

in the original KWS setup in order to get the updated scores pqh and the normalization

factors Zq, or we use Equations 4.8-4.10 to update the scores a few iterations without

searching over the index again. Table 4.2 shows these two cases and the relative

improvement in MTWV as compared to using the initial random CM. According to

this table, the improvement is more pronounced for OOV queries (∼ 85%) than for all

queries (∼ 1.7%). Although the gain for OOVs is smaller in “Upd2 + Search” case, the

overall MTWV is higher. Moreover, we do not search over the index again at each step

and thus the training takes shorter than “Upd1 + Search”. Since the performances are

comparable, “Upd2 + Search” can be preferred over the first case. In general, these

results show that query expansion by a CM is an effective way of handling OOV queries

which is also a conclusion of [29].

Table 4.2. Relative increase in MTWV when the CM is updated at each step and

updated after 2 steps.

All Increase (%) OOV Increase (%)

Random CM 0.3311 - 0.0266 -

Upd1 + Search 0.3341 1.7 0.0493 85.3

Upd2 + Search 0.3350 2.0 0.0482 81.2

One point to note in these experiments is that the stopping point for the al-

gorithm. In the above experiments, we observed that when we have a large number

70

of iterations, TWV starts to decrease. Therefore, we stop the iterations at the point

where we encounter a decrease in the approximated TWV.

A wide variety of confusions are allowed in this random initial CM. However,

reducing the number of confusions by pruning the CM WFST can help increasing the

CM because as long as we do not lose any correct hits, we can reduce the number of

false alarms resulting from too much confusion which in turn increases TWV given in

Equation 2.6.

When there is large amount of training data for which transcriptions and phonetic

alignments are available, we can generate a CM by counting the number of substitu-

tions between the reference transcriptions and the hypotheses generated from phonetic

recognizers. Which can be called as maximum-likelihood CM (ML-CM). Then the

ML-CM can be used as the initial model for CM training instead of the random one.

When we use such a CM as our initial CM and take α = 10, a step size ηw changing

with time, i.e. ηw ∼ η0t
−1 where t corresponds to the iteration count, the change in

the approximated TWV is shown in Figure 4.2. Here KWS over the index is done once

at the beginning and the weights are updated according to Equations 4.8-4.10 during

iterations.

Although the training procedure with ML-CM as its initial model shows an im-

provement here, we do not observe a significant improvement if we use the trained

CM in the baseline KWS setup. However, according to results discussed previously,

even if we do not have ML-CM or if we cannot find a reliable estimate for it due to

low-resource conditions, we can learn the weights of the CM starting from a randomly

initialized CM in which case we can get approximately 2% relative increase in MTWV

over all queries.

4.2. Discriminative Training of the CM for Symbolic Index Based KWS

In this section, discriminative training of the CM will be applied to the CM used

in the symbolic index based KWS system. Due to the index structure, the weight

71

1 2 3 4 5 6 7 8 9 10

iteration number

0.037

0.038

0.039

0.040

0.041

0.042

0.043

0.044

0.045

σ
-a

p
p
ro

x
im

a
te

d
T

W
V

Figure 4.2. Increase in the approximated TWV during iterations for the LVCSR

based setup.

update equations will become simpler leading to more interpretable equations.

For discriminative training of the CM, one of the statistics that we have to extract

during search is the count of weights on the FST paths from a query q to its proxy ver-

sion r. Since there is a loop structure in the query WFST in the symbolic index based

system, we lose duration information during search. In order to get the path counts

cqr(i, o) for each input-output label pair (i, o), the symbolic sequence corresponding

to the hits should be investigated after search. As in the QbyE experiments of Sec-

tion 3.2.2, a sequence that is close to both the query FST and the symbol sequence of

the hit is found by Equation 3.10. Then, the number of (i, o) pairs used to get the hit

of a query, and the score of this hit is found. In this case, there will be a single r term

corresponding to each hit and the update equations will become simpler. In addition,

there are not any weights in the index so searching for a proxy r term over the index

will have no cost (nhr = 0) and the score of a hit due to r will be pqhr = exp(−wqr). By

making simplifications as shown in Appendix A.3, we get the derivatives of the scores

72

and the sigmoid approximation of TWV as in the following equations.

∂pqh
∂w(i, o)

= pqh

(
− cqr(i, o) +

∑
h′∈Hq

pqh′cqr′(i, o)
)

(4.11)

By substituting
∂pqh

∂w(i,o)
into the expression for ∂TWV

∂w(i,o)
we get ∇w(i, o) = ∂TWV

∂w(i,o)
which is

then used in the weight update equation 4.3.

∂TWV

∂w(i, o)
=

1

|Q|
∑
q∈Q

∑
h∈Hq

ασ(pqh, θ)(1− σ(pqh, θ)).

pqh

(
− cqr(i, o) +

∑
h′∈Hq

pqh′cqr′(i, o)
)
γ(q, h) (4.12)

The second term in Equation 4.11 can be interpreted as the expected count of the (i, o)

pair, E[cqr(i, o)], over the hits of query q. Thus, the amount of update will be propor-

tional to the difference between the expected count and the count on the path leading

to the particular hit. Then the difference will be scaled by γ(q, h) which is positive

if the hit corresponds to a correct location according to the ground truth. Therefore,

if a hit is correct and an (i, o) pair is encountered more than the expected count for

that query, its cost w(i, o) will be reduced which is desirable since this confusion has a

positive effect on the search results for q.

4.2.1. Experiments

In the symbolic index based KWS system, the CM is applied at the frame level,

so the counts are higher than the case where we apply the CM at the phonetic level

and convert it bask to words as described in Chapter 4. In addition, we have a limited

number of queries to train and test the queries. Therefore, using the same set of

keywords for both training and testing the CM can lead to overfitting. Therefore,

the experiments are cross-validated. 5x5-cross validation is applied where the OOV

keywords are split into 5-folds one of which is reserved for testing and the rest for

training. This is repeated for 5 times. After training the CMs, they are used in the

symbolic index based KWS setup. Initially, a CM is trained with all of the OOV

73

keywords without cross-validation and the final CM is used for expanding both the IV

and OOV queries. In the cross-validation experiments, the CM trained with 4 splits

and is tested on the 5th set of keywords. By resampling the set of keywords, this

process is repeated 5 times.

Figure 4.3 shows how the sigmoid approximation of the TWV changes during

training. Here each iteration correspond to one pass over the whole training keyword

list.

0 5 10 15 20 25 30 35 40

iteration number

0.052

0.054

0.056

0.058

0.060

0.062

0.064

0.066

0.068

0.070

σ
-a

p
p
ro

x
im

a
te

d
T

W
V

Figure 4.3. Increase in the approximated TWV during iterations for the symbolic

index based setup.

Tables 4.3 and 4.4 show the individual and merged system performances, re-

spectively. The experiments are performed on the Babel Turkish Limited LP dataset.

Initial CM is taken from the supervised setup where P (o|i) normalization is applied to

the confusion matrix. For discriminative training of the CM, α is chosen as 20, step size

is taken as 0.9 and stochastic gradient descent (SGD) [61] is used during the updates,

i.e. the weights are updated after processing each query. In these tables, ‘CM0’ denotes

the performance when the initial CM is used, ‘CV-Avg’ denotes the average perfor-

mance of different trials in cross-validation and ‘CV-AvgCM’ shows the case where

the CM which is calculated by taking the average weights of the CMs for each (i, o)

pair learned during cross-validation. In addition, ‘NoCV’ show the results when OOV

74

queries are used in training and the CM tested on both IV and OOV queries. In the

‘CV-Avg’ experiment, CM0 is applied to IV queries as we have five different CMs that

are tested on different subsets of OOV queries. In the last three rows of Table 4.3,

increase in overall MTWV arises from the improvement in MTWV for OOVs. In the

table, cross validated result CV-Avg leads to 12.6% relative improvement in MTWV

for OOV queries as compared to the performance of CM0. Moreover, 17.3 and 18.6%

relative improvement and up to 1% absolute improvement in MTWV over OOV queries

is observed in the last two rows. In all cases, STWV over all, IV and OOV queries

are 0.1501, 0.1510 and 0.1477, except MTWV over all queries for NoCV case which

is 0.1494. NoCV row of the table can be treated as an upper bound for MTWV over

OOV queries since the CM is both trained and tested on the same OOV queries which

gives 18.6% relative improvement for OOV queries. When we apply an average model

(‘CV-AvgCM’), we also observe an increase in MTWV for IV queries which suggests

a positive effect of regularization on learning.

Table 4.3. Individual results of discriminative CM training in the symbolic index

based system for Turkish.

MTWV

System All IV OOV

CM0 0.0414 0.0394 0.0554

CV-Avg 0.0436 0.0394 0.0624

CV-AvgCM 0.0456 0.0401 0.0640

NoCV 0.0453 0.0399 0.0657

In combination experiments, Kaldi Babel recipe is used as the baseline system.

The subscript ‘oov’ notation is used for system combinations where only the OOV

results are combined with the baseline. By training the initial CM, we improved the

MTWV performance over OOV queries. Although different hits are not introduced

as seen from the STWV columns in Table 4.4 which are almost constant, changing

the CM weights affects the scores of the hits and thus the combined scores result in

a higher MTWV performance. In the cross validation experiments if we combine the

75

result of each trial and take the average performance as shown in ‘B + CV-Avgoov’

where we achieve 1.1% and 16.3% relative improvement for all and OOV queries, re-

spectively, as compared to the baseline. The main improvement as compared to CM0

comes from OOV queries where we get 0.5% relative improvement. As in the case of

individual results, using an average CM gave the best combination performance where

we achieved 16.5% and 0.6% relative improvement in MTWV over OOV queries as

compared to the baseline and the initial CM, respectively. This result suggests that

adding a regularization term in our update equation can lead to a better performance.

Table 4.4. Combined results of discriminative CM training in the symbolic index

based system for Turkish.

System
MTWV STWV

All IV OOV All IV OOV

B 0.3745 0.4500 0.1887 0.6624 0.7567 0.4220

B + CM0 0.3650 0.4321 0.2184 0.6924 0.7704 0.4935

B + CM0,oov 0.3786 0.4500 0.2184 0.6826 0.7567 0.4935

B + CV-Avg 0.3648 0.4321 0.2195 0.6924 0.7704 0.4935

B + CV-Avgoov 0.3787 0.4500 0.2195 0.6826 0.7567 0.4935

B + CV-AvgCM 0.3613 0.4265 0.2198 0.6919 0.7697 0.4935

B + CV-AvgCMoov 0.3792 0.4500 0.2198 0.6826 0.7567 0.4935

B + NoCV 0.3600 0.4260 0.2198 0.6919 0.7697 0.4935

B + NoCVoov 0.3781 0.4500 0.2198 0.6826 0.7567 0.4935

76

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this thesis, first a symbolic index based KWS system which uses posteriorgam

representation of the audio is introduced. Secondly, for improving the KWS perfor-

mance for OOV queries, a discriminative approach is developed that directly tries to

maximize the KWS performance measure. We showed the effectiveness of our proposed

methods on two different languages, Turkish and Swahili, from the IARPA Babel pro-

gram. For the discriminative training approach, experiments are performed both on

an existing LVSCR based KWS system and on the symbolic index based KWS system

introduced in this thesis. The conclusions and future directions for research will be

summarized in the following sections.

5.1. Conclusions

In Chapter 3, an index based KWS systems based on a symbolic representation of

the data is introduced. In this system where the index has no scores, the way we obtain

the CM affects the performance more than the way we get the symbolic representation

of the data since the CM will also account for possible encoding errors. We found

that both the confusion pairs and their weights affect the performance. The former

allows us to locate additional hits whereas the latter changes the scores of the hits, thus

they contribute to the increase in MTWV. We concluded that the size of quantization

codebook should be comparable to the number of classes in the posteriorgram. A

minor improvement is observed when we model multi-word queries with an optional

silence. We also applied different score normalization techniques. Depending on the

normalization type we could improve the KWS performance but the gains as compared

to the STO normalization is limited. It might be concluded that STO normalization

is preferable both in the individual results and for the systems that will be used in

combination as STO does not require an additional parameter to be tuned.

Although our individual KWS performance is not comparable to the baseline sys-

tems especially for IV words, when we combine our results with the baseline sytems, we

77

observed improvement in MTWV for OOV queries, especially. Since one of the prob-

lems in LVCSR based systems in the low resource language setting is handling OOV

queries, the system introduced here contributes to the KWS systems. This improve-

ment also corroborates the observation that developing diverse and complementary

systems is a way of improving the performance of a KWS system.

As mentioned before, expanding keywords by a CM is an important aspect of the

KWS system. The experimental results also supported the fact that we can improve

the KWS performance especially for OOV keywords. We observed that by changing

the weights of the CM via a discriminative approach as shown in Chapter 4, we can

improve the MTWV performance of the system by changing the scores of the hits.

5.2. Future Directions

The symbolic index generated in this study assigns a single string to each ut-

terance, therefore it might resemble the LVSCR based KWS systems which use the

one-best hypothesis. One way to extend this study is generating a lattice-like struc-

ture from symbols assigned to the posteriorgram frames. Another direction can be

applying a variable length encoding scheme to the vectors, thus temporal properties

can be incorporated into the symbols and instead of frame-level labeling of the data

we can use segment-level labeling. By assigning alternative symbols to each segment,

a CN like structure can be obtained to represent alternative hypotheses.

The CM in the symbolic index based system is applied at frame level which leads

to low raw scores in the symbolic index based KWS system. Therefore, alternative

query representations can be found by omitting the cost of the repetition of same

confusion one after the other. Another possibility is to use this idea in rescoring the

hits by backtracking the matched query and finding the path from the original query

to the matched one similar to the way we obtain symbolic query in the QbyE-like

approach applied for the Swahili dataset. Then using the cost of sequentially repeated

confusions once, we can estimate a new score for each hit. However, the observed

sequence can itself be noisy and can necessitate the use of a smoothing method for the

78

observed sequence.

A possible direction for the discriminative training of a CM is to automatically

learn the confusion pairs along with their confusion weights by adding or removing

confusion pairs. In addition, insertions and deletions can be incorporated into the

model, this might be helpful especially when the CM is applied at frame level, however

this might also result in an increase in search time.

As summarized in the experiments, different normalizations are applied to the

hit lists. Most of the time, improvement in the individual system did not lead to an

improvement in system combinations at the same rate. Therefore, we might find a

system combination scheme that allows efficient combination of systems with different

score ranges and/or distributions.

79

APPENDIX A: DERIVATION OF WEIGHT UPDATES

In this Appendix, the details of the steps in deriving the update equations for

the CM weights will presented. The focus will be on deriving the expression given in

Equation 4.7 which determines the change in weights as shown in Equation 4.3.

A.1. Deriving the Update Equation

TWV is defined as [47]

TWV(θ) = 1− 1

|Q|
∑
q∈Q

Pmiss(q, θ) + βPFA(q, θ) (A.1)

TWV(θ) = 1− 1

|Q|
∑
q∈Q

{
1− Ncor(q, θ)

Ntrue(q)
+ β

Nspur(q, θ)

NNT(q)

}
(A.2)

where

Ncor(q, θ) =
∑
h∈H+

q

I(pqh ≥ θ) Nspur(q, θ) =
∑
h∈H−q

I(pqh ≥ θ)

In the system, each query term is composed with the CM which leads to a set of

new terms, r, and some of the scores resulting from searching these new terms r are

merged (summed). Therefore, a merged score, pqh, for h-th occurrence of a query term

q can be written as

pqh =
∑
r∈Rh

pqhr =
∑
r∈Rh

exp(−logsqhr) =
∑
r∈Rh

exp(−wqr − nhr) (A.3)

where wqr, Equation (A.4), is the sum of the log-weights in the confusion path from

term q to r, nhr is the log-probability of detecting r in the index and Rh is the set of

80

r terms that lead to the search hypothesis h.

wqr =

|πqr|∑
m=1

wqr(im, om) (A.4)

In Equation (A.4), m and (im, om), respectively, denote the arc indices and the input-

output label pairs of the arcs of the confusion path πqr from term q to r. Then the

merged score can be rewritten as

pqh =
∑
r∈Rh

exp

− |πqr|∑
m=1

wqr(im, om)− nhr

 (A.5)

Moreover, normalized scores pqh are used instead of the raw scores pqh in detection. For

STO normalization, pqh can be written as follows:

pqh =
pqh
Zq

=
pqh∑

h′∈Hq p
q
h′

=

∑
r∈Rh p

q
hr∑

h′∈Hq
∑

r′ p
q
h′r′

(A.6)

where

pqhr = exp
(
− wqr − nhr

)
= exp

(
−
|πqr|∑
m=1

wqr(im, om)− nhr
)

By using these normalized scores, TWV can be written as

TWV = 1− 1

|Q|
∑
q∈Q

{
1−

∑
h∈H+

q
I(pqh ≥ θ)

Ntrue(q)
+ β

∑
h∈H−q I(pqh ≥ θ)

K− Ntrue(q)

}

=
1

|Q|
∑
q∈Q

{∑
h∈H+

q
I(pqh ≥ θ)

Ntrue(q)
− β

∑
h∈H−q I(pqh ≥ θ)

K− Ntrue(q)

}

=
1

|Q|
∑
q∈Q

∑
h∈Hq

{
I(pqh ≥ θ)

{
I(h ∈ H+

q)

Ntrue(q)
− β

I(h ∈ H−q)

K− Ntrue(q)

}}
(A.7)

Our aim is to maximize Equation (A.7) with respect to each weight w(i, o) with input

and output labels i and o, respectively.

81

For the optimization of the weights w(i, o), it is required to differentiate Eq. (A.7).

Since the indicator function I(.) is not a differentiable function, we can approximate it

with a sigmoid as in [5]

I(pqh ≥ θ) ≈ σ(pqh, θ, α) =
1

1 + exp (−α(pqh − θ))
(A.8)

For notational simplicity, the shape parameter α of the sigmoid function will be omitted

in the sequel and we will let

γ(q, h) =
I(h ∈ H+

q)

Ntrue(q)
− β

I(h ∈ H−q)

K− Ntrue(q)
(A.9)

Then Equation (A.7) and ∂TWV
∂w(i,o)

becomes

TWV =
1

|Q|
∑
q∈Q

∑
h∈Hq

σ(pqh, θ)γ(q, h) (A.10)

∂TWV

∂w(i, o)
=

1

|Q|
∑
q∈Q

∑
h∈Hq

∂σ(pqh, θ)

∂w(i, o)
γ(q, h) (A.11)

where

∂σ(pqh, θ)

∂w(i, o)
=
∂σ(pqh, θ)

∂pqh

∂pqh
∂w(i, o)

=
α exp (−α(pqh − θ))

(1 + exp (−α(pqh − θ)))2
∂pqh

∂w(i, o)

= ασ(pqh, θ)(1− σ(pqh, θ))
∂pqh

∂w(i, o)
(A.12)

82

The last term in the above equality is written as

∂pqh
∂w(i, o)

=
∂

∂w(i, o)

pqh
Zq

=
1

Z2
q

{
∂pqh

∂w(i, o)
Zq − pqh

∂Zq
∂w(i, o)

}

=
1

Z2
q

Zq ∑
r∈Rh

∂pqhr
∂w(i, o)

− pqh
∑
h′∈Hq

∑
r′∈Rh′

∂pqh′r′

∂w(i, o)

 (A.13)

where

∂pqhr
∂w(i, o)

=
∂

∂w(i, o)
exp(−wqr − nhr) = exp(−wqr − nhr)

−∂wqr
∂w(i, o)

= exp(−wqr − nhr)
∂

∂w(i, o)

− |πqr|∑
m=1

wqr(im, om)

= −pqhr

|πqr|∑
m=1

I(l(πqr(m)) = (i, o))

= −pqhrc(w(i, o), πqr) = −pqhrcqr(i, o) (A.14)

Here cqr(i, o) = c(w(i, o), πqr) denotes the number of occurrences of weight w(i, o) in

the confused (proxy) path πqr:

c(w(i, o), πqr) = cqr(i, o) =

|πqr|∑
m=1

I(l(πqr(m)) = w(i, o)) (A.15)

In Equation (A.15), I(.) is the indicator and l(πqr(m)) = w(i, o) is the input-output

label pair of the mth arc on the confusion path, πqr, from q to r. Now,
∂pqh

∂w(i,o)
becomes

83

∂pqh
∂w(i, o)

=
1

Z2
q

{
Zq
∑
r∈Rh

−pqhrcqr(i, o)

− pqh
(∑
h′∈Hq

∑
r′∈Rh′

− exp
(
− wqr′ − nh′r′

)
cqr′(i, o)

) (A.16)

=
1

Z2
q

{
−Zq

∑
r∈Rh

pqhrcqr(i, o)

+ pqh

(∑
r′∈

⋃
Rh′

exp(−wqr′)cqr′(i, o)
∑

h′:r′∈Rh′

exp
(
− nh′r′

)) (A.17)

In order to simplify the notation, assume that a query term r is composed with

an identity CM where wrr = 0. Then the following can be written:

prh = exp(−nhr) (A.18)

Zr =
∑
h:r∈Rh

prh =
∑
h

exp(−nhr) (A.19)

prh =
prh
Zr

(A.20)

By making use of these and changing the index of summation of the last term in

84

Equation A.17, it becomes

∂pqh
∂w(i, o)

=
1

Z2
q

−∑
r∈Rh

pqhrcqr(i, o)Zq + pqh

 ∑
r∈

⋃
Rh′

exp(−wqr)cqr(i, o)Zr

 (A.21)

=
1

Zq

−∑
r∈Rh

pqhrcqr(i, o) + pqh

 ∑
r∈

⋃
Rh′

exp(−wqr)cqr(i, o)Zr

 (A.22)

=
1

Zq

∑
r∈

⋃
Rh′

(− exp(−wqr − nhr)cqr(i, o)I(r ∈ Rh)

+ pqh exp(−wqr)cqr(i, o)Zr) (A.23)

=
1

Zq

∑
r

cqr(i, o) exp(−wqr)
(
pqhZr − exp(−nhr)I(r ∈ Rh)

)
(A.24)

=
1

Zq

∑
r

cqr(i, o) exp(−wqr)
(
pqhZr − p

r
hI(r ∈ Rh)

)
(A.25)

=
1

Zq

∑
r

cqr(i, o) exp(−wqr)Zr
(
pqh − p

r
hI(r ∈ Rh)

)
(A.26)

In Equation A.23 we combined two summation terms into a single one over all r

terms for q, i.e. for r ∈ Rq, where Rq =
⋃
h∈Hq Rh. Then, the derivative of the TWV

becomes

∂TWV

∂w(i, o)
=

1

|Q|
∑
q∈Q

∑
h

ασ(pqh, θ)(1− σ(pqh, θ))·[∑
r∈Rq

Zr
Zq

(
pqh − p

r
hI(r ∈ Rh)

)
e−wqrcqr(i, o)

]
γ(q, h) (A.27)

∂TWV

∂w(i, o)
=

1

|Q|
∑
q∈Q

∑
h

ασ(pqh, θ)(1− σ(pqh, θ))·∑
(q,r)

Zr
Zq

(
pqh − p

r
hI(r ∈ Rh)

)∑
r′∈r

e−wqr′cqr′(i, o)

 γ(q, h) (A.28)

where the summation
∑

r′∈r e
−wqr′cqr′(i, o) corresponds to the sum over FST paths from

query term q to confused term r arising from multiple pronunciation modeling of q in

which case multiple maths can lead to the same r term. This expression can be inter-

preted as the expected count of the weight because wqr′ is the negative log-probability

85

so e−wqr′ becomes the probability itself. If we replace γ(q, h) in Equation A.28 with

the expression given in Equation A.9, we get the equation given in Equation 4.7.

Finally, we can update the weights of the CM by using a step size η as

w ←− w + η∇w where ∇w =
∂TWV

∂w(i, o)
(A.29)

A.2. Learning the Threshold (θ) of the Sigmoid Function

When we maximize MTWV, we also need to find the threshold θ as we update

the weights and therefore the search scores. In order the get the new values of θ,

gradient based update is used as in determining the weights of the CM (Equation A.29).

Therefore, ∂TWV
∂θ

should be calculated as shown in the following equations:

∂TWV

∂θ
=

1

|Q|
∑
q∈Q

∑
h∈Hq

∂σ(pqh, θ)

∂θ
γ(q, h) (A.30)

∂σ(pqh, θ)

∂θ
= −ασ(pqh, θ)(1− σ(pqh, θ)) (A.31)

∂TWV

∂θ
=
−1

|Q|
∑
q∈Q

∑
h∈Hq

ασ(pqh, θ)(1− σ(pqh, θ))γ(q, h) (A.32)

A.3. Simplifications to the Training Procedure

The update equations involve summation over different units corresponding to

multiple paths in the WFST strucure. When the relations become one-to-one, for

example if there is a single path from q to r or Rh consists of a single r term, derivative

terms become simpler. When we apply our CM training procedure to the CM of the

symbolic index based system as discussed in Section 4.2, such simplifications occur. In

this section, they will be summarized and the simpler versions of the update terms will

be derived. Since the index does not contain scores, nhr = 0, prh = 1, pqhr = exp(−wqr).

There is a single r term corresponding to each hit h (r ↔ h) so Zr = prh = 1 then

86

prh = 1. And there is a single path from q to r. Then Equation A.22 becomes,

∂pqh
∂w(i, o)

=
1

Zq

−pqhrcqr(i, o) + pqh
(∑
r′∈

⋃
Rh′

exp(−wqr′)cqr′(i, o)
)

=
1

Zq

−pqhcqr(i, o) + pqh
(∑
h′∈Hq

pqh′cqr′(i, o)
)

= −pqhcqr(i, o) + pqh

∑
h′∈Hq

pqh′cqr′(i, o)

= pqh

−cqr(i, o) +
∑
h′∈Hq

pqh′cqr′(i, o)

 (A.33)

Thus we get the Equation 4.11 in Section 4.2. The expression for
∂pqh

∂w(i,o)
can be substi-

tuted into the expression for ∂TWV
∂w(i,o)

by using Equations A.11 and A.12.

∂TWV

∂w(i, o)
=

1

|Q|
∑
q∈Q

∑
h∈Hq

ασ(pqh, θ)(1− σ(pqh, θ))
∂pqh

∂w(i, o)
γ(q, h)

=
1

|Q|
∑
q∈Q

∑
h∈Hq

ασ(pqh, θ)(1− σ(pqh, θ))p
q
h

(
− cqr(i, o) +

∑
h′∈Hq

pqh′cqr′(i, o)
)
γ(q, h)

(A.34)

Thus we obtain the ∇w(i, o) term which is used in the weight update equation given

in Equation A.29.

87

REFERENCES

1. Mamou, J., B. Ramabhadran and O. Siohan, “Vocabulary independent spoken

term detection”, Proceedings of the 30th annual international ACM SIGIR confer-

ence on Research and development in information retrieval , pp. 615–622, ACM,

2007.

2. Saraclar, M. and R. Sproat, “Lattice-Based Search for Spoken Utterance Re-

trieval”, HLT-NAACL, pp. 129–136, 2004.

3. Parada, C., A. Sethy and B. Ramabhadran, “Query-by-example spoken term de-

tection for OOV terms”, IEEE Workshop on Automatic Speech Recognition & Un-

derstanding, ASRU , pp. 404–409, IEEE, 2009.

4. Saraclar, M., A. Sethy, B. Ramabhadran, L. Mangu, J. Cui, X. Cui, B. Kingsbury

and J. Mamou, “An empirical study of confusion modeling in keyword search for

low resource languages”, IEEE Workshop on Automatic Speech Recognition and

Understanding (ASRU), pp. 464–469, 2013.

5. Karanasou, P., L. Burget, D. Vergyri, M. Akbacak and A. Mandal, “Discrimina-

tively trained phoneme confusion model for keyword spotting”, Interspeech, pp.

2434–2437, 2012.

6. Can, D., E. Cooper, A. Sethy, C. White, B. Ramabhadran and M. Saraclar, “Effect

of pronounciations on OOV queries in spoken term detection”, IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3957–3960,

IEEE, 2009.

7. Zhang, Y., Unsupervised speech processing with applications to query-by-example

spoken term detection, Ph.D. Thesis, Massachusetts Institute of Technology, 2013.

8. Hazen, T. J., W. Shen and C. White, “Query-by-example spoken term detection

88

using phonetic posteriorgram templates”, IEEE Workshop on Automatic Speech

Recognition & Understanding, ASRU , pp. 421–426, IEEE, 2009.

9. Mangu, L., B. Kingsbury, H. Soltau, H.-K. Kuo and M. Picheny, “Efficient spo-

ken term detection using confusion networks”, IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 7844–7848, IEEE, 2014.

10. Park, A. S. and J. R. Glass, “Unsupervised pattern discovery in speech”, IEEE

Transactions on Audio, Speech, and Language Processing,, Vol. 16, No. 1, pp. 186–

197, 2008.

11. Norouzian, A., R. Rose, S. H. Ghalehjegh and A. Jansen, “Zero resource graph-

based confidence estimation for open vocabulary spoken term detection”, IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pp. 8292–8296, IEEE, 2013.

12. Zhang, Y. and J. R. Glass, “Unsupervised spoken keyword spotting via segmental

DTW on Gaussian posteriorgrams”, IEEE Workshop on Automatic Speech Recog-

nition & Understanding (ASRU), pp. 398–403, IEEE, 2009.

13. Can, D. and M. Saraclar, “Lattice indexing for spoken term detection”, IEEE

Transactions on Audio, Speech, and Language Processing , Vol. 19, No. 8, pp. 2338–

2347, 2011.

14. Sarı, L., B. Gündoğdu and M. Saraçlar, “Fusion of LVCSR and Posteriorgram

Based Keyword Search”, Sixteenth Annual Conference of the International Speech

Communication Association (Interspeech), pp. 824–828, 2015.

15. Sarı, L., B. Gündoğdu and M. Saraçlar, “Posteriorgram based approaches in key-

word search”, 23th Signal Processing and Communications Applications Conference

(SIU), pp. 1183–1186, May 2015.

16. Rabiner, L. and B.-H. Juang, Fundamentals of speech recognition, Prentice Hall,

89

Inc., Upper Saddle River, NJ, USA, 1993.

17. Jelinek, F., Statistical methods for speech recognition, MIT press, Cambridge, MA,

USA, 1997.

18. Huang, X., A. Acero, H.-W. Hon and R. Foreword By-Reddy, Spoken language

processing: A guide to theory, algorithm, and system development , Prentice Hall,

2001.

19. Bourlard, H. A. and N. Morgan, Connectionist speech recognition: a hybrid ap-

proach, Vol. 247, Kluwer Academic Publishers, Norwell, MA, USA, 1993.

20. Hinton, G., L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups”, IEEE

Signal Processing Magazine, Vol. 29, No. 6, pp. 82–97, 2012.

21. Rumelhart, D. E., G. E. Hinton and R. J. Williams, “Learning representations by

back-propagating errors”, Nature, Vol. 323, No. 6088, pp. 533–536, 1986.

22. Mohri, M., F. Pereira and M. Riley, “Weighted finite-state transducers in speech

recognition”, Computer Speech & Language, Vol. 16, No. 1, pp. 69–88, 2002.

23. Allauzen, C., M. Riley, J. Schalkwyk, W. Skut and M. Mohri, “OpenFst: A General

and Efficient Weighted Finite-State Transducer Library”, CIAA, Vol. 4783, pp. 11–

23, 2007, http://www.openfst.org.

24. Allauzen, C., M. Mohri and M. Saraclar, “General indexation of weighted au-

tomata: application to spoken utterance retrieval”, Proceedings of the Workshop

on Interdisciplinary Approaches to Speech Indexing and Retrieval at HLT-NAACL,

pp. 33–40, Association for Computational Linguistics, 2004.

25. Mangu, L., E. Brill and A. Stolcke, “Finding consensus in speech recognition: word

90

error minimization and other applications of confusion networks”, Computer Speech

& Language, Vol. 14, No. 4, pp. 373–400, 2000.

26. Chiu, J., Y. Wang, J. Trmal, D. Povey, G. Chen and A. Rudnicky, “Combination

of FST and CN search in spoken term detection”, Proceedings of Interspeech, pp.

2784–2788, 2014.

27. Kanthak, S. and H. Ney, “Context-dependent acoustic modeling using graphemes

for large vocabulary speech recognition”, IEEE International Conference on Acous-

tics, Speech and Signal Processing (ICASSP), Vol. 2, pp. 845–848, Citeseer, 2002.

28. Bisani, M. and H. Ney, “Joint-sequence models for grapheme-to-phoneme conver-

sion”, Speech Communication, Vol. 50, No. 5, pp. 434 – 451, 2008.

29. Chen, G., O. Yilmaz, J. Trmal, D. Povey and S. Khudanpur, “Using proxies for

OOV keywords in the keyword search task”, IEEE Workshop on Automatic Speech

Recognition and Understanding (ASRU), pp. 416–421, 2013.

30. Chen, G., S. Khudanpur, D. Povey, J. Trmal, D. Yarowsky and O. Yilmaz, “Quan-

tifying the value of pronunciation lexicons for keyword search in low resource lan-

guages”, IEEE International Conference on Acoustics, Speech and Signal Process-

ing (ICASSP), pp. 8560–8564, IEEE, 2013.

31. Rodriguez-Fuentes, L. J., A. Varona, M. Penagarikano, G. Bordel and M. Diez,

“High-performance Query-by-Example Spoken Term Detection on the SWS 2013

evaluation”, IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pp. 7819–7823, IEEE, May 2014.

32. Anguera, X., “Information retrieval-based dynamic time warping”, Interspeech,

pp. 1–5, 2013.

33. Jansen, A. and B. V. Durme, “Indexing Raw Acoustic Features for Scalable Zero

Resource Search”, Interspeech, pp. 2466–2469, 2012.

91

34. Jansen, A., K. Church and H. Hermansky, “Towards spoken term discovery at scale

with zero resources”, Interspeech, pp. 1676–1679, 2010.

35. Silaghi, M.-C., “Spotting subsequences matching an HMM using the average ob-

servation probability criteria with application to keyword spotting”, Proceedings

of the National Conference on Artificial Intelligence, Vol. 20, p. 1118, Menlo Park,

CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

36. Grangier, D., J. Keshet and S. Bengio, “Discriminative keyword spotting”, Auto-

matic speech and speaker recognition: large margin and kernel methods , pp. 175–

194, 2009.

37. Kintzley, K., A. Jansen and H. Hermansky, “Featherweight phonetic keyword

search for conversational speech”, IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 7859–7863, IEEE, 2014.

38. Jansen, A. and P. Niyogi, “Point process models for spotting keywords in con-

tinuous speech”, IEEE Transactions on Audio, Speech, and Language Processing ,

Vol. 17, No. 8, pp. 1457–1470, 2009.

39. Jansen, A., “Whole word discriminative point process models”, IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 5180–5183,

2011.

40. Kintzley, K., A. Jansen and H. Hermansky, “MAP Estimation of Whole-Word

Acoustic Models with Dictionary Priors”, Interspeech, pp. 787–790, 2012.

41. Liu, C., A. Jansen, G. Chen, K. Kintzley, J. Trmal and S. Khudanpur, “Low-

resource open vocabulary keyword search using point process models”, Interspeech,

pp. 2789–2793, 2014.

42. Hochreiter, S. and J. Schmidhuber, “Long Short-Term Memory”, Neural Compu-

tation, pp. 1735–1780, 1997.

92

43. Fernández, S., A. Graves and J. Schmidhuber, “An application of recurrent neural

networks to discriminative keyword spotting”, Artificial Neural Networks–ICANN

2007 , pp. 220–229, Springer, 2007.

44. Wollmer, M., F. Eyben, J. Keshet, A. Graves, B. Schuller and G. Rigoll, “Robust

discriminative keyword spotting for emotionally colored spontaneous speech us-

ing bidirectional LSTM networks”, IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 3949–3952, IEEE, 2009.

45. Chen, G., C. Parada and T. N. Sainath, “Query-by-example keyword spotting using

long short-term memory networks”, IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pp. 5236–5240, 2015.

46. Chen, G., C. Parada and G. Heigold, “Small-footprint keyword spotting using deep

neural networks”, IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pp. 4087–4091, IEEE, 2014.

47. Fiscus, J. G., J. Ajot, J. S. Garofolo and G. Doddingtion, “Results of the 2006 spo-

ken term detection evaluation”, Proceedings of ACM SIGIR Workshop on Search-

ing Spontaneous Conversational Speech, pp. 51–55, Citeseer, 2007.

48. KWS14 Keyword Search Evaluation Plan, 2014, http://www.nist.gov/itl/iad/

mig/upload/KWS14-evalplan-v11.pdf, July 2015.

49. NIST Framework For Detection Evaluations (F4DE), http://www.nist.gov/itl/

iad/mig/tools.cfm, July 2015.

50. Mamou, J., J. Cui, X. Cui, M. J. Gales, B. Kingsbury, K. Knill, L. Mangu,

D. Nolden, M. Picheny, B. Ramabhadran et al., “System combination and score

normalization for spoken term detection”, IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pp. 8272–8276, 2013.

51. Karakos, D., R. Schwartz, S. Tsakalidis, L. Zhang, S. Ranjan, T. Tim Ng, R.-C.

93

Hsiao, G. Saikumar, I. Bulyko, L. Nguyen, J. Makhoul, F. Grezl, M. Hannemann,

M. Karafiat, I. Szoke, K. Vesely, L. Lamel and V.-B. Le, “Score normalization and

system combination for improved keyword spotting”, IEEE Workshop on Auto-

matic Speech Recognition and Understanding (ASRU), pp. 210–215, IEEE, 2013.

52. Wang, Y. and F. Metze, “An in-depth comparison of keyword specific thresholding

and sum-to-one score normalization”, Proceedings of Interspeech, Singapore, pp.

2474–2478, 2014.

53. Harper, M., Babel – Addressing the Language Deluge, 2011, http:

//www.iarpa.gov/images/files/programs/babel/Babel_Overview_

UNCLASSIFIED-2011-05-31.pdf, December 2015.

54. KWS15 Keyword Search Evaluation Plan, 2015, http://www.nist.gov/itl/iad/

mig/upload/KWS15-evalplan-v05.pdf, December 2015.

55. Povey, D., A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-

nemann et al., “The Kaldi Speech Recognition Toolkit”, IEEE Workshop on Au-

tomatic Speech Recognition & Understanding (ASRU), IEEE Signal Processing

Society, Dec. 2011.

56. Kaldi Babel recipe, 2015, https://github.com/kaldi-asr/kaldi/tree/master/

egs/babel/s5c, December 2015.

57. Trmal, J., G. Chen, D. Povey, S. Khudanpur, P. Ghahremani, X. Zhang,

V. Manohar, C. Liu, A. Jansen, D. Klakow et al., “A keyword search system

using open source software”, IEEE Spoken Language Technology Workshop (SLT),

pp. 530–535, IEEE, 2014.

58. Soltau, H., G. Saon and B. Kingsbury, “The IBM Attila speech recognition toolkit”,

IEEE Spoken Language Technology Workshop (SLT), pp. 97–102, IEEE, 2010.

59. Sarı, L. and M. Saraçlar, “Discriminative training of the keyword search confu-

94

sion model”, 23th Signal Processing and Communications Applications Conference

(SIU), pp. 1175–1178, May 2015.

60. Cui, J., X. Cui, B. Ramabhadran, J. Kim, B. Kingsbury, J. Mamou, L. Mangu,

M. Picheny, T. N. Sainath and A. Sethy, “Developing speech recognition systems for

corpus indexing under the IARPA Babel program”, IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pp. 6753–6757, 2013.

61. Bottou, L., “Large-scale machine learning with stochastic gradient descent”, Pro-

ceedings of COMPSTAT’2010 , pp. 177–186, Springer, 2010.

