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Assoc. Prof. Z. Caner Taşkın . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Prof. Serpil Sayın . . . . . . . . . . . . . . . . . . .

Prof. Kuban Altınel . . . . . . . . . . . . . . . . . . .
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I thank to my parents for their endless love, continuous support and encourage-

ment they show not only during this long period but throughout my life. I gratefully

thank to my husband Tarkan Aydın for always being there for me. I could never thank
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ABSTRACT

DECENTRALIZED DECOMPOSITION METHODS FOR

BLOCK ANGULAR LINEAR AND INTEGER

PROGRAMMING PROBLEMS

In this thesis, we propose Decentralized Benders decomposition and Decentralized

Dantzig-Wolfe decomposition for block angular linear programs and Decentralized L-

Shaped Method for block angular integer programs. We exploit the block angular struc-

ture of the problem to decompose the overall problem into several subproblem-local

master problem pairs, each of which is associated with an independent decision maker.

Then the decision makers of equal hierarchy level solve the overall problem coopera-

tively by exchanging minimal required information through a peer-to-peer communica-

tion network without need of a central coordination unit. The main difference between

the proposed Decentralized Benders Decomposition and Decentralized Dantzig-Wolfe

Decomposition is the type of the information disclosed. While Decentralized Benders

Decomposition requires exchange of dual information, in Decentralized Dantzig-Wolfe

Decomposition primal information is shared. We remark that our goal is not competing

with the computational speed of a centralized algorithm. Instead, we primarily aim to

propose a decentralized coordination scheme for decision makers that are unwilling to

reveal their local data while solving the overall problem for a mutual benefit in such a

case a central coordination unit is unavailable or not accepted.

We prove that the proposed methods converge to a global optimal solution in a

finite number of iterations. Then we conduct computational experiments to evaluate

the performance of the proposed methods. Also we investigate the impact of the

underlying communication network computationally.
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ÖZET

BLOK KÖŞEGEN YAPI GÖSTEREN DOĞRUSAL VE

TAMSAYILI PROBLEMLER İÇİN DAĞITIK

PARÇALAMA YÖNTEMLERİ

Bu tezde blok köşegen yapı gösteren doğrusal programlama problemleri için

Dağıtık Benders Ayıştırma Yöntemi ve Dağıtık Dantzig-Wolfe Ayrıştırma Yöntemi,

tam sayılı programlama problemleri içinse Dağıtık L-Şekil Yöntemi sunuyoruz. Bu

yöntemler bütünsel problemi, gösterdiği blok köşegen yapı özelliğinden faydalanarak

herbir karar verici için altproblem-yerel ana problem ikililerine ayrıştırır. Karar vericiler

bütünsel problemi kendi aralarında merkezi bir yönetime ihtiyaç duymadan, kurdukları

iletişim ağı üzerinden gerekli minimum bilgi paylaşımı yaparak işbirliği ile çözerler. Bu

tezdeki amacımız, merkezileşmiş bir yöntemden daha hızlı bir yöntem önermek değildir.

Amacımız bütünsel problemi merkezi koordinasyon biriminin bulunmadığı ya da kabul

edilmediği bir durumda yerel bilgi paylaşmadan, ortak bir fayda için diğerleri ile işbirliği

yaparak çözmek isteyen karar vericiler için dağıtık bir koordinasyon yapısı sunmaktır.

Doğrusal programlama problemleri için önerilen metodlar arasındaki temel fark

paylaşılan bilginin niteliğidir. Dağıtık Benders Ayıştırma Yönteminde ikincil bilgi

paylaşımı varken Dağıtık Dantzig-Wolfe Ayrıştırma Yönteminde birincil bilgi paylaşılır.

Önerilen yöntemlerin merkezileştirme ile bulunan en iyi çözüme sonlu sayıda döngü

ile yakınsadığını ispatlanmıştır. Metodların performans değerlendirmeleri yapılmıştır.

Aynı zamanda karar vericiler arasındaki iletişim ağının etkileri de incelenmiştir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Structure Of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Common Approaches for Large-Scale Optimization . . . . . . . . . . . 7

2.1.1. Column Generation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2. Cutting Plane Algorithm . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3. Dantzig-Wolfe Decomposition . . . . . . . . . . . . . . . . . . . 10

2.1.4. Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.5. Lagrangian Relaxation . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.6. Rosen’s Primal Partitioning Algorithm . . . . . . . . . . . . . . 23

2.1.7. Kornai-Lipták Method . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.8. Primal-Dual Decomposition . . . . . . . . . . . . . . . . . . . . 27

2.2. Decentralization in Linear Programs . . . . . . . . . . . . . . . . . . . 29

2.3. Decentralization in Integer Programs . . . . . . . . . . . . . . . . . . . 36

3. PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2. Communication Network . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3. Main Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4. Sketch of Convergence Proof . . . . . . . . . . . . . . . . . . . . . . . . 44

4. DECENTRALIZED BENDERS DECOMPOSITION FOR BLOCK ANGULAR

LINEAR PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1. Classical Benders Decomposition Applied for Primal BALP . . . . . . . 46



vii

4.2. Decentralized Benders Decomposition Algorithm . . . . . . . . . . . . . 50

4.3. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5. DECENTRALIZED DANTZIG-WOLFE DECOMPOSITION FOR BLOCK AN-

GULAR LINEAR PROGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1. Constructing Feasible Local Master Problems . . . . . . . . . . . . . . 60

5.2. GetColumn Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6. DECENTRALIZED INTEGER L-SHAPED METHOD . . . . . . . . . . . . 69

6.1. Decentralized Integer L-Shaped Algorithm . . . . . . . . . . . . . . . . 69

6.1.1. Feasibility Cut Generation . . . . . . . . . . . . . . . . . . . . . 72

6.1.2. Optimality Cut Generation . . . . . . . . . . . . . . . . . . . . 73

6.1.3. The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2. Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7. APPLICATIONS AND COMPUTATIONAL RESULTS . . . . . . . . . . . 79

7.1. Numerical Experiments and Results for LP Case . . . . . . . . . . . . . 79

7.1.1. Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.1.2. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 82

7.2. Numerical Experiments and Preliminary Results for IP Case . . . . . . 95

8. CONCLUSIONS AND FUTURE RESEARCH . . . . . . . . . . . . . . . . . 97

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100



viii

LIST OF FIGURES

Figure 1.1. Primal and dual block angular problem structures [1]. . . . . . . . 1

Figure 3.1. Common Network Topologies . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.2. Structure and information exchange scheme for existing decompo-

sition methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.3. Structure and information exchange scheme for proposed methods 44

Figure 4.1. Pseudo-code for Decentralized Benders Decomposition Algorithm . 51

Figure 4.2. Pseudo-code for GetCut Function . . . . . . . . . . . . . . . . . 52

Figure 5.1. Pseudo-code for Decentralized Dantzig-Wolfe Decomposition Algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.2. Pseudo-code for Phase I Algorithm . . . . . . . . . . . . . . . . . 64

Figure 5.3. Pseudo-code for Phase II Algorithm . . . . . . . . . . . . . . . . . 65

Figure 5.4. Pseudo-code for GetColumn Function . . . . . . . . . . . . . . . 66

Figure 6.1. Pseudo-code for Decentralized Integer L-Shaped Method . . . . . 75

Figure 6.2. Pseudo-code for GetIPCut Function . . . . . . . . . . . . . . . . 76

Figure 7.1. Results for Decentralized Benders Decomposition on Random Set 84



ix

Figure 7.2. Results for Decentralized Dantzig-Wolfe Decomposition on Ran-

dom set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 7.3. Results for Decentralized Benders Decomposition on Mnetgen In-

stances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 7.4. Results for Decentralized Dantzig-Wolfe Decomposition on Mnet-

gen Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 7.5. Communication Rounds for Mnetgen M64.4.* Instances . . . . . . 94



x

LIST OF TABLES

Table 7.1. Dimensions for Randomly Generated Problems. . . . . . . . . . . 80

Table 7.2. Characteristics for Mnetgen Instances . . . . . . . . . . . . . . . . 81

Table 7.3. Dimensions of Mnetgen Instances . . . . . . . . . . . . . . . . . . . 82

Table 7.4. Results for Decentralized Benders Decomposition on Random Set . 83

Table 7.5. Results for Decentralized Dantzig-Wolfe Decomposition on Random

Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Table 7.6. Results for Decentralized Benders Decomposition on M64.4.* In-

stances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Table 7.7. Results for Decentralized Benders Decomposition on M64.8.* In-

stances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Table 7.8. Results for Decentralized Dantzig-Wolfe Decomposition on M64.4.*

Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Table 7.9. Results for Decentralized Dantzig-Wolfe Decomposition on M64.8.*

Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 7.10. Results for Decentralized Dantzig-Wolfe Decomposition on M128.32.*

Instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Table 7.11. Dimensions of Test Instances and Preliminary Results for Integer

programming case . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



1

1. INTRODUCTION

Problems in block angular structure may appear when there is multiple decision

makers in the environment. For example, consider divisions of an organization sharing

some common resources. Primal block angular structure in Figure 1.1 is the resulting

structure since capacity constraints on common resources appear as the uppermost

complicating constraints that links the blocks of divisions’ local constraints. Alter-

natively, consider independent organizations having own activities engaging only for

activities to reduce pollution. Then dual block angular structure in Figure 1.1 is the re-

sulting structure since common mission activities appear as the complicating variables

that link blocks of separate activities of the organizations.

 

Figure 1.1. Primal and dual block angular problem structures [1].

Centralization is one approach for solving problems in block angular structure.

In this case, one of the decision makers acting as a center gathers all managerial infor-

mation from the others and builds the aggregate problem. The problem is solved by

a standard optimization algorithm such as Simplex Method, Interior Point Algorithms

or Branch and Bound Algorithm. Then the center announces the solution to the other

decision makers. Centralization can be desirable if it is possible to build the aggregate

model. However, building the aggregate model may not be practical from computa-
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tional point of view. Moreover, decision makers may not be willing to share their own

managerial information with a center.

Existing decomposition methods [2, 3, 4] present an alternative approach that

exploits the block angular structure for computational efficiency. For instance, with-

out the coupling constraints, a primal block angular problem can be partitioned into

independent subproblems associated with each block. Instead of one large-scale opti-

mization problem, there are many smaller, easy to solve subproblems. A solution set

can be found by finding an independent solution for each subproblem. However, this

rarely gives a solution for the global problem because of the violation of the coupling

constraints. Thus, a center is required to solve master problem to combine individual

solutions of subproblems to form a solution to the global problem.

Decomposition methods allow for decentralization to a certain extent since the

master problem acts as a center having access to other decision makers’ information to

direct them. However, many real-world optimization problems involve decision mak-

ers that are unwilling to share their private data, but want to collaborate for solving

the global problem for a mutual benefit. Consider the following examples: (i) A pro-

duction planning problem arising in the supply chain of an enterprise where multiple

decision makers are sharing some scarce resources to serve their own customers. The

resulting problem represents primal block angular structure since common resource

availability constraints link blocks associated with production requirement constraints

of each product. In this case, decision makers realize their own production facilities in

isolation, but they reduce the performance losses on shared resources collaboratively.

(ii) A machine scheduling problem where machines having its own block of precedence

constraints are tied to each other by a set of complicating constraints imposing com-

pletion of the jobs. Thus, the global problem of minimizing total completion time of

the jobs is in primal block angular structure. Machines, acting as independent decision

makers, should cooperate to achieve global optimal solution since any one of them has

access to the local information of the others. (iii) A problem arising in logistics when

two companies producing and serving the same region decide to share their vehicles to
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minimize global transportation cost by reducing empty vehicle movements. The result-

ing problem represents primal block angular structure since the restrictions on shared

vehicles such as capacity constraints links the blocks of local constraints associated

with the supply and demand information of companies. (iv) An energy distribution

problem where some microgrids demand more energy from peers having excess energy

instead of connecting to a main power grid. The resulting problem represents primal

block angular structure since microgrids aim to minimize global energy loss in the sys-

tem while keeping their energy demand or storage capacity private. These examples

reveals the need for decentralized decomposition methods since it is impossible or not

practical to solve the global problem with existing decomposition methods.

Our main motivation for this research is to develop decentralized decomposition

methods for block angular linear and integer programs. We propose two methods,

Decentralized Benders Decomposition and Decentralized Dantzig-Wolfe Decomposition

for linear programs and Decentralized L-Shaped Method for integer programs. We

exploit the primal block angular structure of the problem to decompose the problem

into a subproblem-local master problem pair for each decision maker which we call

optimization agent (OA). Then by allowing minimum required information sharing

among the collaborative OAs through a strongly connected communication network,

we solve the overall problem by reaching a global optimal solution without need of a

central coordination unit. We prove that the proposed methods can reach a global

optimal solution in a finite number of iterations.

1.1. Contributions

In this section, we summarize the contributions of our research.

Development of Decentralized Benders Decomposition Algorithm for BALP: We

introduce a decentralized algorithm based on Benders Decomposition. Although Ben-

ders Decomposition can be best applied to the dual block angular structures, our

algorithm exploits primal block angularity in problem structure. Main goal of the al-
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gorithm is solving BALP without a central coordination unit. Decentralized Benders

Decomposition Algorithm allows multiple decision makers of same hierarchy to solve

the linear optimization problem while sharing dual information only among themselves.

We prove the convergence to the global optimal solution in a finite number of iterations.

Development of Decentralized Dantzig-Wolfe Decomposition Algorithm for BALP:

We introduce a decentralized algorithm based on Dantzig-Wolfe Decomposition as an

alternative for Decentralized Benders Decomposition Algorithm. It allows multiple

decision makers of same hierarchy to solve the linear optimization problem by shar-

ing primal information as a difference. We present proof of convergence to the global

optimal solution in a finite number of iterations.

Development of Decentralized Integer L-shaped Method for BAIP: Our research

also includes an extension to block angular integer programs based on Integer L-shaped

method [5].

The strengths of our algorithms are listed below:

• Allowing multiple decision makers communicating among themselves through a

communication network to solve problems in block angular structure collabora-

tively without need of a center.

• Being blind to the communication network among decision makers. Proposed

methods solve problems in block angular structure to optimality in case of deci-

sion makers are tied to each other through any strongly connected communication

network. The algorithm does not need to know the structure of the communica-

tion network.

• Design of the methods allow for parallelization and distributed computing as a

future research direction.
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1.2. Structure Of The Thesis

This thesis is organized as follows. In Chapter 2, we present an overview of the

common approaches. Then, we review the literature on decentralized decision making

specifically for both linear and integer problems in block angular structure.

In Chapter 3, we present preliminary concepts to lay a groundwork for describ-

ing the proposed methods. First we formally define the problem that we address.

We give definitions and notations for the communication network among the decision

makers. We state the main algorithm for the proposed methods and give sketch of the

convergence proof.

In Chapter 4, first we apply Classical Benders Decomposition as a solution ap-

proach. Then we present the proposed Decentralized Benders Decomposition method

for block angular linear problems and we give the convergence proof.

In Chapter 5, we present the proposed Decentralized Dantzig-Wolfe Decomposi-

tion method for linear programs having block angular structure and prove its conver-

gence to optimality.

In Chapter 6, we give an extension of the proposed method to integer program-

ming problems in block angular structure. We describe the algorithm with differences

in feasibility and optimality cut generation strategy, then we prove the convergence of

the method.

In Chapter 7, we test the computational performance of Decentralized Ben-

ders Decomposition and Decentralized Dantzig-Wolfe Decomposition on two groups

of test instances: randomly generated linear block angular problems and linear Multi-

commodity Network Flow problems. We present experimental results with a discussion.

Also, we present experimental results for Decentralized L-shaped Method on small test

instances and discuss preliminary results. We test our algorithms by using Star, Ring



6

and Mesh network topologies and represent the effect of the topology of the communi-

cation network on the performance of the algorithms.

Finally, Chapter 8 concludes the thesis with a summary of the content and pos-

sible future research directions.
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2. LITERATURE REVIEW

This chapter reviews common approaches for solving large-scale optimization

problems. Then, we present the literature survey on decentralized decision making

specifically for both linear and integer problems in block angular structure. We also

discuss issues regarding distributed decision making where applicable. Finally, we

present the definitions and notations for the communication network.

2.1. Common Approaches for Large-Scale Optimization

2.1.1. Column Generation

Column generation method is introduced by Dantzig and Wolfe [3] in the context

of solving large-scale linear problems by decomposition methods. Column generation

method can be best applied to the problems that has extremely large number of columns

(i.e., variables). Including all of the columns for building the aggregate problem and

solving it as a single large problem may be either impossible or computationally not

practical. Hence, the key idea of column generation method is starting with a subset of

columns at the beginning and then adding most profitable column when it is needed.

Consider the following problem which is called master problem(CG-MP):

CG-MP

Minimize
N∑
j=1

cjxj (2.1a)

subject to
N∑
j=1

aijxj = bi ∀i = 1, 2, . . . ,M (2.1b)

xj ≥ 0 ∀j = 1, 2, . . . , N (2.1c)



8

where xj denotes decision variables for j ∈ {1, 2, 3, ..., N} and we assume that N is

very large. Building and solving MP directly may be inappropriate. Thus, instead

of solving one large problem, column generation method formulates restricted master

problem (CG-RMP) with a subset, N̄ ⊂ N , of variables. The resulting problem is:

CG-RMP

Minimize
N̄∑
j=1

cjxj (2.2a)

subject to
N̄∑
j=1

aijxj = bi ∀i = 1, 2, . . . ,M (2.2b)

xj ≥ 0 ∀j = 1, 2, . . . , N̄ (2.2c)

Let π∗ = {π1, π2, . . . , πM} be the optimal dual variables for (2.2). An optimal solution

of CG-RMP is rarely optimal for CG-MP also. There may be an improving column that

has not been considered yet. For a minimization problem, variable x̂j having minimum

negative reduced cost, r̄, is the most promising variable to generate a column. The

reduced cost of a variable with respect to current dual variables is given as follows:

rj = cj −
M∑
i=1

πiaij (2.3)

To find the variable having minimum negative reduced cost among a large set of alter-

natives, the following subproblem (CG-SP) is solved:

CG-SP

r̄ = min
1≤j≤N

cj −
M∑
i=1

πiaij (2.4)

(2.4) is also called the pricing problem. If r̄ < 0, the variable found and its coefficient

column is added to the CG-RMP. Then CG-RMP is re-solved and the entire process

is repeated until there is no improving variable that can be added to CG-RMP.
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Column generation method avoids solving CG-MP directly. Instead, it solves

CG-RMP and CG-SP in an alternating sequence. The main advantage of column

generation method is obtaining an optimal solution before many columns are added to

CG-RMP. Also in some cases structural properties ensure solving SP effectively. For

further reading, refer to [6, 7].

2.1.2. Cutting Plane Algorithm

A large-scale linear problem may consists of extremely large number of con-

straints. Solving such a problem directly may be impractical. Cutting Plane Algorithm

is introduced as an appropriate approach. The basic idea is defining a less constrained

initial problem and then adding the other constraints when they are needed.

Consider the following aggregate problem consisting of full set of constraints. It

is called master problem (CP-MP). Note that, CP-MP is the dual of (2.1). Since N is

assumed to be a very large number, the number of constraints is very large.

CP-MP

Maximize
M∑
i=1

biπi (2.5a)

subject to
M∑
i=1

aijπi ≤ cj ∀j = 1, 2, . . . , N (2.5b)

Instead of solving CP-MP as a whole, cutting plane algorithm defines relaxed master

problem consisting a subset N̄ ⊆ N of constraints:

CP-RMP

Maximize
M∑
i=1

biπi (2.6a)

subject to
M∑
i=1

aijπi ≤ cj ∀j = 1, 2, . . . , N̄ (2.6b)
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Cutting plane algorithm starts with solving CP-RMP, then checks whether the current

optimal solution is feasible for CP-MP. If it is, then that solution is an optimal solution

for CP-MP also. Otherwise, there is at least one constraint in the set N \ N̄ that is

violated. Cutting plane algorithm finds the most violated constraint by solving a

subproblem. Assume that πki is an optimal solution of CP-RMP at iteration k. Then

the subproblem is defined as follows:

CP-SP

min
j∈N\N̄

cj −
M∑
i=1

aijπ
k
i (2.7)

If (2.7) is nonnegative for all constraints in the set N \ N̄ , then πki is an opti-

mal solution for CP-MP. Otherwise, the constraint that satisfies the inequality cj >∑M
i=1 aijπ

k
i is added to CP-RMP. The updated CP-RMP is re-solved and the entire

process is repeated until there is no new constraint that can be added to CP-RMP.

Cutting plane algorithm decomposes aggregate problem into CP-RMP and CP-

SP and solves them alternately. The main advantage of cutting plane algorithm is

obtaining an optimal solution before many constraints are added to CP-RMP. For

further reading, refer to [8].

2.1.3. Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition is introduced by Dantzig and Wolfe [3] to solve

large scale linear programs especially in primal block angular structure. To take the

advantage of block angularity, Dantzig-Wolfe decomposition relaxes the complicating

constraints from BALP and considers them as master problem. Then the remaining

blocks of constraints constitute the subproblems. The master problem can be refor-

mulated in terms of extreme points and extreme rays of the subproblems. The master

problem has fewer constraints than the aggregate problem, however it may be still



11

intractable because of the large number of columns. Hence Dantzig-Wolfe decompo-

sition starts with a restricted master problem instead of a full master problem. The

subproblems generate the remaining columns of full master problem as they are needed.

Consider the following primal BALP:

BALP

Minimize
N∑
i=1

ni∑
j=1

cijxij (2.8a)

subject to
N∑
i=1

ni∑
j=1

aijkxij = rk ∀k = 1, 2, . . . , K (2.8b)

ni∑
j=1

bijxij = li ∀i = 1, 2, . . . , N (2.8c)

xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (2.8d)

where (2.8b) are the complicating constraints whereas (2.8c) are the blocks of local

constraints. Let’s define the polyhedron of each block of local constraints by the set

Xi = {xij|
∑ni

j=1 bijxij = li, xij ≥ 0 ∀j = 1, 2, ..., ni} for i = 1, 2, . . . , N . One can

rewrite (2.8) as follows:

Minimize
N∑
i=1

ni∑
j=1

cijxij (2.9a)

subject to
N∑
i=1

ni∑
j=1

aijkxij = rk ∀k = 1, 2, . . . ,m (2.9b)

xij ∈ Xi ∀i = 1, 2, . . . , N (2.9c)

Note that (2.9) contains complicating constraints only and local constraints are

considered implicitly. Dantzig-Wolfe decomposition applies Minkowski’s Representa-

tion Theorem [7, 9] here which is stated below:
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Theorem 1. If P is the polyhedron P = {x|Ax ≥ b}, then any x ∈ P is the sum of

a convex combination of extreme points of P and a nonnegative linear combination of

extreme rays of P .

Using Theorem 1, any xij ∈ Xi can be written as the following:

xij =
∑
q∈Qi

λqiv
q
i+
∑
s∈Si

µsid
s
i (2.10a)

∑
q∈Qi

λqi = 1 (2.10b)

λqi ≥ 0, µsi ≥ 0 ∀vqi ∈ Qi, ∀dsi ∈ Si (2.10c)

where Qi is the set of extreme points and Si is the set of extreme rays of polyhedron

Xi. By substituting xij variables, (2.9) can be equivalently reformulated as follows:

DW-FMP

Minimize
N∑
i=1

ni∑
j=1

cij(
∑
q∈Qi

λqiv
q
i+
∑
s∈Si

µsid
s
i ) (2.11a)

subject to
N∑
i=1

ni∑
j=1

aijk(
∑
q∈Qi

λqiv
q
i+
∑
s∈Si

µsid
s
i ) = rk ∀k = 1, 2, . . . , K (2.11b)

∑
q∈Qi

λqi = 1 ∀i = 1, 2, . . . , N (2.11c)

λqi ≥ 0, µsi ≥ 0 ∀vqi ∈ Qi, ∀dsi ∈ Si ∀i = 1, 2, . . . , N (2.11d)

(2.11) is called Dantzig-Wolfe full master problem, (DW-FMP). It has many vari-

ables since each polyhedron Xi may have great number of extreme points and extreme

rays. Hence Dantzig-Wolfe decomposition applies column generation idea here. It

starts with solving restricted master problem (DW-RMP) given in (2.12) that has a

subset of extreme points Q̄i ⊂ Qi and extreme rays S̄i ⊂ Si.
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DW-RMP

Minimize
N∑
i=1

ni∑
j=1

cij(
∑
q∈Q̄i

λqiv
q
i+
∑
s∈S̄i

µsid
s
i ) (2.12a)

subject to
N∑
i=1

ni∑
j=1

aijk(
∑
q∈Q̄i

λqiv
q
i+
∑
s∈S̄i

µsid
s
i ) = rk ∀k = 1, 2, . . . , K (2.12b)

∑
q∈Q̄i

λqi = 1 ∀i = 1, 2, . . . , N (2.12c)

λqi ≥ 0, µsi ≥ 0 ∀vqi ∈ Q̄i, ∀dsi ∈ S̄i ∀i = 1, 2, . . . , N (2.12d)

Dantzig-Wolfe decomposition solves (2.12) and obtains dual variables πk and αi as-

sociated with the constraint sets (2.12b) and (2.12c), respectively. In order to check

whether the current solution can be improved, Dantzig-Wolfe decomposition searches

for a new variable which has negative reduced cost. Then, the reduced cost, rqi , of

variable vqi can be calculated as the following:

rqi =
N∑
i=1

ni∑
j=1

(cij − aijkπk)vqi − αi (2.13)

Similarly, the reduced cost rsi of variable µsi can be calculated as the following:

rsi =
N∑
i=1

ni∑
j=1

(cij − aijkπk)µsi (2.14)

To check whether there exists a variable with negative reduced cost in Qi \ Q̄i, a

subproblem (DW-SP1) given in (2.15) is solved:

DW-SP1

min
q∈Qi\Q̄i

N∑
i=1

ni∑
j=1

(cij − aijkπk)vqi − αi (2.15)
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Similarly, to verify whether there exists a variable with negative reduced cost in Si \ S̄i,

a subproblem (DW-SP2) given in (2.16) is solved:

DW-SP2

min
s∈Si\S̄i

N∑
i=1

ni∑
j=1

(cij − aijkπk)µsi (2.16)

If (2.15) has a negative objective function value, then there exists an improving variable

associated with an extreme point. On the other hand, if (2.16) is unbounded, then

there exists an improving variable associated with an extreme ray. In both cases,

improving variable is added to DW-RMP with its corresponding column. DW-RMP is

resolved with added columns and this process is repeated until there is no improving

variable.

The details of the Dantzig-Wolfe decomposition can be found at any standard

textbook such as [9, 7]. Also a summary on computational efficiency of Dantzig-

Wolfe decomposition especially for large-scale BALP is given in [10]. According to

this, Dantzig-Wolfe decomposition has slow convergence when it is compared to the

methods that solve one single problem. However, one of its advantages is applying

decomposition approach when the aggregate problem is too large to solve at a time.

Another advantage of Dantzig-Wolfe decomposition is from an economic point

of view. In an organizational setting, subproblems can be interpreted as divisions

whose goal is optimizing their own objective while sharing some common resources.

Master problem acts as a center who coordinates the subproblems through setting

(dual) prices for common resources. Given the prices, divisions announce their proposal

of common resource consumption to center. The center checks whether there is a set

of proposals improving the overall objective. If it finds one, then updates prices and

process continues. Otherwise, it announces optimal (dual) prices on common resources.

As a result, there is two levels of decision making in Dantzig-Wolfe decomposition; a

master problem acting as the center and subproblems representing divisions. The center
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knows all corporate constraints while divisions only know their own constraints. To

reach overall optimality, individual proposals of divisions are required to be coordinated

by a center.

2.1.4. Benders Decomposition

Benders Decomposition is introduced by Benders [2] especially to solve mixed

integer programming problems. However it has applications in a broader class of prob-

lems [11, 12].A formal description on Benders Decomposition with some extensions

can be found in [13]. In this section, we will describe how Benders Decomposition is

applied to large-scale linear programs in dual block angular structure.

The main feature of Benders decomposition is having complicating variables which

link blocks (See Figure 1.1). Hence the main idea of Benders decomposition is splitting

the aggregate problem with respect to its variables. By fixing the complicating vari-

ables, it is easier to solve independent subproblems. Also a relaxed master problem is

constructed in order to decide the values for complicating variables. At each iteration

subproblems generate new constraints which are added to the relaxed master problem

for determining new values for complicating variables.

Benders decomposition also defined as Dantzig-Wolfe decomposition applied to

the dual problem. Equivalence of the methods is shown in [14]. Dual of BALP can be

formulated as follows by associating πk and αi variables with constraints (2.8b) and

(2.8c), respectively.

Dual-BALP

Maximize
K∑
k=1

rkπk +
N∑
i=1

αili (2.17a)

subject to
K∑
k=1

aijkπk + bijαi ≤ cij ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (2.17b)
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πk unrestricted ∀k = 1, 2, . . . , K (2.17c)

αi unrestricted ∀i = 1, 2, . . . , N (2.17d)

In this formulation, πk variables represents complicating variables. Dual-BALP

can be formulated in terms of the complicating variables as follows:

Maximize
K∑
k=1

rkπk +
N∑
i=1

zi(πk) (2.18a)

πk unrestricted ∀k = 1, 2, . . . , K (2.18b)

where zi(πk) is defined as optimal objective value of the following problem:

zi(πk) = Maximize
N∑
i=1

αili (2.19a)

subject to bijαi ≤ cij −
K∑
k=1

aijkπk ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni

(2.19b)

αi unrestricted ∀i = 1, 2, . . . , N (2.19c)

Associating the dual variables xij with constraints (2.19b), the dual of (2.19) is

as follows for given π̂k variables:

Minimize
N∑
i=1

ni∑
j=1

(cij −
K∑
k=1

aijkπ̂k)xij (2.20a)

subject to

ni∑
j=1

bijxij = li ∀i = 1, 2, . . . , N (2.20b)

xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (2.20c)
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Notice that (2.20) can be separated into N independent smaller problems which

are called as Benders subproblem. The resulting ith subproblem is:

Minimize

ni∑
j=1

(cij −
K∑
k=1

aijkπ̂k)xij (2.21a)

subject to

ni∑
j=1

bijxij = li (2.21b)

xij ≥ 0 ∀j = 1, 2, ..., ni (2.21c)

Note that the feasible region of (2.21) does not depend on π̂k values. Assuming a

non-empty feasible region, one can enumerate all extreme points and extreme rays of

the feasible region. Let us define Pi and Ri as sets of extreme points and extreme rays

of the ith problem, respectively. If (2.21) is unbounded for π̂k, then there exists an

extreme ray xrij in Ri such that

(cij −
K∑
k=1

aijkπ̂k)x
r
ij < 0 (2.22)

To exclude this extreme ray solution, (cij−
∑K

k=1 aijkπ̂k)x
r
ij ≥ 0 should be satisfied. On

the other hand, if (2.21) has finite optimal solution for π̂k, then there exists an extreme

point xpij in Pi that minimizes the objective function value, that we call z∗i where

z∗i ≤ (cij −
K∑
k=1

aijkπ̂k)x
p
ij (2.23)

In this case, the aim of Benders Decomposition is to find that extreme point solution.

Based on (2.22) and (2.23), (2.21) can be equivalently reformulated as follows:

Maximize zi (2.24a)

subject to (cij −
K∑
k=1

aijkπ̂k)x
r
ij ≥ 0 ∀r ∈ Ri (2.24b)
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(cij −
K∑
k=1

aijkπ̂k)x
p
ij ≥ zi ∀p ∈ Pi (2.24c)

zi unrestricted (2.24d)

Dual-BALP can be reformulated in terms of πk and αi variables by replacing zi(πk) in

(2.18) with (2.24):

Maximize
K∑
k=1

rkπk +
N∑
i=1

zi (2.25a)

subject to (cij −
K∑
k=1

aijkπk)x
r
ij ≥ 0 ∀r ∈ Ri ∀i = 1, 2, . . . , N (2.25b)

(cij −
K∑
k=1

aijkπk)x
p
ij ≥ zi ∀p ∈ Pi ∀i = 1, 2, . . . , N (2.25c)

πk unrestricted ∀k = 1, 2, . . . , K (2.25d)

zi unrestricted ∀i = 1, 2, . . . , N (2.25e)

(2.25) is called Benders master problem. In general, it may have an exponential number

of constraints since there may be exponentially many extreme points and extreme rays

for each subproblem. Hence Benders Decomposition starts with solving a relaxed mas-

ter problem which contains a subset of constraints. The solution of restricted master

problem includes π̂k values to announce to the subproblems and a candidate solution

value zi on subproblem’s objective function value, zi(π̂k). If zi = zi(π̂k) for each i, then

algorithm terminates. Otherwise, if dual subproblem is unbounded with respect to π̂k

values, a feasibility cut represented as (2.24b) is generated and added to the restricted

master problem. If the subproblem has an optimal solution, then an optimality cut rep-

resented as (2.24c) is generated and added to the restricted master problem. Restricted

master problem is resolved to get new π̂k and zi values. This process is repeated until

termination. The convergence of the algorithm in finite number of iterations follows

since there are finitely many extreme points and extreme rays, and a new feasibility or

optimality cut is generated at each iteration [2].
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Notice that at any iteration, Benders relaxed master problem gives an upper

bound for objective function value of Dual-BALP since it consists of only a subset of

constraints associated with extreme rays or extreme points. Also notice that, Benders

subproblem is a restriction on Dual-BALP, hence objective function value of (2.19) in

addition with the constant term
∑K

k=1 rkπ̂k gives a lower bound for objective function

value of Dual-BALP. The advantage of this feature is allowing termination before

reaching overall optimality if lower and upper bounds are close enough.

From an economic point of view, in Benders Decomposition master problem act-

ing as a center allocates common resources to divisional subproblems by fixing values

of complicating variables. Given the allocations, subproblems solve their problem and

each makes an offer for common resource prices. Master problem collects the prices

and updates the allocations with respect to them. This process continues until cen-

ter and divisions reach overall optimality. Although Benders decomposition allows

decentralization to a certain extent, there is a need for a center to direct the divisions.

2.1.5. Lagrangian Relaxation

Lagrangian relaxation method is introduced by Held and Karp [15] in their work

on relaxation algorithms for Traveling Salesman Problem. Afterwards it is applied

especially to integer programming problems and nonlinear programming problems [16,

17, 18]. In this research, we focus on how Lagrangian relaxation can be applied to

large-scale linear programs in primal block angular structure.

Without complicating constraints, primal BALP can be broken into smaller in-

dependent problems. Hence the key idea of Lagrangian relaxation is omitting compli-

cating constraints from the constraint set by placing them in the objective function by

multiplying with a penalty term. These multipliers are called Lagrangian duals since

they are dual variables associated with the complicating constraints. This process is

referred to dualizing the complicating constraints and the resulting problem is called

Lagrangian Function (LF). If BALP is a minimization problem, Lagrangian duals that
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maximizes LF yield an optimal objective function value that is equal to optimal ob-

jective function value of the original problem. However, this holds for the convex case.

For integer programming or nonlinear programming problems, there may be difference

between two objective function values which is called duality gap.

We consider primal BALP in (2.8) to describe Lagrangian relaxation method

mathematically. Here (2.8b) are the complicating constraints which are dualized. La-

grangian function is as follows for associated Lagrangian duals, πk:

LF

Minimize
N∑
i=1

ni∑
j=1

cijxij +
K∑
k=1

πk(rk −
N∑
i=1

ni∑
j=1

aijkxij) (2.26a)

subject to

ni∑
j=1

bijxij = li ∀i = 1, 2, . . . , N (2.26b)

xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (2.26c)

With appropriate arrangement in objective function, (2.26) can be rewritten

equivalently as

K∑
k=1

πkrk + Minimize
N∑
i=1

ni∑
j=1

(cij −
K∑
k=1

πkaijk)xij (2.27)

Note that LF is a relaxation, hence it provides a lower bound on BALP which

depends on the Lagrangian duals. To obtain the tightest lower bound, one can solve

LF as a maximization problem over all Lagrangian duals since BALP is a minimization

problem. This yields the following Lagrangian dual problem (LDP) :
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LDP

Max
πk

L(πk) (2.28)

where L(πk) is defined as

K∑
k=1

πkrk + Minimize
N∑
i=1

ni∑
j=1

(cij −
K∑
k=1

πkaijk)xij (2.29a)

subject to

ni∑
j=1

bijxij = li ∀i = 1, 2, . . . , N (2.29b)

xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (2.29c)

There are various solution methods for solving LDP [19]. Among them Subgradient

Optimization, Column Generation and Cutting Plane methods are the leading ones.

Here, we describe the cutting plane method for solving LDP. Thus, we refer to (2.28)

as Lagrangian master problem. Note that, without the term
∑K

k=1 πkrk, it can be

separated with respect to i. Hence L(πk) =
∑K

k=1 πkrk +
∑N

i=1 zi(πk), where zi(πk) is

zi(πk) = Minimize

ni∑
j=1

(cij −
K∑
k=1

π̂kaijk)xij (2.30a)

subject to

ni∑
j=1

bijxij = li (2.30b)

xij ≥ 0 ∀j = 1, 2, ..., ni (2.30c)

The resulting problem, (2.30), is called the Lagrangian subproblem. Note that the fea-

sible region of the Lagrangian subproblem is independent of πk variables. Assuming a

non-empty feasible region, the extreme rays and the extreme points can be enumerated.

Let us define Pi as the set of extreme points of ith subproblem that consists of {xpij}

for p ∈ Pi. Similarly, let Ri be the set of the extreme rays that consists of {xrij} for
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r ∈ Ri. Then (2.30) can be equivalently formulated for given π̂k as the following:

Maximize
N∑
i=1

zi (2.31a)

subject to (cij −
K∑
k=1

aijkπ̂k)x
r
ij ≥ 0 ∀r ∈ Ri ∀i = 1, 2, . . . , N (2.31b)

(cij −
K∑
k=1

aijkπ̂k)x
p
ij ≥ zi ∀p ∈ Pi ∀i = 1, 2, . . . , N (2.31c)

zi unrestricted ∀i = 1, 2, . . . , N (2.31d)

If (2.31) is bounded, then it generates an optimality cut as the following:

zi ≤ (cij −
K∑
k=1

aijkπ̂k)x
p
ij (2.32)

In case of unboundedness, (2.30) generates a feasibility cut as the following:

(cij −
K∑
k=1

aijkπ̂k)x
r
ij ≤ 0 (2.33)

Hence, full master problem can be formulated in terms of extreme rays and extreme

points as the following:

Maximize
K∑
k=1

rkπk +
N∑
i=1

zi (2.34a)

subject to (cij −
K∑
k=1

aijkπk)x
r
ij ≥ 0 ∀r ∈ Ri ∀i = 1, 2, . . . , N (2.34b)

(cij −
K∑
k=1

aijkπk)x
p
ij ≥ zi ∀p ∈ Pi ∀i = 1, 2, . . . , N (2.34c)

πk unrestricted ∀k = 1, 2, . . . , K (2.34d)

zi unrestricted ∀i = 1, 2, . . . , N (2.34e)



23

Lagrangian relaxation starts with relaxed master problem for computational con-

venience and the algorithm alternates between solving master problem and subprob-

lems. Algorithm terminates when value of L(πk) at iteration t equals to
∑N

i=1 zi at

iteration t+ 1. For an application of subgradient optimization as solution approach for

Lagrangian dual function, refer [20].

2.1.6. Rosen’s Primal Partitioning Algorithm

Rosen proposed a Primal Partitioning Algorithm [4] for large-scale linear pro-

gramming problems in dual block angular structure. Consider the following problem:

Maximize bt0y +
l∑

i=1

btixi (2.35a)

subject to Dt
iy + Atixi ≤ ci ∀i = 1, 2, . . . , l (2.35b)

xi unrestricted ∀i = 1, 2, . . . , l (2.35c)

y unrestricted (2.35d)

where t denotes the transpose operator. Then the primal block angular problem is as

follows:

Minimize
l∑

i=1

ctiui (2.36a)

subject to
l∑

i=1

Diui = b0 (2.36b)

Aiui = bi ∀i = 1, 2, . . . , l (2.36c)

ui ≥ 0 (2.36d)

In (2.35), y variables are the complicating variables since they link the blocks

of local constraints. Hence, by fixing the values of the complicating variables, (2.35)
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can be decomposed into l subproblems. Assume ŷ is feasible for (2.35). Then ith

subproblem in the primal form can be formulated as the following:

Minimize (cti − ŷtDi)ui (2.37a)

subject to Aiui = bi (2.37b)

ui ≥ 0 (2.37c)

Then each subproblem i can be solved independently. Let u∗i be an optimal solution for

(2.37) with corresponding basis matrix Ai. Then assume that the non-basic columns

of Ai constitute a matrix Bi. Assume a similar partition for the cost vector ci into ci

and ei, also for Di into Di and Ei for basic and non-basic columns respectively. Then

the following equation can be derived from (2.36c) for the basic variables, ui
∗, where

non-basic variables are denoted by vi:

u∗i = Ai
−1bi − Ai−1Bivi (2.38)

Eliminating the basic variables in (2.36) by substituting (2.38) in the objective function

and complicating constraints results in the following problem in terms of the non-basic

variables:

Minimize
l∑

i=1

qi
tvi (2.39a)

subject to Rivi = b (2.39b)

vi ≥ 0 (2.39c)

(2.39) is called the master problem where qi = ei− (A−1
i Bi)

tci, Ri = Ei−DiA
−1
i Bi and

b = b0−
∑l

i=1 DiA
−1
i bi. Let v∗i be optimal solution for (2.39). Substituting v∗i in (2.38)

gives the new values for ui
new. The blocks for which ui

new ≥ 0 are called the optimal

blocks. If all blocks are optimal, then the overall optimality is reached. Otherwise, if

ui
new has negative elements for some i, then for block i, a positive component of v∗i is

changed by a negative component of ui
new by performing a set of pivot operations. This
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gives a new basis matrix for ith subproblem. Then a new master problem is formulated

with the new basis matrices for each non-optimal blocks to start the next iteration.

The algorithm terminates with a finite optimal solution in finite number of iterations

if an overall optimal solution exists.

2.1.7. Kornai-Lipták Method

Kornai-Lipták method is suggested by the authors [21] to prepare the macroe-

conomic plans of Hungarian National Planning Bureau. The problem of interest is a

single, large-scale problem that can be decomposed into mutually independent sub-

problems solved by sectors coordinated by the center which allocates the resources.

The idea is transforming the problem into a two-level problem at first where central

problem develops an allocation pattern to maximize the sum of the maximal yields of

sector problems. Then the two-level problem is transformed into a polyhedral game.

Consider the following problem:

Maximize ctx (2.40a)

subject to Ax ≤ b (2.40b)

x ≥ 0 (2.40c)

Here, small letters denote vectors while capital letters denote matrices of proper size.

(t) notation is used for transposition. Then the dual problem is:

Minimize ytb (2.41a)

subject to ytA ≥ ct (2.41b)

y ≥ 0 (2.41c)

From duality principle, the optimum value, φ, of both problems must be equal. In

other words, φ = ctx∗ = yt∗b, where x∗ and yt∗ denote optimal solutions of (2.40)
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and (2.41), respectively. If the sum of the vectors u1, u2, ...un is b, then the vector

u = [u1, u2, . . . , un] is called central program and (2.40) can be decomposed into n

independently solvable sector problems. Hence ith sector problem is:

Maximize ctixi (2.42a)

subject to Aixi ≤ ui ∀i = 1, 2, . . . , n (2.42b)

xi ≥ 0 ∀i = 1, 2, . . . , n (2.42c)

with dual problem

Minimize ytibi (2.43a)

subject to ytiAi ≥ cti ∀i = 1, 2, . . . , n (2.43b)

yi ≥ 0 ∀i = 1, 2, . . . , n (2.43c)

In [21], authors state the conditions for feasibility of all sector problems. Thus, for any

feasible central program u′ = [u′1, u
′
2, . . . , u

′
n], the ith sector optima is defined as

ϕi(u
′
i) = max

xi∈Xi(u′i)
ctixi = min

yi∈Yi(u′i)
ytiu
′
i (2.44)

where Xi(u
′
i) = {xi | Aixi ≤ u′i, xi ≥ 0} and Yi(u

′
i) = {yi | ytiAi ≥ cti, yi ≥ 0}. Hence

overall optimum under u′ is:

ϕ(u′) = ϕ1(u′1) + ϕ2(u′2) + . . .+ ϕn(u′n) (2.45)

The authors give a proof for the equivalence of φ = max
u

ϕ(u) [21]. Then, the following

equality holds where vt = [y1, y2, . . . , yn] denotes the vector of shadow prices.

ϕ(u) =
n∑
i=1

ϕi(ui) =
n∑
i=1

(min
yi∈Yi

ytiui) = min
yi∈Yi

n∑
i=1

ytiui = min vtu (2.46)
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Hence one can conclude the following equation:

φ = max
u∈U

min
v∈V

vtu (2.47)

(2.47) defines a polyhedral game where U is the set of maximizing strategies while V is

the set of minimizing strategies. While maximizing player is the center who distributes

the resources among the sectors in an optimal way, the minimizing player is the sectors

who try to minimize the prices they should pay for the allocated resources. At each

iteration, a lower and an upper bound is obtained for the payoff function, vtu. Con-

vergence to overall optimum in finite number of iterations is not guaranteed. Instead,

an approximate solution is obtained under certain regularity conditions. Ten Kate [22]

proposes a similar decomposition technique with improvements on convergence issues.

2.1.8. Primal-Dual Decomposition

Decomposition methods can be classified into primal decomposition and dual

decomposition. While the original problem is decomposed with respect to variables

in primal decomposition, decomposition is based on complicating constraints in dual

decomposition. Role of the master problem also differs. In primal decomposition,

master problem directly allocates common resources to the subproblems. Given the

allocations, subproblems return prices for common resources. The role of the master

problem is deciding the optimum allocation of common resources with respect to prices.

From this point of view, primal decomposition is also referred to as resource directive

decomposition.

On the other hand, in dual decomposition, master problem sets prices for common

resources. In response, subproblems determine the amount of common resources that

is to be used. In this case, the role of the master problem is deciding the optimum

pricing. Hence, dual decomposition is also referred to as price directive decomposition.

Benders decomposition and Dantzig-Wolfe decomposition can be given as examples for

primal decomposition and dual decomposition, respectively.
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Apart from these, there are also primal-dual decomposition methods which com-

bines properties of both primal and dual decomposition methods. Primal-dual decom-

position methods can be classified into mixed decomposition, cross decomposition and

mean value decomposition [23].

Mixed decomposition is based on exploiting primal and dual decomposition at the

same time. In an early example by Obel [24], a combination of Dantzig-Wolfe decompo-

sition (a price-directive method) and Ten Kate method (a resource-directive method)

is proposed for block angular linear problems. Master problem directs some divisions

by setting prices and some others by allocating common resources. Convergence in fi-

nite number of iterations is proved. Meijboom [25] also proposes mixed decomposition

approach for block angular linear problems. The key characteristic of this method is

dividing complicating constraints into two groups. First group of complicating con-

straints is directed by prices while the second group of complicating constraints is

directed by allocations simultaneously. Master problem obtains a lower bound and an

upper bound for the objective function value of the original problem according to the

responses coming from subproblems. The algorithm terminates when lower and upper

bounds are close enough.

Cross decomposition is introduced by Van Roy [26] especially for mixed integer

problems. The key idea of this method is using primal and dual decomposition methods

alternatingly. Compared to the other methods, master problem is more passive in

cross decomposition. Instead, there is subproblem phase where subproblems are solved

iteratively until convergence tests fail. In that case, master problem takes action to

ensure improvement of the method.

Mean value cross decomposition is similar to cross decomposition. The main

difference between two methods is that in mean value cross decomposition the role of

the master problem lessens. The method mainly based on subproblem phase in cross

decomposition. There is no convergence test, hence to ensure convergence, mean value

of all previous solutions is used as input instead of current solution. Master problem
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only pass information among subproblems and obtain mean values. This method is a

generalization of Kornai-Lipták method for linear programming problems [27].

2.2. Decentralization in Linear Programs

The key idea in decomposition methods is to partition the overall problem into

a master problem and several subproblems. Then the master problem collects infor-

mation from the subproblems to direct them and obtain an optimal solution to the

global problem. Thus, decomposition methods allow for decentralized decision mak-

ing to a certain extent since the master problem acts as a center having access to

the system wide information. However, several real-world optimization problems aris-

ing in many areas such as logistics, production and scheduling involve decision mak-

ers/parties/entities/agents that are unwilling to disclose their private data but want

to collaborate for solving global problem for a mutual benefit. Consider an example of

two companies producing and serving goods to the same region [28]. Each company has

its own goals and products. Their supply and demand information is private. With-

out collaboration, there may be empty vehicle movements in optimal delivery route of

both companies. However, by sharing their vehicles, they can reduce empty vehicle

movement dramatically in their delivery routes and obtain minimum global cost of

transportation while having their own production facilities.

Another example of decentralized decision making can be found in an supply chain

environment where several production lines having their own private information such

as production capacity, production and storage costs are sharing the same equipment.

Hence the resulting problem may be a large-scale aggregate planning problem. In this

case, building the global problem and solving it in a centralized way is impossible.

However, decentralized decision making allows coordination of individual production

lines by themselves to reach global solution with partial information exchange.

The solution approaches for decentralized decision making can be classified into

three classes [29]: (i) cryptographic methods, (ii) transformation based methods, (iii)
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decomposition based methods. Cryptographic methods essentially rely on using cryp-

tographic tools to hide the private data while performing each iteration in simplex

method [30, 31] or interior point algorithms [32]. Although these methods guaran-

tee data privacy strongly, they are inefficient and impractical for large-scale problems

[32]. Moreover, from a decentralized point of view, relationship among the decision

makers is insignificant since data privacy is ensured by encryption. Hence, crypto-

graphic methods are not covered in the scope of this research. However, refer [33] to

investigate cryptography-based optimization models. In this chapter, we review trans-

formation based methods and decomposition based methods while we restrict ourselves

to the prominent papers that address linear programming problems in block angular

structure.

Transformation based methods are introduced by Du [34]. The main idea of

transformation based methods is to disguise the linear programming problem into an

equivalent problem by applying algebraic transformations that make use of random

matrices. The main difference from the cryptographic methods is that the algebraic

transformation is used once at the beginning of the algorithm instead of at each itera-

tion. Then the disguised problem is solved and the solution is transformed back to the

original problem domain. From a decentralized point of view, transformation based

methods allow more than one decision makers to solve linear programming problems

since the private data is enclosed by algebraic transformations.

The authors address vertically partitioned linear programs in [35] where columns

of the constraint matrix and associated objective function coefficients are partitioned

into p independent entities. Thus, one can view this kind of problems as block angular

linear programs consisting of only the complicating constraints. The authors propose an

exact transformation based approach where each entity first generates its own random

transformation matrix. Then each entity shares its transformed constraint matrix

and also transformed objective function coefficient vector with others. The authors

formulate a secure linear program with public data revealed by the entities. Any one

of the entities solves the disguised problem. Then each entity derives its own optimal
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solution from public optimal solution of the secure linear program.

Transformation based methods allows using recent advances that is proposed to

solve linear programming problems once the problem is disguised by algebraic trans-

formations. Thus, transformation based methods are not restricted to use simplex

method or interior point algorithms unlike cryptographic methods. For instance, in

[36], the authors make use of a decomposition method. They propose a secure and

efficient algorithm that allows K collaborative agents to solve K-Agent linear pro-

gramming problem (K-LP). Any K-LP problem can be partitioned into a problem

with block angular structure. Thus, it can be distributed to the individual agents such

that each agent only knows its block of local constraints Bi, its share in the complicat-

ing constraints Ai and associated vector of objective function coefficients ci. First, the

agents locally anonymize right hand side values of the constraints. Then each agent

transforms Ai, Bi and ci by its own transformation matrix Qi. The authors use the

appropriate choice of transformation matrix that is given in [37]. Then transformed

K-LP problem is solved by Dantzig-Wolfe decomposition which utilize column gener-

ation method. An arbitrary agent is chosen to solve the master problem and obtain

the dual values. Pricing subproblem of any agent i is formulated and solved not by

its own but by a peer-agent j. If it exists, agent j sends agent i’s new column to the

agent solving the master problem. After updating the master problem with generated

columns, new dual values distributed to the agents. Once the algorithm reaches global

optimum, each agent uses back-transformation to find its part in optimal solution of

the original problem. The authors state slow convergence for multiple agents as a main

drawback of their approach. Thus their algorithm may stop with a near-optimal solu-

tion. On the other hand, the agents share all the information since privacy is ensured

by transforming the constraint matrices and objective function vector.

A recent work by Hong et al. [38] applies transformation based methods to

energy exchange optimization problems. The authors first formulate Microgrid Energy

Exchange opTimization (MEET) problem for different scenarios arising in smart grid

power distribution network. MEET is a block angular linear problem which minimizes
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global energy loss emanating while individual microgrids exchange their local energy

instead of requesting it from a main grid. The authors propose an efficient solution

procedure for MEET problem following the transformation based approach in [36]

without revealing private information of any microgrid.

There are some drawbacks of transformation based methods. In addition to the

computational cost of algebraic transformation, providing heuristic security is stated as

the one of the main disadvantages [30, 39]. Hence, it is difficult to prove that the private

data is protected in case of attacks [32]. Thus, the risk of disclosing whole private data

is an issue in transformation based methods since it is revealed in a disguised way.

Decomposition based methods are preferred by the researchers since only the

partial information is revealed in case of an attack. They differ from cryptographic

methods and transformation based methods since they do not need any kind of en-

cryption or transformation. The private data is inherently enclosed. Although they

are not as secure as cryptographic methods, the decomposition based methods are more

efficient than the others from computational point of view.

Decomposition based methods are the main focus of this research since they can

serve as a model of decentralized decision making [40]. An early work is proposed by

[41] which focus on block angular linear problems. The aim is to find the optimum

partition for the global problem with minimal amount of information exchange among

the subproblems. By partitioning the right hand side of the complicating constraints,

they decompose the global problem into smaller subproblems. Thus, each subproblem

consists of the block of local constraints and its share in the complicating constraints

with its associated right hand side. Then each subproblem solves its problem and

shares optimal dual variables with the other subproblems. New partition of the right

hand side vector is found with a coordination rule utilizing the optimal dual variables

of the subproblems. The process terminates with a near-optimal solution when some

stopping condition is fulfilled.
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In recent studies, decentralization that exploits decomposition methods has at-

tained significant attention. The authors in [42] address capacity planning problem

where finite capacity of a single facility is allocated among organizations to satisfy

demand constraints. Hence the resulting linear programming problem represents block

angular structure since the capacity constraints are linking the organizations’ demand

satisfaction constraints. The authors propose Cooperative Interaction via Coupling

Agents (CICA) algorithm where the facility and organizations act as coupling agents.

The CICA algorithm is mainly based on Lagrangian Relaxation. Thus the facility

minimizes total cost of deviations from each organization’s specified demand quanti-

ties subject to capacity constraints while each organization optimize local objective and

deviations from facility’s recommended capacity allocations subject to its demand con-

straints. A convex combination rule is utilized while updating Lagrangian multipliers

to avoid oscillation of local solution among extreme points of the local feasible region.

Numerical experiments are limited to include two coupling agents. Even in this case,

the CICA algorithm does not guarantee global optimal solution. The authors repre-

sent the effect of amount of disclosed information to the solution quality. The CICA

algorithm converges to near-optimal solution more quickly when organizations know

partial information about capacity of the facility.

A hybrid method especially for solving cross-facility capacity allocation prob-

lem that combines Lagrangian relaxation and immunity-inspired coordination scheme

is proposed in [43]. The problem shows block angular structure since it arises in

a decentralized supply chain where multiple agents sharing some common resources

manage manufacturing facilities. First, the authors decompose the problem among

the agents. An agent’s problem consists of the local constraints and the complicating

constraints corresponding to its common resource usage. Agents sharing the same com-

mon resource are the neighbours. Then each agent relaxes its complicating constraints

by adding them to the objective function by associated Lagrangian multipliers. Each

agent solves its relaxed problem and communicates the optimal solution with its neigh-

bours. Lagrangian multipliers are updated locally with respect to a biological immune

system model by utilizing neighbours’ stimulatory or suppressive effect. The algorithm
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terminates when an acceptable capacity violation is reached for all common resources.

Thus, the algorithm does not guarantees to reach global optimum solution. And also,

the formula for updating Lagrangian multipliers may become more complicated if there

are more than two agents sharing same common resource.

A distributed simplex method allowing more than two decision makers to solve

linear problems is proposed in [44]. The authors especially address the the security and

access control issues arising in distributed data mining environments. They introduce

a graph where each node acts as an individual decision maker and the edges denote

the communication between the nodes. Each node having its own local constraints and

also data processing capacity constraints. Instead of building a centralized model, the

authors aim to obtain a partition of the global problem at each node corresponding

to the local constraints. However, to reach global optimality, each node needs to add

the relevant basic variables. Hence, an arbitrary node s is selected as an initiator to

build a minimum spanning tree in the network. The initiator learns the total number of

constraints in the tree and informs any other node i such that it adds the corresponding

basic variables to its constraints. Then each node optimizes the same global objective

function with respect to its own constraint set using simplex method. To do so, first

each node i finds row−pivoti in its simplex tableau which denotes the minimum ratio of

right hand side of a constraint to the corresponding number in the pivot column. Then

each node sends its row − pivoti to the neighbours. The node having the minimum

value of row − pivoti sends its row to all other nodes in the network. Then each node

updates its simplex tableau with respect to the new row. Algorithm terminates when

each node has only positive coefficients in the its objective function. However, these are

some the drawbacks of this method from a decentralized point of view. First, to reach

global solution, the algorithm requires that the nodes optimize the common global

objective function. In addition to this, an initiator node who knows all the constraints

in the centralized problem is required to initialize the algorithm.

Another distributed simplex based algorithm is proposed for block angular prob-

lems in a multi-agent setup in [45]. The aim of Two-Stage Distributed Simplex Algo-
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rithm is to solve the problem with information exchange only among the agents. They

develop an algorithm that utilizes column generation method. The algorithm decom-

poses the aggregate model in a way that each agent has a local master problem and a

subproblem. Each agent initially knows only the associated local constraints, its part

in the objective function and right hand side of the complicating constraints. Local

constraints set up the subproblem’s feasible region. Each agent constructs an initial

basis for local master problem by using Big-M method. The idea is allowing subprob-

lems to generate new columns for the master problem. The authors assume a strongly

connected communication network for the agents. In this set up, each agent consecu-

tively performs three tasks: First, it transmits its current basis to its out-neighbours

irregularly at least after a time interval having a maximal length. Second, whenever it

gets a basis from its in-neighbours, it sorts all columns (in the existing basis and in the

received basis) lexicographically. Then performs simplex algorithm. Third, it updates

its basis with the optimal basis computed by simplex algorithm. The algorithm termi-

nates when all agents converge to the same optimal basis. [46] gives an application of

the algorithm to multi-agent assignment problem which has exact linear programming

formulation.

In [47], the authors propose a decentralized coordination algorithm especially for

Sales and Operations Planning problems in supply chain environments. The problem

shows block angular structure since independent decision makers share some common

resources while having private decision problems. There are two types of decision

makers: One Informed Party (IP) and several Reporting Parties (RP). IP is arbitrarily

chosen and it leads the others through calculating and announcing the common resource

usage proposals. It solves a linear programming problem CS2I which is closely related

to the Dantzig-Wolfe master problem. However, CS2I consists of local constraints

of IP also. Thus IP determines common resource allocations and its local decisions

simultaneously. On the other hand, RP i has two problems: CS1i and CS −Ei. Each

RP evaluates any given common resource allocation by solving CS −Ei and generates

a new common resource usage proposal which is sent to IP. Moreover, optimal solution

of CS−Ei gives a starting solution for CS1i. By solving CS1i, RP i maximizes profit
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increase for new solution by comparing it with the last outcome of CS−Ei and assigns

a penalty or bonus term ui for corresponding change in common resource usage. Since

ui is obtained within CS1i, the objective function of CS1i is nonlinear. However, for

fixed value of ui, CS1i corresponds to Dantzig-Wolfe subproblem and authors propose

an approximate solution approach. The resulting profit increase is sent to IP. Then

IP updates common resource allocations by solving CS2I . The algorithm terminates

when optimal solution of CS1i is zero for all RP i and IP can no longer produce new

common resource allocation. The authors state that their algorithm’s computational

time is comparable to global LP of same size if there is only one common resource.

In this research, we propose two decomposition based methods serving decen-

tralized decision making for block angular linear programs: Decentralized Benders

decomposition and Decentralized Dantzig-Wolfe decomposition. Differently from [42],

our methods allow more than two decision makers to solve their problem collabora-

tively. Only partial information sharing is required in both methods. The first one

relies on sharing dual information while the second one requires primal information

sharing. Thus, we offer two choice of methods to the decision makers with respect to

the type of information that they want to reveal. To the best of our knowledge, we

are first to use Benders Decomposition method in decentralized decision making. We

have no restriction on the number of complicating constraints in the global problem

unlike [47]. Our methods do not require a distinct role definitions for decision makers

as it is the case in [47] and [44]. The decision makers are equal on hierarchy and task

assignment. Both methods are proved to converge to global optimal solution in finite

number of iterations while [47], [42], [43] and [41] states near-optimal solution.

2.3. Decentralization in Integer Programs

Many decomposition methods that are proposed for linear programming problems

have mixed integer or integer programming extensions. However they do not address

decentralization allowing collaborative decision making which lacks central coordina-

tion.
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There are relatively few studies in literature that address decentralization for

integer programming problems. Among them, [48] addresses collaborative planning

problem arising in supply chain environments and private e-marketplaces where each

player has a private objective function and unique local problem depending on local

variables. Also, players have a global objective function depending on some common

variables. Hence the resulting problem represents dual block angular structure. Play-

ers’ aim is to reach global Pareto-optimal solution collaboratively while hiding local

objective functions by using some masked variables. The solution procedure is mainly

based on integer L-shaped method. Thus, the players construct a mixed integer master

problem jointly by using common variables and constraints associated with expected

costs for players. While master problem is solved by branch and bound algorithm,

players add optimality or feasibility cuts to the current master problem. The cuts are

generated by solving each player’s local linear subproblem using dual simplex method.

The algorithm terminates when a global solution of the master problem is acceptable

for all the players.

In [48], one can observe the case where linear subproblems allow making use of

linear programming duality for cut generation. However, in some cases, subproblems

are also integer programming problems. For instance, [49] addresses decentralized de-

cision making for zero-one integer programming case. The problem is scheduling N

jobs on a single shared machine while minimizing a linear function of completion times

subject to some precedence constraints on jobs and machine capacity constraints. The

problem represents block angular structure as the capacity constraints couple the local

precedence constraints. The proposed solution method is mainly based on Lagrangian

relaxation with some modifications on the way of relaxing coupling constraints and

Lagrangian multiplier updating to reduce the amount of information shared. The ca-

pacity constraints of the shared machine is associated with the master problem as each

disjoint subset of jobs is associated with a coupling agent having individual subprob-

lems. The problem is solved by partial information exchange between master problem

and subproblems. Authors report close-to-optimal solution for experiments including

two coupling agents and consider including multiple coupling agents.
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In this research, we address decentralized decision making for pure integer pro-

grams in block angular structure. Our method differs from the solution approach

presented in [48] since subproblems are also integer programs. Different from [49],

our solution approach is based on Integer L-shaped method allowing multiple decision

makers solve the global problem exactly.
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3. PRELIMINARIES

In this chapter, we present basic concepts that help for describing the proposed

methods in detail in the following three chapters. First we formally define the problem

that we are interested in. Then we give definitions and notation from graph theory to

describe the structure of the communication scheme among decision makers. We state

the main algorithm that is common for the proposed methods. Finally, we give sketch

of convergence proof for the proposed methods.

3.1. Problem Statement

The problem has N decision makers which we call optimization agents (OA). We

design OA as an individual, independent decision unit. The problem that we focus

on can be defined as follows. Each OA i ∈ {1, 2, ..., N} has its own set of decision

variables xij’s for activity j ∈ {1, 2, ..., ni}. OAs aim to minimize own linear cost

cijxij, where cij ∈ < and xij ∈ < while satisfying a block of local constraints given by∑ni

j=1 bijxij = li. Here bij denotes the local resource usage of OA i for activity j while

li is the total available amount of the local resource for OA i. There is also a set of

complicating constraints given by
∑N

i=1

∑ni

j=1 a
k
ijxij = rk, where akij is the jth entry of

global constraint matrix of OA i for common resource k and rk is the available amount

of common resource k ∈ {1, 2, ..., K}. Hence, the resulting problem has primal block

angular structure. It can be formulated as follows:

BALP

Minimize
N∑
i=1

ni∑
j=1

cijxij (3.1a)

subject to
N∑
i=1

ni∑
j=1

akijxij ≤ rk ∀k = 1, 2, . . . ,m (3.1b)

ni∑
j=1

bijxij ≤ li ∀i = 1, 2, . . . , N (3.1c)
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xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (3.1d)

We call this formulation as aggregate problem. The constraints given by (3.1b)

are the complicating constraints that link OAs for each common resource k. Also,

(3.1c) describes the blocks of local constraints that are private to each OA itself. For

integer programming case, we refer 3.1 with integer xij variables. In centralization

approach, the problem is built and solved as a whole by a center. However, we propose

Decentralized Benders Decomposition and Decentralized Dantzig-Wolfe Decomposition

for linear programs while we propose Decentralized Integer L-shaped Method for integer

programs to solve the problem without a central coordination unit.

3.2. Communication Network

In decentralized methods, decision makers need to communicate among them-

selves to achieve global optimum since a central coordination is lacking. Usually infor-

mation exchange among decision makers is provided through a communication network.

In this section, we present some definitions and notation from graph theory to define

the communication networks that we utilize. Then we introduce some common network

topologies in literature.

A graph consists of a set of nodes N and a set of edges E ⊆ N × N and is

denoted by G(N,E). Graphs can be divided into two groups. Undirected graphs are the

first group of graphs where the edges are unordered pairs of nodes such that (i,j) and

(j,i) denotes the same edge between the nodes i and j, hence (i, j) ∈ E if and only if

(j, i) ∈ E. The other group of graphs is called directed graphs if any edge (i,j) of the

graph is directed from node i to node j. Two nodes are called to be adjacent if there is

an edge between them. The neighbours of a node i are the ones that have an incoming

edge from node i. A path is a list of edges that connect a sequence of distinct nodes.

A graph is called strongly connected if there exists a path of directed edges that goes

from i to j for every pair of the nodes of the graph.
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As mentioned before, in this research we want to propose decentralized methods

which allow multiple optimization agents of same hierarchy to solve a large-scale block

angular problem collaboratively. Since a central coordinating unit does not exist, indi-

vidual optimization agents need to communicate and exchange information with each

other in order to solve the problem. Thus, we consider a directed graph of N nodes

to model the communication network among N decision makers in the sense that op-

timization agents are the nodes of the graph and the edges represent a communication

link between two optimization agents. Then optimization agent i can only communi-

cate with optimization agent j if there exists a path of directed edges from node i to

the node j in the graph. In order for the problem to be reach global optimality, any

pair of the optimization agents should communicate to each other. Hence, we assume

a strongly connected graph for a communication network.

STAR RING MESH 

Figure 3.1. Common Network Topologies

There are several common communication network topologies in the literature

as illustrated in Figure 3.1. Among them, Star Topology, Mesh Topology and Ring

Topology are taken into consideration for our research. In the Star Network Topology,

there is a node at the center and all the other nodes are directly connected to it. There

is no direct connection between any one of the non-central nodes, however a node is

connected to any other node through central node. In the Ring Network Topology,

the nodes are connected in a closed loop configuration. While adjacent pairs of nodes

are directly connected, the other nodes are connected indirectly through one or more

intermediate nodes. In the Mesh Network Topology, each node is connected directly to
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all the other nodes. There is not a central node in Ring or Mesh network topologies.

3.3. Main Algorithm

Existing decomposition methods serve decentralization to a certain extent since

they involve a center associated with the master problem to direct the other decision

makers of each having a subproblem.

MASTER PROBLEM 

SPN SP2 SP1 ... 

Figure 3.2. Structure and information exchange scheme for existing decomposition

methods

Figure 3.2 illustrates the structure and information exchange scheme for decom-

position methods. According to this, the master problem is on top of the subproblems

collecting their private information to guide them either setting prices or setting allo-

cations for common resources. However, many optimization problems involve decision

makers of equal hierarchy level who want to solve the aggregate problem collabora-

tively. In this case, existing decomposition methods are not applicable or inefficient as

a solution approach.

In this research, we propose Decentralized Benders Decomposition and Decentral-

ized Dantzig-Wolfe Decomposition for block angular linear programs while we propose

Decentralized Integer L-shaped method for block angular integer programs. Our aim is



43

eliminating the center completely and allowing multiple decision makers to solve aggre-

gate problem cooperatively by exchanging partial information through a peer-to-peer

communication network.

The main assumptions of proposed methods are as follows. First, we assume a

strongly connected communication graph that allows any OA to reach any cut/column

generated by any other OA. We ignore communication lags and assume that OAs

share partial information asynchronously only when it is required. Second, we assume

an environment based on trust. OAs jointly solve the problem without conspiring each

other to reach other’s private information or changing problem data in time for ones

own benefit.

Main algorithm is common for the proposed methods. The inputs are a subprob-

lem - local master problem pair for each OA and a strongly connected graph to ensure

the information exchange among OAs. The algorithm solves the aggregate problem for

each OA in serial. First the algorithm solves the local master problem to get alloca-

tions/dual variables. Then it calls recursive GetCut/GetColumn function to find

a new cut/column if it is available. The algorithm terminates when there is no new

cut/column to be added to local master problem.

Recursive GetCut/GetColumn function takes current OA’s identity, visited

neighbours list and allocations/dual variables shared by the current OA’s master prob-

lem as inputs. The algorithm first adds the current OA to the visited neighbours list to

avoiding cycling. Then it updates the subproblem with given allocations/dual variables

and solves it. A cut/column is generated with respect to the subproblem solution. If

there is no new cut/column generated, then algorithm asks for a cut/column from all

neighbours recursively until it finds one. If there is no new cut/column coming from

the neighbours, then algorithm terminates.
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Figure 3.3. Structure and information exchange scheme for proposed methods

The main aspects of the algorithm are the following. First, communication among

OAs occur whenever an OA’s own subproblem cannot generate a new cut/column for

given allocations/dual variables. In this case, local master problem communicates with

the subproblem of a neighbouring OA by sharing allocations/dual variables for a new

cut/column. Figure 3.3 illustrates the structure and information exchange scheme for

the proposed methods. Second, if a new cut/column is generated by a neighbouring

OA, then that cut/column is added to the local master problem of each OA in the path

connecting the two communicating OAs. Third, at any iteration an upper bound and a

lower bound on objective function value can be obtained. These bounds are of interest

to terminate the algorithm when they are close enough. Finally, proposed methods can

also be applicable in case of having hierarchy levels among the OAs provided that the

communication is ensured via a strongly connected communication graph which is the

same requirement as before.

3.4. Sketch of Convergence Proof

In the proposed methods, main algorithm terminates when there is no new cut

or column generation. Hence the convergence proof of the proposed methods mainly

based on the cut or column generation strategy. We prove convergence of the proposed
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methods in three parts. In the first part, we show that there are finitely many cuts

or columns that can be generated. This implies that there is an upper bound on the

number of iterations. The second part shows that each cut or column can be generated

and added to the relaxed local master problem at most once. This implies that cycling

is not allowed in proposed methods. Finally, in the third part, we show that the

algorithm can reach any cut or column and add it to the relaxed local master problem

by utilizing a recursive function. This is required to reach a global optimal solution.

As a result, convergence of the proposed methods to a global optimal solution follows.
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4. DECENTRALIZED BENDERS DECOMPOSITION FOR

BLOCK ANGULAR LINEAR PROGRAMS

This chapter gives the details of Decentralized Benders Decomposition method

for primal block angular linear programs. First, we describe Classical Benders Decom-

position as a solution approach since it can be typically applied to dual block angular

problems. Next, we propose Decentralized Benders Decomposition method. Finally,

we prove the convergence of Decentralized Benders Decomposition method.

4.1. Classical Benders Decomposition Applied for Primal BALP

In this section, we briefly describe Classical Benders Decomposition approach for

solving (3.1). Classical Benders Decomposition is originally defined as a Dantzig-Wolfe

decomposition algorithm applied to the dual of the linear program in Primal Block

Angular structure [8]. Thus, it can be best applied to the linear programs in Dual

Block Angular Structure [13]. However, we propose a reformulation of (3.1), which

allows us to use decentralized solution approach mainly based on Classical Benders

Decomposition. According to this, (3.1) can be decomposed into several smaller sub-

problems by removing the complicating constraints given by (3.1b). However, we want

to decompose the complicating constraints also. Thus, we introduce a new variable,

rki , for each k and i such that it denotes the amount of common resource k allocated

to the OA i. Then, instead of each complicating constraint linking OAs for common

resource k, the following set of constraints is introduced:

ni∑
j=1

akijxij = rki ∀i (4.1)

Note that, sum of any allocation of common resource k should be equal to the available

amount of that resource. Thus, the constraint
∑N

i=1 r
k
i = rk should be satisfied for

each k. Hence, equivalent formulation for (3.1) after decomposing the complicating
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constraints can be given as the following:

Minimize
N∑
i=1

ni∑
j=1

cijxij (4.2a)

subject to:
N∑
i=1

rki = rk ∀k = 1, 2, . . . , K (4.2b)

ni∑
j=1

akijxij = rki ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (4.2c)

ni∑
j=1

bijxij = li ∀i = 1, 2, . . . , N (4.2d)

rki unrestricted ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (4.2e)

xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (4.2f)

With this reformulation, (4.2) has a dual block angular structure where rki are treated

as complicating variables. Furthermore, note that (4.2c) can be treated as local con-

straints in addition to (4.2d). Assume that complicating variables are fixed to a given

value, r̂ki . Then, the centralized problem in (4.2) can be solved as N independent prob-

lems only in xij variables. Each independent problem is called a subproblem. Given

r̂ki values, the ith subproblem, SPi is formulated as the following:

SPi(r̂
k
i )

Minimize

ni∑
j=1

cijxij (4.3a)

subject to:

ni∑
j=1

akijxij = r̂ki ∀k = 1, 2, . . . , K (4.3b)

ni∑
j=1

bijxij = li (4.3c)

xij ≥ 0 ∀j = 1, 2, ..., ni (4.3d)

Note that, (4.3) is a linear program for given allocations. If any one of the subproblems

is unbounded for r̂ki , then (4.2) is also unbounded. This implies the unboundedness
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of the centralized problem in (3.1). Hence, we assume the boundedness of the sub-

problems. By introducing dual variables πki associated with constraints (4.3b) and

wi associated with the constraint (4.3c), dual subproblem can be formulated as the

following:

Dual − SPi(r̂ki )

Maximize
m∑
k=1

r̂ki π
k
i + liwi (4.4a)

subject to:
K∑
k=1

akijπ
k
i + bijwi ≤ cij ∀j = 1, 2, ..., ni (4.4b)

πki unrestricted ∀k = 1, 2, . . . , K (4.4c)

wi unrestricted (4.4d)

Note that, only the objective function depends on the values of r̂ki . The feasible

region of dual subproblem does not depend on the given allocations, r̂ki . If the feasible

region of the dual subproblem is empty, then either SPi is unbounded for some r̂ki or the

feasible region of SPi is also empty. Hence, we assume that the feasible region of dual

subproblem is non-empty. Thus, one can enumerate all extreme points and extreme

rays of the feasible region. All extreme points of the feasible region in (4.4) can be

enumerated as {
(
πk
i
wi

)p
}, where p is an element of the set of extreme points, Pi. Similarly,

all extreme rays can be enumerated as {
(
πk
i
wi

)r
}, where r is an element of the set of

extreme rays, Ri. For given r̂ki , a bounded solution of dual subproblem corresponds to

an extreme point of the feasible region. On the other hand, an unbounded solution of

dual subproblem corresponds to an extreme ray of the feasible region. Thus, if dual

subproblem is bounded, then there exists an extreme point, p ∈ Pi that maximizes

the objective function value r̂ki (π
k
i )p + liw

p
i > qi. Otherwise, if dual subproblem is

unbounded, then there exists an extreme ray, r ∈ Ri such that r̂ki (π
k
i )r + liw

r
i > 0.

Then (4.4) can be reformulated as the following:
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DSPi(r̂
k
i )

Minimize qi (4.5a)

subject to: r̂ki (π
k
i )p + liw

p
i ≤ qi p ∈ Pi (4.5b)

r̂ki (π
k
i )r + liw

r
i ≤ 0 r ∈ Ri (4.5c)

qi unrestricted (4.5d)

The constraints in (4.5) are called Benders cuts. Constraints of type (4.5b) are

Benders optimality cuts, while constraints of type (4.5c) are Benders feasibility cuts.

Then, (3.1) can be reformulated equivalently by using the Benders cuts:

MP

Minimize
N∑
i=1

qi (4.6a)

subject to:
N∑
i=1

rki = rk ∀k = 1, 2, . . . , K (4.6b)

rki (π
k
i )p + liw

p
i ≤ qi p ∈ Pi ∀i = 1, 2, . . . , N (4.6c)

rki (π
k
i )r + liw

r
i ≤ 0 r ∈ Ri ∀i = 1, 2, . . . , N (4.6d)

qi unrestricted (4.6e)

rki unrestricted (4.6f)

The number of Benders cuts in (4.6) is generally huge, since there are expo-

nential number of extreme rays and extreme points of the feasible region of the dual

subproblems. Since generating all Benders cuts is not practical, Classical Benders De-

composition starts with a Relaxed Master Problem (RMP) consisting of a subset of

feasibility and optimality cuts. A central coordination unit solves RMP and announces

the initial common resource allocations to the OAs. In each iteration, OAs update the

objective function of its own dual subproblem by fixing the r̂ki to a value obtained by
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RMP. Then dual subproblems are solved to optimality to produce either a feasibility

cut or an optimality cut which is added to the RMP. Re-solving RMP gives new values

for r̂ki to update dual subproblems in the next iteration. Since the sets of extreme

points and extreme rays are finite, there are finitely many feasibility or optimality cuts

to be added to the RMP. The convergence of Benders decomposition in a finite number

of iterations follows since in each iteration a new Benders cut is generated. Efficiency

of Benders Decomposition is based on the observation that the algorithm typically

reaches optimality before addition of the all Benders cuts.

4.2. Decentralized Benders Decomposition Algorithm

Classical Benders Decomposition requires a center to solve RMP to determine

common resource allocations. By Decentralized Benders Decomposition method, our

aim is achieving complete removal of the center from the system. Thus, instead of

solving a global master problem by a center, we introduce a local copy of the relaxed

master problem for each OA:

MPi

Minimize qi (4.7a)

subject to:
N∑
i=1

rki = rk ∀k = 1, 2, . . . ,m (4.7b)

rki unrestricted ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (4.7c)

qi ≥ LBi (4.7d)

Note that initially (4.7) consists of linking constraints (4.2b), only. We also initialize a

lower bound LBi for qi which denotes the objective function value of the subproblem

given by SPi. Thus, we need to find a lower bound for the objective function value

of the subproblem. Recall that SPi consists of the complicating constraints given by

(4.3b) and the local constraints given by (4.3c). Complicating constraints may shift as

their right hand side value, r̂ki , changes. However, the local constraints define a fixed
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feasible region. Hence, we formulate the following problem as a relaxation of (4.3) by

eliminating the complicating constraints.

Minimize

ni∑
j=1

cijxij (4.8a)

subject to:

ni∑
j=1

bijxij = li (4.8b)

xij ≥ 0 ∀j = 1, 2, ..., ni (4.8c)

Recall that we assume boundedness of the subproblems. Hence, the feasible region of

local constraints is also bounded. The optimal objective function value of (4.8) gives a

lower bound for qi since it is a relaxation. (4.7d) ensures the boundedness of the local

master problem at initial iterations.

Input: DSPi(r
k
i ) { Dual subproblem for OA i}

Input: MPi {Local master problem for OA i}

Input: G = {N,A} {Strongly connected digraph}

1 {rki denotes the amount of common resource k allocated to OA i}

2 {V denotes the visited neighbours list for finding a new cut}

3 {BC denotes the Benders cut}

4 for i = 1 to N do

5 repeat

6 Solve MPi → (rki )

7 V ← ∅

8 BC ← GetCut(i, V, rki )

9 until BC = Null

Figure 4.1. Pseudo-code for Decentralized Benders Decomposition Algorithm

We describe Decentralized Benders Decomposition Algorithm in Figure 4.1. It

starts with a pair of problems DSPi(r
k
i ) −MPi for each OA i ∈ {1, 2, ..., N} and a

strongly connected communication graph, G = {N,A}. Each OA i solves its local

master problem, MPi and gets rki that denotes the amount of common resource k
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allocated to OA i (line 6). Decentralized Benders Decomposition Algorithm utilizes

GetCut function (line 8) which looks for a cut from neighbours recursively, if there

is no cut generated by the OA itself. Hence, Decentralized benders Decomposition

Algorithm keeps track of the visited OAs with the list, V . It terminates when there is

no new cut is generated for any of the OAs (line 9).

Input: j {Identity of OA}

Input: V {Visited Neighbours List}

Input: rki ∀k = 1, 2, . . . , K {Allocation of common resource k in OA i’s

proposal}

Output: BC {Benders Feasibility or Optimality cut}

1 {This is a recursive function that returns a Benders cut, if it exists}

2 if j ∈ V then

3 return Null

4 V ← V ∪ {j}

5 Update objective function of DSPj(r
k
i )

6 Solve DSPj(r
k
i )→ GetStatus

7 if GetStatus = Optimal then

8 BC ← Generate Benders optimality cut according to (4.5b)

9 else if GetStatus = Unbounded then

10 BC ← Generate Benders feasibility cut according to (4.5c)

11 if BC = Null then

12 forall n ∈ Nj do

13 BC ← GetCut(n, V, rki )

14 if BC 6= Null then

15 Break out of the For loop

16 Add BC to MPj

17 return BC

Figure 4.2. Pseudo-code for GetCut Function
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Figure 4.2 gives the pseudo-code of the GetCut function that returns a Benders

cut. It adds the current OA to the list to avoid visiting it more than once (line 4). Then

objective function of DSPj(r
k
i ) is updated with the given allocations and it is solved

(line 5). According to the solution status of DSPj(r
k
i ), either a Benders feasibility

cut or a Benders optimality cut is generated (line 6, line 10). Otherwise, GetCut

function looks for a new cut recursively from all neighbouring OAs (line 11, line 13)

until it finds a new cut (line 14). If a new cut is generated then it is added to the local

master problem of OA j (line 16). GetCut function runs until all OAs are visited

(line 3). Note that, GetCut is a recursive function. Hence, by definition, when a cut

is generated by OA j with respect to OA i’s allocations through GetCut function,

then all the OAs on the path connecting OAs i and j adds that cut to their local master

problem.

Notice that at any iteration, optimal objective function value of local master

problem is a lower bound on objective function value of (3.1) since it consists of only

a subset of constraints. Also notice that the sum of objective function values of the

subproblems is an upper bound for objective function value of (3.1). The advantage

of this feature is allowing termination before reaching global optimality if lower and

upper bounds are close enough.

4.3. Convergence

In this section, we give a formal proof for convergence of Decentralized Benders

Decomposition for linear programs in three parts. In the first part, we show that there

are finitely many cuts that can be generated. The second part shows that each cut can

be generated at most once. Finally, in the third part, we show that any violated cut is

detected and added to the relaxed local master problem. As a result, convergence of

Decentralized Benders Decomposition for linear programs follows.

PART I: There is a finite number of Benders Cuts that can be generated. Proof

of the first part is based on projection theory which will be assumed to fulfill conditions
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similar to those utilized in the convergence analysis of Classical Benders Decomposition

in [2]. First we state the following theorem which defines the multipliers obtained by

projecting out the xij variables in (4.3) and also the projection of the polyhedron.

Theorem 2. If

Pi = {(x, r) ∈ <ni ×<k|
ni∑
j=1

akijxij ≥ rki ∀k = 1, 2, . . . , K,

ni∑
j=1

bijxij ≥ li} (4.9)

then projecting out the xij variables from the system generates the nonnegative mul-

tipliers {(πki , wi),∀k = 1, 2, . . . , K} such that

K∑
k=1

ni∑
j=1

akijπ
k
i +

ni∑
j=1

bijwi = 0 (4.10)

Also the projection of the polyhedron is

projr(Pi) = {r ∈ <k|πki rki ≥ 0 ∀k = 1, 2, . . . , K} (4.11)

Then we state two propositions which are adapted from [50] for BALP. One can

relate the multipliers obtained by projection and the extreme rays of the projection

cone as a result of these propositions.

Proposition 1. If Pi is given in (4.9) then projr(Pi) is given in (4.11) where

{(πki , wi),∀k = 1, 2, . . . , K} are the extreme rays of the projection cone

Cx(Pi) = {(π,w)|
K∑
k=1

ni∑
j=1

akijπ
k
i +

ni∑
j=1

bijwi = 0, πki ≥ 0 ∀k = 1, 2, . . . , K, wi ≥ 0}

(4.12)

Proposition 2. If Pi is given in (4.9) and {(πki , wi),∀k = 1, 2, . . . , K} are the multi-

pliers that are generated using projection, then the extreme rays of the projection cone

in (4.12) are contained in this set of multipliers.
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We omit the proof of Proposition 1 and Proposition 2 here. Refer to [50] for proof

of generalized cases as Proposition 2.22 and Proposition 2.23, respectively.

Theorem 2 states that the inequalities πki r
k
i ≥ 0 ∀k = 1, 2, . . . , K that results

from projecting out the xij variables from the system defines projr(Pi). By Propo-

sition 1, projr(Pi) can also be generated by the extreme rays of the projection cone

Cx(Pi). Proposition 2 defines the relationship between the multipliers {(πki , wi), ∀k =

1, 2, . . . , K} generated using projection and the extreme rays of Cx(Pi). We use this

relationship to conclude that finite number of cuts are generated. Thus, we apply

projection to BALP. The aggregate problem (3.1) can be equivalently stated as the

following:

Minimize z0 (4.13a)

subject to: z0 −
N∑
i=1

ni∑
j=1

cijxij ≥ 0 (4.13b)

N∑
i=1

rki − rk = 0 ∀k = 1, 2, . . . , K (4.13c)

ni∑
j=1

akijxij ≥ rki ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (4.13d)

ni∑
j=1

bijxij ≥ li ∀i = 1, 2, . . . , N (4.13e)

xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (4.13f)

rki unrestricted ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (4.13g)

Let us assign the multiplier u0 to the constraint (4.13b) and the vector of multipli-

ers π, w, u to the constraints (4.13d), (4.13e) and (4.13f), respectively. Using these

multipliers, we project out the xij variables. This gives the following:

Minimize z0 (4.14a)

subject to:
N∑
i=1

rki − rk = 0 ∀k = 1, 2, . . . , K (4.14b)
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up0z0 ≥ (πki )prki + wi
pli ∀i ∀k ∀p (4.14c)

rki unrestricted ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (4.14d)

Without loss of generality, multipliers (up0, (π
k
i )p, wi

p, (uij)
p) can be re-scaled. Assume

up0 = 1 for p = 1, 2, . . . , t, and up0 = 0 for i = t+ 1, . . . , P . Hence the resulting problem

is:

Minimize z0 (4.15a)

subject to:
N∑
i=1

rki = rk ∀k = 1, 2, . . . , K (4.15b)

z0 ≥ (πki )prki + wi
pli

∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K ∀p = 1, 2, . . . , t
(4.15c)

0 ≥ (πki )prki + wi
pli

∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K ∀p = t+ 1, . . . , P
(4.15d)

rki unrestricted ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (4.15e)

From theory of projection, r∗ is an optimal solution to (4.15) if and only if there is an

x∗ such that (x∗, r∗) is an optimal solution to the aggregate problem. By Proposition

2, the extreme rays of the projection cones

Cx(Pi) = {(u0, π, w, u)|
K∑
k=1

aijkπ
k
i + bijwi + uij − u0cij = 0

∀j = 1, 2, ..., ni, (u0, π, w, u) ≥ 0} (4.16)

are contained in the set of multipliers

{(up0, (πki )p, wi
p, (uij)

p)|∀j = 1, 2, ..., ni ∀k = 1, 2, . . . , K ∀p = 1, 2, . . . , P} (4.17)

generated by projection ∀i = 1, 2, . . . , N . By Proposition 1, only the extreme rays

of the projection cones Cx(Pi) ∀i = 1, 2, . . . , N are needed to generate constraints
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(4.15c)−−(4.15d) which characterize the projection into r space. Therefore, we can

conclude that the constraints (4.15c)−−(4.15d) are generated from the extreme rays

of the projection cones.

Proposition 3. If the multipliers in (4.17) are the extreme rays of the projection cone

in (4.16) scaled so that up0 = 1, for p = 1, 2, . . . , t and up0 = 0, for p = t + 1, 2, . . . , P ,

then ((πki )p, (wi)
p), for p = 1, 2, . . . , t are the extreme points of the polyhedron

{(πki , wi)|
K∑
k=1

aijkπ
k
i + bijwi ≤ cij, (π

k
i , wi) ≥ 0 ∀j = 1, 2, . . . , ni} (4.18)

and ((πki )p, (wi)
p), for p = t+1, 2, . . . , P are the extreme rays of the associated recession

cone

{(πki , wi)|
K∑
k=1

aijkπ
k
i + bijwi ≤ 0, (πki , wi) ≥ 0 ∀j = 1, 2, ..., ni} (4.19)

If all the constraints associated with the extreme rays are generated, then (4.15)

becomes full master problem. Since solving full master problem is not practical, a

relaxed master problem having a subset of the constraints (4.15c)−−(4.15d) is solved.

If there is a constraint that violates the relaxed master problem’s solution, then that

constraint is added to the relaxed master. By Proposition 3, one can find a constraint

that violates the relaxed master problem by solving the following subproblem:

Maximize
K∑
k=1

r̂ki π
k
i + liwi (4.20a)

subject to:
K∑
k=1

akijπ
k
i + bijwi ≤ cij ∀j = 1, 2, ..., ni (4.20b)

πki ≥ 0 ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (4.20c)

wi ≥ 0 ∀i = 1, 2, . . . , N (4.20d)
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Proposition 4. The number of Benders cuts that can be generated in Decentralized

Benders Decomposition is finite.

Proof. Assume that r̄ is a feasible solution to the relaxed master problem with an

objective function value z̄0. If (πki , wi) is an optimal solution to the subproblem and

z̄0 < r̂ki π
k
i +liwi then add the constraint z̄0 ≥ r̂ki π

k
i +liwi to the relaxed master problem.

If the subproblem is unbounded, then there exists an extreme ray (π,w) in the recession

cone such that r̂ki π
k
i + liwi > 0. In this case, add the constraint r̂ki π

k
i + liwi ≤ 0 to the

relaxed master problem. Therefore, there is only one constraint associated with each

extreme ray or extreme point. The number of extreme rays and extreme points is finite

since the feasible region of the subproblem is a polyhedron. Hence one can conclude

that the number of cuts that can be generated is also finite.

PART II: A unique cut is generated at each iteration. We state and prove the

following proposition for this part.

Proposition 5. At each iteration, the constraint added to the relaxed master problem

is unique.

Proof. We proved that each cut generated by the subproblem is associated with either

an extreme ray or an extreme point. When a new cut is generated and added to the

relaxed master problem, then relaxed master problem excludes the associated extreme

ray or extreme point in the solution set for subsequent iterations. Hence each cut can

be generated and added to the relaxed master at most once.

PART III: Any violated cut can be detected and added to any local master

problem. We state and prove the following proposition for this part.

Proposition 6. Decentralized Benders Decomposition Algorithm converges in a finite

number of iterations if the neighbourhood network is strongly connected.
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Proof. Assume that the cut exchange network is strongly connected. Then, by definition

of strong connectivity, there exist a directed path between any pair of the nodes. Hence

any cut generated by any node can reach all the nodes in the graph along the directed

path via recursive GetCut function. In other words, Benders Cut generated by any

one of the OAs can be added to relaxed local master of any other OA. Decentralized

Benders Decomposition algorithm terminates when no new cut is generated for any one

of OAs. Hence the convergence of Decentralized Benders Decomposition to the global

optimal solution in a finite number of iterations follows from having finite number of

cuts, each of which is generated and added at most once to any OA’s local master

problem.
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5. DECENTRALIZED DANTZIG-WOLFE

DECOMPOSITION FOR BLOCK ANGULAR LINEAR

PROGRAMS

In this chapter, we introduce Decentralized Dantzig-Wolfe Decomposition Al-

gorithm given in Figure 5.1. Decentralized Danzig-Wolfe Algorithm utilize Phase I

algorithm to ensure the feasibility of local master problem. Once we get an initial

feasible local master problem, we describe Phase II algorithm that utilize recursive

GetColumn function to seek a column either from the OA’s own subproblem or

subproblem of any neighbouring OA. Finally, we prove the finite convergence of De-

centralized Dantzig-Wolfe Decomposition.

1 IsFeasible←Phase I Algorithm

2 if IsFeasible then

3 Phase II Algorithm

Figure 5.1. Pseudo-code for Decentralized Dantzig-Wolfe Decomposition Algorithm

5.1. Constructing Feasible Local Master Problems

We consider block angular linear programs given by (3.1). We exploit the special

structure of BALP to decompose the aggregate model into subproblem - local master

problem pairs. Without the complicating constraints in (3.1b), the problem can be

decomposed into N smaller subproblems. Each block of local constraints in (3.1c) is

associated with a subproblem while master problem is given as the following:

MP

Minimize
N∑
i=1

ni∑
j=1

cijxij (5.1a)
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subject to
N∑
i=1

ni∑
j=1

akijxij ≤ rk ∀k = 1, 2, . . . , K (5.1b)

xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (5.1c)

Using Minkowski’s Representation Theorem, any point xij in the feasible region

of subproblem i can be expressed as:

xij =
∑
p

λpix
p
i +

∑
r

µrix
r
i (5.2a)

∑
p

λpi = 1 (5.2b)

λpi ≥ 0 ∀xpi ∈ Pi (5.2c)

µri ≥ 0 ∀xpi ∈ Ri (5.2d)

where Pi and Ri are the sets of extreme points and extreme rays of the subproblem i’s

feasible region, respectively. For the sake of simplicity, we assume a bounded feasible

region. Hence, we can reformulate (MPi) as the following:

MPi

Minimize

ni∑
j=1

∑
p

cijx
p
iλ

p
i (5.3a)

subject to

ni∑
j=1

∑
p

akijx
p
iλ

p
i ≤ rk ∀k = 1, 2, . . . , K (5.3b)

∑
p

λpi = 1 (5.3c)

λpi ≥ 0 ∀xpi ∈ Pi (5.3d)

MPi may be a huge linear program since the set of extreme points may be exponentially

large. Hence we initialize restricted master problem having a column associated with

an extreme point. To find an initial column we solve the following subproblem once
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for each OAi:

SP 0
i

Minimize

ni∑
j=1

cijxij (5.4a)

subject to

ni∑
j=1

bijxij ≤ li (5.4b)

xij ≥ 0 ∀j = 1, 2, ..., ni (5.4c)

Note that, the constraint set in (5.4) is a subset of the constraints in BALP. Hence, if

any one of the subproblems is infeasible in the initialization step, then we can conclude

that BALP is infeasible. Otherwise we generate a column and add it to MPi. How-

ever, MPi may be infeasible because complicating constraints are violated. To ensure

feasibility of MPi we use Phase I algorithm in Algorithm ?? as it is described in [51].

According to this, we introduce an artificial variable sk for each complicating

constraint k and minimize their sum. Hence, the resulting master problem, MP − I is

as the following:

MP − I

zMP−I = Minimize
K∑
k=1

sk (5.5a)

subject to

ni∑
j=1

∑
p

akijx
p
iλ

p
i − sk ≤ rk ∀k = 1, 2, . . . , K (5.5b)

∑
p

λpi = 1 (5.5c)

λpi ≥ 0 ∀xpi ∈ Pi (5.5d)

sk ≥ 0 ∀k = 1, 2, . . . , K (5.5e)
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We describe Phase I Algorithm in Figure 5.2. First, it starts by solving (MP −I)

to get dual variables πk ∀k = 1, 2, . . . , K associated with complicating constraints

and wi associated with convexity constraint (line 3). Then the algorithm searches each

OA for a new column. A variable can be added to (MP − I) with its corresponding

column with respect to its reduced cost (RC). The following equation gives the reduced

cost of a variable:

RC :

ni∑
j=1

(cij −
K∑
k=1

πka
k
ij)xij − wi (5.6)

Note that we set cij = 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni in (5.6) since the objective

function of (MP − I) is minimization of
∑K

k=1 sk. The most profitable variable enter

to the master problem is the one having the most negative reduced cost. Hence, the

pricing subproblem to choose the most promising variable is as the following:

SPi(πk, wi)

zSPi
=Minimize

ni∑
j=1

(cij −
K∑
k=1

πka
k
ij)xij − wi (5.7a)

subject to

ni∑
j=1

bijxij ≤ li (5.7b)

xij ≥ 0 ∀j = 1, 2, ..., ni (5.7c)

To decide whether there is a new variable enter to the master problem with respect

to the given dual variables, Phase I algorithm updates (5.7) with (πk, wi) (line 6) and

solves. Assume that optimal solution of SPi(πk, wi) is x∗ij (line 7). Note that, the

objective function value zSPi
of SPi(πk, wi) gives the minimum reduced cost (line 8).

If RC is negative for a variable, then a column generated by x∗ij with respect to the

following equation (line 10):

C : [

ni∑
j=1

cijx
∗
ij

ni∑
j=1

a1
ijx
∗
ij · · ·

ni∑
j=1

akijx
∗
ij 1]T (5.8)
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1 {This algorithm finds a feasible local master problem for OAs}

2 repeat

3 MP − I → (πk, wi)

4 hasColumn← False

5 forall i ∈ {1, . . . , N} do

6 Update objective function of SPi with (πk, wi)

7 Solve SPi(πk, wi)→ x∗ij

8 RC ← z∗SPi
{ RC denotes reduced cost in (5.6)}

9 if RC < 0 then

10 Generate C according to (5.8)

11 Add C to (MP − I)

12 hasColumn← True

13 if not hasColumn then

14 return False {(MP − I) is infeasible so is BALP}

15 until z(MP−I) = 0

16 return True

Figure 5.2. Pseudo-code for Phase I Algorithm

where T is the transpose operator. Here the first entry of (5.8) is the coefficient for

the objective function. Since cij = 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni, it is equal to

zero for (MP − I). Next k entries are the coefficients with respect to the complicating

constraints and the final entry 1 is for convexity constraint.

The new column is added to (MP − I) (line 11). If there is no new column

generated by any of the OAs, then Phase I algorithm terminates since (MP − I) is

infeasible which means that BALP infeasible (line 14). Otherwise, at least one column

is generated and Phase I algorithm terminates with feasible local master problem if

objective function value, z(MP−I) is zero (line 16).
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5.2. GetColumn Function

Once we get feasibility of master problem for each OA with Phase I algorithm, we

change the objective function of master problem in (5.3) from
∑K

k=1 sk to
∑ni

j=1 cijx
p
iλ

p
i

and run Phase II Algorithm.

We describe Phase II algorithm in Figure ??. It starts with a pair of problems

SPi(πk, wi)−MPi for each OA i ∈ {1, 2, ..., N} and a strongly connected communica-

tion graph, G = {N,A}. Each OA i solves its local master problem, MPi and gets dual

variables (πk, wi) (line 6). Phase II Algorithm utilizes recursive GetColumn function

(line 8) to find a new column. It terminates when there is no new column is generated

for any of the OAs (line 9).

Input: SPi(πk, wi) { Pricing Subproblem for OA i}

Input: MPi {Local master problem for OA i}

Input: G = {N,A} {Strongly connected digraph}

1 {(πk, wi) denotes the dual variables of MPi }

2 {V denotes the visited neighbours list for finding a new column from the

neighbours}

3 {C denotes the column generated}

4 for i = 1 to N do

5 repeat

6 Solve MPi → (πk, wi)

7 V ← ∅

8 C ← GetColumn(i, V, (πk, wi))

9 until C = Null

Figure 5.3. Pseudo-code for Phase II Algorithm

Figure 5.4 gives the details of the GetColumn function which returns a new

column (line 16). It updates the visited neighbours list (line 4).Then SPj(πk, wi) is

updated and solved (line 5, line6). If reduced cost is negative for a variable, then a new
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column is generated(line 9). Otherwise, GetColumn function looks for a new column

recursively from neighbours (line 11, line12). A new column is added to the local

master problem (line 15) of OA j. The algorithm terminates when all the neighbours

are visited. Note that, when a column is generated by OA j for OA i, then by definition

of recursive GetColumn function, all the OAs on the path connecting the OAs add

that column to their local master problem.

1 {This is a recursive function that returns a column, if it exists}

Input: j {Identity of OA}

Input: V {Visited Neighbours List}

Input: (πk, wi) {Dual variables of MPi }

Output: C {New Column}

2 if j ∈ V then

3 return Null

4 V ← V ∪ {j}

5 Update objective function of SPj(πk, wi)

6 Solve SPj(πk, wi)→ z∗SPj

7 RC ← z∗SPj
{RC denotes reduced cost in (5.6)}

8 if RC < 0 then

9 Generate C according to (5.8)

10 else

11 forall n ∈ Nj do

12 C ← GetColumn(n, V, rki )

13 if C 6= Null then

14 Break out of the For loop

15 Add C to MPj

16 return C

Figure 5.4. Pseudo-code for GetColumn Function
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5.3. Convergence

In this section, we prove the finite convergence of Decentralized Dantzig-Wolfe

decomposition in three parts. Assume that BALP has a finite optimal solution. Decen-

tralized Dantzig-Wolfe Decomposition algorithm breaks BALP into many local master

problems each of which is associated with an OA. Then by exploiting column generation

method, each OA solves its local master problem individually. Thus, the convergence

of the algorithm mainly depends on the columns added to the relaxed local master

problem of any OA.

PART I: There are finitely many columns to be generated. We state and prove

the following proposition for this part.

Proposition 7. The number of columns that can be generated in Decentralized Dantzig-

Wolfe Decomposition Algorithm is finite.

Proof. Let Si = {xij|
∑ni

j=1 bijxij ≤ li} denotes the feasible region of ith pricing sub-

problem (SPi). Then Si has finitely many extreme points and extreme rays since it is a

polyhedron and any point can be expressed as sum of a convex combination of extreme

points and a non-negative linear combination of extreme rays as (5.2a) by Minkowski’s

Representation theorem. For a (SPi) having bounded feasible region, optimal solution

is at one of its extreme points since it is an linear programming problem. A new column

can be generated with respect to any optimal solution is given by (5.8). Hence, each

extreme point is associated with exactly one column. For a (SPi) having unbounded

feasible region, the solution attains at one of the extreme rays. Hence, similar results

holds for an extreme ray. Therefore, finiteness of the number of columns follows.

PART II: A unique column is generated at each iteration. We state and prove

the following proposition for this part.

Proposition 8. Decentralized Dantzig-Wolfe Decomposition yields an unique column

at each iteration.
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Proof. Local master problem for OA i given in (5.3) is a linear programming problem.

Thus, one can calculate reduced cost of any variable xij by (5.6). Since MPi is a

minimization problem, at optimality, the reduced cost of any variable is non-negative.

A variable having negative reduced cost may improve the objective function value of

MPi if it enters the basis. Pricing subproblem (SPi) searches for the variable having

most negative reduced cost and adds associated column to the MPi. Hence if a column

has already added to the MPi, pricing subproblem cannot generate the same column

again since its reduced cost is non-negative. Therefore, each column can be generated

and added to the any local relaxed master problem at most once.

PART III: Any violated column can be detected and added to any local master

problem. We state and prove the following proposition for this part.

Proposition 9. Decentralized Dantzig-Wolfe Decomposition yields an optimal solu-

tion for BALP (if one exists) within a finite number of iterations if communication

network is strongly connected.

Proof. Assume a strongly connected communication network for exchanging columns

among OAs. Thus, any column generated by any OA can be added to relaxed local

master of any other OA in the network along the directed path via recursive Get-

Column function. Decentralized Dantzig-Wolfe Decomposition algorithm terminates

when there is no variable having negative reduced cost for any one of OAs. Therefore,

finite convergence of Decentralized Dantzig-Wolfe Decomposition Algorithm for BALP

follows from Proposition 8 and Proposition 9.
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6. DECENTRALIZED INTEGER L-SHAPED METHOD

In this chapter, we present Decentralized Integer L-shaped method for integer

programming problems in block angular structure. First, we state the problem that

we address. In this case, both master problem and the subproblems consist of integer

variables. Hence we utilize a cut generation procedure inspired from the work done

by Laporte and Louveaux [5] for our algorithm. Then we prove that our algorithm

converges to global optimal solution in a finite number of iterations.

6.1. Decentralized Integer L-Shaped Algorithm

We focus on primal Block Angular Integer Program (BAIP) that is given in (6.1).

BAIP

Minimize
N∑
i=1

ni∑
j=1

cijxij (6.1a)

subject to
N∑
i=1

ni∑
j=1

akijxij ≤ rk ∀k = 1, 2, . . . , K (6.1b)

ni∑
j=1

bijxij ≤ li ∀i = 1, 2, . . . , N (6.1c)

xij ≥ 0 and integer, ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (6.1d)

The aggregate problem in (6.1) can be decomposed into a master problem and indepen-

dent subproblems by removing the complicating constraints in (6.1b). To decompose

the complicating constraints, we introduce a new variable rki for each k and i such that

it denotes the amount of common resource k assigned to the optimization agent (OA)

i. Hence the resulting BAIP with new constraint set is given as the following:
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Minimize
N∑
i=1

ni∑
j=1

cijxij (6.2a)

subject to:
N∑
i=1

rki = rk ∀k = 1, 2, . . . , K (6.2b)

ni∑
j=1

akijxij ≤ rki ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (6.2c)

ni∑
j=1

bijxij ≤ li ∀i = 1, 2, . . . , N (6.2d)

rki unrestricted and integer ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (6.2e)

xij ≥ 0 and integer ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (6.2f)

The aggregate problem in (6.2) can be decomposed into a subproblem - local master

problem pair for each OA. Given the r̂ki values, subproblem i can be formulated as the

following:

SPi(r̂
k
i )

Minimize

ni∑
j=1

cijxij (6.3a)

subject to:

ni∑
j=1

akijxij ≤ r̂ki ∀k = 1, 2, . . . , K (6.3b)

ni∑
j=1

bijxij ≤ li (6.3c)

xij ≥ 0 and integer ∀j = 1, 2, ..., ni (6.3d)

Note that (6.3) is an integer programming problem. In this case, we cannot use lin-

ear programming duality to generate Benders cuts as we have done in Decentralized

Benders Decomposition. Instead, we adopt cut generation strategy of Laporte and

Louveaux [5], which they use for stochastic integer programs with binary first stage

decision variables. Binary first stage variables are associated with common resource



71

allocation variables rki in our case. Thus, we need to convert integer rki variables to

binary variables to utilize the cut generation strategy. It is known that any bounded

integer variable can be expressed as a set of binary variables. Let x be any nonnegative

integer variable. For 0 ≤ x ≤ u, there exists a number S such that

2S ≤ u < 2S+1

is satisfied. Here S denotes the minimum required number of binary variables to

represent x. Hence representation of x as binary variables is

x = 20y0 + 21y1 + 22y2 + · · ·+ 2syS

where yi ∈ {0, 1}. Any bounded but not necessarily positive integer x, where l ≤ x ≤ u,

can be transformed in a similar way since 0 ≤ x− l ≤ u− l is a bounded nonnegative

integer.

To find a lower bound for each integer variable rki , we solve an linear problem

that minimizes left hand side of (6.3b) subject to the local constraint set since the right

hand side of this equation defines rki . Hence the resulting problem is as the following:

Minimize

ni∑
j=1

akijxij (6.4a)

ni∑
j=1

bijxij ≤ li (6.4b)

xij ≥ 0 ∀i = 1, 2, . . . , N ∀j = 1, 2, ..., ni (6.4c)

Similarly, for finding upper bound we solve (6.4) as a maximization problem. To find

the bounds, we assume that local constraint set has a bounded feasible region.

Assume each rki is represented with a set of binary variables rki = {rki0, rki1, · · · , rkiS}

such that rkis ∈ {0, 1} and rki = 20rki0 + 21rki1 + 22rki2 + · · · + 2SrkiS. Also assume
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that ri = {r1
i , r

2
i , · · · , rki } denotes the amount of each common resource k allocated to

OA i by master problem. With given ri values, OA i solves (6.3). As in the linear

programming case, proposed algorithm generates feasibility cuts if the subproblem is

infeasible. If subproblem has a finite solution, then the algorithm generates optimality

cuts. Subproblems do not have unbounded solution, since we assume local constraint

set has a bounded feasible region.

6.1.1. Feasibility Cut Generation

At iteration t, let common resource allocation variables rti for OA i are given,

then define two sets

I ti = {s|(rkis)t = 1} and Zt
i = {s|(rkis)t = 0}

Next define the linear function

δti(r
t
i) =

∣∣I ti ∣∣−
∑
s∈Iti

rkis −
∑
s∈Zt

i

rkis

 (6.5)

If subproblem is infeasible with respect to given rti values, then this solution should be

excluded. Thus, subproblem generates a feasibility cut by switching at least one of the

binary components’ value from one to zero or zero to one. This can be expressed by

the following inequality:

∑
s∈Iti

rkis −
∑
s∈Zt

i

rkis

 ≤ ∣∣I ti ∣∣− 1, i.e. δti(r
t
i) ≥ 1 (6.6)

To verify validity of δti(r
t
i) ≥ 1, observe that when ri = rti , δ

t
i(r

t
i) = 0 and excludes

current solution. Otherwise when ri 6= rti , δ
t
i(r

t
i) ≥ 1 holds.



73

6.1.2. Optimality Cut Generation

For the optimality cuts, there is a lower bound LBi, on the subproblem’s objective

function value since we assume set of local constraints has bounded feasible region. LBi

can be found by solving (6.7) since local constraints are fixed and do not change with

respect to common resource allocations.

LBi

Minimize

ni∑
j=1

cijxij (6.7a)

subject to:

ni∑
j=1

bijxij ≤ li (6.7b)

xij ≥ 0 and integer ∀j = 1, 2, ..., ni (6.7c)

Also assume that optimal objective function value of subproblem at iteration t is de-

noted by zti . Recall that optimality cuts are generated when subproblem has a finite

objective function value. Hence in this case, zti exists. Then the following inequality

gives the optimality cut:

qi ≥ zti − δti(rti)
[
zti − LBi

]
(6.8)

To verify its validity, observe that when ri = rti , then δti(r
t
i) = 0 and master problem

recovers the value of subproblem’s objective function value. Otherwise, when ri 6= rti ,

the following inequality and (6.8) holds:

δti(r
t
i)
[
zti − LBi

]
≥
[
zti − LBi

]
(6.9)
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6.1.3. The Algorithm

(6.10) gives general appearance of master problem at any iteration after addition

of possible feasibility or optimality cuts.

MPi

Minimize
N∑
i=1

qi (6.10a)

subject to:
N∑
i=1

rki = rk ∀k = 1, 2, . . . ,m (6.10b)

rki =
S∑
s=0

2srkis ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (6.10c)

qi ≥ zi − δi(ri)[zi − LBi] ∀i = 1, 2, . . . , N (6.10d)

δi(ri) ≥ 1 ∀i = 1, 2, . . . , N (6.10e)

qi ≥ LBi ∀i = 1, 2, . . . , N (6.10f)

rki unrestricted ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K (6.10g)

rkis ∈ {0, 1} ∀i = 1, 2, . . . , N ∀k = 1, 2, . . . , K ∀s = 1, 2, . . . , S

(6.10h)

In integer programming case, local master problem decides common resource

allocations and primal subproblem generates cuts. The main difference is in the cut

generation strategy. Instead of Benders Cut, we generate Laporte and Louveaux (LL)

cuts in this case since linear programming duality is lost. There is no change in the way

of communication among OAs. We describe Decentralized Integer L-Shaped Method in

Figure 6.1. It starts with a pair of problems SPi(r
k
i )−MPi for each OA i ∈ {1, 2, ..., N}

and a strongly connected communication graph, G = {N,A}. Each OA i solves its

local master problem, MPi and gets rki that denotes the amount of common resource k

allocated to OA i (line 6). Decentralized Integer L-Shaped Method utilizes GetIPCut

function (line 8) which looks for a cut from neighbours recursively, if there is no cut
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Input: SPi(r
k
i ) { Subproblem for OA i}

Input: MPi {Local master problem for OA i}

Input: G = {N,A} {Strongly connected digraph}

1 {rki denotes the amount of common resource k allocated to OA i}

2 {V denotes the visited neighbours list for finding a new cut}

3 {LL denotes the Laporte and Louveaux cut}

4 for i = 1 to N do

5 repeat

6 Solve MPi → (rki )

7 V ← ∅

8 LL← GetIPCut(i, V, rki )

9 until LL = Null

Figure 6.1. Pseudo-code for Decentralized Integer L-Shaped Method

generated by the OA itself. Hence, Decentralized Integer LShaped Method keeps track

of the visited OAs with the list, V . It terminates when there is no new cut is generated

for any of the OAs (line 9).

Figure 6.2 gives the pseudo-code for GetIPCut function that returns a Laporte

and Louveaux cut. It adds the current OA to the list to avoid visiting it more than

once (line 4). Then objective function of SPj(r
k
i ) is updated with the given allocations

and it is solved (line 5).

According to the solution status of SPj(r
k
i ), either a Laporte and Louveaux fea-

sibility cut or a Laporte and Louveaux optimality cut is generated (line 6, line 10).

Otherwise, GetIPCut function looks for a new cut recursively from all neighbouring

OAs (line 11, line 13) until it finds a new cut (line 14). If a new cut is generated then it

is added to the local master problem of OA j (line 16). The algorithm for GetIPCut

function runs until all OAs are visited (line 3). Note that, GetIPCut is a recursive

function. Hence, by definition, when a cut is generated by OA j with respect to OA

i’s allocations through GetIPCut function, then all the OAs on the path connecting
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OAs i and j adds that cut to their local master problem.

Input: j {Identity of OA}

Input: V {Visited Neighbours List}

Input: rki ∀k = 1, 2, . . . , K {Allocation of common resource k in OA i’s

proposal}

Output: LL {Laporte and Louveaux Feasibility or Optimality cut}

1 {This is a recursive function that returns a LL cut, if it exists}

2 if j ∈ V then

3 return Null

4 V ← V ∪ {j}

5 Update objective function of SPj(r
k
i )

6 Solve SPj(r
k
i )→ GetStatus

7 if GetStatus = Optimal then

8 LL← Generate LL optimality cut according to (6.8)

9 else if GetStatus = Infeasible then

10 LL← Generate LL feasibility cut according to (6.6)

11 if LL = Null then

12 forall n ∈ Nj do

13 LL← GetIPCut(n, V, rki )

14 if LL 6= Null then

15 Break out of the For loop

16 Add LL to MPj

17 return LL

Figure 6.2. Pseudo-code for GetIPCut Function

6.2. Convergence

In this section, we prove the convergence of Decentralized Integer L-Shaped Al-

gorithm in three parts. In the first part, we show that the number of LL cuts that
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can be generated is finite. The second part shows that each LL cut can be generated

at most once. Finally, in the third part, we show that any violated cut is detected

and added to the relaxed local master problem if the underlying communication net-

work is strongly connected. As a result, convergence of Decentralized Integer L-Shaped

Algorithm follows.

PART I: There is a finite number of Laporte and Louveaux that can be generated.

We state and prove the following proposition for this part.

Proposition 10. The number of LL cuts that can be generated in Decentralized

Integer L-Shaped Algorithm is finite.

Proof. Assume that ri = {r1
i , r

2
i , · · · , rki } denotes the amount of common resource k

allocated to optimization agent i by (6.10). Then each rki = {rki0, rki1, · · · , rkis} can be

represented with a set of binary variables such that rki = 20rki0 +21rki1 +22rki2 + · · ·+2srkis

where rkis ∈ {0, 1}. A feasibility cut or an optimality cut is generated in (6.6) or (6.8),

respectively with respect to an unique partition I ti and Zt
i of binary variables rkis used

to represent rki . If there are m binary variables in local master problem then there is

at most 2m available partitions for each variable. Hence one can conclude that there

are finite number of cuts that can be generated in Decentralized Integer L-Shaped

Algorithm.

PART II: A unique Laporte and Louveaux cut is generated at each iteration. We

state and prove the following proposition for this part.

Proposition 11. Decentralized Integer L-Shaped Algorithm yields an unique Laporte

and Louveaux cut at each iteration.

Proof. We verify the validity of feasibility and optimality LL cuts. When a new cut

is generated and added to the relaxed master problem, then relaxed master problem

excludes the associated binary solution in the solution set for subsequent iterations.

Hence each cut can be generated and added to the relaxed master at most once.
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PART III: Any violated cut can be detected and added to any local master

problem. We state and prove the following proposition for this part.

Proposition 12. Decentralized Integer L-Shaped Algorithm yields an optimal solution

for BAIP (if one exists) within a finite number of iterations if communication network

is strongly connected.

Proof. Assume a strongly connected communication network for exchanging cuts among

OAs. Thus, any cut generated by any OA can be added to relaxed local master of any

other OA in the network along the directed path via recursive GetIPCut function.

Decentralized Integer L-Shaped Algorithm terminates when there is no new cut is

generated for any one of OAs. Therefore, finite convergence of Decentralized Integer

L-Shaped Algorithm for BAIP follows from Proposition 10 and Proposition 11.
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7. APPLICATIONS AND COMPUTATIONAL RESULTS

In this chapter, we apply Decentralized Benders Decomposition and Decentral-

ized Dantzig-Wolfe Decomposition to solve randomly generated block angular linear

problems and Multi-commodity Network Flow problems. We present test results with

a discussion. Also we apply Decentralized L-Shaped Method to solve small random

instances and present preliminary results.

7.1. Numerical Experiments and Results for LP Case

7.1.1. Test Problems

We use two groups of problems to test the correctness and performance of the

proposed methods. For the first one, we generate random block angular linear problems

by using the same strategy of the authors in [52]. According to this, the constraint

matrix Ai of the problems consists of non-negative random numbers in the range [0,10]

with density 30%. The objective function coefficients ci are generated from the range

[10, 20] while right hand side values bi are selected from [100,500]. Table 7.1 presents

the dimensions of randomly generated problems in three sets. In the first set, problems

has fixed size of 500 × 1000 while the number of OAs varies. In the second set, each

problem has twenty OAs with varying size. In the third set, the problems has varying

size with varying number of OAs, however each block has same size of 20× 30.

Multi-commodity network flow (MNCF)problems are the second group of prob-

lems since they are one of the well-known problem types that represents primal block

angular structure. MNCF problems simply deal with reducing the total cost of trans-

porting commodities from their origins to destinations through a network with capac-

itated arcs. Some real-world application areas involve production planning, telecom-

munications and transportation/distribution. A general linear programming model

formulation that obtains the minimum cost routing of a set of k commodities through
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Table 7.1. Dimensions for Randomly Generated Problems.

Random Instance # of blocks
# of variables in 

each block

# of rows in 

each block

# of 

complicating 

constraints

% of 

complicating 

constraints

pr2-500-200-100 2 500 200 100 20%

pr5-100-80-100 5 100 80 100 20%

pr10-50-40-100 10 50 40 100 20%

pr20-25-20-100 20 25 20 100 20%

pr50-10-8-100 50 10 8 100 20%

pr20-10-4-20 20 10 4 20 20%

pr20-20-8-40 20 20 8 40 20%

pr20-30-12-60 20 30 12 60 20%

pr20-40-16-80 20 40 16 80 20%

pr20-50-20-100 20 50 20 100 20%

pr5-30-20-25 5 30 20 25 20%

pr10-30-20-50 10 30 20 50 20%

pr20-30-20-100 20 30 20 100 20%

pr40-30-20-200 40 30 20 200 20%

a network given by a directed graph G(N,A) having n nodes and m arcs can be for-

mulated as the following:

Minimize
∑
k

∑
ij

ckijx
k
ij (7.1a)

subject to:
∑
j

xkij −
∑
j

xkji = bki ∀i, k (7.1b)

0 ≤ xkij ≤ ukij ∀i, j, k (7.1c)∑
k

xkij ≤ uij ∀i, j (7.1d)

xkij ≥ 0 (7.1e)

where node i and node j ∈ N and arc (i, j) ∈ A. The decision variables xkij define the

flow of the commodity k on each arc (i,j). ckij denotes the unit cost for the commodity

k on arc (i,j). Clearly, (7.1) is a primal block angular problem. The blocks are defined

by the constraint set (7.1b) that satisfies the flow conservation of commodity k at each

node i and the constraint set (7.1c) that restricts the individual capacity of each arc for

commodity k by ukij. The constraint set (7.1d) are the complicating constraints since

they link the commodities by limiting the total flow on each arc by mutual capacity
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uij. Hence the overall problem has k ×m variables and k × (m+ n) +m constraints.

This research is not examining a specific real-world problem, hence we per-

formed computational experiments on randomly generated problem instances. The

problems are generated by random generator Mnetgen that can be retrieved from

http://www.di.unipi.it/di/groups/optimize/Data/MMCF.html. We used C++ service

class Graph to convert the problems to MPS format.

Table 7.2. Characteristics for Mnetgen Instances

Instances M*.*.1-2-3 M*.*.4-5-6 M*.*.7-8-9 M*.*.10-11-12 
Density Sparse Sparse Dense Dense 
Complicating constraints 40% 80% 40% 80% 

Mnetgen generator is one of the well-known multi-commodity network flow prob-

lem generators which is developed by Kennington and Ali [53] and revised by Frangioni

[54, 55]. The set of problems generated by Mnetgen can be characterized by the num-

ber of nodes n where n ∈ {64, 128, 256} and the number of commodities k where

k ∈ {4, 8, 16, ..., n}. In our context, n is the number of local constraints in each block

while k is the number of blocks. For any pair of (n,k), Mnetgen randomly generates

twelve problems such that six of the problems are dense with m/n ≈ 8 and the other

six problems are sparse with m/n ≈ 3. Within each group of six problems, three prob-

lems are easy with 40% of the arcs have mutual capacity constraints (ie, complicating

constraints). The other three problems are hard since 80% of the arcs have mutual

capacity constraints. Table 7.2 summarizes the problem characteristics of each set of

the problems.

Mnetgen generator provides a large set of test instances. Table 7.3 shows dimen-

sions of the Mnetgen instances that we have used in our experiments.
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Table 7.3. Dimensions of Mnetgen Instances

(a) M64.4.* instances (b) M64.8.* instances 

 

 

 

 

 

 

 

 

 

 

 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M64.4.1 82 338x720 
M64.4.2 63 319x720 
M64.4.3 32 288x720 
M64.4.4 140 396x720 
M64.4.5 136 392x720 
M64.4.6 56 312x720 
M64.4.7 184 440x1530 
M64.4.8 161 417x1482 
M64.4.9 69 325x1517 

M64.4.10 391 647x1534 
M64.4.11 307 563x1529 
M64.4.12 149 405x1521 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M128.32.1 394 4488x11538 
M128.32.2 398 4492x11538 
M128.32.3 403 4497x11521 
M128.32.4 413 4507x11527 
M128.32.5 412 4508x11527 
M128.32.6 413 4507x11525 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M64.8.1 81 593x1432 
M64.8.2 67 579x1433 
M64.8.3 56 568x1434 
M64.8.4 147 659x1434 
M64.8.5 152 664x1437 
M64.8.6 87 599x1436 
M64.8.7 226 738x2991 
M64.8.8 199 711x2984 
M64.8.9 118 630x2970 

M64.8.10 428 940x2998 
M64.8.11 377 889x2970 
M64.8.12 260 772x2973 

 

 

 

 

 

 

 

 

 

 

 

 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M64.4.1 82 338x720 
M64.4.2 63 319x720 
M64.4.3 32 288x720 
M64.4.4 140 396x720 
M64.4.5 136 392x720 
M64.4.6 56 312x720 
M64.4.7 184 440x1530 
M64.4.8 161 417x1482 
M64.4.9 69 325x1517 

M64.4.10 391 647x1534 
M64.4.11 307 563x1529 
M64.4.12 149 405x1521 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M128.32.1 394 4488x11538 
M128.32.2 398 4492x11538 
M128.32.3 403 4497x11521 
M128.32.4 413 4507x11527 
M128.32.5 412 4508x11527 
M128.32.6 413 4507x11525 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M64.8.1 81 593x1432 
M64.8.2 67 579x1433 
M64.8.3 56 568x1434 
M64.8.4 147 659x1434 
M64.8.5 152 664x1437 
M64.8.6 87 599x1436 
M64.8.7 226 738x2991 
M64.8.8 199 711x2984 
M64.8.9 118 630x2970 

M64.8.10 428 940x2998 
M64.8.11 377 889x2970 
M64.8.12 260 772x2973 

(c) M128.32.* instances

 

 

 

 

 

 

 

 

 

 

 

 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M64.4.1 82 338x720 
M64.4.2 63 319x720 
M64.4.3 32 288x720 
M64.4.4 140 396x720 
M64.4.5 136 392x720 
M64.4.6 56 312x720 
M64.4.7 184 440x1530 
M64.4.8 161 417x1482 
M64.4.9 69 325x1517 

M64.4.10 391 647x1534 
M64.4.11 307 563x1529 
M64.4.12 149 405x1521 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M128.32.1 394 4488x11538 
M128.32.2 398 4492x11538 
M128.32.3 403 4497x11521 
M128.32.4 413 4507x11527 
M128.32.5 412 4508x11527 
M128.32.6 413 4507x11525 

Mnetgen 
Instance 

# of 
complicating 
constraints 

Problem 
Size 

M64.8.1 81 593x1432 
M64.8.2 67 579x1433 
M64.8.3 56 568x1434 
M64.8.4 147 659x1434 
M64.8.5 152 664x1437 
M64.8.6 87 599x1436 
M64.8.7 226 738x2991 
M64.8.8 199 711x2984 
M64.8.9 118 630x2970 

M64.8.10 428 940x2998 
M64.8.11 377 889x2970 
M64.8.12 260 772x2973 

7.1.2. Results and Discussion

In this section, we present computational results performed on randomly gen-

erated generic problems and Multi-commodity network flow problems. We have im-

plemented the Decentralized Benders Decomposition and Decentralized Dantzig-Wolfe

Decomposition algorithms with C# utilizing CPLEX 12.5.1.0 running on a Windows7

PC with a 2.6 Turbo GHz CPU and 4 GB RAM. For the problems in Table 7.1, we

generate five instances randomly for each problem type and report the average as the

result. We use Star, Ring and Mesh topologies in Figure 3.1 as strongly connected com-

munication graph among OAs. Our algorithms designed as if each OA solves BALP
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Figure 7.1. Results for Decentralized Benders Decomposition on Random Set



85

for itself since a central coordination unit is lacking. Hence we allow equal run time for

each OA that sum up to two hours for each problem. We find lower and upper bound

on the objective function value if the algorithm does not converge to optimal solution

within the allowed time and report the percent of the gap.

Table 7.4 presents results for first group of problems on Decentralized Benders

Decomposition. For the first set of problems, the size of the overall problem is fixed.

Thus, subproblem size becomes smaller as the number of OAs increases. However,

Gap% increases with the number of OAs because of allowing less time for each OA in

a problem having more OAs. For the second set, we can observe the effect of the sub-

problem size on convergence. Harder subproblems result in higher Gap%. For the third

set, we can observe the effect of the number of OAs since the subproblem size is fixed.

Problem having more OAs need more time to converge. Ring topology outperforms

the others almost in all instances. Mesh topology results in smaller Gap% than Star

topology. Figure 7.1 illustrates respective Gap% Decentralized Benders Decomposition

on random set of problems.

Table 7.5. Results for Decentralized Dantzig-Wolfe Decomposition on Random Set

STAR RING MESH

pr2-500-200-100 292.73 36.29 36.47 37.02

pr5-100-80-100 776.96 37.02 19.98 21.65

pr10-50-40-100 1535.00 39.63 17.21 20.06

pr20-25-20-100 3066.16 30.42 11.86 16.58

pr50-10-8-100 7416.69 28.55 3.65 18.63

pr20-10-4-20 2170.44 1.58 0.38 1.06

pr20-20-8-40 2560.39 7.65 2.78 4.80

pr20-30-12-60 2406.45 38.84 15.62 19.67

pr20-40-16-80 2510.25 222.02 40.48 74.78

pr20-50-20-100 2498.82 611.71 38.91 142.01

pr5-30-20-25 732.75 0.49 0.22 0.30

pr10-30-20-50 1397.83 5.69 0.97 2.16

pr20-30-20-100 2950.30 61.75 4.84 18.49

pr40-30-20-200 5642.89 666.40 24.64 185.32

Random Instance
CPU Time (s)

Obj. Fn. Value



86

RESULTS FOR DECENTRALIZED DANTZIG-WOLFE 
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Table 7.5 and Figure 7.2 present results for first group of problems on Decen-

tralized Dantzig-Wolfe Decomposition. Results in the first set presents the effect of

communication network. Convergence time in Star topology increases first because

time spent for communication is more than time spent for solving the subproblems.

Convergence time decreases whenever the subproblems becomes easy enough to solve.

For Ring topology, convergence time decreases because the subproblems are getting

easier to solve. For Mesh topology, convergence time decreases first as the subprob-

lems are getting easier to solve, however more OAs results in higher convergence time.
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Figure 7.3. Results for Decentralized Benders Decomposition on Mnetgen Instances
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There is an increase in convergence time for the second set and the third set.

However, the algorithm reacts more to size of the subproblems than the number of

agents for all topology types. While Ring topology outperforms the others, Mesh

topology converges faster than Star topology.

Table 7.6 and Table 7.7 present results for Mnetgen instances for Decentralized

Benders Decomposition. While eight out of twelve M64.4.* problems converge to op-

timal solution, six out of twelve M64.8.* problems converge. Figures 7.3a and 7.3b

illustrate the Gap% for M64.4.* and M64.8.*, respectively. The results shows that

there is not a clear dominance of any topology to the others for M64.4.* problems.

However, in most of the problems Star topology has longer convergence time than

the others. For M64.8.* instances, Ring topology needs less computational time to

convergence.

Table 7.8 and Table 7.9 show that Decentralized Dantzig-Wolfe Decomposition

method converges to optimal solution under one second for M64.4.* instances (See

Figure 7.4a) and within seconds for M64.8.* instances (See Figure 7.4b). While there

is not a clear dominance of any topology for M64.4.* instances, Ring topology has less

computational time than the others.

Table 7.8. Results for Decentralized Dantzig-Wolfe Decomposition on M64.4.*

Instances

Mnetgen 
Instance 

Aggregate 
Obj. Fn. 
Value 

STAR RING MESH 
CPU Time (s) CPU Time (s) CPU Time (s) 

M64.4.1 290806.3 0.098 0.071 0.073 
M64.4.2 336019.9 0.111 0.088 0.09 
M64.4.3 348966.6 0.019 0.020 0.019 
M64.4.4 412475.85 0.52 0.341 0.384 
M64.4.5 390578.57 0.603 0.44 0.418 
M64.4.6 506554.45 0.053 0.04 0.049 
M64.4.7 147862.16 0.319 0.203 0.231 
M64.4.8 165185.35 0.263 0.135 0.145 
M64.4.9 192119.41 0.027 0.025 0.027 
M64.4.10 167479.52 0.752 0.504 0.56 
M64.4.11 193238.44 0.358 0.261 0.275 
M64.4.12 192400.135 0.168 0.107 0.118 
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Table 7.9. Results for Decentralized Dantzig-Wolfe Decomposition on M64.8.*

Instances

Mnetgen 
Instance 

Aggregate 
Obj. Fn. 
Value 

STAR RING MESH 

CPU Time (s) CPU Time (s) CPU Time (s) 
M64.8.1 622280.4 0.158 0.07 0.09 
M64.8.2 649767 0.027 0.028 0.029 
M64.8.3 750938 0.135 0.069 0.091 
M64.8.4 761862.75 1.83 0.84 1.09 
M64.8.5 753927.6 3.66 1.166 1.62 
M64.8.6 929066.8 0.418 0.171 0.275 
M64.8.7 304045 10.13 3.988 5.54 
M64.8.8 355699.7 0.757 0.304 0.46 
M64.8.9 357649.1 1.506 0.613 0.752 
M64.8.10 361802 14.28 5.93 9.55 
M64.8.11 418824.03 17.06 5.53 7.96 
M64.8.12 394051 13.31 4.49 6.27 

Table 7.10 and Figure 7.4c present results for a larger test instance of M128.32.*

instances. The affect of topology type becomes clear for larger problem sets. Ring

topology performs best while Star topology needs more time for convergence. Perfor-

mance of Mesh topology is in between of this two topologies.

Table 7.10. Results for Decentralized Dantzig-Wolfe Decomposition on M128.32.*

Instances

Mnetgen 
Instance 

Aggregate Obj. 
Fn. Value 

STAR RING MESH 
CPU Time (s) CPU Time (s) CPU Time (s) 

M128.32.1 11186573.89 465 29 164 
M128.32.2 118663936.61 492 32 170 
M128.32.3 12476676.85 201 17 80 
M128.32.4 12715040.26 - 756 2659 
M128.32.5 13582810.69 - 520 1506 
M128.32.6 14617437.18 787 69 335 

We conclude this section with a summary of observations under the following

headings:

Comparison of the Methods: We observe that Decentralized Dantzig-Wolfe De-

composition outperforms Decentralized Benders Decomposition in all instances. One

reason for this is the primal block angular structure of the problem that we address.



93

Benders Decomposition can be best applied to the problems in dual block angular

structure. Thus, we introduce a variable for each OA for a single common resource to

convert the primal BALP problem to a dual one. Hence the complicating constraints

in local master problem and local constraint set in each subproblem gets larger hence

becomes harder to solve.

Size of Blocks: We observe that the size of the blocks influences the performance

of the methods. Larger block size results in larger and harder to solve subproblems.

Hence This results in longer convergence time.

Number of Blocks: We observe that as the number of blocks increase, the time

until termination gets longer. This can be explained mainly with the fact that each

block is associated with an OA. Both methods solve the overall problem for each OA

before termination. Hence as the number of blocks increase, proposed methods solve

the overall problem for more times.

Another reason is the increase in the amount of communication among OAs. As

the number of OAs increases, each OA can have more neighbours. This results in

having more communication rounds to get a cut or column.

Type of Communication Network: We can better observe the effect of commu-

nication network on performance of the proposed methods while we solve problems

having larger size. When the problem size gets larger, Ring topology outperforms the

other topologies for Decentralized Dantzig-Wolfe decomposition. Mesh topology has

quick convergence than Star topology almost in all instances. This result holds for

Decentralized Benders Decomposition also. Although Mesh topology can outperform

Ring topology on small problems, for the larger problems Ring topology converges

fast. The reason for this is the cut/column exchange strategy of the proposed meth-

ods. While OA i gets cut/column from a neighbour j, both agents i and j adds that

cut or column to its local master problem. Thus, while getting a cut/column from the

further neighbour, that cut/column is added all the OAs in the path connecting two
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communicating OAs. In Ring topology, an OA i can reach any other OA j indirectly.

Since the length of the path can be largest in Ring topology, any cut/column can be

added to the local master of more OAs at a time. This results in fast convergence rate.
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Figure 7.5. Communication Rounds for Mnetgen M64.4.* Instances

Cut/column exchange strategy also affects the number of communication rounds

among OAs. To give an example, Figure 7.5 and Figure 7.5b illustrate the total number

of cuts/columns generated for solving Mnetgen M64.4.* instances by Decentralized

Benders Decomposition and Decentralized Dantzig-Wolfe Decomposition, respectively.

We can observe that the number of cuts/columns generated in Ring topology is less

than the number of cuts/columns generated in other topologies almost in all cases

for both methods. The main reason for this is appending a cut/column to the local

master of all OAs in the path connecting two communicating OAs. In an iteration a

cut/column may be added local master problem of more OAs in Ring topology and
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this results in faster convergence. In most of the problems, Mesh topology generates

less cuts/columns than star topology which confirms the speed of convergence of these

methods.

7.2. Numerical Experiments and Preliminary Results for IP Case

We have implemented the Decentralized Integer L-Shaped Method with C# us-

ing CPLEX 12.5.1.0 running on a Windows7 PC with a 2.6 Turbo GHz CPU and 4 GB

RAM. To get preliminary results, we generated random test instances as we did previ-

ously for linear programming case by using the same strategy as authors did in [36]. In

integer programming case, we assumed that all variables are integer. We solved prob-

lems by using three different cut exchange topologies, Ring, Mesh and Star. Table 7.11

presents the dimension of the test instances and the convergence rate. Convergence

of Decentralized Integer L-Shaped Method for integer programming case is very slow.

Consider a randomly generated small problem having two complicating constraints and

two blocks of local constraints each has two constraint with two variables. Solving such

a problem by proposed algorithm assuming star communication network topology re-

quires eighteen iterations where at each iteration, master problem determines common

resource allocation for subproblems and subproblems generate a cut with respect to

the given allocations.

Table 7.11. Dimensions of Test Instances and Preliminary Results for Integer

programming case

 EXPERIMENTS 

 Test Results 
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The main reason for this is the cut generation strategy. For IP case, subprob-

lems are integer programs hence linear programming duality is lost. Thus, instead of

Benders cuts we generate Laporte and Louveaux cuts. While Benders cuts can exclude

more, Laporte and Louveaux cuts excludes only one solution value at each iteration.

Searching an optimal solution by eliminating non-optimal ones one by one results in

slow convergence.

Another reason for slow convergence in IP case is the use of auxiliary variables.

In this case, we represent integer variables as binary variables. Introducing a set

of binary variables for each integer variable makes the integer programming problem

larger. Solving a larger integer program at each iteration leads to longer convergence

time. On the other hand, we can conclude that the number of decision makers and the

number of variables also have a significant effect on slow convergence.
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8. CONCLUSIONS AND FUTURE RESEARCH

In this thesis, we propose novel decentralized decomposition methods for large-

scale linear and integer block angular problems: Decentralized Benders Decomposi-

tion and Decentralized Dantzig-Wolfe Decomposition for BALP and Decentralized L-

Shaped Method for BAIP. Our methods allow multiple decision makers to cooperate

while reaching global optimum without need of a central coordination, but by partial

information sharing among one another through a strongly connected communication

network. We remark that, our goal is not competing with the computational speed of

a centralized algorithm. Instead, we primarily aim to propose decentralized solution

approach for decision makers that are unwilling to disclose their local data, but they

want to solve the global problem collaboratively for a mutual benefit, in which case

centralized approach does not work.

From an organizational point of view, in Decentralized Benders Decomposition,

local master problem shares allocation of common resources. In return, the subproblem

finds its best solution for given allocations and generates a cut which includes implicit

information of dual prices for common resources. On the other hand, in Decentral-

ized Dantzig-Wolfe Decomposition, local master problem shares prices on common

resources. In return, the subproblem generates a column indicating explicit informa-

tion that disclose optimal way of using common resources in terms of cost, profit or

specific proposals.

We prove that the Decentralized Benders Decomposition and Decentralized Dantzig-

Wolfe Decomposition can reach same global optimal solution with centralized methods

in a finite number of iterations. We confirm theoretical results with computational ex-

periments. We apply proposed methods to block angular linear problem instances that

are randomly generated by using a similar approach to that in [36]. Also we evaluate

the computational performance of the proposed methods on Multi-commodity Network

Flow Problems which are known to show the block angular structure. The test sets
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are generated by publicly available random generators. We observe that Decentralized

Benders Decomposition shows slower convergence rate than Decentralized Dantzig-

Wolfe decomposition. However, Decentralized Benders Decomposition gives lower and

upper bounds for the optimum solution whenever it is terminated. Nevertheless, a

follow-up work will be accelerating the convergence of Decentralized Benders Decom-

position. For solving larger realistic models, hybrid methods combining heuristics and

decomposition methods may give promising results.

The main result of this research is the following. There are three alternatives for

multiple decision makers to solve an overall block angular linear optimization problem.

The first one is the centralization approach which converges to optimal solution fast

but requires a central coordination unit having full access to managerial information

of the decision makers. The second one is Decentralized Benders Decomposition which

requires revealing dual information however has slower convergence rate. Finally, the

third one is Decentralized Dantzig-Wolfe Decomposition which has faster convergence

rate but requires revealing primal information. Thus, we propose two decentralized

methods for decision makers to make a choice with a trade-off between the degree of

the information that they want to disclose and the speed of the convergence time.

Decentralized decision making is rarely applied to integer programs in literature.

In this thesis, we represent an extension of Decentralized Benders Decomposition to

integer programming programs in block angular structure. We get preliminary results

with randomly generated small test instances. We intend to explore decentralization

in integer programs further. On the other hand, decentralized methods for optimiza-

tion problems are inherently suited to parallel or distributed computing opportunity.

Subproblem-local master problem pair for each decision maker can be solved in parallel

computers. Thus, for future research direction, parallelization of proposed algorithms

will be desirable.

Internet and communication technology hold significant potential for individual

decision makers to collaborate. Another interesting research area may be decentralized
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decision making in an environment where the problem data is continuously evolving

on a dynamic internet based communication scheme.
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via two-stage distributed simplex”, Decision and Control and European Control

Conference (CDC-ECC), 2011 50th IEEE Conference on, pp. 5911–5916, Dec 2011.

46. “A distributed simplex algorithm for degenerate linear programs and multi-agent

assignments”, Automatica, Vol. 48, No. 9, pp. 2298 – 2304, 2012.

47. “Coordinating decentralized linear programs by exchange of primal information”,

European Journal of Operational Research, Vol. 247, No. 3, pp. 788 – 796, 2015.

48. Poundarikapuram, S. and D. Veeramani, “Distributed Decision-Making in Supply

Chains and Private E-Marketplaces”, Production and Operations Management ,

Vol. 13, No. 1.

49. Jeong, I.-J. and V. J. Leon, “A single-machine distributed scheduling methodology



105

using cooperative interaction via coupling agents”, IIE Transactions , Vol. 37, No. 2,

pp. 137–152, 2005.

50. Martin, R., Large Scale Linear and Integer Optimization: A Unified Approach.

51. Kalvelagen, E., “Column generation with GAMS”, GAMS Development Corp.,

Washington DC , 2003.

52. Hong, Y., J. Vaidya and H. Lu, “Secure and Efficient Distributed Linear Program-

ming”, Journal of Computer Security , Vol. 20, No. 5, pp. 583–634, September

2012.

53. Ali, A. and J. Kennington, Mnetgen program documentation, Tech. rep., Depart-

ment of Industrial Engineering and Operations Research, Southern Methodist Uni-

versity, Dallas, TX, 1977.

54. Cappanera, P. and A. Frangioni, “Symmetric and Asymmetric Parallelization of a

Cost-Decomposition Algorithm for Multicommodity Flow Problems”, INFORMS

Journal on Computing , Vol. 15, No. 4, pp. 369–384, 2003.

55. Frangioni, A. and G. Gallo, “A Bundle Type Dual-Ascent Approach to Linear

Multicommodity Min-Cost Flow Problems”, INFORMS Journal on Computing ,

Vol. 11, No. 4, pp. 370–393, 1999.


