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ABSTRACT

SHAPE OPTIMIZATION OF NOTCHED PARTS FOR MAXIMUM
FATIGUE LIFE

The objective of the thesis study is to develop a shape optimization procedure to
maximize fatigue life of notched components under in-phase or out-of-phase multiaxial
loading conditions. Two critical-plane fatigue assessment models, Smith-Watson-Topper
(SWT) and Fatemi-Socie (FS), are used to estimate the fatigue life of the parts. Two
different notch geometry, fillet and groove, is considered. Considering that typical machine
components under fluctuating loads are designed to endure long fatigue lives, no
significant plastic deformation is expected to occur at the notch. Accordingly, the part is
assumed to be linear elastic. Using ANSYS Parametric Design Language, codes are
developed to carry out structural analysis of the parts, evaluate the fatigue life according to
SWT and FS models, and optimize the notch shapes. First, the validity of the models for
the particular notch geometries is investigated by comparing their predictions with the
experimental results reported in the literature for circular notches. The results are generally
accurate within acceptable limits. The boundary line of the notch is defined by spline
curves passing through key points and the positions of the key points are selected as
optimization variables. The objective function to be minimized is chosen as the SWT or FS
damage parameter, which is inversely proportional to fatigue life. Using a modified
simulated annealing algorithm, optimum notch shapes are obtained for notched shafts
subjected to different combinations of torsional, bending, and axial loadings. Significant
improvements are observed in fatigue life with the optimum notch shapes in comparison to

circular notches.



OZET

MAKSIMUM YORULMA OMRU iCiN CENTIiKLi PARCALARIN
SEKIL ENiYILEMESI

Bu tezde ¢alismasinda, ayn1 fazdaki ve farkli fazdaki ¢ok eksenli yiik durumlari igin,
centikli parcalarin yorulma Omriini arttirmak amaciyla sekil eniyileme yOntemi
uygulanmistir. Parc¢alarin yorulma dmriinii tahmin etmek amaciyla, iki farkli kritik-diizlem
yorulma degerlendirme modeli, Smith-Watson-Topper (SWT) ve Fatemi-Socie (FS)
modelleri kullamlmistir. 1ki farkli centik iceren geometri, yuvarlatma ve oluk,
disiiniilmistiir. Tekrarli yiiklere maruz makine pargalarinin uzun yorulma Omiirleri igin
tasarlandig1 disiiniilerek, centik bolgesinde onemli bir plastik deformasyon olmadigi
varsayllmistir. Bu nedenle, parcanin lineer elastik bir davranista oldugu kabul edilmistir.
Parcalarin yapisal analizini ger¢eklestirmek, SWT ve FS modelleriyle yorulma omriinii
belirlemek ve eniyileme gergeklestirmek i¢in ANSYS Parametrik Tasarim Dili
programinda kodlar gelistirilmistir. Literatiirde dairesel centikler i¢in rapor edilmis
deneysel sonucglar ile tahmini sonuglar karsilastirilarak, belirli tipteki centikler icin
modellerin gegerliligi arastirilmistir. Sonuglar genellikle kabul edilebilir limit araligindadir.
Centigin smir ¢izgisi, egriden gegen anahtar noktalari ile tanimlanmistir ve anahtar
noktalarinin konumlar1 eniyileme degiskenleri olarak secilmistir. Azaltilmasi amaglanan
gaye fonksiyonu SWT ya da FS hasar parametresi olarak sec¢ilmistir ve hasar parametreleri
yorulma Omriiyle ters orantilidir. Degistirilmis bir tavlama simulasyonu algoritmasi
kullanarak, burulma, egme ve eksenel yiiklemelerin degisik kombinasyonlarindan olusan
yiiklemelere maruz kalan ¢entikli saftlar i¢in ideal ¢entik sekilleri elde edilmistir. Dairesel
centiklerle kiyaslandiginda, ideal ¢entik sekilleri i¢in yorulma omiirlerinde 6nemli 6lclide

gelismeler elde edilmistir.
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1. INTRODUCTION

Many engineering components are subjected to fluctuating loads; therefore they
should be designed such that they are resistant to fatigue fracture. These components
usually experience complex multiaxial stresses and strains. Fatigue evaluation should
therefore be based on a generally applicable and reliable fatigue model, which can
accurately predict fatigue life under multiaxial loading conditions. Loading may be
proportional or non-proportional, where fluctuation of individual loads is out-of-phase.
Engineering components such as axles, shafts, turbine blades unavoidably have notches
such as fillets, grooves, holes, or other geometric discontinuities, which lead to stress
concentrations. Because locally high stresses develop at the notches, fatigue cracks most
likely initiate at these locations; for that reason, they are considered to be the most critical

regions in fatigue design.

Fatigue strength of a component can significantly be enhanced by just optimizing the
shapes of notches without using a stronger material or increasing the size of the
component. In previous studies of notch shape optimization, fillets in plates [1-7] and bars
[8-10], fillets in other types of structures [11-13], holes [4, 5, 7, 14-26], connecting rods
[20, 27], grooves [25], gears [28] and notches in bars [24] were considered. The parts
considered in those studies were under various loading conditions like pure axial loading
[2-11, 13, 15, 17, 20, 22, 25-27], biaxial loading [1, 5, 7, 14, 16, 18, 19, 21, 23, 24], pure
bending [3, 28], combination of tension and torsion [24], or pressure [12]. In the studies
considering combined loading, proportional (in-phase) [5, 11, 18, 19, 21-23, 27] and non-
proportional (out-of-phase) torsion-tension or biaxial [24] loading conditions were taken
into account. The notch shapes were optimized with the objective of minimizing the area
or volume of the part [2, 20, 27], the stress concentration factor, K;, [3], the stress intensity

factor, K, [4, 17, 19], fatigue stress concentration factor (fatigue notch factor), K¢, [8], the

peak equivalent stress [1, 6, 7, 9, 10, 12, 24], the peak tensile stress [26, 28], the peak
compressive stress [13], the maximum principal stress [14, 17, 23], the damage [10],
maximizing fracture strength [14] or maximizing the fatigue life [5, 11, 15- 19, 21-23, 25,
26]. In shape optimization studies, the notch shapes were defined in terms of optimization

variables, which were the coordinates of the boundary nodes in the FE models of the parts



[1-5, 7, 9-11, 13-17, 21, 24, 26], the key points of spline curves defining the boundary [6,
8, 22], or the geometric parameters of parts such as dimensions [12, 18-20, 23, 25, 27, 28].
Effectiveness of an optimization method depends on the search algorithm used to locate
the optimum configuration. Some researchers employed stochastic global search
algorithms like genetic algorithms [11, 12, 20, 23], direct search-simulated annealing
algorithm [6], some others used gradient [1, 2, 7, 9, 10, 17-19, 21, 24, 25, 28] or non-
gradient [3-5, 8, 11, 13-18, 21, 22, 26, 27] based local search algorithms.

In the previous studies, either unidirectional or proportional combined loading cases
were considered. In the thesis, the models to be optimized are subjected to multiaxial in-
phase or out-of-phase loadings. Unlike most of the previous studies, the objective is
directly to maximize the fatigue life of the notched parts. The fatigue assessment models
used to estimate the fatigue life of the part are verified for the particular notch geometries
considered in this study.

In multiaxial fatigue design problems, notch geometries, loading histories and stress-
strain states are usually complex. Even in the case of uniaxial loading, a multiaxial stress
state develops at a notch. In case of uniaxial and proportional loading, fatigue life
prediction can be performed using S-N curve (Wdhler curve). However, many engineering
structures are generally subjected to multiaxial and proportional or non-proportional
loading conditions. The usage of S-N curve is not appropriate for these loading conditions.
Critical plane-based fatigue models are preferred as in the present study to account for the

effect of multiaxiality and proportionality or non-proportionality.

In this thesis study, notches are considered as critical zones for fatigue crack
initiation in engineering parts and their shapes are optimized. Notch boundary is defined by
spline curves passing through key points. A modified simulated annealing algorithm is
used to find the optimum positions of the key points so that the fatigue life will be
maximum. In each iteration, the search algorithm generates new positions for the key
points, thus a new shape. Whenever the shape is varied during optimization, the fatigue life
needs to be evaluated. Considering that SWT or FS damage parameter is inversely
proportional to fatigue life, maximizing fatigue life yields the same result as minimizing

the damage parameter. In order to avoid unnecessary calculations during iterations, the



objective function to be minimized is selected as the maximum damage parameter (SWT
or FS) in the part. Based on the stress and strain states determined via finite element
analysis, the maximum damage parameter value is evaluated for each new shape generated
according to the decision criteria of the algorithm. Applicability of the critical plane
models to the parts with a particular notch geometry, fillet or groove, under the given
multiaxial loading is investigated by comparing their predictions to experimental results

obtained in previous studies for circular notch shapes.

The fatigue assessment models that require a geometry factor for the notch such as
fatigue stress concentration factor, Ky, cannot be incorporated into general shape
optimization procedures, considering that shape of the notch changes in each iteration and
geometry factors of free-formed shapes are not readily available. Critical plane models
have also a limited use, considering that they are local approaches, that means fatigue life
Is evaluated based on the state of a single material point. It is known that not only peak
stress or strain level affects the fatigue life but also the stress gradient and size of the notch
[29]. The effect of notch size can be taken into account by notch sensitivity factor, g.
According to Neuber, q depends on a material parameter, p, as well as the radius of
curvature at the notch root, r, as ¢ =1/(1++/p/r) and K; =1+ (K, — 1)q [30].
Accordingly, if the notch radius, r, is large, i.e for blunt notches, the value of g approaches
1.0, and then the difference between the fatigue notch factor, Ky, and the stress
concentration factor, K,, becomes very small. In that case, evaluation of fatigue life based
on local stress and/or strain state yields accurate results. On the other hand, for sharp
notches, g takes a small value as the formula implies; K, will then take a value much
smaller than K;; in that case a fatigue assessment method using local stresses, €.9. K; Gyom.
will highly underestimate the fatigue life. Considering that shape optimization of notches
results in very smooth curves, in other words a very high radius of curvature at the critical

point, use of a local approach like critical plane methods is justifiable.

There are many critical plane-based approaches about fatigue failure in the literature
[31-36]. The critical plane is defined as the plane where a damage parameter takes the
maximum value at a material point, which is subjected to a fluctuating load. It is assumed

that fatigue cracks initiate and grow in the critical plane. Critical plane models are



characteristically evaluated in the maximum normal stress/strain plane or the maximum
shear stress/strain plane. There are stress-based critical plane models for high cycle fatigue.
For low cycle fatigue in which significant plastic deformations occur, strain-based models
were proposed. Besides, there is the third category of critical plane models in which both
stress and strain terms are included such as the Smith-Watson-Topper [SWT] parameter
[37] for tensile-dominated fatigue failure and the Fatemi-Socie [FS] parameter [38] for
shear-dominated fatigue failure. The SWT parameter-life and FS parameter-life equations
can be solved to obtain fatigue life of an engineering component subjected to cyclic
loading. Therefore, in the thesis study, the SWT and FS parameters are used for tensile and

shear dominant fatigue failure, respectively.



2. MULTIAXIAL FATIGUE MODEL

Many engineering components are subjected to multiaxial cyclic loadings throughout
their lifetimes. Multiaxial fatigue damage can be evaluated using the criteria in which the
damage is expected to occur due to the normal/shear stresses or strains. Accordingly, the
multiaxial fatigue models can be divided into three categories, namely, stress, strain and
energy-based damage models. Stress-based models are usually developed for high-cycle
fatigue in which plastic deformations can be neglected, while strain-based models

preferred for low-cycle fatigue take into account the plasticity.
2.1. Stress-Based Fatigue Damage Model
McDiarmid [39] proposed a multiaxial high cycle fatigue damage criterion choosing
the critical plane as the plane of having the maximum shear stress amplitude. The

maximum normal stress on that plane is included in the criterion.

Ta On,max
+

tA,B ZGt

=1 (2.1)

where 1, is the shear stress amplitude, t, or tg is the shear fatigue strength selected
depending on the cracking mode, case A and case B, respectively. 6, nax is the maximum
normal stress on the plane of maximum shear stress plane, o is the ultimate tensile

strength.

Dang Van [40] proposed a fatigue limit criterion considering that fatigue cracks
occurs in microscopic (local) scale after local plastic deformation of grains. Because of the
difference between the microscopic and macroscopic stress-strain state, the model was
divided into two scales. In macroscopic scale, an elementary volume was presented to
obtain homogeneous macroscopic stress-strain state. In microscopic scale, the grain size
was considered to formulate the parameter where microscopic stresses and strains are not

homogeneous.



_ T
D = max (m) (22)

where 7 is local (microscopic) shear stress, op,(t) is hydrostatic stress and «,f are

constants. When the variable D is greater than 1 (D > 1), the fatigue failure happens.

There is a relation between the microscopic and macroscopic stresses and it is used

to obtain the local shear stress 7). The relation is given by the following equation:

0ij(t) = AjjraZi () + pij (2.3)
where o;;(t) is the microscopic stress tensor, 4y is the elastic localization tensor and p;;
is the local residual stress tensor. According to the Tresca maximum shear stress theory,
the local shear stress is obtained by the following equation:

T = max|ai(t) — aj(t)| (2.4)

where g; and g; are the principal stresses.

Carpinteri and Spagnoli [41] proposed a damage criterion including the maximum
normal stress and maximum shear stress amplitude terms on the critical plane. The fatigue

damage criterion is given by the following equation:

(Gumas)” (fg—) <1 (25)

where oy, 1max 1S the maximum normal stress and t, is the shear stress amplitude, S; is
shear stress fatigue limit, S, is the normal stress fatigue limit for fully reversed loadings.

Mean stress effect, g, is included in the maximum normal stress term as

Onmax = Om t 0g (26)



Liu and Mahadevan [42] proposed a multiaxial high cycle fatigue criterion and life
prediction model. Firstly, the damage parameter was presented under fully reversed

bending-torsion loading condition.

ey -

where g, 74, 0y 4 are the normal, shear and hydrostatic stress amplitude, respectively. S, ,
Sp is shear stress fatigue limit and the normal stress fatigue limit for fully reversed
loadings, respectively. @ and 8 are material parameters. In case |, the angle between the
critical plane where the most damage is expected to occur and the fatigue fracture plane
where macro cracks actually occur was assumed to be zero. Then, the parameters «a,

were found as a function of fatigue limit ratio (S;/Sp).

a—9[(§) —1] (2.8)
_ 3t 2.9
ﬁ—g (2.9)

In case 11, the angle was 45° and the parameters were also derived for this condition.

In a general case, a critical plane should be obtained for zero effect of the hydrostatic

stress amplitude. Therefore, the damage parameter was rewritten in general form.

ERCR

After substitution and solving of equations, the following equations were obtained

for the material parameter, # and the orientation angle, 6.

B = (cos?(20)a? + sin?(26))1/? (2.11)



-2+ /4 —4(1/a%? - 3)(5 — 1/a? — 4a?)
2(5—-1/a? —4a?)

cos(20) = (2.12)

where a = S, /S,
2.2. Strain-Based Fatigue Damage Model

Socie et al. [43] proposed modifications for two strain-based fatigue parameters to
include mean stress effects. Uniaxial and biaxial fatigue tests were conducted. In axial tests
of solid smooth specimens, fatigue lives were obtained for both 0.1 and 1.0 mm crack

lengths and the strain life equations was fitted for both of them.
For 1.0 mm crack length, the modified strain-life equation takes the following form

Ae O"f b , c

where Ae/2 is the axial strain amplitude, a'f is the fatigue strength coefficient, e'f is the
fatigue ductility coefficient, b, ¢ are the fatigue strength, ductility exponents, respectively.
Ny is the life up to the given crack lengths (1.0 mm). The modified curves are shown in
Figure 2.1. As shown in the figure, there is a small difference between the life for 1.0 mm

crack length and for failure.
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Figure 2.1. Strain-life relationship for uniaxial loadings [43].



The modification of the parameters was obtained including mean stress effects and

the parameters versus the life up to 1.00 mm crack were shown in the paper.
The modification to the first parameter was given by the following equation:

o_*
V't 046y, +— = 16¢s(2Ny)" (2.14)

The modification to the second parameter takes the following form

A

o A 0 , c
Pp + épn + 7 = 1.75€'¢(2Ny) (2.15)

where y*p and 7, are plastic shear strain amplitudes on y* and 7 planes, respectively,

€*pn and €, , are normal plastic strain amplitudes on y* and 7 planes, respectively, ¢*,

and &,, are normal mean stresses on y* and y planes, respectively. E is the elastic modulus.

Brown and Miller [44] proposed a theory for multiaxial fatigue damage in which
fatigue life was presented as a function of strain. According to the fatigue crack growth
mechanics, which is determined by the direction of shear crack growth, case A for growth
along the surface and case B for growth into surface, the maximum shear strain, y,,,, and

the normal strain in the plane of maximum shear strain, &,, were related in the model as

Yimax = f(&n) (2.16)

Using the equation, the relation between the maximum shear strain amplitude and the
normal strain amplitude in the maximum shear plane was represented at different constant

lives.

Fatemi and Socie [38] proposed a multiaxial fatigue damage parameter by changing
the normal strain term in the Brown and Miller model by the normal stress term to predict
fatigue life for both in-phase and out-of phase loadings. The parameter includes both the

maximum shear strain amplitude and the maximum normal stress on the shear plane. Tests
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were performed using hot-rolled 1045 steel thin-walled tubular specimens subjected to in-
phase and out-of-phase loadings. Cracks were observed to initiate on the maximum shear
strain planes and propagate perpendicular to the maximum normal stress direction under
pure axial loads, while both initiation and propagation observed on the maximum shear
strain planes under pure torsional loads. For in-phase tension-torsion loadings, initiation
and early crack growth were observed on the maximum shear strain planes. Propagation
continued on the plane perpendicular to the maximum principal stress direction after about

half of the life. Fatemi-Socie parameter, FS, is defined as

O
FS = Aeym ll +k ”"”“"l

5 (2.17)

where k is a material constant obtained from uniaxial and torsional test data, Ae,,, is the
amplitude of shear strain directed along e,, direction acting on a plane with unit normal
€n, Onmax 1S the peak normal stress on this plane, S, is the yield stress, which is
introduced to make the dimensions of the terms compatible. In this model, fatigue cracks
are expected to occur on the plane in which FS takes its maximum value. The maximum

FS parameter is related to fatigue life by the following equation [45]:
Ty ,
FSmax = ?(zwf)bo +y' (2N (2.18)

where rf/ is torsional fatigue strength coefficient, G is shear modulus, b, is torsional
fatigue strength exponent, yf' is torsional fatigue ductility coefficient, ¢, is torsional
fatigue ductility exponent, and N is the number of cycles to failure. For fully reversed
torsion loading, oy, may IS zero; the left hand side of the equation then becomes equal to

the alternating shear strain.

The FS parameter can also be related to fatigue life using uniaxial fatigue data [38]

as:
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o
Ymax <1 + k n‘max>
Oy

’ ;7 2
_ Or p k O r 2b
=(1+v,) - (2N;) + > (1+v,) Fo, (2N;) (2.19)

' k SIfO"f bte

where o'; is the fatigue strength coefficient, £'; is the fatigue ductility coefficient, v, and

v, are the elastic and plastic Poisson’s ratios, respectively.

This model accounts for the effect of mean stress, because the peak normal stress
term, o, max, Can be expressed as the sum of alternating (o, ,) and mean (o,,,) normal
stress. An increase in a,,, results in increase in the FS parameter and thus decrease in

fatigue life.
2.3. Energy-Based Fatigue Damage Model
Smith et al. [37] introduced a fatigue damage parameter given by

SWT = 0ax€a (2.20)
where a,,,, IS the peak normal stress, or the maximum tensile principle stress in multiaxial
loading, ¢, is the alternating normal strain, or the maximum alternating normal strain in
multiaxial loading. Knowing that o,,,, = 0, + 0., the model includes the mean stress
effect. According to the model, the fatigue cracks initiate at the plane where the SWT

parameter is maximum.

The Basquin equation relating alternating elastic stress, a,, to fatigue life, N, for

fully reversed pure axial loading is given by

0, = 0'f(2Nf)P (2.21)
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Coffin-Manson equation [46] relates uniaxial alternating strain, which is sum of

alternating elastic and plastic strains, to fatigue life as

!

o
ga=e8+eb = ?f (2Np)P + &' (2Np)© (2.22)

where £¢ the alternating elastic strain, and &£ is the alternating plastic strain. Multiplying
both sides of Equations (2.21) and (2.22) one obtains

(o' )

O0q&q = (ZNf)Zb + O"fE’f(ZNf)b+C (223)

E

where ¢’ is axial fatigue strength coefficient, £ is modulus of elasticity, b is axial fatigue
strength exponent, €/ is axial fatigue ductility coefficient and ¢ is axial fatigue ductility
exponent. Equation (2.23) is valid for uniaxial loading. Smith et al. [37] replaced
alternating elastic stress, a,, by peak tensile stress o,,,,. For fully-reversed fatigue loading
conditions, where mean stresses are zero, o4, becomes equal to the normal stress
amplitude, a,. In this formulation, multiaxial stress state is accounted for as well as the

effect of mean stress. The maximum SWT parameter is then related to fatigue life as

(o' )?
L= (2N)?? + 0" s¢'s (2N;)P¥ (2.24)

SWThax = £

Based on the experimental results, the validity of the proposed model was evaluated
for various metallic materials which were small and smooth specimens [37]. The model

was found to be applicable for crack initiation and early crack propagation.

Liu [47] proposed a virtual strain energy (VSE)-based multiaxial fatigue model
associated with the critical plane concept. For Mode | tensile failure, the critical plane was
determined by the maximum normal (principal) stress and strain. For Mode 11 shear failure,
the critical plane was associated with the one experiencing the maximum shear stress and
strain. Two VSE parameters were introduced according to the type of failure. The validity
of proposed model evaluated with the experimental results of two materials, Type 304
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stainless steel and SAE 1045 steel. The strain-life relation can be expressed by the Coffin-

Manson equation as
Ae = Aey + Ae, = A(N;) ™ + B(N;)™? (2.25)

where Ae, Ag,, Ag, are the total, plastic and elastic strain ranges, respectively, A, B, a, b

are the material constants. The virtual strain energy parameter was defined as
AW = AcAe = EAe,(Ae, + Ae,), (Ao = Elg,) (2.26)

Substituting Equation (2.25) into Equation (2.26), the following virtual strain energy

parameter can be obtained as
AW = EAB(N;)**? + EB*(N;)*® (2.27)

For Mode | failure, the parameter (AW;) was given as the combination of two

guantities in the plane of maximum normal strain energy quantity
AW, = (AW)n,max + (AW); (2.28)

For Mode Il failure, the parameter (AWy;) was given as the combination of two

quantities in the plane of maximum shear strain energy quantity
AW, = (AW)n + (AW)s,max (2-29)

Pan et al. [48] proposed a modified strain energy density parameter based on the
critical plane for prediction of multiaxial fatigue life. The comparison between proposed
model and existing test results was made for SAE 1045 and 304 stainless steel. They
noticed that the effect of shear-based strain energy is different from the effect of axial-
based strain energy on the fatigue life of specimen. Therefore, they modified Glinka’s
model adding two material constants, 8, and S, to the strain energy term in normal

direction of formulation.
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Ayi12 Aoy, A&y, Ay,
= —== 2.30
2 2 ThPhr (2:30)
The material constants can be determined from uniaxial and pure torsional fatigue

tests.

,81 = — and ﬁz = (231)

where ef' and yf' are the axial and torsional fatigue ductility coefficients, respectively and

o-f' and Tf' are the axial and torsional fatigue strength coefficients, respectively.

Varvani-Farahani [49] proposed a multiaxial fatigue parameter included both the
normal and shear strain energies that there is no need of using an experimental fitting
parameter. Both in-phase and out-of-phase loading conditions were considered. Additional
hardening resulting from out-of-phase loadings was taken into account through stress
range. Besides, mean stress term normal to the maximum shear plane was included in the
formulation. The parameter consists of the combination of normal and shear strain energy

range terms.

ey Gonben) + a+ E‘:f’”yf“’s/ i )<ArmaxA (Vm—;‘)> =f(N)  (232)

Jahed and Varvani-Farahani [50] proposed an energy-based fatigue model
considering the upper and lower life limits. Two different parameters were introduced for
each case of cracking which are Case A in which shear crack growth occurs along the
surface and Case B in which shear crack growths into the surface. The upper limit of
fatigue life was obtained from the parameter of Case A cracking, while the lower limit of
that was obtained from the other parameter that is for Case B cracking. The existing test
results of various metals including SAE 1045 were used to compare the predicted and

measured fatigue lives.



15

The strain-life equations were given for both axial and shear strains by the following

Coffin-Manson equations:

Ae o'f b,
— =2 (2N)" + ¢/, (2N)) (2.33)
Ay _ Ty bo ,
> =T (2n)™ +Vf(2Nf)CO (2.34)

Considering the strain-life equations, the energy-fatigue life curves were generated
calculating the strain energies at the points of curve. Then, the two parameters were given

as
AE, = E,"(Ng)® + Ef (No)€ (2.35)
AEr = W, (N7)Bo + W' (Np)“e (2.36)

where AE, and AE; are the pure tensile energy and the pure torsional energy, respectively.
E, and W, are the axial and shear fatigue strengths, respectively. E; and W are the axial
and shear fatigue toughness, respectively. B, By, C, C, are the axial and shear energy-based
fatigue strength exponents and the axial and shear fatigue toughness exponents,
respectively. The lives, N, and Ny are associated with pure axial and pure torsional
loadings. It is suggested that the fatigue life of specimen should be within the upper and

lower bounds. The life prediction model was given by the following equation:

AE, AE;

N, =—2 —
r =g AT AE

Ny (2.37)

where AE is the total energy obtained from elastic-plastic analysis.
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3. FATIGUE LIFE PREDICTION

The notched components may exhibit different types of cracking modes under
multiaxial fatigue loadings, which may be tensile-dominated or shear-dominated cases
[29]. Therefore, both SWT parameter for tensile-dominated cracking and FS parameter for
shear-dominated cracking (as indicated in refs. [29, 51, 52, 53]) were considered to
determine the critical plane in which crack initiation occurs. SWT and FS parameters can
be associated with the Basquin-Coffin-Manson life equations [53, 54] for the determination
of crack initiation life of notched components [54, 55, 56, 57]. The life equations are used
to evaluate failure of smooth and small specimens. However, for notched components, the
equations usually correspond to the crack initiation life at the notch [29, 58].

3.1. SWT Parameter

The multiaxial fatigue life prediction model can be expressed by the following SWT-
life relation [37]:

(0'p)?
= (2N + o'y (2N (3.1)

SWThax = Omax€a =

where &, is the normal strain amplitude given as

Emax — €min
_— 3.2
- (32)

Eaq =
where €,,4x, Emin are the maximum and minimum normal strains during a loading cycle.
ouax 1S the maximum normal stress. For fully-reversed fatigue loading, ay4x IS equal to

Og.

The maximum normal stress and strain at a given point, which are used to calculate
SWT parameter, can be determined from tensor transformation rules [59] (as explained in
APPENDIX A and B).
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The plane having the maximum damage parameter value is the principal plane in
which shear components vanish and only normal components exist. Therefore, the largest

amplitude principal stress, o, , and strain, &, , are used to SWT parameter as

SWThnax = 01,4814 (3-3)

After obtaining eigenvalues of B matrix (Equation (B.8)), which are the principal
strains, the nine direction cosines of principal planes are calculated from Equation (B.12).
Then, using Equations (B.1), (B.2), and (B.3), the normal strains corresponding to the
principal strains can also be obtained. The normal stresses in the principal orientation,
which correspond to the principal stresses, are obtained from Equations (A.7), (A.8), (A.9)

using the direction cosines of those planes.

3.2. FS Parameter

The FS parameter-life equation used for crack initiation life calculations of notched

components can be expressed by the following equation [45, 53, 54, 60]:

o T’
FSpmax = DMepm [1 +k "'Sm“"l = ?f (2ZNp)Po +y' (2Np)% (3.4)
y

The material constant k obtained from the axial and torsional fatigue tests can be

approximated as the ratio of S, to a'f [61].

In FS critical plane model, the critical plane is considered as the maximum shear
strain plane. The maximum shear strains develop on the planes obtained via rotation of
principal axes by 45°. The planes obtained by 45° rotation around second principal axis
are shown in Figure 3.1. This representation is made for the maximum shear stress, but the

same representation can be done for the maximum shear strain replacing o by e.
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Figure 3.1. Planes of maximum shear strain [59].

Three principal directions are rotated separately. In each rotation, the new direction
cosines are obtained and using Equations (B.4), (B.5), (B.6) the shear strains are selected
as the largest ones. The maximum shear strain is then determined through three shear
strains obtained from three separate rotation.
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4. OPTIMIZATION PROCEDURE

A modified SA optimization algorithm proposed by Akbulut and Sonmez [62] is
used as search algorithm to find the optimum shape. The notch shape is defined by spline
curves passing through key points. x and y coordinates of the moving key points are taken

as design variables. Accordingly, the number of design variables can be expressed as

n=2m (4.1)

where m is the number of moving keypoints. Whenever the positions of the key points are
changed a new shape is obtained. During the optimization process, a new configuration is
generated by giving random displacements to the moving key points of a current
configuration, which is randomly selected from the set of current configurations. The

coordinates of kth moving key point x;’,y," of the new configuration are calculated as [6]

X' = X + ¢ Rppax c0s(6,) (4.2)

yk’ = Yk + & Rmax Sin(er) (43)

where x,, y, are the coordinates of the kth moving key point of the randomly selected
configuration, ¢, is a randomly selected number between 0.0 and 1.0, R, is the
maximum distance that key points can move, &, is a randomly selected value between 0O
and 2. Using two, or more moving key points, shape optimization can be performed. If a
low number of key points is used, convergence to an optimal solution can quickly be
obtained. A high number of key points requires more computational time; but the shape

can be more precisely defined.

Initially, a number of configurations are generated by choosing random positions for
the key points within the design space (search area) and drawing spline curves through
them. These configurations constitute the set of current configurations, which is updated in
each iteration during the optimization process. Their number, N, is selected based on the

number of design variables, n, as
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N =8(n+1) (4.4)

In each iteration, the algorithm generates a new configuration; but always keeps the
best configuration unlike the standard SA, in which single current configuration is replaced

by an accepted configuration.

After initial configurations are randomly generated, their objective function values

are calculated. The objective function is defined as a function of the damage parameter as

D
fe = D_o (4.5)
where D is the maximum value of the damage parameter for the generated configuration
and D, is the maximum value for the original component with a circular notch. After
carrying out finite element structural analysis of the new configuration, stress and strain
state in the part is obtained. The value of the damage parameter is calculated for each

element around the notch and the largest one is taken as the value of D.

The objective function value of a newly generated configuration, f;, is calculated

using Equation (4.5). Its acceptability is evaluated according to the following criterion:

_ 1L, fish
e Ty e (4.6)

where f;, is the objective function value of a current configuration randomly chosen among
the worst (n + 1) configurations in the current set. If a new configuration has a lower
objective function value than f;,, it is accepted. Otherwise, acceptance of the configuration
depends on the acceptability, A;, calculated using Equation (4.6) and a number randomly

generated between 0.0 and 1.0, R;, as

Accepted, if A = Ry, when f; > f,

Not accepted, if As <Ry, when fi > fp @1
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If a new configuration is accepted, it replaces a configuration randomly chosen

among the worst (n + 1) configuration.

The temperature parameter, T}, controls the probability of acceptance. According to
Equation (4.6), at high values of Ty, it is more likely that a worse configuration having a
higher cost is accepted. At the initial stages of optimization corresponding to the melting
process in the physical annealing, the temperature parameter, T,, should be so high that
almost any new configuration regardless of the cost value is accepted. In this way, the
entire design domain is searched, not just some part of it. Trials made at a given value of
the temperature parameter are called Markow chain. At the end of a Markow chain, the
value of the temperature parameter is reduced. During the optimization process, the
temperature parameter is slowly decreased by multiplying with a temperature reduction

factor, ay
Ti+1 = Q41 T (4.8)

where T, and Tj are the values in the (k+1)th and kth Markov chains, respectively. If
the reduction rate is fast, the optimization process may end with a high-cost configuration.
Therefore, the reduction rate should be slow to prevent the algorithm be stuck at a worse
locally optimum configuration. However, it should not be too slow, if excessive
computational times are to be avoided. Towards the end of optimization corresponding to
freezing in the physical annealing process, when the temperature parameter is reduced to a
small value, a new configuration having a cost value higher than that of the current

configuration is nearly never accepted.

The maximum moving distance, R4, in Equations (4.2) and (4.3) is also reduced

during the optimization process. Its initial value, Rp,qy;, is selected sufficiently large to

allow the key points to move large distances and thus a thorough search of the design space

can be achieved. The value of R, depends on the size of the search domain, A, as

Rmax; = 0.1 /A, (4.9)
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Towards the end of the optimization, R,,,, becomes so small that only a close
neighborhood of the current configurations is searched to precisely locate the optimum
configuration. If the worse configuration (defined as the worst configuration in the current
set excluding the worst (n + 1) current configurations) is not improved after iterations in a

Markow chain are completed, then R, is reduced as

Ryax = URmax (4-10)

where the constant parameter, p, selected between 0 and 1 controls how quickly
convergence is reached. Choosing a very high number increases the likelihood of locating
the globally optimal design, but results in a long computational time. With a lower number,
on the other hand, convergence is quickly achieved; but the likelihood of getting trapped at

a high cost local optimum will be high. The value of u is selected as 0.98 in this study.

The temperature reduction parameter, a; takes a value between a,,., and a,in

according to the following equation [62]:

2
Amax, Lk,a/Lk < [Rmax/Rmaxi] +0.01

, (4.11)
Amin, Lk,a/Lk = [Rmax/Rmaxi] + 0.01

A1 =

where ;. and a,,;, are selected as 0.9999 and 0.9 in this study, respectively. Ly is the
number of new configurations tried in kt* Markov chain, L, , is the number of accepted

configurations in that Markow chain. The initial value of a;, ay initiq; 1S given as

a + api
M imitial = (Amax . min) (4.12)

The length of a Markov chain is defined as the number of iterations which are
performed at a constant temperature T},. In the thesis, a Markov chain length, Ly, at the kth

level is expressed as [6, 63, 64]

Ly =L+L(1—e Un ) (4.13)
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where L = 10n, n is the dimension of problem, namely, the number of design variables.
For the determination of current Markov chain length, the highest and lowest cost values
fn and f;, respectively, are selected from the N number of configurations. Since there are
two coordinates of a moving key point in 2D (as in this study), the number, n can be
calculated from Equation (4.1). A Markov chain length takes a value between L and 2L.
When the difference between f,, and f; is high, the iterations executed in a Markov chain
will be high, closer to 2L. In the case where there is small difference between f, and f;, the
length of the chain approaches to L. A Markow chain will be stopped if a new
configuration having a cost less than f; is generated or when all the iterations in the

Markow chain are executed.

In case of acceptance, a newly generated configuration replaces the worst
configuration in DSA. According to ref. [62], this replacement method creates a drawback
that search domain is limited to a small portion of design space. After replacement, the
location of the worst configuration is lost except that if the new configuration is generated
by using the design variables of the worst one, which is a rare condition, especially in case
of a high number of initial configurations. Therefore, during iterations, the design space

may be restricted in a smaller region as a result of removing the worst configurations.

Considering this issue, the modified SA algorithm [62] was proposed to perform a
different replacement method. Firstly, the 8(n + 1) initially generated configurations are
ordered with respect to their cost values. Then, a number of worst configurations, N,, is

selected from the set of current configurations as

N,=n+1 (4.14)

If a randomly generated configuration is accepted, it replaces a current configuration
which is randomly selected among N, worst configurations. 7(n+ 1) current
configurations having lower cost values are kept in the set except that a new configuration
having cost value better than one of the 7(n + 1) current configurations is generated. In
this way, N, number of current configurations instead of just the worst one become
candidates for replacement. The highest cost function, f;, is defined as the best of the worst

N,, configurations.



The flowchart of the optimization algorithm is presented in Figure 4.1.

Generate randomly N mutial configurations
Calculate their cost function values, f;
k=0

}

=0, k=k+1

}

Calculate the Markov chain length
using eqn. (4.13)
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|

Generate a random configuration

Calculate the cost of new configuration, f;(j)} and
acceptability of if, 4,(j) using eqns. (4.5) and (4.6),
respectively
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1s provided

!

Create a random number, R, between 0 and 1

Accept the new configuration

Yes
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:

Replace the configuration randomly chosen through
N,, = (n+1) worst configurations
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Stop the program I

Calculate the temperature reduction parameter .,
using eqn. (4.11)

|

Calculate the temperature parameter T, using eqn.
(4.8)

The worse
configuration is
mmproved

Figure 4.1. The flow chart for the optimization algorithm.
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Iterations are continued until all the stopping criteria are satisfied. Three stopping

criteria [64] are selected as

fa— i <6 (4.15)
T, < 65, (4.16)
Ry < 85 (4.17)

where §; = 0.0001, 6, = 0.001 and §; = 0.000001. &; and &, are small constants, J5 is
a relatively small number compared to the first moving distance. During iterations, if
connectivity of the part is lost due to the random movement of key points, the algorithm
does not accept the current configuration and a new configuration is generated until the

connectivity is provided.
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5. NUMERICAL PROCEDURE

The analysis of stress and strain states of a shouldered shaft and a shaft with a groove
is carried out by finite element modeling of ANSYS. Fatigue life calculations according to
SWT and FS models are then performed by codes developed in ANSY'S Parametric Design
Language (APDL). After that, the shape optimization algorithm is implemented to
maximize the fatigue life of the part by minimizing the maximum damage parameter. The

algorithm iteratively searches to find the optimum shapes of the models.

5.1. Finite Element Modeling

Finite element modeling (FEM) of the shaft is done as follows:

(i)  Program initiation

(i)  Entering the material properties

(iii) Defining key points

(iv) Creating the geometry by defining lines and areas
(v) Creating the FE mesh in the areas

(vi) Applying the boundary conditions

(vii) Realization of the solution

Firstly, analysis type and material properties such as young modulus, Poisson’s ratio

are entered.

After the key points are generated, lines of the model are created. Since a 2D model
is developed in the thesis, the definition of the geometry will be completed after the model
area is defined. Area of the model is then meshed for a certain mesh size which is specified
by the user. Subsequently, boundary conditions (boundary constraints and loadings) are

applied to the lines and nodes.

After the FEM is developed and the structural analysis results are obtained, fatigue

damage parameter is calculated by defining the necessary equations in APDL. The stress
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and strain components obtained from FE analysis are substituted in the equations. Two

separate codes are developed to calculate SWT and FS parameters.

After the damage parameter of original-shaped model is calculated, using moving
key points, the optimization algorithm randomly generates configurations and calculates
damage parameters of each configuration. Optimization continues until an optimum design

is obtained.

5.1.1. Finite Element Analysis of the Shouldered Shaft

A shouldered shaft specimen made from the SAE 1045 steel is considered in this

study. The geometry of the notched shaft is shown in Figure 5.1.

120 40 100
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Figure 5.1. The SAE 1045 notched specimen.

The cross sectional area is circular; accordingly the geometry is axisymmetric. A 2D
axisymmetric element that can take non-axisymmetric loads, PLANES83, is used to

simulate the structural behavior of the specimen.

The most critical region of the specimen is the fillet with a smaller radius (5
millimeter). For this reason, a part of the specimen including the fillet having smaller
radius is considered for the finite element analysis, which is shown in Figure 5.2. The
length of the domain is chosen as 90 mm. If a longer portion is analyzed, no appreciable

change occurs in the results.
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Figure 5.2. The domain of analysis for the shouldered shaft.

The fatigue damage parameter calculations of the specimen are carried out on this

part since it includes the most critical region of the specimen.

5.1.2. The Model Creation using APDL

There is a feature of ANSYS that a 3D axisymmetric structure under non-
axisymmetric loads can be modelled in 2D using axisymmetric elements of ANSYS.
Because the specimen is axisymmetric, a 2D model of the notched part is created using the
PLANES3 element type of ANSYS. PLANES83 element is 8-node axisymmetric-harmonic

structural solid.

It is assumed that loads applied to the model do not create plastic deformations in the

specimen and so, they are negligible. Therefore, the material is defined as linear elastic.

The material properties of SAE 1045 steel used in the analysis and fatigue life
calculations are given in Table 5.1.
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Table 5.1. The material properties of SAE 1045 steel [65].

Poisson’s Ratio, v 0.28
Modulus of Elasticity, E 202 GPa
Axial Fatigue Strength Coefficient, o' 948 MPa
Axial Fatigue Strength Exponent, b -0.092
Axial Fatigue Ductility Coefficient, &' 0.26
Axial Fatigue Ductility Exponent, ¢ -0.445
Yield Stress, o, 380 MPa
Torsional Fatigue Strength Coefficient, 7' 505 MPa
Shear Modulus, G 79 GPa
Torsional Fatigue Strength Exponent, b, -0.097
Torsional Fatigue Ductility Coefficient, y;' 0.413
Torsional Fatigue Ductility Exponent, c, -0.445

The material parameter, k in FS parameter is approximated as 0.4 [61].

The analysis type and material properties are defined in the code using the

commands shown in Table 5.2.

Table 5.2. The analysis type and material description commands.

Command Description

MPTEMP!HHHI

MPTEMP 1.0 Linear elastic isotropic material is defined.

Young modulus, E, is defined for the material

MPDATA EX,MAT, E numbered as MAT.

Poisson’s ratio, v, is defined for the material numbered

MPDATANUXY ,MAT,, v as MAT.
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The notched part is modeled with two materials, which have the same material

properties as shown in Figure 5.3.

Figure 5.3. The formation of notched part with two same materials.

Because both maximum SWT and FS parameters are obtained at the critical point of
the part, the critical region is separately characterized by material A1l. Material A2 is not
selected in post-processing. Thus, the calculations which are unnecessary for the non-

critical region are not performed. In this way, the analysis time is reduced.

The commands creating key points and lines of the model are described in Table 5.3.

Table 5.3. The key point and line commands.

Command Description
The x coordinate of key point, n is defined where N is
0, 0fy — .
x%on% = N the value of x coordinate.
The y coordinate of key point, n is defined where M is
0/4An0/ —
y%n% =M the value of y coordinate.
k, n, x%n%, y%n% The key point, n is created.
I,nyn, The line between key points n, and n, is created.

The circular arc line is defined between key points n,
larc,n,,n,,n3,R and n, around the key point n; with a radius of
curvature R.
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Figure 5.4. The lines of the part created between key points.

After the key points and the lines are created as shown in Figure 5.4, the areas of the

model are created with the commands described in Table 5.4.

Table 5.4. The commands for creation of an area and combination of two areas.

Command Description

al,ly,,, 0 The area is created combining k number of lines.

The area of the part is formed by the combination of areas Al
aglue,a;,a; and A2,

Where loads are applied to the nodes of the FE model, locally high stresses develop
at the point of application of concentrated forces. In order to smoothly and realistically
apply the loads, the notched part is loaded through and intermediate part defined by Area 3
(A3) as indicated in Figure 5.5. The same material properties are assigned to this part with

a different material number and this material is unselected in post-processing.

Figure 5.5. The representation of the combined areas.
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The free mapped meshing process is performed after the generation of areas.
According to a user defined mesh size, PLANE83 elements with axisymmetric option are
created on the areas. Element size should be small enough so that the results of the FE
analysis are accurate. Besides, a mesh refinement is applied to the boundaries around
which high stresses develop. The commands are given in Table 5.5.

Table 5.5. The mesh and refinement commands.

Command Description

aesize, all, S

The area, 4 is meshed for a defined element size, S.
amesh,A

Isel, s, line,, L,,,, L, | The lines between L,,, and ,, are selected for mesh refinement.

Refinement is performed where the quantity of refinement, r
Irefine, all,,, r takes a value from 1 (minimum refinement) to 5 (maximum
refinement).

The notched component is subjected to bending moment and torsional loadings.
Bending moment is created by a force couple applied in the global X direction. Torsional
loading is applied via concentrated forces acting in the global Z direction. The bending and
torsional loadings applied to the model create stresses in the bar away from the notch
having almost the same values as predicted by the beam theory. The notched part (shown

in Figure 5.2) was also modeled in the study [66] applying the same boundary conditions.

Boundary conditions (constraints of displacements and loadings) are applied to lines

and nodes as indicated in Table 5.6.

Table 5.6. The boundary condition commands.

Command Description

dl, l,,,u,,0 The displacement of line, [,, in Y direction is fixed to zero.
d,l,,,u,0 The displacement of line, [,, in Z direction is fixed to zero.
F,n, Fx, F, The load, Fj, is applied to the node, n in the X direction.
F,n Fz, F, The load, Fj, is applied to the node, n in the Z direction.
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The displacement boundary condition for bending is defined as zero displacement in
the y direction for the bottom line and zero displacement in the y and z directions for the
line in the left as shown in Figure 5.6. It is defined for torsion as zero displacement in the z
direction for the bottom line and zero displacement in the y and z directions for the line in
the left as shown in Figure 5.7. The bending and torsion loadings with their displacement
boundary conditions are separately created and two SOLVE commands for each loading are
used. After, they are superposed.

Figure 5.6. The bending moment and displacement boundary conditions.

Figure 5.7. The concentrated torsional loadings and displacement boundary conditions.

5.1.3. Finite Element Analysis of the Groove Model

A circular shaft with a groove made of an Al-Si alloy is considered in this study. The
geometric features of the specimen are given in Figure 5.8. The material properties are
given in Table 5.7.
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Figure 5.8. The Al-Si alloy notched specimen.

Table 5.7. The material properties of Al-Si alloy [67, 68].

Poisson’s Ratio, v 0.3
Modulus of Elasticity, E 78 GPa
Axial Fatigue Strength Coefficient, o' 398 MPa
Axial Fatigue Strength Exponent, b -0.0843
Axial Fatigue Ductility Coefficient, &' 0.028
Axial Fatigue Ductility Exponent, ¢ -0.6594

Similar to the previous model, the shaft is axisymmetric and therefore, a 2D model is
used in ANSYS. Both axial load and torsion are applied to the model as shown in Figures
5.9 and 5.10. Except these, the same finite element analysis of the fillet model is performed

for the groove model.

Figure 5.9. The axial load and displacement boundary conditions.
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Figure 5.10. The torsional load and displacement boundary conditions.

A part of the specimen including the groove is modeled for finite element analysis.

The dimensions of the axisymmetric section of the analyzed part are shown in Figure 5.11.

33

q-q’
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70

Figure 5.11. The axisymmetric part of the groove specimen analyzed by FEM.

As in the fillet model, in order to avoid unnecessary calculations, the damage

parameter calculation is performed in the area Al as shown in Figure 5.12 considering that

the most critical region is in Al around the groove.

Figure 5.12. The representation of combined three areas.



36

The SWT damage parameter calculation and shape optimization procedure of the

specimen is carried out on this part.
5.2. Fatigue Life Calculations
The model is created and boundary conditions are applied. Subsequently, the analysis
of the notched component is performed. Specific results are obtained using the commands

indicated in Table 5.8.

Table 5.8. The element table commands.

Command Description

The element tables of principal stresses are created where i

ETABLES, i takes a value from 1 to 3.

The element tables of principal strains are created where i

ETABLE,, EPTO, i takes a value from 1 to 3.

esel,u, mat,, n The material n is unselected (n = 2, n = 3)

The values of principal stresses and strains of kth element are then obtained by the

commands given in Table 5.9.

Table 5.9. The commands for getting principal values.

Command Description

The principal stresses, Psti of kth element are

* get, Psti, elem, k, etab, Si obtained for S1, S2, S3, respectively.

The principal strains, Psni of kth element are
* get, Psni, elem, k, etab, EPTOi obtained for EPTO1, EPTO2, EPTO3,
respectively.

The SWT and FS parameters are separately calculated using both ANSYS and
MATLAB programs. The ANSYS results are compared to the MATLAB results to

demonstrate the accuracy of results.
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The SWT parameter can be calculated from Equation (3.1) using principal values

obtained from ANSYS. The procedure is expressed as

(i)

(ii)

(iii)

(iv)

v)

(vi)

The principal stresses and strains are obtained for kth element of selected
material.

The first possible SWT parameter is calculated by multiplying the first
principal stress and strain.

The second possible SWT parameter is calculated by multiplying the second
principal stress and strain.

The third possible SWT parameter is calculated by multiplying the third
principal stress and strain.

The SWT damage parameter of kth element is selected as the maximum
possible SWT parameter among the parameters stored in steps (ii) through (iv).
The operations from (i) to (v) are repeated for N number of elements of

selected material. The N number of damage parameters is stored.

(vii) The maximum damage parameter is selected from the set.

The MATLAB code for SWT parameter is developed following the procedure

explained in Section 3.

The FS parameter (Equation (3.4)) is calculated by a code developed using ANSYS

Parametric Language. The procedure is explained as follows:

(i)

(i)

The principal stresses and strains are obtained for kth element of selected
material.

Three principal axes are separately rotated 45° as shown in Figure 5.13, Figure
5.14 and Figure 5.15 to obtain the orientation of maximum shear strain plane.
The rotation is carried out in positive or negative direction. The direction
cosines of those orientations are given in Table 5.10, Table 5.11 and Table
5.12.
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(@) (b)

Figure 5.13. (a) +45° rotation about the 1% principal axis. (b) -45° rotation about the 1%
g
principal axis.

Table 5.10. The direction cosine representation of the rotated 1* principal axis.

0 = +45° 6 = —45°

1 2 3 1 2 3

1" | l; =cos(0) my = cos(90) | n, = cos(90) 1, = cos(0) m; = cos(90) ny = cos(90)

2" | I, =cos(90) | m, =cos(45) | n, = cos(45) | I, = cos(90) m, = cos(45) | n, = cos(135)

3" | I3 =cos(90) | mz = cos(135) | n3 = cos(45) | I3 = cos(90) m3 = cos(45) n; = cos(45)

(a) (b)

Figure 5.14. (a) +45° rotation about the 2" principal axis. (b) -45° rotation about the 2"
g

principal axis.
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Table 5.11. The direction cosine representation of the rotated 2™ principal axis.

6 = +45° 0 = —45°
1 2 3 1 2 3
1" | l; = cos(45) | my; = cos(90) n; = cos(135) l; = cos(45) my = cos(90) | ny = cos(45)
2" | 1, = cos(90) m, = cos(0) n, = cos(90) l, = cos(90) m, = cos(0) n, = cos(90)
3" | I3 =cos(45) | m3 = cos(90) nz = cos(45) I3 = cos(135) m3 = cos(90) | nz = cos(45)
2 2
>
S 1 <) 1

(@

(b)

Figure 5.15. (a) +45° rotation about the 3" principal axis. (b) -45° rotation about the 3

principal axis.

Table 5.12. The direction cosine representation of the rotated 3" principal axis.

0 = +45° 6 = —45°
1 2 3 1 2 3
1" | 4 = cos(45) my = cos(45) | ny =cos(90) | [; = cos(45) | my = cos(135) | ny; = cos(90)
2" | I, =cos(135) | m, = cos(45) | n, = cos(90) | I, = cos(45) m, = cos(45) | n, = cos(90)
3" | I3 =cos(90) ms = cos(90) nz = cos(0) l3 = cos(90) ms = cos(90) nz = cos(0)

(iti) Since there do not exist shear components of stresses and strains in the
principal plane, Equations (A.7), (A.8), (A.9) and (B.4), (B.5), (B.6) can be

rewritten by equating these shear components to zero. The normal components

are equal to the principal values in this case.



40

(iv) The maximum shear strain is selected from the set of shear strains obtained by
separately rotating the principal axes.

(v) The normal stress of the maximum shear strain plane is obtained using
Equations (A.7), (A.8), (A.9) in which the normal stress components are the
principal ones and the shear components are equal to zero.

(vi) The FS damage parameter of kth element is calculated from Equation (3.4).

(vii) The operations from (i) to (vi) are repeated for N number of elements of
selected material. The N number of damage parameters is stored.

(viii) The maximum damage parameter is selected from the set.

The MATLAB code for FS parameter is developed following the procedure
explained in Section 3.

5.3. Shape Optimization Procedure

The optimization algorithm [62] explained in Section 4 is adapted to the both fillet
and groove models. The notched fillet shape with two moving key points (7" and 10" key
points) that are used to define the spline curves for the fillet boundary is shown in Figure
5.16. The other key points are fixed, thus their positions do not change during shape
optimization process. The positions of the moving key points are varied within a specified
design space during optimization. The design spaces in which three, four and five moving
key points are used for the shape optimization of the fillet boundary are also shown in
Figures 5.17, 5.18 and 5.19, respectively. Outside the search domain, the boundary is not
expected to be optimum. Each key point moves within its search area. The optimization of
groove is performed with two moving key points, namely, 8™ and 9" key points shown in
Figure 5.20. Due to the symmetry, the movement of 5™ and 6" key points depends on ot

and 8" key points, respectively. The 4™, 7" and 10™ key points are fixed.
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Figure 5.16. The design spaces of the two moving key points within which they are

allowed to move during shape optimization of the fillet boundary.
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Figure 5.17. The design spaces of the three moving key points used to define the spline

curves for the fillet boundary.
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Figure 5.18. The design spaces of the four moving key points used to define the spline
curves for the fillet boundary.
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Figure 5.19. The design spaces of the five moving key points used to define the spline
curves for the fillet boundary.
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Figure 5.20. The design spaces of the two moving key points, 8" and 9", within which they

are allowed to move during shape optimization of the groove boundary. The other key

points are fixed.
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6. RESULTS AND DISCUSSION

6.1. The Shouldered Shaft

Firstly, the fatigue life results predicted by SWT and FS models are separately
compared to the experimental results for shouldered shaft specimen with a circular fillet in
order to validate the models for this geometry. Experiments were conducted [69, 70] on
specimens under in-phase and out-of-phase combined loading of bending and torsional
moments. The experimental crack initiation life was defined as the number of cycles until

development of a crack with 1.0-mm length [69, 70].

In in-phase loading cases, during a loading cycle, bending and torsional moments
reach their maximum and minimum values at the same time as shown schematically in

Figure 6.1. Maximum and minimum stress, strain components (having the same magnitude

(| - |Gijmin - |gijmin|

occurring during a loading cycle are used to obtain the amplitude of stress and strain

|and|

O & ) because of full-reversed loading case)
Umax Umax

components. In in-phase loading cases, the maximum SWT or FS parameter values are

obtained, when bending and torsional moments reach their maximum values.

In-phase bending, My and torsional, M; moments fluctuate as

MB = MBaSin (Cot) (61)

My = My sin (at) (6.2)

where Mg, and My, are the amplitudes of bending and torsional moments, respectively. In

one cycle, wt takes values between 2rrn and 2 (n + 1).

In 90° out-of-phase loading cases, maximum of one load occurs at the time when the
other load takes the lowest algebraic value as shown in Figure 6.2. In that case, SWT and

FS parameters may reach their maximum values at any other time depending on the
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relative magnitudes of out-of-phase loads. For this reason, the maximum values are

searched through the whole load cycle.

In the case of 90° out-of —phase, bending and torsional moments are given as

My = My sin (ot + /2) (6.4)

In order to obtain the maximum value of SWT or FS parameter, ot is increased in 1°
intervals; each time the magnitudes of Mz and M, are calculated according to Equations
(6.3) and (6.4) and the stress and strain states and the peak value of SWT or FS parameter
is evaluated. After that, the maximum value of SWT or FS parameter is selected for fatigue
life calculation.

Bending-Torsion

Bending

Torsion

time

Figure 6.1. In-phase bending-torsional moments.

Bending-Torsion

Bending

Torsion

time

Figure 6.2. 90° out-of-phase bending-torsional moments.
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6.1.1. Comparison of the Fatigue Life Predictions with Experimental Results

As mentioned before, SWT and FS parameters are evaluated only in the critical
region designated by Al. As seen in Figures 6.3, 6.4, 6.5 and 6.6, the most stressed point is
at the notched boundary within Al. Away from the notch, a uniform stress distribution is

obtained along the axial direction.

The experimental fatigue life results [69, 70], the calculated maximum damage
parameters and the crack initiation lives of the specimens predicted according to FS and
SWT models under in-phase and 90° out-of-phase loading conditions are presented in
Tables 6.1, 6.2, 6.3 and 6.4. The numerical results are obtained using the developed APDL
codes. The plots in Figures 6.7, 6.8, 6.9 and 6.10 graphically show the comparison between
the predicted results with the experimental ones. In order to validate the results obtained
using ANSYS, two MATLAB codes are developed for SWT and FS parameter
calculations. The MATLAB results for two different loading cases are shown in Table 6.5.
As can be seen in Tables 6.1, 6.2 and 6.5, ANSYS and MATLAB yield the same results.

The equivalent (von Mises) and first principal stress distributions in both total part

and critical region are shown in Figures 6.3, 6.4, 6.5 and 6.6.

S5264.1 . TOOE+08 .150E+03 . 300E+05 . 352E+05
.400E+08 L100E+09 .250E+09 .330E+05

Figure 6.3. von Mises stress distribution in the part (A1+A2).
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Figure 6.4. 1% principal stress distribution in the part (A1+A2).

.215E+08 . TO0E+08 .150E+08 .300E+08 .353E+09
-400E+08 -100E+09 .250E+08 .330E+09

Figure 6.5. von Mises stress distribution in the critical region (Al).

-11325.8 . TOOE+08 .150E+09 . 300E+0%9 .366E+09
.400E+08 .100E+09 .250E+09 .330E+09

Figure 6.6. 1% principal stress distribution in the critical region (A1).
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Table 6.1. Experimental fatigue life results [69, 70] and the results predicted by SWT

parameter for in-phase loading cases.
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Exp. Exp. Predicted | The Ratio | Maximum Max.
Crack Final Initiation of SWT Von

Initiation | Fracture Life Predicted | parameter | Mises

Loading Bending | Torsional | Life (up Life by SWT Life to Stress

Moment | Moment | to 1mm) Parameter | Measured (MPa)

Case (N-m) (N-m) Life

Niexp) Ny (exp) Niswr Ngswr Psyr Oeq
1 1850 2550 2,200 5,113 8,877 4.04 2023114 660
2 2800 0 2,571 8,262 5,191 2.02 2529466 674
3 2000 2100 5,998 12,050 9,520 1.59 1966276 632
4 1250 2700 6,402 10,420 22,414 3.50 1403225 588
5 1150 2700 3,000 12,700 27,249 9.08 1303350 574
6 2325 1350 2,905 11,735 8,321 2.86 2077460 625
7 2600 0 6,347 15,043 7,395 1.17 2181019 626
8 2586 0 14,000 17,450 7,590 0.54 2157594 623
9 0 3000 5,529 12,124 249,912 45.20 612361 538
10 1355 2550 5,500 11,630 21,383 3.89 1428686 580
11 1850 2100 5,740 11,565 12,455 2.17 1764556 603
12 851 2700 9,000 17,730 51,186 5.69 1035295 539
13 840 2700 10,000 24,540 52,462 5.25 1026280 538
14 1720 1350 19,260 58,790 29,909 1.55 1258774 494
15 0 2400 70,350 132,585 1,183,353 16.82 391911 431
16 780 2180 70,340 156,100 138,105 1.96 738697 446
17 570 2180 87,830 182,250 266,432 3.03 600453 423
18 1220 1710 89,750 160,900 78,626 0.88 891359 439
19 1680 960 30,000 65,049 45,467 1.52 1080054 451
20 1220 1700 60,800 124,500 79,688 1.31 887279 438
21 1875 0 48,180 112,200 39,702 0.82 1134267 452
22 1680 900 84,950 153,800 47,580 0.56 1062612 446
23 1550 1090 88,750 190,200 59,778 0.67 980112 433
24 1300 1400 84,680 226,000 92,551 1.09 843343 415
25 0 2000 1,011,333 | 1,843,666 | 4,999,874 4.94 272160 359
26 845 1800 259,900 396,800 226,037 0.87 631664 393
27 1730 0 67,300 157,125 62,378 0.93 965617 417
28 1708 0 163,800 249,900 67,137 0.41 941214 411
29 460 1760 2,688,500 | > 10e6 1,190,454 0.44 391283 342
30 990 1390 641,500 890,500 285,803 0.45 587742 357
31 1150 1090 2,337,500 | > 10e6 247,343 0.11 614311 350
32 1475 0 347,500 556,400 161,781 0.47 701934 355
33 0 1700 2,324,000 | > 10e6 20,642,879 8.88 196635 305
34 1250 880 462,500 734,750 219,253 0.47 637679 349
35 1460 0 430,000 764,000 172,476 0.40 687730 352
36 1400 0 4,494,000 > 10e6 225,230 0.05 632366 337
37 725 1390 2,000,000 > 10e6 943,401 0.47 416680 314
38 0 1500 1,515,000 > 10e6 66,491,842 43.89 153090 269
39 920 880 3,473,000 > 10e6 1,148,731 0.33 395044 281




Table 6.2. Experimental fatigue life results [69, 70] and the results predicted by FS

parameter for in-phase loading cases.
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EXp. Exp. Predicted | The Ratio Maximum Max.
Crack Final Initiation of ES Von

Initiation | Fracture Life Predicted Parameter Mises

Loading Bending | Torsional | Life (up Life by FS Life to Stress

Moment | Moment | to 1mm) Parameter | Measured (MPa)

Case (N-m) (N-m) Life

Ni(exp) Ny (exp) Nigs) Ng gs) Ppg Oeq
1 1850 2550 2,200 5,113 23,781 10.81 0.56730E-02 660
2 2800 0 2,571 8,262 15,843 6.16 0.64417E-02 674
3 2000 2100 5,998 12,050 28,858 4.81 0.53487E-02 632
4 1250 2700 6,402 10,420 38,939 6.08 0.48933E-02 588
5 1150 2700 3,000 12,700 43,139 14.38 0.47496E-02 574
6 2325 1350 2,905 11,735 24,857 8.56 0.55966E-02 625
7 2600 0 6,347 15,043 21,384 3.37 0.58621E-02 626
8 2586 0 14,000 17,450 21,860 1.56 0.58222E-02 623
9 0 3000 5,529 12,124 84,230 15.23 0.39397E-02 538
10 1355 2550 5,500 11,630 40,546 7.37 0.48359E-02 580
11 1850 2100 5,740 11,565 34,751 6.05 0.50599E-02 603
12 851 2700 9,000 17,730 58,371 6.49 0.43575E-02 539
13 840 2700 10,000 24,540 59,011 5.90 0.43442E-02 538
14 1720 1350 19,260 58,790 74,429 3.86 0.40741E-02 494
15 0 2400 70,350 132,585 201,254 2.86 0.31518E-02 431
16 780 2180 70,340 156,100 126,619 1.80 0.35390E-02 446
17 570 2180 87,830 182,250 164,220 1.87 0.33136E-02 423
18 1220 1710 89,750 160,900 135,000 1.50 0.34814E-02 439
19 1680 960 30,000 65,049 101,735 3.39 0.37464E-02 451
20 1220 1700 60,800 124,500 136,997 2.25 0.34684E-02 438
21 1875 0 48,180 112,200 86,215 1.79 0.39151E-02 452
22 1680 900 84,950 153,800 105,043 1.24 0.37150E-02 446
23 1550 1090 88,750 190,200 129,733 1.46 0.35170E-02 433
24 1300 1400 84,680 226,000 184,869 2.18 0.32179E-02 415
25 0 2000 1,011,333 | 1,843,666 441,967 0.44 0.26265E-02 359
26 845 1800 259,900 396,800 218,036 0.84 0.30913E-02 393
27 1730 0 67,300 157,125 124,459 1.85 0.35547E-02 417
28 1708 0 163,800 249,900 132,080 0.81 0.35009E-02 411
29 460 1760 2,688,500 | >10e6 438,553 0.16 0.26310E-02 342
30 990 1390 641,500 890,500 366,082 0.57 0.27393E-02 357
31 1150 1090 2,337,500 | >10e6 426,331 0.18 0.26475E-02 350
32 1475 0 347,500 556,400 267,571 0.77 0.29444E-02 355
33 0 1700 2,324,000 | > 10e6 957,727 0.41 0.22325E-02 305
34 1250 880 462,500 734,750 370,797 0.80 0.27314E-02 349
35 1460 0 430,000 764,000 281,594 0.65 0.29094E-02 352
36 1400 0 4,494,000 > 10e6 348,233 0.08 0.27705E-02 337
37 725 1390 2,000,000 > 10e6 669,541 0.33 0.24022E-02 314
38 0 1500 1,515,000 > 10e6 1,837,643 1.21 0.19698E-02 269
39 920 880 3,473,000 > 10e6 1,460,439 0.42 0.20563E-02 281




Table 6.3. Experimental fatigue life results [69, 70] and the results predicted by SWT

parameter for 90° out-of-phase loading cases.

Exp. Exp. Predicted | Maximum
Crack Final Initiation SWT
Initiation | Fracture Life by Parameter
Loading Bending | Torsional | Life (up Life SWT
Moment | Moment | to 1mm) Parameter
Case (N-m) (N-m)
Ni (exp) i (exp) Niswr Pgyr
1 1150 2700 10,600 13,110 187,471 669785
2 1850 2100 12,660 27,470 42,175 1109701
3 1800 2100 21,600 24,620 49,064 1051022
4 1698 2242 6,725 10,840 67,132 941242
5 2300 1325 17,720 23,980 13,544 1706744
6 770 2180 151,900 | 157,100 | 1,137,473 396090
7 1295 1710 25,580 45,580 361,894 547479
8 1220 1710 165,400 | 240,000 | 530,640 489537
9 985 1400 1,000,000 | >10e6 | 2,587,271 319924

Table 6.4. Experimental fatigue life results [69, 70] and the results predicted by FS

parameter for 90° out-of-phase loading cases.

Exp. EXxp. Predicted Maximum
Crack Final Initiation ES
Initiation | Fracture | Life by FS | Parameter
di Bending | Torsional Life (up Life Parameter
L(gas':g Moment | Moment | to 1mm)
(N°m) (N°m)

Ni exp) Ny (exp) Nigs) Pgg
1 1150 2700 10,600 13,110 111,893 | 0.36541E-02
2 1850 2100 12,660 27,470 90,946 0.38595E-02
3 1800 2100 21,600 24,620 102,883 | 0.37353E-02
4 1698 2242 6,725 10,840 133,996 | 0.34880E-02
5 2300 1325 17,720 23,980 35,524 0.50272E-02
6 770 2180 151,900 | 157,100 284,033 | 0.29036E-02
7 1295 1710 25,580 45,580 515,525 | 0.25396E-02
8 1220 1710 165,400 | 240,000 676,908 | 0.23967E-02
9 985 1400 1,000,000 | >10e6 | 2,061,265 | 0.19288E-02

50
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Figure 6.7. Predicted crack initiation life by SWT parameter versus experimental crack

initiation life for in-phase loading cases.
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Figure 6.8. Predicted crack initiation life by FS parameter versus experimental crack

initiation life for in-phase loading cases.
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Figure 6.9. Predicted crack initiation life by SWT parameter versus experimental crack

initiation life for 90° out-of-phase loading cases.
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Figure 6.10. Predicted crack initiation life by FS parameter versus experimental crack
initiation life for 90° out-of-phase loading cases.



Table 6.5. The maximum SWT and FS parameters obtained from MATLAB.

Loadin Bending | Torsional | Maximum SWT Maximum FS
Case g Moment | Moment Parameter Parameter
(N'm) (N-m) Pgyr Pgg
1 1850 2550 2023114 0.5673E-02
2 2800 0 2529466 0.6442E-02
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The results obtained for in-phase loading cases by SWT parameter are consistent
with the experimental results. For most of the predictions, the ratio of the predicted life to
the measured fatigue life falls within the range of 1/3 and 3.0, especially for lives longer
than 10* cycles as seen in Figure 6.7. Under pure torsion loadings, there are large
differences between the experimental results and the results predicted by SWT model as
can be noticed in Table 6.1. The reason for this may be the fact that the critical plane is the
one at which the maximum principal stress develops according to SWT model while the
experimental observation indicate that cracks initiate and grow at the maximum-shear-
stress plane under pure torsion [38]. Besides, the material constants in the model (Equation

3.1) are obtained from fatigue tests on specimens under pure axial loading.

FS model highly overestimates fatigue lives shorter than 10* cycles as shown in
Figure 6.8; otherwise the predictions are generally consistent with the experimental results.
Unlike SWT model, FS predictions for pure torsion cases are accurate. This may be
because FS model assumes that the maximum-shear-stress plane is the critical plane and

the material constants are obtained from pure torsion tests.

The reason that both SWT and FS models fail to estimate the fatigue lives accurately
in the low cycle range may be the plastic deformation occurring at low cycle. Because a
linear elastic analysis is performed in ANSYS, plastic deformations are neglected.
However, at low cycles, plastic deformations may be significant and so, stress and strain
states may not be accurately determined. The maximum von Mises (equivalent) stress for
each loading case is given in Tables 6.1 and 6.2. As seen in the tables, in most of the load
cases, the maximum von Mises stress exceeds the yield strength of the material, which is
380 MPa; therefore plastic deformations occur in those cases. If local yielding occurs in

the part, linear elastic analysis overestimates stresses; but underestimates strains. Because
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SWT parameter is a product of stress and strain terms, the errors in their values somewhat
compensate the error in the resulting value of the SWT parameter; for this reason, the
accuracy of SWT model predictions for low cycle fatigue may still be acceptable. Because

the dominant term in FS parameter is strain, FS model overestimates the life at low cycle

The fillet in this shouldered shaft is a mild notch. The stress concentration factor of
the notch, K;, is 1.56, the fatigue stress concentration factor, K, is 1.48. Because their
values are close to each other, the predictions of the critical plane models based on the
local stress and strains states are accurate. Considering that the notch with the optimum
shape is milder, i.e. with a larger radius of curvature, the predictions of the models for the
optimum shape are expected to be also accurate.

Comparison of the predictions with the experimental results obtained for the
shouldered shaft shows that the critical plane models estimate the fatigue life with an
acceptable accuracy. If the loading is predominantly torsion, FS model can provide a
reliable evaluation of fatigue behavior as opposed to SWT model. On the other hand, SWT

model is more reliable for low cycle fatigue.

In both SWT and FS results of 90° out-of phase loading cases, most of the
predictions are outside the prediction limits as shown in Figures 6.9 and 6.10. It should be
noted that there are only nine experimental results for out-of-phase loadings and in the
experiments, eight of them were tested only once. Whereas, 18 of 39 in-phase fatigue tests
were performed at least twice under the same loading cases.

6.1.2. Shape Optimization Results

Two different types of shape optimization are performed: One is for in-phase loading
cases and the other is for 90° out-of-phase loading cases. For 90° out-of-phase shape
optimization, it is not possible to find the parameter, wt for each current configuration
since it will take so much time. For this reason, the parameter, wt of the current
configuration having lowest cost function in the set is examined and this parameter is

accepted for all current configurations. At the end of every five chains, the parameter of
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the current lowest cost function is replaced with the previous one and the costs of the

current configurations are updated. The process continues to the end of algorithm.

Because SWT or FS parameter is inversely proportional to fatigue life, maximizing
fatigue life yields the same result as minimizing the damage parameter. Because fatigue
life calculation at each iteration increases the computational burden, the objective function
is chosen as the damage parameter. Optimum shapes are separately obtained using SWT
and FS models. The optimization algorithm tries to find the optimum coordinates of the
moving key points for the minimum objective function value, i.e. minimum SWT or FS
damage parameter value. For in-phase loading cases, optimum shapes are obtained using
two, three, four and five moving key points. One of the optimization processes in which
four moving key points are used is performed by choosing the objective function as FS
parameter. All others are performed by taking the objective function as SWT parameter.
For 90° out-of-phase loading, shape optimization is performed using four moving key

points and the objective function is chosen as SWT parameter.

Two optimization parameters, maximum moving distance and temperature
parameters are used in the algorithm. The initial maximum moving distance parameters of
fillet model calculated from Equation (4.9) are 0.45 mm, 0.45 mm, 0.42 mm and 0.34 mm
for two, three, four and five moving key points, respectively. The initial temperature
parameter of fillet model is 1.0E7.

Table 6.6 presents the shape optimization results obtained using two moving key
points for the in-phase loading cases of M = 1550 Nm, T = 1090 Nm and M = 845 Nm,
T = 1800 Nm. One of the loading cases is bending-moment dominated and the other is
torsional-moment dominated. Although the loading cases are different, the optimum shapes
are quite similar. At the end of each optimization process, two optimum shapes are
obtained and the objective function values of the loading cases of M = 1550 Nm, T =
1090 Nm and M = 845 Nm, T = 1800 Nm dropped to 0.7852 and 0.8264, respectively.
According to SWT model, under the same loading condition, fatigue lives of the optimum
parts are 121,821 and 121,369 for these two loading cases, respectively, which are 104 %
and 103 % higher than that of the parts with circular fillets.
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The optimization process is repeated using three and four moving key points for the
in-phase loading case of M = 1550 Nm, T = 1090 Nm. At the end, fatigue lives of the
optimum parts are 127,903 and 137,659 for three and four moving key points,
respectively, which are 114 % and 130 % higher than that of the part with circular fillet.

The results are given in Tables 6.7 and 6.8.

Optimization is also conducted using FS model for fatigue assessment with four
moving key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm. The
fatigue life of the optimum part is 137,301, which is 130 % higher than that of the part

with circular fillet. The results are given in Table 6.9.

Another optimization is performed using five moving key points and SWT model for
the in-phase loading case of M = 1550 Nm, T = 1090 Nm. The fatigue life of the
optimized part is 138,055, which is 131 % higher than that of the parts with circular fillets.

The results are given in Table 6.10.

The results obtained with four moving key points for 90° out-of-phase loading case
of M = 1220 Nm, T = 1710 Nm, are presented in Table 6.11. The fatigue life of the
optimum part is 1,376,754, which is 159 % higher than that of the parts with circular
fillets.

Table 6.6. The results obtained with two moving key points for two in-phase loading cases
using SWT parameter as the objective function.

M = 1550 Nm, T = 1090 Nm M =845 Nm, T = 1800 Nm

7" key point

10" key point

7" key point

10" key point

The x coordinate
(mm)

23.5028

21.6230

23.4989

21.6243

The y coordinate
(mm)

79.9826

79.9819

79.9972

79.9742
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Table 6.7. The results obtained with three moving key points for an in-phase loading case
using SWT parameter as the objective function.

M = 1550 Nm, T = 1090 Nm

7"key point | 10" key point | 17" key point
The x((r::])r?]r)dmate 22,7381 20.5184 21.7265
The y((r::])r(:]r)dlnate 79.9996 77.9391 79.9868

Table 6.8. The results obtained with four moving key points for an in-phase loading case

using SWT parameter as the objective function.

M = 1550 Nm, T = 1090 Nm

7" key point | 10" key point | 17" key point | 18" key point
The x((r‘;?r?]r)dmate 22 4694 20.1300 21.5313 20.5700
The y((r‘}?r?]r)dmate 79.9541 76.3507 79.7672 78.1434

Table 6.9. The results obtained with four moving key points for an in-phase loading case

using FS parameter as the objective function.

M = 1550 Nm, T = 1090 Nm

7" key point 10" key point 17" key point 18" key point

The x coordinate 22 5462 20.1461 21.5449 20.5721
(mm)
The y((r:T(])rcT)]r)dmate 79.9782 76.4318 79.7968 78.1361

Table 6.10. The results obtained with five moving key points for an in-phase loading case
using SWT parameter as the objective function.

M = 1550 Nm, T = 1090 Nm
th th th th
7" key 10™ key 177 key 187Key 1 19 key point
point point point point
The x(‘;ﬁr‘:‘;d'”ate 22.5396 20.1429 21.5402 20.5677 23.6867
The y (‘r:r‘]’r?]r)d'”ate 79.9973 76.4304 79.7984 78.1276 79.9916




Table 6.11. The results obtained with four moving key points for a 90° out-of-phase

loading case using SWT parameter as the objective function.

M =1220 Nm,T = 1710 Nm

7" key point

10™ key point

17" key point

18™ key point

The x coordinate

24,7781 20.4016 23.3830 21.7124
(mm)
They (‘r’];’r?]r)d'”ate 79.9958 77.4962 79.9954 79.9765

ANSYS generates a spline curve through the key points at the boundary and the

optimum shapes are obtained as shown in Figures 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, and
6.17.

Figure 6.11. The optimum fillet boundary obtained with two moving key points for the in-

phase loading case of M = 1550 Nm, T = 1090 Nm using SWT model.
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Figure 6.12. The optimum fillet boundary obtained with two moving key points for the in-
phase loading case of M = 845 Nm, T = 1800 Nm using SWT model.

Figure 6.13. The optimum fillet boundary obtained with three moving key points for the in-
phase loading case of M = 1550 Nm, T = 1090 Nm using SWT model.
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Figure 6.14. The optimum fillet boundary obtained with four moving key points for the in-
phase loading case of M = 1550 Nm, T = 1090 Nm using SWT model.

Figure 6.15. The optimum fillet boundary obtained with four moving key points for the in-
phase loading case of M = 1550 Nm, T = 1090 Nm using FS model.
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Figure 6.16. The optimum fillet boundary obtained with five moving key points for the in-
phase loading case of M = 1550 Nm, T = 1090 Nm using SWT model.

Figure 6.17. The optimum fillet boundary obtained with four moving key points for the 90°
out-of-phase loading case of M = 1220 Nm, T = 1710 Nm using SWT model.
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The SWT parameter distributions for the circular fillet and the optimized shapes
obtained with two, three, four and five moving key points are shown in Figures 6.18, 6.19,
6.20, 6.21 and 6.22.

|
e

T I
1.10791 217803 435606 £53408 871211
108902 326705 544507 762309 980112

Figure 6.18. SWT parameter distribution of the part with circular fillet.

T I
.134909 100000 300000 550000 769618
50000 200000 400000 650000

Figure 6.19. SWT parameter distribution of the optimized part with two moving key
points.
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.345773 100000 300000 550000 T57417
50000 200000 400000 850000

Figure 6.20. SWT parameter distribution of the optimized part with three moving key

points.

.171561 100000 300000 250000 738473
20000 200000 400000 630000

Figure 6.21. SWT parameter distribution of the optimized part with four moving key
points.
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I
.105897 100000 300000 550000 738784
50000 200000 400000 £50000

Figure 6.22. SWT parameter distribution of the optimized part with five moving key

points.

For in-phase shape optimization performed using SWT or FS parameter, six different
optimized shapes are obtained and all the optimized shapes created by two, three, four and

five moving key points are analyzed for some loading cases.

The maximum SWT and FS parameter results and fatigue life results of the
optimized parts are given in Tables 6.12, 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21,
6.22 and 6.23. In addition, the theoretical percentage increases in fatigue life for each
loading case using the optimized part compared to the original shaped part are shown in
the tables. Sorting is performed according to the percentage increase in fatigue life.

For all optimized shapes obtained for an in-phase loading case, the percentage
increases for the loading cases in which bending moment is higher than the torsional

moment are generally more than the ones in which torsional moment dominates.

For the case in which two moving key points are used, the results are given in Tables

6.12, 6.13, 6.14 and 6.15. As can be seen from the results, there is little difference between
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the shapes and results of two optimized parts (obtained by use of loading cases of M =
1550 Nm, T = 1090 Nm and M = 845 Nm, T = 1800 Nm), less than or equal to one
percent in fatigue life. Accordingly, the optimized shapes are obtained not depending on

the loading case used in the algorithm.

The in-phase results of the optimized shapes obtained by three and four moving key
points are given in Tables 6.16, 6.17, 6.18, 6.19, 6.20 and 6.21. As in the results obtained
by two moving key points, the percentage increases in fatigue life are higher in bending
moment-dominated cases. The objective function decreases and hence fatigue life
increases with the increasing number of moving key points. The highest increases in
fatigue life are obtained for the shape optimized by four moving key points. As can be seen
from Tables 6.18, 6.19, 6.20 and 6.21, there is not a significant difference between the
fatigue life results of optimized shapes obtained by the use of SWT parameter and FS
parameter as the objective function. Accordingly, the objective function can be selected as

either one.

The results of the optimized shape obtained with five moving key points are given in
Tables 6.22 and 6.23. Although the percentage increases in fatigue life are slightly better,
the fatigue life results of optimized shape created by five moving key points are quite
similar to that of optimized shape created by four moving key points. Besides, the use of
five moving key points requires more computational effort and time. Therefore, the use of

four moving key points is sufficient.

For 90° out-of-phase shape optimization, one optimized shape created by four
moving key points is analyzed for nine 90° out-of-phase loading cases. The theoretical
percentage increases in fatigue life of all 90° out-of-phase loading cases calculated by SWT
and FS parameters are given in Tables 6.24 and 6.25, respectively. The highest increase in
fatigue life is obtained for torsional moment-dominated cases for both SWT and FS
models. However, only one of nine 90° out-of-phase loading cases is bending moment-

dominated.



Table 6.12. The SWT parameter and life results of optimized part obtained with two
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moving key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using

SWT model.
Maximum Predicted The
SWT Initiation Percentage
Parameter | Life by SWT | Increase in
Loading Bending Torsional (Optimized Parameter Fatigge Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N-m) Part) SWT
Parameter)
Poswr N"O(SWT) Nswr,
1 39 920 880 312798 2,830,621 146 %
2 36 1400 0 487458 538,568 139 %
3 35 1460 0 530135 403,486 134 %
4 23 1550 1090 769618 121,821 104 %
5 19 1680 960 844300 92,241 103 %
6 3 2000 2100 1561440 16,986 78 %
7 10 1355 2550 1174739 36,064 69 %
8 4 1250 2700 1165434 36,857 64 %
9 15 0 2400 357816 1,670,397 41 %
10 9 0 3000 559088 337,317 35%

Table 6.13. The FS parameter and life results of optimized part obtained with two moving

key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using SWT

model.
Maximum | Predicted The
FS Initiation Percentage
Parameter | Life by FS Increase in
Loading Bending Torsional (Optimized | Parameter | Fatigue Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N'm) Part) FS
Parameter)
Pops NiO(FS) Nesy,
1 36 1400 0 0.23799E-02 700,134 101 %
2 35 1460 0 0.24973E-02 557,386 98 %
3 39 920 880 0.18262E-02 | 2,800,068 92 %
4 23 1550 1090 0.30387E-02 234,215 81 %
5 19 1680 960 0.32259E-02 183,011 80 %
6 3 2000 2100 0.47209E-02 44,053 53 %
7 10 1355 2550 0.43577E-02 58,362 44 %
8 4 1250 2700 0.44407E-02 54,577 40 %
9 15 0 2400 0.30115E-02 243,227 21 %
10 9 0 3000 0.37644E-02 99,904 19 %
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Table 6.14. The SWT parameter and life results of optimized part obtained with two
moving key points for the in-phase loading case of M = 845 Nm, T = 1800 Nm using

SWT model.
Maximum Predicted The
SWT Initiation Percentage
Parameter | Life by SWT | Increase in
Loading Bending Torsional (Optimized Parameter Fatigge Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N-m) Part) SWT
Parameter)
Poswr N"O(SWT) Nswr,
1 39 920 880 313176 2,816,968 145 %
2 36 1400 0 488132 535,978 138 %
3 35 1460 0 530869 401,595 133 %
4 23 1550 1090 770561 121,369 103 %
5 19 1680 960 845381 91,892 102 %
6 26 845 1800 521980 425,352 88 %
7 3 2000 2100 1563315 16,934 78 %
8 10 1355 2550 1170152 36,452 70 %
9 4 1250 2700 1160695 37,270 66 %
10 15 0 2400 355904 1,705,177 44 %
11 9 0 3000 556099 343,417 37 %

Table 6.15. The FS parameter and life results of optimized part obtained with two moving

key points for the in-phase loading case of M = 845 Nm, T = 1800 Nm using SWT

model.

Maximum | Predicted The

FS Initiation Percentage

Parameter | Life by FS Increase in

Loading Bending Torsional (Optimized Para_m(_eter Fatigl_Je Life

Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N'm) Part) FS

Parameter)
Pops N"O(FS) NEsy,
1 36 1400 0 0.23817E-02 697,597 100 %
2 35 1460 0 0.24992E-02 555,412 97 %
3 39 920 880 0.18275E-02 | 2,788,719 91 %
4 23 1550 1090 0.30409E-02 233,506 80 %
5 19 1680 960 0.32283E-02 182,459 79 %
6 3 2000 2100 0.47244E-02 43,941 52 %
7 26 845 1800 0.28130E-02 325,762 49 %
8 10 1355 2550 0.43466E-02 58,895 45 %
9 4 1250 2700 0.44291E-02 55,085 41 %
10 15 0 2400 0.30035E-02 245,967 22 %
11 9 0 3000 0.37544E-02 100,916 20 %




Table 6.16. The SWT parameter and life results of optimized part obtained with three
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moving key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using

SWT model.
Maximum Predicted The
SWT Initiation Percentage
Parameter | Life by SWT | Increase in
Loading Bending Torsional (Optimized Parameter Fatigge Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N-m) Part) SWT
Parameter)
Poswr N"O(SWT) Nswr,
1 39 920 880 308180 3,004,704 162 %
2 36 1400 0 478792 573,421 155 %
3 35 1460 0 520710 428,903 149 %
4 23 1550 1090 757417 127,903 114 %
5 19 1680 960 830491 96,875 113 %
6 3 2000 2100 1538990 17,631 85 %
7 10 1355 2550 1144550 38,729 81 %
8 4 1250 2700 1130501 40,067 79 %
9 15 0 2400 358183 1,663,845 41 %
10 9 0 3000 559660 336,166 35%

Table 6.17. The FS parameter and life results of optimized part obtained with three moving

key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using SWT

model.
Maximum | Predicted The
FS Initiation Percentage
Parameter | Life by FS Increase in
Loading Bending Torsional (Optimized | Parameter | Fatigue Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N'm) Part) FS
Parameter)
Pops NiO(FS) Nesy,
1 36 1400 0 0.23527E-02 740,030 113 %
2 35 1460 0 0.24686E-02 588,394 109 %
3 39 920 880 0.18200E-02 | 2,855,026 95 %
4 23 1550 1090 0.30067E-02 244,866 89 %
5 19 1680 960 0.31907E-02 191,382 88 %
6 3 2000 2100 0.46978E-02 44,809 55 %
7 10 1355 2550 0.43247E-02 59,968 48 %
8 4 1250 2700 0.43898E-02 56,856 46 %
9 15 0 2400 0.30131E-02 242,684 21 %
10 9 0 3000 0.37664E-02 99,703 18 %




Table 6.18. The SWT parameter and life results of optimized part obtained with four
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moving key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using

SWT model.
Maximum Predicted The
SWT Initiation Percentage
Parameter | Life by SWT | Increase in
Loading Bending Torsional (Optimized Parameter Fatigge Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N-m) Part) SWT
Parameter)
Poswr N"O(SWT) Nswr,
1 39 920 880 301180 3,296,636 187 %
2 36 1400 0 466801 626,962 178 %
3 35 1460 0 507669 467,868 171 %
4 23 1550 1090 739473 137,659 130 %
5 19 1680 960 810429 104,220 129 %
6 3 2000 2100 1504599 18,690 96 %
7 10 1355 2550 1139462 39,206 83 %
8 4 1250 2700 1132802 39,844 78 %
9 15 0 2400 354916 1,723,520 46 %
10 9 0 3000 554556 346,628 39 %

Table 6.19. The FS parameter and life results of optimized part obtained with four moving

key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using SWT

model.
Maximum | Predicted The
FS Initiation Percentage
Parameter | Life by FS Increase in
Loading Bending Torsional (Optimized | Parameter | Fatigue Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N'm) Part) FS
Parameter)
Pops NiO(FS) Nesy,
1 36 1400 0 0.23269E-02 780,722 124 %
2 35 1460 0 0.24414E-02 619,951 120 %
3 39 920 880 0.18053E-02 | 2,991,024 105 %
4 23 1550 1090 0.29652E-02 259,684 100 %
5 19 1680 960 0.31479E-02 202,281 99 %
6 3 2000 2100 0.46512E-02 46,388 61 %
7 10 1355 2550 0.42980E-02 61,313 51 %
8 4 1250 2700 0.43850E-02 57,078 47 %
9 15 0 2400 0.29993E-02 247,422 23 %
10 9 0 3000 0.37491E-02 101,458 20 %




Table 6.20. The SWT parameter and life results of optimized part obtained with four
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moving key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using

FS model.
Maximum Predicted The
SWT Initiation Percentage
Parameter | Life by SWT | Increase in
Loading Bending Torsional (Optimized Parameter Fatigge Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N-m) Part) SWT
Parameter)
Poswr N"O(SWT) Nswr,
1 39 920 880 301412 3,286,384 186 %
2 36 1400 0 467338 624,418 177 %
3 35 1460 0 508254 466,019 170 %
4 23 1550 1090 740101 137,301 130 %
5 19 1680 960 811159 103,939 129 %
6 3 2000 2100 1505727 18,653 96 %
7 10 1355 2550 1123014 40,808 91 %
8 4 1250 2700 1110894 42,050 88 %
9 15 0 2400 349648 1,825,934 54 %
10 9 0 3000 546325 364,472 46 %

Table 6.21. The FS parameter and life results of optimized part obtained with four moving

key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using FS model.

Maximum | Predicted The
FS Initiation Percentage
Parameter | Life by FS Increase in
Loading Bending Torsional (Optimized Para_m(_eter Fatigl_Je Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N'm) Part) FS
Parameter)
Pops N"O(FS) NEsy,
1 36 1400 0 0.23173E-02 796,623 129 %
2 35 1460 0 0.24313E-02 632,246 125 %
3 39 920 880 0.18064E-02 | 2,980,560 104 %
4 23 1550 1090 0.29625E-02 260,690 101 %
5 19 1680 960 0.31427E-02 203,663 100 %
6 3 2000 2100 0.46539E-02 46,294 60 %
7 10 1355 2550 0.42902E-02 61,714 52 %
8 4 1250 2700 0.43561E-02 58,438 50 %
9 15 0 2400 0.29770E-02 255,349 27 %
10 9 0 3000 0.37212E-02 104,378 24 %




Table 6.22. The SWT parameter and life results of optimized part obtained with five
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moving key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using

SWT model.
Maximum Predicted The
SWT Initiation Percentage
Parameter | Life by SWT | Increase in
Loading Bending Torsional (Optimized Parameter Fatigge Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N-m) Part) SWT
Parameter)
Poswr N"O(SWT) Nswr,
1 39 920 880 300830 3,312,216 188 %
2 36 1400 0 466277 629,455 179 %
3 35 1460 0 507100 469,681 172 %
4 23 1550 1090 738784 138,055 131 %
5 19 1680 960 809483 104,586 130 %
6 3 2000 2100 1502854 18,746 97 %
7 10 1355 2550 1121012 41,010 92 %
8 4 1250 2700 1111283 42,009 87 %
9 15 0 2400 347829 1,863,196 57 %
10 9 0 3000 543483 370,931 48 %

Table 6.23. The FS parameter and life results of optimized part obtained with five moving

key points for the in-phase loading case of M = 1550 Nm, T = 1090 Nm using SWT

model.
Maximum | Predicted The
FS Initiation Percentage
Parameter | Life by FS Increase in
Loading Bending Torsional (Optimized | Parameter | Fatigue Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N'm) Part) FS
Parameter)
Pops NiO(FS) Nesy,
1 36 1400 0 0.23145E-02 801,342 130 %
2 35 1460 0 0.24283E-02 635,960 126 %
3 39 920 880 0.18043E-02 | 3,000,577 105 %
4 23 1550 1090 0.29591E-02 261,964 102 %
5 19 1680 960 0.31390E-02 204,653 101 %
6 3 2000 2100 0.46482E-02 46,492 61 %
7 10 1355 2550 0.42858E-02 61,941 53 %
8 4 1250 2700 0.43517E-02 58,649 51 %
9 15 0 2400 0.29692E-02 258,203 28 %
10 9 0 3000 0.37115E-02 105,420 25 %




Table 6.24. The SWT parameter and life results of optimized part obtained with four
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moving key points for the 90° out-of-phase loading case of M = 1220 Nm, T = 1710 Nm

using SWT model.

Maximum Predicted The
SWT Initiation Percentage
Parameter | Life by SWT | Increase in
Loading Bending Torsional (Optimized Parameter Fatigge Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N-m) Part) SWT
Parameter)
Poswr N"O(SWT) Nswr,
1 9 985 1400 246413 7,613,769 194 %
2 8 1220 1710 376435 1,376,754 159 %
3 7 1295 1710 418825 925,841 156 %
4 4 1698 2242 720053 149,450 123 %
5 3 1800 2100 800783 108,037 120 %
6 2 1850 2100 844992 92,017 118 %
7 5 2300 1325 1298303 27,533 103 %
8 6 770 2180 330788 2,267,066 99 %
9 1 1150 2700 551188 353,780 89 %

Table 6.25. The FS parameter and life results of optimized part obtained with four moving

key points for the 90° out-of-phase loading case of M = 1220 Nm, T = 1710 Nm using

SWT model.
Maximum Predicted The
FS Initiation Percentage
Parameter Life by FS Increase in
Loading Bending Torsional | (Optimized Parameter Fatigue Life
Case Moment Moment Part) (Optimized | (Obtained by
(N-m) (N-m) Part) FS
Parameter)
Pops NiO(FS) Nesy,
1 7 1295 1710 0.22149E-02 996473 93 %
2 3 1800 2100 0.31630E-02 198342 93 %
3 2 1850 2100 0.32659E-02 174095 91 %
4 4 1698 2242 0.29791E-02 254588 90 %
5 5 2300 1325 0.42310E-02 64877 83 %
6 9 985 1400 0.17682E-02 3,373,535 64 %
7 8 1220 1710 0.21880E-02 1,059,807 57 %
8 6 770 2180 0.26839E-02 400948 41 %
9 1 1150 2700 0.33643E-02 154547 38 %
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The experimental fatigue life results [67], the calculated maximum damage

parameters and the crack initiation lives of the groove specimen predicted by SWT model

under in-phase loading conditions are presented in Tables 6.26. The axial and torsional
loads are fully-reversed (R = —1) [67]. The plot in Figure 6.23 graphically shows the

comparison between the predicted crack initiation life and the experimental fatigue life.

Table 6.26. Experimental fatigue life results [67] and the results predicted by SWT

parameter.
Exp. Predicted Maximum
Fatigue Initiation SWT
i Lifeb
Loading Axial Torsional L SWTy Parameter
Case L((l)\la)d I\?;me;n Parameter
‘m
N f N i(SWT) Pgyr
1 34,461 63 39,413 4,660 447383
2 31,180 57 204,428 14,120 366246
3 28,741 52.5 683,147 35,803 311140
. &pnc 10* 10° 10°

Predicted Crack Initiation Life, N; ;swt)

1000 100 10°

10°

Experimental Fatigue Life, N (exp)

- 1000
101’

Figure 6.23. Predicted crack initiation life by SWT parameter versus experimental fatigue

life for groove model.
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6.2.1. Shape Optimization Results

The initial maximum moving distance parameter of groove model calculated from

Equation (4.9) is 0.18 mm. The initial temperature parameter of groove model is 1.0E7.

The SWT parameter and fatigue life results of the optimized part are given in Table
6.27. The shape optimization is performed by an in-phase loading case as shown in Table
6.27. SWT parameter is selected as the objective function and two moving key points,
namely, 9" and 8™ key points are used. Due to the symmetry, 6" and 5" key points are
located depending on the 8™ and 9" key points, respectively. At the end, fatigue life of the
optimum part is 286,694, which is 1930 % higher than that of the part with circular

groove.

Since the circular groove has smaller radius, critical plane approaches underestimate
fatigue life. In other words, the notch sensitivity factor, g, is 0.67 [71], the stress
concentration factor of the notch, K, is 2.32, the fatigue stress concentration factor, K, is
1.88. There is a significant difference between the values of the factors and so, the critical
plane models are not appropriate for circular groove. On the other hand, the optimized
shape has larger a radius of curvature and therefore, critical plane approaches is expected
to give accurate results. It may be the reason why there is a large increase in fatigue life of

optimized groove compared to that of circular groove.

In comparison to the experimentally determined fatigue life, the increase in life by
optimizing the shape is 40 percent. However, it is unclear whether the experimental fatigue

life was measured for crack initiation or total failure [67].

The coordinates of the moving key points are given in Table 6.28. The optimized
shape is shown in Figure 6.24. The SWT parameter distributions of both circular and

optimized grooves are shown in Figure 6.25 and 6.26, respectively.
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.554162

Figure 6.24. The optimized groove boundary.

|
81388.4 162776 244164 325552
40694.5 122082 203470 284858

Figure 6.25. SWT parameter distribution of the circular groove part.

366248
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145146

169361

193555

Figure 6.26. SWT parameter distribution of the optimized groove part.

Table 6.27. The SWT parameter and fatigue life results of the optimized part.

Maximum Predicted The
SWT Initiation Percentage
Parameter Life by Increase in
Axial Torsional (Optimized SWT Fat!gue
Part) Parameter Life
Load Moment imized
(N) (N-m) (Optimize
Part)
P”SWT N, Ny,
31,180 57 217750 286,694 1930 %

Table 6.28. The coordinates of moving key points of the optimized part.

9™ key point

8" key point

6" key point

5" key point

The x coordinate

12.6002 12.1451 12.1451 12.6002
(mm)
They (ﬁ:’r‘r’]r)d'”ate 57.9999 57.2023 54,7977 54.0001

In the optimum shape, cavities develop at the sides. Considering that undercutting

poses difficulties in manufacturing, the cavities are removed as shown in Figure 6.27 and

the fatigue life is reevaluated. SWT parameter distribution of the flattened groove is shown
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in Figure 6.28. The results are given in Table 6.29. Compared to the original optimized
groove shape, there is a 40 % decrease in fatigue life. Therefore, if manufacturing

difficulties are tolerated, the original optimized groove shape should be preferred for

maximum fatigue life.

Figure 6.27. The flattened-optimized groove boundary.

LR
.245698 52850.4 105701 158551 211401
26425.3 75.5 132126 184976 237826

Figure 6.28. SWT parameter distribution of the flattened-optimized groove part.
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Table 6.29. The SWT parameter and fatigue life results of flattened-optimized groove part.

Maximum Predicted The
SWT Initiation Percentage
Parameter Life by Increase in
Axial Torsional (Fla'gteljed- SWT Fatigue
Optimized | Parameter Life
Load Moment Part) Flattened-
N | Nm Oontinein
Optimized
Part)
PFOSWT No N%
31,180 57 237826 170,856 1110 %
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7. CONCLUSION

In this study, a shape optimization procedure is proposed to maximize the fatigue life
of notched parts. SWT and FS models are used to estimate the fatigue life. The models are
verified for the notched geometries by comparing their predictions with the empirical
results reported in the literature for circular notch. The accuracy of the predictions is found
to be within acceptable limits.

It is generally known that shape optimization problems involve numerous local
optimums besides the globally optimal design. In this study, a modified simulated
annealing algorithm is used as the search algorithm to obtain the globally optimal notch
shapes. When the algorithm is used repeatedly starting from randomly chosen
configurations, mostly similar results are obtained with smooth notch shapes. The modified
SA algorithm searches the optimum shape having the minimum SWT or FS parameter
value. Because the parameter is inversely proportional to the fatigue life, the shape with the
maximum fatigue life is obtained at the end of the optimization. For both in-phase and 90°
out-of-phase loading, a significant increase is achieved in fatigue life by shape
optimization. As high as 187 percent increase in fatigue life is obtained for the shouldered
shaft in comparison to circular fillets. There is no significant difference between the
optimal shapes found for different loading cases. Besides, the optimal groove shape has
1930 percent increase in fatigue life; thereby, the fatigue life of the part is increased

considerably.
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APPENDIX A: THREE-DIMENSIONAL (3D) STRESS
TRANSFORMATION

A small tetrahedron shown in Figure A.1 (a) subjected to stresses can be considered

for the 3D transformation.

z (a) (b)

Figure A.1. (a) The representation of stress components. (b) The orientation of the oblique
plane [59].

Dx, Py, D, are the stress components of stress resultant p on the ABC oblique plane.

The orientation of the oblique plane can be expressed with the angles, «, 8,y between a
unit normal n of the plane and the x,y, z directions as in Figure A.1 (b). The direction

cosines are expressed as

cosa =cos(n,x) =1 (A.1)
cosff =cos(n,y) =m (A.2)
cosy =cos(n,z) =n (A.3)

Considering the three perpendicular planes QAB, QAC, QBC and the equilibrium of

forces, the stress components are expressed as
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Dx = Oxl + Tyym + Ty, (A.4)
Dy = Tyl + oym + 7,0 (A.5)
Dz = Txzl +1,,m+o,n (A.6)

The direction cosine relations between the x'y 'z" system, where x" is coincided with

the unit normal n while y', z' lie on the oblique plane, and the xyz system are given in

Table A.1.
Table A.1. The direction cosine representation.
X y z
x' l; = cos(x’, x) my = cos(x’,y) n, = cos(x’,z)
% I, = cos(y', x) my =cos(y,y) | n=cos(y,z)
i l; = cos(z',x) my = cos(z',y) ny = cos(z’, z)

The 3D stress transformation equations are obtained by projecting p,, p, and p, in

the x', y', z" directions.

The normal stress components g, &

following equations
0y = axly? + aymy? + a,n,?

2
0, = 0xly" + 0,my? + o,n,?

y
2
0,1 = 0xls” + oyms® + o,n3°

The shear stress components ..., T

xyr ‘xz

y» 0, for any orientation can be obtained by the

+ Z(Txyllml + T,,mn; + szllnl) (A7)

+ Z(Txylzmz + Tyzmznz + szlznz) (A8)

+ Z(Txyl3m3 + Tyzm3n3 + szl3n3) (Ag)

7,7, are expressed as



Tyryr = Oxlyly + oymym, + 0,140, + Ty, (LM, + myly)

+ 1y, (Myn, + nymy) + 1o, (ny 1y + 1ny)

Tyly! = O-xlll:g + O-ymlm3 + o,NnNing + Txy(llmg + mllg)
+ 7y, (myng + nyms) + 15, (ny 13 + [n3)

Tyt = Oxlpls + oymamg + 0,n5n3 + Ty, (M 13 + 1ym;)

y

+ 1y, (nymz + myng) + 1y, (Ipng + nyl5)
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(A.10)

(A.11)

(A.12)
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APPENDIX B: THREE-DIMENSIONAL (3D) STRAIN
TRANSFORMATION

The strain transformation equations can be obtained from the stress expressions

replacing o and 7 by € and y /2, respectively.

The normal strain components €., €, &, can be obtained for any specified

orientation by the following equations "
g = gyt + eymy® + £,n1% + Yy limy + vy,ming + vy liny (B.1)
£y = s gyMy® + £,M% + Yy lamy + ¥y,man, + Vi lony (B.2)
gy = &ls® + gyMz® + £,n3% + Yyylamz + ¥, MaNz + Vg lans (B.3)

The shear strain components y,,, v, ¥, are expressed as

Yary' = 2(&xlily + &,mymy + £,n115) + Yy (Limy + myly)

(B.4)
+ Vyz(m1n2 +nimy) + Ve (Ml + 11n3)
Yarz' = 2(&xlils + eymyms + g,n4n3) + ¥y (Lmg + myl3) (5)
+ Yy (ming + nymz) + vy, (nyl3 + I1n3) .
Yy'z' = 2(&xlals + &,mams + £,n513) + Yy (Myl3 + [;m3) (B.6)

+ Vyz(noms + myng) + vy, (Ipng + nyl3)

For a given stress-strain state at any point of material, principal stresses or strains can

be calculated as follows
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Ox Txy Txz
A=|Txy Oy Tyz] (B.7)
Txz Tyz O3z
1 1
Ex E Yy E Vxz
1 1
B = nyy &y E)/yz (B8)
1 1
_E Vxz E Vyz &z

Principal stresses oy, 0,, o3 and principal strains &;, &,, &5 are the eigenvalues of

stress tensor, A and strain tensor, B, respectively.

The orientation of a plane where principal values are observed is defined with
direction cosines as indicated in Table A.1. Considering that strain state of a point is given,

the direction cosines of principal orientation can be calculated as follows:

1 1
(gx - gp,i)li + nyymi + nyzni =0 (B.9)
1 1
nyyli + (Ey - Ep,i)mi + E)/yzni =0 (BlO)
1 1
S Vazli + 5y + (&, = &) = 0 (B.11)

where i = 1,3, g,; are the principal strains and [;, m;, n; are the direction cosines of

principal strain orientations.

The nontrivial solution of the equation systems ([A]{x} = 0) is obtained for nine

direction cosines.
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APPENDIX C: SHAPE OPTIMIZATION METHODS

Shape optimization methods are used to obtain the most appropriate geometry for a
specified boundary of an engineering component by allowing the boundary shape to be
varied. In shape optimization techniques, the objective function to be minimized for a
specified boundary of the component is defined by considering the minimization of peak
stresses, stress intensity factors, volume of the part, etc. In each iteration, the objective
function is aimed to be minimized until no further improvement is obtained. Shape
optimization methods increase the strength and the lifetime of parts under same loading

conditions, they provide less weight structures without reducing the strength of them.

Global stochastic optimization methods are used to search the design space of the
structure in which design variables are allowed to move any direction without considering
the starting point. The simulated annealing (SA) is a well-known stochastic optimization
method.

C.1. Simulated Annealing (SA) Algorithm

Simulated Annealing (SA) algorithm is one of the most preferred global stochastic
algorithms. It was firstly proposed by Kirkpatrick et al. [72]. The algorithm is based on
iterative process in which configurations in coordinate system are generated to improve the
system. During the process, if a configuration that provides a better cost function is
obtained, then the current configuration is accepted and replaced by the previous one. The
process is randomly repeated starting from different configurations in a space until a

further improvement is not obtained.

When a random configuration is generated by giving a random displacement to a
design variable such as a nodal coordinate of system, the current cost function, f_ is

obtained.
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If the current configuration’s cost function, f, is equal to or less than the previous
one, f, (fc — fp < 0), then the current one is accepted and the next iteration is started from

the accepted one.

On the contrary, if f, — f, > 0, the acceptability depends on the situation described

below.

P =exp (=(fe = fp)/Ti) (C.1)

where T, is a temperature parameter which is associated with the physical meaning of it.
The ‘melting’ phase is realized at high temperature and by decreasing it slowly, ‘freezing’
process takes place until a steady phase is reached. In optimization, at high temperature
values, the likelihood of acceptance of current configuration will be high. After it is
lowered to a specific value during iterations, there is not any improvement and the

optimization process is stopped.

A randomly generated number between 0 and 1 is compared with P. If P is greater
than that number, the current configuration will be accepted, otherwise the previous one

will be used. Acceptability, A is given by the following equation.

1, fe—fp =0

A= {exp ~Cfo=F)/TO fomfo >0 (€2)

C.2. Direct Search Simulated Annealing (DSA) Algorithm

The DSA algorithm was presented by Ali et al. [63] as a modified version of
simulated annealing algorithm. The main difference of DSA is that a set of current
configurations rather than a single one as in SA are used for optimization. It is a memory-

based global stochastic algorithm in which the best solution is kept.
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C.2.1. Acceptability of current configuration

In the DSA algorithm, N different random configurations are initially generated and
their cost function values are calculated and stored in an array A. The highest and lowest
cost function values in A are stored as f;, and f;, respectively. Then, a new configuration is
again randomly generated by giving random displacements to nodes of a moving boundary
as a starting point and its cost, f_ is calculated. The probability of acceptance, acceptability,

A is given by the following equation.

L fe—/fn=0

A= O = D, 2 h 0 (€3)

When f. — f, < 0, the current configuration is accepted and replaced by the worst
configuration. After replacement, the cost functions are updated to obtain f;, and f; for new
condition. Iterations are repeated until the end of Markov chain. In this manner, the best

configuration is always kept in array.

The current Markov chain (k th chain) will be ended if a generated configuration has
a cost value less than the value of lowest cost, f; of that chain and the next Markov chain
will be started. During the execution of k th chain, if a cost value less than f; is not

obtained, then iterations are executed until the end of that chain.
C.2.2. The cooling schedule

The temperature parameter, T;, is kept constant during the execution of a chain. At
the end of each chain, its value decreases. The initial temperature, T, value should be high
to be performed an efficient process. At high values of initial temperature, this ‘melting’
process takes place in which the space is completely searched and nearly all current
configurations are accepted. At low initial temperature, the algorithm may stick in a local

minimum at the beginning of process.
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C.2.3. Length of the Markov chains

It is assumed that the length of the Markov chains should be large enough to allow
the algorithm to search all possible locations of the neighborhood of a point. Length of a k

th Markov chain is determined by the following equation

Ly =L+ LA =exp(=(fp = f)) (C.4)

where

L=10xn (C.5)

where n is the dimension of problem such as the number of design variables. If x and y

coordinates of the nodes of a boundary to be optimized are selected as variables, then

n=2xm (C.6)

where m is the number of moving nodes. As can be seen in Equation (C.4), a Markov
chain has a value between L and 2L. When the difference between f;, and f; is high, the
iterations executed in a Markov chain will increase to allow the evaluations of more

configurations unless a cost function which has a value less than f; is obtained.

C.2.4. The temperature control parameter

The temperature parameter, T, must be controlled with a parameter «;, by the

following expression.

Ti1 = Qg1 X Ty (C.7)

where ay ., is a parameter used for the determination of the (k + 1) th Markov chain’s

temperature parameter, Tj,,. There are three possible «a;.; values depending on the

relation between Markov chain lengths.
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Ap+1 = Amaxs U Ligrr > Lgas (C.8)

where L., is the calculated (k + 1) th Markov chain length, L., is the number of

configurations (trials) generated in the (k + 1) th Markov chain.

( L /
ay — (ag — amin) (1 — L—)' Liyr > L'
G =1 o (€9)

Ly+1
kamax - (amax - ak) L’k ’ Lk+1 < L’k

where a,,4, and a,,;, are two constants that were given as 0.90 and 0.80 in the paper,
respectively. L', is the executed number of configurations in k th Markov chain. Initial

value of @y, @ initiq; 1S given as

a + api
M imitial = (Amax . min) (C.10)

C.2.5. Stopping Criteria
The algorithm is ended when no considerable further development is obtained. There
are two stopping criteria in which the temperature parameter and the difference between

highest and lowest cost functions are evaluated.

T, < & (C.11)

fh—fise (C.12)

where &, and ¢, are two constants both considered as 0.05 in the paper.



