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Boğaziçi University

2016



ii

FACIAL EXPRESSION RECOGNITION IN THE WILD USING IMPROVED

TRAJECTORIES AND FISHER VECTOR ENCODING

APPROVED BY:

Assist. Prof. Albert Ali SALAH . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Prof. Lale AKARUN . . . . . . . . . . . . . . . . . . .
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ABSTRACT

FACIAL EXPRESSION RECOGNITION IN THE WILD

USING IMPROVED TRAJECTORIES AND FISHER

VECTOR ENCODING

Automatic video data analysis has been a growing interest in order to improve

human computer interaction. One of the most challenging parts in video analysis is

the ability of evaluating human emotion robustly. Vast applications of human facial

expression recognition can be seen everywhere from educational systems to treatment

of Asperger’s and surveillance. In this thesis, we explore facial expression recogni-

tion on both laboratory and realistic videos. After studying recent works about face

detection, facial alignment, video description and classification, we present our novel

approach in, which our proposed pipeline including facial alignment in combination

with improved dense trajectory, geometric, encoded with Fisher vector encoding and

LGBP-TOP features are fed to extreme learning machine. It is the first time that im-

proved dense trajectory features are used in facial expression recognition. Furthermore,

we extensively study each step of our pipeline in a comparative manner. We evaluate

our approach on CK+ and EmotiW 2015 challenge datasets. Videos in first dataset

are captured in laboratory settings and start from neutral state and end with peak

expression while the second one is selected from movies with realistic conditions, spon-

taneous emotions, complicated background and challenging illumination variations. On

Ck+ dataset, we obtained 94.80% and 95.79% (without contempt) accuracy, which is

among the best results obtained on the CK+. On EmotiW 2015 challenge dataset, we

got 43.39% accuracy, which is higher than the baseline of the challenge considerably. In

both datasets we were able to obtain the state-of-the-art results. Our results show that

using appropriate pipeline of face alignment combined with efficient visual descriptors

can result in a robust system with high ability of recognition.
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ÖZET

İYİLEŞTİRMİŞ İZLEK VE FİSHER VEKTÖRÜ

KODLAMASI İLE ZOR ŞARTLAR ALTINDA YÜZ

İFADESİ TANIMA

Otomatik video görüntüsü işleme yöntemleri özellikle insan bilgisayar etkileşimini

iyileştirme amacı ile öncem kazanmıştır. Video görüntülerinin analizinde özellikle

zor bir problem görüntüdeki kişilerin duygu durumunu kestirebilmektir. Yüz ifadesi

sınıflandırmanın uzaktan eğitim sistemlerinden Asperger sendromlu kişilerin kullanacağı

uygulamalara ve güvenlik uygulamalarına uzanan geniş uygulama alanı mevcuttur.

Bu tez çalışması kapsamında kontrollü ve gerçekçi koşullar altında toplanmış video

görüntülerinden yüz ifadesi tanıma problemini ele alıyoruz. Yakın zamanda yapılan yüz

bulma, hizalama, video öznitelik çıkartma ve sınıflandırma yaklaşımlarını inceledikten

sonra yeni bir yöntem öneriyoruz. Bu yöntemde iyileştirilmiş yoğun izlekler yaklaşımını

yüz hizalama sonrası uyguluyor, geometrik öznitelikler ve LGBT-TOP özniteliklerini

Fisher vektörleri ile kodlayarak ekstrem öğrenme makineleri sınıflandırıcılarına veriy-

oruz. İyileştirilmiş yoğun izlekler yaklaşımı bu çalışma ile ilk defa yüz ifadesi tanıma

problemine uygulanmıştır. Yaklaşımın her aşamasını karşılaştırmalı deneylerle, CK+

ve EmotiW 2015 veritabanları üzerinde sınıyoruz. Bu veritabanlarından birincisi kon-

trollü kayıt koşullarında toplanmış, nötr yüzden ifadeli yüzlere geçişleri içermektedir.

İkinci veritabanı ise gerçekçi koşullarda, doğal ifadeler, zor ışıklandırma ve karmaşık

arkaplan görüntüleri içeren film klipleridir. CK+ veritabanında 94.80% (aşağılama

ifadesi olmadan 95.79%) ile en iyi sonuçlardan birini elde ediyoruz. EmotiW 2015

veritabanında elde ettiğimiz 43.39% sınıflandırma başarısı ise yarışma temel sonucun-

dan oldukça yüksektir. İki veritabanında da elde ettiğimiz iyi sonuçlar kullandığımız

hizalama ve öznitelik çıkartma yöntemlerinin başarılı bir sistem ortaya koyduğunu

göstermiştir.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. FACE DETECTION, ALIGNMENT AND LANDMARK LOCALIZATION 9

2.1. Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2. Landmark Localization . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1. Supervised Descent Method . . . . . . . . . . . . . . . . . . . . 12

2.2.2. Discriminative Response Map Fitting . . . . . . . . . . . . . . . 12

2.3. Facial Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1. Generalized Procrustes Alignment (GPA) . . . . . . . . . . . . . 14

2.3.2. Face Frontalization . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. VIDEO DESCRIPTION WITH LOCAL DESCRIPTORS . . . . . . . . . . 16

3.1. Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1. Dense Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2. Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1. Appearance-Based Approaches . . . . . . . . . . . . . . . . . . 17

3.2.1.1. LBP-TOP . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1.2. LGBP-TOP . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.3. SIFT . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1.4. HOG . . . . . . . . . . . . . . . . . . . . . . . . . . . 20



vii

3.2.1.5. LPQ-TOP . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2.2. Geometry Based Approaches . . . . . . . . . . . . . . . . . . . . 20

3.2.3. Improved Dense Trajectory Features . . . . . . . . . . . . . . . 21

3.2.3.1. Histogram of Oriented Gradients . . . . . . . . . . . . 21

3.2.3.2. Histogram of Optical Flow . . . . . . . . . . . . . . . . 21

3.2.3.3. Motion Boundary Histogram . . . . . . . . . . . . . . 21

3.2.3.4. Trajectories . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.3.5. Improved Trajectories . . . . . . . . . . . . . . . . . . 23

3.3. Local Feature Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1. Unsupervised Clustering Methods . . . . . . . . . . . . . . . . . 27

3.3.1.1. K-means . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.1.2. Gaussian Mixture Model . . . . . . . . . . . . . . . . . 28

3.3.2. Bag of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3. Fisher Vector Encoding . . . . . . . . . . . . . . . . . . . . . . . 31

4. CLASSIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1. Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2. Extreme Learning Machine . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.1. Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5. PROPOSED METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . 40

5.1. Face and Landmark Detection . . . . . . . . . . . . . . . . . . . . . . . 40

5.2. Generalized Procrustes Alignment . . . . . . . . . . . . . . . . . . . . . 40

5.3. Improved Dense Trajectory Features . . . . . . . . . . . . . . . . . . . 41

5.4. Geometric Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5. Local Gabor Binary Patterns From Three Orthogonal Planes . . . . . . 44

5.6. Fisher Vector Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.7. Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6. EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1. Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.1.1. The Extended Cohn-Kanade Dataset . . . . . . . . . . . . . . . 49

6.1.2. EmotiW 2015 Challenge Dataset . . . . . . . . . . . . . . . . . 50

6.2. Comparison of Descriptor Types . . . . . . . . . . . . . . . . . . . . . . 53

6.3. Effect of Facial Alignment . . . . . . . . . . . . . . . . . . . . . . . . . 56



viii

6.4. Comparison of Different Encodings . . . . . . . . . . . . . . . . . . . . 57

6.5. Comparison of ELM with SVM . . . . . . . . . . . . . . . . . . . . . . 61

6.6. Cross Database Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.7. The Effect of Dimensionality and Fisher Vector Parameters . . . . . . . 61

6.8. Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69



ix

LIST OF FIGURES

Figure 1.1. Six universal emotions selected from CK+ dataset. . . . . . . . . . 2

Figure 2.1. Illustration of the integral image and Haar-like rectangle features . 10

Figure 2.2. Overview of the response patch model (DRMF). . . . . . . . . . . 13

Figure 2.3. Procrustes alignment. . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 2.4. Overview of the HPEN method. . . . . . . . . . . . . . . . . . . . 15

Figure 2.5. Frontalization process overview. . . . . . . . . . . . . . . . . . . . 15

Figure 3.1. Overview of LBP descriptor. . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.2. Overview of LGBP descriptor. . . . . . . . . . . . . . . . . . . . 19

Figure 3.3. Overview of SIFT descriptor. . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.4. Displacement of fiducial points in case of surprise. . . . . . . . . . 20

Figure 3.5. Overview of the improved dense trajectory method. . . . . . . . . 24

Figure 3.6. Visualization of improved dense trajectories. . . . . . . . . . . . . 25

Figure 3.7. Bag of features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.1. ELM architecture, a single-hidden-layer feed-forward network. . . 39

Figure 5.1. Sample aligned faces taken from EmotiW 2015 dataset. . . . . . . 41



x

Figure 5.2. Proposed pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.3. Order of the localized landmarks. . . . . . . . . . . . . . . . . . . 44

Figure 5.4. Landmarks extracted from the face (EmotiW 2015). . . . . . . . . 44

Figure 6.1. Overview of facial expression in CK+ dataset. . . . . . . . . . . . 50

Figure 6.2. Illustration of sample frames taken from EmotiW 2015 dataset. . . 53

Figure 6.3. Confusion matrix of the final system (CK+). . . . . . . . . . . . . 55

Figure 6.4. Confusion matrix of the final system (Emotiw 2015). . . . . . . . . 57

Figure 6.5. Given alignment by challenge organizer vs our alignment . . . . . 58

Figure 6.6. Comparison of BOW and FV (CK+) . . . . . . . . . . . . . . . . 59

Figure 6.7. Comparison of BOW and FV (EmotiW 2015) . . . . . . . . . . . 60

Figure 6.8. The effect of dimensionality and the number of GMM components. 62

Figure 7.1. A correctly classified sample from the disgust class. . . . . . . . . 67

Figure 7.2. A misclassified sample from happy class. . . . . . . . . . . . . . . 68



xi

LIST OF TABLES

Table 1.1. Facial expression recognition datasets and benchmarks. . . . . . . 4

Table 3.1. Dense trajectory parameters. . . . . . . . . . . . . . . . . . . . . . 24

Table 5.1. Explanation of geometric features. . . . . . . . . . . . . . . . . . . 45

Table 6.1. State of the art results on the CK+ . . . . . . . . . . . . . . . . . 51

Table 6.2. Numbers of samples for each emotion class (EmotiW 2015). . . . . 52

Table 6.3. state-of-the-art results (EmotiW 2015) . . . . . . . . . . . . . . . . 52

Table 6.4. Contribution of different descriptors (CK+). . . . . . . . . . . . . 54

Table 6.5. Contribution of different descriptors (EmotiW 2015). . . . . . . . . 56

Table 6.6. Comparison of BOW and FV (CK+). . . . . . . . . . . . . . . . . 59

Table 6.7. Comparison of BOW and FV (EmotiW 2015). . . . . . . . . . . . 60

Table 6.8. ELM and SVM comparison in terms of time and performance. . . 61

Table 6.9. The effect of dimensionality and the number of GMM components. 62



xii

LIST OF SYMBOLS

CELM Regularization parameter of ELM

CSVM Cost parameter of SVM

D Dimensionality

g(x;u,Σ) Gaussian component

H Hidden layer matrix

H† Inverse of H

I Identity matrix

I(x, y, t) Optical flow

K Number of cluster components

K (xi, xj) Kernel function

L Log-likelihood

nσ Number of spatial divisions

nT Number of temporal divisions

N Number of instances

p (x | λ) Probability of x given λ

Pt Point at frame t

T Training label matrix

yi Class label of instance i

β Hidden layer output weight matrix

µ Mean

π Pi number

σ Variance

Σ Covariance matrix

Ω Kernel matrix

∇λ Gradient vector with respect to parameter λ



xiii

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

BOF Bag of Features

CK+ Extended Cohn and Kanade

DRMF Discriminative Response Map Fitting

ELM Extreme Learning Machine

EM Expectation-Maximization

EmotiW Emotion recognition in the Wild

FV Fisher Vector

GEO Geometric Features

GMM Gaussian Mixture Model

GPA Generalized Procrustes Alignment

HOF Histogram of Optical Flow

HOG Histogram of Oriented Gradients

HOG3D Histograms of 3D Gradient Orientations

KLT Kanade-Lucas-Tomasi

LBP Local Binary Pattern

LGBP Local Gabor Binary Pattern

LPQ Local Phase Quantization

MBH Motion Boundary Histograms

PCA Principal Component Analysis

RANSAC Random Sample Consensus

RBF Radial-basis Function

SDM Supervised Descent Method

SIFT Scale-Invariant Feature Transform

SLFN Single-hidden-layer Feed-forward Network

SURF Speeded Up Robust Features

SVM Support Vector Machine



1

1. INTRODUCTION

1.1. Motivation

Automatic video data analysis has attracted a lot of attention due to the fast

development of video data over the recent decades. Among different field of video

analysis, evaluating human emotion is one of the most challenging parts. Massive

application of human emotion recognition has made it an important field of research.

Some of these application are as follows: human-computer interaction (HCI), medical

analysis [1], educational systems and surveillance [2].

Positions and movement of the muscles of the face lead to different facial ex-

pressions. These movements express the emotional state of a person to observers. In

other words a facial expression is a form of nonverbal communication. It is a crucial

mean of transmission of social information between humans. The facial expressions are

typically classified into seven basic emotions such as neutral, happiness, anger, disgust,

sadness, fear, and surprise [3]. In Figure 1.1. we see examples of universal emotions.

A lot of research have been done in facial expression recognition from static images

like [4–6] but motion information, which plays an important role in facial expression

recognition is discarded in static images. In order to solve this problem, datasets

consisting of image sequences (i.e. videos) has been developed recently. Most of the

video datasets are collected in laboratory settings and are not compatible with the real

world. A robust emotion recognition system should be applicable in realistic conditions

and for achieving this purpose developing video datasets in realist condition is the first

step. Facial expression recognition in the wild is the name, which has been given to

the research that is done on these datasets.

Even with the intensive works that computer vision scientists have done in the

emotion recognition task, designing a robust pipeline remains a challenge. Most of the

previous researches are done on videos collected under controlled conditions [7–9], such
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as the CK dataset [10].

Figure 1.1. Six universal emotions selected from CK+ dataset. a) surprise, b) sad, c)

fear, d) angry, e) disgust, f) happy.

Evaluating human emotion in real-world videos like EmotiW 2015 challenge

dataset 1 , is still an open challenge. Complexity of facial expression recognition in the

real-world videos is due to many reasons such as different illumination conditions, vari-

ous head poses, unspecified apex of emotion, scaling, occlusion of face and complicated

background.

Designing robust facial alignment and discriminative features for video represen-

tation is critical to overcome the complexities listed above. Video representation plays

a significant part in emotion recognition task since well describing of the appearance,

structure and motion of facial parts are dependent on informative features. Actually,

facial features can be used to efficiently describe facial motion in static or dynamic fa-

cial images. They usually describe shape, color and texture characteristics. Otherwise,

they can also minimize within-class differences of facial expressions while maximizing

between-class dissimilarities. Among face descriptors, facial geometric and appearance

1The Third Emotion Recognition in the Wild Challenge was held at the ACM International Con-
ference on Multimodal Interaction, 2015, Seattle.
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descriptors are usually used to extract features in facial expression recognition task.

Besides the importance of feature extraction part in facial expression classifica-

tion, there exists the facial alignment task, which is an open challenge in the research

community. Actually automatic facial alignment is an essential requirement for hu-

man computer interaction. In this study, we propose a novel approach for emotion

recognition, which is able to tackle the challenges of real-world setting.

1.2. Related Work

The development in video datasets causes progress in emotion recognition. Happy

et al. [19] recently published a dataset for spontaneous facial expression. Table 1.1

summarizes some benchmark datasets for facial expression recognition. Kanade et

al. [10] introduced the Cohn-Kanade (CK) dataset in 2000 for classifying emotion from

videos. This database contains grayscale videos of seven human emotions, namely

surprise, sad, angry, fear, happy, disgust and neutral. Videos are recorded in laboratory

conditions and have uniform backgrounds. In each video, there is one performer. Videos

start from neutral state and end in apex time.

The datasets issued each year are developing in terms of number of video content

and conditions of video recording. Recently published datasets, such as EmotiW 2014

2 and EmotiW 2015, have videos, which are selected from movies with real-world con-

ditions. These videos have challenging illumination condition, background complexity

and a lot of numbers of face occlusion. Therefore, they are very hard in terms of

emotion recognition.

Below, we briefly review the well-known techniques in the literature that are used

for face detection, facial alignment and describing facial expressions. These techniques

will be detailed in Chapter 2.

2The Second Emotion Recognition in the Wild Challenge was held at the ACM International
Conference on Multimodal Interaction, 2014, Istanbul.
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Table 1.1. Facial expression recognition datasets and benchmarks.

Database Database information Expression description
Posed vs

Spontaneous

CK [10]

•100 Subjects,(multi-ethnicity),486 videos

• 69% female, 31% male (age 18-50,yrs)

• Frontal and 30 degree imaging

• AU-coded face database

• 23 series of facial display

• Single and combinations of AUs

Posed

(CK+) [11]
• Extension of Cohn-Kanade

• 123 Subjects,(multi-ethnicity),593 videos

• Onset to peak coded

• Spontaneous smiles (66 subjects)

Posed

Spontaneous

MMI [12]
• 25 subjects (multi-ethnicity)

• 12 female , 13 male (age 20-32,yrs)

• Single and combinations of AUs

• Temporal analysis

(e.g.,onset,apex,offset)

Posed

Spontaneous

JAFFE [13]
• 10 female Japanese models

• Grayscale images

• Neutral+6 Basic expressions

• 2 to 4 samples per expression

Posed

Bosphorus [14]
• 105 subjects

• 44 female , 61 male

• AU-coded (2D/3D data)

• Pose and illumination variations

Posed

NVIE [15]
• 215 Student (age 17-31 yrs),118 videos

• Visible and infrared imaging

• Basic facial expressions

• Temporal analysis for posed data

Posed

Spontaneous

DISFA [16]
• 27 Participants (15 male,12,female)

• 130,000 video frames

• Intensity of 12 AUs coded Spontaneous

EmotiW 2015

[17]

• 723 train videos

• 383 validation videos

• 539 test videos

• Neutral+6 Basic expressions

• selected from realistic movies

Spontaneous

Peng et al. [18]

• 2000 colored images

• 350 images for each expressions

• different races, countries, ages

• 6 Basic expressions

• selected from web

Spontaneous
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In computer vision, the facial expression recognition pipeline consists of face

detection, landmark localization, alignment, feature extraction and classification steps.

Face detection is one of the most studied topics in the computer vision literature.

Various algorithms were developed to solve this fundamental computer vision problem.

Viola & Jones [20] proposed a face detection method, which is practically feasible in real

world applications such as digital cameras and photo organization software. Afterwards

Lienhart & Maydt [21] generalized the feature set of [20]. Jones & Viola [22] proposed a

feature called diagonal filter, which is essential for detecting non-upright faces and non-

frontal faces. Jones et al. [23] further extended the Haar-like feature for video-based

pedestrian detection. Zhu & Ramanan [24] proposed a model based on a mixtures of

trees, which outperforms Viola & Jones’s method in [25].

The second important step in facial expression recognition pipeline, which also

affects alignment part is landmark localization. If landmark points on faces can be lo-

cated efficiently and accurately, these will guide the registration. Zhu & Ramanan [24]

presented a unified tree-structured model for face detection and landmark localization

in the wild, which is shown to be efficient for capturing deformation. Dibeklioglu et

al. [26] offered a method for 2-D facial landmarking, which is based on the combina-

tion of a mixture model of Gabor wavelet features and a shape prior, estimated with

a multivariate Gaussian mixture model. Xiong & De La Torre [27] proposed a super-

vised descent method for minimizing a Non-linear Least Squares (NLS) function, which

achieved state-of-the-art performance in facial features detection. Asthana et al. [28]

introduced Discriminative Response Map Fitting method for landmark localization,

which uses Zhu & Ramanan [24] face detector and outperforms state of art algorithms.

Alignment (or registration) is an important step, since removing rotation, scale

and translation can improve the recognition system considerably. Different alignment

methods have been proposed for face registration. In the field of morphometrics,

Gower [29] proposed the Generalized Procrustes Analysis (GPA), which can be used

for aligning any number of shapes represented by point sets, to a reference model. This

approach requires accurate landmarks to produce good results. If this condition is met,

GPA will provide a very good registration for 2D or 3D faces. Zhu & Li [30] proposed
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a novel method for pose and expression normalization in the wild. Hassner et al. [31]

introduced a new alignment method, which unlike the recent methods estimates the

shape of all input faces by using a single 3D surface. Recently Kim et al. [32] proposed

an approach, which deals with the problem of registration in real-world conditions by

fusing alignable faces with the non-alignable facial images where facial landmarks can

not be detected.

The next crucial step in this pipeline is feature extraction. An efficient visual de-

scriptor should be able to extract meaningful information from video. In the literature

visual descriptors, which are mainly used for video modeling consist of LBP-TOP [33],

LGBP-TOP [34], which is the Gabor extension of LBP-TOP, SIFT descriptor [35] that

is a 3-D spatial histogram of the image gradients, HOG [36] descriptor, which filter the

image with point discrete derivative mask. Other well-known methods are Local Phase

Quantization from three orthogonal planes (LPQ-TOP) [37], which benefits from 2-D

Discrete Fourier Transform (DFT), Geometric features, which have shown good per-

formance in facial expression recognition [38,39] with precise located and tracked facial

landmarks. Recently Mollahosseini et al. [40] proposed an approach based on training

deep neural network on both well-labeled and combination of noisy and well-labeled

facial images, collected from the web. Furthermore histograms of 3D gradient orienta-

tions (HOG3D) [41,42], oriented histograms of flow (HOF) [43] and motion boundary

histograms (MBH) [44, 45] has shown promising results. Wang and Schmid [46] re-

cently proposed an approach based on MBH, HOG, HOF descriptors sampled along

improved dense trajectories. They used this method for action recognition, but since

in emotion recognition we need to track changes in facial dynamics, this method can

also be useful for emotion recognition.

In the literature video representation by using bag of words (BOW) has been

vastly used [47–49] The pipeline for traditional BOW consists of feature detection,

feature description, codebook generation with clustering algorithms like k-means and

feature encoding in an accumulated way. A recent research shows that a better en-

coding, namely Fisher vector (FV) representation, considerably increases recognition

performance [50].
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The last step in recognition pipeline is classification. In the literature, support

vector machines (SVM) have been frequently used for classification of facial expres-

sions [39, 51–53]. Recently, extreme learning machines (ELM) introduced by [54] is

shown as a viable alternative to the SVM, which is slow to train. In our study, we use

ELM and show that it has good generalization performance for multi-class classification

and needs shorter time for the learning phase, compared to SVM.

Deep methods have attained more attention in the context of facial expression

recognition recently. The convolutional neural network (CNN) is one of the popular

deep learning structure. In a recent study by Li et al. [55], 10,595 external images were

used for training CNN models and 83% mean recognition rate was reported on CK+.

Lv et al. [56] proposed a method based on face parsing detectors trained via deep belief

networks and obtained 91.11% mean recognition rate. Liu et al. [9] proposed a new

Boosted Deep Belief Network (BDBN), which yields 96.70% mean recognition rate, but

it should be stated that in that work, the contempt emotion was not considered.

1.3. Contributions

Facial alignment is one the most challenging part in the emotion recognition

system. Considerable numbers of researches have been done in this field but since in

realistic videos detecting face and landmarks are challenging, accuracy of these methods

drop. This problem affects the overall performance of the system dramatically and

thus the presence of an efficient alignment method can improve the performance of the

system.

In this thesis, we present an alignment pipeline, which is able to detect face and

landmarks under challenging conditions. Our registration pipeline align all faces to a

reference model and removes scale, in plane rotation and translation. We compare the

result of our alignment with the provided aligned faces by the EmotiW 2015 challenge

organizers. We show that our registration method outperforms the prepared set of

aligned faces by EmotiW 2015 challenge organizers. We improve the alignment in

terms of detecting more faces with low number of false positive. Also our registration
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benefits from a precise landmarking method, which is able to detect a consistent number

of landmarks while removing scale, rotation and translation.

In the literature, many appearance based features have been used to extract

information from important parts of the face. Across the appearance of the face,

motions of the face parts have valuable information about changing the emotion in a

subject. In this study, we propose to extract improved dense trajectory features along

with geometric and LGBP-TOP features. To the best of our knowledge, we are the

first to apply improved dense trajectories in facial expression recognition task.

The approach proposed in this thesis is published as [57]. Other publications,

which appeared during the course of the thesis are [58] and [59]. [59] was the first

runner up of the EMOTIW AFEW 2015 Challenge [17].

1.4. Organization of the Thesis

The rest of this thesis is organized as follows. We review technical background of

facial expression recognition in videos in Chapters 2, 3 and 4. In Chapter 2, we present

popular techniques for face detection landmark localization and facial alignment. In

Chapter 3 we present popular techniques for video description with local descriptors.

The concepts of appearance and local motion descriptors in space-time volumes are

discussed in detail. The development of trajectory-based methods is described, and

finally, the local feature aggregation methods are explained. In Chapter 4, classification

methods, extreme learning machines and support vector machines are presented. We

detail our proposed methodology in terms of facial alignment, feature extraction and

classification in Chapter 5. We report and discuss our results in Chapter 6, where we

extensively study the effects of certain parameters. Finally, we conclude our work and

state some possible future work in Chapter 7.
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2. FACE DETECTION, ALIGNMENT AND LANDMARK

LOCALIZATION

For designing a robust emotion recognition system in the wild, face detection,

landmark localization and registration are important pre-processing steps.

2.1. Face Detection

Face detection is the first step in automated face recognition. Its performance has

the great influence on the accuracy of the whole facial expression recognition system.

An ideal face detector should be able to identify and locate all the existing faces

regardless of their position, scale, orientation, age, and expression in an image or a

video. Face detection can be performed based on several factors: skin color (for faces

in color images and videos), motion (for faces in videos), facial/head shape, facial

appearance, or a combination of these parameters. Most successful face detection

algorithms are appearance-based without using other cues [60]. The procedure is as

follows: An input image is skimmed at all possible locations and scales by a subwindow.

Face detection is performed by classifying the pattern in the subwindow as either face

or nonface while The face/nonface classier is learned from face and nonface training

samples.

The face detection algorithm, which proposed by Viola and Jones [20] was the

most impressive method in the 2000’s. Success and real time detection of the Viola-

Jones face detector results from three main properties, namely the integral image rep-

resentation, classifier learning with AdaBoost, and the attentional cascade structure.

Integral image is an algorithm for computing the sum of values in a rectangle subset

of a grid. Viola and Jones used the integral image for the computation of Haar-like

features. Integral image is calculated by taking the integral of the original image at

each pixel location and computing sum of pixels in a rectangular region, which is shown
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Figure 2.1. Illustration of the integral image and Haar-like rectangle features

(a-f) [61].

in Figure 2.1 and in Equation 2.4.

∑
(x,y)∈ABCD

i (x, y) = ii (D) + ii (A)− ii (B)− ii (C) (2.1)

The method of training a boosted classifier is called AdaBoost. A boosted clas-

sifier is defined by Equation 2.2.

FT (x) =
T∑
t=1

ft (x) (2.2)

where each ft is a weak learner (like one-level decision tree) that takes an object as input

and outputs a real value as the class of the object. The sign of output indicates the

predicted object class and the absolute value gives the confidence in that classification.

Attentional cascade is an important part in the Viola and Jones detector. Actually by

using attentional cascade, the boosted classifier will be more effective, and will discard

most of the negative sub-windows while keeping more or less all the positive instances.

This idea makes the detection process really efficient by excluding great portion of the

sub-windows in the initial stages of the detector.
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Lienhart and Maydt [21] improved the feature set of [20] by proposing 45 degree

rotated Haar-like features. Afterwards Jones and Viola generalized these features fur-

ther by adding diagonal filters in order to handle profile views and rotated faces [22].

Haar-like features were further enhanced in Jones et al. study [23]. Their proposed

method is the first detector, which benefits from both motion and appearance infor-

mation for video based pedestrian detection in small scale.

In 2012, Zhu and Ramanan [24] presented a unified tree-structured model for

face detection and landmark localization in the wild, which is shown to be efficient

for capturing deformation due to viewpoint variation. This method works based on a

model formed by appearance and shape information. For example, for an image I and

the pixel location of landmark i, li = (xi, yi), the shape model is defined as:

S = Appm (I, L) + Shapem (L) + αm (2.3)

where Appm stands for appearance features (HOG) and Shapem represents the dis-

placement of the one parts of the face relative to another part and finally the last

term αm is a scalar bias. To learn the model, a fully-supervised scenario is used where

positive images with landmark and mixture labels, as well as negative images without

faces are provided. Both shape and appearance parameters are learned discriminatively

using a structured prediction framework.

2.2. Landmark Localization

Facial feature localization is an important component of a facial expression sys-

tem, which is also important for robust facial feature tracking and facial modeling.

Due to the illumination, pose and expression variation, it can be said that efficient and

automatic detection of facial features is one the most challenging parts of a recognition

system.
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2.2.1. Supervised Descent Method

Xiong & de la Torre [27] proposed a Supervised Descent Method (SDM), which

tries to learn a sequence of descent directions for minimizing the error between esti-

mated and true landmark positions. Manually annotated landmarks are used in the

training phase as true landmarks and SIFT features [35] are extracted at those land-

mark positions X∗. Then initial guess of landmark positions is obtained by using Viola

& Jones face detection namely, X0. Afterwards, an error function, which is defined as:

f (X0 +4X) =‖ SIFT (d (X0 +4X))− SIFT (d (X∗)) ‖2 (2.4)

is updated over 4X until initial guess converges to true landmark positions.

2.2.2. Discriminative Response Map Fitting

Asthana et al. [28] proposed a discriminative regression based incremental face

alignment method, which constructs a person-specific model automatically by incre-

mental updating of the generic model. DRMF is a part based model, which unlike

holistic based methodologies that use texture based features, uses local image patches

around the landmark points. Actually the method works based on the finding a

mapping from the response estimate of shape perturbations to shape parameter up-

dates. For this purpose, a perturbation ∆p is defined in the training set and from a

w × w window centered around each point of the perturbed shape, responses are esti-

mated,here HOG features,Ai (∆p) = [p (li = 1 | x+ xi(∆p))]. Then a function f such

that f ({Ai (∆p)}ni=1) = ∆p is learned from the response maps around the perturbed

shape {Ai (∆p)}ni=1 = 1. The optimization of the parameters are done in a way that

the positions of the created model correspond to well-aligned facial parts. This method

has shown promising results for reconstructing unseen response maps.
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Figure 2.2. Overview of the response patch model: (a) Original HOG based response

patches. (b) Reconstructed response patches using the response patch model [28].

2.3. Facial Registration

Purpose of face alignment is transforming different sets of faces into a common

coordinate system. In the registration pipeline one face is chosen as the reference face

and the rest are considered as target faces. Usually a transformation model consisting

of linear transformations such as rotation, scaling and translation is used to align the

target face to the reference face.

There are two different approaches for face alignment, namely, intensity-based

and feature-based methods. Intensity based methods compare intensity patterns in

faces via correlation metrics, whereas feature-based methods benefit from correspon-

dence between facial landmarks. Intensity-based methods use either the whole face,

or sub-faces. In sub-face methods, centers of corresponding sub faces are treated as

matching feature points. But in feature-based methods, a correspondence between fa-

cial landmarks is established and the target face is mapped to the reference face by



14

using geometrical transformation [62].

2.3.1. Generalized Procrustes Alignment (GPA)

Figure 2.3. Procrustes alignment.

In order to remove translation, rotation and scale effects from a set of faces,

an alignment system with a reference face model can be used. To obtain this goal, a

procedure is used known as the generalized Procrustes analysis, proposed by Gower [29].

Faces are represented by landmarks and an iterative approach is employed to obtain the

reference model and registered set of faces, at the same time. The steps are explained

in Figure 2.3.

2.3.2. Face Frontalization

Recent researches have suggested that frontalization may noticeably improve fa-

cial recognition systems. Zhu et al. [30] proposed a novel method for pose and expres-

sion normalization in the wild. They made a pose adaptive 3DMM fitting algorithm

by using landmark marching. Finally they used depth information of 3D meshed face

image to find the 3D transformation, which normalizes pose and expression while pre-

serving identity information for face recognition. In Figure 2.4 an overview of the
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method is shown.

Hassner et al. [31] introduced a new method which doesn’t make a 3D facial

shape for each image. Instead, they estimated the shape of all input faces by using a

single 3D model. They obtained the initial frontal face by using back-projecting the

appearance of the image to the reference model. After that they used the symmetry of

the face to finalize the procedure. Pipeline of the system is illustrated in Figure 2.5.

Figure 2.4. Overview of the High-Fidelity Pose and Expression Normalization

(HPEN) method [30]

Figure 2.5. Frontalization process overview. (a) query photo (b) facial features (c)

the same facial features on the reference face model, (d) reference face model(e)

estimated projection matrix (f) estimated visibility (g) final frontalized result [31].
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3. VIDEO DESCRIPTION WITH LOCAL DESCRIPTORS

A video sequence is a group of static images; so static-image-based emotion recog-

nition algorithms can always be applied on videos. An important feature of a video

sequence is its temporal continuity. In this chapter, we investigate how temporal conti-

nuity can be incorporated for video-based emotion recognition. Given a video clip, we

need to represent the raw data of pixels into a compact form, which is informative in

terms of emotion content. This representation needs to be distinctive, low-dimensional,

interpretable and with a fixed size. Distinctive representations are more successfully

recognized by classifiers. The advantage of low-dimensional representations of vectors

is that they require less storage and do not suffer from the curse of dimensionality. In-

terpretability can be help us to know which information is encoded in which part of the

feature vector. Finally, for using most classification algorithms, a global representation

for a video clip should have a fixed size for each sample.

In this chapter, we study various methods for extracting and encoding local mo-

tion and appearance information.

3.1. Detectors

To decide which feature points should be selected for describing image contents,

different sampling methods are developed. There are sparse [63], dense [64] and random

sampling strategies [65]. Sparse methods assume that sampling only the interest points

is adequate for describing the video content. Interest points, known also as keypoints

have valuable local information, because they have high variation in space and/or time.

Dense methods simply sample points from a regular grid with or without a multiscale

pyramid. Multiscale pyramid is a method in which an image is subjected to repeated

smoothing and subsampling. The motivation is that dense coverage of the video domain

ensures that the context information is also captured. In this work we will discuss the

methods which use dense sampling.
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3.1.1. Dense Sampling

The dense trajectory features proposed by Wang et al. [44] shows that dense

sampling is more successful than sparse sampling for action recognition. Actually

for dense sampling a multi-scale regular grid is used for extracting feature points. The

video blocks are sampled from 5 dimensions (x, y, t, σ, τ). This notation means a feature

point p is positioned at (x, y, t) in the space-time volume and the video patch centered

at p has size determined by the scale (σ, τ).

3.2. Descriptors

Face representation has been studied intensively for automatic emotion recog-

nition. Different approaches have been proposed based on static and dynamic facial

images. Facial feature representations are categorized into geometric, appearance-based

approaches, hybrid feature and motion based methods. In this thesis we will study the

contribution of motion based feature extraction methods when they are combined with

geometric and appearance features.

3.2.1. Appearance-Based Approaches

Different characteristics of an image such as shape, color, texture and motion

can be described by visual descriptors. Appearance-based features are representing

the facial characteristics such as texture and seem to be more stable to image spatial

transforms than the geometric features, especially under inaccurate alignment and low-

resolution.

3.2.1.1. LBP-TOP. The principle of local binary pattern from three orthogonal planes

(LBP-TOP) is such that it applies LBP [66, 67] separately on three orthogonal planes

(XY, XT and YT), which intersect in the center pixel. The simplest form of LBP feature

vector is created by dividing the examined image into blocks and for each pixel in a

block, comparing the pixel to each of its 8 neighbors. If the center pixel’s value is greater
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Figure 3.1. (a) three planes in dynamic texture (b) LBP histogram from each plane

(c) concatenated feature histogram [33].

than the neighbor’s value, write “0” Otherwise, write “1”. In the last step histograms

of all cells are concatenated to form a feature vector for the entire image. Actually

LBP-TOP labels the pixels of an image on three orthogonal planes by thresholding

the neighborhood of each pixel and considers the result as a binary number. The final

descriptor is a histogram of these binary numbers. This histogram feature vector can

describe effectively appearance, horizontal motion and vertical motion from an image

sequence [33]. Overview of the method is represented in Figure 3.1.

3.2.1.2. LGBP-TOP. In realistic videos frontal-view facial images may not be avail-

able. Consequently, it is vital to investigate methods that recognize facial emotion

from random views. According to the study of Moore & Bowden [68], it is observed

that local Gabor binary pattern (LGBP) feature operators outperforms other variants

of LBP in multi-view emotion recognition. For computing LGBP [34], Gabor-pictures

are obtained by convolving images with a set of 2D complex Gabor filters, and then

LBP-TOP is extracted from each Gabor-picture. Illustration of the method is repre-

sented in Figure 3.2.

3.2.1.3. SIFT. Scale-invariant feature transform (SIFT) descriptor is a three dimen-

sional histogram of the image gradients in describing the appearance of a keypoint. A

three-dimensional feature vector, which is formed by the pixel location and the gradient
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Figure 3.2. LGBP features: a) original image, b) Gabor pictures, c) concatenation of

resulting histograms after applying LBP [34].

orientation is considered as the gradient at each pixel. Gradient norm is used to weigh

samples and then samples are gathered in a 3-D histogram h, which forms the SIFT

descriptor of the region. In order to give less significance to gradients more distant

from the keypoint, a Gaussian weighting function is also applied to center. Summary

of the method is illustrated in Figure 3.3.

Figure 3.3. Computing the gradient magnitude and orientation as shown on the left.

These Samples are then accumulated into orientation histograms as shown on the

right [35].
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3.2.1.4. HOG. The histogram of oriented gradients (HOG) is a feature descriptor used

in computer vision for object detection. The advantage of HOG to other descriptors

is that it is invariant to geometric and photometric transformations due to operation

on local cells. In this method, the image is filtered with [−1, 0, 1] and [−1, 0, 1]τ point

discrete derivative masks in one or both of the horizontal and vertical directions and

then occurrences of gradient orientation in localized portions of an image is counted.

3.2.1.5. LPQ-TOP. Local phase quantization is computed by taking 2-D Discrete

Fourier Transform (DFT) of M-by-M neighborhood of each pixel in the gray scale

image. 2D-DFT is computed at four frequencies {[a; 0]τ ; [0; a]τ ; [a; a]τ ; [a;−a]τ}with

a = 1/M , which correspond to four of eight neighboring frequency bins centered at

the pixel of interest. After calculating LPQ, LPQ-TOP is calculated by extracting

LPQ features independently from three sets of orthogonal planes: XY, XT and YT,

considering only the co-occurrence statistics in these three directions, and stacking

them into a single histogram [37].

3.2.2. Geometry Based Approaches

Geometric features are efficient methods, most of which have promising perfor-

mance in emotion recognition, but they depend on how accurate fiducial points are

detected and tracked. Geometric features (GEO) can describe important information

like shape, which can be defined by using the position of landmarks, movement of fa-

cial landmarks and shape of each facial component. This information can help us to

understand facial structure of various facial expressions. Geometric features have the

advantage of low dimensionality. But accuracy of face registration, changes in lighting

and non-rigid motion can affect the accuracy of geometric methods considerably.

Figure 3.4. Displacement of fiducial points in case of surprise [38].
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3.2.3. Improved Dense Trajectory Features

3.2.3.1. Histogram of Oriented Gradients. Dalal & Triggs [36] first proposed to use

a histogram of gradient orientation (HOG) as a feature vector. After that Laptev et

al. [43] extended the application of this method to spatio temporal space.

In this method, after filtering the image with a point discrete derivative mask,

the space-time volume is divided into nσ × nσ × nτ cells and for each cell, the number

of quantized gradient orientations is counted and formed in to a histogram. In the case

of [43], four orientations are considered, whereas in [44], all eight orientations are used.

These histograms are normalized and concatenated to form the HOG descriptor.

HOG is an appearance encoding feature. Since it uses structure information, it

is more robust than geometric features in presence of inaccurate alignment and low-

resolution. More precisely, an appearance based feature can characterize variation of

low-level features like pixel intensity in the face. Different classes of emotions that are

recognized better with appearance information benefit from this descriptor.

3.2.3.2. Histogram of Optical Flow. For computing the histogram of optical flow sim-

ilar to HOG, spatio temporal space is divided into nσ × nσ × nτ cells and for each of

these cuboids histograms are calculated. But instead of gradient vectors, the optical

flow vectors are counted. These motion vectors are quantized into five bins in [43] and

nine bins (eight orientations + zero bin) in [44]. The zero bin is related to the pixels,

whose optical flow magnitudes are lower than a threshold. Normalized histograms for

each cell are concatenated to form the HOF descriptor. HOF captures first order local

motion information, since it uses absolute motion. Emotions that involve more specific

motion information like surprise benefit from this descriptor.

3.2.3.3. Motion Boundary Histogram. Dalal et al. [45] first introduced motion bound-

ary histograms (MBH) for human detection from videos, and after that, Wang et al. [44]

used it for action recognition. This descriptor is formed by calculating the derivatives
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of the optical flow vectors and making a histogram according to the number of op-

tical flow derivatives in each spatio-temporal cell. The spatial derivatives of optical

flow Iw = (Ix, Iy) are computed for both x and y components. The orientations are

quantized into eight bins for each component and the normalized histograms are con-

catenated. Since MBH uses the derivative of the motion, it captures second order local

motion information.

3.2.3.4. Trajectories. Point Tracking and Optical Flow. Various computer vision ap-

plications need point tracking as an important component. Given a video and the

initial position of a certain point, tracking algorithms try to estimate the position of

this point in the next frame(s). Point tracking is directly related to distribution of

velocities of objects in an image, which is determined as optical flow. Optical flow is

described in terms of intensity I (x; y; t), by following brightness constancy constraint:

I (x, y, t) = I (x+4x, y +4y, t+4t) (3.1)

where 4x,4y and 4t denote the displacement of point (x, y, t)between two frames.

For a feature-based system to be able to work properly, identifying appropriate

features and then tracking them is a vital step. Lucas & Kanade [69] proposed a system,

which is a famous method for optical flow estimation. They used the assumption of

constant flow under local neighborhood in their method. Afterwards, the Lucas and

Kanade method was further developed by Shi and Tomasi [70]. They called their

method KLT, which is today among the best tracking techniques. KLT is a sparse

tracking technique and it is based on spatial intensity information in order to find the

best match position.

Farneback [71] proposed an optical flow method and OpenCV [72] has an open

source implementation of it. Unlike the KLT tracker, the Farneback algorithm yields

dense optical flow. It uses quadratic polynomials to approximate each neighborhood

of two frames and makes use of the these polynomial coefficients for computing global
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displacement vector.

Dense Trajectories. Wang et al. [44] proposed a method for action recognition

based on dense trajectories and motion boundary histograms. They showed that dense

sampling is more successful than sparse sampling methods. In this method, points

are sampled densely from multiscale pyramid from each frame of the video. These

points are then tracked for a certain time window. The tracking is based on dense

optical field computation [71] and is applied on each spatial scale separately. Local

motion information is encoded using local descriptors, which are extracted along the

trajectories. Dense trajectories method is shown in Figure 3.5.

A trajectory is defined as the concatenation of Pt, P(t+1), P(t+2), . . . in [44], where

Pt+1 = (xt+1, yt+1) = (xt, yt) + (M × ω) |(x̂t,ŷt) (3.2)

Here, (x̂t, ŷt) signifies the rounded position of (xt, yt) The optical flow field ω = (ut, vt)

is convolved with median filtering kernel M to track point Pt to the next frame.

In order to remove false trajectories, points with displacement larger than a

threshold are deleted in order to avoid large jumps between consecutive frames. The

points that lie in uniform regions are unlikely to be tracked. These points are not

tracked if their cornerness value (the eigenvalues of the auto-correlationmatrix) is be-

low a certain threshold. To avoid drifting in tracking, the points are tracked up to

a certain time window of L frames. When tracking is done, trajectories that do not

contain any motion are removed. Finally, to guarantee that there are tracked points

in each W ×W neighborhood, in every frame, if there aren’t any points, a new feature

point is sampled. Table 3.1 shows the parameters and their default values, which are

used in the original implementation [44].

3.2.3.5. Improved Trajectories. Wang et al. [46] improved the dense trajectory features

by compensating for the camera motion by calculating the homography matrix between
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Figure 3.5. (Left) Feature points are densely sampled from multiple scale; (Middle)

Tracking is done for each scale; (Right) N ×N trajectory neighborhood is divided

into nσ × nσ × nτ cells and the descriptors (HOG, HOF, MBH) are extracted [44].

successive frames. The inspiration for this improvement was to get rid of the false

trajectories, which are created by camera motion in realistic videos. These improved

features have yielded promising results on action recognition datasets, but since in

emotion recognition we are trying to capture partial facial motions this descriptor can

be useful for tracking changes in facial dynamics as well. Figure 3.6 visualizes the

trajectories on some videos from the EmotiW Challenge and from the Cohn-Kanade

Dataset. This visualization prepared with the software provided by [46]. The tracked

points in the current frame are given as red dots, and the motion of each such point is

indicated with a green line. In the following we will discuss finding camera motion by

means of the homography matrix.

Table 3.1. Dense trajectory parameters.

Parameter Definition Default

W sampling step of the regular grid 5 pixels

Σ height of the multiscale pyramid for sampling 8

s factor between spatial scales 1/
√

2

L tracking time 15 frames

N size of the volume for computing descriptors 32 pixels

nσ number of divisions of the descriptor volume in spatial space 2

nτ number of divisions of the descriptor volume in temporal space 3
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Figure 3.6. Original video frames (first row) and their visualized improved dense

trajectories (second row). Images are selected from the CK+ and EmotiW 2015

Challenge datasets. Best viewed in color.

Homography Matrix. Projective transformations have been described with 3× 3

homography matrices. If two images like x and x
′

are on the same planar surface, they

can be related by homography matrix. It is the same for the two successive frames of

video, since there is a tiny motion from the current frame to the next one; it is assumed

that they have a homography relation. If R1 and R2 show rotation matrix of camera,

the relation between 3D world coordinates X and the 2D image plane defines as follows:

x = K [R10]X (3.3)

x
′
= K [R20]X (3.4)

x
′
= KR2R

−1
1 Kx (3.5)

x
′
= Hx (3.6)
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where H is the homography and K is the camera intrinsic matrix, which depends on

the focal length and camera center. x and x
′

are in homogeneous coordinates.

Feature Matching. For computing transformation we should first find the cor-

respondence between two images. A unique descriptor should be extracted from both

images and then a similarity measure will be used to match them according to the

matching algorithm. In improved trajectories [46], both Speeded Up Robust Features

(SURF) [73] matches and motion vector matches have been used.

RANSAC. A famous algorithm for efficiently estimating homography matrix is

Random Sample Consensus (RANSAC) [74]. It is an iterative method, which has the

ability to remove the effect of outlier matches. A random sample of feature correspon-

dences is selected in every iteration. Afterward each correspondence is consigned as

being inlier or outlier according to the current estimation of homography matrix. At

the end of iterations, the homography with the largest number of inliers is selected as

the approximation.

3.3. Local Feature Aggregation

Two popular approaches that produce a compact vector representations with

a fixed sized from a set of local descriptors are bag of features [47–49] and Fisher

vectors [75]. For making this compact form, old methods train local descriptors and

learn a codebook called visual vocabulary by means of clustering. Then each local

descriptor is encoded according to its distance to centroids, which are the means of

codebook clusters.
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3.3.1. Unsupervised Clustering Methods

Categorizing unlabeled data into similarity groups is called clustering. A cluster

is a group of similar data samples, which are different from samples in other clusters.

In machine learning, visual vocabularies are typically learned by using unsupervised

clustering methods. In this section, we discuss two popular clustering methods, namely

k-means and Gaussian mixture models. According to the encoding method, the appro-

priate clustering technique is used.

3.3.1.1. K-means. K-means is a centroid clustering algorithm. It proposed by Mac-

queen in 1967 [76]. K-means clustering intends to divide the samples into k clusters

in a way that each sample belongs to the cluster with the minimized squared error

function, which is defined as follows:

arg min
C

K∑
i=1

∑
x∈ci

‖ x− µi ‖2 (3.7)

where C = {c1, · · ·, cK} are clusters and µi is the mean of cluster ci and x are data

points in cluster ci.

The algorithm for optimizing the error function is as follows:

(i) Choose cluster centers randomly.

(ii) Find the distance of each data sample to the cluster centers.

(iii) For each data point, find the cluster center, which has the minimum distance to

it.

(iv) Update the current cluster center by:

µi = (1/Nci)

Nci∑
j=1

xj (3.8)

where Nci signifies the number of data points in ith cluster.

(v) Recalculate the distance between each data point and new cluster centers.
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(vi) Stop if there is no reallocation, otherwise repeat from step 3.

K-means is fast and robust and gives the best result when data points are well

separated from each other. It has also some disadvantages, for example the number of

data groups may be unknown, and for finding the best K, multiple candidates should be

tested experimentally. The other drawback is that K-means provides a local optimum

of the error function and so the procedure should be repeated multiple times.

3.3.1.2. Gaussian Mixture Model. A Gaussian mixture model (GMM) is a more gen-

eral version of k-means clustering method. K-means use spherical covariances and

equal priors and the cluster memberships are hard, while GMM clustering is proba-

bilistic. GMM is a generative model which tries to fit a number of Gaussian components

on the data. The covariance matrices Σi can be full rank or limited to be diagonal.

The amount of data accessible for estimating the GMM parameters determine num-

ber of components, full or diagonal covariance matrices. The iterative Expectation-

Maximization (EM) algorithm is usually used to estimate the GMM parameters from

training data [77]. GMM works well when data groups have dissimilar sizes and differ-

ent covariance structure between clusters. Different from k-means, data are clustered

according to the probability and not by hard assignment to the cluster centers.

A Gaussian mixture model consists of three parameters λ = {ωi, µi,Σi}: mixing

weights, means and variances, respectively. For D-dimensional vectors a GMM model

is defined as:

f(x) =
K∑
i=1

ωig (x | µi,Σi) (3.9)

where x is a D-dimensional feature vector and g (x | µi,Σi) is a Gaussian component

of the form:

g (x | µ,Σ) = (2)−D/2 det (Σ)−1/2 exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
(3.10)
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Numerous techniques can be used for estimating the parameters of a GMM. The

most prominent method is maximum likelihood (ML) estimation [78]. The goal of

ML estimation is to find the model parameters in a way that maximizes the likeli-

hood of the GMM given the training data. Since the function is a non-linear function,

ML parameters can be estimated by using the expectation-maximization (EM) algo-

rithm. It is an iterative algorithm alternating between expectation and maximization

steps. In the expectation step, current values of parameters are used to calculate the

log-likelihood. In the maximization step, the parameters are re-computed maximiz-

ing the expected log-likelihood and the procedure is repeated until reaching to some

convergence threshold.

In the EM algorithm, the succeeding updates are applied on each component i

to learn the parameters of a mixture, given data x.

P (i|xj) = ωig (xi | µi,Σi) /f (xi) (3.11)

ωi =
N∑
j=1

P (i|xj) /N (3.12)

µi =
N∑
j=1

P (i | xj)xj/ (Nωi) (3.13)

Σi =
N∑
j=1

P (i|xj) (xj−i) (xj−i)T /(Nωi) (3.14)

On each EM iteration, the above re-estimation formulas guarantee a monotonic

increase in the model’s likelihood value However, EM catches a local peak, so the

initialization is a vital step to find the global peak [79].
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3.3.2. Bag of Features

Bag of features (BOF) model (or bag of words) is a technique that works by

treating image features as words and was originally developed for text retrieval prob-

lems [80]. This method is extensively used in computer vision [81,82].

Local descriptors are grouped by the BOF model. A clustering method, which is

typically k-means, is used to construct a codebook of k visual words from the training

set. For a new instance of data, local descriptors are extracted and assigned to the

closest cluster centroid. Then, all image descriptors are assigned to visual words and

the BOF representation is obtained by occurrence counts of words in a histogram

format. The result is a k-dimensional vector, which should be normalized for further

usage in classification. There are various methods for normalizing the histogram, such

as the Manhattan distance-based normalization and Euclidean normalization, which

are also known as L1 and L2 normalization, respectively. The formal definitions of L1

and L2 norms are represented in Equations 3.15 and 3.16, respectively. Once the L1

and L2 normalization factor are obtained normalization is done as 3.17. A number

of variations have been offered to improve the quality of BOF representation [83, 84]

by using soft quantization techniques instead of k-means. the overview of the BOF

method is illustrated in Figure 3.7.

‖ z ‖1=
n∑
i=1

| zi | (3.15)

‖ z ‖2=

√√√√ n∑
i=1

| zi |2 (3.16)

zi =
zi
‖ z ‖

(3.17)
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Figure 3.7. Bag of features.

3.3.3. Fisher Vector Encoding

Fisher vector (FV) representation can be named as an extension of BOV. Per-

ronnin and Dance [75] proposed the usage of GMM and Fisher kernels for making visual

vocabularies. Since then FV has attracted more attention. The Fisher vector bene-

fits from characteristics of both generative statistical models like hidden Markov model

(HMM) and discriminative methods like support vector machines (SVM). Unlike BOF,

fisher vector uses both 0-order statistics (counting) and second order statistics. This

specification enables the Fisher vector to find the best direction in which parameters

of GMM model are modified in order to fit to the data efficiently [82]. For this goal,

the gradient of the likelihood is encoded by applying derivative operations with respect

to the distribution parameters of the vocabulary. Then the differences between pooled

local features and dictionary items are kept.

FV has some advantages over other aggregation methods. One advantage is that

FV benefits from both generative and discriminative methodologies. This property

causes appreciable performance by just using a simple linear classifier. The other key

superiority of FV over BOF is that acceptable performance is obtained by using much

fewer vocabulary components.

In this work, in order to encode the descriptors with FV, prior to building the

dictionary, first of all principal component analysis (PCA) should be applied in order

to both reduce the dimensionality of descriptors and make them decorrelated in order
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to support diagonal covariance matrices assumption which is considered here.

In this study, in the first step vocabularies are made by means of a K compo-

nent GMM, which is trained over training features. Then, the learned parameters in

Equation 3.18 have been used for query instances.

λ = {ωi, µi,Σi} |ki=1 (3.18)

Given a set of descriptors X = {x1, x2, · · ·, xN}, the following gradient vector can

be defined in terms of a distribution with parameters λ,

∇λ log p (X | λ) (3.19)

where the distribution p is a GMM and its components keep information about fre-

quency, mean and variation of a visual word. Under an independence assumption,

L (X | λ) =
N∑
j=1

log p (xj | λ) (3.20)

=
N∑
j=1

log

(
N∑
i=1

ωipi (xj|λ)

)
(3.21)

where pi (xj | λ) is calculated by Equation 3.10.

The Fisher vector encoding is obtained by taking the gradient of L with respect

to µ and Σ parameters. The gradient with respect to ω carries little extra information,

so it is discarded. Normalized partial derivatives of means and deviations are estimated

as follows:

ui =
1

N
√
ωi

N∑
j=1

γij

(
xj − µi
σi

)
(3.22)
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vi =
1

N
√

2ωi

N∑
j=1

γij

[(
xj − µi
σi

)2

− 1

]
(3.23)

where γij represents the posterior probability correlating each vector xj with a compo-

nent i in the GMM and σ2
i = diag(Σi). Finally, concatenation of the vectors ui and vi

makes the FV.

After that, a visual vocabulary is created by means of GMM. In our experiments

we used the Fisher vector, which is normalized firstly by the signed square root function

and secondly by L2 normalization [85]. The final dimensionality of FV is 2 ×D ×K

where D is the dimensionality of the descriptor and K is the number of GMM com-

ponents. In this work, we used FV representations of HOG, HOF, MBH, Trajectories

and Geometric features to model our videos. We used various dimensionalities and

different combinations of Fisher representations of descriptors, which will be discussed

in detail in chapter 6.
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4. CLASSIFICATION

After obtaining video features by using the given emotion labels for the training

set, classification can be done by running a machine learning method. There are several

classification algorithms, among which support vector machines (SVM) are commonly

used in the context of video based emotion recognition. The other powerful method

for emotion recognition is Extreme Learning Machine (ELM), which is not used as

frequently as SVM. Actually ELM is a special case of LS-SVM where the bias term is

set to zero. In this chapter, a summary of SVM and the basics of ELM will be explored.

4.1. Support Vector Machine

Cortes and Vapnik proposed a supervised learning algorithm called support vector

machines in 1995 [86], which has been used for both classification and regression. This

method is based on finding a discriminant without modeling densities generatively.

Actually support vector machines are an extension to nonlinear models of the algorithm

developed by Vladimir Vapnik [87].

The purpose of SVM is to find a higher dimensional space in which feature vectors

are able to be discriminated linearly. This is due to the reason that usually features

from two different classes are not linearly separable in their original finite dimensional

space. In the SVM context, training features which lie close to the class boundaries

are called “support vectors”, which are used as SVM model parameters.

Finding the best hyperplane is a goal for SVM. This hyperplane should maximize

the margin between two classes. SVM is applied on two-class classification problems,

however recent versions are applicable on multi-class classification problems as well.

There are many kernel-based algorithms in machine learning, and SVM is one

of them. By means of the kernel trick, SVM is able to map data points to a higher

dimensional space. Kernel-based algorithms are formulated as convex optimization
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problems; therefore there is a single optimum to be found [88].

The ideal hyperplane, which is able to separate two classes, can be represented

by the following formula:

wxi + ω0 ≥ +1, if yi = 1

wxi + ω0 ≤ −1, if yi = −1

(4.1)

where xi represents the training features and yi is related to the class label and takes

the value {−1,+1}. Parameters w and ω0 should be calculated in a way that Equation

4.1 becomes true for all X |Ni=1. This formula can also be written as follows:

yi (wxi + ω0) ≥ 1 (4.2)

In order to maximize the margin, which is defined by yi(wxi+ω0)
‖w‖ , we should

minimize ‖ w ‖. The optimization process is as follows:

min
1

2
‖ w ‖2 s.t. yi (wxi + ω0) ≥ 1 ∀i (4.3)

A standard quadratic optimization solution is sufficient for calculating w and ω0 and

the complexity depends on the data point dimension D.

Most of the time data points are not linearly separable; in this case we need a

soft margin, and some support vectors may fall in it. So we need to add a penalty term

to Equation 4.2 as below:

yi (wxi + ω0) ≥ 1− εi (4.4)

min
1

2
‖ w ‖2 +CSVM

∑
i

εi (4.5)
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where CSVM is a complexity parameter and
∑

i εi is the penalty term.

The dual of this problem can be obtained by using Lagrange multipliers αi as

follows:

max
αi

∑
i

αi −
1

2

∑
i

∑
j

αiαjyiyjX i
TXj

subject to
∑
i

αiyi = 0 and 0 ≤ αi ≤ CSVM , ∀i
(4.6)

In this case complexity depends on the number of instances N .

According to the Mercer conditions every (semi) positive definite, symmetric

function is a kernel: i.e. there exists a mapping φ (x) such that it is possible to write:

K = φ (xi)
T φ (xj). Therefore here the factor X i

TXj in Equation 4.6 is replaced by

φ (xi)
T φ (xj). This dot product can be defined as a kernel function K (xi, xj) in the D-

dimensional space without actually going to the mapped space of φ. Thus, non-linear

kernel functions can be integrated to solve more complex problems. Usually, kernel

functions are considered to measure similarity; therefore, any valid kernel function can

be defined specific to the application.

Some popular kernels are:

(i) Linear kernel

K (xi, xj) = XT
i Xj (4.7)

(ii) Gaussian radial basis function (RBF) kernel

K (xi, xj) = exp
(
− ‖ xi − xj ‖2 σ2

)
(4.8)
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(iii) X2 kernel

K (xi, xj) = 1−
D∑
d=1

(
x

(d)
i − x

(d)
j

)2

1
2

(
x

(d)
i + x

(d)
j

) (4.9)

Libsvm [89] is a popular software, which is created for solving the optimization in

Equation 4.6. It is an iterative algorithm and has the ability of using different kernels.

Liblinear [90] is also an efficient software in case of linear classification.

4.2. Extreme Learning Machine

Huang et al. [54,91] proposed a method called extreme learning machine (ELM)

for both classification and regression purposes. Recently in the literature, [59] and [92]

used ELM for emotion recognition in the wild and obtained promising results.

In this part, we present methods based on ELM. The proposed algorithm works

for the generalized single-hidden-layer feed-forward networks (SLFN), but the main

difference is that the hidden layer in ELM need not be tuned, but is assumed to be

known.

ELM can be used in both classification and regression tasks. It is actually a

feedforward neural network with single layer of hidden nodes, in which weights from

the input layer to the hidden nodes are initialized randomly, and unlike neural networks,

will not be updated with backpropagation. This specification of ELM is the reason of

its short training time. In ELM, the mapping from input layer to the hidden nodes is

known. Therefore, the weights β, which map hidden nodes to the output nodes can be

solved analytically by a least-squares solution.

In order to obtain the formulation for multiclass ELM classifier an optimization

problem should be solved, based on two objectives. The first one is minimizing the

training error, and the second one is minimizing the norm of the output weights for

better generalization. Let h (x) be the feature mapping from the D-dimensional input
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node x to the L-dimensional hidden-layer feature space, and β(L×C) be the output

weight matrix between the hidden layer of Lnodes and the output nodes. Then, the

optimization takes the form:

min ‖ Hβ − T ‖2 and ‖ β ‖ (4.10)

Where T(N×C) stands for the training label matrix of N training instances and H(N×L)

is the hidden layer output matrix defined as below:


h(x1)

. . .

h(xN)

 =


h1(x1) . . . hL(x1)

...
. . .

...

h1(xN) . . . hL(xN)

 (4.11)

AssumingH is known, the least square solution of the linear equationHβ = T becomes:

β = H†T (4.12)

where H† is the Moore-Penrose generalized inverse.

4.2.1. Kernels

We can integrate kernels in extreme learning machines similar to what we did in

support vector machines. A kernel function after applying Mercer conditions takes the

form in Equation 4.13:

Ω = HHT (4.13)

where Ωij = h (xi) .h (xj) = K (xi, xj).

In the kernel space, the hidden-layer output computation becomes a kernel oper-

ation. During training, we add a regularization coefficient CELM to the kernel matrix
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Figure 4.1. ELM architecture, a single-hidden-layer feed-forward network.

calculated with training data X(N×D) = [x1 . . . xN ]T as follows:

H =

(
1

CELM
+ Ω

)
(4.14)

Any valid kernel can be used for Ω. In the case of a linear kernel, the input features

X themselves are feature mapping weights. Therefore, the output of the kernel ELM

classifier becomes:

f (x) = K (x,X)T β = K(x,X)T
(

1

CELM
+ Ω

)†
T (4.15)
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5. PROPOSED METHODOLOGY

5.1. Face and Landmark Detection

Our face detection, facial registration, feature extraction, encoding and classi-

fication pipeline is illustrated in Figure 5.2. For landmark localization, we propose

to combine two different methods in order to make a robust system. We use the su-

pervised descent method (SDM) [27] in conjunction with the Discriminative Response

Map Fitting (DRMF) method [28]. The Intraface (SDM) method is fast (about 0.51

second per frame) and can detect facial features precisely, but since its face detector is

based on the Viola & Jones face detector [25], sometimes it fails to find faces. This is a

problem in many cases of realistic videos, where different illumination, pose and com-

plicated background conditions are present. The DRMF method, on the other hand,

benefits from a tree-based face detector, which is proposed by Zhu & Ramanan [24].

Although the DRMF method works well in the wild conditions, its current implemen-

tation is very slow. It takes about 23 seconds to find the face and its corresponding

landmarks in a frame. In order to preserve both accuracy and speed, we combine these

two methods. The video is first processed by Intraface, using the Viola & Jones face

detector and for each frame, faces and their landmarks with high confidence scores are

selected. If a given video has less than three frames with detected faces, we use the

combination of Zhu & Ramanan and DRMF for face and landmark localization. If this

approach also fails to find faces, the video is tagged as not having any faces.

5.2. Generalized Procrustes Alignment

In our proposed system, we use a single reference model and align all faces to it

in order to remove translation, rotation, and scale effects. For this purpose, we use the

generalized Procrustes analysis (GPA) proposed by [29]. A set of faces are represented

by their landmarks and an iterative approach is employed to obtain the reference model.

This procedure automatically produces the registered set of faces from the training set

at the same time. Given a new facial image, GPA will find the affine transformation
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Figure 5.1. Sample aligned faces taken from EmotiW 2015 dataset.

that aligns the face to the reference face, minimizing a distance functions that equally

weights each landmark. For details, we refer the reader to [93].

5.3. Improved Dense Trajectory Features

Improved dense trajectory features reach state-of-the-art in the action recognition

problem [46]. These features are based on image descriptors (HOG, HOF and MBH

descriptors) computed along tracked trajectories. We use these features to capture

the changes in facial dynamics. Wang et al. illustrated that tracking densely sampled

feature points from a multi-scale pyramid (built from each frame of the video) can

outperform sparse sampling. Tracking is based on dense optical flow [71] and is done

for a certain time window. In realistic videos, camera motion should be filtered out

to prevent generating trajectories which correspond to the background. For solving

this problem, Wang et al. proposed using the homography matrix of the points from

continuous frames, which is extracted by the RANSAC approach. After filtering out the

camera motion, 96-dimensional HOG, 108-dimensional HOF, 192-dimensional MBH

and 30 dimensional trajectory features are computed to describe the appearance, shape

and motion information.
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Figure 5.2. Proposed pipeline.
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Using improved dense trajectory features has some important advantages over

simple tracking of interest points. First, removing camera motion from optical flow

improves HOF descriptors as discussed in [44]. Second, canceling out camera motion

also removes trajectories that are produced by camera motion. Therefore, only tra-

jectories related to face movements are kept. This specification is very important in

real-world videos, where there are lots of pan and tilt camera motions.

We use the software developed by Wang et al. [46] to extract the improved tra-

jectory features with the default parameters. Afterward a random subset of local

descriptors is extracted from training videos for making the codebook in the training

phase. Since making a codebook by means of all the descriptors needs large amount

of memory random selection is used in the literature. Actually, a random uniform

sampling will not change the distribution of the descriptors, which are extracted from

a video.

Four different GMM models are created for each descriptor (trajectory, HOG,

HOF and MBH), separately. Before encoding the feature vector, PCA is applied in or-

der to both reduce the dimensionality of descriptors and also make them de-correlated,

which is pivotal to be able to use GMM with diagonal covariance matrix.

In addition to improved dense trajectory features, geometric features are also

extracted by using localized landmarks on the face. These geometric features are

explained in detail in the next section.

5.4. Geometric Features

The Shape of the face can be captured by its landmarks, and interpreting the

movement of the landmarks can improve the performance of an emotion recognition

system. In this study, we used the landmarks of the face that are detected by both

Intrafce and DRMF methods [27], [28]. Geometric features are mostly the same as the

features introduced in [59] by Kaya et al. We have included three more features to

enhance this set. Indices of extracted landmarks can be seen in Figure 5.3 and details
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of geometric features are tabulated in Table 5.1. After extracting geometric features,

PCA is applied to decorrelate the features and a GMM model is learned from the

training part.

Figure 5.3. Order of the located landmarks.

Figure 5.4. Landmarks extracted from the face (EmotiW 2015).

5.5. Local Gabor Binary Patterns From Three Orthogonal Planes

The final feature we incorporate is LGBP-TOP [34]. For this feature, images

are convolved with a set of 2D complex Gabor filters to obtain Gabor-pictures, and

then LBP-TOP is applied to each Gabor-picture. A 2D complex Gabor filter is defined
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Table 5.1. Explanation of geometric features.

# Features Type and Explanation of feature

1 Eye aspect ratio Distance, averaged over left and right parts of the face

2 Mouth aspect ratio Distance

3 Upper lip angles Angle, averaged over left and right parts of the face

4 Nose tip - mouth corner angles Angle, averaged over left and right parts of the face

5 Lower lip angles Angle, averaged over left and right parts of the face

6 Eyebrow slope Angle, averaged over left and right parts of the face

7,8 Lower eye angles Angle, averaged over left and right parts of the face

9 Mouth corner - mouth bottom angles Angle

10 Upper mouth angles Angle, averaged over left and right parts of the face

11 Curvature of lower-outer lips Curvature, averaged over left and right parts of the face

12 Curvature of lower-inner lips Curvature, averaged over left and right parts of the face

13 Bottom lip curvature Curvature

14 Mouth opening Distance

15 Mouth up/low Distance

16 Eye - middle eyebrow distance
Distance, averaged over

left and right parts of the face

17 Eye - inner eyebrow distance Distance, averaged over left and right parts of the face

18 Inner eye - eyebrow center Distance, averaged over left and right parts of the face

19 Inner eye - mouth top distance Distance

20 Mouth width Distance

21 Mouth height Distance

22 Upper mouth height Distance

23 Lower mouth height Distance

24 Inner eye - mouth corner distance Distance

25 Mouth center-left mouth corner Distance

26 Mouth center-right mouth corner Distance
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as the convolution of a complex sinusoid s (x, y) (carrier) with a 2-D Gaussian kernel

ωτ (x, y) (envelope):

g (x, y) = s (x, y)ωτ (x, y) (5.1)

s (x, y) = exp (j (2π (u0x+ v0y) + p)) (5.2)

where (u0, v0) stands for spatial frequency and p defines the phase of the sinusoid.

ωτ (x, y) = K exp
(
−π
(
a2 (x− x0)2

r + b2 (y − y0)2
r

))
(5.3)

where a, b are scaling parameters of the Gaussian, K is amplitude and r subscript

stands for a clockwise rotation around point (x0, y0) such that:

(x− x0)r = (x− x0) cos θ + (y − y0) sin θ (5.4)

(y − y0)r = − (x− x0) sin θ + (y − y0) cos θ (5.5)

According to [34] we take a = b = σ, u0 = v0 = φ and K = 1. It should be stated

that we only use the magnitude response of the filter.

For this dissertation, LGBP histograms from three orthogonal planes (XY, XT,

and YT, respectively, with X and Y representing the image plane, and T representing

time) are extracted from two equal length volumes of the video, which are obtained by

dividing the video over the time axis. The resulting features are concatenated in order

to form the final feature vector. We take the idea of dividing the video for improving

temporal modeling from Kaya et al. [59], and the Gabor pictures were obtained using

an open source script [94]. Three scales and six orientations are used to prepare the

Gabor filter bank, and each Gabor picture is divided into blocks. We have used 4
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blocks for experiments on CK+, and 16 blocks for the EmotiW 2015 Challenge Dataset,

respectively. Our approach is robust to operational parameters, and since CK+ has a

smaller number of samples to train, reducing the number of blocks slightly improves

generalization.

5.6. Fisher Vector Encoding

In this work, before making GMM models, we used PCA in order to reduce the

dimensionality of descriptors and for decorrelating them. Empirically, we got the best

results on the training set by reducing the dimension of each trajectory to 25 and that of

the other three descriptors (HOG, HOF, and MBH, respectively) to 64. The geometric

features are projected to a decorrelated space by PCA, while their full dimensionality

is kept.

We used GMMs with diagonal covariance matrix to produce the FV. The GMM

clustering produces a visual vocabulary, where the number of clusters is a parameter

of the method optimized on the training set. 20 to 64 clusters work well for each of the

feature categories. In our experiments, the Fisher vectors are normalized firstly by the

signed square root function, and secondly by L2 normalization. By this normalization

process the usage of linear classifier is more successful. The final dimensionality of FV

is 2 × D × K, where D is the dimensionality of the descriptor, and Kis the number

of GMM components. In this work we used FV representation of HOG, HOF, MBH,

Trajectories, Geometric features combined with LGBP-TOP features to obtain a global

video description. The final feature vector is given to ELM, and emotion label for each

video is predicted. We have tried various dimensionality and different combination of

descriptors, which will be discussed in detail in the experiment part.

5.7. Classification

For a video with extracted feature vector, the multi-class ELM yields the con-

fidence score for each emotion class depending on whether the video belongs to that

class. The video is assigned to the emotion class with the highest confidence score.
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There are different versions of ELM, in this study we used ELM with a linear

kernel, which is simple and has good performance when combined with Fisher vectors.

The hyper parameter CELM is optimized during the training part in order to obtain

the best set of parameters. Since the training process of ELM takes a short time, a

lot of possibilities for CELM
(
2{−16:1:17})have been tested. In the experiment part, we

show that using Kernel ELM is more efficient than SVM.
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6. EXPERIMENTS

6.1. Datasets

In this section, we describe the datasets, which we have used in our experiments.

Possessing the adequate number of labeled facial emotion datasets is an essential pre-

condition to form a successful automatic emotion recognition system. Most of the

existing researches on emotion recognition have been based on the data sets of pur-

posely expressed emotions, obtained by asking the participants to perform a sequence

of emotional expressions in front of a camera. More recent approaches consider data

collected “in-the-wild”, with naturally occurring facial expressions and uncontrolled

pose and illumination conditions.

6.1.1. The Extended Cohn-Kanade Dataset

The Cohn-Kanade dataset includes 100 university students as subjects, ranging

in age from 18 to 30 years. Sixty-five percent were female, fifteen percent African-

American, and three percent Asian or Latino. The dataset consists of 23 facial displays

including single action units (AUs) and combinations of AUs. Action units (AUs)

represent the muscular activity that produces facial appearance changes defined in

Facial Coding System by Ekman and Friesen [95]. The dataset contains six universal

facial expressions, namely anger, disgust, fear, happiness, sadness, and surprise [10].

The CK+ dataset is the extension of the Cohn-Kanade dataset [11]. It has been

further enlarged to include 593 sequences from 123 subjects for seven expressions (ad-

ditional 107 sequences, 26 subjects, and the contempt expression), which makes it more

challenging than the original dataset. The sequences are recorded in laboratory condi-

tions and coded at the peak frame with the facial action coding system (FACS) [95].

All the videos start from the neutral face and end with the apex expression. Among

these, only 327 samples have emotion labels, which are used in our experiments [11]. In

order to be able to compare our results with the state-of-the-art, Leave-One-Subject-
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Out protocol (LOSO). In this protocol, in each iteration samples of one subject are

used as the test set and the rest are used in the training part. Some sample images

from CK+ dataset are illustrated in Figure 6.1.

Table 6.1 compares several state-of-the-art approaches on the CK+ dataset, which

are obtained with the same standard protocol. As it can be seen in the Table 6.1, the

baseline recognition rate of CK+ dataset is 88.38% and the best state-of-the-art result

is 99.2%.

Figure 6.1. Overview of facial expression in the CK+ dataset.

6.1.2. EmotiW 2015 Challenge Dataset

The audio-video Emotion Recognition In The Wild Challenge (EmotiW) took

place in order to investigate the power of emotion recognition systems when applied on
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Table 6.1. State of the art results on the CK+

Algorithm Protocol Mean Rec. R

STPS+CAPP (baseline, Lucey et al., 2010 [11]) LOSO 88.38%

STLMBP (Huang et al., 2012 [96]) LOSO 92.62%

Cov3D (Sanin et al., 2013 [97]) LOSO 92.30%

RCC (Huang et al., 2014 [7]) LOSO 95.38%

LCRF (Walecki et al., 2015 [98]) 10-fold 93.90%

PPDN (Zhao et al.,2016 [99]) 10-fold 99.2%

real word videos for simulating the real-world conditions. The term “in the wild” im-

plies inconsistency in environments/scenes and backgrounds, illumination conditions,

head pose, occlusion etc. EmotiW 2015 challenge dataset contains videos that are

taken from movies and mimic the real world condition. In the past, all the emotion

recognition tasks have been done on datasets captured in constrained laboratory envi-

ronments. Although these laboratory-controlled datasets played an important role in

improving the performance of the facial expression recognition systems, they were not

able to represent different environments and the conditions of real-world situations. By

an exponential growth in the number of videos which are accessible online, it is valu-

able to investigate the performance of emotion recognition techniques that work ‘in

the wild’. The aim of EmotiW 2015 Challenge was to expand the data defined during

EmotiW 2014 for evaluation of emotion recognition methods in real-world conditions.

EmotiW 2015 has been collected from movies with close-to-real-world conditions.

The EmotiW 2015 Challenge Dataset consists of 723 training, 383 validation and

539 test videos. Videos are collected via a semi-automatic approach with a video clip

recommender system, which is based on subtitle parsing. The labelers did not scan

the full movie manually but used the recommender system, which suggests only those

video clips, which have a high probability of a subject showing a meaningful expression.

The mission is to give a particular emotion label to the video clip. Emotion labels are

from the six universal emotions (Anger, Disgust, Fear, Happiness, Sad and Surprise)

and Neutral. Video clips of the dataset are divided into three partitions, namely, train,

validation, and test sets. The labels of the test videos are sequestered, and the number
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Table 6.2. Numbers of samples for each emotion class (EmotiW 2015).

Angry Disgust Fear Happy Neutral Sad Surprised

Train 118 72 77 145 131 107 73

Validation 64 40 46 63 63 61 46

Test 79 29 66 108 159 71 27

Table 6.3. State of the art results on the validation partition of the EmotiW 2015.

Algorithm Accuracy

LBP-TOP (Baseline) (Dhall et al., 2015 [17]) 36.08%

LPQ+LBP-TOP+OpenSmile (Kayaoglu et al., 2015 [100]) 40.70%*

AU-AFF (winner of the challenge) (Yao et al., 2015 [101]) 49.09%*

RNN (Ebrahimi et al., 2015 [102]) 39.60%

of evaluations are limited.

The organizers of the challenge have provided aligned set of faces for each video

clip. In the given alignment, the face is localized using the Zhu & Ramanan [24] method

and tracking is achieved by means of the IntraFace library [27]. Faces are aligned by

the landmarks produced through IntraFace.

Since emotion labels of the test set are sequestered, we use cross validation on

the training set to find the best parameters and then test the proposed method on the

validation set. Table 6.3 compares several approaches on the validation set of EmotiW

2015 dataset.

The video-only 36.08% baseline accuracy reported by the organizers is achieved

by extracting LBP-TOP features from non-overlapping spatial 4×4 blocks. Then these

local features are concatenated to form a general feature vector and the final feature

vector is classified by Chi square kernel based SVM [17].

During our experiments, we analyze different combinations of features and also

compare each block of our pipeline with other methods. We test each step of our

proposed methodology to see how much each block contributes to the final result.
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Figure 6.2. Illustration of sample frames taken from EmotiW 2015 dataset.

6.2. Comparison of Descriptor Types

Several experiments have been done in order to find the best combination of

descriptors. We investigate the contribution of each descriptor both individually and

in combination with others. We learned PCA and GMM models from each descriptor

(HOG, HOF, MBH, improved trajectories, and geometric features), separately.

Results on the CK+ dataset are shown in Table 6.4. Concatenation of LGBP-

TOP (after dimensionality reduction and power-L2 normalization) and Fisher-encoded

HOG, HOF and GEO yields 94.80% and 95.79% (without contempt) accuracy on the
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CK+ dataset, which is among the best results obtained for this dataset so far. HOG

is the most successful individual feature type in discriminating the emotion classes on

this dataset. As expected, the combination of an appearance based feature (HOG) and

a motion based feature (HOF) produces higher accuracy than combining two motion

based (HOF and MBH) features. Joining only two descriptors (HOG and HOF) already

gives a very promising result (93.58%) compared to baseline method [11]. Among the

seven classes, “sad” is the most challenging emotion to recognize and “happy” is the

easiest one. Table 6.1 compares several state-of-the-art approaches on the CK+ dataset.

The confusion matrix of the final system is shown in Figure 6.3.

Table 6.4. Contribution of different descriptors (CK+).

Descriptor Dimension Mean Accuracy

Trajectory 1250 71.56%

HOG 8192 90.52%

HOF 8192 87.77%

MBH 8192 89.91%

HOG+HOF 8192+8192 93.58%

HOG+MBH 8192+8192 92.05%

HOF+MBH 8192+8192 90.52%

HOG+HOF+MBH 8192+8192+8192 93.27%

Traj+HOG+HOF+MBH 1250+8192+8192+8192 91.13%

GEO 1352 69.42%

LGBP-TOP 75168 86.24%

GEO+HOG+HOF+

LGBP-TOP(RN)
1352+8192+8192+326 94.80%

GEO+HOG+HOF+

LGBP-TOP(RN)

(without contempt)

1352+8192+8192+326 95.79%

We use the same procedure on the EmotiW 2015 dataset; results are shown in

Table 6.5. Again, the combination of HOG and HOF yields the best performance

among improved trajectory features and produces higher recognition rate compared to

the baseline on the validation set. Our final approach achieves 43.39% accuracy on the
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Figure 6.3. Confusion matrix of the final system (CK+).

Emotiw 2015 validation set, which is 7.31% higher than the baseline (36.08%). The best

result is obtained by a combination of Fisher encoded geometric, HOG, HOF, MBH

and LGBP-TOP (after dimensionality reduction and power-L2 normalization) features.

Table 6.3 shows several approaches on the validation set of EmotiW 2015 dataset. The

results that are marked with an asterisk are not completely comparable with the results

reported here, since they do not follow the same protocol. The confusion matrix of our

final system is shown in Figure 6.4.

As stated before, the combination of a motion-based feature (MBH or HOF) and

a appearance based feature (HOG) resulted in better performance than joining two

motion-based features. Furthermore, Geo and HOG are the most successful individual

features in discriminating the emotion classes on the EmotiW 2015 dataset. Among the

EmotiW 2015 emotion classes, Disgust and Surprise are the most difficult expressions

and Anger is the easiest emotion to recognize.



56

Table 6.5. Contribution of different descriptors and standard deviations among

classes (EmotiW 2015).

Descriptor Dimension Accuracy s.d.

Trajectory 1250 26.72% 22.98%

HOG 8192 34.13% 26.83%

HOF 8192 32.28% 29.61%

MBH 8192 31.22% 20.49%

HOG+HOF 8192+8192 36.77% 28.68%

HOG+MBH 8192+8192 34.92% 25.73%

HOF+MBH 8192+8192 29.63% 20.64%

HOG+HOF+MBH 8192+8192+8192 34.92% 26.30%

Traj+HOG+HOF+MBH 1250+8192+8192+8192 33.86% 27.79%

GEO 1404 38.10% 27.17%

LGBP-TOP(RN) 712 32.28% 25.81%

GEO+HOG+HOF+

LGBP-TOP(RN)
1404+8192+8192+712 41.53% 27.20%

GEO+HOG+HOF+

MBH+LGBP-TOP(RN)
1404+8192+8192+8192+712 43.39% 33.03%

6.3. Effect of Facial Alignment

In the provided alignment by the organizers of the challenge, faces are detected

only in 711 training and 371 validation videos. There are false positives due to chal-

lenging conditions of sequences. Our proposed alignment pipeline was able to detect

713 faces in the training set and 378 faces in the validation set, with a small amount

of false positives, in a completely automatic manner. The given alignment by the chal-

lenge organizers is good for frontal faces, but the alignment was not very efficient in the

case of rotations. With our proposed method, we were able to improve the alignment.

In order to investigate how our registration pipeline improves the recognition

performance, we apply the same procedure on the registered images that are provided

by the organizers of EmotiW 2015 challenge. We were not able to extract geometric
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Figure 6.4. Confusion matrix of the final system (Emotiw 2015).

features from the provided alignment, since for a considerable number of frames, there

are no landmarks, and for the rest, the number of detected landmarks is not consistent.

Therefore, Fisher vector encoding of HOG, HOF, MBH concatenated with LGBP-TOP

are used as feature vector. We obtain 38.54% accuracy on the validation set with

the default alignment. Using the improved landmark detector and the generalized

Procrustes alignment improves this result by 4.85%. Figure 6.5 shows some of the

cases where the given alignment by the challenge organizers fails while our proposed

pipeline works robustly.

6.4. Comparison of Different Encodings

We further made experiments with the BOW encoding and compared the results

with FV representation. For BOW encoding, we used K-means in order to obtain

vocabularies. For each test video the most similar vocabulary to its descriptor is

selected and finally the histogram based feature vector is calculated according to the

occurrence of the vocabularies. We used 4000 and 2000 cluster centers for the CK+

and EmotiW 2105 datasets, respectively. The lower number of cluster centers for the
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Figure 6.5. Our alignment(first row), given alignment by challenge organizers(second

row)

Emotiw 2015 dataset is due to the memory restriction.

In order to compare Fisher vector and BoW, we prepared vocabularies for each

modality (i.e. HOG, HOF, MBH and improved trajectory), separately. Each BoW

vector is separately normalized with L1 normalization. The concatenation of the BoW

vectors is used in ELM with a linear kernel.

With BoW representation, the best result obtained on the CK+ using improved

dense trajectory features (with a combination of HOG, HOF and MBH) is 88.99%, by

leave one subject out protocol. FV encoding with considerable fewer number of visual

words (64 words) outperforms BoW encoding (4000 words) by 4.59%. The results are

shown in Table 6.6 and Figure 6.6. For the EmotiW 2015 dataset similarly, the best

result of BOW encoding by MBH descriptor (with 2000 words) is 16.4% lower than

the best result of Fisher vector encoding. The accuracy of each descriptor is reported

in Table 6.7 and Figure 6.7.
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Figure 6.6. Contribution of different combinations of improved dense trajectory

features with BOW and FV (CK+).

Table 6.6. Contribution of different descriptors with BOW and FV encodings (CK+).

Descriptor
Accuracy(%)

BOW

Accuracy(%)

FV

Trajectory 64.53 71.56

HOG 85.32 90.52

HOF 79.51 87.77

MBH 82.87 89.91

HOG+HOF 86.54 93.58

HOG+MBH 87.16 92.05

HOF+MBH 87.77 90.52

HOG+HOF+MBH 88.99 93.27
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Figure 6.7. Contribution of different combinations of improved dense trajectory

features with BOW and FV (EmotiW 2015).

Table 6.7. Contribution of different descriptors with BOW and FV encodings

(EmotiW 2015).

Descriptor
Accuracy(%)

BOW

Accuracy(%)

FV

Trajectory 17.72 26.72

HOG 17.99 34.13

HOF 16.14 32.28

MBH 20.37 31.22

HOG+HOF 16.40 36.77

HOG+MBH 16.40 34.92

HOF+MBH 16.31 29.63

HOG+HOF+MBH 16.14 34.92
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6.5. Comparison of ELM with SVM

We contrast ELM and SVM in terms of training time and accuracy on the CK+

dataset. We have found that ELM is faster and more accurate than SVM. For this

test, concatenation of Fisher vector encoding of HOF and HOG features are used.

Experiments are done on a machine with an Intel (R) core i5 CPU 2.50 GHz and 6

GB of RAM. ELM reaches 93.58% accuracy, while LIBSVM [89] and LIBLINEAR [90]

achieve 80.73% and 91.66% accuracy, respectively. Table 6.8 shows the results on

the CK+ dataset. We note here that it is possible to get faster computation times

with more optimized SVM implementations like liblinear, but the difference remains

significant.

Table 6.8. ELM and SVM comparison in terms of time and performance.

Classifier Training time Testing time (one subject) Accuracy(%)

ELM 0.45 s 0.0627 s 93.58

libSVM 27.79 s 0.24 s 80.73

liblinear 2.03 s 0.0014 s 91.66

6.6. Cross Database Results

Typically, models trained on one imaging condition do not generalize well to

other conditions, and the variance in a novel setting needs to be learned for proper

generalization. We tested the conditions between CK+ and EmotiW 2015 datasets

by running the trained models in a cross-database experiment. Training with CK+

and testing on EmotiW 2015 gives 16.14% percent accuracy (as opposed to 43.39% for

training on EmotiW 2015). Conversely, training on EmotiW 2015 and testing on CK+

reduces the accuracy from 94.80% to 21.04%.

6.7. The Effect of Dimensionality and Fisher Vector Parameters

We explored the efficiency of the FV representation by using different parameters

for both D descriptor dimensionality and K the number of GMM components. Since

extracting features from EmotiW 2015 dataset takes a long time, we conducted these
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experiments only on the CK+ dataset.

Three different configurations of dimensionality reduction and GMM components

are used for this part of experiments. Each descriptor is reduced to half size (MBH=96,

HOF=54, HOG=48), to 64, or the original dimensionality has been kept. In all cases

we used PCA in order to project the descriptors to the de-correlated space. For the

GMM components, we examined 32, 64 and 128 components for each dimensionality.

For this test, we used the combination of HOG and HOF features.

Figure 6.8. The effect of dimensionality reduction and the number of GMM

components (CK+).

Table 6.9. The effect of dimensionality reduction and the number of GMM

components (CK+).
`````````````````````̀
GMM components

Dimensionality
Half 64 Full

32 93.27% 92.66% 91.13%

64 93.45% 93.58% 91.13%

128 93.55% 93.58% 91.44%
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Figure 6.8 and Table 6.9 illustrate how the dimensionality D and GMM compo-

nents K have effect on the recognition rate of FV. By looking at the results, we can see

that increasing K up to a point will improve the performance, but further increase will

decrease the accuracy due to the high complexity. From the results it can be concluded

that reducing the dimensionality of descriptors to 64 and using 64 GMM components

outperforms the other combinations.

6.8. Deep Learning

Deep learning is becoming popular in the context of facial expression recognition.

One of the widely used deep learning structures is the convolutional neural network

(CNN). Training deep learning approaches requires very large datasets and longer train-

ing times. Here we briefly discuss the results of some deep learning methods applied

on the CK+ dataset. In a recent study by Li et al. [55], 10,595 external images were

used for training CNN models and 83% mean recognition rate was reported on CK+.

Lv et al. [56] proposed a method based on face parsing detectors trained via deep belief

networks and obtained 91.11% mean recognition rate. Liu et al. [9] proposed a new

Boosted Deep Belief Network (BDBN), which yields 96.70% mean recognition rate, but

it should be stated that in that work, the contempt emotion was not considered. By

excluding the contempt expression, we were able to obtain 95.79% mean recognition

rate. By comparing these results with the ones reported here, it can be seen that our

approach is advantageous in terms of high accuracy and low complexity, as well as

low training time. Recently different deep learning approaches have been proposed in

order to deal with the problem of facial expression recognition from realistic videos.

For instance Kim et al. [32] proposed a deep learning approach, which tries to solve

the problem of registration in real-world conditions by fusing alignable faces with the

non-alignable facial images where facial landmarks can not be detected. Mollahosseini

et al. [40] proposed an approach based on training deep neural networks on both well-

labeled and combination of noisy and well-labeled facial images, collected from the

web.
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Our results prove that our pipeline yields state-of-the-art results in both datasets.

In the next chapter, we conclude our work and state possible improvements that would

help increase the performance in emotion recognition from realistic videos.
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7. CONCLUSION

Despite intensive work in facial expression recognition, the real problem, which

is facial expression recognition in realistic conditions, is not solved yet [103]. Actually,

the emotion recognition problem is beyond the finding six universal emotion labels on

out-dated datasets. We need to find ways which are able to understand true emotional

displays in the wild or in noisy environments.

In this thesis, we presented a new approach for facial expression recognition in

the wild that uses a combination of different static and dynamic features. We located

faces on video frames and registered them using our proposed registration pipeline.

Then we extracted improved dense trajectory features (MBH, HOG, HOF, Trajectory),

geometric features and LGBP-TOP. Afterwards we encoded improved dense trajectory

and geometric features by Fisher vector encoding. In the last step, we classified different

emotions using extreme learning machines with linear kernels.

We tested the proposed approach on the well-known CK+ and the challenging

EmotiW 2015 Challenge datasets. We obtained 94.80%, 95.79%(without contempt)

and 43.39% accuracy by using our proposed pipeline on CK+ and EmotiW 2015

datasets, respectively. The results show that our method yields state-of-the-art re-

sults in both databases. The main contribution of this dissertation is that this is the

first time that improved dense trajectory features are used for facial expression recog-

nition. In the original improved dense trajectory features, a human bounding box is

used to remove camera motion, in case of facial expression recognition, an accurate

face detection can be used instead of human detection, as what we have done in this

work.

During our experiments, we analyzed different methods and parameters. We also

compared each block of our pipeline with well-known methods. We evaluated each

step of our proposed methodology to see how much each part contributes to the final

results.
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Different descriptors are examined in our study. The results show that for im-

proved dense trajectory features, combination of motion-based features (HOF, MBH)

and an appearance-based feature (HOG) is more successful. Furthermore we saw that

fusion of Geo and LGBP-top features with the improved trajectories improves the

results further.

Geometric features are calculated from the shape, angle and distance between

different facial parts like mouth, eye, lips and eyebrows. Its dimension (26) is small,

and it has shown promising results when encoded by FV.

Our experiments show that Fisher vector encoding outperforms bag of words

encoding for all improved dense trajectory descriptors. The difference comes from the

fact that FV benefits from the Gaussian mixture model, which encodes both first and

second order statistics. However BOW uses zero-order statistics, which is provided by

the K-means clustering algorithm.

Complexity of the system is the outcome of two factors; dimensionality of local

descriptors and the numbers of Gaussian components, respectively. Increasing these

factors can improve the performance, but after a certain value, the accuracy of them

system starts dropping. However, it can be seen from our experiments that changing

the parameters will not change the result dramatically and this can be a positive point

for using Fisher vectors instead of the bag of words method.

We have shown that extreme learning machines outperform support vector ma-

chines in our study. ELM is faster than SVM in terms of required training time, which

facilitate the evaluation process of possible feature combinations in a very short time

comparing to SVM optimization process.

In the case of the Emotiw dataset, the recall of surprise, disgust and fear classes

are low, which can be due to the low number of training samples in these classes.

Also, a lot of training samples can be considered to contain a mixture of two or more

facial expressions (such as surprise, fear and happy), which makes the recognition
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more challenging. Therefore improving the annotation can be considered as a possible

way of improving the results. Recently Benitez-Quiroz et al. [104] proposed a novel

algorithm to annotate facial expression datasets. This method can recognize AUs and

their intensities reliably in realistic videos, and can be substitue by former problamatic

annotating approch.

The proposed method is sensitive to small facial changes and works successfully

in some of the difficult cases, which contain very small facial changes and are hard to

distinguish even for a human annotator. An example is shown in Figure 7.1. On the

other hand, the sensitivity of method to small changes and the aforementioned problem

of mixing expressions in the training set, sometimes cause the failure of the method in

simple cases. For instance Figure 7.2 illustrates such an example.

The other problem in the Emotiw dataset is that class distribution is not balanced.

For example, we have many more videos in happy and anger classes compared to fear,

surprise and disgust. Collecting more samples for under-sampled classes or making

the dataset balanced by combining SMOTE and random under-sampling is a possible

improvement. We can under-sample the majority to different percentages of the original

majority class and then apply SMOTE to minority samples. Also fusion of visual

features with audio features, which contain significant emotional information, may

improve the performance of the system.

Figure 7.1. A correctly classified sample from the disgust class.
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Figure 7.2. A misclassified sample from happy class.

Frontalization of the face can probably improve the overall performance of the fa-

cial expression recognition system, but in order to obtain reliable results, frontalization

should be able to preserve facial texture and emotion.

One possible improvement can be using a more precise facial tracker and land-

marking method, which improves both geometrical and appearance based features. The

other possible improvement can be the fusion of convolutional neural networks features

as appearance features with already extracted features. Using additional datasets with

the similar imaging conditions with the target dataset may increase the accuracy of

the recognition system.
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44. Wang, H., A. Kläser, C. Schmid, and C.-L. Liu, “Dense trajectories and motion

boundary descriptors for action recognition”, International journal of computer

vision, Vol. 103, No. 1, pp. 60–79, 2013.

45. Dalal, N., B. Triggs, and C. Schmid, “Human detection using oriented histograms

of flow and appearance”, European conference on computer vision, pp. 428–441,

Springer, 2006.

46. Wang, H. and C. Schmid, “Action recognition with improved trajectories”, Pro-

ceedings of the IEEE International Conference on Computer Vision, pp. 3551–

3558, 2013.

47. Li, Z., J.-i. Imai, and M. Kaneko, “Facial-component-based Bag of Words and

PHOG Descriptor for Facial Expression Recognition.”, SMC , pp. 1353–1358,

2009.

48. Li, Z., J.-i. Imai, and M. Kaneko, “Robust face recognition using block-based bag

of words”, Pattern Recognition (ICPR), 2010 20th International Conference on,

pp. 1285–1288, IEEE, 2010.

49. Sikka, K., T. Wu, J. Susskind, and M. Bartlett, “Exploring bag of words architec-

tures in the facial expression domain”, European Conference on Computer Vision,

pp. 250–259, Springer, 2012.



75

50. Krapac, J., J. Verbeek, and F. Jurie, “Modeling spatial layout with fisher vectors

for image categorization”, 2011 International Conference on Computer Vision,

pp. 1487–1494, IEEE, 2011.

51. Rudovic, O., I. Patras, and M. Pantic, “Coupled gaussian process regression for

pose-invariant facial expression recognition”, European Conference on Computer

Vision, pp. 350–363, Springer, 2010.

52. Liu, M., S. Shan, R. Wang, and X. Chen, “Learning expressionlets on spatio-

temporal manifold for dynamic facial expression recognition”, Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pp. 1749–1756,

2014.

53. Dhall, A., R. Goecke, J. Joshi, K. Sikka, and T. Gedeon, “Emotion recognition

in the wild challenge 2014: Baseline, data and protocol”, Proceedings of the 16th

International Conference on Multimodal Interaction, pp. 461–466, ACM, 2014.

54. Huang, G.-B., H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for

regression and multiclass classification”, IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), Vol. 42, No. 2, pp. 513–529, 2012.

55. Li, W., M. Li, Z. Su, and Z. Zhu, “A deep-learning approach to facial expression

recognition with candid images”, Machine Vision Applications (MVA), 2015 14th

IAPR International Conference on, pp. 279–282, IEEE, 2015.

56. Lv, Y., Z. Feng, and C. Xu, “Facial expression recognition via deep learning”,

Smart Computing (SMARTCOMP), 2014 International Conference on, pp. 303–

308, IEEE, 2014.

57. Afshar, S. and A. Ali Salah, “Facial Expression Recognition in the Wild Using

Improved Dense Trajectories and Fisher Vector Encoding”, Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops , pp.

66–74, 2016.



76

58. Gürpınar, F., H. Kaya, S. Afshar, H. Dibeklioğlu, and A. A. Salah, “KERNEL
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