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ABSTRACT

A PROSPECTIVE SECONDARY MATHEMATICS

TEACHER’S DEVELOPMENT OF THE MEANING OF

THE CARTESIAN FORM OF COMPLEX NUMBERS

In this study, I articulate how a prospective secondary mathematics teacher

reconstructs complex numbers upon the set of real numbers in the context of the

solution sets of quadratic equations. Previous research has indicated that once asked

the meaning of x and y in the Cartesian form of a complex number which is formally

defined as x + iy where x and y are real numbers, both students and teachers were

able to state that x and y are real numbers, yet considered them separately rather

than being components of a single entity. Thus, the question arises as to what x and

y refer to algebraically and geometrically; why x and y have to be real numbers and

what it means to be an element of the set of complex numbers. This study explicates

a prospective secondary mathematics teacher’s answers to these questions through the

articulation of the participant’s quantitative reasoning by considering Sfard’s (1991)

theory on the dual nature of the mathematical conceptions. With this account, I intend

to contribute to mathematics education by providing evidence on how the development

of the elements of complex numbers, which is through shrinking/stretching of the

distance(s) between the roots and the x-coordinate of the vertex of any quadratic

functions’ graph, affords conceptualizing any complex number as a single entity in a

well-defined set rather than only an algebraic prescription of certain operations. As

the result of the instructional sequence in this study, the participant presents this well-

defined set as the set consisting of the roots of quadratic equations with real coefficients.
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ÖZET

BİR ORTAÖĞRETİM MATEMATİK ÖĞRETMEN

ADAYININ KARMAŞIK SAYILARIN KARTEZYEN

FORMUNUN ANLAMINI GELİŞTİRMESİ

Bu çalışmanın amacı bir ortaöğretim matematik öğretmeni adayının gerçek kat-

sayılı ikinci dereceden denklemlerin köklerini çalışırken karmaşık sayıları gerçek sayılar

kümesi üzerine nasıl kurduğunu incelemektir. x, y gerçek sayılar ve i =
√
−1 olmak

üzere matematiksel olarak x + iy şeklinde tanımlanan karmaşık sayıların kartezyen

formundaki x ve y’nin anlamı sorulduğunda, geçmiş çalışmalarda hem öğrenciler hem

öğretmenler x ve y’nin gerçek sayılar olduğunu belirtmişler ancak x + iy’yi tek bir

çokluk olarak değil ayrı iki çokluk olarak ifade etmişlerdir. Bu nedenle kartezyen

formdaki x ve y’nin cebirsel ve geometrik olarak neye karşılık geldiği, neden gerçek

sayılar olması gerektiği ve x+ iy’nin karmaşık sayılar kümesinin bir elemanı olmasının

ne anlama geldiği soruları ortaya çıkmıştır. Bu çalışma, bir ortaöğretim matematik

öğretmeni adayının bu sorulara cevaplarındaki nicel akıl yürütmesini Sfard’ın (1991)

matematiksel kavramların ikili yapısı teorisini kullanarak incelemiştir. Bu bağlamda,

bu çalışma ikinci dereceden denklemlerin grafiğindeki tepe noktasının x koordinatı ve

denklemin kökleri arasındaki uzaklığın daralıp genişlemesi üzerinden karmaşık sayılar

kümesinin elemanlarının nasıl ortaya çıktığına dair kanıtlar sunmuştur. Dolayısıyla

karmaşık sayıların sadece cebirsel islemler sonucu oluşmadığını ve iyi tanımlanmış bir

kümede tek bir çokluk olarak var olduğunu kavramsallaştırarak matematik eğitimine

katkıda bulunmuştur. Çalışmadaki öğretim sonucunda katılımcı bu iyi tanımlanmış

kümeyi gerçek katsayıları olan ikinci dereceden denklemin köklerinin oluşturduğu küme

olarak tanımlamıştır.
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1. INTRODUCTION

Understanding of a concept in the domain of mathematics is the necessary comple-

ment to its learning with reasoning in a way that one gives meaning to the constructs

involved in that particular concept. From the perspective of constructivist theory,

learning mathematics requires constructive work with mathematical objects (Davis et

al., 1990). Reasoning, on the other hand, is a necessary and powerful tool to develop

understanding of any concept since it requires one to think logically and to know why

and how to employ particular actions of mind which are needed to work with math-

ematical objects in a constructive way (Confrey, 1990; Simon et al., 2010). Thus,

developing an understanding of a concept depends on the individual construction of

one’s own knowledge about the concept through their own reasoning and mental ac-

tions in order to make use of concepts and their connections between and among each

other, and to justify one’s selected approach to solving a problematic situation. In

this respect, constructing one’s meaning of the different forms of a concept through

reasoning is a need to merge various aspects of this concept into a meaningful whole.

Particularly, the concept of complex numbers in secondary school mathematics

is a mathematical notion that has different forms, namely the Cartesian, exponential

and polar forms as well as multiple representations of these forms both algebraic and

geometric (Sfard, 1991; Karakök et al., 2015). Conceptualization of complex num-

bers depends on blending this structure that is solidified by those different forms and

representations into a consistent whole. As well a complete understanding of com-

plex numbers dwell on one’s developing these different meanings and the relationships

among them, Sfard (1991) pointed that the first step in such development is one’s un-

derstanding that any complex number is an element of a set superior to real numbers.

Similarly, how the concept of complex numbers emerges in the curriculum offers an es-

sential starting point to emphasize geometric meanings along with algebraic aspects of

the same concept. In this regard, NCTM’s Principles and Standards for School Math-

ematics (2000) highlighted that students’ understanding of complex numbers should
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be based on creating a logical necessity to work with a number set superior to real

numbers through working with the solutions of algebraic equations. In High School

National Mathematics Curriculum of Turkey (2013b), the concept of complex numbers,

in 10th grade program, is also introduced under the heading of numbers and algebra as

a new number set that emerged as a result of presenting particular situations where the

set of real numbers are not sufficient, too. In this regard, the set of complex numbers

emerges in connection with the solutions of the quadratic equations in High School

National Mathematics Curriculum of Turkey (2013b) in line with NCTM standards for

the grades 9-12.

Although scarce, several research studies have recently focused on conceptual-

ization of the different forms of complex numbers (Panaoura et al., 2006; Nordlander

and Nordlander, 2012; Karakök et al., 2015). Many of them studying conceptions of

multiple forms and representations of complex numbers addressed some misconceptions

(Panaoura et al., 2006; Nordlander and Nordlander, 2012) and offered ways to improve

understanding of complex numbers (Panaoura et al., 2006; Nordlander and Nordlan-

der, 2012; Soto-Johnson and Troup, 2014; Karakök et al., 2015). However, there are

not many research studies especially on how individuals reason and construct their own

conception of complex numbers both algebraically and geometrically as a number set

superior to real numbers through working with the solutions of algebraic equations.

In order to construct a robust conception of complex numbers as an extension of

real numbers as emphasised by NCTM’s Principles and Standards for School Mathe-

matics (2000) and High School National Mathematics Curriculum of Turkey (2013b),

in this study it is suggested to engage in quantitative reasoning, generated by Thomp-

son (1994), as a means to construct mathematical objects of thought and processes

involved in the development of the notion of complex number. From the perspective

of the theory of quantitative reasoning, identification of quantities and quantitative

operations involved in a mathematical concept such as the set of complex numbers

enables one to reason through giving meaning to the mathematical objects and pro-

cesses required for its better understanding. It is also recommended to introduce this
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new category of numbers as an extension of real numbers in the context of solutions

of quadratic equations (Sfard, 1991). Thus, in this particular research study, from the

perspective of quantitative reasoning I will explore a prospective mathematics teacher’s

developing the meaning of the Cartesian form of complex number.

In this study elaborating on the construction of the conception of complex num-

bers, a prospective teacher’s developing the meaning of Cartesian form of complex

numbers will be explored through a teaching experiment in consideration of an in-

structional sequence that emerged as a result of a mathematical analysis of complex

numbers that focuses on quantitative reasoning.

In the next section, complex numbers in the history of mathematics, previous

research on complex numbers and the theoretical framework of the study will be dis-

cussed.



4

2. LITERATURE REVIEW

The purpose of this section is to provide information on the history of complex

numbers, previous research studies regarding the understanding of complex numbers,

and the theoretical framework. First, I will briefly review the history of complex

numbers. Secondly, I will present research on both students’ and prospective and in-

service teachers’ interpretations and understandings of complex numbers. Lastly, I will

describe the theoretical framework of the study building on the implications of the

constructivist view in the context of mathematics education, and on Sfard’s (1991)

theory of the dual nature of mathematical conceptions with a particular focus on

complex numbers. In the theoretical framework, I will also explain Thompson’s (1990)

theory of quantitative reasoning and discuss its implications within the constructivist

perspective and Sfard’s (1991) theory.

2.1. Complex Numbers in the History of Mathematics

Although the number of empirical studies regarding complex numbers is rare, var-

ious sources have presented historical construction of the concept of complex numbers

and proposed important cognitive aspects required for improving an understanding of

complex number system.

The development of complex numbers is similar to how other number systems

were developed (Sfard, 1991). To illustrate, the set of negative numbers arising as

an object resulting from the operation of subtracting big numbers from smaller ones,

taking roots of negative numbers begot a necessity to work with complex numbers.

In other words, complex numbers arose while carrying out operations following the

symbols with an algorithm without regard to the meaning (Panaoura et al., 2006).

Particularly, Panaoura et al. (2006) stated that complex numbers emerged as a means

to solve equations in the form of x3 + px = q, in which the complex number
√
−1

appeared (Sfard, 1991; Usiskin et al., 2003; Panaoura et al., 2006). Though, it took
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deliberate work of some mathematicians to develop complex numbers formally. For

instance, Cardano and Bombellini, first used complex numbers by calculating with a

quantity whose square was −1 (Usiskin et al., 2003; Panaoura et al., 2006). Then,

Descartes generated the ‘real’ and ‘imaginary’ terms, and later Euler introduced the

letter ’i’ to represent the number
√
−1 (Panaoura et al., 2006). With the need of a

formal foundation Gauss introduced a formal set of postulates from which the arith-

metic properties of complex numbers could be deduced (Harkin and Harkin, 2014). It

is known that all complex numbers are the numbers of the form ’x + yi’ where x and

y are real numbers (Panaoura et al., 2006). Thus, the expression ’x + yi’ is a way

to represent complex numbers algebraically called the “binomial notation” of complex

numbers (Usiskin et al., 2003, p. 49). In addition, because real numbers are all the

numbers that are positive, negative and zero, xy-plane can also be used to represent

complex numbers geometrically as ordered pairs of real numbers (Usiskin et al., 2003;

Panaoura et al., 2006). Particularly, real numbers are viewed as special cases of com-

plex numbers. Algebraically speaking, they are just the numbers in the form of x + yi

when y equals 0; and geometrically speaking, they are the numbers on the real axis in

the complex plane (Panaoura et al., 2006).

Penrose (2004), after acknowledging the formal definition of complex numbers

with i =
√
−1 stated that mathematicians treated complex numbers in the form of

x+yi as augmentation of two real parts, x and y. He highlighted that even though the

sums can be treated as a pair of numbers, to accept complex numbers as a new category

of numbers it is essential to conceptualize x+ yi as a single entity in a well-defined set

(Sfard, 1991; Conner et al., 2007). By this, Sfard (1991), Conner et al. (2007) refer to

the fact that one has to recognize complex numbers with their binomial expressions of

the form x+ y.
√
−1 as legitimate mathematical objects in a well-defined set consisting

of elements of the same kind or of a certain category. Based on these definitions, I

acknowledge the definition of complex numbers as follows: ’The elements of the set

of complex numbers are the roots of quadratic equations with real coefficients’. In

other words, the elements of the set of complex numbers evolve from the roots of the

quadratic equations with real coefficients. Since the set of complex numbers comprises
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all the roots of the quadratic equations, the set of real numbers is a subset of complex

numbers.

Geometrically, Panaoura et al. (2006) stated that a complex number ’x + yi’ is

represented in a plane by taking x-axis and y-axis, that is orthonormal to the x-axis,

and pointing P, a point, with coordinates (x, y) where the image points of real numbers

’x’ are on the x-axis and the image points of imaginary numbers ’yi’ are on the y-axis.

Thus, x-axis is called the real axis with a ’real unit’ representing the real number 1 and

y-axis is called the imaginary axis with an ’imaginary unit’ i representing the complex

number
√
−1 (Usiskin et al., 2003). Even though treating a complex number as a

pair of two parts, i.e. real and imaginary, facilitates its geometric representation on

the coordinate plane, it is suggested that any complex number should be viewed as

a single entity as an ordered pair of real numbers combining a real and an imaginary

number on the complex plane (Nordlander and Nordlander, 2012; Karakök et al., 2015).

According to Panaoura et al. (2006), John Wallis approached the concept of

complex numbers as a geometric entity and tried to connect the point (x, y) with the

complex quantity x + yi, but he could not state valid arguments about the notion of

a perpendicular axis to the real axis for imaginary numbers with a common unit of
√
−1. Afterwards, Caspar Wessel introduced this idea of a perpendicular axis, and the

definitions of operations on complex numbers with lines (Demetriadou and Gigatsis,

1996). As Gauss generated the representation of complex numbers in the plane, Wessel

and Argand proposed the idea of line segments with directions (Burton, 1988). By

the same token, Fauconnier and Turner (2002) argued that to conceptualize complex

numbers as a new set of numbers one should have a complementary conception of

complex number as both a number, which is a point in the Cartesian plane, and a

vector, which is a line segment with a magnitude and direction in the Cartesian plane.

That is, the notion of vectors were proposed to give a visual and physical entity to

complex numbers (Panaoura et al., 2006). A vector is defined as a quantity that is a

directed line segment which has both magnitude and direction (Hillel, 2000).
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In this regard, in this study, I acknowledge that complex numbers are the roots

of quadratic equations with real coefficients such that any complex number can be

represented as a point in the Cartesian plane and as a vector with some magnitude

and direction. The first aspect, as mentioned earlier, implies that complex numbers

belong to a well-defined set, i.e. the roots of quadratic equations, and the second aspect

implies that they represent number having some measurable quantity.

2.2. Research on Complex Numbers

Some research on complex numbers has been conducted to investigate students’

(Panaoura et al., 2006; Nordlander and Nordlander, 2012; Soto-Johnson and Troup,

2014); prospective teachers’ (Conner et al., 2007; Nemirovsky et al., 2012) and in-

service teachers’ (Karakök et al., 2015) conceptions of complex numbers. In these

studies, algebraic and geometric representations of different forms of complex numbers

were scrutinized through participants’ engagement in specific tasks related to repre-

sentations of and operation on complex numbers. In particular, in these studies, the

focuses were how participants’ interpreted the different forms of complex numbers.

Still, developing an understanding of complex numbers on the part of the learner is a

rising matter of concern for the field of mathematics education because these studies

point to the fact that complex numbers are understood very roughly (Panaoura et al.,

2006; Nemirovsky et al., 2012; Soto-Johnson and Troup, 2014). In this regard, the need

to develop a new set of numbers, complex numbers, that is originated in the operations

on a known set of numbers, real numbers, was emphasized (Sfard, 1991; Panaoura et

al., 2006). In the following heading, I present these studies in detail.

2.2.1. Students’ Conceptions of Complex Numbers

Students’ construction of mathematical knowledge by their engagement in math-

ematical tasks has important implications for successful mathematics education in high

schools (NCTM, 2000; Panaoura et al., 2006). In this regard, Panaoura et al. (2006)

investigated high school students’ understanding of complex numbers through tasks in-
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volving algebraic and geometric representations of complex numbers and the students’

preferred approaches to solve the tasks, and their fluency in translating between the

two representations. Their study indicated that the students had difficulty with com-

plex number problem solving regardless of their preferred approach (i.e. algebraic or

geometric). Researchers pointed that students’ difficulty resulted from their interpreta-

tion of two representations, i.e algebraic and geometric, as two distinct objects, rather

than two representations of the same entity, a complex number. They contended that

this might be a result of the fact that in schools the formal definition of the complex

number is emphasized as ’a+bi’ which refers to a number with a real, ’a’, and an unreal

(imaginary) part, ’bi’, including no geometric interpretation parallel to the algorithmic

and symbolic interpretations. Hence, they suggested that focusing on both algebraic

and geometric dimensions simultaneously would be useful for students to conceptualize

complex numbers as a single entity.

Similarly, Nordlander and Norlander (2012) studied undergraduate students’ con-

ceptions of complex numbers. They classified some categories related to students con-

cept images. Researchers also defined students’ concept images as cognitive structures

regarding the concept of complex numbers revealing a number of alternative concep-

tions (misconceptions). Their study has shown that students had difficulty with under-

standing that any number is an element of the complex number set. In addition, they

found out that students conceived complex numbers as two separate entities consisting

of a real and an imaginary part rather than having an understanding that a complex

number is a single entity combining a real and an imaginary number such that it is

a unique number in a well-defined set of numbers expressed binomially in the form

x + y
√
−1 (Sfard, 1991).

As highlighted by Panaoura et al. (2006), another identified cognitive difficulty

on the part of students was their lack of switching between different representations of

complex numbers. Conner et al. (2007) also pointed to the same limited conception of

complex numbers on the part of prospective teachers and they argued that this might

have resulted from an over emphasis on the symbolic existence of i given the identity
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i2 = −1.

Similarly, Soto-Johnson and Troup’s (2014) study with undergraduate students

indicated that students focused firstly on algebraic relationships rather than geometric

aspects while working with equations including complex numbers. However, they also

found out that once students start thinking about the geometrical aspect of complex

numbers they have been able to imagine “a complex number as a point, vector, and

as an operator” (Soto-Johnson and Troup, 2014, p. 122) such that they were able to

define multiplication of complex numbers as mental actions of rotation and dilation

(Nemirovsky et al., 2012). That is they were able to recognize complex numbers both

as a point and a vector. Students also described conjugation as a reflection about the

real axis.

All these studies suggested that (i) a focus on algebraic and geometric represen-

tations and (ii) the understanding of any complex number as a single entity, a single

number as an ordered pair, are needed to overcome cognitive difficulties and conceptu-

alize complex numbers. In line with these suggestions, switching flexibly between the

algebraic and geometric representation of the Cartesian form was addressed as one’s

ability to represent a complex number as an ordered pair and the use of x + yi as a

binomial expression to represent any complex number to label vectors and points on

the complex plane (Karakök et al., 2015).

2.2.2. Prospective and In-service Teachers’ Conceptions of Complex Num-

bers

Admitting that teachers’ understanding of complex numbers and required content

knowledge for teaching on the concept of complex numbers has not been studied broadly

in mathematics education, there are several research studies conducted with prospective

and in-service teachers to investigate their conception of complex numbers (Conner et

al., 2007; Nemirovsky et al., 2012; Karakök et al., 2015). Studying what teachers’

know is important because, in order to support students’ conceptualization of complex
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numbers, teachers should themselves also have both a significant amount of content

knowledge and the knowledge about teaching complex numbers (Karakök et al., 2015).

In particular, Conner et al. (2007) explored prospective teachers’ conceptions of

the arithmetic of complex numbers. Their study showed that teachers described mul-

tiplication of a real number by negative one as a reflection instead of a rotation of 180

degrees. They argued that this conception might have caused the inability to conceive

multiplication by the complex number ’a + ib’ as operations of rotation and dilation

since prospective teachers probably focused on the real number line rather than the

complex plane. Researchers also pointed out that the conception of complex numbers

is limited to the expression i =
√
−1. By this, similar to the high school students in the

study of Panaoura et al. (2006) prospective teachers also considered complex numbers

as pairs of real numbers rather than a single entity, a single number as an ordered pair.

They concluded that although this perception might have enabled learners to inter-

pret complex number addition geometrically by using vectors and decomposing them

into the real and unreal (imaginary) parts, it does not provide meaningful geometric

interpretations to conceptualize complex number multiplication.

On the other hand, Karakök et al. (2015) conducted a study with secondary

in-service mathematics teachers to investigate their conceptualization of several forms

of complex numbers, their arithmetic operations, and their translating between the dif-

ferent representation of these forms. Results revealed that visualization of a complex

number as a point on the coordinate plane was difficult for some of the teachers in

their study. One teacher even stated that the algebraic form of complex numbers as

x+yi creates difficulty to think of it as a coordinate point because of the existence of

an operational symbol implying addition. However, teachers need to know about mul-

tiple representations and different forms of complex numbers; understand connections

between them; and navigate flexibly between these forms (Karakök et al., 2015). In

addition to Soto-Johnson and Troup (2014), Panaoura et al. (2006), and Nemirovsky

et al. (2014), Karakök et al. (2015) also suggested that the simultaneous employment

of algebraic and geometric aspects of complex numbers should be given more atten-
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tion in order to work with all forms of complex numbers that will lead more powerful

understanding of the concept.

In sum, all studies outlined above have focused on students’ and teachers’ un-

derstanding of various forms and different representations of complex numbers. Par-

ticularly, aforementioned studies point to the fact that both students and teachers

relied primarily on algebraic aspects of complex numbers than geometric aspects to

reason on equations rather. Yet, some students and teachers were fluent in working

with the Cartesian form (Panaoura et al., 2006; Karakök et al., 2015). However, this

does not guarantee their true conceptualization of complex numbers since whichever

type of approach, i.e. geometric or algebraic, students preferred, they had difficulty

in complex number problem solving (Panaoura et al., 2006). This implies that given

the Cartesian form, even though learners carry out the algorithms required for solving

tasks, they might still have a lack of understanding of complex numbers thoroughly.

In other words, this lack of understanding might result from an inability to employ

the geometric approach effectively with multiple representations of complex numbers

because of a focus on procedural aspects of complex numbers in particular (Karakök

et al., 2015). In these studies, alternative conceptions regarding complex numbers are

also addressed with highlighting mental operations while working on complex numbers

arithmetically. However, the construction of the set of complex numbers, on the part

of the learner, upon real numbers has not been investigated to understand how one

develops understandings and meanings of constructs involved in finding solutions of

quadratic equations. It is in this respect that this study will be focusing on such an

endeavor.

2.3. Theoretical Framework

In this section, from a philosophical perspective, first, I will briefly discuss the

constructivist view of epistemology and its basic premises that provided insight into

this study. From a psychological perspective, I will explain the nature of mathematical

concepts and conceptions from Sfard’s (1991) perspective. Afterward, I will state the
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constructs of a theory of quantitative reasoning since it corresponds with the opera-

tional aspect of mathematical conceptions within Sfard’s theory. Lastly, in the context

of one’s construction of the complex numbers, I will explicate how these three distinct

but related frameworks might integrate into shaping the basic principles of the design

of the teaching of complex numbers for understanding.

2.3.1. Constructivism

Glasersfeld (1990) hypothesized the basic premises of constructivism as follows:

(i) Knowledge results from an individual’s active cognizing and the learner is ex-

pected to construct his or her own meaning.

(ii) Learning is a process focusing on concepts through engaging in mental activity

in minds, not on isolated objective facts.

(iii) Construction of meaning of a concept is not instantaneous, rather it takes time.

The first premise imply that learners actively construct their own knowledge and

meaning from their experience. Such construction of knowledge (constructive pro-

cesses) in cognition and perception are accessible through reflection that refers to a

means of objectifying processes and products by creating a language to stabilize these

processes, products and their positions in the network of other mathematical ideas.

In this respect, individual or collective construction of one’s own knowledge is carried

out through their own conceptualization of mathematical ideas. Such mathematical

abstractions (ideas) are operations that enable us to perceive experiential items and

relational concepts (Glasersfeld, 1990). That is, if ‘figurative’ elements that form the

experience withdraw, solely ‘operative’ elements remain, i.e. abstractions from opera-

tions (Piaget, 1969). While operations remain unobservable, symbols of operations are

observable to manifest the abstract reaches of mathematics. However, understanding of

symbolized operations cannot be demonstrated by some sequence of symbols that are

assumed to be the documentation of an algorithm because constructivists contended

that knowledge is not “...an experiencer-independent state of affairs” (Glasersfeld, 1990,
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p. 27). Also, it is not a true representation of something that lives beyond our experi-

ence. That is, “the concepts and relations in terms of which we perceive and conceive

the experiential world..” are generated by our own states of minds (Glasersfeld, 1990,

p. 28). In this regard, based on the first premise, in this study, I acknowledge that one

constructs his/her own knowledge through his/her operational aspects of mind. Based

on the same premise, I also acknowledge that the discipline of mathematics has resulted

from human activity as the generation of a language reflecting on one’s mind activities

and processes that construct mathematical ideas coming out of his/her experiences

(Confrey, 1990; Simon et al., 2010).

The second perimse imply that one’s own cognitive acts (activities of mind) pro-

duce knowledge and understanding (Confrey, 1990). Thus “...conceptions can and

do change.” (Confrey, 1990, p. 108) with organizing one’s network of constructions

through reflections, i.e. learning. Since each learner has their own constructions, this

suggests that one might view a mathematical idea qualitatively different than others

(Piaget, 1969). In this regard, in this study, I also acknowledge that learners in a

social group do not have the same mathematical concepts; rather, their mathematical

concepts are compatible (Heinz et al., 2000).Therefore, such compatibility supports

the need to study students’ learning through their own mathematical activity because,

as mentioned earlier, constructivism also suggests that for promoting and developing

meaning for concepts for different groups of learners, mental models of individuals’ con-

ceptions are needed (Glasersfeld, 1990). Thus, when teaching concepts, it is suggested

that teachers should generate an appropriate model of learners’ conception of an idea

to assist their further restructuring these conceptualizations in appropriate ways that

negotiate learner’s and teacher’s perspective (Confrey, 1990). In this respect, a teacher

or researcher might develop an instructional sequence to form a hypothetical model of

learners’ conceptualization of a mathematical idea so that teachers or researchers can

facilitate others’ learning through their mathematical activity (Simon et al., 2010).
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2.3.2. Theory of the Dual Nature of Mathematical Conceptions

In this section, Sfard’s (1991) theoretical framework of the dual nature of math-

ematical conceptions is provided. In order for exploring and identifying conceptualiza-

tion of complex numbers, I also basically discuss the formation of complex numbers

in terms of the constructs of Sfard’s theory. I focus on this theory since in this study

I not only take mathematical objects such as complex numbers as concepts but also

take their operational aspect into consideration.

Sfard (1991) discussed the mathematical concept and mathematical conception

by arguing that they are not mutually exclusive but complementary. In particular,

Sfard’s discussion focused on the acquisition(or formation) of mathematical concepts.

Mathematical concept was defined as a mathematical idea “within the formal universe

of ideal knowledge” (p. 3), whereas mathematical conception refers to “..the whole

cluster of internal representations and associations evoked by the concept [or notion]-

the concept’s counterpart in the internal, subjective “universe of human knowing”” (p.

3). Sfard introduced operational conception and structural conception as two types

of mathematical conception. Operational conception refers to “..processes, algorithms

and actions..” (p. 4) a learner can go through. On the other hand, structural con-

ception is considered to view mathematical concepts as abstract objects. However, it

should be pointed out that structural conception and operational conception of a math-

ematical notion complement each other and imply a dual conception of a mathematical

notion.

Therefore, according to these theoretical constructs, an abstract mathematical

object might be considered to exist as a static (structural) entity from the perspective

of a mathematical concept. From the perspective of a mathematical conception, an

abstract mathematical object might be viewed as an operational entity. That is, once

the mathematical object has been abstracted structurally, i.e. become a mathemat-

ical concept, the learner can and might use it to form other mathematical objects.

Therefore, from the perspective of mathematical conception, the structural conception
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become a basis for the operational aspect of a conception. Therefore, in this study, I

acknowledge that, as an abstract mathematical object, complex numbers, can be con-

sidered both structural and operational in terms of human activities. Also, that the

concept of quadratic functions both algebraically and geometrically become a basis to

be operationally activated to form complex numbers at a structural level. Acknowledg-

ing this view also corresponds with Confrey’s (1990) statement and the constructivist

epistemology such that mathematics is created by human activity such that operational

conception precedes the structural conception of the process of concept formation, i.e.

mathematical objects/notions (Sfard, 1991).

In this developmental process, Sfard structured a three-phase schema: interioriza-

tion, condensation, and reification to understand one’s development from operational

to structural conception, i.e. from process to object. Sfard (1990) suggested that these

three developmental stages could be used as a means to decide the extent to which

a learner can “...think structurally about a concept..” (p. 18). The stage of inte-

riorization involves the learner’s cognitive processes such as counting, matching, and

subdividing. The condensation stage requires that the learner performing multiple pro-

cesses can consider these processes as some part of a whole. That is, this stage provides

evidence of progression such as navigating between different forms of representation of

the same concept. The last stage, reification, is the point that one distinguishes an

object from the process. In particular, reification is where multiple processes of a

mathematical notion merge together and beget an instantaneous objectification, which

generates an abstract mathematical object.

2.3.3. Quantitative Reasoning

In conjunction with the premises of the theory of constructivism and Sfard’s

(1991) theory of the dual nature of mathematical conceptions, in the following para-

graphs, I discuss the nature of the quantitative reasoning theory. I focus on this theory

since it allows for the articulation of how someone might reason while constructing

mathematics concepts. That is, this theory affords to explicate what activities of mind
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one might go through while constructing mathematical ideas (concepts) and also how

as a teacher/researcher we might create models of one’s conceptions. Researchers also

regarded quantitative reasoning as important to promote and support student learning

in secondary and undergraduate mathematics (Confrey and Smith, 1995; Thompson,

2011; Moore, 2014).

Thompson (1990) defined quantitative reasoning as “the analysis of a situation

into a quantitative structure” (p. 13) such that “..conceiving of situations and measur-

able quantities of a situation” (Moore et al., 2009, p. 5) is necessary in order for stu-

dents to reason quantitatively. Particularly, Moore et al. (2009) regarded quantitative

reasoning as “..the mental actions of an individual conceiving a situation, constructing

quantities of his or her conceived situation, and both developing and reasoning about

relationships between these constructed quantities” (p. 3).

Based on quantitative reasoning, a quantity is “..a conceived attribute of some-

thing that admits a measurement process, where this ‘something’ could be image of a

situation interpreted from a problem statement or a mathematical object” (Moore et

al., 2009, p. 3). This definition implies that a quantity depends on cognitive construc-

tion of an object whose attributes involve some measurement process where the mental

image of this cognitive object of thought reflects a mathematical object allowing a mea-

surement process (Smith and Thompson, 2008; Moore et al., 2009). In line with this

description, one of the central tenets of the theory of quantitative reasoning implies

that quantities are not in the real world but in the mind of the learner (Thompson,

2011). Thus, a quantity exists as a “conceptual entity” in a way that thinking of a

quantity refers to “..conceiving a quality of a cognitive object where this conception

involves measurability of that quality” (Thompson, 1994, p. 184). Therefore, the no-

tion of quantity provides insight into how one reasons quantitatively about situations

because the definition of quantity involves a cognitive construction of an object or ob-

jectification of a phenomenon having measurable attributes (Moore et al., 2009). In

other words, “..to comprehend a quantity, an individual must have a mental image

of an object and attributes of this object that can be measured” (Moore et al., 2009,
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p. 4) and such image “..could be an image of a situation interpreted from a problem

statement or a mathematical object (e.g. a graph)” (Moore et al., 2009, p. 3).

Quantification is therefore defined as a process, that involves explicit or implicit

measurement of qualities of objects (Moore et al., 2009), in which one assigns numerical

values to attributes (Thompson, 1989). By the same token, a quantitative structure

is a network of quantities and quantitative relationships (Thompson, 1989) generated

as results of quantitative operations that are defined as “..mental operations by which

one conceives a new quantity in relation to one or more already conceived quantities”

(Thompson, 1994, p. 184). In other words, the fact that a quantitative structure is

produced by mental actions of the learner is essential for the emergence of new math-

ematical concepts beyond existing ones (Smith and Thompson, 2008). According to

this point of view, one can infer that the notion of quantity involves the result of

actions of mind while reasoning quantitatively about situations since reasoning quan-

titatively about situations requires quantitative operations that originate in actions of

one’s mind.

As in detail will be explained in the next section, this suggests that quantity

involves the notion of structural and operational aspects of a mathematical conception.

In particular, Thompson (1994) stated that the notion of quantity supresses, goes

beyond and above, the notion of concept since it consists of schemes; all images that

comes with the concept.

2.3.4. Constructivism, The Dual Nature of Mathematical Conceptions, Quan-

titative Reasoning, and Complex Numbers

Aforementioned frameworks imply similar approaches to mathematical concepts

and the constructions of them. First of all, basic premises of constructivism regard

mathematical concepts as mental states of affairs occurring as a result of one’s own

meaningful conceptualization of a mathematical structure through mental activities.

Thus, from the constructivist perspective, creation of mathematical concepts is viewed
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as one’s mental actions in developing meaning for mathematical constructs and cre-

ating coherent mathematical structures. This view aligns with Sfard’s theory because

from her perspective mathematical concepts are developed both structurally and op-

erationally (Sfard, 1991). That is, as in the constructivist perspective, concept devel-

opment stages acknowledge mathematics as a creation of human activity.

Similarly, the notion of quantity with respect to Thompson’s theory of quantita-

tive reasoning corresponds with Sfard’s mathematical concept since Thompson (1994)

highlighted that “quantities are conceptual entities” (p. 184) and dwelled on abstract

mathematical objects. From Thompson’s point of view, mathematical concepts also

have two different but related qualities that are static, structural in Sfard’s (1991)

terms; and dynamic, operational in Sfard’s (1991) terms. As Sfard’s theory allows

for the realization of mathematical concepts having two related but different aspects,

Thompson’s (1994) theory additionally allows for the examination of the construction

of the mathematical concepts from one’s point of view.

Particularly, in the context of the construction of the concept of complex numbers,

in this study, embracing the idea that a mathematical concept refers to “a theoretical

construct within “the formal universe of ideal knowledge”” (Sfard, 1991, p. 3), I take

the formal concept definition of complex numbers in the following way: “A complex

number is an expression of the form a + bi or a + ib where a and b are real numbers,

and i is the imaginary unit” (Adams and Essex, 2009, p. A2). I also emphasize that

within the formal universe of mathematics, complex numbers are thought as a ring

with different axioms (Fauconnier and Turner, 2002).

However, as Sfard (1991) pointed to, the first step towards conceptualizing com-

plex numbers is to recognize that i =
√
−1. In other words, I take the stance that

the first step for conceptualizing complex numbers is to understand “..what complex

numbers ‘stand for and really are”’ (Nordlander and Nordlander 2012, p. 633). In this

respect, I take complex numbers as mathematical objects when the symbol x+iy, “. . . is

interpreted as a name for a legitimate object - as an element in a certain well-defined set
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- and not only (or even not at all) as a prescription for certain manipulations” (Sfard

1991, p. 20). That is, in this study, I acknowledge that the structural conception of

complex numbers refers to the following: “The elements of the set of complex numbers

are the roots of quadratic equations with real coefficients.” Such understanding also

implies that since the set of complex numbers comprises all the roots of the quadratic

equations with real coefficients, the set of real numbers is a subset of complex numbers.

In this regard, in this study, I acknowledge that as a mathematical object (con-

cept) complex numbers are elements of a new set of numbers such that it is both a

number, which is a point in the Cartesian plane, and a vector, which is a line segment

with a magnitude and direction in the Cartesian plane (Fauconnier and Turner, 2002).

Similarly, I also acknowledge that as a mathematical conception complex numbers refer

to the whole cluster of internal representations and associations evoked by it. Based

on this view, in this study, I use quantitative reasoning theory in order to explicate the

nature of reasoning one might undertake that results in his or her creation of complex

numbers from real numbers. In this regard, operationally, I take complex numbers

as conceptual entities having been emerged from a combination of metal actions one

might go through.

Based on these hypotheses, therefore, in this study, while thinking of complex

numbers both operationally and structurally, the development of the Cartesian form

of a complex number on the part of a prospective secondary mathematics teacher will

be investigated.
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3. SIGNIFICANCE OF THE RESEARCH STUDY

Constructivist view of epistemology, in the field of mathematics education, em-

phasizes the construction of individual’s own meanings and understandings of concepts

through their own mental activities. It also emphasizes teachers’ or researchers’ con-

structing mental models of individuals’ conceptions to promote and develop meaning

for concepts on the part of others (Glasersfeld, 1990). Mathematical concepts are

formally defined by mathematicians, but personal conceptualization occurs through

reconstruction of definition by individuals. Thus, not to cause a distorted interpreta-

tion, subjective reconstruction of the formal definition of any mathematical concept is

needed to provide students with a cognitive structure regarding the concept to under-

stand the concept better (Confrey, 1990).

In any curriculum, the development of the number concept is considered funda-

mental to any of the mathematical concepts (Usiskin et al., 2003). Particularly, the set

of complex numbers have applications not only in mathematics but also in science and

engineering (Usiskin et al., 2003). In this regard, the concept of complex numbers have

been given attention and students are expected to develop its meaning based on the

concept of real numbers relating to the quadratic polynomials as presented by Hwang

(2004), NCTM (2000) and MEB (2013b).

There is some empirical research investigating both students’ and teachers’ con-

ceptions of different forms of complex numbers (Panaoura et al., 2006; Soto-Johnson

and Troup, 2014; Karakök et al., 2015). These research studies suggested that un-

derstanding complex numbers involves algebraic and geometric representations of the

rectangular (Cartesian) form along with the other forms (e.g. polar and the exponen-

tial) and transition between these forms (Karakök et al., 2015). They also pointed to

two important issues: First, secondary school students and teachers do not conceptu-

alize complex numbers as a single entity. Second, they have difficulties in thinking of

both algebraic and geometric standpoints which represent the same number. Hence,
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further research is needed to decrease such conceptual difficulties regarding complex

numbers (Panaoura et al., 2006; Soto-Johnson and Troup, 2014; Karakök et al., 2015).

Sfard (1991) suggests that the development of the concept of complex numbers could

be achieved through thinking of it as reified from real numbers.

Similarly, acknowledging that Sfard’s (1991) discussion on operational and struc-

tural conceptions of the Cartesian form of complex numbers result from reifying real

numbers NCTM (2000) also suggests students to “... understand complex numbers as

solutions to quadratic equation that do not have real roots” (Panaoura et al., 2006, p

.682).

Thus, in this study, I examine such development evolving from the roots of

quadratic equations. The ultimate purpose of this research study is therefore to inves-

tigate and elaborate on how one constructs meanings and understandings in the field of

complex numbers upon her or his conceptions of quadratic functions. This construction

involves re-invention of the set of complex numbers, on the part of the learner, upon the

set of real numbers. In particular, I dwell on quantitative reasoning theory (Thompson,

1994) for the conceptual development of complex numbers from real numbers based on

quantities involved in the solutions of quadratic equations.In this regard, a prospective

teacher’s development of complex numbers is studied in this study’s context, which

is assumed to provide insight into mathematics education regarding making sense of

and teaching of the binomial expression of the Cartesian form of complex numbers.

Such articulation might also shed light on how to overcome students’ and/or teachers’

difficulties regarding the concept of complex numbers as well as their development of

and switching between different representations of complex numbers.
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4. STATEMENT OF THE PROBLEM

This study aims to generate a model of how a prospective secondary mathematics

teacher develops the meaning of the Cartesian form of complex numbers based on her

quantitative reasoning through working with solution sets of quadratic equations with

real coefficients. Therefore, this study particularly investigates the following research

questions:

(i) How does a prospective secondary mathematics teacher develop the meaning of

the Cartesian form of complex numbers?

(ii) What meanings of the Cartesian form of complex numbers does a prospective

secondary mathematics teacher develop during an instructional sequence based

on quantitative reasoning?
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5. METHOD

Since the aim is to investigate a prospective secondary teacher’s construction

of the meaning of complex numbers this study is based on a teaching experiment

consisting of teaching sessions, pre- and post-clinical interviews and pre- and post-

written assessments. In other words, the aim is to foster one’s re-invention of complex

numbers, beyond real numbers, with understanding based on quantitative reasoning.

The following sections consist of four main components that elaborate on the

methodology implemented in this study: the design, the participants, the data gather-

ing procedure and data analysis.

5.1. Design of the Study: Teaching Experiment Methodology

This study originates in constructivist theory of epistemology (Glasersfeld, 1995)

and developing meaning with understanding. It follows the two premises, particularly:

(i) knowledge is created by human activities and (ii) one’s knowledge is interpretable

but not fundamentally knowable to any other individual. By the implication of these

premises, the purpose of this research study is to build a model of students’ mathe-

matics, referred to students’ mathematical realities (separate from ours as teachers and

mathematics educators) (Steffe and Thompson, 2000) because what students say and

do through their engagement in mathematical activities indicate their mathematics

(Zembat, 2004). These models of students are called mathematics of students refer-

ring to the models of students’ mathematics that researchers hypothesize as a result of

teaching experiments and the modifications students make in their ways of operating

(Steffe and Thompson, 2000). In this regard, the main purpose of teaching experiments

is to understand students’ mathematical realities and create models explaining these

realities (Steffe and Thompson, 2000).
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A teaching experiment provides researchers with the tool to continually generate,

test and modify hypothesized models of one’s thinking through continuous interactions

with students (Steffe and Thompson, 2000). These models do not correspond one-to-

one representation of how one thinks, but they are the researcher’s best explanations-in

the framework of researcher’s own understanding, perspective and operations-of the

meanings of what students say and do (Moore, 2014). In the context of this research

study, since the aim is to understand how a prospective secondary mathematics teacher

develops the meaning of the Cartesian form of complex numbers and to generate a

model of her construction of meaning, teaching experiment methodology is employed

in order to access her mathematical realities regarding the concept of complex numbers.

5.2. Participants

As earlier stated, NCTM (2000) claimed that the conception of complex numbers

to build upon real numbers as a result of working with the solutions sets of quadratic

equations, Panaoura et al. (2012) and Karakök et al. (2014) suggested simultane-

ous investigation of geometric and algebraic aspects to develop better understanding

of complex numbers, Soto-Johnson and Troup (2014) found out that participants of

their study recognized complex numbers as points, vectors, and operator, and similarly

Fauconnier and Turner (2008) mentioned that space of complex numbers is blended

because in that space numbers and vectors represented the same entities, i.e. complex

numbers.

Acknowledging all those suggestions and findings we proposed an instructional

sequence which introduces simultaneous employment of geometric and algebraic aspects

in order to build complex numbers upon real numbers. Considering the literature and

the intended tasks in the instructional sequence, in order to further build on his/her

knowledge I looked for a voluntary participant who had the following criteria:

(i) ability to define quadratic functions algebraically,

(ii) ability to deduce the algebraic roots of quadratic equations,
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(iii) ability to represent any quadratic function geometrically,

(iv) ability to explain the meaning of −b/2a algebraically, i.e. in terms of its relation

to the roots of quadratic equations, and geometrically, i.e. on the graph of a

quadratic function,

(v) ability to state the relationship between complex roots and quadratic equations

such that when ∆ < 0, there are complex roots where ∆ = b2 − 4ac,

(vi) ability to state the magnitude of vectors algebraically,

(vii) ability to define what a vector is,

(viii) ability of the meaning of
√

∆/2a geometrically, i.e. in relation to the graph of a

quadratic function,

(ix) lack of understanding of what x and y in the form of z = x + yi refer to alge-

braically, i.e. in relation to the roots of quadratic equations and geometrically, in

relation to the graph of a quadratic function,

(x) lack of the ability to reason behind the existence of the conjugate root once a

complex root exists,

(xi) lack of the ability to define complex numbers as follows: “The elements of the

set of complex numbers are the roots of quadratic equations with real coefficients

where f :R→R, f(x) = ax2 + bx + c,where a, b and c∈R and a 6=0.”

These criteria are established to assure that the participant has the prerequi-

site understandings and skills needed to engage in task sequence involved in teaching

sessions, but lacks the concepts which are intended to be promoted in the teaching

experiment sessions.

For the selection of the participant of the study, I conducted a writtten pre-

assessment (see Appendix A for the pre-assessment questions) with 21 prospective

mathematics teachers who were in the fourth year of her five-year undergraduate pro-

gram in secondary school mathematics education in a public university in Turkey where

the medium of instruction is English. The participation was voluntary. Based on the

preliminary analysis of their answers in the written pre-assessment I chose seven of

them who had the potential to be the best candidate for being the participant in
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our teaching experiment sessions. After I and my advisor (hereafter referring ’we’)

discussed the answers of those seven candidates to the pre-assessment questions, we

decided to conduct 45 minute-long clinical interviews with them in order to further

investigate their background knowledge and reasoning underlying their answers (see

Appendix B for the interview protocol). I conducted pre-assessment interviews with

those seven candidates and transcribed interviews. After analyzing the transcribed

pre-interviews with a focus on the interviewees’ eligibility for being the participant

who had the closest prior knowledge corresponding to our criteria for the participant’s

existing knowledge needed for our study, we decided Esra (a pseudonym) to be our

participant.

As stated the factor that affected the selection of the participant was the partic-

ipant’s current knowledge of mathematics. Therefore, rather than choosing the most

capable one, a prospective secondary mathematics teacher who had a range of learned

concepts and limited understandings was chosen for the study.

5.3. Procedure

5.3.1. Data Sources

Data sources included (i) transcripts of the videos of teaching sessions, (ii) dig-

itized researcher and teacher-researcher notes taken during and between teaching ses-

sions, (iii) digitized copies of student work during teaching experiments, (iv) transcripts

of the videos of the pre-and post clinical interviews and (v) digitized copies of the pre-

and post-written assessments.

Among these the main sources of data are the transcripts of the video records

of teaching experiment sessions and the pre- and post-interviews with the participant.

The written artifacts from the teaching sessions, the pre-post interviews, and the pre-

post written assessments were considered as a secondary data sources.
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5.3.2. Data Collection

Data is collected in three phases: (i) a pre-interview after a written pre-assessment,

(ii) the teaching sessions, and (iii) a post-interview after a written post-assessment.

Phase I: As mentioned earlier, in order to choose the participant for the study,

first I conducted a written pre-assessment (Appendix A) with 21 prospective secondary

teachers who were in their third and fourth years of a five-year undergraduate pro-

gram in secondary school mathematics teacher education. The written pre-assessment

questions were generated by two mathematics educators and me, with regard to the

participant criteria presented earlier, in order to identify current statuses of the par-

ticipants’ knowledge. After the analysis of their written answers to the pre-assessment

questions by identifying the extent to which they satisfy the participant criteria for

this study, I and my advisor, who is a mathematics educator, decided on seven of them

to take the pre-assessment interview. Prior to the teaching sessions, after a written

pre-assessment, I conducted 45-minutes long pre-interview (Appendix B) with seven

of these prospective teachers, following the design of a clinical interview (Clement,

2000) and Goldin’s (2000) principles of structured, task-based interviews. The inter-

views were video-recorded and later transcribed. The aim of the pre-interviews was

to monitor the participant’s prior understandings and meanings regarding the concept

of complex numbers prior to the teaching sessions. That is, these interviews provided

insight into the participants’ current understandings and meanings of the nature of

complex numbers as well as their prerequisite knowledge on quadratic functions and

equations. Then, I selected one of them (hereafter named Esra) to participate in the

study according to the participant criteria listed earlier.

Phase II: For the teaching sessions, based on our analysis of the participant’s

current knowledge from the pre-interview data, I and my advisor first developed a

hypothetical teaching-sequence (Appendix C). Throughout the implementation of the

teaching experiment consisting of three 75- to 120-minute sessions, I operated a digital

video camera and an audio recorder with the purpose of recording, Esra’s evolving
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understandings and the interactions occurring among Esra and the teacher-researcher.

Two cameras recorded each session, with one camera focused on participant work and

the other focused on teacher-researcher work and computer display because her rea-

soning was evidenced in her drawings and what she pointed out along with what she

told during the teaching sessions.. Student work was collected and digitized in order

to confirm written work as inferred from the video data. After each session, digitized

participant work and written notes were organized chronologically and paired with ap-

propriate video files in order to support the analysis. Later, video recordings and audio

recordings were transcribed for analysis. When recording, I simultaneously observed

the sessions with an attempt to capture Esra’s work as much as possible for analysis.

I also took notes right after the the sessions about the ideas Esra formulated and my

inferences about Esra’s evolving understandings. Following each teaching session, I and

the teacher-researcher discussed Esra’s evolving understandings. These short discus-

sions provided instantaneous analysis that became part of the data used to hypothesize

about Esra’s development of mathematical notions, and how she reasoned. They also

enabled us to design following teaching sessions according to the current understanding

of the participant after we formed hypothesized models of her thinking. The physical

configuration of the teaching sessions is diagrammed (Appendix D).

Phase III: The last step of the data collection was one-hour long structured, task-

based post-interview with the participant. After the teaching sessions were done, the

participant was asked to answer the written-post-assessment questions (Appendix A).

Then, I interviewed Esra two week(s) later following the teaching experiment sessions.

The interview was video-recorded and later transcribed. The main purpose of the

post-interview was to identify the participant’s current understanding of the concept

of complex numbers and to monitor the development occurred along the way that Esra

constructed on the concept of complex numbers during the teaching sessions. The

post-interview questions were also provided (Appendix B).
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5.3.3. Data Analysis

In teaching experiments, hypothesis testing and hypothesis generating related to

the conceptual development of the participant were emphasized (Steffe and Thompson,

2000). Therefore, in order to conjecture about the participant’s understandings, in this

study, three types of data analysis are conducted: interview analysis, ongoing analysis,

and retrospective analysis. Each will be explained in the following subsections in detail.

5.3.4. Analysis of Pre- and Post-interviews

In order to determine participants’ initial understandings of the concepts such as

quadratic functions, their geometric representations and the binomial expression of the

Cartesian form of complex numbers, I marked the important instances in the interviews

in which mathematical understandings revealed as the participants engaged in tasks

or gave responses to certain questions. During the investigation of these responses,

I focused on (i) the articulation of their thoughts while giving responses to ’Why?’

questions, (ii) the way they think about their solutions, think about the mathematical

ideas, focus on procedure, use an algorithm, and (iii) what resources they relied on

while answering questions (e.g. representations, formulas). Once I addressed such

occurrences, I looked for the patterns of certain ways of thinking or counterexamples

to such patterns, if there were. I rewatched the videos to identify such occurrences.

My aim was to formulate models of Esra’s current mathematical knowledge. I also

examined the data from the post-interview in the same way.

5.3.5. Ongoing Data Analysis

Once concluding each of the two teaching sessions, I and my advisor reflected on

the sessions and interpreted Esra’s evolving understandings and constructs of the tar-

geted concepts. Regarding this, we also focused on potential understandings to be de-

veloped by Esra, and how such understandings might have been promoted. Throughout

the “after teaching session meetings” we asked and focused on the following questions:



30

(i) The mathematical issues that appeared during the teaching sessions and the way

that the participant thought about and handled such issues;

(ii) Whether there was a change in participant’s thinking about those issues or in her

approach at the end of the sessions and the nature of that change;

(iii) The weaknesses or difficulties and possible explanations for such weaknesses or

difficulties;

(iv) The factors that afforded or limited the change or the development in her con-

ception;

(v) The possible mathematical understandings and meanings that might have been

further investigated in the following sessions.

These meetings, guided by answers to the questions stated above, enabled us to

refine the goals and following teaching-session plans accordingly. The ongoing analysis

included the documentation of all hypotheses made during the data collection.

5.3.6. Retrospective Analysis

During the retrospective analysis after completion of data collection, I transcribed

teaching session videos along with all observable actions. I and my advisor identified in-

teraction sequences in which Esra’s actions and utterances provided information about

her thinking. We employed conceptual analysis techniques in order to characterize of

Esra’s thinking, develop and refine hypotheses of her mental action that explain our

interpretations of her observable behaviors (Steffe and Thompson, 2000; Thompson,

2008).

After formulating hypotheses about Esra’s evolving understandings I tried to sup-

port compatible models that accounted for her progress and I looked for contradictory

evidence in the data set in order to refine and improve my claims and models of her

understandings. I iteratively engaged in discussions with my advisor about the validity

of my hypotheses and claims to build more viable models of her thinking and shifts in

her understanding.
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6. RESULTS

To provide background information on Esra’s current understanding regarding

the Cartesian form of complex numbers and the way her understanding evolved, I

first present pre-interview findings along with the written pre-assessment. Second, I

characterize her quantification of the roots of any quadratic equation including the x-

coordinate of any parabola’s vertex and the roots’ distances to the x-coordinate of the

vertex while constructing complex numbers upon real numbers throughout the teaching

sessions. I finally provide evidence of meanings she developed for the constructs such as

the x-coordinate of any parabola’s vertex and the roots’ distances to the x-coordinate

of the vertex involved in her re-invention of the Cartesian form of complex numbers.

I provide such explanation based on the quantitative reasoning, her formation of the

concept of any complex number as a single entity and also on her mental operations she

engaged in while she invented this new set of numbers, i.e. complex numbers, beyond

an existing one, i.e. real numbers.

6.1. Analysis of Pre-interviews

The aim of pre-interviews was to analyze Esra’s existing knowledge regarding the

definition of complex numbers and quadratic functions; quadratic equations and their

sets of solutions along with their algebraic and geometric aspects, and their relations to

complex numbers. Taking into consideration the previous research results on complex

numbers I and my advisor (hereafter referring ‘we’) composed pre-assessment questions

(Appendix A). The focus of analysis was to identify Esra’s prior knowledge and her

current meanings of the quadratic functions such as the roots, the line of symmetry

and the vertex of the parabola in terms of the algebraic and geometric aspects.

In the following paragraphs I presented some evidence of Esra’s knowledge at the

beginning of the study to describe what she knew prior to conducting our teaching

sessions. While conducting the interview, I asked Esra to articulate how she reasoned
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during the written pre-assessment. First, I described Esra’s current knowledge on

quadratic functions and the solution sets of quadratic equations, and then on complex

numbers and its relation to the quadratic equations.

6.1.1. Esra’s Current Knowledge on Quadratic Functions and the Solution

Sets of Quadratic Equations

To build upon Esra’s prior knowledge about quadratic functions in order for her

to further construct the meaning for the Cartesian form of complex numbers, Esra was

expected to have the ability to define quadratic functions algebraically; the ability to

deduce the algebraic roots of quadratic equations; the ability to represent any quadratic

function geometrically; the ability to explain algebraically the meaning of the algebraic

expressions, i.e. −b/2a and
√

∆/2a, in the algebraic form of the roots of quadratic

equations, and to explain their meaning geometrically on the graph of a quadratic

function.

During the written pre-assessment, Esra was able to define quadratic functions

in the following way:

Figure 6.1. The definition of any quadratic function

During the pre-interview, once asked to explain her written statement, she was

able to explain that the coefficients a,b,c are the elements of the set of real num-

bers and “a” should take values different than zero since otherwise the function could

not be a quadratic function. She also stated that the domain and the range of any

quadratic function are real numbers. This suggests that she had the ability to define

quadratic functions algebraically with providing some reasoning as to why for instance

the coefficient “a” has to be a non-zero real number.
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When it came to represent a quadratic function geometrically in the written pre-

assessment, even though she did not answer how she graphed any quadratic function,

she was able to draw a few parabolic graphs:

Figure 6.2. Quadratic functions’ parabolas according to the changing values of a, b, c

and ∆

During the interview, I asked how she drew those graphs and she explained:

E: Now I assume −b/2a, as far as I have memorized, I do not know if I
remember right, but did it provide me the abscissa of the vertex? I do not know
x exactly. When we give 0 to x in y, y = c, so I indicated that as the point it
touches.

R: Alright.
E: If a [in ax2 + bx + c] is positive [graphic branches] upwards and if it is

negative then I mentioned them as downwards I assume.
R: OK.
E: Eee, hmm. If the delta is smaller than 0 [pointing to Figure 6.3], this is so

because it is not real root.

Figure 6.3. The quadratic function’s parabola when ∆ < 0

This question was also asking for any remarkable points on the graph of any

quadratic function that can be expressed in terms of a, b, c. When she was asked

what x1 and x2 in Figure 6.2 referred to, she stated “x1 and x2 on the graph are the

roots of the quadratic function and since it’s a quadratic function there should be two

roots”. Her statement “if I remember right, I do not know if I remember it right, but

−b/2a should give me the abscissa of the vertex” suggested that she just memorized
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the formula without any further reasoning as to why it holds. Yet, her explanations

regarding the sign of the coefficient ‘a’ and y-intercept of the function together with

the roots suggested that she was able to graph any quadratic function.

As shown earlier, in the written pre-assessment, she pointed out that there is a

point called the vertex with the algebraic form “−b/2a.” On the other hand, in the

pre-interview, she said that −b/2a was the x-coordinate of the vertex. Then, I asked

how she knew that −b/2a was the x-coordinate of the vertex, she stated “I assume

the sum of the roots, x1 and x2 divided by 2, it[−b/2a] is like right in the middle...”

This, together with her written statement in Figure 6.4 suggested that she was at least

able to algebraically deduce −b/2a as the x-coordinate of the vertex of the quadratic

function.

Figure 6.4. The algebraic meaning of −b/2a in Esra’s words as “the arithmetical

mean of the roots”

She stated that her knowledge of the vertex was based on memorization and she

also did not mention any quality of the parabola, i.e. the line of symmetry, resulting in

her deduction above. When she was asked what the vertex means she defined the vertex

as just the point where the quadratic function takes its minimum or maximum value.

Yet, she did not define the vertex as the intersection point of the line of symmetry and

the parabola. As much we acknowledge that her not stating this definition neither in

the pre-assessment nor in the pre-interview does not mean that she does not have it.

However, as will be further verified with the data from the first teaching session this

was a limitation on her part. During the written pre-assessment, Esra was not able to

deduce the roots of the quadratic equations algebraically. During the interview once

asked again, she was not able to deduce it either.
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E: By leaving x alone, what does x equal to? Finding it..[writing the algebraic
expressions in Figure 6.5]

Figure 6.5. Esra’s attempt to deduce the roots of any quadratic function algebraically

R: I got it.
E: I don’t know..

Although Esra was not able to deduce the roots of any quadratic function with

real coefficients during the written pre-assessment, she was able to mention both the

algebraic and the geometric meaning of the components of it. Then during the pre-

interview, I asked her to explain it again. That is, given the algebraic form of the

roots, x1= −b/2a−
√

∆/2a and x2= −b/2a+
√

∆/2a, I asked the geometric meanings

of the algebraic expressions −b/2a and
√

∆/2a, respectively. The reason that we

asked this question was that, in our study, ’the roots’ and ’the x-coordinate of the

vertex’ of a quadratic function’s graph were considered as quantities such that they

have measurable attributes such as their distances to the origin and from each other.

As shown earlier, when asked what −b/2a referred to algebraically, Esra stated that it

equals to the average of the two roots, i.e. the sum of the two roots that is divided by

two. Geometrically, she argued that −b/2a is the x-coordinate of the vertex:

R: I have asked the meaning of −b/2a , the algebraic meaning and the geo-
metrical one.

E: When I hear geometric, I understand that I should draw a graphic.
R: Hmm, yes, geometric means to show it in analytical plane. Yes exactly.
E: That is why I think that I have shown this [referring to what she drew and

wrote in the written pre-assessment in Figure 6.6].

On the meaning of −b/2a, she was able to argue that, algebraically, its value is

the half of the two roots’ sum, and geometrically, it is the midpoint of the roots and

the x-coordinate of the parabola’s vertex. This suggested that −b/2a was not only an

algebraically deduced formula (the midpoint of the two roots) but at the same time it

was a point equidistant from both of the roots such that she was able to measure such
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Figure 6.6. The geometric meaning of −b/2a in Esra’s words as “the abscissa of the
vertex”

distance. This was evidenced also in her next explanation:

E: Yes, if we go to right and left [from −b/2a] this much [
√

∆/2a], then roots
occur [referring to what she wrote in the written pre-assessment in Figure 6.7].

Figure 6.7. The meaning of
√

∆/2a in Esra’s words as “if we go to right and left
[from −b/2a] this much[

√
∆/2a] then we obtain the roots”

Then I have reached to a conclusion from this expression [x1= −b/2a−
√

∆/2a
and x2= −b/2a +

√
∆/2a]. If this is x1, x2 [in Figure 6.8].

Figure 6.8. Esra’s drawing of
√

∆/2a geometrically

Eee = −b/2a +
√

∆/2a, yes when we go here [to the right] we have reached
to this [x2] ....What exactly are you asking geometrically about this?

R: What is
√

∆/2a ?
E: It is the lentgh from the average of roots to a root or to the other root...
R: Now as I understand, a root’s..
E: Eee....the distance to the midpoint of two roots...
R: ..you mean the distance to the abscissa of the vertex...
E: Exactly. Yes..
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Esra knew that
√

∆/2a referred geometrically to the distance from any of the

roots to the midpoint of the roots (−b/2a, 0). In addition, she was able to measure

the distance between the roots and the x-coordinate of the vertex with
√

∆/2a. She

was also able to think about the meaning of (−b/2a,0) geometrically such that it was

equidistant to both of the roots. This was evident in her statement “..if we go to right

and left [from −b/2a] this much[
√

∆/2a], then roots occur”..

She then analyzed the roots’ forms algebraically according to the changing values

of discriminant (∆), i.e. ∆ > 0, ∆ = 0 and ∆ < 0. She knew algebraically that if

the discriminant took values bigger than zero, there would be two real numbers as the

roots of the quadratic equation; if the discriminant took values equal to zero, there

would be a real number with multiplicity two as the roots of the quadratic equation;

if the discriminant took values smaller than zero, there would be two unreal numbers

as the roots of the quadratic equation because the algebraic expression of the roots

included an expression i as in the formal definition of complex numbers.

After algebraically analyzing the values of discriminant, I asked her to reason

geometrically what happens to the graph if discriminant’s value is bigger than zero,

i.e. ∆ > 0. She argued “This point [ x2 in Figure 8] is real. I get the root on the x

axis, or this[ x1].”

Esra’s answer implied that she could give meaning to
√

∆/2a geometrically when

∆ > 0 such that there are two real roots on the real number line with a positive distance

to the x-coordinate of the vertex. She, however, could not explain what happens to

the geometric representation when ∆ = 0 and ∆ < 0:

R: OK. When delta is equal to 0, what do you get then?
E: Two roots are same but I did not get its shape correctly in my head...
R: OK. When Delta is smaller than 0, what kind of a geometrical meaning

does it have?
E: Geometrical....I could not see it now..
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This dialogue indicates that Esra regarded
√

∆/2a as a fixed distance, not dy-

namic. That is, she could not argue that this distance can change, i.e. decrease or

increase, for the changing values of the discriminant.

So far the data indicated that Esra was able to define quadratic functions al-

gebraically and represent any quadratic function geometrically as a parabola. Even

tough she could not deduce the algebraic form of the roots, once she was given the

algebraic expressions for the roots she was able to explain the meaning of −b/2a alge-

braically as the half of the sum of the roots of a quadratic equation. Once asked to

explain the meaning of −b/2a geometrically, she was able to state that it referred to

the x-coordinate of the vertex and the midpoint of the roots on the real number line.

Yet, she was not able to reason as to why −b/2a represented the x-coordinate of the

vertex nor she was able to define the vertex in terms of the intersection of the line of

symmetry and the graphical representation of any quadratic function. However, once

asked to explain the meaning of
√

∆/2a, she was able to reason that it represented the

distance of the roots to −b/2a, the midpoint between them, and she was able to relate

such distance existed once ∆ was bigger than zero. Still, her not being able to reason

what ∆ = 0 and ∆ < 0 meant geometrically suggested that she was not able to think

about the distance of the roots to −b/2a as a changing quantity.

6.1.2. Esra’s Current Knowledge on Complex Numbers

In this section, I show data concerning Esra’s current knowledge on the definition

of complex numbers and complex numbers’ relation to the quadratic equations.

Particularly, during the written pre-assessment, Esra had defined complex num-

bers as ’... the numbers in the form of a + bi where a, b∈R and i =
√
−1. During the

pre-interview, when I asked her again, she repeated the same definition. Her definition

was limited to the formal definition given by the mathematicians. In other words,

she did not relate complex number definition to the quadratic equations in any way

even though in the curriculum this form, i.e. the Cartesian form of complex numbers,
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was emphasized to be appeared as a result of the investigation of the solution sets of

quadratic equations. Still, it is necessary to be cautious about whether Esra knew the

relationship between the solution sets of quadratic equations and complex numbers.

Further data is needed to clarify that.

Additionally, during the written pre-assessment, Esra had answered correctly the

question “Which of the following numbers are complex numbers?” Thus, at the very

beginning of the pre-interview, I asked her to explain how she reasoned while answering

this question. She stated the following:

E: I think that they all are complex numbers, that is what I say.

Figure 6.9. Esra’s identification of complex numbers in a list of numbers

R: Ok, why?
E: Why..I assume I memorized until today. I am thinking...I don’t know but

all the numbers are complex numbers, that is what I think.It is like that the
complex numbers cover all numbers.

R: Complex numbers cover all numbers.
E: Yes.
R: What do you mean by all numbers?
E: I mean the real number. In complex numbers there are real numbers,

hmm then there are rational numbers and there are natural numbers; so I think
complex numbers cover them all.

Esra’s correct statement that the complex numbers included all the other numbers

suggested that she knew the fact about the relationship between all the numbers and

the complex numbers. Yet, her statement “I assume I memorized. . . I don’t know...”

after the question ’why’ suggest that she did not have any reasoning behind it. That

is, she did not know why such relationship exists. She seemed to just memorize it.
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During the written pre-assessment, I also had asked Esra about the relationship

between complex numbers and the roots of the quadratic equations. During the pre-

interview I asked her to explain her reasoning.

R: Yes...So what was your answer? Can you explain me your answer?

Figure 6.10. Esra’s relating three cases of ∆ to the roots of quadratic equations where
∆ = 0 corresponds to the case of having “one real root with multiplicity two”

E: I think this[b2 − 4ac] is delta.
R: Yes, discriminant.
E: Yes, and if it is smaller than 0, it comes from complex numbers, numbers

with i..If [delta] is bigger than 0 then the roots have to be real numbers and if it
is equal to 0 then there is a real root with multiplicity two , that is what I said.

R: So how do you know this?
E: That is how I remembered.How do I know?
R: How do you know?
E: I got it.
R: Here [for the second case about discriminant], you mean that when delta

is smaller than 0, then the roots are not real but complex, did you mean this?
E: Yes, it is complex, complex root.
R: So how do you know this? How do you know that these three cases explain

those? How did you remember that? Where did you see?
E: In high school, what I memorized...
R: You know it because you memorized?
E: Exactly.

As shown in the excerpt above, her written explanation in algebraic forms and

her uttering “..because this is what I memorized from high school” shows that she was

able to state the three cases for the roots of the quadratic equations. However, she

could not explain how she reasoned and how she came to know those statements. This

again indicated her limited understanding regarding the relationship between complex

numbers and the roots of the quadratic equations. As shown in the following excerpt,

I then asked a follow-up question to further investigate her reasoning:



41

R: When delta is bigger than 0, do you get a complex number? The numbers
you obtained, I mean the roots...

E: They are real, I know that complex covers real numbers too, then we can
call [the roots] as complex numbers....I have only summarized what I know, but
in general we call it real numbers...

R: Ok, why are real numbers the subset of complex?
E: I have no idea why real numbers are the subset of complex....That is how I

learned..They [real and complex number sets] might even be disjoint now. Maybe
that [relation of these sets] is on my mind because it was a visual image [in Figure
6.11].

Figure 6.11. Esra’s Venn scheme for the relation between the set of real numbers and
the set of complex numbers

The dialogue above again suggests that she had no understanding of the rela-

tionship between the set of real numbers and the set of complex numbers. This again

implied that she just heard or memorized without any reasoning that complex numbers

includes real numbers.

In the written pre-assessment, Esra was asked to explain her reasoning on the

following question:

For any quadratic equation ax2 + bx + c = 0 where a, b and c∈R and a 6=0, when

one root is in the form of z = x+ iy, a complex root, the other root is z = x− iy where

x and y are real numbers. The complex root z = x − iy is known as the conjugate of

the complex root z = x + iy.

(i) What do x and y refer to algebraically?

(ii) Why do x and y have to be real numbers?

(iii) What do x and y refer to geometrically?

(iv) Why does the conjugate root exist? Explain your reasoning.
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During the pre-interview I first asked Esra to explain what she had written for

what x and y refer to algebraically. She answered:

E: So here [Figure 6.12], does this mean that it is real and imaginary?

Figure 6.12. Esra’s algebraic meaning for x and y in the form of z = x + iy

R: These x and y [x and y in z = x + yi] ; can you also express x and y
algebraically as symbols? And for example, what is x in the question?

E: By saying as the element of real numbers?
R: Say it how you would like to answer algebraically. Say it like that. Say

whatever you think.
E: x is the element of real numbers, y is the element of real numbers. Do you

want a response like this?
R: Algebraically, yes, actually algebra also includes where these numbers [x

and y] have come from. What is this x? What is this y algebraically?
E: Hmm.. My mind..[paused for several seconds]
R: You said x is real and y is the imaginary part. Do you think of anything

else now? Does anything else come to your mind?
E: No it does not, I still think that both can be real, I am confused.

As presented in the excerpt, Esra could not reason and argue what x and y refer

to algebraically in relation to any quadratic equation. Though she knew that both

were real numbers. The discussion followed:

R: ..Why are x and y real? Why is this number [z = x + iy], is this complex
number stated in a way that x and y in real [x and y as real]? It even says asks
why x and y should be real?

E: Why does it have to be real?
R: Yes.
E: I don’t know.

The excerpt shows that although Esra knew that x and y were real numbers she was

not able to state why they had to be real numbers. I then asked her that what x and

y refer to geometrically. Esra thought about their meanings geometrically as:
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R: When I asked about it geometrically, you showed this [Figure 6.13.13],
right? You said imaginary and real, alright. Do you have any idea what this x

Figure 6.13. Esra’s geometric meaning for x and y in the form of z = x + iy

and y are geometrically?
E: As I have drawn this [figure above], I thought it was this and still...
R: Not about where x + iy....what is x geometrically at x + iy? What is y

geometrically?
E: I don’t know.

According to the conversation above, she was not able to reason about what x

and y refer to geometrically with regard to any quadratic equation, but she showed

geometrically that x is on the real number line and y is on the imaginary number

line. Also, data showed that x+iy referred to a point on the complex plane. The last

part of the question was about the existence of conjugate roots. When she was asked

about the reason for having a conjugate root if one of the roots are in the form of

complex numbers, she directly stated “I have never thought about its reason, I don’t

know..” This illustrated that she did not know the reason underlying the existence of

a conjugate roots.

As the data showed so far, Esra did not define complex numbers as follows: “The

elements of the set of complex numbers are the roots of quadratic equations with real

coefficients where f :R→R, f(x) = ax2 + bx+ c,where a, b and c∈R and a 6=0.” Instead,

she only provided the formal definition of complex numbers such that complex numbers

are the numbers in the form of a + bi where a, b∈R and i =
√
−1. Although her not

relating the set of complex numbers to the roots of quadratic equations should be

taken cautiously, further data indicated that she really did not have any connection

between the set of complex numbers and the quadratic equations. In particular, Esra

stated the relationship between complex roots and quadratic equations such that for
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all the values of the discriminant, i.e. positive, zero, and negative, the roots of any

quadratic equation, including real number roots, are complex numbers since the set

of real numbers is a subset of the set of complex numbers. However, once asked she

was not able to argue about why the set of complex numbers included the set of real

numbers. Also, when she was asked the algebraic meanings of x and y in the form of

z = x+yi, she just answered that they are both real numbers. Regarding the geometric

meanings of x and y in the form of z = x+yi, she was only able to show a plane where

she placed x and y in the form of z = x + yi on a real and a perpendicular imaginary

number line, respectively. Yet, she was not able to argue about what x and y in the

form of z = x+ yi refer to algebraically in relation to the roots of quadratic equations,

and geometrically in relation to the graph of a quadratic function. Lastly, she was not

able to reason anything about the existence of the conjugate root once a complex root

exists.

As the analysis presented, the pre-interview session together with the written pre-

assessment was useful to identify the extent of Esra’s current knowledge on quadratic

functions, complex numbers, and how she reasoned regarding the concepts of quadratic

functions and its constructs, and the Cartesian form of complex numbers. Based on the

excerpts depicted, my advisor and I decided on the kinds of questions to be discussed

and the tasks to be followed during the teaching sessions that would trigger reasoning

on the part of the learner, Esra, in a way that builds upon her current understandings.

In the next section, the analysis of the three teaching experiment sessions was

presented.

6.2. Analysis of Interaction

I discuss the teaching experiment sessions in three phases that are presented

chronologically. The focus was on Esra’s evolved quantities so that her developing

understandings and meanings could be monitored.
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The first teaching session focused on the deduction of the roots, the meaning

of the x-coordinate of the vertex, and the meaning of the vertex. The goal was two-

fold: First, I regard complex numbers as quantities obtained from the analysis of a

situation involving a mathematical object of thought, such as quadratic functions and

equations, into a network of quantities, i.e. the roots and the x-coordinate of the vertex,

and quantitative relationships, i.e. how the roots’ position and the position of the x-

coordinate of the vertex relate to each other as distances and as points. Secondly, as the

data from both the written pre-assessment and the pre-interview indicated , although

Esra had some knowledge about quadratic functions and the roots of the quadratic

equations, this knowledge was limited. That is, she had some knowledge without being

able to reason about how she knew it.

The second and third teaching sessions built upon Esra’s current status of know-

ing after the first session in a way that discussed how the roots and the x-coordinate

of the vertex related to each other as distances and as points while studying the roots

of quadratic equations with respect to both geometric and algebraic aspects.

6.2.1. Esra’s Development of the Meaning of the Vertex

The mathematical object of thought to be used in the construction of complex

numbers is hypothesized to be, as mentioned earlier, quadratic functions and equations

with quantities such that the x-coordinate of the parabola’s vertex and the roots of the

equations whose distances to the origin and to each other can be measured.

Although Esra was able to define quadratic functions algebraically and represent

any quadratic function geometrically as a parabola, she could not deduce the alge-

braic form of the roots. This showed that deducing the roots was beyond her reach.

Therefore, we provided her with the algebraic deduction of the roots (Appendix E).

We checked, given the proof, whether she could at least explain how one step followed

the other. We hypothesized that if she could do so she would have been ready to be

engaged in tasks that would trigger the reasoning to define vertex. This was impor-
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tant because as the aforementioned data indicated she lacked such reasoning. Thus,

the first teaching session started with Esra’s thinking about the given proof out loud

Esra was able to explain the steps in the proof. Therefore, from now on, she could

call on the algebraic forms of the roots when she thought she needed. That is, such

knowledge was in her assimilatory scheme. At that point, acknowledging pre-interview

findings, to further validate that she could call on her knowledge of the algebraic forms

of the roots, she was asked to explain again what, −b/2a and
√

∆/2a, refer to for

any quadratic function both algebraically and geometrically. Asking such question was

also important because Esra had not at all mention that –b/2a was also the algebraic

expression for the line of symmetry. Her knowing this was important because then

she could realize that the roots were symmetric to each other about the x-coordinate

of the vertex. Also, she would be able to justify why –b/2a was x-coordinate of the

vertex. Her knowing roots’ being symmetric about the x-coordinate of the vertex was

important again because in this way she would be able to start thinking that such

quality was invariant for the roots of any quadratic equation. The discussion followed:

R: If you mention again, −b/2a means what algebraically and geometrically?
E: Algebraically it is the arithmetical average of roots of equation..
R: Ok, fine.
E: And geometrically, it is the midpoint of the roots of equation..
R: You mentioned one more thing [during the interview].
E: This point, [(−b/2a, 0)] is in equal distance to x1 and x2, the roots of

equation and the abscissa of the vertex of function’s graph is −b/2a.

Figure 6.14. Esra’s representing −b/2a as a point and
√

∆/2a as a distance on the
real number line

She explained that −b/2a algebraically is the average of the roots as the half of

the sum of the roots’ values. She also explained that −b/2a geometrically meant for

her the midpoint of the roots, and also the x-coordinate of the vertex of the parabola.
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At that point, Esra was asked what does
√

∆/2a referred to geometrically:

E: Here [Figure 6.14]
R: You mean?
E: This point [x1] is here [−b/2a−

√
∆/2a], when we add this [

√
∆/2a] to this

[−b/2a −
√

∆/2a] then this point (−b/2a, 0) comes.. If I go as much as
√

∆/2a
to −b/2a, if I go here [to the right of the point (−b/2a, 0) on the x-axis]and if I
add [

√
∆/2a] I get the second root [x2= −b/2a +

√
∆/2a], if I go backwards [to

the left of the point (−b/2a, 0) on the x-axis], if I subtract this distance [
√

∆/2a],
then I will get the first root [x1= −b/2a−

√
∆/2a] .

Esra’s stating that adding
√

∆/2a to x1= −b/2a −
√

∆/2a would give her the

point (−b/2a,0) and adding
√

∆/2a to the point (−b/2a,0) would give her x2= −b/2a+
√

∆/2a, indicated that for Esra
√

∆/2a was a number representing the distance from

the x-coordinate of the vertex such that it was added to and subtracted from another

number, i.e. −b/2a, on the real number line. Esra’s relating the algebraic expressions of

the roots and their representations on the parabola showed that she was simultaneously

able to reason both algebraically and geometrically.

As the data showed, Esra did not mention the fact that −b/2a referred to the

algebraic form of the line of symmetry. Then the teacher researcher asked her the

meaning of the vertex so that she might have related it to the line of symmetry from

which she could have also justified why −b/2a was the x-coordinate of the vertex.

Esra pointed out and stated that the vertex was the lowest point on the graph of any

quadratic function, parabola. At that point, her mention of vertex as only a quality of

any parabola let us conjecture that Esra might not have known the definition of the

vertex in terms of the line of symmetry and the parabola. That is, she had limited

knowledge about it. Thus, we used the folding activity in order to trigger on her

part the definition of the vertex of a parabola as the intersection point of the line of

symmetry of the parabola and the parabola itself. This way, she would be able to

explain why −b/2a has to represent the x-coordinate of the vertex.
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In the folding activity, she was given a parchment paper on which a parabola

was drawn and asked to fold the paper in a way that divides the parabola into two

congruent pieces and she pointed out the vertex as the point where she needed to fold:

E: I have to fold it from the the vertex.

Figure 6.15. Esra folds the parchment

......
E: It seems like that it should be symmetric but when it is like this [a wider

parabola], is it symmetric again? It has become symmetric from the the vertex,
and we have divided it into two from there...

R: So when you consider the first parabola, if you fold it from any other point,
could you divide it into two congruent parts again?

E: I don’t think so, it would not be symmetric.
R: Why?
E: Because, in order to be symmetric, it should be folded only from one spot,

at least for this figure from one spot...
R: What happens when you fold?
E: Same and congruent parts.
R: What are the congruent parts?
E: Congruent parts of parabola...
R: Which parts do you mean as the congruent parts of parabola?
E: This [pointing left leg of the parabola she folded]. That [pointing right leg

of the parabola she folded].
R: OK. What is symmetric?
E: This [pointing left leg of the parabola] and this [pointing right leg of the

parabola]
R: And, when you take a point in here [on the parabola drawn on the parch-

ment], can you tell us this point’s symmetry? Where is it?
E: The place in equal distance [dragging her pencil to the right leg of the

parabola perpendicular to the line of symmetry]

Figure 6.16. Esra finds the symmetry of any given point on the parabola

R: Can you show that equal distance?
E: These two [Figure 6.21] are equal.
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Figure 6.17. Esra’s pointing to the equal distances from the points on the parabola to
the line of symmetry

As the excerpt showed, Esra thought of the vertex as the mid-point of the

parabola. This was evident in her folding the paper right at the vertex into two equal

parts. However her statement “It seems like that it should be symmetric but when it is

like this [a wider parabola], is it symmetric again? It has become symmetric from the

the vertex, and we have divided it into two from there...” showed that Esra was not

sure whether the symmetry would hold for other parabolas once folded at the vertex.

This suggested that she had not thought of the relationship between the vertex and

the line of symmetry. Yet, physically engaging in the folding activity resulted in her

matching all the points on one part of the curve on the left side with all the points

on the other part of the curve on the right side. Thus, folding the parabola into two

congruent parts triggered the idea of symmetry on her part. That is, for her congruent

parts were the same as symmetric parts which were the legs of the parabola with all

the points matched with each other. In addition, once asked to show the symmetry of

a point on one of the legs of the parabola on the other part, she mentioned that those

points has to be equidistant from each other. Thus, being symmetric meant for her to

be equidistant from each other about the line at which she folded the paper. Also, her

statement that she has to fold it at the vertex, only at one point, because otherwise

the symmetry does not hold, shows that she knew the uniqueness of the point at which

the symmetry holds.

However, once Esra was asked to explain what the line where she folded the paper

referred to algebraically, she could not express that the algebraic form of the line of

symmetry was x=−b/2a.
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To trigger on her part how to represent the line of symmetry algebraically, she

was asked to place the parabola on a coordinate system. She was able to point out

the roots on this coordinate system as the points where the parabola intersected the

real number line. Esra, then, drew the line of symmetry on the same plane and stated

that all the points on the parabola were symmetric to each other about that line. She

also stated that like all the other points, the roots are also equidistant from that line

where she folded the paper into two congruent parts.When asked if she knew the name

of such a line, she stated that she did not know it. Then the teacher-researcher told

her to call such line as the line of symmetry from now on. Then, to further validate

her realization of the uniqueness of the line of symmetry and the point (the vertex) at

which the parabola was folded into two congruent parts, she was asked to reason about

how many line of symmetry a parabola might have:

E: In equal distance. Maybe if you fold it from here [Figure 6.18],we can find
two symmetric points, but the symmetry axis should be for all points...

Figure 6.18. Esra folds the paper at a point different than the vertex

R: What happens to all points [on the parabola] when you fold it according
to symmetry?

E: They overlap, but in here [the case of folding at a point other than the the
vertex in Figure 6.18] only if we fold like this, maybe only two points can be in
equal distance but the remaining points are not in equal distance to each other.

R: What is the reason? When you folded from here [the vertex] what did you
say about all the points?

E: They overlap. In other one, [the case of folding at a point other than the
the vertex] only two points overlap the others don’t, they do not overlap...

R: Considering all of these, what did you say when you thought on the roots?
E: x1 and x2 [the roots] are symmetric to one another according to symmetric

axis..

It is interesting that she tried to fold the parabola into two equal parts using

another line through another point on the parabola, but she realized that once she did

that not all the points on the two legs of the parabola would be coinciding with each
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other. She also reasoned that all the points should be symmetric about the line of

symmetry. This implied that there should be only one line of symmetry of a parabola.

It is also important to state that Esra’s attempt if there is another line of symmetry

suggested that she might not have related the line of symmetry and the vertex. This

was also evident in her not being able to express the line of symmetry algebraically as

x=−b/2a.

Then the teacher-researcher took Esra’s attention to the roots:

R: Considering all of these, what did you say when you thought on the roots?
E: x1 and x2 [the roots] are symmetric to one another according to symmetry

axis..

Esra was able to state that the roots were symmetric about this line of symmetry.

This was because she already knew that for each point on the parabola she could find

a point that was in equal length to the line of symmetry. That is, all points on the

parabola were symmetric to each other about the line of symmetry including the roots

of the quadratic equation. Then, as shown below in the excerpt, once she was asked

to think about the line of symmetry in terms of the roots, she stated the following:

E: This point (−b/2a,0) was in the equal distance to x1 and x2, the roots
of equation; so the symmetry axis was the midpoint for x1 and x2 too. So this
distance [distance of x1 to (−b/2a,0)] is equal to this distance [distance to x2 to
(−b/2a,0)] and symmetry axis goes through the midpoints of all points including
the roots, it passes from here [(−b/2a,0)], and that is why I say x=−b/2a.

As the excerpt shows that she called on her knowledge of the fact that (−b/2a,0)

was the midpoint of the two roots and therefore it was equidistant from both roots.

Then, also reasoning that the line of symmetry has to be in the middle of all the points

on the parabola she was able to reason that the algebraic form of the line of symmetry

had to be x=−b/2a.
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At that point, the teacher-researcher asked Esra to define the vertex the discussion

followed:

E: The symmetry axis is the line going through the vertex. And its abscissa
is −b/2a and the ordinate is 0. So the symmetry axis goes through these points.
And the vertex is... [pausing several seconds]

R: Could you draw the symmetry axis?
E: The point at which the parabola intersects. The point at which the

parabola intersects its symmetry axis gave us the vertex [seems puzzled]

Interestingly although Esra knew that the symmetry axis went through the point

(−b/2a,0) and the vertex simultaneously, she was not able to define vertex. This

suggested that her focus was on the line and the vertex itself. Physically drawing the

line of symmetry allowed her to mentally match the the vertex both as a point on the

parabola and a point on the line of symmetry intersecting the parabola. That was

why she was able to state that vertex is the point at which the parabola intersects its’

symmetry axis. At that point she also stated that “..there was only one vertex since

there was only one symmetry line of a parabola which goes through the vertex.”

So far the data showed the following: First, she called on her knowledge that

−b/2a algebraically represented the midpoint of the roots and also that such point was

equidistant from the roots. Then, physically folding the parabola into two congruent

parts but at the same time engaging mentally in the matching all the points on the

two legs of the parabola resulted in that all points were equidistant from each other,

i.e. symmetric to each other. This allowed her to realize that folding the parabola

physically in the middle and also mentally matching all the points on the two legs

created a line from which all the points including the roots were equidistant. This

then allowed her to deduce that such line of symmetry has to pass through the point

(−b/2a,0) and its algebraic expression had to be equal to x=−b/2a. Not only this but

also she was able to realize that the line of symmetry goes through the vertex. Then

her matching the vertex both as a point on the parabola and as a point on the line of

symmetry led her to come up with the idea that “...the point at which the parabola

intersects its symmetry axis gave us the vertex.”
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6.2.2. Esra’s Development of the Definition of Complex Numbers

In the first teaching session, to discuss the changing values of the distance between

the roots and the x-coordinate of the symmetry, i.e. the dynamic nature of the distance

as an increasing and decreasing quantity, we asked how many parabolas having the same

x-coordinate of the vertex one could draw. She stated that one could draw infinitely

many parabolas having the same x-coordinate of its vertex as in Figure 6.19 she drew.

Figure 6.19. Esra draws quadratic functions having the same x-coordinate of the

vertex

We then asked the question “What were changing and what were not changing in

the parabolas she drew given the algebraic form, ax2 + bx + c?” She was able to state

that the values of a, b, c and even x and y were all changing in her examples drawn

above. She also stated that since those values were changing the root’s distances to

the x-coordinate of the vertex was changing; but, the ratio of the value of ‘-b’ to the

value of ‘2a’ did not change.

This was important because we conjectured that once Esra had imagined such

variance and invariance simultaneously, she might have developed the idea that at some

point, when (∆ = 0), all of the real numbers as the roots of quadratic function would

be covered. On the other hand, the quadratic function family’s existence would yield

to the necessity for new roots that are not real numbers with the invariant quality

(i.e. the symmetry of the roots). This then might have yielded her to develop the idea

that once there is a complex root of the form x + iy then there has to exist another
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root of the form x − iy. Having such hypotheses and given that she reasoned on the

changing and the invariant quantities such as the roots’ distances to the x-coordinate

of the vertex and −b/2a, she was asked to give some examples of quadratic functions

algebraically whose parabolas had the same x-coordinate of the vertex. We asked this

question to further validate whether she was able to provide concrete examples for her

general drawing above. She stated “I am going to write the functions with the same

−b/2a” and wrote the quadratic functions such as y= 2x2 − 8x + 6, y= 4x2 − 16x + 7,

and y= 6x2 − 24x + 1.

Then we asked to explain the similarities and differences among the three function

examples she gave, the dialogue followed:

E: [She writes y = 2x2−8x+6, calculates ∆ by writing 64-48=16, then writes
y = 4x2 − 16x + 7, and y = 6x2 − 24x + 1]

R: Could you explain what you’ve done while writing?
E: I multiplied a by two to keep the rate b/2a same and similarly I multiplied

b by two [pointing to y = 4x2 − 16x + 7]. Here [pointing to y = 6x2 − 24x + 1]
I multiplied a by 3 and b by 3 so that the rate −b/2a stayed unchanged, so that
it didn’t change..

R: You gave three examples, what are changing in these examples?
E: a, b, c, x, y, they all are changing, the abscissa of the vertex isn’t changing.
R: When the abscissa of the vertex didn’t change, if you think of other func-

tions and the roots’ states, if you think of the distance of the roots and the
abscissa of the vertex, how does these distances changing or unchanging? When
you think of the distance of the roots and the abscissa of the vertex are they[the
distance of the roots and the abscissa of the vertex] changing or unchanging?

E: They[the distance of the roots and the abscissa of the vertex] are changing
because c changed; so the roots changed. The roots will be different so

√
∆/2a

will be changed.

In the excerpt above, her statement that all the values a,b, c were changing even

though the x-coordinate of the vertex was the same, i.e. the value of −b/2a, showed

that she was able to keep the x-coordinate of the vertex the same while changing the

roots. Her reasoning that the changing values of ‘c’ would result in the changing values

of the roots which in turn would bring about the changing values of
√

∆/2a suggested

that she was able to think of
√

∆/2a as a varying quantity, i.e. distance. That is, she

acknowledged that the decrease or increase in this distance was related to the changing
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coefficient values of quadratic functions, consequently, she was able to imagine the

value of
√

∆/2a as a changing quantity.

Since her focus was on the algebraic notation, once asked again how geometrically

this was possible, she stated the following:

E: Because if I change a, b, c; I can write infinitely many functions with only
b/2a as fixed...

R: So when you consider geometrically, we said −b/2a to be the same, right?
E: Yes...
R: You say that you can draw infinitely many parabolas whose abscissa of

the vertex is the same, how can you explain the geometrical reason of this?
E: So, for different parabolas, I can find infinitely many x1 and x2 in equal

distance [to the point (−b/2a, 0)], that is why [pointing to Figure 6.19].

She knew that changing the values of a, b, c and keeping the value of −b/2a

the same would result in infinitely many quadratic functions. For her, infinitely many

functions whose graphs on the R-plane would constitute infinitely many roots in equal

distances with respect to the x-coordinate of the vertex. Her reasoning suggested that,

she regarded
√

∆/2a as a quantity that was changing and movable, i.e. dynamic and

operational and simultaneously she was able to think of the two roots’ having equal

distances to the x-coordinate of the vertex as an invariant quantity.

She was then asked again to explain her reasoning geometrically on the real plane,

Esra stated “Haa all real numbers [pointing to the x axis which is the real number line],

the real numbers here, these real numbers on this x axis”. Data suggested that once

asked to think about the placement of the roots on the x-axis, she thought that all the

real numbers would refer to the roots. Then, she argued the following:

R: Fine, could you explain why they [parabolas] give [pointing to all real
numbers on the x axis]?

E: Wait a minute, I can draw [parabolas] with the same abscissa of the vertex
at all points [with her two fingers pointing to any point right and left to the
x-coordinate of the vertex on the x axis]; so it is true for x’s, all real numbers,
for real numbers on this x axis it is true; so I can draw [parabola].
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Esra’s thinking of the x-coordinate of the vertex as invariant and thinking of all

real numbers right and left to it as potential roots implied again that Esra was able

think of those roots not only as points on the real umber line but also as distances to

the x-coordinate of the vertex. This again suggested that she had the understanding

that any quadratic equation having real roots was intersecting the real number line or

tangent to it and such existence of roots were dynamic in nature. At this point the

first session ended.

In the second teaching session, she was asked to reason again on the examples

she provided during the earlier session. This was done in order for Esra to call on her

reasoning from previous session and to further continue to monitor her reasoning both

algebraically and geometrically. Esra provided the same reasoning such that although

she changed the values of ’a’ and ’b’ she kept −b/2a the same by taking the same

multiples of the values of ’a’ and ’b’. She also chose the values of ’c’ arbitrarily. Once

asked to explain geometrically, she reasoned that the distances to the roots from the

x-coordinate of the vertex was changing, i.e. it was movable on the real number line

and therefore dynamic in nature.

To further build on her inference, at this point in the teaching session, we provided

her with some specific examples of quadratic functions in Figure 6.20 on a mathematics

software, Desmos. We chose such examples with the value of ’a’ being equal to 1 so

that she could focus on the changing values of the quadratic equations’ roots as the

parabolas were changing. She acknowledged algebraically and geometrically that for

the functions x2 + 2x − 8, x2 + 2x − 4, x2 + 2x − 1, x2 + 2x, and x2 + 2x + 1, the

coefficients a and b did not change, so the x-coordinate of the vertex was the same for

all those quadratic functions.

In addition based on the changing values of c she was able to decide which al-

gebraic quadratic function corresponded to which parabola on the coordinate system

drawn on Desmos. Similarly, she argued that the vertex for those functions were chang-

ing because y-coordinate of the vertex was changing for each quadratic function. She
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Figure 6.20. Some specific examples of quadratic functions given to Esra on a

dynamic mathematics software

also added that “
√

∆/2a’s, the distances, are changing..” which implied that those

distances were not fixed for her.

After presenting those specific quadratic functions on Desmos, she was presented

with its printed version to point to the roots not only as quantities having distances

but also as points on the real number line. Also, she would be able to focus on the

changing values of the roots so that she could realize how the roots changed from one

quadratic function to the other geometrically.

Figure 6.21. Esra marks the vertices for each given quadratic function
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As in Figure 6.21, geometrically she showed the vertex for each function on the

printed paper and argued that “As c changes, the roots are changing.” At that point,

she was asked to track the roots of those quadratic equations:

E:
√

∆/2a changes, the abscissa of the vertex was −b/2a. For this function
[x2+2x] this is x1 root, here [on the point (-2,0) in Figure 6.23. But this function
[orange parabola of the function x2+2x−1] has this distance [the distance between
the roots and the x-coordinate of the vertex].

Figure 6.22. Esra points to the distance between the roots and the x-coordinate of
the vertex

For Esra, since the values of c changed, the distances
√

∆/2a’s were changing.

Esra also argued that the relationship between the roots for each quadratic function

were not changing such that their midpoints were the same, but the roots’ distances

from each other were increasing. She added:

E: According to symmetry axis, they [x1, x2, the roots] have the same distance,
ee they are symmetric. Exactly.

R: Symmetric, OK, fine. Then when you consider according to the abscissa
of the vertex..

E: Then [x1, x2, the roots] are symmetric to each other. Exactly.

Based on the excerpt, she was able to further reason that the roots have the

same distances with respect to the x-coordinate of the vertex such that their being

equal brought about the two roots’ being reflections of each other. Also her statement

“All the roots[the two roots of any quadratic equation] are symmetric to each other

about the abscissa of the vertex..” suggested that she not only knew that the values

of
√

∆/2a as a quantity, representing the distance of the roots to the x-coordinate of

the vertex was changing but also the symmetry of all the roots about the x-coordinate

of the vertex was invariant.
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She then was presented with a coordinate system without any function graph.

The reason was to let her refocus on the roots not only as numbers but also as points

on a number line. This was important because complex numbers are also points in a

plane and as the research has suggested one has to think of them not only as numbers

but also as points in a plane (Fauconnier and Turner, 2004).Regarding the quadratic

function examples we gave, once asked she pointed out the real number line to put the

roots of those equations. As shown in the excerpt, Esra placed the x-coordinate of the

vertex for the given examples of quadratic functions and the roots of their equations

on the real number line.

R: Can you show the abscissa of the vertex?
E: [writing the point (-1,0) in Figure 6.23]
R: OK, fine.
E: x1, -4 to 0 [(-4,0) in Figure 6.23].
This is x2, 2 to 0 [(2,0) in Figure 6.23].

For the other equations, she did not use the exact values of the roots, but she

marked the roots on the real number line for each quadratic equation as (x1,0), (x2,0),

(x1’,0), (x2’,0), (x1”,0), (x2”,0), (x1,2”’,0), respectively in Figure 6.23.

Figure 6.23. Esra marks the roots on the real number line for each given quadratic

equation

She further explained that (x1,2”’,0) stood for the same two roots for the quadratic

equation x2 + 2x + 1, and the general algebraic form of the roots were the same for

all quadratic equations, i.e. x1= −b/2a−
√

∆/2a and x2= −b/2a +
√

∆/2a. She also

argued that as the roots got closer to the x-coordinate of the vertex, the roots’ distances

to the x-coordinate of the vertex,
√

∆/2a, were decreasing. Once asked this resulted in

her further investigation of the distances and the cases for the discriminant. This was

important because we hypothesized that she would be able to relate three algebraic

forms of ∆ with the geometrical representation.
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R: ..in which states of delta do these distances [
√

∆/2a] exist?
E: Delta is here [on the point (-1,0) for the quadratic function x2 + 2x + 1

with its roots (x1,2”’,0)]

Figure 6.24. Esra points to (-1,0) corresponding the roots of the quadratic function
x2 + 2x + 1 she named (x1,2”’,0)

none, it[the distance
√

∆/2a] is 0.
√

∆/2a none.
R: What does

√
∆/2a non-existence mean, then?

E: It means the overlap of this point with the roots and with the abscissa of
the vertex. Eee delta is 0.

R: What was it in the others, here [Figure 6.23] when there were two roots
in here [on the x-axis]?

E: When
√

∆/2a exists...Then the case in which it [delta] is bigger than 0.

It is important to state that earlier during the pre-interview once asked what

∆ = 0 meant geometrically, Esra had not been able to reason on that. She even had

stated that “. . . but I did not get its shape correctly in my head...”. However, as the

data showed , at this point, she could relate geometric aspects to the algebraic aspects

for the distance between the roots and the x-coordinate of the vertex. That is, for her

the fact that the distances,
√

∆/2a, of the roots from the x-coordinate of the vertex

existed meant that ∆ was bigger than zero. Then, it decreased further and got to a

point until there was no distance between the roots and the x-coordinate of the vertex

This algebraically meant that
√

∆/2a = 0.

At that point the discussion became more interesting, Esra stated:

E: I can draw infinitely many parabolas having the same abscissa of the vertex,
and because of that all the roots can be the numbers on the real number. I can
generate parabola from all real numbers..

R: What do you mean by all real numbers? How many points do I need for
a parabola?

E: Two points, and these two points have to be symmetric about the abscissa
of the vertex...

R: Ok, how did you find the abscissa of that vertex if I gave you these two
points [showing two random points in x axis]?

E: I can add and divide by two.
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R: Yes, you find the midpoint?
E: Yes.
R: OK. Then
E: I can draw infinitely many parabolas.

Data indicated that Esra reasoned that once she had plotted the x-coordinate of

vertex on the real number line, she would have thought any real number as one of the

roots of any quadratic equation. This was because she could think of the roots being

symmetric to each other. As the excerpt also showed Esra reversed her thinking in a

way that she started from real numbers and stated that given two real numbers she

could find the midpoint that would have indicated the x-coordinate of the vertex from

which she would have drawn infinitely many parabolas.

Therefore, data suggested that Esra’s thinking of the symmetry of the roots about

the x-coordinate of the vertex allowed her to reason that, given that ∆ = 0 or ∆ > 0,

not only the roots of any quadratic function could be placed as points on the real

number line but also all the elements of the real number line could be potentially the

roots of any quadratic equation.

Once again the relationship between the roots and the value of the discriminant

was asked she answered:

E: If there is no distance between the roots and the abscissa of the vertex, if
they overlap then it is ∆ = 0

R: Yes...
E: If there is distance, then it is ∆ > 0 and that is the reason of distance

between them [the roots and the abscissa of the vertex]...

This suggested again that Esra was able to relate geometric aspects to the alge-

braic aspects for the distance between the roots and the x-coordinate of the vertex.

That is, she knew that once there is no distance between the roots and the x-coordinate

of the vertex, i.e.
√

∆/2a = 0, this meant that value of ∆ is equal to 0. Also, once

there is distance
√

∆/2a acknowledging that changing the values of ‘c’ resulted in the

fact that the distances
√

∆/2a is bigger than zero which meant that ∆ > 0.
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At this point, to further inquire the case that the value of discriminant was smaller

than zero, the teacher-researcher continued the dialog in the following way:

R: Now we have made [the distance between the roots and the abscissa of the
vertex] 0. Ok, at this point, when you consider the real numbers, what is the
status of real numbers?

E: So all of them are finished now, from here [negative(-) and positive(+)
infinity] if we come like this [dragging the pen to the abscissa of the vertex] now
all the real numbers have finished here [on the abscissa of the the vertex in Figure
6.25].

Figure 6.25. Esra points to the x-coordinate of the vertex on the real number line

Esra’s moving the pencil from out in, in her own words, from positive and negative

infinity to the x-coordinate of the vertex showed that she thought of the decrease of

the distance from the roots to the x-coordinate of the vertex. This implied that for

her once the distances got squeezed on the real number line, it got to a point that no

more squeezing was possible where the value of the discriminant was zero.

At that point, she was asked whether she could write other quadratic functions

having the same x-coordinate of its vertex. Esra was able to come up with examples

of quadratic functions in a way that the x-coordinate of the vertex algebraically stayed

invariant but the values of the discriminant continued decreasing as she calculated the

values of b2 − 4ac for the functions such as x2 + 2x + 1 and x2 + 2x + 5. Graphically

it meant that the parabolas of the quadratic functions which had their discriminant

smaller than zero did not intersect the real number line in Figure 6.3.

She stated “I can write infinitely many quadratic function examples like this

one[referring to x2 + 2x + 5]. . . but we cannot place the roots of them on the real

number line... Because it already finished here[on the abscissa of the vertex in Figure

6.25] and ee delta is negative, their roots cannot be real numbers anymore.”
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Data suggested that she knew that once there was no real distance between the

roots and the x-coordinate of the vertex, she could not place the roots’ distances on

the real number line because the roots were not real numbers, i.e. unreal numbers. At

that point, the discussion followed:

R: From now on. OK. What happens to
√

∆/2a’s? −b/2a’s?
E: ..continue to live.
R: OK, they exist.
E: Yes. This also [

√
∆/2a] exists but this number [

√
∆] is not a real number;

so this [
√

∆/2a] is not a real number as well..
R: OK, this [

√
∆/2a] exists. Is it on the real number line?

E: It is not on the real number line.
R: Why?
E: Because inside of this [

√
∆] is negative...

√
∆/2a distance is negative.

R: You said these [
√

∆/2a] still exist?
E: Yes.
R: Do we say these [

√
∆/2a] are on the real number line?

E: No.
R: Why do you think they are not on the real number line?
E: Because distance, this [

√
∆/2a] is a distance in here [on the real number

line in Figure 6.25], distance is positive; so here [on the point (−b/2a, 0) in Figure
6.25 corresponding the abscissa of the vertex] it [the distance] is 0. So it becomes
one real root with multiplicity two, they overlap, the distance is 0.

Esra knew that that −b/2a was kept the same and
√

∆/2a seemed to represent

again the distance but it was not real. Esra’s thinking that
√

∆/2a existed even when

she was out of real numbers suggested that she thought of
√

∆/2a, as a quantity,

referring to a distance. Yet, for her distances had to be positive and also that once

the distance was zero then this would mean that all the numbers on the real number

would be covered. Therefore, she argued in her own words that
√

∆/2as “. . . continue

to live” but such existence was not on the real number line. She even stated “This

number [
√

∆] is not a real number; so
√

∆/2a is not a real number as well..It [
√

∆/2a]

is not on the real number line..” and her justification was again that the real number

line had been covered, she could not put that part on the real number line anymore.
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Acknowledging that Esra was not able to think geometrically anymore since for

her
√

∆/2a reached a point where its values started from being positive and ended

at being zero covering all the real numbers on the real number line, we hypothesized

that if Esra was able to think about
√

∆/2a in terms of a positive factor algebraically,

this could have trigger the geometrical meaning of
√

∆/2a in a different plane, so we

continued in the following way.

To build on Esra’s argument about a distance being positive, the teacher-researcher

then used an example to ask how to write this unreal number,
√

∆/2a, where ∆ =

b2 − 4ac was smaller than zero, in a way that it had a positive factor:

R: Then if I use such an analogy; -8 for instance, how can you state it with
8?

E: It will be absolute value.

Figure 6.26. Esra mentions the absolute value of -8

R: OK, how else can you define -8 in terms of 8?
E: This is how I will

Figure 6.27. Esra mentions -8 multiplied by -1

R: OK, any other way?
E: 8 times -1.

Figure 6.28. Esra mentions 8 multiplied by -1

R: If you want to state this same way [b2 − 4ac] b2 − 4ac.
E: I got it, if b2 − 4ac is negative; will I do with minus of this and times

-1[Figure 6.29]?
R: Then could you place this expression into this [the general algebraic ex-

pression of the root x1= −b/2a +
√

∆/2a]?
E: Then [Figure 6.30]
I can write it separately[Figure 6.31]
R: You said you wrote it [

√
−1.
√

4ac− b2/2a] separately.
E: Yes.
R: OK, can you take -1 out of the square root in real numbers?
E: Normally I cannot take it out.
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Figure 6.29. Esra writes b2 − 4ac as (4ac− b2).(−1)

Figure 6.30. Esra rewrites the first root’s algebraic expression

R: OK, are we in real numbers now?
E: We aren’t.
R: OK, [you] assumed that you write it separately.
E: Yes.
R: You mean it is in this form [algebraic expression in Figure 6.31]?
E: Yes.
R: OK, where is the second root then?
E: Similarly [Figure 6.32].
R: OK, when you wrote them in this way, what did you say 4ac− b2 was?
E: Delta with a minus..
R: How do you express it then?
E: Negative delta, and x2 is [writing x1= −b/2a +

√
−1.
√
−∆/2a and x2=

−b/2a−
√
−1.
√
−∆/2a].

R: OK, does this abscissa of the vertex −b/2a belong to only one parabola?
E: No, it can be the abscissa of the vertex of many functions..
R: OK if you think

√
−∆/2a, what do you say?

E: It refers to the distance. It can change.

The excerpt showed that although Esra was not able to think to write ∆ in

terms of a positive number at first, once she was asked to think about writing -8 in

terms of a positive number this allowed her to represent ∆ in terms of −∆, (∆ =

(−∆).(−1)). Also she knew that she could not write
√

(−1).(4ac− b2)/2a as equal to
√
−1.
√

4ac− b2/2a in real numbers. Yet, she wanted to assume it like that. This was

because she already knew that she had run out of all the real numbers and therefore

the numbers were not on the real number line anymore. So far the data is important

for two reasons: First, Esra’s calling on her knowledge of representing -8 in terms

Figure 6.31. Esra rewrites the first root’s algebraic expression separately
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Figure 6.32. Esra writes the second root’s algebraic expression separately

of 8 let her assimilate this situation into the new one (i.e. writing ∆ in terms of

−∆). Second, her calling on her knowledge of
√
−1 as being equal to ’i’ let her write√

(−1).(4ac− b2)/2a =
√
−1.
√

4ac− b2/2a. Therefore, once ∆ < 0, she could write

as
√

∆/2a =
√

(−1).(4ac− b2)/2a =
√
−1.
√

4ac− b2/2a because algebraic expression
√

4ac− b2/2a was a positive real number, and so the roots’ algebraic expressions could

be written as x1,2= −b/2a±
√
−∆/2a.

√
−1. She then explained that −b/2a might be

the x-coordinate of the vertex of many quadratic functions, and
√
−∆/2as stood for

the distances which might be different for different quadratic functions.

At this point, it is important to state that from our point of view, rather than
√
−∆/2a,

√
−∆/2a.

√
−1 represents the distance.

√
−∆/2a as being a positive num-

ber represents the value of the measure of such distance. This issue will be further

elaborated later.

At that point, once asked if Esra could rewrite the roots’ algebraic expression

with new variables, she stated:

R: If you are asked to write these [the algebraic expressions of the roots] with
general expressions..

E: OK.
R: How can you write x1 and x2?
E: For example, this[−b/2a]. Something else..
R: Yes, variable.
E: OK, let’s say [−b/2a is] t.
R: OK, t.
E: Let’s say this [

√
−∆/2a] is m.[Figure 6.33]

She explained what t and m referred to “Let’s say there are infinitely many

[quadratic] functions, and the x-coordinate of the vertex of any quadratic function is

t...and m is the distance from one of the roots to the x-coordinate of its vertex.” What

is interesting is that Esra was able to make sense of the values of ‘t’ and ‘m’ not only
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Figure 6.33. Esra rewrites the roots with the variables t and m as she choses

algebraically but also geometrically. She knew that ‘t’ stood for −b/2a and ’m’ stood

for
√
−∆/2a. She also was able to relate those values to the quadratic functions such

that those values referred to the x-coordinate of the vertex of any quadratic function

and the distances of the roots to the x-coordinate of its vertex. This made sense to her

because as she had mentioned earlier, she thought that distances have to be either zero

or positive. Though, it is important to state again that Esra’s geometrically making

sense of ‘m’ was limited because not the value ‘m’ on its own but ‘m.
√
−1’ referred

to the distance of the roots to the x-coordinate of the vertex. Though at this point

in the teaching session, we did not attempt at investigating this idea further. In fact,

her ideas on the fact that “m is the distance from one of the roots of any quadratic

function with real coefficients to the abscissa of its vertex” was re-examined after her

incorporation of the vector aspect of complex numbers, later on.

When she was asked what kind of numbers t and m were, she stated “..ee they

are real..” and her explanation was:

E: Because we have taken a and b as real numbers, −b/2a becomes real
[
√
−∆], and here this number inside [−∆] is a real number and it becomes real

number outside the root. And when we divide it by 2a, which is real, it[m] is real
number again.

Since Esra knew what ‘t’ and ‘m’ referred to algebraically, she was able to explain

why ‘t’ and ‘m’ had to be real numbers: That is, she was able to reason that since ’t’

referred to −b/2a for any quadratic equation with real coefficient ’a,b, and c’, it had

to be a real number. By the same token, since the value of −∆ was positive and so
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‘m’ had to be a real number.

At this point, Esra was asked to plot the roots, i.e. x1= t + m.
√
−1 and x2=

t−m.
√
−1, on the real number line. She argued “I cannot show them[the roots] here

[on the real axis] because I’ve already finished[all the points on the real axis].” She then

was asked how to represent them geometrically. After she drew a real number line, she

again argued she would not use the points on that real number line to represent the

unreal roots. The dialogue got more interesting:

E: [draws any plane whose horizontal axis is the x axis on which there are
real numbers] As I cannot use the x’s in here [on the horizontal real axis]and the
abscissa of the vertex is here [Figure 6.34], on the real x axis. I cannot show the
roots here [on the real axis]... Ha, real numbers finished. Right, where are the
roots? Umm.

Figure 6.34. Esra draws a quadratic function whose roots are not real

R: What did those [’t’ and ’m’ in the algebraic expressions]e refer to?
E: t=−b/2a, the abscissa of the vertex.
R: OK where is that?
E: On the x axis, the real axis.
R: Where is the other part [of the root]?
E: m or m.

√
−1? Because if it is m, here [the distance of x1 to −b/2a on the

real x-axis in figure 6.35] is it, right? Because as here [-∆] is positive, divide it
by 2a, so distance is this, right here. Then, here [the distance from the two roots
to the abscissa of the the vertex in Figure 6.35] is m.

Figure 6.35. Esra first represents the distance of the complex roots to the
x-coordinate of the vertex on the real number line
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It is interesting that Esra first wanted to plot the unreal roots on the real axis

although she had stated that she would not know where to place those roots since

she was out of all the real numbers as the real roots. Though her thinking of the

value of ’m’ as being positive and that it represented the distance of the roots ot the

x-coordinate of the vertex made sense to her to plot those unreal roots on the real axis.

Only after when she reasoned about the distance on the real number line, she realized

that it was the case of quadratic equations having real roots. However, as again she

knew, the real roots on the real number line were covered once she was done with the

real roots. She was working on the idea of where to plot those unreal roots. Then she

again placed (−b/2a,0) on the real number line as the x-coordinate of the vertex as in

Figure 6.36 and continued reasoning.

E: Real numbers are only in here [on the real number line in Figure 6.36]. x1

and x2 [unreal roots] might be here[ above and below the real number line].

Figure 6.36. Esra draws the real number line and places the vertex

R: Where can x1 and x2 be?
E: So if x1 is our bigger root, here x2 is something like in here [Figure 6.37].

Could this distance [between the abscissa of the vertex and [x1] be m.
√
−1 ? [The

roots are] symmetric about the symmetry axis which passes through the abscissa
of the vertex, they were symmetric.

Figure 6.37. Esra draws two unreal roots above the real number line

R: And [the roots are] symmetric about the point (−b/2a,0)?
E: Yes. Because this [drawing a perpendicular line to the real line on the

point (-b/2a,0)] is the symmetry axis and they[the roots] are symmetric about it.
R: Didn’t you say they are symmetric about that [(−b/2a,0)] too?
E: Yes, correct, is it like this then [Figure 6.38]? Because in order for them[the

roots] to be symmetric, if x1 is here according to [(−b/2a,0)] then x2 will be here
[as shown in Figure 6.38].
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Figure 6.38. Esra draws one of the unreal roots above and the other below the real
number line

As shown in the excerpt, it is interesting that only after her plotting −b/2a on the

real ax;s c together with her knowledge that she finished the real numbers as the roots

caused her to think of using the plane above the real number line. Since she knew that

the two roots still had to be in the same distance to the x-coordinate of the vertex she

placed the roots as shown in the figure above. Also, it was interesting that only after

she started to think about the placement of the roots geometrically she asked herself

“..could this distance be m.
√
−1?” Still she changed her mind again. Although her

reasoning had flaws in itself, it indicated that for her the two roots were dynamic in

and the roots’ and the vertex’s existence and the roots’ being symmetric to each other

about the x-coordinate of the vertex stayed in variant. Then she stated:

E: t is real, but where is the starting point, if I take it like this [draws a
perpendicular line to the real axis on the starting point she chose]. t is real
[drawing the distance of the point (−b/2a,0) to the point (0,0) a few times in
Figure 6.39] x1 is here [Figure 6.39]

R: OK.
E: Symmetry, this is t [drawing a big circle on the point (−b/2a,0) in Figure

6.39] So, therefore x2 is here [Figure 6.39]. I did not put the first root here[on
the real axis] because it [the root] was not real.

Figure 6.39. Esra places two unreal roots perpendicular to the real number line at the
x-coordinate of the vertex

R: Why?
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E: Because aa the abscissa of the vertex is here [on the point (−b/2a,0) in
Figure 6.39]

R: Hhmm.
E: I took here [Figure 6.40] as the point 0. These..[x1 and x2] would be in

equal distance to the abscissa; so I put x2 here [Figure 6.39].

Figure 6.40. Esra places the origin on as the point (0,0)

R: OK. Why did you put x1 and x2 like this? Could you repeat?
E: I took the abscissa of the vertex here. I didn’t put x1 here [on the real

axis in Figure 6.39] because it was not real. So I put it here [at a perpendicular
distance to the abscissa of the vertex]. If I did not place the first root here [on
a line perpendicular to the real axis at the point (−b/2a,0) in Figure 6.39], then
the abscissa of the vertex cannot be −b/2a here, it[the abscissa of the vertex]
would be something different. Then because the roots are symmetric about the
abscissa of the vertex I put the second root x2 like this[Figure 6.39].

R: Hhmm, OK. How can you write it [x1]?
E: Like this [x1= t + m.

√
−1]

R: If you write point representation..We’re talking about points now, right?
E: Yes, t is here [Figure 6.41], then for here[writing m.

√
−1]..

Figure 6.41. Esra places t and m.
√
−1 on the plane as pairs of numbers to represent

the complex root

Ahh m, m [changing her representation as in Figure 6.42]
R: Why?
E: Eee when we express point-wise [t] is real, this [second part of the ordered

pair] should be real. This[m in m.
√
−1] is real.

As the data indicated there was a change in her reasoning about the placement

of the unreal roots. Since Esra’s idea was to place the roots on the plane other than

the real number line, Esra needed an origin to identify the points on the plane as on
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Figure 6.42. Esra places t and m on the plane as pairs of numbers to represent the
complex root

a coordinate system. She then placed a perpendicular axis to the real axis creating

an origin to identify the points on the plane as pairs of numbers. After thinking a

reference point, the origin, she thought of the point(−b/2a,0) as a distance from (0,0).

This was evidenced in her over-crossing that distance with her pencil several times.

Her thinking of (−b/2a,0) as a distance on the real number line with respect to the

origin and of the roots’ symmetry and their distances to the x-coordinate of the vertex

being perpendicular distances allowed her to plot the first unreal root in the figure

above. Her thinking of perpendicular distances and the symmetry was evidenced in

her statement that “If I did not place the first root here[perpendicular to the real axis],

then the abscissa of the vertex cannot be −b/2a here, it[the abscissa of the vertex]

would be something different.” She then placed the second root below the real axis

with a perpendicular distance to the x-coordinate of the vertex since the roots would

be in equal distance to the x-coordinate of the vertex.

As shown, after she showed the first root as a point with the expression (t,m.
√
−1),

she suddenly changed her mind and wrote (t,m) in order to represent the first root on

the new coordinate plane she constructed. Once the researcher asked why she rep-

resented the roots as the ordered pair (t,m), she argued that while representing the

points as ordered pairs the pairs should be real numbers as t was a real number she

argued that m should be a real number too.
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It is important to restate at this point that Esra was aware of the fact multiplying

a positive real number by
√
−1 could have some meaning but she stated:

R: The distance from the roots to the x-coordinate of the vertex?
O: I think it’s m[

√
−∆/2a]. I’m thinking it is m, now, I don’t know what√

−1 does to it[m] when it multiplies.

Data from the third teaching session revealed how she developed a meaning of

the multiplication by
√
−1. At that point,the teacher-researcher asked Esta to validate

one more time the meaning of (t,m) for her:

R: OK you said (t,m) when you think point-wise, what does this point-wise
expression [(t,m)] refer to? What does this (t,m) represent?

E: x1.
R: What is x1?
E: x1 = t+m.

√
−1.

R: Hhmm. What was x1?
E: x1 ee the root of the function, of the equation..
R: What are x1 and x2?
E: The roots. They are the roots of the parabola or function, quadratic

function. Eee when they [the roots] are not real delta is smaller than 0. Eee
when they [the roots] are real delta is bigger than 0.

R: What do you call the algebraic expressions when delta is smaller than 0?
E: Hhmm.. Complex numbers.
R: Okay. Where do you get those complex numbers?
E: From real numbers. All real numbers, on the real x axis..
R: Okay. What were those all real numbers?
E: The roots of eee roots of quadratic equations ee with real coefficients..
R: OK, when you think in general how could you express complex numbers?
E: Ee I obtain them from the real roots of quadratic equations. If they are

eee...OK, correct, I obtain them from their real roots. OK, I obtain [complex
numbers] from unreal ones [the unreal roots] as well.

R: OK. Are these [the complex algebraic expressions of complex roots’] com-
plex numbers?

E: Yes they are complex numbers. The numbers obtained from the roots of all
quadratic equations are complex numbers. Exactly. They give complex numbers.

After geometrically representing the complex algebraic expression on a new plane,

in the dialogue, when Esra was asked what those algebraic expressions referred to,

she called on the mathematical object of thought quadratic equations and their roots

as quantities. That is, she knew that those algebraic expressions referred to both
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real and unreal roots of the quadratic equations She acknowledged them as quantities

whose distances to the origin and to the x-coordinate of the vertex could be measured.

Focusing further on the fact that the real numbers and the unreal ones were in fact the

roots of quadratic equations with real coefficients allowed her to deduce the idea that all

those roots constituted complex numbers. That is how she was able to define complex

numbers as “. . . The numbers obtained from the roots of all quadratic equations. . . ”

Once asked to also write down the definition of complex numbers again, she wrote

the following definition:

Figure 6.43. The definition of complex numbers in Esra’s words as “the numbers

obtained from the roots of any quadratic equation with real coefficients”

Then, she explained the relationship between the set of complex numbers and

the set of real numbers:

R: Alright. If I ask the relationship between complex numbers and real num-
bers?

E: Complex numbers obtained from real numbers...The relationship?
R: What kind of a relationship is there between complex and real numbers?
E: Complex numbers includes real numbers.
R: Why does it include?
E: Eee because in this plane [Figure 6.44] if all of them are complex numbers,

it also includes the x, the real one [the real x axis].
R: Why?
E: Because complex number is x + iy; the numbers in such a form, if y is

0, x.. y is zero, x is complex number, and x is a real number, so it [the set
of complex numbers] includes [ real numbers]... Eee [complex numbers are] the
numbers obtained from the roots of quadratic equations; so because it consists of
these [the roots], these roots can be real numbers as well or complex numbers as
well... Exactly. Complex numbers consists of the roots of quadratic equations,
so they include real numbers.
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Figure 6.44. Esra constructs a new plane with a real and a perpendicular imaginary
number line

Her statements indicated that her defining complex numbers through the roots of

quadratic equations provided her with the reasoning about the relationship between the

set of complex and real numbers in terms of the algebraic and geometric aspects. Since

she thought geometrically the new plane, i.e. complex plane, included the real number

line as the roots of quadratic equations and since the real numbers were algebraically

embedded in the set of complex numbers depending on the values of the imaginary

part of any complex number, i.e. y = 0 in her own words, she realized that complex

number had to include all real numbers.

At that point, after Esra defined the set of complex numbers in relation to the

quadratic equations she was asked to further explain the geometric and algebraic mean-

ings of the parts of complex algebraic expressions, i.e. complex numbers. She stated

again “t is the abscissa of the vertex[in t+m.
√
−1].. All, infinitely many [quadratic

functions]with the same abscissa of the vertex...All, they[quadratic functions] are in-

finitely many, let me say any, t is the abscissa of the vertex of any quadratic function,

exactly..” and “..m is the distance between the roots of the [quadratic] equation and

the abscissa of its vertex, that[distance] was m, yes.”

As the data indicated she stated that while t referred to the x-coordinate of the

vertex, m referred to the roots’ distances to it. We account for her meaning of the t and

m in the algebraic form of x = t+mi, together with what she had stated earlier “..can
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this[the distance] be m.
√
−1?” in the following way. When one consider the positive

real roots, the distance (as a physical length) from the roots to the x-coordinate of

the vertex and the magnitude(the numerical estimation) of that distance correspond

to the same numerical value which is
√

∆/2a. Having such thought Esra also tried to

make sense of that distance and its magnitude in the complex plane in the same way.

This is why she stated that she had to work with positive real numbers to refer to the

magnitude of that distance. However, in the complex plane the distance (the physical

length) from the roots to the x-coordinate of the vertex corresponds to
√
−∆/2a.

√
−1

while its magnitude corresponds to the numerical value of
√
−∆/2a which is a positive

real number. Therefore, at this point Esra was not able to distinguish the difference

between the distance(the physical length) and its magnitude. One might argue that

such distance does not exist in a physical sense. However, in the complex plane complex

numbers are represented no only as points but also as vectors. Thus, such distances

exist.

At that point, we did not ask her to think about the meaning of m and m.
√
−1

further. We continued with why the conjugate root exists once a complex root exists

for a quadratic equation and how she reasoned geometrically on the new complex

coordinate plane she constructed. She stated the following:

R: If there is one root in this form [complex root] what do we call the
other[root]?

E: The other [root] exists, we call it the conjugate.
R: OK, can you explain why there exists a conjugate root? What is the reason

in your opinion?
E: Because we obtained this [complex root] from a quadratic equation and

because any quadratic equation has two roots, there should be two roots we
obtained from there [quadratic equations].

R: OK. How do you explain this geometrically? How do you express it geo-
metrically with regard to here [the complex plane in Figure 6.42]? Why is there
a conjugate root as the second root?

E: If there is a the vertex of that parabola, and this, the abscissa of the vertex
is the midpoint of the two roots, so if there is x1 it should be x2. They[the roots]
are symmetric to each other about the abscissa of the vertex and this relation
[symmetry of the roots] does not change whether it [the root] is a real number or
not.

R: OK, do we know the reason that the roots are symmetric?
E: Symmetry axis overlapped with the vertex of parabola, x2 is symmetric to
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x1.

As the data have shown, in the pre-interview Esra did not know why there should

exist conjugate roots once there is a complex root. On the contrary, at this point in the

teaching session, the data indicated that Esra knew that there should exist two roots,

one of which was the conjugate of the other because algebraically she was working with

the functions to the second degree. This was geometrically because the x-coordinate of

the vertex was the midpoint of the roots and the roots were to be symmetric about the

x-coordinate of the vertex. She even knew that the roots had to be symmetric about

the x-coordinate of the vertex because the vertex was the intersection of the parabola

with its line of symmetry. Also, the symmetry of the roots was invariant whether the

roots were real or unreal.

She then was asked to represent the roots geometrically according to the three

cases of discriminants’ values, i.e. positive, negative, and zero, on the new plane she

had just constructed. She drew and wrote down the following in Figure 6.45.

Figure 6.45. Esra places the roots of any quadratic function with real coefficients as

pairs of real numbers on the complex plane

While drawing the figure above, on the newly constructed plane, she could identify

all the roots of any quadratic function. She explained that (−b/2a −
√

∆/2a,0) and

(−b/2a+
√

∆/2a,0) on the real number line corresponded to the case of discriminant’s

being positive, i.e. ∆ > 0; (−b/2a,0) corresponded to the case of discriminant’s being

zero, i.e. ∆ = 0; (−b/2a,
√
−∆/2a) and (−b/2a,

√
−∆/2a) corresponded to the case of
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discriminant’s being negative, i.e. ∆ < 0. This showed that she was able to represent

the algebraic expressions of the real and unreal roots geometrically, i.e. as points on

the complex plane. It is important to emphasize that she used the symbols x and y for

naming the axes and she called them real and imaginary, i.e. ’sanal’ in Turkish.

Once asked about the geometric meaning of the operations such as addition and

subtraction, that were involved in the algebraic expressions of the roots of any quadratic

equation she stated “It [addition] means that we’re going this much[
√
−∆/2a] from the

abscissa of the vertex [on the y axis upwards] or going this much [
√

∆/2a] [to the right

on the x axis] or when we say this[subtraction] it means his much [
√
−∆/2a] [on the

y axis downwards] and we’re going backwards this much [
√

∆/2a] [to the left on the

x axis]. These two roots [two unreal roots] are symmetric about the abscissa of the

vertex, and on the x axis they [the real roots] are symmetric about the abscissa of the

vertex as well.”

This implied that addition and subtraction triggered the operation of reflection

on her part, i.e. the symmetry of the roots about the x-coordinate of the vertex . That

is, for her the symbols of addition and subtraction meant how much in perpendicular

distance the roots were away from the x-coordinate of the vertex. She knew this

because for her the two roots were symmetric to each other about the x-coordinate of

the vertex and such symmetry attribute could be shown by adding and subtracting the

same amount of distance from the value of the x-coordinate of the vertex.

6.2.3. Esra’s Development of the Vectorial Aspect of Complex Numbers

In the previous teaching session, Esra had developed the definition of Com-

plex numbers such that she knew what the Cartesian form represented in regards to

quadratic equations and was able to represent the it as a point on the Complex plane.

In the third teaching session, the researcher asked Esra the definition of vectors. The

reason for asking her definition of vectors was to re-activate her previous knowledge

on vectors. We hypothesized that as the data indicated from the previous teaching
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session Esra had constructed complex numbers from the roots of quadratic equations.

By the same token, she was able to represent the algebraic expressions of the roots

geometrically as points, i.e. as ordered pairs, and also as distances. Therefore, if she

had recalled on her knowledge of vectors, she could have related vectors with complex

numbers represented as points on the complex plane.

Esra was able to define vectors as “Vector is a line segment which has a starting

point,a length, and is going in a direction.” She argued that the vector she drew

had two components, a and b, on the axes and she used the origin to identify where

the vector began and placed its components on the axes in the figure below. She

was also able to state the magnitude of the components as |a| and |b|, and calculate

the magnitude of the vector based on the Pythagorean theorem as
√
a2 + b2 since she

argued the angle between the vector a and b was 90 degrees.

Figure 6.46. Esra’s representition of a vector and its magnitude

At that point, the teacher-researcher continued the teaching session asking her

to define complex numbers in her own words. First she was able to define complex

numbers as “the elements in the set of complex numbers are the roots of quadratic

equations with real coefficients” and then went on deducing the roots algebraically. She

said that once the discriminant was smaller than zero the roots were complex numbers,

and wrote the roots as x1= −b/2a +
√
−∆/2a.i and x1= −b/2a −

√
−∆/2a.i where

i =
√
−1. The researcher then asked what

√
−∆/2a.

√
−1 was. This was because

as the data from the earlier session suggested in the complex plane she thought of
√
−∆/2a as the distance between the roots and the x-coordinate of the vertex rather

than its magnitude. Thus, the researcher asked her what
√
−∆/2a.

√
−1 referred to
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geometrically:

R: OK. I will ask two questions. If we think of the algebraic expression
[pointing to Figure 6.47] ee you said this ee

√
−∆/2a multiplied by

√
−1.

Figure 6.47. Algebraic expressions of the unreal roots

E: Hhmm.
R: What does it [

√
−∆/2a.

√
−1] mean? And what does it [

√
−∆/2a] mean?

E: This[
√
−∆/2a] and that[

√
−∆/2a.

√
−1]?

R: Hhmm, exactly.
E: We [

√
−∆/2a] have already said that this is the length, I mean the dis-

tance, distance between a root and the abscissa of the vertex. This statement
[
√
−∆/2a.

√
−1] is not real. It means..This the root [x1= −b/2a + i.

√
−∆/2a]

there are two parts of this vector [in Figure 6.48]. One of which is this [the horizon-
tal part], and the other is that[the vertical part] which is this part[

√
−∆/2a.

√
−1]

of that number [in Figure 6.48] Yes, one part of this root, of this number [complex
number] is a complex number.

Figure 6.48. Esra’s vector representation of the unreal root

R: Hmm.
E: This part [in Figure 6.48]. Complex numbers, when this number [complex

number] as a whole is expressed like this [referring to the arrow in the middle
in Figure 6.48]. This [horizontal component she drew] is its real part [−b/2a in
Figure 6.48]. That [vertical component she drew] is its unreal part[

√
−∆/2a.

√
−1

in Figure 6.48].

It is interesting that although Esra still had the same confusion on the distance

and its magnitude, her refocus on the meaning of m.
√
−1 triggered the idea that com-

plex numbers could be represented as vectors. This was because for her
√
−∆/2a was
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already a real number representing the distance and −b/2a was already a real num-

ber too. But her thinking of the [
√
−∆/2a.

√
−1] as the imaginary part of the complex

number triggered the idea that the complex number had two parts. This was evidenced

in her stating that “Complex numbers, when all this number[the root] is represented

like this[in the figure 6.85.85] this[−b/2a] is its real part[horizontal component she drew

above]...and that[
√
−∆/2a] is unreal part[vertical component she drew].” To further

validate whether her representing complex numbers by arrows was only based on su-

perficial aspects such as vectors’ visual representation, the teacher researcher asked her

how she could represent the complex numbers as she drew, she explained:

E: So this [−b/2a] part is on the real axis. The other one is on the imaginary,
the unreal [axis]... We have divided it as real and unreal so it was like this [in
Figure 6.49]...

Figure 6.49. Esra represents the horizontal component as −b/2a and the vertical
component as

√
−∆/2a

R: Could you explain more?
E: Here when we state [the complex roots] as point-wise, we state and sepa-

rate as −b/2a and
√
−∆/2a..This[the complex root] is a length, a line segment.

When we separate here, this [horizontal component she showed as −b/2a] is the
length, magnitude of one line segment and this [vertical component she showed
as
√
−∆/2a] is the other one’s [length, magnitude in Figure 6.49].

R: It seems like you thought of something?
E: This. I thought that we can represent complex numbers as vectors with

the starting point (0,0) and with a length going to a point [pointing the arrow in
the middle in Figure 6.49].

As the data indicated she was able to represent the algebraic expressions of the

roots geometrically as points, i.e. as ordered pairs. For her the ordered pairs rep-

resented the two parts of the root such that the roots’ real and unreal parts had
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magnitudes, an origin, and some direction (evidenced in her drawing arrows and her

stating “going somewhere”). All these aspects of the Cartesian form of complex num-

bers triggered on her part to recall on her knowledge of vectors. Therefore, she was

able to represent complex numbers as vectors.

At that point she seemed thinking and the researcher asked:

R: Hmm, could you explain again?
E: Eee normally we would represent the number -5 on the real number line

starting from 0 with the magnitude of 5.
R: How?
E: I take the starting point as 0 and when I take it directed to -x and when

I take its length [from 0] to that point [-5 in Figure 6.50]. The point 5, I can
represent the number -5 as a vector.

Figure 6.50. Esra’s representation of the number -5 geometrically

R: Yes.
E: In the same way, when I consider the complex number as such if I take a

starting point, in the same way, I can represent this complex number as a vector.
It has a specific length, a magnitude [Figure 6.51] and it has a specific starting
point, a certain direction, I can represent it [a complex number] like that[pointing
to the arrow in the middle she drew].

Figure 6.51. Esra shows the magnitude of a complex number

It is interesting that Esra called on her knowledge of real numbers as vectors.

She thought that real numbers represented as points on the real number line could be

thought as vectors because they had an origin, direction and magnitude. Similar to real
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numbers once she thought complex numbers as points on the complex plane locating

their starting point at the origin and thinking of its magnitude allowed her to think

that she could represent complex numbers as vectors too. This was important because

as the data indicated Esra seemed to justify her reasoning calling on her knowledge of

real numbers as vectors.

Additionally, once asked what made her think of real numbers as vectors she

claimed that she thought of real numbers as roots and real numbers as roots would

already act as vectors with respect to the origin. Interestingly, she further elaborated:

E: Eee, I will draw [a parabola], this −b/2a is here.
√

∆/2a is right here.
In this figure [Figure 6.52]. It makes [a vector] like this [drawing the vector
highlighted by blue pen in Figure 6.52], right? We already took the point 0 as
starting point...

Figure 6.52. Esra’s representing −b/2a and
√

∆/2a on the real number line as vectors

First, she thought of a parabola. Secondly, she pointed to the x-coordinate of the

vertex on the real number line she drew. Third, she pointed to the distance between

the roots and the x-coordinate of the vertex. Then she could represent such distance

as a vector starting from the x-coordinate of the vertex, which was represented as

(−b/2a,0), and ending at the points where the roots were on the real number line.

This was important because as the earlier data indicated she not only was able to

represent the Cartesian form of a complex number as a vector with a starting point

at the origin but also was able to represent the component of it -the roots’ distances

to the x-coordinate of the vertex- as a vector. At that point we hypothesized that

such acknowledgment together with the fact that such distance was dynamic in nature

might have allowed her to think that complex numbers as vectors were dynamic in

nature too. This will be further discussed later in the text.
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When she was asked what further characteristics complex numbers had she argued

that there was an imaginary unit in the complex numbers:

E: It has an imaginary unit. So if the factor[m] is 0, that [imaginary part in
x1= t + m.

√
−1 and x2= t −m.

√
−1 does not come. It has an imaginary unit.

And all the numbers consist of this part [t] and this part [m.
√
−1] in that way...

R: What do you mean by a unit? What does the imaginary unit refer to ?
E: Ya I mean this m.

√
−1. When I say unit I mean something constant..unit

means..this m.
√
−1 constant number. I don’t know anything else when I think

of unit...

As data showed she claimed that
√
−1 was invariant, but she did not know what

it meant as a unit. Therefore the discussion followed:

R: OK. Let’s investigate
√
−1. First, where is

√
−1 on the plane? Where do

we put it? What does it refer to point-wise?
E: Eee as we mentioned i was here [on the perpendicular imaginary axis]. Yes

i was here.
R: OK, could you represent it point-wise?
E: Eee (0, i) on the imaginary axis.[Figure 6.53]

Figure 6.53. Esra’s representation of i geometrically

Although her use of (0, i) as the representation of
√
−1 might not necessarily

mean that she did not really know that (0,1) was the point-wise representation of
√
−1 on the complex plane, her stating that she did not know what

√
−1 meant as a

unit together with her representation of it as (0, i) might be taken as that she had a

limited knowledge on the imaginary unit and its representation. Having known this we

hypothesized that if she could think of the algebraic representation of
√
−1 in terms of

the roots of quadratic equation this might have allowed her to represent
√
−1 as the

point (0, i). That is, we hypothesized that she might not have been thinking
√
−1 as

a root of a quadratic equation algebraically and geometrically at that moment.



85

R: Now, I’ll give you two roots, +i, -i, +
√
−1 ,−

√
−1 [writes x1,2= ±

√
−1]. In

these expressions [the algebraic expression of the complex root as x1= t+m.
√
−1

and x2= t−m.
√
−1] could you explain again what t was?

E: −b/2a and the other[m.
√
−1],

√
−∆/2a multiplied by

√
−1.

R: Considering the root [
√
−1] and their [the algebraic expressions in the

complex root form] meanings her e[x1= −b/2a +
√
−1.
√
−∆/2a] can you find

what
√
−1 refers to point-wise on the plane here [pointing to the complex plane]?

E: I didn’t get the question.
R: Here (0, i) what was i?
E:
√
−1.

R: Now given that you wrote (0,
√
−1) on the complex plane. Can you

now explain what this [x1=
√
−1] is when you think algebraically? [pointing to

x1= −b/2a+
√
−1.
√
−∆/2a] Can you represent it point-wise? I mean what does√

−1 refer to as a point? Can you explain or find?
E: On the graph or here [pointing to the algebraic expression]?
R: First in the algebraic expression then on the plane.
E: OK, now −b/2a is 0.
R: Why?
E: Because here [x1=

√
−1] except an imaginary unit there is plus 0. So the

only part missing is the real part, so it is 0.
R: Alright.
E: + ...ummm..This [

√
−∆/2a] is 1 [Figure 6.54]. Yes. 1 multiplied by this

[
√
−1].

Figure 6.54. Esra writes
√
−1 considering the unreal roots’ algebraic expressions

R: What is this[x1=0+1.
√
−1]?

E: x1.
R: Now, normally how did you represent x1 on the plane when we asked?

Accordingly can you represent that x1 [x1=0+1.
√
−1] again? Can you show it?

E:[drawing in Figure 6.55] Because −b/2a is 0 [drawing in Figure 6.56]
R: And what is

√
−∆/2a? What does

√
−∆/2a refer to numerically?

E: 1. Here [the length from the origin to the point (0,
√
−∆/2a)], this length

is 1 right?
R: Can you represent it numerically [referring to the point(0,

√
−∆/2a)]?

E: Ah (0,1) [Figure 6.57]. Eee 1 unit, it is in the distance of 1 unit. Its
magnitude is already 1 [writing (0,1) in Figure 6.57].

First she was asked to think of
√
−1 as a root of a quadratic equation and then was

asked how she could write
√
−1 considering the algebraic expression of the quadratic

equation. At that point she reasoned about the meanings of the real and unreal parts
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Figure 6.55. Esra’s representation of the root
√
−1 geometrically

Figure 6.56. Esra’s representation of the distances to the root
√
−1 on the imaginary

number line

Figure 6.57. Esra’s representation of i geometrically as the point (0,1) on the
imaginary number line
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of the root algebraically, i.e. −b/2a and
√
−∆/2a.

√
−1. Then she thought of what

−b/2a and
√
−∆/2a would correspond to numerically once she thought about

√
−1.

Therefore, she came up with the values of 0 for −b/2a and 1 for
√
−∆/2a. Once she was

asked to represent
√
−1 on the plane she interestingly plotted the general expression of

the roots as ordered pairs (−b/2a,
√
−∆/2a). However, corresponding the value of 0

with −b/2a allowed her to reason geometrically that the point should have to be placed

on the imaginary axis. Thinking this she wrote down (0,
√
−∆/2a) on the imaginary

number line. Then focusing on the numerical value for
√
−∆/2a in terms of 0+1.

√
−1

allowed her to measure that distance as 1, which then allowed her to represent
√
−1

as the ordered pair (0,1). In this regard, Esra’s reasoning about the algebraic and the

geometric aspects of the roots of quadratic equations simultaneously to represent
√
−1

as a point enabled her to represent it as the ordered pair (0,1).

Since she represented the point (0,1) and measured the distance of the roots

to the x-coordinate of the vertex as 1 as its magnitude, she argued that it could be

represented as a vector having the following characteristics:

E: It had also a starting point and direction.
R: What can you say about the direction of

√
−1?

E: Its direction, like this [Figure 6.58]. Exactly like this, upwards, its starting
point is 0, and it goes to the point (0,1). Its leng..its magnitude is 1.

Figure 6.58. Esra draws an arrow on the imaginary axis to represent the root i

R: OK. What can you say if you think of its direction in terms of angles?
E: 90.
R: How did you find it?
E: Here, if we start from here [the real x axis]. Here is 90 degrees [Figure

6.59].
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Figure 6.59. Esra represents 90 degrees between the root i and the real number line

Thinking of the ordered pair (0,1) to represent
√
−1 triggered the idea that (0,1)

had the magnitude of 1, a starting point, and a direction, i.e. the vectorial aspect. This

was consistent with her earlier reasoning once she had first thought that the ordered

pairs represented the two parts of the roots. Once she was asked to explain what

such direction meant in terms of an angle, she argued that it was 90 degrees counter

clockwise from the real axis. The researcher did not further probe her reasoning. The

data in the upcoming paragraphs will elaborate on her reasoning.

At that point building upon current knowledge that
√
−1 could be represented as

an ordered pair and as a vector, the researcher probed her to rethink about the meaning

of
√
−∆/2a and

√
−∆/2a.

√
−1. This was also because earlier data from the second

teaching session had shown that Esra could not distinguish the difference between the

roots’ distances to the x-coordinate of the vertex and its magnitude.

R: OK. Let me ask this again,
√
−∆/2a and

√
−∆/2a.

√
−1. What does this

whole [
√
−∆/2a.

√
−1] mean to you, this

√
−∆/2a.

√
−1?

E: It integrates direction to this, right?
R: It integrates direction to what?
E: Now we could separate this [x1 considering it as a vector] like this [Figure

6.60]. Eee −b/2a is here [on the horizontal axis] and
√
−∆/2a, this[

√
−∆/2a] is a

magnitude for me a length, when we multiply this [
√
−∆/2a] by this [

√
−1] does

it integrate direction so that I can draw this like this here [vertical component in
Figure 6.60]? Eee is it because of

√
−1 I could draw this [the vertical part] here

[on the plane]?
R: How does it [multiplying by

√
−1] integrate that direction?

E: What should I say..We know that
√
−1 was here [on the perpendicular

imaginary axis in Figure 6.60]. What should I say,
√
−1 this, or i, this is 1 unit

[writing the point (0,1) in Figure 6.60]. Does this multiplying [by
√
−1] make

this [a number on the real number line] on the y-axis [imaginary axis]?
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Figure 6.60. Esra’s vector representation of a complex root

Her first figure suggested that she thought of both the real part and the un-

real parts as vectors with a starting point at origin. Since she already knew that
√
−∆/2a.

√
−1 was represented on the imaginary number line perdicular to the real

number line and that
√
−∆/2a was positive real number, she started questioning

whether multiplying the real number
√
−∆/2a with

√
−1 meant a change in the di-

rection of
√
−∆/2a and in her own words “..put it on the imaginary axis..”, i.e. 90

degrees rotation counter clockwise.

When she was asked to further explain where
√
−∆/2a was, she stated:

R: Where is
√
−∆/2a?

E: This [
√
−∆/2a] is real and it should be on this [the real x axis], but when

we multiply it by
√
−1, it relocates in here [on the imaginary axis in Figure 6.61].

Figure 6.61. Esra rotates her pencil onto the imaginary axis

She argued that
√
−∆/2a was a real number and existed as a vector on the real

number line, which was evidenced in her over-crossing the arrow in the figure above.

Knowing that
√
−1 existed on the imaginary number line, multiplying

√
−∆/2a with
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√
−1 “..relocated

√
−∆/2a on the imaginary number line” in her own words. When

asked what relocation meant for her, she argued:

R: Hhmm, what do you mean by relocation?
E: Direction, it changes its direction. For instance its direction was here [on

the real number line in Figure 6.62]. Because I took a starting point, and because
it changed direction, exactly, its magnitude is same but its direction has changed.

Figure 6.62. Esra’s representation of the multiplication of a real number by i as
rotation

R: How does it change its direction?
E: 90 degrees. It relocates 90 degrees counter clockwise.

Data showed that relocation meant a change in direction that was 90 degrees

rotation around the origin counter clockwise. Moreover, she claimed that multiplying

by
√
−1 made no change in the magnitude of

√
−∆/2a.

√
−1. Then she was asked one

more time to explain how she reasoned:

E: Ee
√
−∆/2a is a real number. Because this real number [

√
−∆/2a] ee is a

real number it should be on this axis [the real x axis] because all real numbers are
on this axis [the real x axis]. But when I multiply this[

√
−∆/2a] eee by this[

√
−1]

the imaginary unit, this [the vector whose magnitude is
√
−∆/2a] eee rotates 90

degrees counter clockwise and relocates on the y-axis [imaginary axis], the y axis
which we put. In my words it changes its direction.

It is important to reemphasize that in the second teaching session she had stated

that she did not know what multiplying
√
−∆/2a by

√
−1 meant. She thought of

√
−∆/2a as a real number existed on the real number line. She also knew that

√
−1

could be represented as a vector with direction of 90 degrees rotation counter clockwise

from the x-axis. Therefore, multiplying
√
−∆/2a by

√
−1 meant a 90 degrees rotation

counter clockwise and relocated it on the imaginary number line.
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In addition to what relocation meant for her, the researcher asked why she thought

that the magnitude did not change when multiplied
√
−∆/2a] with

√
−1 she stated

that “Because this[
√
−1] is 1 unit.” Since she knew that the magnitude of

√
−1 was

1, multiplying
√
−∆/2a by

√
−1 did not change its magnitude for her.

Knowing that in the second teaching session Esra could not distinguish the dif-

ference between
√
−∆/2a and

√
−∆/2a.

√
−1 and considering Esra’s current stage of

knowing, the researcher asked her to re-explain the meaning of
√
−∆/2a.

√
−1:

R: Then what does this [
√
−∆/2a.

√
−1] mean to you?

E: For a parabola what does it mean?
R: Hhmm, considering the roots of a parabola..
E: It means the distance of root to the abscissa of the vertex, exactly. I am

not so sure, this is root, I took this [point x1] as root.
√
−∆/2a.

√
−1 here it is

[Figure 6.63].

Figure 6.63. Esra’s representation of the distance between the roots and the
x-coordinate of the vertex on the imaginary number line as an imaginary distance

The data indicated that she knew that the distance between the roots and the

x-coordinate of the vertex was
√
−∆/2a.

√
−1. Still, she was not sure about it.

At that point, going back to the second teaching session the researcher confronted

Esra with her statement that
√
−∆/2a was the distance between the roots and the x-

coordinate of the vertex. She then stated:

E: Because this is [
√
−∆/2a] is a magnitude, it has to be a positive number

ee any magnitude is expressed with a positive number. OK, this [
√
−1] may have

the length of 1 unit. Let’s assume that this [
√
−1] is not this, let’s take it as -5,

ee I take its magnitude as 5, and take its absolute value. So if this [
√
−1] has

already its length as 1 unit I represent it as
√
−∆/2a, this [

√
−∆/2a.

√
−1] does

not represent a magnitude.
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Her argument showed that she was able to distinguish the difference between
√
−∆/2a and

√
−∆/2a.

√
−1 such that

√
−∆/2a.

√
−1 corresponded to the distance

between the roots and the x-coordinate of the vertex and
√
−∆/2a corresponded the

magnitude of that distance. This was because she knew that the magnitude of
√
−1 was

1. She even recalled on her knowledge of negative integers whose magnitudes differed

from their numerical representation. As she had stated when the negative integer -5

was measured, its magnitude, i.e. the absolute value of -5, would be a positive real

number, 5. Similarly, when
√
−∆/2a.

√
−1 was measured its magnitude would be the

positive real number
√
−∆/2a.

6.3. Analysis of Post-interview

The purpose of post-interview was to examine Esra’s developed knowledge regard-

ing the definition of complex numbers and quadratic functions; quadratic equations and

their sets of solutions along with their algebraic and geometric aspects, and their re-

lations to complex numbers. The interview was conducted one week after upon the

completion of the three teaching experiment sessions. While conducting the interview,

I also asked Esra to articulate how she reasoned during the written post-assessment

session that she completed right after the third teaching session. The focus of anal-

ysis was to characterize Esra’s reasoning on and current meanings of the quantities

of quadratic functions such as the roots, the line of symmetry and the vertex of the

parabola in terms of the algebraic and geometric aspects, and the definition of complex

numbers.

In the next paragraphs I presented some evidence of Esra’s knowledge at the end

of the study to describe what meanings and understandings she developed throughout

the teaching sessions. To further explicate the extent of Esra’s reasoning, I also com-

pared and contrasted how she reasoned during the pre-interview and the post-interview

sessions.
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While conducting the post-interview, I asked Esra to articulate how she reasoned

during the written post-assessment. First, I described Esra’s current meanings of the

vertex, and the real and imaginary parts in the Cartesian form of complex numbers,

her making sense of the geometric representation of the Cartesian form as vectors,

the imaginary unit ’i’ in the Cartesian form of complex numbers, her knowledge on

the definition of complex numbers, and her making sense of conjugate roots of any

quadratic equation.

6.3.1. Esra’s Current Meanings of the Vertex of Quadratic Functions’ Graphs

As the data have shown earlier, compared to the beginning of the study where

Esra had a limited knowledge on the definition of the vertex of a parabola, during the

post-interview, she stated “The point where the quadratic function takes it lowest or

highest value and the point where the parabola intersects its symmetry axis.”

This was important because by this definition Esra was able to explain why −b/2a

was the x-coordinate of the vertex. As the data had indicated, at the beginning of the

study Esra had not known why −b/2a was the x-coordinate of the vertex. Esra stated:

E: Because the symmetry axis, I know that the roots are in equal distance
to this[the abscissa of the vertex], [the roots] are symmetric about this point[the
abscissa of the vertex], and when I add these[roots] it gives this point, −b/2a.

As the data indicated, since she knew that the roots have to be in equal length to

line of symmetry, once she calculated the midpoint of the roots, it was equal to −b/2a.

That is, the line of symmetry also went through the midpoint of the roots since their

perpendicular distance to the line of symmetry was equal in length. Together with her

knowledge that the line of symmetry went through the vertex also, therefore, −b/2a

was to be the x-coordinate of the vertex.



94

6.3.2. Esra’s Current Meanings of the Cartesian Form of Complex Numbers

At the beginning of the study, she was not able to argue about what x and y

in the form of z = x + yi refer to algebraically in relation to the roots of quadratic

equations, and geometrically in relation to the graph of a quadratic function. She did

not know why those numbers had to be real numbers either. However, in contrast to

the beginning, she was able answer these questions:

E: When I wrote it like z1,2= x ± yi I found that x was −b/2a here, the
abscissa of the vertices,

√
−∆/2a was the distance of one of the roots to this

abscissa[the abscissa of the vertex, so x and y means this here...Geometrically it
means the distance, the distance from one root of the equation to the abscissa of
the vertex of the parabola, it means that distance... Now, as we stated earlier x1

and x2[the roots] and their midpoint, if we find it again it gave −b/2a as we just
did earlier. Ee the midpoint [of the roots] means that if I go this much

√
∆/2a

to the left of −b/2a it gives a root, to the right it gives the other root in the
same distance [to the −b/2a], so the midpoint of them[the roots] geometrically is
−b/2a.

Data showed that she knew that the real part, x, referred algebraically to −b/2a

and geometrically to the x-coordinate of the vertex which was the midpoint of the two

roots. Also, for her y algebraically referred to
√
−∆/2a and geometrically referred to

the roots’ distances to the x-coordinate of the vertex. Also, as the data indicated, for

Esra,
√

∆/2a was a quantity. That is, she knew that −b/2a, the x-coordinate of the

vertex, referred to the midpoint of the two roots such that once the distance measured

by
√

∆/2a was taken from such point in both directions then the two roots would be

reached. In this regard, for her, the distance between the roots and the x-coordinate

of the vertex and the roots was a quantity whose measure could be evaluated by the

value of
√

∆/2a.

Once asked how she knew that x and y were real number she stated:

E: So here
√
−∆/2a, our delta is smaller than 0 so here -∆ is positive, so this

number [
√
−∆/2a] is also positive. This [

√
−∆/2a] is a positive number, so we

call it real number. Positive real number, this [
√
−∆]is a real number this [2a] is

real number when I divide it by real, it is a real number. For example,−b/2a in
the same manner this [b] is real and this [2a] is real, so [−b/2a] real number.
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She also was able to explain why x and y had to be real numbers based on her

algebraic meanings for the quantities. She knew that since discriminant is smaller than

0 then
√
−∆ had to be positive and divided by ’2a’ which is also a real number than

would make
√
−∆/2a a real number too. By the same token, she was able to reason

that both ‘b’ and ’2a’ were real so their ratio would also be a real number.

Esra also was able to think of z1,2= x± yi and its components as vectors and as

points.

E: x [in z1,2= x ± yi]means this point and this vector [Figure 6.64]. I mean
this length [the length from the point (0,0) to (−b/2a,0)]. It also means a point.
This is y. y is this length [from (−b/2a,0) to z1] or that length[from (0,0) to
(0,
√
−∆/2a)].

Figure 6.64. Esra’s representation of x in z = x± iy both as a vector and a point

As the excerpt indicated for Esra the complex number z represented both a point

(−b/2a,
√
−∆/2a) and a vector whose components were x and y. In particular, Esra

represented x both as a point (−b/2a,0) and as a vector on the real number line because

x referred to a length, in her own words, whose measure could be evaluated by the value

of −b/2a. She represented y as a point (0,
√
−∆/2a) on the imaginary number line and

as a vector in the complex plane because y referred to again the magnitude of a length,
√
−∆/2a. As she had earlier stated,

√
−∆/2a.sqrt−1 was the distance from the roots

to the x-coordinate of the vertex, −b/2a. She added that “y is a perpendicular distance

to x.”

To provide more evidence on why she repeatedly constructed the roots as both

vectors and points she was asked how she could represent the root−b/2a+
√
−∆/2a.

√
−1

as a vector on the complex plane:
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E: So... This number because when we say here
√

∆/2a we can represent it
as a vector [Figure 6.65]. Two pieces of vector. So (−b/2a,

√
−∆/2a). With

a starting point and direction. Now −b/2a is both a point and a part of this
[complex number][pointing to the point (−b/2a,

√
−∆/2a) and the middle vector

in Figure 6.65]. It is a part indicating the length..and that [
√

∆/2a] is also a
length and a part of it [complex number], these two [−b/2a and

√
∆/2a] combine

and this vector [the middle vector in Figure 6.65] is created, this vector at the
same time represents this point.

Figure 6.65. Esra’s vectorial representation of complex numbers

At the beginning of the study, Esra was only able to represent a complex number

as a point (x,y) without knowing what x and y in the form of z = x + i.y referred

to both algebraically and geometrically. However, as she related quadratic equations

to complex numbers she thought −b/2a and
√

∆/2a could be represented as vectors

on the complex plane because they both had a starting point, some magnitude with

a direction. Thus, the combination of those two vectors gave another vector that

identified a point on the complex plane to represent a complex number.

At that point, how she could regard the complex algebraic expressions as numbers

was discussed. Once asked how one could suggest that the algebraic expressions in the

Cartesian form were numbers, based on her knowledge of real numbers she explained:

E: When I have a starting point if I can represent normal numbers [real
numbers], making inferences from what I know, like this[as vectors] then I can
represent this number [complex number] in the same way, as a vector with a
starting point, it has a direction, it has a length [magnitude].

Esra assumed that since real numbers could be represented by vectors on the

real number line to measure some quantities, so could the complex numbers. Since the

algebraic expressions of complex roots involved quantities that could be represented

by vectors such as the x-coordinate of the vertex or the midpoint of the roots, and its
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distance to the roots, she suggested to represent complex numbers also as vectors on

the complex plane.

In addition to her arguments about −b/2a as a point, vector on the complex

plane and a number in the set of real numbers, once asked how she reasoned
√

∆/2a

as a vector representing the roots’ distances to the x-coordinate of the vertex on the

complex plane:

R: Why is it another axis? Why imaginary?
E: Because real here[on the real x axis], all the numbers done in real so another

axis we call him an imaginary axis, we call the unreal numbers because we call
all over the real axis...All real numbers are finished here [on the real axis]. Ee
there isn’t another real number to represent. I assume it is here [above the real
number line], or here[below the real number line]. This[

√
−∆/2a] also represents

length, a magnitude; so it is in fact positive. For example, the number we call i
is here [Figure 6.66].

Figure 6.66. Esra’s vectorial representation of complex number ’i’

√
−1 is here, these[the numbers which are negative inside a square root] are

not the elements of real numbers, inside the square root is not positive. I found
that this number [

√
−1] was here because when we multiplied 1 [1 on the real

axis] by i, it [1] rotated 90 degrees. When multiplied [by i] it rotated 90 degrees, it
only changed its direction, its starting point didn’t change, its magnitude didn’t
change, because the length of this [

√
−1] is 1. It only changed direction and

came here [on the perpendicular y axis, imaginary axis]... It [imaginary axis] has
a unit, a starting point.

R: Why is it imaginary? Why is that distance imaginary?
E: Its unit is

√
−1, exactly. This is not real.

The dialogue indicated that since she was working beyond the quadratic equations

which had real roots, when ∆ < 0, she no longer would be able to represent any unreal

root on the real number line. Additionally, because the distance had an unreal factor
√
−1 when ∆ < 0 and it was an imaginary unit, she claimed that the distance

√
∆/2a

could be represented on an imaginary number line having the unit
√
−1. That was,

with the need to create an imaginary number line to represent the distance of the
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unreal roots to the x-coordinate of the vertex, she created a new unreal number line

to identify the unreal roots represented as points on the new complex plane.

To clarify her explanations she explained her answer to the question in the written

post-assessment related to how she could think of a complex numbers as a single entity:

E: For example, again, I can represent a real number as a vector like this
because when I take a starting point, a magnitude and a direction, for example I
can represent the number 5 like this [Figure 6.67]. In the same manner I divided

Figure 6.67. Esra’s representation of a real number as a vector

this length [the length of the complex number 2 + 6i] into these two parts [in
Figure 6.68]. I combined them [two components] and this number [the complex
number 2 + 6i] was created.

Figure 6.68. Esra’s representation of complex number ’2 + 6i’ on the complex plane
as a vector

After all those explanations of separating parts and representing them on the

complex plane as both points and vectors, she argued that “...[2+6i] is a single number

I think because... these[horizontal and vertical components on the complex plane] are

the components of this vector and they come together and create only one point only

one number. I know that I can represent a number as only one point, when I combine

these[components] it gives the number 2 + 6i, that point.” She emphasized that even

though it consisted of some parts the combination gave a number which she claimed it

to be a single number as a single entity:
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E: This point [the point (2,6) representing 2+6i] has a starting point size and
direction, so it is a number.

She argued that she again was able to represent that combination of two parts

as a single vector which had a starting point, a direction and a magnitude, which

acknowledged her idea of representing a number.

During the pre-interview Esra was only able to state that i equals to
√
−1 with-

out any further explanation. During the pre-interview, she even stated that she knew

this by memorization in the formal definition of complex numbers. Also, during the

teaching sessions, as the data earlier indicated, Esra did not know what
√
−1 repre-

sented geometrically because she tried to represent
√
−1 or i on the complex plane

as the ordered pair of (0,
√
−1) or (0,i), respectively. Only after she reasoned on the

algebraic form of ’i’ as an unreal root she argued that ’i’ is algebraically z = 0 + 1.i

thinking of the x-coordinate of the vertex and the distances of the roots to it, and so

she was able to locate ’i’ geometrically. In other words, only after she focused on the

fact that in the algebraic form z = 0 + 1.i, the ’0’ meant that the x-coordinate of the

vertex was zero and that the distance to it was in length of one unit, then Esra was

able to state that she could represent ’i’ with the point (0,1). This the allowed her to

think that the magnitude of ’i’ was equal to 1 unit.

Similarly, during the post-interview in contrast to the pre-interview, she was able

to call on her knowledge of the representation of the imaginary unit ’i’ both geometri-

cally as a point (0,1), in Figure 6.142.148, on the complex plane and algebraically in

the form of z = 0 + 1.i.

Not only that but also Esra provided her reasoning on the multiplication by i:

R: I got it, as a positive real number it could have been (0,2), but why was
that (0,1)?

E: Because here we multiplied 1 [(1,0) on the real number line] by i and the
length didn’t change, it [the length] stayed unchanged. It only changed direction,
nothing else... Ee when I multiply 1 [(1,0) on the real number line] by i, we obtain
this number [

√
−1 represented as the point (0,1)]; so I decided it didn’t change
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its magnitude. I multiplied 1 by i, it changed direction, rotated 90 degrees and
came here [on the y imaginary axis in Figure 6.69]

Figure 6.69. Esra’s rotation of her pencil 90 degrees counter clockwise from the point
1 on the positive real number line

Esra thought of (0,1) as the representation of ‘i’ and in the form of z = 0 + 1.i,

she thought 1.i as multiplication such that it was an operation of rotation without any

change in its magnitude. She could state that because as she already knew 1 was a real

number and she could also locate it on the real number line as (1,0). Multiplying this

real number with ‘i’ made it representable on the unreal number line with the notation

(0,1). Therefore, she was able to state that there was no change in the length but only

the direction changed.

That is, she reasoned simultaneously in geometric and algebraic aspects of com-

plex numbers and found out that multiplying a real number, say 1, by i referred to

the rotation of 90 degrees counter clockwise. However, this did not provide enough

evidence whether for any number she thought the same way. Once she was asked of

multiplying any number, say y, by i at is, she thought of any number y as a com-

plex number, said y = a + bi, and multiplied it by ’i’ algebraically and represented it

geometrically. Then, she drew and stated the following:

E: For example, if I say this [the number y] to be a + bi, when I multiply it
[a + bi] by i, ai + bi2, ai− b it is −b + ai [Figure 6.70].

Because it [a] is the coefficient of i, it [a] should be on the imaginary number
line. -b is a real number. a and b are said to be positive here[in a + bi], so -b is
here [on the negative direction of the real number line]. Eee in fact even though
my figure doesn’t show it clearly its magnitude didn’t change, it rotated, it even
rotated 90 degrees counter clockwise.
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Figure 6.70. Esra’s placing ’−b + ai’ on the complex plane

For her again, multiplication by i of any number caused 90 degrees counter clock-

wise rotation without any change in the length. She placed the resulting number -b+a.i

on the complex plane accordingly. Thus, in terms of geometric reasoning, for Esra a

complex number, i, was a point, a vector and an operator since she also came up with

that the multiplication by i meant the rotation of 90 degrees counter clockwise. Yet,

since she still did not think about the dilation, to investigate one step further how she

could reason, I asked what would happen if any number a+ bi was multiplied by a+ bi.

She multiplied algebraically in Figure 6.71.

Figure 6.71. Esra’s multiplication of ’a + bi’ by ’a + bi’

She then reasoned geometrically “..then both its direction changes and its mag-

nitude stretches.”

E: It [2ab] is the coefficient of i, it must be on the imaginary axis. It rotated
and its magnitude changed, stretched [Figure 6.72].

Once she plotted this any complex number and its multiplied form by itself on the

complex plane she argued that the multiplication operation on complex numbers meant

rotation and dilation by showing on the complex plane as presented in the dialogue

above. She further generated her meaning of the multiplication of complex numbers:
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Figure 6.72. Esra’s strecthing the magnitude of a complex number

E: [It is] the operation which changes the magnitude, length and direction
of a number...Without changing its starting point, at any angle, it rotates its
direction... It [the magnitude] can make it increase, decrease like this [Figure
6.73]. It can change its direction as well... It [the multiplication in complex
numbers] is rotation, and also increasing its magnitude or decreasing, changing
its magnitude.

Figure 6.73. Esra’s increasing or decreasing any complex number when multiplied by
any complex number

As the excerpt indicated, she suggested that multiplication of complex numbers

corresponded to a rotation dilation. To further validate that she thought of dilation I

put the numbers x.i and y.i, where x and y were real numbers, on the complex plane

and asked the relationship between them, and she answered:

E: This [yi] is that [xi] multiplied by y/x. I multiplied xi by y/x. Its magnitude
stretched. It [xi] increased, it stretched y/x much.

R: OK. How do you find the magnitude of any complex number?
E: If I draw it like this...This is real axis..This is imaginary [axis]..b is on

the imaginary axis and a is on the real. This number [complex number a + bi]
is written as (a,b) because I can represent it as a vector. Its [complex number
a + bi] two components are a and b. And their magnitude [can be represented]
with absolute value...This [the magnitude of the complex number a+bi] is.. from
Pythagorean [theorem][Figure 6.74].
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Figure 6.74. Esra’s finding the magnitude of any complex number

She was able to calculate the magnitude of any complex number, a + b.i on the

complex plane as
√
a2 + b2 since she claimed any complex number could be repre-

sented as a vector. Therefore, the evidence in the excerpt above indicated that Esra

was thinking of dilation while multiplying complex numbers along with rotation. Her

statements provided evidence on that she thought of i, the imaginary unit, as a point,

vector, number, and operator.

As the data earlier showed, during the pre-interview, Esra had only provided the

formal definition of complex numbers. That is, she was able to define complex numbers

as the numbers in the form of a + bi where a, b ∈R and i =
√
−1. During the post-

interview, in addition to the formal definition of complex numbers, based on quadratic

equations Esra stated “... the numbers obtained from the roots of all quadratic equa-

tions with real coefficients constitute the set of complex numbers.” Along with this

definition, she was also able to provide her reasoning as to why complex numbers

include real numbers as follows:

E: Because we already obtain complex numbers from the roots of quadratic
equations. So [real numbers are] inside it [the set of complex numbers]. Because
real numbers are included by the complex numbers.

Esra also had defined complex numbers in the written post-assessment in Figure

6.75.

This data indicated that Esra was able define complex numbers as the elements

of a well-defined set. That is, she was able to state that the set of complex numbers

are obtained from the roots of all quadratic equations with real coefficients. By the
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Figure 6.75. Complex numbers in Esra’s words “The numbers obtained from the roots

of all quadratic equations with real coefficients constitute the set of complex numbers”

same token, Esra was able to reason that since all the roots including the real number

roots consitue the elements of the set of complex numbers, real numbers have to be

embedded in the set of complex numbers. As the data from the pre-interview indicated

Esra had known such relationship but was not able to provide any reasoning for that.

The following data further revealed on how Esra related the set of complex num-

bers to the roots of quadratic equations:

E: If delta is bigger than 0, it was on real axis because my roots were real.
Then I have taken all those real numbers in infinite number because there are
a lot of quadratic equations which have delta bigger than 0, so I finished all of
them in real axis. I finished all my roots on the real axis, then when it [delta]
was 0, the roots with multiplicity two was here [on the point (−b/2a,0) on the
real number line]. Then when [delta] is negative, [the roots are] on this plane
as I have just told. It passed to the whole plane here. If delta is smaller than
zero, it is a complex number, if delta is positive, negative or zero; all of them
are complex numbers. But if it [delta] is positive, they are on real axis....and if
it [delta] is zero, it is the same [they are on the real axis]. If [delta is] negative,
here [on the real axis] no [numbers] are left [Figure 6.76].

Figure 6.76. Esra’s covering all the real numbers on the real number line toward the
point (−b/2a,0)

Ee well, I know that the roots [unreal roots] are symmetric about this point[−b/2a]
because [the roots are]

√
∆/2a far in the distance to −b/2a, I decided they [the

roots] were here [below and above at the same perpendicular distance to the point
(−b/2a,0)].
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As the data indicated, Esra reasoned on the the values of the discriminant both

geometrically and algebraically. Her arguments validated that she regarded the x-

coordinate of the vertex, −b/2a, and its distance to the roots,
√

∆/2a, as quantities in-

volved in the construction of the complex numbers geometrically. That is, she reasoned

that she could find infinitely many real numbers representing the roots of quadratic

equations because she was able to think of so many quadratic equations with having

delta bigger than zero. The value of delta being bigger than zero in fact meant for her

that there was distance,
√

∆/2a, between the roots and the x-coordinate of the vertex.

And such roots would compass the real number line until it gets to a point there is

no distance between the roots and the x-coordinate of the vertex. This also meant for

her that ∆ = 0. Then, she knew that once the delta gets smaller than zero the roots

have to be on a different plane because she knew that she finished all the real numbers

when delta is equal to or bigger than zero. Her knowing this allowed her to not only

deduce the relationship between the roots of any quadratic equation and the complex

numbers but also the reasoning behind the relationship between real numbers and the

complex numbers. That is, the set of complex numbers are obtained from the roots of

any quadratic function with real coefficients and so such set includes all real numbers.

While Esra was representing the complex roots on the complex plane, she plotted

the second root which is called the conjugate root considering the distance between

the roots and the x-coordinate of the vertex:

E: I said
√

∆/2a, if we do this [the first root] like this [below the real axis at
a perpendicular distance from the abscissa of the vertex], it [the first root] is here
and its conjugate is here [below the real axis at a perpendicular distance from
the abscissa of the vertex in Figure 6.77]

Figure 6.77. Esra’s pointing to the conjugate root on the complex plane



106

The way she reasoned also suggested that the conjugate root could also be repre-

sented by a vector, which implied that she thought that it was also a complex number

on the complex plane. However, at the beginning, she was not able to reason about the

existence of the conjugate root once a complex root exists. At the end of the study, she

explained that there are two roots of any quadratic equation and they are conjugates:

E: There were two roots of two quadratic equations, I mean, if there is one[of
the roots] the other[root] exists as well because it is a quadratic equation and
we obtain these complex numbers from these two roots, and this root, so for
example, when you give one[root], because the parabola has a vertex and this[the
root] must be symmetric about the abscissa of the vertex, when x1 is given, x2

must exist as well because [the roots are] symmetric about this point[the abscissa
of the vertex]. If I give a root, the other must exist because this parabola has a
symmetry axis, has a vertex, so a second root must exist because they[the roots]
are symmetric.

Her reasoning explicates how she came up with a second root for all quadratic

equations. Based on both the definition of complex numbers in relation to quanti-

ties involved in the quadratic equations, the invariant qualities of quadratic functions’

graphs, she reasoned algebraically and geometrically that there should exist conjugate

roots for all quadratic equations.
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7. CONCLUSION

The purpose of this study was to investigate how a prospective teacher, Esra,

developed the meaning of the Cartesian form of complex numbers while reconstructing

complex numbers from real numbers based on the solution sets of quadratic equations

with real coefficients. This investigation resulted in the researcher’s generation of a

model of how she developed the meaning of the Cartesian form of complex numbers

during the instructional sequence. In this account of the model of Esra’s knowledge

development, I articulated aspects of her conception of complex number. In this regard,

the purpose of this section was to discuss the major findings in Esra’s development of

the Cartesian form of complex numbers as elements of a well-defined set along with

(i) Esra’s development of the meaning of the vertex and (ii) Esra’s coordinating the

different aspects of complex numbers such as vectors, points and operators. The major

findings of this study follows in the next sections.

7.1. Esra’s Development of the Cartesian Form of Complex Numbers as

the Elements of a Well-defined Set

Smith and Thompson (2008) claimed “...because the central goal is to focus on

quantities and how they relate in situations, and because this represents a major obsta-

cle for many students, it is important for teachers to open discussions with questions

that lead to discussions of quantities, not numbers...” (p. 36). Similarly, previous

research suggests that both students and teachers think of complex numbers as “...typ-

ically ... instances of mathematical structures that seem to depend merely on formal

arrangements in a system of meaningless signs, not referring to anything informal or

quasi-empirical” (Glas, 1998, p. 367). That is, both students and teachers do not think

of complex numbers as quantities but as formal algebraic expressions (Nordlander and

Nordlander, 2012). In this regard, in this study as suggested by Smith and Thompson

(2008) once a prospective teacher examined some attributes of quadratic functions not

as numbers but as quantities she was able to deduce complex numbers as elements of a
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well-defined set. In this study I take such attributes of quadratic equations that make

them unique on their own as the ‘roots’ (zeros) and ‘the x-coordinate of the vertex’

(NCTM, 2000) such that their measures could be determined both from the origin and

from each other. In particular, once a prospective teacher thought that “...−b/2a is

the vertex and the
√

∆/2a is the distance to the zeros (left and right)” (Hedden and

Langbauer, 2003, p. 158) she was able to deduce complex numbers originated in all so-

lutions to the quadratic equations (Panaoura et al., 2006). In this regard, in this study

I reported on how reasoning about −b/2a and
√

∆/2a as quantities and relationships

between these quantities may support a prospective teacher in developing meanings

regarding the Cartesian form of complex numbers.

7.1.1. Esra’s Development of the Meaning of the Vertex

At the beginning of the study given the general algebraic expression of any

quadratic function, Esra knew that −b/2a geometrically represented the x-coordinate

of the vertex and
√

∆/2a represented the distance to the roots. However, she knew

that it by memorization: She could not explain why –b/2a represented the x-coordinate

of the vertex. Similarly, she knew that it also represented geometrically the midpoint

of the roots because she averaged the roots algebraically. By the same token, her

knowledge on the meaning of the vertex was limited such that she was able to define it

only as the point on the parabola on which the quadratic function takes its lowest or

highest value, i.e. a minimum or maximum point. Although the vertex of any parabola

provides information on the parabolas’ maximum or minimum points, such knowing

is limited since she did not relate it to the line of symmetry. In addition, the data

showed that Esra did not know the algebraic representation of the line of symmetry

as x= −b/2a either. These data altogether indicated that not only her knowledge on

−b/2a was limited but also she might not have known the definition of vertex as the

point at which the parabola intersects its line of symmetry (Gibson, 1998).
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One might argue that Esra’s not stating the formal definition of vertex of a

parabola might not guarantee that she did not have it. However, her not expressing the

line of symmetry as x=−b/2a and not knowing why −b/2a represented the x-coordinate

of the vertex suggested that her knowledge was compartmented. By the same token,

although Esra was able to algebraically deduce that
√

∆/2a was the distance from

the x-coordinate of the vertex to the roots and was able to geometrically represent it

on a parabola only when the discriminant was bigger than zero. She was not able to

imagine such distance neither when the discriminant was zero nor was smaller than

zero. Her coordinating both the algebraic and the geometric meanings of −b/2a with

the line of symmetry was important: Such knowledge would be the basis of thinking the

dynamic of the roots of infinitely many quadratic functions with the same x-coordinate

of the vertex as she would regard the distance
√

∆/2a as a varying quantity (Smith

and Thompson, 2008).

In order for her to relate −b/2a and vertex to the line of symmetry, Esra first

engaged in physically folding the shape of the parabola into two congruent parts. This

allowed her to mentally match the points on two parts of the folded shapes. The activity

of matching of all the points on the two congruent parts of the parabola, allowed her

to conclude that there would be only one vertical line, i.e. the line of symmetry, right

up through the middle which would split the parabola into two mirrored halves. The

symmetry for her meant that all the points on the two congruent halves of the parabola

would be reflections of each other. This in turn enabled her to deduce that among any

point on the parabola, the roots were also symmetric about the line of symmetry

(Cooney, Beckmann and Llooyd, 2010). Acknowledging that the line of symmetry has

to be in the middle of all the points on the parabola (i.e., equidistant from all the

points symmetric to each other), Esra was able to reason that the algebraic form of

the line of symmetry had to be x=−b/2a. She also reasoned that since she could draw

only one line of symmetry for a parabola it went through the vertex of the parabola.

However, she was still not able to define vertex. Then, physically drawing the line

of symmetry on the shape of the parabola she had folded allowed her to mentally

match the vertex both as a point on the parabola and a point on the line of symmetry
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intersecting the parabola. Therefore, she was not only able to define vertex as the

point where the line of symmetry intersected the parabola (Gibson, 1998), but also

was able to reason that −b/2a had to be the x-coordinate of the vertex: The line of

symmetry went through the midpoint of all the points including the roots and −b/2a

was equidistant from the roots, which was an invariant quality for any parabola. She

was also able to deduce that the roots of the quadratic equations are symmetric about

the x-coordinate of the vertex, −b/2a (Cooney et al., 2010). This suggested that Esra

was able to coordinate her existing knowledge on −b/2a with her newly constructed

knowledge on the definition of vertex in relation to the line of symmetry.

7.1.2. Esra’s Coordination of the Different Aspects of Complex Numbers

as Vectors, Points and Operators

Acknowledging the reasoning behind why −b/2a was the x-coordinate of the

vertex, once prompted she was able to imagine infinitely many quadratic functions

with the same x-coordinate of the vertex. Particularly, she first reasoned from the

algebraic point of view such that the changing values of the real coefficients a, b,

c of any quadratic function constituted infinitely many quadratic functions. By the

same token, such changing values allowed her to think that although the ratio, −b/2a,

was kept same the values of
√

∆/2a varied. It is important to state that Esra was

still thinking algebraically. Only after prompted to think about particular graphs of

quadratic functions, the x-coordinate of the vertex of which was equal to -1, she was

able to reason geometrically. Her thinking of the symmetry of the roots about the

x-coordinate of the vertex allowed her to imagine infinitely many parabolas with the

same x-coordinate of the vertex. Thinking of the existence of infinitely many parabolas

with the same x-coordinate of the vertex enabled Esra to imagine the ’movability’ of

the distances of the roots to the x-coordinate of the vertex. A consequence of this

was that Esra thought of
√

∆/2a as a varying quantity dynamic in nature such that it

shrinks and/or stretches (dilates).
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Once prompted to think about the placements of the roots and the vertex on

the real number line Esra was able to think of the x-coordinate of the vertex as

represented by (−b/2a,0) and the roots as represented by (−b/2a +
√

∆/2a,0) and

(−b/2a−
√

∆/2a,0). Simultaneously, Esra was able to think that although the roots’

distances to the x-coordinate of the vertex were changing, both the placement of the

x-coordinate of the vertex and roots’ being reflections of each other about it were invari-

ant. This was important because then Esra could imagine and reason that once there

was no distance between the roots and the x-coordinate of the vertex; that is, the value

of
√

∆/2a was zero; then the roots were represented by (−b/2a,0). Therefore, Esra’s

thinking of the roots not only as distances to the x-coordinate of the vertex but also as

points allowed her to place the roots on the real number line. Particularly, Esra was

able to think that all the real numbers as points could represent the roots of infinitely

many quadratic equations with the same x-coordinate of the vertex. Once she thought

about the geometric meaning of discriminant’s being smaller than zero although she

knew that infinitely many quadratic functions existed with the same x-coordinate of

the vertex and discriminant’s being smaller than zero, she could not place the unreal

roots on the real number line. She reasoned that since all the real numbers as potential

roots were capsulized there was no place left on the real number line to represent the

unreal roots. Therefore, she was not able to locate the unreal roots. Though she had

difficulty in placing the unreal roots on the real number line such image afforded on

her part the necessity to think of a plane whose horizontal axis was the real number

line.

Importantly, Esra still thought of
√

∆/2a as a distance to the x-coordinate of the

vertex even when the discriminant was smaller than zero. She surmounted the difficulty

in the following way: Esra first algebraically thought about the discriminant as being

equal to −1.4ac−b2 and the roots as being equal to −b/2a±
√

(−1).4ac− b2/2a. Con-

trary to the pre-interview results Esra was able to symbolize −b/2a and
√

4ac− b2/2a

as variables, t and m respectively, i.e. x1,2= t ± m.
√
−1. Esra knew that she could

write
√

(−1).4ac− b2/2a as
√
−1.
√

4ac− b2/2a because the former expression was not

real anymore, yet
√

4ac− b2/2a was a positive real number. Only after Esra placed
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−b/2a on the real number line and called on her knowledge that all the real roots were

capsulized she started to think about placing the unreal roots as points on a plane

including the real number line. That is, for her “the mapping from points on a line

to numbers has been extended to a mapping from points in a plane to numbers..”

(Fauconnier and Turner, 2002, p. 272) such that those numbers represented the roots

of quadratic equations. Although she attempted to place the unreal roots on a plane

her placement did not align with complex plane. Only after she thought of the origin

and the roots’ distances being perpendicular to the x-coordinate of the vertex she was

able to think of an axis perpendicular to the real number line. She then called it the

unreal number line. Esra also thought of (t,m) as the point representation of unreal

roots, reasoning that as ordered pairs she needed real numbers to represent any point

on this new plane. Her thinking aligns with the fact that xy-plane can also be used to

represent complex numbers geometrically as ordered pairs of real numbers (Usiskin et

al., 2003; Panaoura et al., 2006).

Thinking of both the expression x=−b/2a±
√

∆/2a and x=−b/2a±
√

∆/2a.
√
−1

as roots of any quadratic equations Esra was able to reason that all the roots, i.e. real

and unreal, constituted the complex numbers. Contrary to the earlier research results

such that students could not imagine “..what complex numbers ’stand for and really

are”’ (Nordlander and Nordlander 2012, p. 633), Esra was able to define complex

numbers as elements of a well-defined set (Sfard, 1991). To accept complex numbers

as a new category of numbers it is essential to conceptualize x + yi as a single entity

in a well-defined set (Conner et al., 2007; Sfard, 1991). Particularly, Esra defined com-

plex numbers as the elements of the set of numbers obtained from the roots of any

quadratic equation with real coefficients. She knew that once the numbers were real

they included two real parts, the x-coordinate of the vertex and the roots’ distances to

the vertex. Similarly, once they were complex they still included the same two parts;

one is real and the other is unreal. Such reasoning allowed Esra to conceptualize that

complex numbers could both be represented as (−b/2a±
√
b2 − 4ac/2a,0) on the real

number line and also (−b/2a,±
√

4ac− b2/2a) on the complex plane as ordered pairs

of real numbers. This is important because she knew that any complex number as a
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single entity, whether totally real or both real and unreal, belongs to the set of the

roots of quadratic equations and is always represented with two components. This

aligns with that mathematicians also treated complex numbers in the form of x + yi

as augmentation of two real parts, x and y (Penrose, 2004). Contrary to the high

school students in the study of Panaoura et al. (2006) and undergraduate students in

the study of Norlander and Norlander (2012), Esra considered any complex number

as a single entity, a single number represented geometrically as an ordered pair of real

numbers and algebraically as augmentation of real and unreal parts. The whole pro-

cess solidified something familiar, i.e. the real numbers representing roots of quadratic

equations, in to a new object, i.e. the complex numbers representing the roots of

quadratic equations. Conner et al. (2007) concluded that separating complex numbers

into the real and unreal (imaginary) parts might enable learners to interpret complex

number addition geometrically, but it might not provide meaningful geometric interpre-

tation of multiplication in complex numbers. However, in this study, I reported that

one could interpret complex number multiplication geometrically while representing

complex numbers as a single entity with two components at the same time.

Such realization also afforded Esra’s understanding why complex numbers in-

volve real numbers. This was important because research has shown that students

have difficulty in recognizing that any number is a complex number (Nordlander and

Nordlander, 2012). Although at the beginning of the study Esra was aware that any

number was a complex numbers she was not able to reason about it. At this point, she

knew that since all the roots of any quadratic equation already included real numbers

complex numbers had to include the real numbers.

Though from the researchers’ point of view, there was a flaw in Esra’s reasoning

about the unreal part. From the point of view of quantitative reasoning, she confused

the quantity with its numerical value. She could not distinguish the distance and

its magnitude. Thompson (2011) stated “Quantitative and numerical operations are

certainly related developmentally, but in any particular moment they are not the same

even though in very simple situations childrean (and teachers) can confound them
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unproblematically..” (p. 42). Particularly, she did not know that
√
−∆/2a referred to

the numerical value, i.e. the absolute value, of the distance as a quantity,
√

∆/2a, to

the x-coordinate of the vertex. Still, her not realizing such dichotomy in her reasoning

was meaningful because she reasoned that distances had to be represented by positive

real numbers. Knowing that
√
−∆/2a was a positive real number she concluded that

√
−∆/2a represented that distance. Once one thinks about positive real numbers on

the real number line both the distance of that number to the origin and its magnitude

is represented with the same expression. However, considering the case of unreal roots,√
(−1).4ac− b2/2a as a distance and its magnitude

√
4ac− b2/2a are represented with

different expressions.

Still, Esra’s thinking of real −b/2a and unreal parts
√
−∆/2a.

√
−1 as two com-

ponents allowed her to relate complex numbers to vectors. This was because besides

thinking of the point-wise representation (−b/2a,
√
−∆/2a), she thought of the real

part as a distance on the real number line and the unreal part as a distance on the un-

real number line. She also reasoned that real numbers could be represented as vectors

because they had an origin, direction and magnitude. Her reasoning was evidenced in

the mathematician Wallis’ observation that “...if negative numbers could be mapped

onto a directed line complex numbers could be mapped onto points in a two dimen-

sional plane..” (Fauconnier and Turner, 2002, p. 271). Similar to real numbers once

she thought complex numbers as points on the complex plane locating their starting

point at the origin and thinking of its real and unreal parts’ magnitudes allowed her to

think that she could represent complex numbers as vectors. Based on Esra’s knowledge

development I hypothesize that, prior to students’ construction of complex numbers,

they might need to know that real numbers could be represented as points and vectors

on a number line.

Esra was able to overcome her difficulty about what
√
−∆/2a.

√
−1 represented

only after she reasoned about what
√
−1 geometrically meant both as a point and a

vector. Reasoning that ±
√
−1 as roots of a quadratic equation she first thought about

its numerical correspondence within the algebraic form of the roots x1,2=t ±m.
√
−1.
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She concluded that the x-coordinate of the vertex had to be zero since there was

no real part and m had to be equal to 1. Calling on her knowledge that the point

representation of x1,2=t ± m.
√
−1 was (t,m) she was able to represent

√
−1 as the

point (0,1). She also reasoned that its magnitude would be 1 unit such that it referred

to the imaginary unit (Sfard, 1991). I propose that Esra’s thinking of
√
−∆/2a as

a real number and
√
−1’s being represented on the unreal axis allowed her to reason

that multiplying
√
−∆/2a with

√
−1 resulted in placing it on the unreal axis. This

was because she also knew that the geometric representation of the roots was already

shown by (−b/2a,
√
−∆/2a). Therefore, she was able to deduce that the geometric

representation of
√
−∆/2a.

√
−1 would be shown by (0,

√
−∆/2a). This allowed her

to think of the multiplication, i.e. a numerical operation, of a real number by
√
−1

meant transforming the real number
√
−∆/2a onto the unreal axis without changing its

magnitude, i.e. quantitative operation. She knew that the magnitude did not change

because
√
−1 was represented geometrically by (0,1). She defined this transformation

as a 90 degrees rotation counterclockwise. That is,
√
−∆/2a.

√
−1 as a quantity was

represented by (0,
√
−∆/2a) such that it had both a magnitude and a direction. Such

reasoning implied that “In the blended space of complex numbers, numbers and vectors

are the same thing..” (Fauconnier and Turner, 2002, p. 273). this was evidenced in

the post-interview too. That is, for Esra complex numbers are elements of the set of

the roots of the quadratic equations such that it is both a number, which is a point

in the Cartesian plane, and a vector, which is a line segment with a magnitude and

direction in the Cartesian plane (Fauconnier and Turner, 2002). In this way, she was

also able to distinguish
√
−∆/2a.

√
−1 from

√
−∆/2a.

In this study, multiplication with the imaginary unit also begets the idea that the

imaginary unit as an operator such as rotation as it is evidenced in “..multiplication of

numbers is just rotation and stretching of vectors” (Fauconnier and Turner, 2002, p.

273). It is in this respect that in this study, I acknowledge that for the formation of the

complex numbers as a mathematical concept structurally, one needs to engage mentally

in some particular activities such as constructing an imaginary unit and acquiring

proficiency in using square roots, which corresponds to the interiorization stage (Sfard,
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1991); and be able to relate the geometrical and algebraic forms of complex numbers

simultaneously, which corresponds to the condensation stage (Sfard, 1991). I argue

that the ability to think of the family of quadratic functions keeping their attributes

such as the vertex, the x-coordinate of the vertex, and the existence of its distances

to the roots invariant while imagining the movability of the roots’ distances to the

x-coordinate of the vertex corresponds to the condensation stage (Sfard, 1991) since

it refers to thinking of the process as a whole. Upon moving through these stages,

one can and might be able to reify complex numbers as elements of a well-defined set.

That is, she could define complex numbers as the elements of the solution set of any

quadratic function with real coefficients.

Thinking of the roots and the x-coordinate of the vertex as distances and coor-

dinate points allowed Esra to conceptualize that “ just as |x| is the distance from x to

0 on the real number line, |z| is the distance from the origin in the complex plane. So,

|z|=
√
x2 + y2 is the absolute value or modulus of z = x + iy” (Usiskin et al., 2003).

Thus, that algebraic expression represents a quantity which is measurable also con-

firms that these complex algebraic expressions exist as numbers because the distances

between the roots and the x-coordinate of the vertex are based on “..conceiving a qual-

ity of a cognitive object where this conception involves measurability of that quality”

(Thompson, 1994, p. 184). Since Karakök et al. (2015) argued that switching flexibly

between algebraic and geometric representation of the Cartesian form was addressed

also in the use of x + yi as an expression to represent any complex number to label

vectors and points on the complex plane.

Examining the algebraic expressions involved in the roots of quadratic equations

with their geometric meanings allowed her to reason that there existed some imaginary

distance to be represented on an unreal axis. I acknowledge that this also brought about

Esra’s realization of the necessary existence of the conjugate root because she could

understand that the distances from the roots to the x-coordinate of the vertex stayed

invariant yet started existing on the unreal number line. That is why the conjugates

are the reflections about the x-coordinate of the vertex or the real axis (Usiskin et al.
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2003; Soto-Johnson and Troup, 2014).

Previous research on complex numbers has shown that students consider “. . . the

geometric and algebraic representation as two different autonomous mathematical ob-

jects and not as two means of representing the same concept” (Panaoura et al. 2006).

Thus, it was important to employ both algebraic and geometric representation simul-

taneously. In addition, since “..to comprehend a quantity, an individual must have a

mental image of an object and attributes of this object that can be measured..” (Moore

et al., 2009, p. 4), I argue that focusing on both algebraic and geometric aspects of the

x-coordinate of the vertex and the roots of a quadratic equation as a distance, a vector,

and a point on the number line simultaneously might be both necessary and essential

in conceptualizing complex numbers’ algebraic and geometric representations.

This study provided insight into how a prospective teacher reasoned while con-

structing the Cartesian form of complex numbers algebraically and geometrically upon

real numbers considering the roots of quadratic equations with real coefficients. The

articulation of a prospective secondary mathematics teacher’s development of complex

numbers conception presented which quantities and the quantitative relationships this

conception involved in its process of construction. Quantities and quantitative relation-

ships were presented through an instructional sequence with a focus on the algebraic

and geometric aspects of quadratic equations triggering the mental actions and oper-

ations on the part of the students to develop their meanings of the Cartesian form of

complex numbers while introducing the notion of complex number.
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8. IMPLICATIONS

From the teaching perspective, I also argue that, thinking of the quadratic func-

tions’ attributes such as the vertex and its x-coordinate, and the roots’ distances to

the x-coordinate of the vertex might provide an opportunity for teachers and teacher

educators with bringing their students’ attention to the concrete examples. Particu-

larly, as shared in this paper, teachers might choose to start with examples of quadratic

functions such that the x-coordinate of the vertex is on the x-axis and then continue

with the ones having the ones on the y-axis. This might assist students to think of

quadratic functions such as y = x2+1 and y = x2+2x+2 coming from the same family

of functions, i.e. quadratic functions with real coefficients, and help them imagine the

processes these functions go through as a whole. Also, another important point is that

students could be asked to think of what stays invariant and what varies once they

produce quadratic functions with the same x-coordinate of the vertex. The interesting

point is that, although the line of symmetry and the x-coordinate of the vertex stay

invariant, the values of ‘a’ and‘ b’ in any algebraic quadratic equation might change.

Although students might come up with different concrete examples of quadratic func-

tions, while teaching I propose to keep the values of ‘a’ and ‘b’ the same whereas

changing the values of ‘c’. This way, it might be easier to bring students’ focus on the

movability of the roots’ distances to the line of symmetry as presented in this study.

That is, students might imagine what varies more easily. Mental actions as reflection

and dilation one might engage in while constructing complex numbers from real num-

bers have been discussed in this study. However, in similar studies it might be further

discussed why one needs an imaginary number line that is perpendicular to the real

number line for a complex plane.

In addition, I suggest that the imaginary unit ’i’ might be interpreted geomet-

rically when studying the roots of quadratic equations and their distances to the x-

coordinate of the vertex along with the algebraic representation of the roots. I also

propose that using similar tasks, teacher educators/researchers might investigate stu-
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dents’ and/or prospective/in-service teachers’ conceptualization of the Cartesian form

of complex numbers both algebraically and geometrically. As presented in this study,

doing research in real context might provide further insight into and the details of how

someone might reason to come to such construction of the Cartesian form of complex

numbers.
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 Turkey. 

 

Moore, K., 2014, “Quantitative reasoning and the sine function: The case of Zac”, Journal for 

 Research in Mathematics Education, Vol. 45, No. 1, pp. 102–138. 

 

Moore, K. C., M. P. Carlson and M. Oehrtman, 2009, “The role of quantitative  reasoning in 

 solving applied precalculus problems”, Conference on research in undergraduate 

 mathematics education (CRUME). Raleigh, NC. 

 



123 
 

NCTM, 2000, Principles and Standards for School Mathematics, National Council of Teachers 

 of  Mathematics, Reston, VA. 

 

Nemirovsky, R., C. Rasmussen, G. Sweeney and M. Wawro, 2012, “When the classroom 

 floor becomes the complex plane: Addition and multiplication as ways of bodily 

 navigation”, Journal of the Learning Sciences , Vol. 21, No. 2, pp. 287–323. 

 

Nordlander, M. C. and E. Nordlander, 2012, “On the concept image of complex numbers”, 

 International Journal of Mathematical Education in Science and Technology , Vol. 43, No. 5, 

 pp. 627–641. 

 

Panaoura, A., I. Elia, A. Gagatsis and G.-P. Giatilis, 2006, “Geometric and algebraic 

 approaches in the concept of complex numbers”, International Journal of Mathematical 

 Education in Science and Technology , Vol. 37, No. 6, pp. 681–706. 

 

Piaget, J., 1969, The intellectual development of the adolescent. 

 

Sfard, A., 1991, “On the dual nature of mathematical conceptions: Reflections on 

 processes and objects as different sides of the same coin”, Educational Studies in 

 Mathematics ,  Vol. 22, No. 1, pp. 1–36. 

 

Simon, M., L. Saldanha, E. McClintock, G. Karagöz-Akar, T. Watanabe and I. O. Zembat, 
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APPENDIX A: PRE- AND POST-ASSESSMENT

REASONING TEST

(i) Could you define complex numbers?

(ii) What is the relationship between complex numbers and the roots of the quadratic

equations?

(iii) Could you define quadratic functions algebraically?

(iv) Given any quadratic function, f :R→R, f(x) = ax2 + bx+ c, where a, b and c∈R

and a 6=0.

(a) Could you explain how you would draw the graph of the function?

(b) Please state the critical points of the function in terms of “a,b,c”.

(c) Please show your work on a graph of a quadratic function.

(v) Given any quadratic function, f :R→R, f(x) = ax2 + bx+ c, where a, b and c∈R

and a 6=0.

(a) Deduce that the roots for the equation ax2 + bx+ c = 0 could be written as

x1,2=−b/2a±
√

∆/2a, where ∆ = b2 − 4ac is called as discriminant.

(b) What does -b/2a mean geometrically and algebraically? Why? Explain your

reasoning.

(c) What does
√

∆/2a mean geometrically? Why? Explain your reasoning.

(vi) For any quadratic equation ax2 + bx+ c, where a, b and c∈R and a 6=0, when one

root is in the form of z = x + iy, a complex root, the other root is z = x − iy

where x and y are real numbers. The complex root z = x − iy is known as the

conjugate of the complex root z = x + iy.

(a) What do x and y refer to algebraically?

(b) Why do x and y have to be real numbers?

(c) What do x and y refer to geometrically?

(d) Why does the conjugate root exist? Explain your reasoning.

(vii) Jason says that he thinks of the number 2+6i in terms of two different parts; the

’2’ and ’6i’. Sharilyn, however, says that she thinks of 2 + 6i as a single number,

’2+6i’ rather than in terms of two different parts. Do you think about 2+6i like

Jason does, like Sharilyn does, or a different way? Please explain your reasoning
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(Conner et al., 2007).
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APPENDIX B: PRE- AND POST-INTERVIEW

QUESTIONS

*Which of the followings are in the set of complex numbers? i.e. Which are the

following numbers complex numbers? Please circle of your choice.

(i) 5 + i5

(ii) 2 + i8

(iii) 5 + i
√

10

(iv) 2−
√
−3

(v) i.(1/2)

(vi) i.
√
−7

(i) Could you define complex numbers? If there is, what are complex numbers?

(ii) Can you explain your answer to the sixth question in the pre-assessment?

(iii) Can you explain your answer to the second question in the pre-assessment? Are

the roots of quadratic equations complex numbers when ∆ > 0?

(iv) Can you explain your answer to the third question in the pre-assessment? What

are the domain and the range of the quadratic function you expressed?

(v) Can you explain your answer to the fourth question in the pre-assessment? How

do you know that −b/2a is the x-coordinate of the vertex? In the graph you drew,

is there just the x-coordinate of the vertex? What is its y-coordinate? What does

the vertex mean?

(vi) Can you explain your answer to the fifth question in the pre-assessment?

(a) Given the form of the roots of quadratic equations, what does ∆ > 0 and

∆ < 0 means algebraically?

(b) Given the form of the roots of quadratic equations, what does ∆ > 0 and

∆ < 0 means geometrically?

(vii) How do you explain what Jason says? How do you explain what Sharilyn says?

How do you show this number analytically?
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APPENDIX C: THE PLAN OF INSTRUCTION

The plan of instruction in this study is presented in the following pages.



Figure C.1. Instruction Plan-Page 1



Figure C.2. Instruction Plan-Page 2



Figure C.3. Instruction Plan-Page 3



Figure C.4. Instruction Plan-Page 4



Figure C.5. Instruction Plan-Page 5



Figure C.6. Instruction Plan-Page 6



Figure C.7. Instruction Plan-Page 7



Figure C.8. Instruction Plan-Page 8



Figure C.9. Instruction Plan-Page 9



Figure C.10. Instruction Plan-Page 10



Figure C.11. Instruction Plan-Page 11



Figure C.12. Instruction Plan-Page 12



Figure C.13. Instruction Plan-Page 13



Figure C.14. Instruction Plan-Page 14



Figure C.15. Instruction Plan-Page 15



Figure C.16. Instruction Plan-Page 16



Figure C.17. Instruction Plan-Page 17



Figure C.18. Instruction Plan-Page 18



Figure C.19. Instruction Plan-Page 19



Figure C.20. Instruction Plan-Page 20



Figure C.21. Instruction Plan-Page 21



Figure C.22. Instruction Plan-Page 22
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APPENDIX D: PHYSICAL CONFIGURATION OF

TEACHING SESSIONS

Figure D.1. Physical Configuration
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APPENDIX E: DEDUCTION OF QUADRATIC

EQUATIONS’ ROOTS

Figure E.1. Algebraic Deduction of the Roots of Quadratic Equations


