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ABSTRACT

EFFECT OF A PRICE DRIVEN SECONDARY MARKET

ON A SYSTEM WITH RANDOM DEMAND AND

UNCERTAIN COSTS

In this thesis, we consider the problem of purchasing a commodity with a fluctu-

ating market price so as to maximize its profit from selling it over two selling season.

Over the primary season, the market price evolution is described by the Geometric

Brownian Motion and we describe the demand process as a Poisson Process. More-

over demand and price is independent during this season. Over the secondary selling

season, demand depends on the price the firm assigns. Considering the salvage value

in place of the secondary market, we develop a mathematical model and find a closed

form of solution. For the general model, we model the secondary market demand as

a linear model and first solve optimization problem of maximizing the revenue from

the secondary market. Then, we combine two selling seasons and model the problem

for maximizing the total expected profit. In addition, we perform a numerical study

to investigate how the optimal quantity and the optimal profit values depend on the

price process parameters. We also test the performance of the optimal policy against

the policy that ignores the volatility of the price.
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ÖZET

FİYATA DAYALI İKİNCİL PAZARIN RASSAL TALEP VE

BELİRSİZ MALİYETLER ALTINDAKİ SİSTEME OLAN

ETKİSİ

Bu tez çalışmasında, dalgalı piyasa fiyatlandırması altında ürün alım problemi

incelendi. Tezin amacı; iki satış sezonu boyunca elde edilecek karı maksimuma çıkaran

başlangıç ürün alış miktarını belirlemektir. Birinci satış sezonunda, piyasa fiyatı sürecini

Geometric Brown Hareket Süreci ve talep süresini ise Poisson Süreci olarak ele alındı.

Ayrıca bu sezonda talep ve alış fiyatı birbirinden bağımsız olarak düşünüldü. İkinci

satış sezonunda ise, talebin; firmanın belirlediği fiyata göre şekilleneceği kabul edildi.

İkinci market yerine hurda değerini kabul edilerek, matematiksel model geliştirildi ve

kapalı bir çözüm yöntemi bulundu. Genel model için, ikincil piyasa modellendi ve

öncelikle bu dönemden en iyi gelir elde edilmesini sağlıyacak şekilde optimizasyon prob-

lemi çözüldü. Daha sonra bu iki marketin gelirleri birleştirildi ve toplam geliri eniy-

ileyecek şekilde problem modellendi. Bunlara ek olarak, fiyatı süreci değişkenlerinin

optimal miktarı ve optimal karı nasıl etklediğini incelemek için bazı sayısal örnekleme

çalışmaları yapıldı. Ayrıca fiyat değişikliğini dikkata alan ve almayan iki optimal planın

performansları karşılaştırıldı.
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1. INTRODUCTION

Price fluctuation is a common challenge for the companies purchasing from spot

markets and/or abroad. The prices of raw materials, precious metals, agricultural

products, minerals and energy resources and electronic components, among many oth-

ers, can fluctuate substantially over short periods. Variations in market conditions, the

presentation of the new technology or change in supply and demand may cause these

fluctuations. On the one hand, some firms depend on spot markets for procurement

and this dependence brings on input price variability. For example, the spot price of

the OPEC basket yearly price varies considerably between 2003 to 2016, as shown in

Figure 1.1. It started from $28.10 in 2003 and reached $94.45 in 2008. Then it declined

sharply to $61.06 in a year. After an increasing trend, it was peak in 2012 by $109.45.

Afterwards it fell heavily again to $37.17 in 2016 and still displays much fluctuations.

On the other hand, fluctuations in exchange rates bring about many challenges for the

companies in Turkey that import goods from abroad. For instance, the daily spot rate

of the dollar against the Turkish lira fluctuates significantly over the last ten years as

shown in Figure 1.2. These fluctuations has been, followed by several similar ups and

downs.

Figure 1.1. Yearly Spot Price of OPEC Reference Basket
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Figure 1.2. Daily Spot Rate of the Dollar against the Turkish Lira

Some companies use derivatives to hedge against the fluctuations. However, in a

stochastic demand environment, the time that the future sales to be made cannot be

known in advance and this makes it difficult to find the right derivatives to deal with

the price variations. Other firms choose to pass the fluctuations to their customers.

But this requires to assign the selling price according to the price that the firms paid at

the beginning rather than the current market price and it is not reasonable to expect

that the customers would accept such a selling price. As a result, purchase decisions

should include the price process as well in contrary to the classical inventory control

models which assume constant or known purchase price.

This study considers the problem of purchasing a commodity with a fluctuating

market price so as to maximize its profit from selling it over two selling seasons. Over

the primary season, inventory levels are depleted by the demand which is a random

process following a Poisson Process and the demand does not depend on the current

price. Over the secondary selling season, the firm decides the price and face with

the demand that depends on that price. The firm buys the commodity only at the

beginning of the primary selling season and it sells the remaining inventory after the

primary season over the secondary selling season. There are two expense items in our

model. Firstly, the firm pays the initial purchase costs which is just multiplication

of purchase price and purchase quantity. Secondly, holding cost is uncured directly
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proportional to shelf life of the product. Figure 1.3 depicts the framework of our

model.

Figure 1.3. The Framework of the Model

This model can be applied for the firms that buy technology intensive products

from abroad. The value of these products depreciates after the release of upper version

of them. Hence the companies should also consider the life-cycle of that commodity

and after certain time they should sell the remaining products in their inventories and

order the new segment of it. Thus, the time from beginning to the introduction of the

upper segment of that commodity can be seen as a primary selling season and the time

before the new segment of orders arrive can be seen as a secondary selling season. For

example, let’s assume a company that imports apple products of iPhone 6s and sells

it in Turkey. After a certain time, iPhone 7 which is a better segment of iPhone 6s

will be introduced and the value of the iPhone 6s will be fallen. Hence the firm should

consider this depreciation and should include this to the buying decisions. It is worth

noting that the problem is typically applicable in the context of consumer-packaged

goods (e.g. grocery items) which are bought by foreign currency as well. For instance,

a shopping mall in Turkey imports some fruits from abroad. After some time of the

order, the manager of the firm should decide how much of the remaining inventories is

disposed of at a reduced sale price since these products are perishable.
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The essential decision problem in buying on a fluctuating market is the timing

of the purchase and the decision of how much to purchase when the time arises. Since

the input price varies, the firm can buy the commodity cheaper or more expensive

according to the time of ordering. Ordering more quantity at the beginning may result

in too much remaining inventory quantity and ruinous sale. Ordering less quantity may

not satisfy all the demand and cause potential profit losses. Hence, it is important to

decide optimal purchase quantity.

This study contributes to the increasing analysis on the integration of finance

and operations management, since we combine in our model different types of price

processes and inventory management. For a novel approach, we expand the classical

inventory management model by adding the analysis of the remaining inventories at

the end of the cycle. This allows us to develop new understanding on the structure of

the optimal policy and to examine in more detail how price evolution parameters effect

it. Also in our model, we find innovative ways of thinking to calculate the holding

costs.

The study is presented in two parts. In the first part, we assume that the remain-

ing inventories after first selling season will be salvaged with a reduced price and there

is no dependence between price and demand for the remaining inventories. In simple

terms, all the remaining inventories will be sold for certain with a reduced price. With

these assumption, we develop a mathematical model and find a closed form of solution.

The second part develops the general model where the secondary market revenue is

a variable which depends on the price that the firm assigns, the demand quantity for

this price and the remaining inventories.

In addition, we perform an extensive numerical study to investigate how the

optimal quantity and the optimal profit values depend on the expected price evolution

and its volatility. We also test the performance of the optimal policy against the policy

that ignore the volatility of the price.
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The rest of this thesis is organized as follows: we review the related literature

in Chapter 2. In Chapter 3 gives the notation, assumptions and formulation of the

model and presents a solution method. Chapter 4 covers the numerical experiments

and sensitivity of the optimal policy to the price process parameters. We conclude the

thesis in Chapter 5 with a discussion on possible extensions of the model.
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2. LITERATURE REVIEW

This chapter provides a brief literature survey on the random price in the inven-

tory management with different model types in Section 2.1. Then, Section 2.2 outline

analysis of price driven demand in procurement management.

2.1. Inventory Management with Price Uncertainty

There have been many studies about optimal inventory policies with random

prices since 1950s. Fabian et al. (1959) studied the case of purchasing a commodity

when the price of this commodity varies between different periods. In this model, it

is assumed that price and demand functions are normally distributed. The objective

of the study is to minimize average sum of purchasing, holding and shortage costs per

unit.

Scarf (1960) analyzed inventory management similar to the study of Fabian et

al. with cost preferences and different from Fabian’s study, Scarf included reorder cost

in the model as well. Order price is assumed constant and order costs has a type

of nonlinear cost, ie. cost is zero if order is zero and K + cz otherwise where K is

reorder cost, c is purchase price and z is quantity ordered. The aim of the study is to

determine the ordering preferences which minimize the expectation of the discounted

value of costs above. It is shown that (S, s) type policy is optimal under some linear

cost assumptions to ensure the convexity of objective function with respect to ordering

quantity.

Kalymon (1971) extended the Scarf’s inventory model by considering the ordering

prices determined by a Markovian stochastic process. Also the model assumes the

convexity of holding, shortage and set-up costs. The purpose of this study is to derive

the structure of optimal policies for both finite and infinite planning horizon. The

optimality of state-dependent (S, s) policy where S and s depend on the order price is
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shown.

Gavirneni (2004) studied the periodic review inventory control problem with fluc-

tuating purchasing costs. He showed that “an order up to policy is optimal and deter-

mine conditions under which the optimal up to levels are monotonically ordered”.

Gaur and Seshadri (2005) examined mitigating the risk in carrying inventory for a

short life cycle or seasonal item when there is a correlation between its demand and the

price of a financial asset. They show “how to construct static hedging strategies in both

the mean-variance framework and the more general utility-maximization framework”.

Haksöz and Seshadri (2007) survey the literature about managing procurement

in supply chains by using spot market operations. They classify the results in two

categories; “the works that deal with optimal procurement strategies and work related

to the valuation of the procurement contacts”.

Goel and Gutierrez (2012) examined the procurement policies of the stochastic

inventory system by integrating commodity markets in their model. They showed that

incorporating spot and futures price information in the procurement decision making

process assists notably to reduce the inventory related costs.

Secomandi and Kekre (2014) conducted research about the effective use of spot

and forward markets in the energy procurement management. They assumed par-

tially procuring supply in forward and spot markets. Their study showed the value of

the forward procurement option on realistic natural gas instances and proposed that

procuring the demand forecast in the forward market is nearly optimal.

Xie et al. (2013) examined the procurement policies for Chinese oil refineries to

aim reducing the cost associated with fluctuating oil prices in the international spot

market. They used Bayesian learning to incorporate market information dynamics with

the model and their model performs well empirically and can result in considerable cost
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savings.

Chen et al. (2014) conducted research to explore “the impact of input price vari-

ability and correlation in the context of an inventory system with stochastic demand

and stochastic input prices”. They showed the concavity of the expected cost function

in the input price and higher input price variability leads to lower the expected cost

for different price processes.

A work close to ours is Berling and Mart́ınez-de-Albéniz (2011) because we as-

sume, as they do, that the demand follows a Poisson process and the price follows a

Markov process. Their study aims to minimize the expected discounted cost including

the purchase costs, the out-of-pocket holding costs and the backordering costs. They

identifies the optimal base-stock level by the single-unit decomposition approach. In

the first part of our model is similar to their studies, but we tries to maximize our

profit. Hence, we include the sales processes and do not let backlogging the order.

Berling and Xie (2014) extended the findings of Berling’s and Martinez-de-Albeniz’s

study by proposing an approximation that allow them to derive simple heuristics for

determining the optimal thresholds that are close to optimal.

Gaur et al. (2015) studied “the optimal timing of inventory ordering decisions”

with price uncertainty. They developed a “continuous time inventory model where

demand and price are realized at the horizon date T and the stocking decision can be

made at any time in the interval [0, T ] given progressively more accurate forecasts of

price and demand and a time dependent purchasing cost”. They show that “the optimal

timing of inventory ordering decision” is independent of the demand and follows a

“simple threshold policy in the price variable with a possible option of non-purchasing”.
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2.2. Price dependent Demand/Excess Inventory

Researchers has investigated inventory management from the economical per-

spective where demand is a function of the price for years. Whitin (1955) improved

inventory control models by including price theory in it. In his model, demand depends

on the price. The study aims to optimize price and stock level to maximize the firm’s

profit.

Young (1978) studied the relation between price, inventory and uncertain de-

mand. He assumed a firm whose uncertain demand is a function of the price. He

analyzed “the form of the policy, existence and uniqueness, the impact of the initial in-

ventory and the relationship of the optimal policy to that of a firm facing the expected

demand curve with certainty.”

Khouja (1999) collected the literature for the single period problem (SPP) and

give ideas about extension of the SPP and suggests some future direction for research.

Petruzzi and Dada (1999) examined a developed version of the news-vendor prob-

lem in which inventory quantity and selling price are determined at the same time.

They suggested that simultaneous price setting and stock quantity selection help the

firms with regard to handling the effect of uncertainty.

Khouja (2000) studied the extension of the SPP problem where “demand is price-

dependent and multiple discounts with prices under the control of the news-vendor are

used to sell excess inventory”.

Zhang et al. (2008) provides “an analytical model for obtaining optimal decisions

jointly on pricing, promotion and inventory control”. Their study includes “a single

item, finite horizon, periodic review model in which the demand is influenced by price

and promotion, and the objective is to maximize the total profit”. They show that “the

optimal promotion policy is a threshold policy under some reasonable assumptions and
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once the promotion is determined the optimal inventory/pricing policy is a base-stock-

list-price policy.”

Çetinkaya and Parlar (2010) studied the excess inventory before a policy starts.

They categorize three different demand processes, which are unlimited demand, de-

mand depends on the sales price and demand is a random variable. The first type of

demand looks similar to our model special case of secondary market process, salvage

revenue. Second type of demand processes, looks similar to our demand modeling for

the secondary market. We need to note that we use this type of modeling after a period

of stochastic inventory in our model, which is more complex than the study of excess

inventory before the inventory policies. To be more explicit, in our model the excess

inventory quantity is a random variable itself as well, not a known variable.

Zhu and Çetinkaya (2015) extend inventory liquidation problem by analyzing

“four special cases where the demand during the liquidation period and regular demand

are assumed to be either exponential or uniform random variables”. In our model,

we use one of the case where the demand of the primary market is exponential and

secondary market demand is uniform price function.
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3. DESCRIPTION OF THE MATHEMATICAL MODEL

This chapter provides description of the mathematical model and its analytical

solutions. Table 3.1 gives the sets, parameters and decision variables for the model.

Figure 3.1 plots the framework of the model with decision variables and parameters.

This chapter consists of two subsections. Firstly, we describe the modeling processes

in a comprehensive manner. Then we provide deeply the mathematical analysis on the

model.

Figure 3.1. The Framework of the Model with Parameters

3.1. Modeling Processes

3.1.1. Demand Process

A great number of products are sold continually every year. While older products

become obsolete and their demand decreases, the new and modern ones become popular

as soon as they are launched. Most companies realize the importance of the different

product life cycle stages and that their products have a limited lifespan (2011). Hence,

they try to sell the commodities in their inventory as soon as possible to invest in new

products to ensure that their business is sustainable.
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Consider a firm sells a commodity in the primary market and if it still has com-

modities after the primary market, it sells the remaining commodities in the secondary

market.

Table 3.1. Sets, Parameters, and Decision Variables for the Model.

D1(t) Primary market demand over [0, t]

D2(p) Secondary market demand under price p

h Holding cost multiplier

HC(Q) The present value of the holding cost with initial purchase quantity Q

J(Q) Total profit from the initial order quantity Q

P (0) Initial Price

P (0)Q The purchase cost with initial purchase quantity Q

P (t) The price at time t

Q Initial purchase quantity

r The yearly interest rate

s Salvage multiplier

SR(Q) The present value of the expected sales revenue with initial purchase

quantity Q

Tj The arrival of the jth demand

V1(Q) The expected profit in the primary season when initial order quantity is

Q

V2(x, y) The expected value of the secondary market revenue where x is the

inventory on hand at the end of the primary selling season and y is

the price at the end of primary season

α The mark-up for the sales price

λ Demand rate

µ The drift of the price process

σp The variance of the price process

τ the length of the primary selling season
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In the primary market, customers arrive continuously in a stochastic pattern and

demand one unit of the item. We assume that the arrival process is Poisson with rate

λ . Moreover the primary market customers are assumed to be insensitive to the price,

i.e. the primary market demand and price are independent. D1(t) denotes for the

primary market demand over [0, t].

D1(t) ∼ Poisson(λt). That is, Pr(D1(t) = k) =
e−λtλtk

k!
(3.1)

In the secondary market, customers are responsive to the commodity price. The

price that customers are willing to pay depends on the remaining life time of the product

and the primary market price of the product. In a realistic approach, customers do

not pay more than the primary market price of the product in a secondary market.

Furthermore, customers are willing to pay less if the remaining product life is small.

Thus, when using the model, the implication of these assumptions need to be carefully

considered. In this context, we assume a linear relationship between the secondary

market demand and price. D2(p) denotes for the secondary market demand under

price p.

D2(p) = A−Bp+ ε, where ε ∼ (0, σ2
ε ) (3.2)

Note that regarding the use of the exponential and uniform demand distributions

in our illustrations, we look at the related references of the Khouja’s study(1999) and

Wanke’s paper(2008) and realize that they are very popular in inventory management

literature and they offer an advantage of analytical simplicity for practical purposes.

3.1.2. The Unit Cost Process

The commodity which is seen as an input for a firm can be bought in a spot

market. Hence its price changes continuously. We assume the price as a stochastic
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process. The Geometric Brownian Motion is used to model the price process that

follows the coming Equation 3.3.

dP (t) = µP (t)dt+ σPP (t)dWP (t) (3.3)

In this equation, µ defines the drift of the process and σP defines its variance. WP (t)

is a Weiner process. It is a continuous-time stochastic process with zero drift and unit

variance per unit time, i.e. WP (t+ ∆t)−WP (t) ∼ N(0,∆t).

Initial price and the price at time t are denoted P (0) and P (t), respectively. To

sum up, the price at time t can be decided by the following Equation 3.4.

P (t) = P (0)e(µ−(1/2)σ2
P )t+σPWP (t) (3.4)

For an arbitrary initial value P(0), the above Equation 3.3 has the analytic solution

(under Ito’s interpretation), as can be seen in Equation 3.4. To arrive this formula, we

will divide the Equation 3.3 by P (t) in order to have our choice random variable be on

only one side. From there, we write the previous equation in Ito integral form:

∫ t

0

dP (t)

P (t)
= µt+ σPWP (t), assuming WP (0) = 0

Of course, dPt
P t

looks related to the derivative of lnPt. However, P (t) is an Ito process

which requires the use of Ito calculus. Applying Ito’s formula leads to

d lnP (t) =
dP (t)

P (t)
− 1

2

1

P (t)2
dP (t)dP (t),

where dP (t)dP (t) is the quadratic variation of the Equation 3.3. In this case we have:

dP (t)dP (t) = σ2 P (t)2 dt
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Plugging the value of dP (t) in the above equation and simplifying we obtain

ln
P (t)

P (0)
= (µ− σ2

P

2
)t+ σPWP (t)

Taking the exponential and multiplying both sides by P (0) gives the solution claimed

above.

3.1.3. Accounting Costs and Revenues

There are two cost items in the model. The first one is initial order cost. The

firm buys initial quantity Q and its cost is only quantity multiplied by the initial price.

There is no setup cost in our model. The second one is holding cost. Every product

we initially purchased spend time in the inventory until it is sold. The firm incurs a

holding cost proportional to the time spent in the shelf with a constant holding cost

coefficient h and the initial price P (0).

3.2. The Expected Profit

The inventory manager seeks to maximize its profit when deciding to order quan-

tity at the beginning. In our model, profit function consists of two parts; the profit from

the primary market and the revenue from the secondary market. Over the primary

selling season, there are three items: the initial purchase cost, the sales revenue and

the holding costs. The expected profit in the primary season is denoted by V1(Q) when

initial order quantity is Q. Equation 3.5 specifies the profit function in this season with

a initial purchase quantity Q, where P (0)Q is the purchase cost, SR(Q) is the sales

revenue and HC(Q) is the holding cost, respectively.

V1(Q) = −P (0)Q+ SR(Q)−HC(Q) (3.5)
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Over the secondary selling season, the firm tries to maximize its revenue from

the remaining commodities in its inventory at the end of the primary season. The

revenue depends on the price and on hand inventory at the end of primary selling

season. Equation 3.6 denotes the optimization problem we need to solve where x is the

inventory on hand at the end of primary season, y is the price at the end of primary

season and D2(p) is the demand in the secondary market with respect to the price p.

V2(x, y) = max
p≤y

ED2 [pmin{x+, D2(p)}] (3.6)

The sum of the primary season profit and discounted secondary season revenue

gives us the total profit,J(Q) the firm gets from the initial purchase quantity Q,as can

be seen in Equation 3.7. In this study we aim to decide the initial order quantity Q

maximizing this total profit, J(Q).

J(Q) = V1(Q) + E[V2((Q−D1(τ))+, P (τ)]

= −P (0)Q+ SR(Q)−HC(Q) + E[ max
p≤P (τ)

ED2 [pmin{(Q−D1(τ))+, D2(p)}]]

(3.7)

3.2.1. Expected Sales Revenue over the Primary Selling Season

Customers arrive continuously and independently throughout the primary selling

season. The firm earns revenue from the sales at the rate of the commodity price

of arrival time with a mark-up α for sales price. Equation 3.8 gives the expected

discounted sales revenue over the primary selling season,where Tj is the arrival of the

jth demand and τ is the length of the primary selling season

SR(Q) = E[

Q∑
j=1

αP (Tj)e
−rTj1{Tj≤τ}] (3.8)
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Proposition 3.1. SR(Q) = αP (0)
∑Q

j=1( λ
λ−µ+r

)j Pr{T ∗j ≤ τ},

where T ∗j ∼ Erlang(λ− µ+ r, j) provided that λ− µ+ r ≥ 0

Proof. We know that if a stochastic process P (t) follows a Geometric Brownian Motion,

then its expected value is P (0)eµt, where µ is the drift of the process. Since demand

and price are independent, Tj is just a random variable like t above and E[P (Tj)] =

P (0)e−µTj . Then, equation 3.8 becomes

SR(Q) = αE[

Q∑
j=1

P (0)e−(µ+r)Tj1{Tj≤τ}]

The probability density function of Tj is Erlang distribution with shape parameter j

and rate λ as the arrival process of customers is described by a Poisson process with

rate λ. Taking expectation with respect to Tj we obtain the following equation.

αP (0)

Q∑
j=1

∫ ∞
0

e−(µ+r)x1{x≤τ}fj(x) dx where fj(x) is the pdf of Tj.

After writing open form of pdf of Erlang with shape parameter j and rate λ and

getting rid of binary variable 1{x≤τ}, the equation turns into the following form:

SR(Q) = αP (0)

Q∑
j=1

∫ τ

0

e−(µ+r)x λ
jxj−1e−λx

(j − 1)!
dx.

For the ease of interpretation, we translate the integral part as a pdf of the Erlang

distribution. For this reason, we assume that (λ − µ + r) is a positive number. Then

we multiply and divide the equation by (λ − µ + r)j and do not change the value of

the equation. After simplifying, we obtain:

SR(Q) = αP (0)

Q∑
j=1

(
λ

λ− µ+ r
)j
∫ τ

0

(λ− µ+ r)jxj−1e−(λ−µ+r)x

(j − 1)!
dx
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Since (λ−µ+r)jxj−1e−(λ−µ+r)x

(j−1)!
is a probability density function of Erlang distribution with

shape parameter j and rate (λ− µ+ r), the equation is transformed into the following

form.

SR(Q) = αP (0)

Q∑
j=1

(
λ

λ− µ+ r
)j Pr{T ∗j ≤ τ} where T ∗j ∼ Erlang(λ− µ+ r, j)

3.2.2. Expected Holding Costs over the Primary Selling Season

We define a recursive function to track every commodity the firm buys and cal-

culate its holding time on shelves. In this model, we assume that there is a linear

relation between holding cost and the shelf life of commodity. We calculate for every

commodity the time between the beginning and the arrival of the demand for that

commodity and multiply it with a holding cost coefficient h and the initial purchase

price P (0). To find the total holding cost, we sum the present values of the individual

commodity holding cost. To illustrative, assume we purchase the commodity now and

the demand for the commodity arrives after 3 months. Then, the present value for the

holding cost for this commodity is e−3r3hP (0) where r is the yearly interest rate.

Let’s assume that the firm orders initially one commodity and measures its present

value holding cost. Denoted by L(t) and its present value is found by taking expectation

over the time of first customer arrives. Its value is in the following Proposition 3.2.

Proposition 3.2. L(t) = E[
∫ min(t,T1)

0
e−rxdx] = 1

λ+r
[1− e−(λ+r)t]

Proof. Expectation is taken by conditioning arrival time of the first customer, T1.

E[

∫ min(t,T1)

0

e−rxdx] = Pr(t ≤ T1)

∫ t

0

e−rx dx + Pr(t > T1)

∫ T1

0

e−rx dx
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Since the pdf of T1 is λe−λk,

L(t) =

∫ ∞
t

λe−λk
∫ t

0

e−rx dx dk +

∫ t

0

λe−λk
∫ k

0

e−rx dx dk

After calculating the integrals and pairing up, we get the result 1
λ+r

[1− e−(λ+r)t].

Define M(i, t) as total expected discounted inventories carried when there are i

items in the stock and the length until the end of primary selling season is t. It can

be written as a recursive function since when the first customer arrives before the end

of primary selling season, we update the function with decreasing the order quantity

by 1 and decreasing the time variable by the arrival time, T1. Then it becomes similar

function except changes in variables.

M(i, t) =

 0 t ≤ 0 or i = 0;

iL(t) + E[e−rTiM(i− 1, t− Ti)] otherwise.

So,

M(1, t) = L(t) + E[e−rT1M(0, t− T1)] = L(t)

M(2, t) = 2L(t) + E[e−rT1M(1, t− T1)] = 2L(t) + E[e−rT1L(t− T1)]

M(3, t) = 3L(t) + E[e−rT1M(2, t− T1)] = 3L(t) + 2E[e−rT1L(t− T1)] + E[e−rT2L(t− T2)]

...

M(N, t) = NL(t) + (N − 1)E[e−rT1L(t− T1)] + (N − 2)E[e−rT2L(t− T2)] + . . .

+ E[e−rTN−1L(t− TN−1)]

In this model, we want M(Q, τ), i.e. total expected discounted inventories carried

when there are Q items in the stock and the length until the end of primary selling
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season is τ .

M(Q, τ) = QL(τ) +

Q−1∑
i=1

(Q− i)E[e−rTiL(τ − Ti)]

Proposition 3.3. E[e−rTnL(t− Tn)] = λn

(λ+r)n+1 Pr(T ∗∗n < t)− e−rt

λ+r
Pr(N(t) = n),

where T ∗∗n ∼ Erlang(λ+ r, n) and N(t) ∼ Poisson(λt)

Proof. Since Tn is distributed with Erlang, expectation is taken on the pdf of Erlang

distribution.

E[e−rTnL(t− Tn)] =

∫ t

0

e−ry
1

λ+ r
(1− e−(λ+r)(t−y))fn(y) dy

=
1

λ+ r

∫ t

0

e−ryfn(y) dy − 1

λ+ r

∫ t

0

e−(λ+r)teλyfn(y) dy

=
1

λ+ r
(

λ

λ+ r
)n
∫ t

0

e−(λ+r)yyn−1(λ+ r)n

(n− 1)!
dy

− e−(λ+r)tλn

λ+ r

∫ t

0

yn−1

(n− 1)!
dy

= (
λ

λ+ r
)n Pr(T ∗∗n < t)− e−(λ+r)tλn

λ+ r

tn

n!

= (
λ

λ+ r
)n Pr(T ∗∗n < t)− e−rt

λ+ r
Pr(N(t) = n),

where T ∗∗n ∼ Erlang(λ+ r, n), N(t) ∼ Poisson(λt).

After using the findings of the proposition above, we reach the formula for the

total expected discounted holding costs, denoted by HC(Q), with a holding cost mul-

tiplier hP (0).

HC(Q) =
hP (0)

λ+ r
[Q+

Q−1∑
i=1

(Q− i)( λ

λ+ r
)i Pr(T ∗∗i )− e−rτ

Q−1∑
i=0

(Q− i)Pr(N(τ) = i)]

(3.9)



21

To sum up, the expected profit from the primary selling season becomes

E[V1(Q)] = −P (0)Q+ SR(Q)−HC(Q)

= −P (0)Q+ αP (0)

Q∑
j=1

(
λ

λ− µ+ r
)j Pr{T ∗j ≤ τ} − hP (0)

λ+ r
[Q

+

Q−1∑
i=1

(Q− i)( λ

λ+ r
)i Pr(T ∗∗i )− e−rτ

Q−1∑
i=0

(Q− i)Pr(N(τ) = i)],

where T ∗j ∼ Erlang(λ− µ+ r, j) and T ∗∗i ∼ Erlang(λ+ r, i).

3.2.3. Special Case: Constant Salvage Value

In the second market, we assumed that every leftover item can be sold at a

constant mark-up price. It is equivalent to externally imposed salvage ”multiplier”

s ≤ 1. Hence there is no optimization over the discounted price. Then the revenue

from the second selling season becomes

V2(Q−D1(τ), P (τ)) = sP (τ)(Q−D1(τ))+

Expectation is taken over the demand over the first selling season and the price at

the end of first season. Since the price and demand is independent in the first season,

E[V2(Q−D1(τ), P (τ))] = E[sP (τ)e−rτ (Q−D1(Q))+]

= se−rτE[P (τ)]E[(Q−D1(Q))+]

= sP (0)eµτe−rτE[(Q−D1(Q))+]

= sP (0)e(µ−r)τ
Q−1∑
i=0

(Q− i) Pr(D1(τ) = i),

where D1(τ) ∼ Poisson(λτ).
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Therefore, total expected profit with special case of constant salvage revenue is

denoted by J(Q) and its value is

J(Q) = E[V1(Q)] + E[V2(Q−D1(τ), P (τ))]

= −P (0)Q+ αP (0)

Q∑
j=1

(
λ

λ− µ+ r
)j Pr{T ∗j ≤ τ} − hP (0)

λ+ r
[Q

+

Q−1∑
i=1

(Q− i)( λ

λ+ r
)i Pr(T ∗∗i ≤ τ)− e−rτ

Q−1∑
i=0

(Q− i)Pr(N(τ) = i)]

+ sP (0)e(µ−r)τ
Q−1∑
j=1

(Q− j) Pr{D1(τ) = j},

where T ∗j ∼ Erlang(λ− µ+ r, j), T ∗∗i ∼ Erlang(λ+ r, i) and D1(τ) ∼ Poisson(λτ).

Proposition 3.4. J(Q) is concave in Q for µ ≤ r.

Proof. We need to check first and second increment of the profit function. First incre-

ment is

∆(J(Q)) = J(Q+ 1)− J(Q)

= −P (0) + αP (0)(
λ

λ− µ+ r
)Q+1 Pr{T ∗Q+1 ≤ τ}

+ sP (0)e(µ−r)τ
Q∑
j=1

Pr{D1(τ) = j}

− hP (0)

λ+ r
[1 +

Q∑
i=1

(
λ

λ+ r
)i Pr(T ∗∗i ≤ τ)− e−rτ

Q∑
i=0

Pr(N(τ) = i)]
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Second increment is

∆2(J(Q)) = ∆(J(Q+ 1))−∆(J(Q))

= αP (0)[(
λ

λ− µ+ r
)Q+2 Pr{T ∗Q+2 ≤ τ} − (

λ

λ− µ+ r
)Q+1 Pr{T ∗Q+1 ≤ τ}]

+ sP (0)e(µ−r)τ Pr{D1(τ) = Q+ 1}+
hP (0)

λ+ r
e−rτPr{D1(τ) = Q+ 1}

− hP (0)

λ+ r
(

λ

λ+ r
)Q+1 Pr{T ∗∗Q+1 ≤ τ}

Since the cumulative distribution function of the Erlang distribution is F (x; k, λ) =

1 −
∑k−1

n=0
1
n!
e−λx(λx)n =

∑∞
n=k

1
n!
e−λx(λx)n and the probability mass function of the

Poisson distribution is e−λxλk

k!
, after using these equalities in the second increment and

bringing equation in a good shape, we get

∆2(J(Q)) = −αP (0)(
r − µ

λ− µ+ r
)(

λ

λ− µ+ r
)Q+1

∞∑
n=Q+2

e−(λ−µ+r)τ ((λ− µ+ r)τ)n

n!

− αP (0)
e−(λ−µ+r)τ (λτ)Q+1

(Q+ 1)!
+ sP (0)

e−(λ−µ+r)τ (λτ)Q+1

(Q+ 1)!

− hP (0)

λ+ r
(

λ

λ+ r
)Q+1

∞∑
n=Q+2

e−(λ+r)τ ((λ+ r)τ)n

n!

Therefore, for µ ≤ r and α ≥ s, ∆2(J(Q)) ≤ 0 . So the profit function is concave.

In this case, the smallest ordering quantity which makes the first increment neg-

ative is the optimal quantity. Hence, the first Q satisfying

λ+ h+ r

λ+ r
≥ α(

λ

λ− µ+ r
)Q+1 Pr{T ∗Q+1 ≤ τ}

+ e−rτ (seµτ +
h

λ+ r
)

Q∑
i=0

Pr{D1(τ) = i}

− h

λ+ r

Q∑
i=1

(
λ

λ+ r
)i Pr{T ∗∗i ≤ τ}

is optimal.
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3.2.4. The Secondary Market Customers

The firm maximizes its revenue from the remaining inventory after the first selling

season. The secondary market customers demand the firm’s product with a negative

correlation with price. We assume linear deterministic customer demand in the sec-

ondary market. D2(p) = A − Bp is the relation between price and demand in our

model.

Unconstrained solution. The firm decides its product price according to its total

revenue from the remaining inventory. There is no limitation for the price the firm

assigns. Hence, the problem gets the form below where p denotes the price and x

denotes the remaining inventory for the second market.

V2(x, p) = max
p
pmin{x+, A−Bp} (3.10)

To solve the problem above, we need to analyze every possible case of the remain-

ing inventory quantity.

Case 1. For x+ ≥ A, the problem becomes maxp p(A−Bp) since min{x+, A−

Bp} = A−Bp. It can be seen easily that it is a concave function and it gets its optimal

value when the first order derivation equals to 0. Hence, p∗ = A
2B

and V2(x, p∗) = A2

4B
.

Case 2. For A > x+ ≥ A
2
, there are two options:

For the first option, x+ ≥ A−Bp. Then min{x+, A−Bp} = A−Bp. The problem

is the same as for the Case 1. Since the optimal solution assures the constraints for

these case, optimal solution is the same here as well. So, p∗ = A
2B

and V2(x, p∗) = A2

4B
.
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For the second option, x+ < A−Bp. Then, min{x+, A−Bp} = x+. The problem

becomes maxp px
+ and the optimal price is the greatest value the price can take. Since

the price has a constraint p < A−x+
B

from the option part and x+ ≥ A
2

from the case

part, we get p < A
2B

. So, if we take limit for the price, then p∗ = A
2B

and V2(x, p∗) = A2

4B
.

To sum up, for both options, the optimal solution is same and it is a general

solution for this case.

Case 3. For A
2
> x+ ≥ 0, there are two options similar to case 2:

For the first option, x+ ≥ A − Bp. Then, min{x+, A − Bp} = A − Bp. The

problem is the same as for the Case 1. Unfortunately, optimal solution for the case

1 is not feasible here because of the constraints x+ ≥ A − Bp and x+ < A
2

. Since

Ap − Bp2 is a concave function, the optimal price is the least drift feasible solution

from p∗ = A
2B

. Lets call this drift ∆. Then, x+ ≥ A − B( A
2B

+ ∆). So, we get the

constraint ∆ ≥ A
2B
− x+

B
for the drift and the least value it gets is ∆∗ = A

2B
− x+

B
. Hence,

p∗ = A
2B

+ ∆∗ = A
2B

+ A
2B
− x+

B
= A−x+

B
and V2(x, p∗) = Ax+−x+2

B
.

For the second option, x+ < A−Bp. Then, min{x+, A−Bp} = x+. The problem

becomes maxp px
+ and the optimal price is the greatest value the price can take similar

to case 2 again. Since p < A−x+
B

from the option part, when we take limit for the price,

we get p∗ = A−x+
B

and V2(x, p∗) = Ax+−x+2

B
.

To sum up, for both options, the optimal solution is same and it is a general

solution for this case.
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In a nutshell, the unconstrained solution becomes

For (Q−D1(τ))+ ≥ A/2

p∗u =
A

2B
, V ∗2 =

A2

4B

For (Q−D1(τ))+ < A/2

p∗u =
A− (Q−D1(τ))+

B
, V ∗2 =

A(Q−D1(τ))+ − (Q−D1(τ))2

B

Constrained solution. Due to the nature of the secondary market, for normal

goods the price should be less and equal to the price of the same good in the first market.

Therefore we need to add this constraint to the problem as well to be more realistic

model. Then, we have four cases whether or not optimal price for unconstrained model

is less than its normal price at that time and the remaining inventory is less than A
2
.

Unconstrained optimal

≤ P (τ) > P (τ)

(Q−D1(τ))+ ≥ A/2 Case 1 Case 3

< A/2 Case 2 Case 4

The total revenue from the secondary market is
∑4

k=1 V2,k(Q) =
∑4

k=1E[V2(Q−

D1(τ), P (τ))1{case k}]. In the following pages, every case of constrained solution is

analyzed one by one.

Case 1: P (τ) ≥ A
2B

and (Q −D1(τ))+ ≥ A
2
. In this case, since the price at

the end of primary selling season is greater than the optimal value, the unconstrained

solution is feasible and optimal here as well. After taking expectation over the primary
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selling season demand and the price at the end of this season, we get

V2,1(Q) = E[V2(Q−D1(τ), P (τ))1{case 1}]

=

Q−A
2∑

i=0

A2

4B
Pr(D1(τ) = i) Pr(P (τ) ≥ A

2B
)

=

Q−A
2∑

i=0

A2

4B

{∫ ∞
A
2B

f(y) dy
}
P (D1(τ) = i),

where f(y) is a probability density function of the price at the end of the primary

season.

With the help of findings in Appendix A, we can take the integral. Then it gets

V2,1(Q) =
A2

4B

{
1− Φ(

ln( A
2B

)− In(P (0))− (µ− 1
2
σ2)τ

σP
√
τ

)
}Q−A

2∑
i=0

P (D1(τ) = i) (3.11)

Case 2: P (τ) ≥ A−(Q−D1(τ))+

B
and (Q − D1(τ))+ < A

2
. Similar to case 1,

unconstrained solution is feasible and optimal in this case as well. With similar steps

to case 1, we get

V2,2(Q) = E[V2(Q−D1(τ), P (τ))1{case 2}]

=

Q∑
i=Q+1−A

2

{∫ ∞
A−(Q−i)

B

A− (Q− i)
B

(Q− i)f(y) dy
}
P (D1(τ) = i)

=

Q∑
i=Q−A

2
+1

A− (Q− i)
B

(Q− i)
{

1− Φ(
ln(A−(Q−i)

B
)− µτ

σP
√
τ

)
}
P (D1(τ) = i),

where µτ = In(P (0)) + (µ− 1
2
σ2)τ .

Case 3: P (τ) < A
2B

and (Q −D1(τ))+ ≥ A
2
. In this case, the unconstrained

solution is not feasible since the optimal price is greater than the price at the end of
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the primary season. Then, the optimal price is the price at the end of the primary

season because of the concavity of the revenue function.

V2,3(Q) = E[V2(Q−D1(τ), P (τ))1{case 3}]

=

Q−A
2∑

i=0

{∫ A
2B

0

y min(Q− i, A−By)f(y) dy
}
P (D1(τ) = i)

=

Q−A
2∑

i=0

{∫ A−(Q−i)
B

0

y(Q− i)f(y) dy

+

∫ A
2B

A−(Q−i)
B

y(A−BP (τ))f(y) dy
}
P (D1(τ) = i)

=

Q−A
2∑

i=0

(Q− i)P (D1(τ) = i)

∫ A−(Q−i)
B

0

yf(y) dy

+

Q−A
2∑

i=0

P (D1(τ) = i)

∫ A
2B

A−(Q−i)
B

(Ay −By2)f(y) dy

After taking integrals by the help of the findings in Appendix A, we get

V2,3(Q) =

Q−A
2∑

i=0

P (D1(τ) = i)

[
(Q− i)e(

σ2P τ

2
+µτ )Φ

( ln(A−(Q−i)
B

)− µτ − σ2
P τ

σP
√
τ

)
+ Ae(

σ2P τ

2
+µτ )

[
Φ
( ln( A

2B
)− µτ − σ2

P τ

σP
√
τ

)
− Φ

( ln(A−(Q−i)
B

)− µτ − σ2
P τ

σP
√
τ

)]
−Be2(σ2

P τ+µτ )
[
Φ
( ln( A

2B
)− µτ − 2σ2

P τ

σP
√
τ

)
− Φ

( ln(A−(Q−i)
B

)− µτ − 2σ2
P τ

σP
√
τ

)]]
,

(3.12)

where µτ = In(P (0)) + (µ− 1
2
σ2)τ .

Case 4: P (τ) < A−(Q−D1(τ))+

B
and (Q − D1(τ))+ < A

2
. Similar to Case 3,

unconstrained solution is not feasible and the optimal price is the price at the end of
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the primary season. With similar steps, we get

V2,4(Q) = E[V2(Q−D1(τ), P (τ))1{case 4}]

=

Q∑
i=Q+1−A

2

{∫ A−(Q−i)
B

0

y min(Q− i, A−By)f(y) dy
}
P (D1(τ) = i)

=

Q∑
i=Q+1−A

2

{∫ A−(Q−i)
B

0

y(Q− i)f(y) dy
}
P (D1(τ) = i)

=

Q−A
2∑

i=0

P (D1(τ) = i)

[
(Q− i)e(

σ2P τ

2
+µτ )Φ

( ln(A−(Q−i)
B

)− µτ − σ2
P τ

σP
√
τ

)]
,

where µτ = In(P (0)) + (µ− 1
2
σ2)τ .

To sum up, total revenue from the primary and secondary market becomes

J(Q) = V1(Q) + V2(Q) = −P (0)Q+ SR(Q)−HC(Q) +
4∑

k=1

V (2, k) (3.13)
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4. COMPUTATIONAL AND SENSITIVITY ANALYSIS

This chapter provides the aim of the computational and sensitivity analysis, pa-

rameter settings for the numerical analysis and observations from the results of numer-

ical experiments.

4.1. Objectives

To validate our mathematical model and obtain information about the optimal

policy, we perform some numerical experiments with different parameter settings. This

numerical analysis also provide the answer for questions, such as how much to order

with specific parameter setting, which parameter of the model is more effective in the

optimal policy or how the price volatility information affects the optimal quantity and

optimal policy.

4.2. Parameter Settings

Considering salvage value as a secondary market, in our analysis we fix P (0) as

1 TL, and τ is selected as 1 year. The yearly interest rate is set as r = 0.1. Other

parameters take at least two different values as α ∈ {1.00, 1.01, 1.05}, λ ∈ {10, 100},

µ ∈ {0.09, 0.10}, h ∈ {0.01, 0.10} and s ∈ {0.95, 0.99, 1.00}.

For the general secondary market, before analyzing the model, we need to specify

the parameters of the demand model of the secondary market. In our computational

study, D2(p) = A−Bp+ ε is the relationship between price and the secondary market

demand.

The parameter A can be interpreted as the potential demand over the secondary

selling season. Assuming the total expected demand for a commodity is simply the

multiplication of the product life and the rate of demand, the potential demand for the
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secondary market will be directly proportional to the remaining product life. Hence,

A = d1(CL − τ)λ is a reasonable choice, where d1 is a coefficient depending on the

commodity, CL is the commodity life cycle, τ is the length of the primary selling season

and λ is the rate of demand over the primary selling season.

The parameter B is the elasticity of the price over the secondary selling season.

Assuming a linear model for the total demand in the primary selling season, we can

find the elasticity of the price over the primary selling season. Then, D̃1 = A0−B0p+ε.

After taking expectation from both side of the equation, we get

E[D̃1] = E[A0 −B0p+ ε] = λτ = d2CLλ−B0p̄.

To find the elasticity B0, we also need to find p̄, which is the average price over

the primary selling season. It can be determined by taking expectation over the price

throughout the primary selling season and divide by the length of the primary selling

season. Then,

p̄ =
E[

∫ τ
0 P (t)dt]

τ
=

∫ τ
0 E[P (t)]dt

τ
=

∫ τ
0 P (0)eµtdt

τ
= P (0) e

µτ−1
µτ

.

Assuming that the elasticity of the price is the same for the primary and secondary

selling seasons, we get

B = B0 = (d2CL−τ)λ
p̄

.

To test the secondary market demand model, we made experiments with many

different parameter settings, as can be seen in Table 4.2. In that table, we assume

that the commodity life cycle, CL is 5 years and the initial purchase price, P (0) is 1.

Min is defined as the minimum optimal price when there is no price constraint. In a

similar manner, Max is defined as the maximum optimal price. To be remembered, if

there is enough remaining inventory, the optimal price is A
2B

and if not, the optimal

price depends on the remaining quantity. (Q−D1(τ))+ and it is A−(Q−D1(τ))+

B
. Hence,
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the optimal price can take values between A
2B

and A
B

. Min is A
2B

and Max is A
B

and as

we can see in the Table 4.2, both is less than the expected price of the commodity at

the end of the first selling season. This is a reasonable indicator of the modeling and

makes us sure that we are on the right path.

Table 4.1. Parameter Analysis for the Secondary Market Demand Model

τ 1 2 3 4

µ 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Expected Price 1.105 1.105 1.221 1.105 1.350 1.162 1.492 1.221

p̄ 1.052 1.025 1.107 1.052 1.166 1.079 1.230 1.107

d1=d2=1
Min 0.553 0.553 0.611 0.553 0.675 0.581 0.746 0.611

Max 1.105 1.105 1.221 1.105 1.350 1.162 1.492 1.221

d1=d2=1.5
Min 0.485 0.473 0.453 0.351 0.389 0.360 0.263 0.237

Max 0.971 0.947 0.906 0.701 0.777 0.719 0.527 0.474

d1=1, d2=1.5
Min 0.789 0.769 0.830 0.789 0.875 0.809 0.922 0.830

Max 1.578 1.538 1.661 1.578 1.749 1.618 1.844 1.661

d1=1.5, d2=1
Min 0.324 0.316 0.302 0.234 0.259 0.240 0.176 0.158

Max 0.647 0.631 0.604 0.467 0.518 0.480 0.351 0.316

d1=d2=2
Min 0.467 0.456 0.415 0.300 0.333 0.308 0.205 0.185

Max 0.935 0.911 0.830 0.601 0.666 0.617 0.410 0.369

After deciding the parameters of the secondary market demand models, we an-

alyze the general model with numerical experiments. We assume that d1 = 1.5 and

d2 = 1.5, the first market demand rate, λ is 10, the product life cycle, CL is 5 years, the

yearly interest rate, r is 0.1, and the initial purchase price, P (0) is 1. Other parameters

are σP ∈ {0, 0.5, 0.8, 1}, τ ∈ {1, 2, 3, 4, 4.5}, µ ∈ {0.09, 0.1, 0.15}, h ∈ {0.01, 0.03, 0.05}

and α ∈ {1, 1.01, 1.05}.
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4.3. Observations

Considering salvage value as a secondary market, we perform numerical analysis

with different parameter settings to validate the model and its solution. For example,

in one case, we calculate the optimal quantity and optimal profit with (α, s, λ, µ, h) =

(1.01, 0.95, 10, 0.10, 0.01) and find that optimal quantity is 6 and the corresponding

expected profit is 0.033 TL. Other numerical results can be seen in Table 4.3 for

the optimal quantity and in Table 4.3 for the expected optimal profit values for the

optimal quantities. Note that in the optimal quantity table, 0 means do not order

anything. There are many observations from the results. Firstly, optimal quantity

seems to be directly proportional to the demand rate. This can be expected since if

there are many requests for the product, it is expected that the firm will order more

product. Secondly, sales mark-up multiplier has obviously large impact on the optimal

policy. When the firm is able to sell the commodity with a higher price, it orders

more at the beginning of the season since the demand and price during the primary

season is independent. Thirdly, even the expected present value of price is decreasing,

the firm still orders quantity according to our model. This can be possible, since

the revenue from sales of the product can outweigh the cost of buying higher initial

prices. Moreover, the salvage multiplier becomes inactive when holding multiplier

is higher. This is reasonable considering outbalance of holding costs to the salvage

revenue. Lastly, holding cost multiplier is very effective on the optimal quantity.

In Table 4.3, the optimal quantity and in Table 4.5, optimal profit values can be

seen when the volatility of the price process, σp is 1. Similarly, optimal quantity and

profit values with different volatilities can be seen in the following tables: Table 4.6

and Table 4.7 where σp is 0.8, Table 4.8 and Table 4.9 where σp is 0.5 and Table 4.10

and Table 4.11 where the volatility information is ignored, i.e. σp = 0.

Let’s summarize the observations from the computational analysis for the general

model. Firstly, the optimal quantity and the optimal profit value increase as one of

the following three parameters increases. These parameters are the length of the first
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selling season, τ , the drift of the price process, µ and the mark-up α for sales price.

It is reasonable that if the price is expected to be increased, the firms tend to order

more quantity at the beginning to get the benefit of increase in price, even they could

not sell much. Similarly, if the firm sells with higher mark-up prices, they will gain

more and sales revenue can outweigh the holding costs. The effect of the length of the

first selling season on the optimal quantity is decreasing as the length of the primary

market increases. This is also be reasonable since the product life cycle is limited and

there will be too little revenue from the secondary market for the remaining inventories.

Secondly, the optimal quantity and profit value decrease as holding cost coefficient, h

increases. Lastly, the optimal quantity and profit values decrease as the variance of

the price, σp increases. This is not expected outcome at the first thinking. There is

a reasonable explanation for this result. The price constraint becomes more active as

σp increases. This causes any excess stock can only be sold at a less favorable price.

Hence, if there is more volatility for the price, less quantity of the product is ordered

at the beginning.

To analyze the importance of taking volatility of the price into consideration

when deciding the optimal inventory quantity, we look at the difference in the optimal

quantity between the numerical results with σp = 1 and σp = 0, as can be seen in

Table 4.12. The value of the information of the volatility becomes more valuable when

the drift of the price is higher and the length of the first selling season is smaller.

Moreover,in Table 4.13 we look at the percentage change of the optimal profit value

when we pay attention to the variance of the price process. For instance, for the

parameter setting, ”τ = 2, µ = 0.15, α = 1.01, h = 0.03”, we can gain % 10.09 more

when we considering the information of σ = 1.
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Table 4.2. Optimal Quantity

λ 10 100

µ 0.09 0.10 0.09 0.10

h 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10

α=1.00

s=0.95 0 0 0 0 0 0 0 0

s=0.99 0 0 0 0 0 0 0 0

s=1.00 0 0 0 0 0 0 0 0

α=1.01

s=0.95 4 0 6 0 49 9 82 10

s=0.99 4 0 7 0 50 9 86 10

s=1.00 4 0 8 0 50 9 90 10

α=1.05

s=0.95 9 4 9 4 95 46 98 51

s=0.99 10 4 11 5 100 46 104 51

s=1.00 11 4 13 5 103 46 109 51

Table 4.3. Expected Optimal Profit Values

λ 10 100

µ 0.09 0.10 0.09 0.10

h 0.01 0.10 0.01 0.10 0.01 0.10 0.01 0.10

α=1.00

s=0.95 0 0 0 0 0 0 0 0

s=0.99 0 0 0 0 0 0 0 0

s=1.00 0 0 0 0 0 0 0 0

α=1.01

s=0.95 0.019 0.000 0.033 0.000 0.246 0.041 0.482 0.045

s=0.99 0.020 0.000 0.038 0.000 0.246 0.041 0.482 0.045

s=1.00 0.020 0.000 0.041 0.000 0.246 0.041 0.490 0.045

α=1.05

s=0.95 0.284 0.090 0.329 0.101 3.641 1.123 4.127 1.247

s=0.99 0.321 0.091 0.381 0.101 3.752 1.123 4.298 1.247

s=1.00 0.336 0.091 0.407 0.102 3.799 1.123 4.378 1.247
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Table 4.4. The Optimal Quantities where σp = 1

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0 0 0 0 0 0 5 4 1

α=1.01 3 2 1 4 2 1 6 5 4

α=1.05 6 5 5 6 6 5 7 6 6

τ=2

α=1.00 0 0 0 0 0 0 14 13 10

α=1.01 5 2 1 9 3 2 15 13 12

α=1.05 12 11 8 13 12 9 16 15 14

τ=3

α=1.00 0 0 0 0 0 0 24 22 19

α=1.01 5 2 1 10 3 2 24 22 20

α=1.05 19 12 8 21 17 10 25 24 23

τ=4

α=1.00 0 0 0 0 0 0 33 31 28

α=1.01 5 2 1 10 3 2 34 32 29

α=1.05 24 13 8 28 18 10 34 33 31

τ=4.5

α=1.00 0 0 0 0 0 0 38 36 33

α=1.01 5 2 1 10 3 2 38 37 34

α=1.05 25 13 8 32 18 10 39 38 36
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Table 4.5. The Optimal Profit Values where σp = 1

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.041 0.015 0.000

α=1.01 0.017 0.008 0.004 0.024 0.011 0.005 0.094 0.062 0.036

α=1.05 0.205 0.170 0.141 0.226 0.186 0.156 0.345 0.293 0.252

τ=2

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.339 0.152 0.011

α=1.01 0.020 0.008 0.004 0.045 0.012 0.005 0.483 0.286 0.123

α=1.05 0.418 0.279 0.187 0.511 0.350 0.231 1.101 0.871 0.660

τ=3

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.995 0.493 0.073

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 1.247 0.725 0.280

α=1.05 0.554 0.295 0.188 0.769 0.413 0.236 2.272 1.704 1.184

τ=4

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 2.059 1.088 0.242

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 2.414 1.432 0.553

α=1.05 0.607 0.295 0.188 0.987 0.419 0.236 3.874 2.833 1.867

τ=4.5

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 2.748 1.497 0.384

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 3.161 1.892 0.751

α=1.05 0.613 0.295 0.188 1.081 0.419 0.236 4.847 3.515 2.282
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Table 4.6. The Optimal Quantities where σp = 0.8

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0 0 0 0 0 0 5 4 1

α=1.01 3 2 1 4 3 1 6 5 4

α=1.05 6 5 5 6 6 5 7 7 6

τ=2

α=1.00 0 0 0 0 0 0 14 13 10

α=1.01 5 2 1 9 3 2 15 14 12

α=1.05 13 11 8 13 12 9 16 15 14

τ=3

α=1.00 0 0 0 0 0 0 24 22 19

α=1.01 5 2 1 10 3 2 24 23 20

α=1.05 19 12 8 21 17 10 25 24 23

τ=4

α=1.00 0 0 0 0 0 0 33 32 29

α=1.01 5 2 1 10 3 2 34 32 29

α=1.05 24 13 8 28 18 10 35 33 32

τ=4.5

α=1.00 0 0 0 0 0 0 38 36 33

α=1.01 5 2 1 10 3 2 38 37 34

α=1.05 25 13 8 32 18 10 39 38 36
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Table 4.7. The Optimal Profit Values where σp = 0.8

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.044 0.016 0.000

α=1.01 0.017 0.008 0.004 0.025 0.011 0.005 0.101 0.065 0.036

α=1.05 0.212 0.173 0.144 0.234 0.193 0.159 0.362 0.308 0.260

τ=2

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.350 0.158 0.011

α=1.01 0.020 0.008 0.004 0.045 0.012 0.005 0.503 0.295 0.126

α=1.05 0.423 0.281 0.188 0.517 0.353 0.231 1.132 0.890 0.671

τ=3

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 1.019 0.503 0.075

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 1.271 0.740 0.283

α=1.05 0.556 0.295 0.188 0.775 0.413 0.236 2.307 1.728 1.200

τ=4

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 2.075 1.099 0.245

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 2.436 1.444 0.557

α=1.05 0.608 0.295 0.188 0.989 0.419 0.236 3.899 2.849 1.877

τ=4.5

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 2.755 1.501 0.385

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 3.169 1.897 0.753

α=1.05 0.613 0.295 0.188 1.082 0.419 0.236 4.857 3.522 2.286
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Table 4.8. The Optimal Quantities where σp = 0.5

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0 0 0 0 0 0 6 5 2

α=1.01 3 2 1 4 3 2 6 6 5

α=1.05 6 6 5 7 6 6 8 7 7

τ=2

α=1.00 0 0 0 0 0 0 15 14 10

α=1.01 5 2 1 9 3 2 15 14 12

α=1.05 13 11 8 14 12 10 17 16 15

τ=3

α=1.00 0 0 0 0 0 0 24 23 20

α=1.01 5 2 1 10 3 2 25 23 21

α=1.05 19 12 8 21 17 10 26 25 23

τ=4

α=1.00 0 0 0 0 0 0 34 32 29

α=1.01 5 2 1 10 3 2 34 32 30

α=1.05 24 13 8 29 18 10 35 33 32

τ=4.5

α=1.00 0 0 0 0 0 0 38 36 33

α=1.01 5 2 1 10 3 2 38 37 34

α=1.05 25 13 8 32 18 10 39 38 36
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Table 4.9. The Optimal Profit Values where σp = 0.5

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.053 0.019 0.000

α=1.01 0.017 0.008 0.004 0.026 0.011 0.005 0.113 0.072 0.040

α=1.05 0.223 0.183 0.148 0.246 0.204 0.163 0.391 0.333 0.279

τ=2

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.380 0.169 0.012

α=1.01 0.020 0.008 0.004 0.045 0.012 0.005 0.533 0.313 0.131

α=1.05 0.433 0.283 0.188 0.532 0.358 0.232 1.183 0.926 0.694

τ=3

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 1.055 0.523 0.079

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 1.314 0.764 0.292

α=1.05 0.558 0.295 0.188 0.784 0.414 0.236 2.368 1.766 1.224

τ=4

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 2.099 1.114 0.250

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 2.464 1.459 0.564

α=1.05 0.608 0.295 0.188 0.993 0.419 0.236 3.935 2.870 1.892

τ=4.5

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 2.762 1.505 0.387

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 3.175 1.902 0.755

α=1.05 0.613 0.295 0.188 1.082 0.419 0.236 4.865 3.529 2.289



42

Table 4.10. The Optimal Quantities where σp = 0

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0 0 0 0 0 0 7 6 2

α=1.01 4 2 1 5 3 2 7 6 5

α=1.05 7 6 6 7 7 6 8 8 7

τ=2

α=1.00 0 0 0 0 0 0 16 14 11

α=1.01 5 2 1 9 3 2 16 15 13

α=1.05 13 11 8 14 12 10 17 16 15

τ=3

α=1.00 0 0 0 0 0 0 25 23 20

α=1.01 5 2 1 10 3 2 25 23 21

α=1.05 19 12 8 22 17 10 26 25 23

τ=4

α=1.00 0 0 0 0 0 0 34 32 29

α=1.01 5 2 1 10 3 2 34 32 30

α=1.05 24 13 8 29 18 10 35 33 32

τ=4.5

α=1.00 0 0 0 0 0 0 38 36 33

α=1.01 5 2 1 10 3 2 38 37 34

α=1.05 25 13 8 32 18 10 39 38 36
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Table 4.11. The Optimal Profit Values where σp = 0

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.068 0.025 0.000

α=1.01 0.018 0.008 0.004 0.029 0.012 0.005 0.137 0.085 0.045

α=1.05 0.246 0.196 0.155 0.273 0.220 0.176 0.441 0.373 0.305

τ=2

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 0.410 0.185 0.014

α=1.01 0.020 0.008 0.004 0.046 0.012 0.005 0.573 0.333 0.137

α=1.05 0.441 0.285 0.188 0.548 0.363 0.233 1.245 0.968 0.720

τ=3

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 1.084 0.538 0.082

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 1.346 0.779 0.298

α=1.05 0.561 0.295 0.188 0.790 0.415 0.236 2.411 1.797 1.239

τ=4

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 2.107 1.119 0.251

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 2.472 1.463 0.566

α=1.05 0.608 0.295 0.188 0.995 0.419 0.236 3.946 2.876 1.897

τ=4.5

α=1.00 0.000 0.000 0.000 0.000 0.000 0.000 2.762 1.505 0.387

α=1.01 0.020 0.008 0.004 0.047 0.012 0.005 3.176 1.903 0.755

α=1.05 0.613 0.295 0.188 1.083 0.419 0.236 4.866 3.530 2.290
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Table 4.12. The Difference in the Optimal Quantity between σp = 1 and σp = 0

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0 0 0 0 0 0 2 2 1

α=1.01 1 0 0 1 1 1 1 1 1

α=1.05 1 1 1 1 1 1 1 2 1

τ=2

α=1.00 0 0 0 0 0 0 2 1 1

α=1.01 0 0 0 0 0 0 1 2 1

α=1.05 1 0 0 1 0 1 1 1 1

τ=3

α=1.00 0 0 0 0 0 0 1 1 1

α=1.01 0 0 0 0 0 0 1 1 1

α=1.05 0 0 0 1 0 0 1 1 0

τ=4

α=1.00 0 0 0 0 0 0 1 1 1

α=1.01 0 0 0 0 0 0 0 0 1

α=1.05 0 0 0 1 0 0 1 0 1

τ=4.5

α=1.00 0 0 0 0 0 0 0 0 0

α=1.01 0 0 0 0 0 0 0 0 0

α=1.05 0 0 0 0 0 0 0 0 0
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Table 4.13. The Value of the Volatility Information

µ 0.09 0.1 0.15

h 0.01 0.03 0.05 0.01 0.03 0.05 0.01 0.03 0.05

τ=1

α=1.00 0 0 0 0 0 0 97.32 144.1 5.207

α=1.01 14.52 0 0 32.2 0.314 1.372 25.55 14.14 7.164

α=1.05 12.77 3.17 11.91 8.822 18 7 9.302 16 6

τ=2

α=1.00 0 0 0 0 0 0 14.81 7.935 23.73

α=1.01 0 0 0 0 0 0 6.632 10.09 8.037

α=1.05 0.141 0 0 1.264 0 0.253 3.699 2.814 2.372

τ=3

α=1.00 0 0 0 0 0 0 2.941 2.095 5.249

α=1.01 0 0 0 0 0 0 1.587 0.009 1.223

α=1.05 0 0 0 1.622 0 0 1.163 1.48 0

τ=4

α=1.00 0 0 0 0 0 0 0.446 0.05 0.113

α=1.01 0 0 0 0 0 0 0 0 0.368

α=1.05 0 0 0 0.178 0 0 0.107 0 0.072

τ=4.5

α=1.00 0 0 0 0 0 0 0 0 0

α=1.01 0 0 0 0 0 0 0 0 0

α=1.05 0 0 0 0 0 0 0 0 0
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5. CONCLUSION

In this thesis study, we studied a model for inventory management under stochas-

tic purchase price and demand. We analyzed single item and two period problem,

where the price and demand is independent in the first period and the secondary mar-

ket demand depends on the price. In the first selling season, sales revenues depend on

individual arrival times of demands and also there is a holding cost depends on the in-

dividual arrival times of demands as well. Over the second selling season, to maximize

the sales revenue one need to optimize the price since the demand depends on the price

the firm assigns. We modeled the problem where the secondary market revenue is just

a salvage value in a special case and find closed form analytical solution for the opti-

mal inventory quantity and the expected optimal revenues. In a more general problem,

we first model the demand of the secondary market and find a solution approach to

deal with it. Also, numerical experiments are made to validate the model and help to

determine the effect of the individual parameters to the optimal quantity and optimal

revenue. Moreover, we observe the value of the information of the volatility of the price

in the inventory management context.

There are several avenues for future research. Firstly, correlation between price

and demand process can be analyzed. Over the secondary selling season, we assume

that there is a linear relationship between the price and the demand. Other type

of the relationships, for instance exponential, can be investigated. Secondly, better

modeling of the primary market customers can be done. Maybe, the demand process

is distributed with normal distribution or linear distribution. Also, the price and the

demand can be related in the first selling season as well. Holding cost also can change

with time, in contrast to constant holding cost multiplier. Lastly, the opportunity of

the more than one ordering can be allowed. It would be more realistic problem of that

the firm reorders the commodity if the inventory level reaches zero before the end of

first selling season.
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APPENDIX A: LOGNORMAL PARTIAL MOMENT

Secomandi an Kekre (2013) proved the following Lemma A.1 in their study.

Lemma A.1. Denote by g(w;µ, σ) and φ(y;µ, σ) the probability density functions of

a Log-normal random variable W and a normal random variable Y , respectively, with

parameters µ and σ, and Φ(.) the cumulative distribution function of the standard

normal random variable. Let γ ∈ < and q ∈ <+. It holds that

E[W γ1W≤q] =
∫ q

0
wγg(w;µ, σ)dw = e(σ

2γ
2

+µ)γ Φ( ln q−(µ+σ2γ)
σ

).

Let P (τ) = P (0)e(µ− 1
2
σ2)τ+σW (τ) whereW (τ) ∼ N(0, τ). Then P (τ) ∼ LN(lnP (0)+

((µ− 1
2
σ2)τ), σ2τ).

From Lemma A.1, it can be easily shown the following results where P (τ) denoted

by y and µτ = lnP (0) + (µ− 1
2
σ2)τ .

(i)
∫∞
A
2B
f(y) dy =

∫∞
A
2B
y0f(y) dy = 1−

∫ A
2B

0
y0f(y) dy = 1−Φ(

ln( A
2B

)−In(P (0))−(µ− 1
2
σ2)τ

σP
√
τ

).

(ii)
∫∞
A−(Q−i)

B
f(y) dy = 1−

∫ A−(Q−i)
B

0
y0f(y) dy = 1− Φ(

ln(
A−(Q−i)

B
)−µτ

σP
√
τ

).

(iii)
∫ A−(Q−i)

B

0
yf(y) dy = e(

σ2P τ

2
+µτ )Φ(

ln(
A−(Q−i)

B
)−µτ−σ2

P τ

σP
√
τ

).

(iv)
∫ A

2B
A−(Q−i)

B

yf(y) dy =
∫ A

2B

0
yf(y) dy −

∫ A−(Q−i)
B

0
yf(y) dy

= e(
σ2P τ

2
+µτ )

[
Φ
(

ln( A
2B

)−µτ−σ2
P τ

σP
√
τ

)
− Φ

(
ln(

A−(Q−i)
B

)−µτ−σ2
P τ

σP
√
τ

)]
.

(v)
∫ A

2B
A−(Q−i)

B

y2f(y) dy =
∫ A

2B

0
y2f(y) dy −

∫ A−(Q−i)
B

0
y2f(y) dy

= e2(σ2
P τ+µτ )

[
Φ
(

ln( A
2B

)−µτ−2σ2
P τ

σP
√
τ

)
− Φ

(
ln(

A−(Q−i)
B

)−µτ−2σ2
P τ

σP
√
τ

)]
.


