AN ONTOLOGY BASED FRAMEWORK FOR CREATING PURPOSEFUL
ONLINE COMMUNITIES

by
Murat Seyhan
B.S., Computer Engineering, Bogazi¢i University, 2012

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
Bogazi¢i University

2016

AN ONTOLOGY BASED FRAMEWORK FOR CREATING PURPOSEFUL
ONLINE COMMUNITIES

APPROVED BY:

Suzan Uskiidarl, Ph.D. ...
(Thesis Supervisor)

Assist. Prof. Arzucan Ozgiir ~

Assist. Prof. Reyhan Aydogan —

DATE OF APPROVAL: 15.01.2016

1ii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my long-time advisor, Suzan Uskii-
darli. This work would have never been possible without her guidence and under-
standing. 1 would also like to thank my parents and fiancée for their patience and

support.

v

ABSTRACT

AN ONTOLOGY BASED FRAMEWORK FOR CREATING
PURPOSEFUL ONLINE COMMUNITIES

A purposeful community is a group of individuals whose actions help the com-
munity reach a set of goals. Such communities often use social network applications to
communicate, coordinate, and track their activities. Twitter and Facebook are widely
used for such purposes. These applications provide generic support for communica-
tion, whereas every community has different information and processing needs. For
example, a community who is responding to a natural disaster will be concerned about
the services and goods that need to reach victims or a community who is interested in
animal rights will be interested in documenting various animals and making health ser-
vices available. Clearly, the type of information for these communities is very different.
Providing support for domain specific information and its processing usually involves
custom applications by those who have the application building skills. Yet, many kinds
of information could easily be defined by end users. If only, the means for specifying
such needs were available. We propose an ontology-driven model for end users to cre-
ate community-specific web applications that consume and generate Linked Data. Our
model is based on the Purposeful Online Communities (POC) Core ontology, which
models online communities in terms of community-specific information and activity

structures. We demonstrate the use of this ontology with example communities.

OZET

AMACLI SANAL TOPLULUKLAR URETEN ONTOLOJI
TABANLI BiR YAPI

Amach topluluklar, belirli hedeflere ulagmak ic¢in miigterek caligan insan gru-
plaridir. Bu topluluklar iletisim, koordinasyon ve durum takibi i¢in genellikle sosyal
ag uygulamalar1 kullanirlar. Twitter ve Facebook bu tarz amaclarla yogun olarak
kullanilmaktadir. Bu uygulamalar genel iletisim ihtiyaglarini kargilar, fakat her toplu-
lugun farkl bilgi ve bilgi isleme ihtiyaclar vardir. Ornegin, bir dogal afet miidahale
toplulugu, felaketzedelere ulastirilmasi gereken hizmet ve egyalara ilgilenirken, hay-
van haklariyla ilgilenen bagka bir topluluk, hayvanlarin kayit altina alinmasi ve saglik
hizmetlerinin saglanmasiyla ilgilenecektir. Bu topluluklarin bilgi ihtiyaglar1 agik bir
sekilde ¢ok farkhidir. Belirli alanlara 6zel bilgi ve bilgi igleme ihtiyaglarini gidermek igin
genellikle ihtiyaclara gore sekillendirilmis 6zel uygulamalara ihtiya¢ duyulur. Bu tarz
uygulamalar geligtirilmek yazilim becerileri isteyen bir igtir. Oysa, bu tarz ihtiyaglar
belirtmek igin kolay yollar saglansaydi, bir¢ok bilgi tipi son kullanicilar tarafindan tarif
edilebilirdi. Bu caligmada, son kullanicilarin amagh topluluklara yonelik Web uygu-
lamalar:1 iiretmelerini saglayan, ontoloji tabanli bir yapi sunuyoruz. Bu yapi, sanal
topluluklar: 6zgiin bilgi ve eylem cesitleri ile modelleyen Purposeful Online Communi-
ties (POC) ontolojisini temel alir. Bu ontolojinin kullanimi 6rnek topluluklarla goster-

ilmigtir.

TABLE OF CONTENTS

LIST OF ACRONYMS/ABBREVIATIONS

1.
2.

3.

INTRODUCTION e e
BACKGROUND
2.1. Representational State Transfer
2.2. Semantic Web Technologies
2.3. Followed Narrative Structure.
A MODEL FOR CREATING PURPOSEFUL ONLINE COMMUNITIES
3.1. POC Core Ontology
3.1.1. Representation of the Community Members and Their Roles . .
3.1.2. Representation of the Community Datatypes
3.1.3. Representation of the Community-Specific Processes
3.1.4. Representation of Instances
3.1.5. Representation of Constraints
3.2. POC LDP Ontology
3.3. Specification of POC Applications
3.4. Execution of POC Applications
3.4.1. Initialization of a POC Server
3.4.2. Retrieval of a POC Server’s Representation
3.4.3. Retrieval of the Community Datatypes
3.4.4. Retrieval and Invocation of the Community Workflows
3.4.5. Retrieval and Performance of Step Instances
3.4.6. Retrieval of the Data Resources
3.4.7. Execution Flow of Step Instances

3.4.8. Expressions and View Templates

vi

O O Ot =

4.

6.
7.

vii

EVALUATION 62
4.1. Utilization of POC Model for a Real World Community 62
4.1.1. A POC Specification for T3 63
4.1.2. Execution of a T3 POC Application. 69
4.1.2.1. Verification Attempt in the Absence of Photographs . 71

4.1.2.2. Photograph Submission 73

4.1.2.3. \Verification of Ballot Reports 79

4.1.2.4. Accessing Verified Reports 80

4.1.3. An Assessment of T3 POC Application 84

4.2. An Application Generating Prototype 85
RELATED WORK 88

5.1. Related Work Utilizing Semantic Web Technologies in the Context of
Online Communities 88
5.2. Related Work on the Automated Geneartion of Application Behavior . 90
DISCUSSION AND FUTURE WORK 93
CONCLUSION e s s 95

REFERENCES o 96

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

viil

LIST OF FIGURES

Visualization of an example RDF graph. 7
An RDF graph serialized in Turtle. 8
A fragment of the Linked Datasets as of August 2014. 10
A representation of “A Car is a Vehicle.” statement in Turtle. . . 11
A representation of “MyCar is a Car.” statement in Turtle. 11
A representation of “MyCar has a productionDate of 1965.” state-

ment in Turtle. 12
The declerations of all namespace prefixes that are referred, serial-

ized in Turtle. 12
An overview of POC Model. 14
A visualization of the fundamental classes, properties and asser-

tions in POC Core Ontology. 16
A DerivedDatatype based on ImageType represented in Turtle. . . 19
An example CompositeDatatype with four dataFields with various

types, represented in Turtle. 20

An illustration of a Step with two inputPorts and an outputPort. . 22

Figure 3.6.

Figure 3.7.

Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 3.11.

Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15.

Figure 3.16.

Figure 3.17.

Figure 3.18.

Figure 3.19.

An illustration of a Workflow with two Steps and a PortPipe. . . .

An illustration of a Workflow with a Step and a DirectPipe.

An illustration of a Workflow with a Step and a HumanPipe. . . .

An illustration of a Workflow with two Steps and a ControlPipe. .

An illustration of a Workflow with three Steps and two Condition-
alPipes. e

An example List with three items of different types, serialized in

Turtle.

An example Image, represented in Turtle.

An example CompositeDatalnstance with three field Values, serial-

ized in Turtle.

A visualization of the classes, properties and assertions in POC

LDP Ontology.

An overview of specification process for POC Applications.

The Roles in Specgirgers, serialized in Turtle.

Observation serialized in Turtle.

The representation of ObservationList, serialized in Turtle.

A representation of ObservationEntry.

1X

23

23

24

26

26

26

29

31

32

34

36

37

Figure 3.20.

Figure 3.21.

Figure 3.22.

Figure 3.23.

Figure 3.24.

Figure 3.25.

Figure 3.26.

Figure 3.27.

Figure 3.28.

Figure 3.29.

Figure 3.30.

Figure 3.31.

ObservationEntry, serialized in Turtle.

A representation of Bird TypeEditing.
A representation of BirdTypeFEditing in Specgirqers, serialized in
Turtle.

An overview of the execution process in POC Model.

An HTTP request message for dereferencing the POC Server of

App Birders: -+ + o+ o+ o+ v e

An HTTP response message advertising a POC Server.

An HTTP request message for the retrieval of the community-
specific datatypes of Apppirders. - « « « o v oo o o
An HTTP response message advertising the community-specific

datatypes of AppBirders: « « « « « 0 e e e e

An HTTP request message for the retrieval of a community-specific

Datatype.

An HTTP response message advertising a representation of a cus-

tom Datatype.

An HTTP request message for the retrieval of the available work-
Hows I APPBirders. « - « « « o v e e e
An HTTP response message for the retrieval of the available work-

flows in Apppirders-

43

47

Figure 3.32.

Figure 3.33.

Figure 3.34.

Figure 3.35.

Figure 3.36.

Figure 3.37.

Figure 3.38.

Figure 3.39.

Figure 3.40.

Figure 3.41.

Figure 3.42.

Figure 3.43.

An HTTP request message for the retrieval of ObservationEntry. .
An HTTP response message advertising ObservationEntry.
An HTTP request message invoking ObservationEntry.

HTTP response message for the invocation of ObservationEntry. .

An example HTTP request message for retrieving the StepInstances

available for a user of Apppirders- - « « « « « o 0o e

An example HTTP response message advertising the StepInstances

available for a user of Apppirders. - « « « « « o e e e

An HTTP request retrieving a representation of SIy..

An HTTP response message advertising STyo.

An example SPARQL query to fetch five bird species whose labels

start with "sto".

An HTTP PATCH request submitting the data for the execution
of SIO

An HTTP response message, advertising the successfully performed

An HTTP request message, retrieving the data resources available

for a user of ApPRBirders- - « + « ¢ 0 0o e

X1

49

49

20

50

53

Figure 3.44.

Figure 3.45.

Figure 3.46.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

x1i

An HTTP response message, advertising the data resources avail-

able for a user of AppRirders. - « « « « 0 v e 58
An HTTP request message, retrieving an available Datalnstance. . 58
An HTTP response message, advertising a Datalnstance. 59
The Roles defined in Specrs, serialized in Turtle. 64
Definition of Photo in Specrs, serialized in Turtle. 64
Definition of VerifierReport in Specrs, serialized in Turtle. 65
Definition of the Datalnstances in Specrs, serialized in Turtle. . . 66
A visual representation of PhotoSubmission. 66
Definition of PhotoSubmission in Specrs, serialized in Turtle. . . . 68
A visual representation of ReportVerification. 70
An HTTP request message on the POC Server of Apprs. 71

An HTTP response message advertising a representation of the

POC Server of Apprs. 72

An HTTP request for the retrieval of the Workflows available for

auser of Apprs. 72

An HTTP response message advertising the Workflows available
for auser of Apprs. 73

Figure 4.12.

Figure 4.13.

Figure 4.14.

Figure 4.15.

Figure 4.16.

Figure 4.17.

Figure 4.18.

Figure 4.19.

Figure 4.20.

Figure 4.21.

Figure 4.22.

Figure 4.23.

xiil

An HTTP request message for the invocation of ReportVerification

by Uo. 73
The HTTP response message for the invocation of ReportVerifica-
tion by Up. o 74
An HTTP request for retrieving the available Workflows for Uy;. . 75
An HTTP response message advertising the available Workflows
for Ul. 75
An HTTP request for the invocation of PhotoSubmission by U;. . 76
An HTTP request for the invocation of PhotoSubmission by Uy. . 77
An HTTP request message, submitted by U; for performing Sy. . 78
The HTTP response message after the successful performance of
SO by U1 78
The HTTP request by Uy, invoking ReportVerification for the sec-
ond time. 79
The HTTP response message received after a successful invocation
of ReportVerification. 81
The HTTP request message submitted by U, for the performance
of S5 82
The HTTP response message received after a successful perfor-
mance of Ss by Ug. 82

Figure 4.24.

Figure 4.25.

Figure 4.26.

Figure 4.27.

Figure 4.28.

Figure 4.29.

Figure 4.30.

Xiv

The HTTP request message for retrieving the Datalnstances acces-

sible by Us. . . . o o o 83

The HTTP response message advertising the Datalnstances acces-

sible by Us. . . o 0 o 0 83

The HTTP request message retrieving a representation of Veri-

fiedReports. 83

The HTTP response message advertising a representation of Veri-

fiedReports. 84
A screenshot of the submission page. 86
A screenshot of the endpoint displaying page. 87

A screenshot demonstrating the consumption of an endpoint ad-

vertised by the prototype. oo 87

XV

LIST OF TABLES

Table 3.1. Derivation properties for DerivedDatatypes. 18

Table 3.2. Predefined Tasks. 27

Table 3.3. The results for the SPARQL query fetching bird species and their
labels. 5Y)

Xvi

LIST OF ACRONYMS/ABBREVIATIONS

POC Purposeful Online Community

1. INTRODUCTION

A Purposeful Community is a group of individuals whose actions help the com-
munity reach a set of goals. Such communities often use social network applications to
communicate, coordinate, and track their activities. These applications provide generic
support for communication, whereas every community has different information and
processing needs. For example, a community who is responding to a natural disas-
ter will be concerned about the services and goods that need to reach victims or a
community who is interested in animal rights will be interested in documenting various
animals and making health services available. Clearly, the type of information for these
communities is very different. Providing support for domain specific information and
its processing usually involves custom applications by those who have the application
building skills. Yet, many kinds of information could easily be defined by end users. If

only, the means for specifying such needs were available.

Social media applications such as Twitter [1] and Facebook [2| are widely used
in computer mediated communication for organizing and communications [3,4]|. The
use of such system become highly visible during events like the Occupy movement and
the Arab Spring [5] and the Haiti Earthquake [6], where social media was extensively
used to inform and coordinate. While these systems are very useful for transmitting
information necessary to respond and coordinate, they do not support the needs of
retaining or tracking information that is important for communities. In these contexts,
such work, if at all, is done by persons who fetch, process, and disseminate information.
Such persons are highly motivated community builders and managers who care about
the community and what they are working on. They, however, generally do not possess
the required technical knowledge to build applications that handle community-specific

knowledge and processes.

We refer to a group of individuals that collaborate towards a set of goals as
Purposeful Community, and Purposeful Online Community (POC) as a computer me-

diated Purposeful Community. The goals of POCs may vary considerably, so do their

information and processing needs. A POC typically utilizes multiple independent on-
line tools to perform various tasks to suit their needs. Synchronous and asynchronous
communication tools, calendars, document repositories are common tools for such pur-
poses. Such tools offer limited interoperability (if, any) and result in community data
being stored in different places and in different formats. As a result, the community
knowledge is scattered into silos and cannot be effectively combined or processed. To
interpret community information such as progress and status, it is typical for associ-
ated data to be manually fetched, processed, and disseminated (again, using different
applicaitons, tools, and methods). It would be very useful for community data and
information to be easily accessible with interesting results automatically computed

whenever possible.

In this work, we propose an ontology-driven model called Purposeful Online Com-
munities Model (POC Model) for enabling people who are savvy in online communi-
ties to build community-centric web applications. The proposed model is based on
an OWL 2 |7, 8] ontology called POC Core Ontology that we developed to model on-
line communities with specific purposes. This ontology facilitates the specification of
community-specific information and proccesses with a well-defined structure. Struc-
tured specification of community applications entails a straightforward integration with
the structured data available on the web, or Linked Open Data [9]. The contributions

of this study can be summarized as follows.

e An ontology-driven model for the specification and execution of community-
centric web applications that consume and publish Linked Open Data automati-
cally.

e An OWL 2 ontology that provides a workflow-based conceptualization for pur-

poseful online communities.

The remainder of this document is structured as follows. In the following section,
we provide a technical background for our study and discuss the narrative structure of
this document. Next, we discuss the proposed model in detail. Then, the prototype

we build for the model will be discussed. Later, an evaluation of the proposed model

is represented. Lastly, we discuss our current efforts and future aspects of this study,

along with a conclusion.

2. BACKGROUND

In this chapter, we discuss the terminology and technologies that our work de-

pends on.

The model we propose is inspired by crowdsourcing, human computation systems,

and computer mediated workflows.

Human computation is a research topic focused on exploiting human intelligence
for computational tasks that are computationally difficult for computers, but easy
for humans to solve [10]. Human computation systems form purposeful communities,
where the actions of the community members help the community reach certain goals,
even though the members may not be aware of what the goals are. Human computation
applications are utilized for various objectives. reCAPTCHA [11] is a well known such
application that is used to verify human users on the web. It presents the user two pieces
of distorted text, which they are supposed to type in text boxes in order to gain access
to a website. The system only knows the correct answer for one of the text images,
the other is from an un-deciphered optical reader. Humans happen to be very good
to deciphering distorted text. With this system, hundreds of thousands of man hours
per day were accumulated via very small actions of a massive number of users and a
great amount of digitization work was accomplished. Another example of such systems
is called games with a purpose [12], which are games that utilize the contributions
of their players for some computational tasks. Crowdsourcing marketplaces, such as
Mechanical Turk (MTurk) [13] enable human workers to perform computational tasks,
such as data labeling, for small monetary rewards. MTurk is reported to be a source of
inexpensive and high-quality data for research [14]. Another example is Duolingo [15]

that teaches languages while automatically translating the Web to all major languages.

Computer mediated workflows typically refer to the automation of whole or par-
tial business processes [16]. They consist of activities that are interdependent in accord-

ing to a set of procedural rules. Dependencies arise when activities must be ordered to

satisfy some constraints, such as need for information generated in a particular activity.
The work associated with activities may be performed by humans or computers. Our
model aims to apply the workflow notion to online communities that define their own

workflows.

2.1. Representational State Transfer

Representational State Transfer (REST) [17] is an architectural style for dis-
tributed hypermedia systems. REST is an abstract model of the Web architecture.
It is composed of the principles that guided the design of Uniform Resource Identi-
fier (URI) [18] and HTTP/1.1 [19], and is intended as a guideline for development of
overall Web applications [20]. REST style is composed of six architectural constraints,
namely: client-server, statelessness, cache, layered system, code on demand (optional),
and uniform interface. A system complying with these constraints is referred as a
RESTful system [21]. Client-server architectural style is the separation of user in-
terface concerns from the data store concerns, which is typical for web applications.
This constraint aims to improve scalability by simplifying the server constraints and
improve portability of the user interface. Second constraint is the statelessness of the
client-server communication, meaning that the requests from client to server must con-
tain all the information needed to process the request. Statelessness implies that the
session state must be stored on the client. This constraint aims to improve visibility,
reliability and scalability of the architecture, yet introduces an overhead of sending
repetitive data in requests in a shared context. Cache constraint dictates that the data
within a response to a request must be implicitly or explicitly labeled as cacheable
or non-cacheable, where cacheable responses can be cached and reused by the client.
This constraint aims to yield efficiency and scalability, but is noted to introduce a
possible decrease of reliability if stale cache data is not invalidated properly. Layered
system constraint requires the components of a system to form hierarchical layers, and
to have knowledge of only the immediate layers they interact with. Layered system
architecture limits the overall complexity of a system. As a side effect, processing of
data on multiple layers introduces a latency, diminishing the performance. Code-on-

demand style allows a client component that cannot process a set of resources to ask

a remote server for the code to process those resources, receive the code, and execute
it locally. It is the only optional constraint of REST, therefore a system not satisfying
this constraint may still be RESTful. Uniform interface constraint is a distinguishing
feature of REST. It implies the decoupling of the implementations from the services
they provide, to provide a standardized interface for the clients. A uniform interface
is obtained if a system satisfies the following four constraints. First, any concept that
can be targeted with a hypertext reference must fit within the definition of a resource,
where a resource is a conceptual mapping to a set of resource identifiers and/or repre-
sentations. The messages must identify resources using resource identifiers, which are
typically URIs in RESTful web applications. Secondly, the resources must be manipu-
lated through resource representations, e.g. an XML document in a RESTful web API.
Third, the messages must be self-descriptive. This must be ensured by the stateless
interaction between requests, the explicit representation of cachebility in responses,
and the utilization of standard methods and media types to indicate semantics and
exchange information. Last requirement for a uniform interface is the utilization of
hypermedia as the engine of the application state. This implies that the interaction
of a client with a server must depend only on the hypermedia provided by the server,
and must not assume a response structure beyond that defined by the specification of

the utilized media type [21].

2.2. Semantic Web Technologies

Traditional web technologies enable us to link related documents, or parts of
document, to one another. These hyperlinks do not carry a well-defined meaning, and
their interpretation is often left to human end users. Many applications we use over the
web aggregate data relevant for us. Combination of such distributed data outside the
context of individual applications would potentially yield powerful new applications.
This requires the data to be interlinked with well-defined meaning, so that it can be
discovered and processed by automated tools properly. Such data is typically not
interlinked at all, and, therefore, is segregated into silos formed by each application.

The World Wide Web Consortium (W3C) [22]| aims to address this issue with a set

of standard technologies and principles to facilitate meaningful representation, linking
and processing of distributed data elements across the Web. The Semantic Web, or
the Web of Data, refers to a Web enriched with such standards, on which the data is

interlinked with well-defined meaning [23].

A fundamental building block of the Semantic Web is Resource Description
Framework 1.1 (RDF) [24,25]. RDF is a model providing a standard way to iden-
tify data elements and express relations between them. In RDF, relations between two
resources are expressed with an RDF triple, which is composed of a subject, predicate
and an object. The structure of an RDF triple resembles an elementary sentence, e.g.
“Jack speaks English.”. The subject and the object of an RDF triple is a IRI, Literal
or a Blank node, and the predicate is typically a URI [18]|. This facilitates the rela-
tions expressed in RDF to possess well-defined meanings, unlike hyperlinks between
web documents. Data expressed in RDF forms a directed graph, where each triple
identifies an edge, directed from the subject of the triple, towards its object. Figure
2.1 depicts an example RDF graph.

http://example.org/Joe

http://purl.org/dc/terms/creator http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

http://example.org
/BlogPost1

http://purl.org/spar/cito/likes

http://xmins.com/foaf/0.1/Person

http://xmins.com/foaf/0.1/knows

http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type

http://example.org/Jack

http://xmins.com/foaf/0.1/name

"Jack White"

Figure 2.1. Visualization of an example RDF graph.

RDF data can be serialized in various formats, e.g. Turtle [26], JSON-LD [27]
and RDF /XML [28]. Figure 2.2 gives a Turtle serialization of the RDF graph depicted
in Figure 2.1.

Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
Oprefix dcterms: <http://purl.org/dc/terms/>.
@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
Q@prefix cito: <http://purl.org/spar/cito/>.
<http://example.org/Joe> rdf:type foaf:Person.
<http://example.org/BlogPostl> dcterms:creator
<http://example.org/Joe>.

<http://example.org/Jack> rdf:type foaf:Person;

foaf :knows <http://example.org/Joe>;

foaf:name "Jack White";

cito:likes <http://example.org/BlogPostl>.

Figure 2.2. An RDF graph serialized in Turtle.

Other core technologies by W3C enable us to query, model, infer and advertise
RDF data effectively. SPARQL 1.1 [29] is query language for RDF data, with a syntax
resembilng SQL. RDF Schema 1.1 (RDFS) [30] is a data-modelling vocabulary for RDF
data. OWL 2 Web Ontology Language (OWL 2) [7,8] is a knowledge representation
language, enabling specification of domain knowledge in terms of concepts and their
relationships. Resulting ontologies are explicit specifications that may be published
on the Web, thereby provides means for shared semantics across applications. Rule
languages such as Semantic Web Rule Language (SWRL) [31] provides more expres-
sive power on top of OWL 2, enabling conceptualization of more complex domains.
Structured representation of the domain knowledge with the mentioned technologies

facilitate inference of new relations from the existing data.

In order for the Semantic Web to become a reality, a substantial amount of data
need to be published and interlinked in its standard formats. Such data is referred as
Linked Data [9], or Linked Open Data if it is publicly accessible. Figure 2.3 depicts a
graph of significant Linked Datasets as of August 2014 [32]. A notable effort towards
such Linked Data is DBpedia project [33,34]. DBpedia project is a community effort for
extracting information from Wikipedia [35] and advertising the extracted data through
the Semantic Web standards. English version of the DBpedia data set is reported to
contain more than 5 million entities [36]. Upper Mapping and Binding Exchange
Layer (UMBEL) [37] provides UMBEL Vocabulary, which is intended as a standard
framework for domain ontologies to structure Linked Open Data. UMBEL Reference
Concept Ontology is an ontology complying UMBEL Vocabulary that provides a set

of generic classes to be referenced by various Linked Datasets.

Linked Data Platform 1.0 (LDP) [38,39] is a recently published specification by
W3C, defining a set of rules for accessing, updating, creating and deleting of Linked
Data over HTTP. An LDP Server is defined as an HTTP server [40]| that conforms
the rules specified by LDP to advertise data. An LDP Client is defined an HTTP
client [40] that conforms the rules specified by LDP to consume data from an LDP
Server. Supporting HTTP PATCH method [41] for the modification of advertised data
is optional for LDP Servers. [39] defines a patch format for LDP Servers that support
HTTP PATCH.

2.3. Followed Narrative Structure

In this section, we discuss some key properties of the narrative structure followed

through this document.

This document contains a substaintial amount of discussion on the structure
of OWL 2 ontologies. For the sake of convenience, we refer to the entities in these
ontologies, such as OWL 2 classes, their instances and properties, with an italic font,
e.g. “Car is a class in the ontology.” Class names follow a camel case notation with

a capital first letter, e.g. CarWindow, whereas property names follow a camel case

Music-

ccom.

brainz Ohloh
: BBC
L NKYZ"SGS y Wildlife
enic n %atapen Finder
= Europeana Wordpress
EC'ean Linked
nergy
Data MDB
Reegle
. Hellenic G
\Fire Brigade eo
- DBpedia
Names P
ALT
NUTS
% Geo-
j % vocab FOAF-
Liﬁsgd | Profiles
Data i Freebase
7 Geo
Data

Skos

7 Ordnance

YN,

StatusNet \

LCSH
Lexvo LOD2 =
Project
Wiki
Southampton
ac.uk Viaf ?
PlanetData c
Project |
Wiki
W3C Semantic Web
DogFood
Morela
Archiveshub
KUPKB Linked
Dat
LOV aa
Drugbank CKA}
FU-Berlin
EUNIS
UMBEL
Linked Geospecies .
Open Data Uniprot
YAGO of Metadate
Ecology
Opencyc
Taxon Sider
DBped|a Concept FU-Berlin
NI

Figure 2.3. A fragment of the Linked Datasets as of August 2014.

11

notation wtih lowercase first letter, e.g. productionDate. The reader should also note
that, when a class name is represented with a prepended Article or in plural form, the
referred entities are the instances of the class, e.g. “A Step is used to represent a single
operation.” or “Steps are used to represent operations.” In this context, a statement
such as “A Car is a Vehicle.” indicates that the instances of Car class are also instances
of Vehicle class, impling that Car is a subclass of Vehicle. A representation of such

statement in RDF is depicted in Figure 2.4.

poc:Car rdfs:subClass0f poc:Vehicle.

Figure 2.4. A representation of “A Car is a Vehicle.” statement in Turtle.

A statement such as “MyCar is a Car.” indicates that MyCar is an actualized
instance of Car. A representation of such statement in RDF is illustrated in Figure

2.5.

poc:MyCar rdf:type poc:Car.

Figure 2.5. A representation of “MyCar is a Car.” statement in Turtle.

Moreover, if a property name is mentioned in the context of a class instance,
the actual referred entity is the value that the property links to, e.g. “MyCar has a
productionDate of 1965.” A representation of such statement in RDF is depicted in
Figure 2.6.

The remainder of this document contains many listings representing RDF data,
which are all serialized in Turtle [26]. For the sake of convenience, the namespace
prefixes referred by such listings are omitted. The declaration of all namespace prefixes

referred by such listings are represented in Figure 2.7.

12

poc:MyCar poc:productionDate 1965.

Figure 2.6. A representation of “MyCar has a productionDate of 1965.” statement in

Turtle.

Oprefix
Oprefix
Oprefix
Oprefix
Oprefix
Oprefix
Oprefix
Oprefix
Oprefix
Oprefix
Oprefix

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>.

xsd: <http://www.w3.org/2001/XMLSchema#>.

dcterms: <http://purl.org/dc/terms/>.

foaf: <http://xmlns.com/foaf/0.1/>.

sioc: <http://rdfs.org/sioc#>.

sioc-services: <http://rdfs.org/sioc/services#>.
gn: <http://www.geonames.org/ontology#>.

ma: <http://www.w3.org/ns/ma-ont#> .

umbel-rc: <http://umbel.org/umbel/rc/>.

poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.

Figure 2.7. The declerations of all namespace prefixes that are referred, serialized in

Turtle.

13

3. A MODEL FOR CREATING PURPOSEFUL ONLINE
COMMUNITIES

We propose a model for POCs by supporting the definition of community-specific
information and processes. Community-specific information is defined as user defined
data types by specifying a collection of typed fields. For example, community of bird
lovers may be interested in birds that are pets. Furthermore, they may want to collect
information about these pets in terms of the picture of the bird (as an image), the
type of the bird (name of species), and the location of the bird (as a geo-location).
Community processes are collections of simple tasks to create, access, and process
community-specific information. Tasks are coordinated via workflows that specify the

control and data flow between the tasks.

Purposeful communities tend to be self organizing and initiated by a few dedicated
core members. We refer to such persons as Community Builders and expect that they
would perform the lion share of defining the community information and processes.
Most of the community members will be participants who contribute to the community

work as specified by the the Community Builders.

To address the specification of community-specific information and processes,
we introduce an ontology-driven model called Purposeful Online Communities Model
(POC Model). Figure 3.1 shows an overview of the model. There are two major

concerns addressed by POC Model:

e the specification of community-specific information and workflows

e the execution of the application that realizes a specification.

The specification phase yields a POC Specification that specifies the community-
application. A POC Specification, in turn, is used to drive the execution of the corre-

sponding POC Application. POC Clients are clients that interact with POC Applica-

14

59X
X

R

Specification Execution

Community POC 1
i 1
Builder Specification y Purposeful Online
1 Document . 1 Community
: . 1 (POC)
1
1 : 1
1
' 1
B S
POC Core extends POC API
Ontology Ontology

Figure 3.1. An overview of POC Model.

tions. In other words, to realize the specification. The POC LDP Ontology ontology
extends POC Core Ontology with a vocabulary to exchange data between POC Ap-
plications and POC Clients.

We introduce, POC Core Ontology, which is an ontology to specify Purposeful
Online Community communities (POC Specifications). POC Core Ontology is specified
with OWL 2 [7,8]. POC Applications provide endpoints that advertise their data
according to a given POC Specification. Data is advertised consistent with Linked

Data standards [38]. POC Clients consume data served by POC Applications.

The remainder of this chapter focuses on the specification of a Purposeful Online

Community and the corresponding POC Core Ontology concepts and relations.

3.1. POC Core Ontology

POC Core Ontology is an OWL 2 ontology that specifies a conceptual model
for POCs. POC Core Ontology is identified by the namespace URI http://www.
cmpe.boun.edu.tr/soslab/ontologies/poc/core#. The namespace prefix poc is

used throughout this thesis to refer to this namespace.

The design of the POC Core Ontology adheres to the recommendations and

standard practices provided by W3C. Existing ontologies (or vocabularies) have been

15

utilized in POC Core Ontology. Dublin Core Vocabulary (DCTERMS) [42,43] is
used for representing generic meta-data, Semantically-Interlinked Online Communities
(SIOC) [44,45] for concepts related to online communities, and Ontology for Media
Resources [46] for media resources. Also, XSD datatypes [47] is utilized with the data-

type derivation mechanism supported by OWL 2.

The fundamental classes in POC Core Ontology and their relations are shown in
Figure 3.2. In this figure, circular nodes represent classes. Classes that are external to
POC Core Ontology are labeled as “external”. Edges are used to represent the domain
and range of properties. Dotted edges represent assertions. The POCConcept is the
root class in the ontology, thus, all other classes in the poc namespace is a subclass of

POCConcept.

3.1.1. Representation of the Community Members and Their Roles

Members of a POC Application community are represented with UserAccounts.
All the activities of a community member through the application are associated with

their account. In other words, it represents their identity.

Members of a POC may possess various authorities according to the the practices
of a community. Roles define such authorities, which can be assigned to members.
A user may have zero or more Roles granted by the community. This assignment
of a Role to a UserAccount is represented with the has_function property of SIOC

(sioc:has_function).

3.1.2. Representation of the Community Datatypes

Community data types consist of literal, primitive, and community-defined data
types. XSD datatypes [47] represent literal types, such as integer, string, and date. This
approach is common practice when specifying OWL 2 ontologies. Community specific
datatypes are represented with Datatypes, which has two subclasses: PrimitiveDatatype

and DeriwedDatatype.

16

Image

(external)

AudioTrack
[CIEGED)

VideoTrack
(external) d
Subclass of

SpacialThing

(external)

Subclass of
Subclass of i

VideoType
Subclass of o
VideoTrack FuGl@iEe 0 R
: ImageType K
% Subclassof H o
K H : ! Subclass of o
. Subclass of + Subclass of Lo - B e
e . : - Rad Subclass of ,*' -
- . H K - . . Subclass of AudioT 7’ ~
Subclassof % i . Subclass of udiofrype [
[NV 3 Thing
AV \
R ’
/V\ -~
St sourceUri...
(functional) o
| Literal !
sourcelite...
T R (functional)
steplnstance ' ol ‘: DirectPipe
(inverse functionah) >UPC1355 OF - Supclass of 5 o e P
: UserDefinedD...
Subclass of
orkflowInstancg: - Subclass of [: E B HumanPipe
¢ Subclass of Subclass of
datatype X N E 0 ControlPipe
. (functional) & 2’ . -
\
UserAccount K /\‘ -~
(extema) Subclass of PortPipe 7 \
. ~ \ H
traint ™ \ / ’
S constrailnt =, \ 4 Subclass of
Subclass of . So - .
targetSte, sourceStep |
sourcePort targetPort pipe (,uﬁmona,,p (functional) H
i i (inverse i \V4

Subclass of nope ...
inputPort
inverse functional

. . V%
y Subclass of
N
--- Subclass of ==[X POCConcept
.- 4

Subclass of *, Subclass of

& .
Subclass of %
DataField K H
K Subclass of .
Subclass of

. Subclass of -

A

Subclass of

. task .
H (functional) :
name ' > H
! H d ste H
(functional) H (inverse funetonal
fieldType ValueBinding i outputPort

TR (inverse functional)
AutomatedStep
P
Va N
ro uriValue literalValue
\ Thing (functional) (functional)
. , Subclass of
-~
- -
’ A :
[B iteral status
\ Thing - (functional)
N , ConditionalStep

- -

OutputPort

Figure 3.2. A visualization of the fundamental classes, properties and assertions in

POC Core Ontology.

17

PrimitiveDatatypes represent the basic, non-literal datatypes that are commonly
manipulated by POCs. ListType is a PrimitiveDatatype for lists. MediaType is a sub-
class of PrimitiveDatatype, representing the types for the Audiovisual media resources.
Image Type, AudioTrack and VideoTrack are Primitive Datatypes representing types for

images, audiotracks and videotracks.

OWL 2 [8] supports a mechanishm to derive new restricted datatypes from the
existing literals, e.g. a string with a maximum length of 144 characters. This, however,
does not give us enough expressivity to define all custom types that would be needed
by individual POCs. UserDefinedDatatypes represent community-specific types for the
data resources utilized within a POC. UserDefinedDatatype class has two subclasses;

namely, DeriwedDatatype and CompositeDatatype.

DerivedDatatypes are constrained derivations from other Datatypes, e.g. an Im-
age Type for images that are not allowed to have a frame height larger than 800 pixels.
A DerivedDatatype has one or more baseDatatypes, which are the Datatypes that the
database derivation is based on. The baseDatatype of a DerivedDatatype can be a
PrimitiveDatatype or another DeriwedDatatype. The properties that can be used to

define restrictions on DerivedDatatypes are represented in Table 3.1.

An example DerivedDatatype representation is depicted in Figure 3.3. It defines a
DerwedDatatype based on Image Type, which restricts its instances to have a maximum

frame width and height of 200 pixels, and a minimum file size of 100 kilobytes.

CompositeDatatypes are UserDefinedDatatypes representing types for data re-
sources consisting of one or more named fields of various types. A Composite Datatype
has one or more dataFields, which are DataFields. A DataField has a string label, a
field Type, and zero or one sourceService. It also has an optional boolean flag, isRe-
quired. If isRequired flag of a CompositeDatatype is true, its instances must contain a
value corresponding to the DataField. If isRequired flag is false or missing, the values
for the DataField can be left blank. A DataField is uniquely identified with its label
among the dataFields of a CompositeDatatype. field Type of a DataField specifies what

18

Table 3.1. Derivation properties for DerivedDatatypes.

Name Range Description

maxFrame Width | xsd:integer | The maximum frame width in pixels for Derived-
Datatypes based on ImageType and AudioType.

minFrameWidth | xsd:integer | The minimum frame width in pixels for Derived-
Datatypes based on Image Type and Audio Type.

maxFrameHeight | xsd:integer | The maximum frame height in pixels for Derived-
Datatypes based on Image Type and Audio Type.

minFrameHeight | xsd:integer | The minimum frame height in pixels for Derived-
Datatypes based on Image Type and Audio Type.

maxTrackLength | xsd:integer | The maximum file size in kilobytes for Derived-
Datatypes based on Media Types.

maxTrackLength | xsd:integer | The maximum file size in kilobytes for Derived-
Datatypes based on MediaTypes.

maxFileSize xsd:integer | The maximum file size for DerivedDatatypes based
on MediaTypes.

minkFileSize xsd:integer | The maximum file size for DerivedDatatypes based
on MediaTypes.

scale Width xsd:integer | The target frame width in pixels for resources of
DerivedDatatypes based on ImageType to be scaled
before their storage.

scaleHeight xsd:integer | The target frame height in pixels for resources of
DerwedDatatypes based on ImageType to be scaled
before their storage.

maxSize xsd:integer | The maximum size for DerivedDatatypes based on

ListType.

19

Oprefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
O@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.
<http://example.org/SmallImageType> a poc:DerivedDatatype;
poc:baseDatatype poc:ImageType;
poc:maxFrameWidth 200;
poc:maxFrameHeigth 200;

poc:minFileSize 100.

Figure 3.3. A DeriwedDatatype based on ImageType represented in Turtle.

kind of data is allowed for the DataField. 1t is typically a XSD datatype or a Datatype,
yet can be any other type that can be identified with a URI. Values for a DataField
can be expected to be retrieved from an external Linked Dataset. Endpoint of such a
datasets is identified by the sourceService of a DataField. Figure 3.4 demonstrates an
example CompositeDatatype. 1t defines a CompositeDatatype with a label "Haircut",
which has four dataFields. The first DataField has "Name" as its label and a field-
Type of string. This DataField is specified to be required, indicating that it does not
allow blank values. The second DataField has "Cost" as its label, and a field Type
of decimal. The third DataField has "Difficulty" as its label, and a fieldType of a
datatype derived from integer, restricted to be greater than or equal to 0 and less than
or equal to 10. The forth DataField has "Photo" as its label, and a field Type of the

DerivedDatatype we defined in Figure 3.3.

In addition to the mentioned types, POC Core Ontology introduce three special
literal types: FExpression, ViewTemplate and View. These literal types are derived
from string of XML Schema Definition Language [47|, with the datatype derivation
mechanism supported by OWL 2 Web Ontology Language [8]. POC Core Ontology
does not impose any further meaning on these literal types, and their utilization in

POC Model will be discussed in Section 3.4.8.

20

<http://example.org/Haircut> a poc:CompositeDatatype;
rdfs:label "Haircut";
poc:dataField
[a poc:DataField;
rdfs:label "Name";
dcterms:description "Name of the haircut.'"Qen;
poc:isRequired true;
poc:fieldType xsd:string
1, [a poc:DataField;
rdfs:label "Cost";
dcterms:description "Recommended cost of the haircut in USD."Qen;
poc:fieldType xsd:decimal
1, [a poc:DataField;
rdfs:label "Difficulty";
dcterms:description "A rating (0-10) indicating the difficulty to
perform the haircut."Qen;
poc:fieldType [rdf:type rdfs:Datatype ;
owl:onDatatype xsd:integer ;
owl:withRestrictions ([xsd:minInclusive 0] [xsd:maxInclusive
101)
]
], [a poc:DataField;
rdfs:label "Photo";
poc:fieldType <http://example.org/Smalllmage>

Figure 3.4. An example CompositeDatatype with four dataFields with various types,

represented in Turtle.

21

3.1.3. Representation of the Community-Specific Processes

POCs have diverse purposes and their own ways to reach their goals. Applica-
tions that target specific POCs should, thereby, have the capability to perform custom
processes utilized by each community. Such processes often involve multiple steps, to
be performed by different members of the community or by the application itself, auto-
matically. Representation of such community-specific processes are the essence of our

conceptualizations of POCs.

Workflows represent community-specific processes, which are pipelines composed
of one or more basic operations. A Workflow encapsulates one or more interdependent

steps and zero or more pipes.

Each step of a Workflow is a Step. A Step represents an invocation of a predefined
operation within a Workflow, which can be executed autonomously or manually by a
community member. A Step has a task, zero or one wviewTemplate, zero or more
imputPorts and zero or more outputPorts. The inputPorts and outputPorts of a Step
are Ports. A Port is a data handle that is used to transfer data from or to a Step.
Each Port of a Step is uniquely identified with its label among its inputPorts and
outputPorts. The task of a Step identifies what kind of operation is involved by the
Step. For the sake of clarity, we will discuss other components of Workflows before
Tasks. The viewTemplate of a Step is a ViewTemplate, representing the information
to be displayed to the users who enact the Step. Figure 3.5 depicts a Step identified as
So, with two inputPorts and an outputPort. The first inputPort of Sy has "input0"
as its label , and the second has "input1". The outputPort of Sy has "output0" as its
label.

Pipes represent data and control dependencies of Steps. They are typically used
to specify how Steps are related to one another in a Workflow. There are four types
of Pipes to represent the nature of the dependency: PortPipe, DirectPipe, HumanPipe
and ControlPipe.

22

N
input0
input1
So

Figure 3.5. An illustration of a Step with two inputPorts and an outputPort. The

output>

large rectengle represents the Step. Small diamond and the circle labeled V' represent
a viewTemplate. Small pentagons represent inputPorts and outputPorts of the Step.

The text on each pentagon represent the label of the Port.

PortPipes represent the data flow between Steps. A PortPipe is used to transmit
the outputs of a Step to another. Each PortPipe has a sourceStep, a sourcePort, a tar-
getStep and a targetPort. The sourcePort identifies which outputPort of the sourceStep
is the source of the data binding; and, the targetPort identifies which inputPort of the
targetStep is the target of the data binding. Figure 3.6 depicts a Workflow with two
Steps; Sy and S, and a PortPipe. Sy has an outputPort labeld "output". S; has an
inputPort labeld "input". The depicted PortPipe has Sy as its sourceStep, "output"

as its sourcePort, Sy as its targetPort and "input" as its targetPort.

outpu>_ input>

So S

Figure 3.6. An illustration of a Workflow with two Steps and a PortPipe. The

PortPipe is represented with a connecting line between the two Ports.

DirectPipes are used to insert values directly to Steps. Each DirectPipe has

a targetStep, targetPort, and a sourceValue. sourceValue represents the data to be

23

inserted, which can be a literal value or a Datalnstance. targetPort specifies which
inputPort of targetStep will be bound with the data. Figure 3.7 depicts a Workflow
with a single Step, Sy, and a DirectPipe. Sy has a single inputPort, labeld "input".
The DirectPipe has Sy as its targetStep, "input" as its targetPort, and "value" as its

source Value.

=

So

Figure 3.7. An illustration of a Workflow with a single Step and a DirectPipe. The
DirectPipe is represented with an ellipse and a connecting line between the ellipse

and the Port. The text inside the ellipse is the source Value of the DirectPipe.

HumanPipes represent manual data entries by the users to the Steps. A Human-
Pipe has a targetStep, a targetPort. targetPort of a HumanPipe identifies the inputPort
of targetStep that the input from users is intended for. Figure 3.8 depicts a Workflow
with a single Step, Sy, and a HumanPipe. The HumanPipe has Sy as its targetStep

and "input" as its targetPort.

>

So

Figure 3.8. An illustration of a Workflow with a single Step and a HumanPipe. The
HumanPipe is represented with a stick figure and a connecting line between the stick

figure and the Port.

ControlPipes represent the control dependencies between Steps with no data flow.

Each ControlPipe has a targetStep and a sourceStep, which are two distinct Steps of a

24

Workflow. The targetStep of a ControlPipe cannot be executed before the sourceStep
is successfully completed. Figure 3.9 depicts a Workflow with two Steps; Sy and Si,
and a ControlPipe. The ControlPipe has Sy as its sourceStep and S; as its targetStep.

\ 4

So S

Figure 3.9. An illustration of a Workflow with two Steps and a ControlPipe. The

ControlPipe is represented with an arrow between the Steps.

ConditionalPipes are ControlPipes that represent control dependencies between
Steps that determined by the value of a certain output. Each ConditionalPipe has a
sourcePort, which identifies which outputPort of its sourceStep determines the control
flow. There are two types of ConditionalPipes: TruePipe and FalsePipe. A TruePipe
represents a control flow that is only enacted if the sourcePort evaluates true. Similarly,
a FalsePipe represents a control flow that is only enacted if the sourcePort evaluates
false. Figure 3.10 depicts a Workflow with three Steps; Sy, S1 and Ss, a TruePipe and
a FalsePipe. The TruePipe has Sy as its sourceStep, "output" as its sourcePort and S}
as its targetStep. The FalsePipe has Sy as its sourceStep, "output" as its sourcePort

and Sy as its targetStep.

Tasks are predefined simple operations to be performed within Workflows Any,
complex or simple, process to be performed within a POC involves the enacment of one
or more Tasks. Tasks are invoked by Steps of a Workflow, with the values provided
for the inputPorts of a Step. Similar to the Steps that invoke them, each Task has
zero or more inputPorts and zero or more outputPorts. Tasks resemble functions in
a functional programming environment, since Steps, like function calls, invoke them
with a set of inputs and pass its outputs to the next Step, or function call. However,
this analogy is not perfect, as the data being passed to Tuasks is mutable, and can be

manipulated by the Task. We introduce a set of predefined Tusks, details of which are

25

represented in Table 3.2. Implementations of POC Model can extend this predefined

set in order to facilitate more complex use cases.

3.1.4. Representation of Instances

Various POCConcepts that are discussed above can have multiple enactment,
or instances, within a POC. For instance, there can be multiple resources that are
instances of the same DerivedDatatype, or a Workflow can be enacted multiple times.
Such instances are represented with Instance class in POC Core Ontology. creator and
created properties of DCTERMS are exploited for identifying the UserAccounts that
have caused the creation of Instances and the time of their creation. Instance class has

three subclasses; namely Datalnstance, WorkflowInstance and StepInstance.

Literal values, such as numbers, strings, dates, are represented through XSD
datatypes [47] in POC Core Ontology. More complex data resources are represented
with Datalnstances. Each Datalnstance has a datatype, representing the Datatype that
it actualize. There are five subclasses of Datalnstance class; namely List, Location,

MediaResource and CompositeDatalnstance.

A List represents a list of arbitrary items, which can be any literal value or uri.
A List has items, which identifes an RDF List that keeps the items. Figure 3.11
illustrates an example List representation. The List has a label of “My list of things”, a
UserAccount as its creator, and specified to be created at a specific time. It has three

items, all having different types.

MediaResource represents audiovisual data resources. There are three subclasses
of MediaResource; namely Image, VideoTrack and AudioTrack. A MediaResource has
a datatype that is either a MediaType or a DerivedDatatype that has a MediaType as an
ancestor. locator property in Ontology for Media Resources [46] is utilized to identify
the URL for the MediaResources. Figure 3.12 demonstrates an example Image whose

datatype is the DerivedDatatype represented in Figure 3.3.

26

—

true

{ 5

outpu>

So false

NS

Sy

Figure 3.10. An illustration of a Workflow with three Steps and two

ConditionalPipes. The ConditionalPipes are represented with labeled arrows.

Q@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
O@prefix dcterms: <http://purl.org/dc/terms/>.
Q@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.
<http://example.org/myList> a poc:List;
dcterms:created "2015-12-03T23:48:20Z"~"xsd:dateTime;
dcterms:creator <http://example.org/myUserAccount>;
dcterms:title "My list of things"Qen;

poc:items (1 "two" <http://example.org/dummyURI>) .

Figure 3.11. An example List with three items of different types, serialized in Turtle.

<http://example.org/mySmallImage> a poc:Image;
poc:datatype <http://example.org/SmalllmageType>;
ma:locator "http://example.org/anImageURL. jpg"~"xsd:anyURI.

Figure 3.12. An example Image, represented in Turtle.

Table 3.2: Predefined Tasks.

Name Inputs Outputs Description
Create “object”, “result” Creates a Datalnstance and outputs it with the “result” port. The “object” port identifies
“datatype” the Datalnstance whose value is copied into the created one. The “datatype” port identifies
the expected Datatype for the “object” port.
Modify “object”, “result” Modifies the Datalnstance identified by the “object” port, inserting the entity identified by
“value”, the “value” port to the Datalnstance. Only one of the “dataField” and “property” ports
“property”, must be provided. If “dataField” port is present the Datalnstance is interpreted to be a
“dataField” CompositeDatalnstance, and the value is inserted to it as a field Value whose label is identified
by the “dataField” port. Otherwise, the property identified by the “property” port is used to
insert the value. In either case, the existing values are replaced.
Save “object” - Saves the Datalnstance identified by the “object” port, redeeming it referrable.
Delete “object” - Deletes the Datalnstance identified by the “object” port, redeeming it non-referrable.
Random “max” “result” Generates a random number greater than or equal to zero and less than or equal to the
number identified by the “max” port. The generated number has the same literal type as
the one identified by the “max” port and is advertised by the “result” port.
Size “object” “result” Outputs the size of the List identified by the “object” port, with the “result” port.
Fuvaluate “object” “result” Computes the FExpression identified with the “object” port, and outputs the result with the

“result” port.

Table 3.2: Predefined Tasks. (Cont.)

Name Inputs Outputs | Description

Insert “object”, “result” Inserts an item identified by the “object” port to the List identified by the “target” port, and
“target”, outputs the resulting List with the “result” port. The “index” port expects an integer value
“index” and identifies the position in the list for insertion. If no value is provided for the “index”

port, the item is appended to the end of the list.

Remowve “object”, “result” Removes an item from the List identified by the “target” port, and outputs the resulting List
“source”, with the “result” port. The item is either identified directly by the “object” port or with its
“index” index by the “index” port.

Get “source”, “result” The “result” port is used to output the item having the index, identified by the “index” port,
“index” in the List, identified with the “source” port.

Filter “object”, “result” Filters the list identified with the “object” port using the Fxpression identified with the
“condition” “condition” port, and outputs the resulting list with the “result” port. The Ezpression is

computed for each item of the list, replacing the @item parameter in the FEzxpression. If it

computes false or null, the item is excluded.

Identity

Does not manipulate anything, and is intended to be used for displaying messages to users.

29

A CompositeDatalnstance is a Datalnstance, datatype of which is a Composite-
Datatype. A CompositeDatalnstance has zero or more field Values, representing value
mappings for the corresponding DataFields of its datatype. Figure 3.13 depicts a Com-
positeDatalnstance, whose datatype is the CompositeDatatype we defiend in Figure
3.4. The illustrated CompositeDatalnstance has "American haircut" for the "Name"
dataField, 3 for the "Difficulty" dataField, and the Image represented in Figure
3.12 for the "Photo" dataField. Note that, it does not specify a value for the "Cost"

dataField, which is allowed to be blank since it is not specified to be required.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix dcterms: <http://purl.org/dc/terms/>.
Q@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.
<http://example.org/myHaircut> a poc:CompositeDatalnstance;
poc:fieldValue
[rdfs:1label "Name";
poc:literalValue "American haircut"
1,
[rdfs:1label "Difficulty";
poc:literalValue 3
1,
[rdfs:label "Photo";

poc:uriValue <http://example.org/mySmallImage>

Figure 3.13. An example CompositeDatalnstance with three field Values, serialized in

Turtle.

WorkflowInstances are enactments of Workflows. Each WorkflowInstance has a
datatype, a status and one or more stepInstances. The datatype of a WorkflowInstance
is the Workflow that is enacted by it. The status of a WorkflowInstance is a string

value. The stepInstances of a Workflow are the enacments of its individual Steps.

30

A StepInstance is an enactment of a Step. Each StepInstance has a datatype, a
status, zero or one view, zero or more inputs and zero or more outputs. The view of
a StepInstance is a View. The status of a StepInstance is a string value. The inputs
and outputs of a StepInstance represent the individual values bound for each Port of

its datatype Step.

3.1.5. Representation of Constraints

Constraints represent restrictions on when and by whom certain actions can be
taken within a POC. Each Constraint is associated with a Workflow, a Step or a
Datalnstance, by constraint property. A Constraint of a Workflow restraints the invo-
cation of the Workflow by the users. A Constraint of a Step restraints its performance
by the users. A Constraint of a Datalnstance restraints its access by the users. A Con-
straint is either an AuthorizationalConstraint or a TimeConstraint. A TimeConstraint
is a restriction on when a certain action is performable. It either enforces a specific
time interval or a lifetime for the availability of its target. AuthorizationalConstraints
are restrictions on who can perform certain actions. An AuthorizationalConstraint can
have zero or more allowedRoles and zero or more allowlfs. An allowedRole is a Role,
possesors of which are allowed by the Constraint to perform the restrained action. An
allowlf is an Ezpression that needs to evaluate true for the allowance of the restrained
action. A Constraint is deemed as “allowing” if one of its allowedRoles or allowlfs
allows the action. However, all the Constraints associated with an action needs to be

“allowing” for it to be allowed.

3.2. POC LDP Ontology

In this section, we discuss POC LDP Ontology, which is a lightweight exten-
sion of POC Core Ontology that provides a vocabulary for the data interchange
between POC Applications and POC Clients. POC LDP Ontology is identified by
the namespace URI http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/ldp#.

The namespace prefix poc-1dp will be used for this namespace in this document.

31

Figure 3.14 depicts all the entities defined in POC LDP Ontology. Circle nodes
represent OWL 2 classes. The classes that do not belong to poc-1dp namespace are
labeled as “external”. Dotted edges represent the assertions in the ontology. Filled
edges represent the domain and range constraints for the properties. POCConcept and

WorkflowInstance belong to poc namespace. Container represents an LDP Container

[38].

orkflowInstancg POCConcept

(external) (external)

steplnstances instances Subclass of

userAccounts

Container
(external) datalnstance

workflows

datatypes

Figure 3.14. A visualization of the classes, properties and assertions in POC LDP

Ontology.

An Endpoint represents the endpoint of a POC Application, which advertise all
information regarding the POC Application. The datalnstances property identifies
a Container that encapsulates the available Datalnstances. The userAccounts prop-
erty identifies a Container that encapsulates the available UserAccounts. The work-
flows property identifies a Container that encapsulates the available Workflows. The
datatypes property identifies a Container that encapsulates the available Datatypes.

32

The instances property is used to identify a Container that encapsulates the
instances of instantiatable entities, such as Datatypes, Workflows and Steps. For in-
stance, a WorkflowInstance whose datatype is a specific Workflow, would be embodied

by a Container that is the instances of that Workflow.

The stepInstances property identifies a Container that encapsulates the stepIn-

stances of a WorkflowInstance.
3.3. Specification of POC Applications

In this section, we discuss the process of specification for applications to be gen-

erated.

Initialization of a POC Application requires a specification of its composing el-
ements. The specification process for POC Applications is depicted in Figure 3.15.
In the specification process, a description for a POC Application is captured from a

Community Builder, and accumulated into a POC Specification.

l

External Ontologies

©

External Data Sets

Specificaiton —5

POC
Specification

% Document

External POC
Specification
Document

X

Community
Builder

Figure 3.15. An overview of specification process for POC Applications.

POC Model does not provide exact details of how these specificaitons are cap-

tured from human users, but identifies the following requirements for the specification

33

process.

(i)

(i)

(iv)

People who know the specific needs of individual communities do not necessarily
have the technical skills to build applicaitons addressing those needs. The speci-
fication process should, therefore, involve an easy-to-use interface, enabling those
people to express the features they desire in the applications without manipulat-
ing complex source code.

The specification process must produce a POC Specification, which reflects the
input captured from the Community Builder, and complies with POC Core On-
tology.

The specification process must allow the import of external ontologies, which
may contain entities that are useful for the representation of community data
resources.

The specification process should provide means for the reuse of structures defined
in other POC Specifications, which may be accessible on the Web, or introduced
directly by the Community Builder.

There is a substantial amount of Linked Data [9] accessible on the Web, covering
a variety of knowledge domains. Such Linked Data could be useful for POCs, if
they have the means to access and utilize it properly. Such data is advertised
by open data sets, and available for any type of application. The specification
process must allow the Community Builders to introduce Linked Data sets, data

from which will be referred by the generated POC Application.

A POC Specification is an explicit specification of the initial configuration of a

POC Application. These documents are RDF documents structured in according to

POC Core Ontology. A POC Specification typically contain a instances of UserDefined-

Datatypes, Datalnstances, Roles, Workflows and Constraints for the POC Application

to be constructed. The instances defined within a POC Specification are typically rep-

resented with Blank nodes [24] in the process of specification. The rationale behind

this will be discussed in Section 3.4.

34

In the remainder of this section, we introduce a community of bird watchers,
referred as Cpg;rqers, and demonstrate how a POC Application serving this community

can be defined within a POC Specification.

CBirders 18 @ community that aims to build a catalog of the observations they have
made of the birds they encountered in the wild. They would like to document their
observations with a photograph they have taken, the location where the photograph
was taken, the type of the bird in the photograph, and a descriptive title for their

observation.

Here, we demonstrate how a POC Application addressing the needs of Cg;pgers
can be represented by a POC Specification, referred as Specgirqers. Note that, there can
be many acceptable ways to construct an application for a POC. Here, we are putting
ourselves in the shoes of a Community Builder, and building a POC Application that

we consider to be reasonable for this community:.

There are two Roles defined in Specp;,gers; namely, Bird Watcher and BirdEzpert.
The representation of these Roles in Specpirgers 18 demonstrated in Figure 3.16. Bird-
Watchers are ordinary members of Cpg;qers, Who can share their observations with the
other members. BirdFxperts are members who have a trusted expertise to identify the

birds shared by the other members.

_:0Observer a poc:Role;
rdfs:label "Observer'"Q@en.

_:BirdExpert a poc:Role;
rdfs:label "Bird Expert"Qen.

Figure 3.16. The Roles in Specgirgers, serialized in Turtle.

Specpirders contains a single UserDefinedDatatype, which is a CompositeDatatype

representing the observations of the community members. Figure 3.17 demonstrates

35

the repsentation of the datatype, which we refer as Observation. Observation has
"Observation" as its label, and the following four dataFields that are enumarated by

their labels.

e "Title": This DataField represents the descriptive titles provided for the obser-
vations. Its field Type is string.

e "Photograph": This dataField represents the photographs the observers have
taken of the birds. It has a field Type of ImageType.

e "Place": This DataF'ield represents the location that the photogragh was taken.
We want the location data to be retrieved from an open Linked Dataset, so
that the geospacial relations of an Observation with another Observation, or
even other external resources, can be identified with well-defined meaning. This
DataField has a fieldType of Feature. Feature is a class defined in Geonames
Ontology [48] that represents any geospacial entity; such as cities, countries,
forests, oceans etc. This DataField has a sourceService identifying a web service
where the data for this field will be retrieved from. This service is identified
to conform the SPARQL-QUERY protocol, and to be accessible through the
endpoint http://factforge.net/sparql.

e "Bird Type": This DataField represents the type of the observed bird. Unlike
the other DataFields, it is not specified to be required, indicating that it can
be left blank. It has a fieldType of Bird, which is an entity defined in UMBEL
Reference Concept Ontology [37]. This DataField has a sourceService identifying
a web service where the data for this field will be retrieved from. This service is
identified to conform the SPARQL-QUERY protocol, and to be accessible through
the HT'TP endpoint http://dbpedia.org/sparql.

The only Datalnstance defined in Specgiyqers is ObservationList. ObservationlList
is a List that contains the Observations that are provided by the members. Represen-

tation of ObservationList in Specpirqers is depicted in Figure 3.18.

36

_:0Observation a poc:CompositeDatatype;
rdfs:label "Observation"@en;
poc:dataField
[rdfs:1label "Title"Qen;
poc:isRequired true;
poc:fieldType xsd:string
1,
[rdfs:label "Bird Type'"Qen;
poc:fieldType umbel-rc:Bird;
poc:sourceService
[sioc-services:service_protocol "SPARQL-QUERY";
sioc-services:service_endpoint <http://dbpedia.org/sparql>
]
1,
[rdfs:1label "Place"@en;
poc:isRequired true;
poc:fieldType gn:Feature;
poc:sourceService [
sioc-services:service_protocol "SPARQL-QUERY";
sioc-services:service_endpoint <http://factforge.net/sparql>
]
1,
[rdfs:label "Photograph"@en;
poc:isRequired true;

poc:fieldType poc:ImageType

Figure 3.17. Observation serialized in Turtle.

37

_:0ObservationlList a poc:List;
rdfs:label "ObservationList"@en;
dcterms:title "Observations"Qen;
dcterms:description "This is a list of all the bird observations we

have gathered so far."Qen.

Figure 3.18. The representation of ObservationList, serialized in Turtle.

Specpirders contains two Workflows; namely, ObservationEntry and Bird TypeFd-
iting. ObservationEntry is a Workflow that represents the operation of entering Obser-
vations. Its definition in Specgirqers is depicted in Figure 3.20. Figure 3.19 illustrates
ObservationEntry. It involves the entry of an Observation by a community member,
and its appending to ObservationList. ObservationEntry has a constraint, which is an
AuthorizationalConstraint whose allowedRole is BirdWatcher. This Constraint speci-

fies that it is invokable only by Bird Watchers.

Insert

Figure 3.19. A representation of ObservationEntry.

BirdTypeEditing is a Workflow that represents the modification that BirdFExperts
can perform on Observations. Its definition in Specpirqers is depicted in Figure 3.22.
Figure 3.21 illustrates BirdTypeEditing. Bird TypeEditing enables BirdFExperts to spec-
ify the bird types that are missing in Observations, or correct the bird types specified
wrongly by BirdWatchers. It has a constraint, which is an AuthorizationalConstraint
whose allowedRole is BirdExpert. This Constraint specifies that it is invokable only by
BirdExperts.

38

_:0ObservationEntry a poc:Workflow;
rdfs:label "Observation Entry"Qen;
poc:constraint [poc:allowedRole _:BirdWatcher];
poc:step _:S0, _:S51;
poc:pipe [a poc:HumanPipe; poc:targetStep _:SO; poc:targetPort
"object"],
[a poc:DirectPipe; poc:targetStep _:S0; poc:targetPort
"datatype"; poc:sourceValue _:0Observation],
[a poc:PortPipe; poc:sourceStep _:S0 ; poc:sourcePort "result";
poc:targetStep _:S1 ; poc:targetPort "object"],
[a poc:DirectPipe; poc:targetStep _:S1 ; poc:targetPort "target";

poc:sourceValue _:0ObservationList].

_:50 a poc:Step;
poc:task poc:Create;
poc:viewTemplate "<p>Please submit an
observation.</p>"""poc:ViewTemplate;
poc:inputPort [rdfs:label "object"],
[rdfs:label "datatype"];

poc:outputPort [rdfs:label "result"].

_:31 a poc:Step;
poc:task poc:Insert;
poc:inputPort [rdfs:label "object"],
[rdfs:label "target"];

poc:outputPort [rdfs:label "result"].

Figure 3.20. ObservationEntry, serialized in Turtle.

39

S0

i_ object

i— Modify
S3

Figure 3.21. A representation of BirdTypeEditing.

_:BirdTypeEditing a poc:Workflow;
rdfs:label "Bird Type Editing"Qen;
poc:constraint [poc:allowedRole _:BirdExpert].
poc:step _:83;
poc:pipe [a poc:HumanPipe; poc:targetStep _:S3; poc:targetPort
"object"],
[a poc:HumanPipe; poc:targetStep _:S3; poc:targetPort "value"],
[a poc:DirectPipe; poc:targetStep _:S3; poc:targetPort
"dataField", poc:sourceValue "Bird Type"@en],
_:83 a poc:Step;
poc:task poc:Modify;
poc:viewTemplate "<p>Please select a bird type for this
observation.</p>"""poc:ViewTemplate;
poc:inputPort [rdfs:label "object"], [rdfs:label "value"], [

rdfs:label "dataField"].

Figure 3.22. A representation of Bird TypeEditing in Specpirqers, serialized in Turtle.

40

3.4. Execution of POC Applications

In this section, we discuss the execution process in POC Model for applications
that actualize POC Specifications, which are called POC Applications. First, we give
an overview of the execution process for POC Applications. Then, we provide a list of
requirements we identified for POC Applications. Lastly, we discuss the architecture

and execution behaviour of POC Applications.

An overview of the execution process in POC Model is depicted in Figure 3.23.
The execution process involves the initialization of a POC Application that conforms
a POC Specification, and its communication with the members of a POC who may
use various client applications. Initialization of a POC Application and its runtime
behaviour is depended on the semantics defined within POC Core Ontology. The com-
munication of a POC Application with its users is structured by POC LDP Ontology,
which is an extention of POC Core Ontology.

| E Execution [E=—= _J/’i
POC \
Specification) P
Document A A ‘[E]I
1 1 I_E?
: : POC Members
1 1
extends
V's
POC Core POC LDP
Ontology Ontology

Figure 3.23. An overview of the execution process in POC Model.

We identify the following requirements for a POC Application.

(i) A user shall be able to join the associated POC through the system.

(ii) A user shall be able to view the community data resources.

41

The system shall only allow access to a data resource if the requesting user
satisfies the authorizational constraints associated with the data resource.
The system shall only allow access to a data resource if the time constraints

associated with the data resource are satisfied.

(iii) A user shall be able to view and invoke workflows.

The system shall only allow access and invocation of a workflow if the re-
questing user satisfies the authorizational constraints associated with the
workflow.

The system shall only allow access and invocation of a workflow if the time

constraints associated with the workflow are satisfied.

(iv) The user shall be able to view the status of the workflow instances that s/he

invoked.

(v) A user shall be able to view and perform tasks.

The system shall only allow access and performance of a task if the requesting
user satisfies the authorizational constraints associated with the task.

The system shall only allow access and performance of a task if the time
constraints associated with the task are satisfied.

The system shall allow access and performance of a task only if all of its
control and data dependencies are satisfied.

The system shall present the data utilized within the task.

The system shall provide instructions on how to perform the task.

The system shall provide means for the entry of the data requried for the

execution of the task.

(vi) The user shall be able to view the information of a task that s/he previously

performed.

(vii) The system shall handle the execution of the tasks.

The system shall execute the tasks that do not depend on human input

automatically when their control and data dependencies are satisfied.

In the remainder of this section, we discuss the architectural design and execution

details of POC Applications, and discuss how they address the listed requirements.

42

POC Applications follow the client-server architectural design pattern, which
entails a separation of the server-side concerns, such as persistence or business logic,
and the client-side concerns, such as the user interface. The server-side component of a
POC Application is called a POC Server. A client-side applicaiton that interacts with
a POC Server is called a POC Client.

POC Applications have a stateless architecture. This indicates that a POC Server
must be able to interpret any request properly without the information of previous
requests. POC Model does not assert specific authentication and authorization mecha-
nisms, however, any implemented mechanism must not interfere with the statelessness.

This necessitates POC Clients to keep track of the session state.

The communication between POC Servers and POC Clients conform Linked Data
Platform 1.0 (LDP) Specification [38], where POC Servers are LDP Servers and POC
Clients are LDP Clients. A POC Server and the resources it advertise are identified
by dereferenceable HT'TP URIs, and represented as RDF data, structured with POC
Core Ontology and POC LDP Ontology.

The remaining discussion of POC Applications in this section include demon-
strative interchanges between POC Servers and POC Clients, for an example POC
Application that we will refer as Appgirders- APPBirders conforms Specpirgers, which is
the POC Specification discussed in the previous section. The POC Server of Appgirders
is assumed to be identified by the URI http://example.org/birders. For the sake of
brevity, the HT'TP headers interchanged through the following HT'TP transactions are
mostly omitted, unless they play an important role for the model. Also, for readabil-
ity, all the provided examples interchange RDF data only in Turtle. Although, POC
Servers must also support JSON-LD, as required by LDP.

3.4.1. Initialization of a POC Server

Initizalization of a POC Server typically involves the setup of a database en-

vironment to satisfy the persistence needs of the POC Application, a web server to

43

communicate with the clients, and any other ancillary construct, such as a load bal-
ancer or a cache store. POC Model does not assert constraints on the inner architecture

of the POC Servers, nonetheless, it specifies their communication with their clients.

As a POC Server is initialized, it generates and assigns a URI to each community-
specific element that is identified by a blank node in the POC Specification, such
as workflows, steps, datatypes, roles, data instances. Such URIs are needed for the
unambiguous identification of the community elements by POC Clients. POC Model
does not impose a specific rule on the structure of the generated URIs, yet, it is
advisable to implement a URI generation mechanism that produce human-readable

URIs. The subsequent discussion on the execution model includes examples on such

URIs.

3.4.2. Retrieval of a POC Server’s Representation

When dereferenced through its URI, a POC Server guides the client on where to
find the available resources within the application. Such resources include the com-
munity workflows, datatypes, data instances and user accounts if they exist. A POC
Server may advertise additional properties along with the mentioned elements. Figure

3.24 depicts an HTTP request for retrieving a representation of the POC Server of

AppBirders .

GET /birders HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.24. An HTTP request message for dereferencing the POC Server of

AppBirders .

The corresponding HTTP response is demonstrated by Figure 3.25. The response

message indicates that the requested resource is a POC Server, and identifies the URIs

44

of four LDP Basic Containers that instore various types of community resources. A
container of the available community workflows is identified via poc-ldp:workflows. A
container of the available data resources is identified via poc-ldp:datalnstances. A
container of the community datatypes is identified via poc-ldp:datatypes. A container
of the user accounts of the community members is identified via poc-ldp:userAccounts.
A POC Client may navigate through the provided URIs automatically, or expect input

from its user before submitting any additional requests.

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<http://example.org/birders> a poc-1ldp:POC_Server;
poc-ldp:datalnstances <http://example.org/birders/data_instances/>;
poc-ldp:datatypes <http://example.org/birders/datatypes/>;

poc-1ldp:workflows <http://example.org/birders/workflows/> .

Figure 3.25. An HTTP response message advertising the POC Server of Apppgirders-

3.4.3. Retrieval of the Community Datatypes

A POC Server advertise the custom datatypes that structure the community re-
sources as elements of an LDP Basic Container. The URI of this container is identified
with poc-ldp:datatypes property in the representation of a POC Server, as demon-
strated in Section 3.4.2. An HTTP request message for the retrieval of the community
datatypes for Apppirders 18 demonstrated by Figure 3.26. The corresponding HT'TP re-
sponse from the POC Server is depicted by Figure 3.27. The response message indicates
that the requested resource is an LDP Basic Container, with a single element that is
identified by the relative URI <observation>. There may be other datatypes structur-
ing the data resources within Appg;,ders, however, this is the only community-specific

datatype.

45

GET /birders/datatypes/ HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.26. An HTTP request message for the retrieval of the community-specific
datatypes of AppBirde'rs‘

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <observation>.

<observation> a poc:CompositeDatatype;

rdfs:label "Observation"@en.

Figure 3.27. An HTTP response message advertising the community-specific

datatypes of Apppirders-

An HTTP request to retrieve the advertised datatype is depicted by Figure 3.28.

The corresponding HTTP response from the POC Server is demonstrated in
Figure 3.29. The returned data is nearly identical to the specification of Observation
depicted by Figure 3.17 in Section 3.3, the only difference being that it is now identified
by a URI, rather than a blank node.

In order to interpret the data resources advertised by a POC Server, a POC Client
may also need the information of the datatypes defined within POC Core Ontology or

46

GET /birders/datatypes/observation HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.28. An HTTP request message for the retrieval of a community-specific

Datatype.

other external sources. Such datatypes should be dereferencable through their URIs,
so that they can be retrieved by POC Clients automatically.

3.4.4. Retrieval and Invocation of the Community Workflows

A POC Server advertise the community workflows available for the user as the
elements of an LDP Basic Container, addressing the aforementioned Requirement iii
of POC Applications. The URI of this container is identified with poc-ldp:workflows
property in the representation of a POC Server, as demonstrated in Section 3.4.2.
An HTTP request message for the retrieval of the available workflows for a user of

AppBirders 18 given in Figure 3.30.

The corresponding HTTP response is demonstrated in Figure 3.31. The user who
initiates the depicted transaction is assumed to possess the role Bird Watcher and not
BirdFExpert, and therefore has access only to ObservationEntry workflow. The relative
URIs in the response are based on the URI of the requested resource, i.e. <> repre-
sents <http://example.org/birders/workflows/> and <observation_entry> rep-
resents <http://example.org/birders/workflows/observation_entry>. The re-
sponse message indicates that the requested resource is an LDP Basic Container, with a
single element identified by the relative URI <observation_entry>. A representation
of this element as well is included in the response message. This element is identified

to be a workflow, and is labeled as "Observation Entry".

47

<> a poc:CompositeDatatype;

rdfs:label "Observation"@en;

poc:dataField

[rdfs:1label "Title"@en;
poc:isRequired true;
poc:fieldType xsd:string

1,

[rdfs:label "Bird Type'"Qen;
poc:fieldType umbel-rc:Bird;

poc:sourceService

[sioc-services:service_protocol "SPARQL-QUERY";

sioc-services:service_endpoint <http://dbpedia.org/sparql>

]

1,
[rdfs:1label "Place"@en;

poc:isRequired true;
poc:fieldType gn:Feature;

poc:sourceService [
sioc-services:service_protocol "SPARQL-QUERY";

sioc-services:service_endpoint <http://factforge.net/sparql>

]

1,
[rdfs:label "Photograph"®@en;

poc:isRequired true;

poc:fieldType poc:ImageType

Figure 3.29. An HTTP response message advertising a representation of a

community-specific Datatype.

48

GET /birders/workflows/ HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.30. An HTTP request message for the retrieval of the available workflows in

AppBirders .

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <observation_entry>.

<observation_entry> a poc:Workflow;

rdfs:label "Observation Entry"Qen.

Figure 3.31. An HTTP response message for the retrieval of the available workflows

in AppBirders .

POC Servers are not required to return the representations of individual elements
along with the containers, however, they may do so in order to relieve the clients of
submitting additional requests for their retrieval. A POC Client may utilize HTTP
Prefer header [49] to cue POC Servers on the desired verbosity for the representation
of LDP Containers, as described by LDP [38|. If the representation of the workflow
were not included in the response message above, the requesting POC Client would
need to retrieve its representation via an additional request, as demonstrated in Figure

3.32.

49

GET /birders/workflows/observation_entry HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.32. An HTTP request message for the retrieval of ObservationEntry.

The corresponding HTTP response message is demonstrated in Figure 3.33. The
POC Server answers with an HT'TP response message that includes POST as an allowed
HTTP method, implying that the user is allowed to perform a POST request against
the requested URI [40].

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: POST,GET,OPTIONS,HEAD

<> a poc:Workflow;

rdfs:label "Observation Entry"Qen.

Figure 3.33. An HTTP response message advertising ObservationEntry.

A POST request against the URI of a workflow creates an instance of that work-
flow, or in other words, invokes the workflow. Figure 3.34 demonstrates an HT'TP

request message for such an invocation of ObservationEntry.

The corresponding HT'TP response message is demonstrated by Figure 3.35. The
POC Server responses with the HT'TP status code 201, indicating that one or more
new resources were created as a result of the request [50]. The response message
includes a Location header, identifying the URI of the resource that has been created
as a result of the transaction. A representation of the created resource is included

in the message body. The advertised resourse is a WorkflowInstance whose datatype

20

POST /birders/workflows/observation_entry HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.34. An HTTP request message invoking ObservationEntry.

is ObservationEntry. The status of the WorkflowInstance is "ongoing", indicating
that it was invoked, but has not been completed yet. It advertises a single associated
StepInstance that is available for the requesting user, identified by the URI http:

//example.org/birders/step_instances/si0.

HTTP/1.1 201 Created
Location: http://example.org/birders/workflows/observation_entry/oe0

Content-Type: text/turtle

<> a poc:WorkflowInstance;
poc:datatype <http://example.org/workflows/observation_entry>;
poc:status "ongoing";
dcterms:created "2015-12-03T23:48:20Z"""xsd:dateTime;
dcterms:creator <http://example.org/birders/user_accounts/ua0>;

poc-ldp:step_instances <#step_instances>.

<#step_instances> a ldp:BasicContainer;

ldp:contains <http://example.org/birders/step_instances/si0>.

Figure 3.35. HT'TP response message for the invocation of ObservationEntry.

o1

3.4.5. Retrieval and Performance of Step Instances

A POC Server advertise the StepInstances available for the user as elements of an
LDP Basic Container. The URI of this container is identified wtih poc-ldp:stepInstances
property in the representation of a POC Server, as demonstrated in Section 3.4.2.
The presented StepInstances may belong to a WorkflowlInstance invoked by the user,
or others. An HTTP request for retrieving the StepInstances available for a user of

AppBirders 18 demonstrated by Figure 3.36.

GET /birders/step_instances/ HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.36. An example HTTP request message for retrieving the StepInstances

available for a user of Apppirders-

The corresponding HT'TP response message is demonstrated by Figure 3.35. The
response message states that the requested resource is an LDP Basic Container, with

three elements identified by the relative URIs <si0>, <sil> and <si2>.

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <si0>, <sil>, <si2>.

Figure 3.37. An example HTTP response message advertising the StepInstances

available for a user of Apppirders-

52

An HTTP request message for retrieving one of the identified StepInstances is

depicted in Figure 3.38. We will refer to this StepInstance as SI,.

GET /birders/step_instances/si0 HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.38. An HTTP request retrieving a representation of S1j.

The corresponding HT'TP response message is demonstrated by Figure 3.39. The
response message includes PATCH as an allowed HTTP method, indicating that the
requester is allowed to perform a PATCH request against the requested URI [40]. A
representation S is provided by the response message. The status of S is "ready",
indicating that it is available for the user to perform. S/, has a view to be displayed to
the user by the client. The Step that is the datatype of S1, is identified, which we will
refer to as Sp. A representation of Sj is also included in the response. Sy has Create
as its task. Sy has two inputPorts labeled as "datatype" and "object", informing the
client on the inputs required for performing S1,. SI has an input labeled "datatype"
with Observation as its value. This indicates that the value for the corresponding
InputPort of Sy, which is labeled as "datatype", is given to be Observation, and
that the the value for the other InputPort, which is labeled as "object", should be
provided by the client for the execution of SIy. Observation is a CompositeDatatype
defined within Specp;rqers- The specification of Observation is provided by Figure 3.17
in Section 3.3, and its retrieval by a POC Client is demonstrated by Figure 3.28 and
3.29 in Section 3.4.3.

A POC Client that has retrieved a representation of a StepInstance with "ready"
status must prompt the user with a Web form to capture the data required for the
execution of the StepInstance. Such a Web form needs to be structured in according
to the types of expected input types, and may need to fetch data from external data

sources and display them to the user as candidate input values. Such information

23

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: PATCH,GET,O0OPTIONS,HEAD

<> a poc:Steplnstance;

poc:datatype
<http://example.org/birders/workflows/observation_entry/steps/s0>;

dcterms:created "2015-12-03T23:48:20Z"""xsd:dateTime;

dcterms:creator <http://example.org//user_accounts/uald>;

poc:status "ready";

poc:view "<p>Please submit an observation.</p>";

poc:input [rdfs:label "datatype";

poc:value <http://example.org/birders/datatypes/observation>].

<http://example.org/birders/workflows/observation_entry/steps/s0> a
poc:Step;
poc:task poc:Create;
poc:inputPort [rdfs:label "datatype"],

[rdfs:label "object"].

Figure 3.39. An HTTP response message advertising S1j.

is provided by the Step that is the datatype of the StepInstance and the Datatypes
associated with the inputs of the StepInstance. These resources can be advertised
within the representations of StepInstances by a POC Server, just as the representation
of S1j includes a specification of Sy. Otherwise, they should be retrieved via additional
requests by POC Clients, and cached for future references. A POC Client that has
received the representation of SI, above, for instance, should retrieve Observation,

unless it is already fetched and cached.

o4

A Web form capturing the human inputs for a StepInstance must provide means
for the submission of numerous types of data. Data structured with most of such
types, such as string, integer, image, can be captured through standard HTML form
elements. Handling CompositeDatatypes, such as Observation, are not as straightfor-
ward. CompositeDatatypes typically consist of multiple DataFields, each of which may
have different, and possibly external, types. A POC Client should discover and fetch
any of such types, and construct the form accordingly. For a DataField associated with
a sourceService, the POC Client must ensure that the provided values for the DataField
are selected from the data advertised by that service. A POC Client that initiates the
execution of S1y in Apppirders, for example, would need to implement such a mechanism
for the DataFields labeled "Bird Type" and "Place" of Observation. POC Model does
not impose a specific means for the retrieval and presentation of candidate values for
such DataFields, nevertheless, a text auto-completion mechanism that suggest candi-
date values based on text entry could be a reasonable solution for many cases. For, say,
the "Bird Type" DataField of Observation, a POC Client could provide a text field for
the entry of a bird species and use the entered text to fetch and suggest candidate values
to the user. To fetch the candidate values, the POC Client needs to send a request to
the specified endpoint of the sourceService in the specified protocol. The endpoint for
the sourceService of the "Bird Type" DataField is http://dbpedia.org/sparql and
its protocol is SPARQL-QUERY [29]. If the user entered "sto" to the form field for
the "Bird Type" DataField, for instance, the POC Client could submit the SPARQL
query demonstrated by Figure 3.40 to http://dbpedia.org/sparql.

The service endpoint responds with a list of results as depicted in Table 3.3. The
POC Client that has received such data should, then, display the returned labels to the
user as candidates for the DataField. 1f the user selects one of the candidate labels, the
corresponding resource URI should be selected to be submitted for the "Bird Type"
DataField of Observation.

Performance of a StepInstance by a user requires the submission of the required
input data by a POC Client. Such submissions are enacted through PATCH requests
against the URI of the StepInstance, attaching input values to the StepInstances. The

95

SELECT DISTINCT 7bird 7label WHERE

{

?bird a umbel-rc:Bird.

?bird rdfs:label 7label.

FILTER regex(?label, "~sto.x", "i")

} LIMIT 5

Figure 3.40. An example SPARQL query to fetch five bird species whose labels start

with "sto".

patching of the StepInstances conforms Linked Data Patch Format (LD Patch) [39],

which is the patching mechanism for Linked Data resources favoured by LDP [38]. An

HTTP request for such a submission for S, is demonstrated by Figure 3.41. The

request message utilize the Add operation of Linked Data Patch Format to insert an

input to SIy. The inserted input is labeled as "object", and has a CompositeDataln-

stance as its value. The CompositeDatalnstance has Observation as its datatype and

four fieldValues, each corresponding to a different DataField of Observation.

Table 3.3. The results for the SPARQL query fetching bird species and their labels.

bird

label

http://dbpedia.

org/resource/Stork

"Stork"@Qen

Kingfisher

http://dbpedia.

org/resource/Stork-billed_

"Stork-billed

Kingfisher"@en

Cuckoo-shrike

http://dbpedia.

org/resource/Stout-billed_

"Stout-billed

Cuckoo-shrike"@en

Flycatcher

http://dbpedia.

org/resource/Stolid_

"Stolid

Flycatcher"@en

http://dbpedia.

org/resource/Storm’s_Stork

"Storm’s Stork"@en

o6

PATCH /birders/step_instances/si0 HTTP/1.1
Host: example.org
Content-Type: text/ldpatch

Accept: text/turtle

Add { <> poc:input [
rdfs:label "object";
poc:value [a poc:CompositeDatalnstance;
poc:datatype <http://example.org/datatypes/observation>;
fieldValue
[rdfs:label "Title"; poc:literalValue "Stork drinking water."],
[rdfs:label "Bird Type"; poc:uriValue
<http://dbpedia.org/resource/Stork>],
[rdfs:label "Place"; poc:uriValue
<http://dbpedia.org/resource/London>],
[rdfs:label "Photograph";
poc:uriValue [a poc:Image;
ma:locator "http://0i67.tinypic.com/254vyh3.jpg"~"xsd:anyURI]]
]
1.}.

Figure 3.41. An HTTP PATCH request submitting the data for the execution of SI.

The corresponding HT'TP response message is demonstrated by Figure 3.42. The

response advertise a representation of the SIjy, which now has a "completed" status.

3.4.6. Retrieval of the Data Resources

A POC Server advertise the data resources available for the user as the ele-

ments of an LDP Basic Container. The URI of this container is identified with poc-

57

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<> a poc:Steplnstance;
poc:datatype
<http://example.org/birders/workflows/observation_entry/steps/s0>;
dcterms:created "2015-12-03T23:48:20Z"""xsd:dateTime;
dcterms:creator <http://example.org/user_accounts/ua0>;
poc:performedAt "2015-12-03T23:51:04Z"~"xsd:dateTime;
poc:performer <http://example.org/user_accounts/ual>;

poc:status "completed".

Figure 3.42. An HTTP response message, advertising the successfully performed S1j.

ldp:datalnstances property in the representation of POC Servers, as demonstrated in
Section 3.4.2. Figure 3.43 depicts an HT'TP request message retrieving the data re-

sources available for a user of Appgirders-

GET /birders/data_instances HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.43. An HTTP request message, retrieving the data resources available for a

user of Appgirders-

A successful HTTP response for the request above is depicted by Figure 3.44.
The response message contains a representation of an LDP Basic Container, with a
single element identified by the URI http://example.org/birders/data_instances/

observations.

o8

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains </observations>.

Figure 3.44. An HTTP response message, advertising the data resources available for

a user of AppBirders-

A POC Server may advertise the representation of individual data resources along
with the container that contains them. Otherwise, a POC Client needs to submit an
additional request for their retrieval. Figure 3.45 demonstrates such a request for the

retrieval of the Datalnstance advertised by the server.

GET /birders/data_instances/observations HTTP/1.1
Host: example.org

Accept: text/turtle

Figure 3.45. An HTTP request message, retrieving an available Datalnstance of

AppBirders .

The POC Server for Appgirgers responds with a message as demonstrated by
Figure 3.46. The response message contains a representation of a List, with a single
item identified by the relative URI <00>. A representation of the item is also included
in the message, which is a CompositeDatalnstance. The datatype of this Datalnstance
is specified to be Observation, and it has four fieldValues, each corresponding to a

different DataField of Observation.

29

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD
<> a poc:List;
poc:items <o00>.
<00> a poc:CompositeDatalnstance;
poc:datatype <http://example.org/datatypes/observation>;
fieldValue
[rdfs:1label "Title"; poc:literalValue "Stork drinking water."],
[rdfs:1label "Bird Type"; poc:uriValue
<http://dbpedia.org/resource/Stork>],
[rdfs:label "Place"; poc:uriValue
<http://dbpedia.org/resource/London>],
[rdfs:1label "Photograph";
poc:uriValue [
a poc:Image;

ma:locator "http://0i67.tinypic.com/254vyh3.jpg"~"xsd:anyURI

Figure 3.46. An HTTP response message, advertising a Datalnstance of Apppirders-

3.4.7. Execution Flow of Step Instances

In this section, we discuss how interdependent StepInstances are to be handled

by POC Servers.

The community-centric processes to be performed within a POC are represented
by its Workflows. Workflows are composed of interdependent Steps which are either
automated or human-based. A Step, Sy, is said to be dependent on another Step, Sy,

60

if there is a Pipe whose sourceStep is S; and targetStep is Sp.

Invocation of a Workflow yields the creation of a WorkflowInstance whose datatype
is that Workflow. Creation of a WorkflowInstance involves the creation of a StepIn-
stance for each Step of the invoked Workflow. A StepInstance, Sy, is said to be
dependent on another StepInstance, SI;, if the Step that is the datatype of Sy is de-
pendent on the Step that is the datatype of SI;. This dependence implies that Sl

cannot be executed unless the execution of SI; is successfully completed.

A StepInstance is said to be ready, when all the StepInstances it is dependent
on have been executed, and thus, have a "completed" status. When a StepInstance
becomes ready, it is either executed immediately if it is automated, or assigned with
a "ready" status if it expects human input. If all the StepInstances of a WorkflowIn-
stance have "completed" as their status the WorkflowInstance must be assigned a

"completed" status as well.

3.4.8. Expressions and View Templates

FEzpressions resemble programming language expressions [51,52], yet have a much
limited expressivity. An Ezpression can contain values, constants, arithmetic operators,
comparison operators, and a set of basic methods. The constants in an Ezpression are
identified with a string of alphanumeric characters prepended with an @ character, e.g.
"@myConstant < @cO + 4 && ©cO > 2". FEzpressions support the following methods

that provide access to information regarding Instances.

e Field getter: This method enables the retrieval of field Values of CompositeDataln-
stances in an Ezpression, e.g. "@myHaircut[’price’]" returns the field Value
labeled "price" of a CompositeDatalnstance, given that it is available through
"@myHaircut" constant.

e Size: This method returns the size of a List, e.g. "@list.size", given that

"@list" constant is associated with a List.

61

e Creator: This method returns the creator of an Instance, e.g.
"O@myInstance.creator", given that the constant "OmyInstance" is asso-
ciated with an Instance.

e Created: This method returns the creation time of an Instance, e.g.
"OmyInstance.created", given that the constant "@myInstance" is associated

with an Instance.

ViewTemplates are HTML [53] formatted stirngs that can contain embedded Fz-
pressions. The content between the "{#" and "#}" tags in a ViewTemplate are treated
as Fxpressions. For instance, "" is a ViewTem-

plate that can be used to prompt an image to the user.

Views are similar with ViewTemplates, as they are HTML [53] formatted stirngs
as well. They, however do not allow embedding of Expressions. When a Step is invoked,
the embedded references in its ViewTemplate are replaced with their values, to generate

a View. The resulting View is associated with the StepInstance that enacts the Step.

62

4. EVALUATION

In this chapter, we discuss our efforts to evaluate this thesis work.

First, we examine the ability of POC Core Ontology to express a set of behavioral
features commonly seen in community applications. We, then, evaluate the convenience
of POC Model for real world applications. This investigation involves the introduction
of an existing POC and the examination of the capability of POC Model to satisfy the
specific needs of this community. Lastly, we introduce the proof-of-concept prototype

we developed to investigate and demonstrate the integrity of the model.

4.1. Utilization of POC Model for a Real World Community

In this section, we introduce a real world example for POCs, and discuss the

competence of POC Model to satify the needs of this POC.

Oy ve Otesi is a volunteer organization that aims to increase the transparency of
the public elections in Turkey. Prior to the elections, Oy ve Otesi provides an online
platform for the volunteers to track the number of required observers in ballot stations.
The volunteers can sign up as observers where needed, and inspect the activities of the

officers in each ballot station.

Oy ve Otesi recently introduced an additinal mechanism to improve the trans-
parency of the elections, which is called Tiirkiye Tutanak Takip® (T3). T3 is a human
computation application that aims validate the consistency of the officially announced
vote distributions with the vote counts reported by the volunteer observers. Observers
of each ballot station submit photographs of the ballot reports they observed to the
T3 platform. Each photograph is, then, displayed to random volunteer verifiers who
sign up to the T3 platform. The verifiers fill web forms with the information of vote

distributions depicted in the photographs. If three verifiers enter the exactly same vote

'In English: Turkey Report Tracking.

63

distribution for a ballot box, the ballot report is considered as verified. The differnce
between the official results and the T3 verified vote counts are then published publicly.
T3 was utilized for the first time in Turkish general elections of 2015, and reported [54]

to have verified more than 180 thousand ballot reports.

We observed that T3 platform is subject to the following key requirements.

(i) Volunteers who are assigned as observers should be able to submit photographs.

(ii) People who are not assigned as observers should not be able to submit pho-
tographs.

(iii) A volunteer who wants to verify ballot reports should be prompted with a ran-
dom photograph that was previously submited and a web form that captures the
information depicted in the photograph.

(iv) If there is no photograph to be verified on the platform, the verifying volunteers
should be informed so.

(v) Information of the verified ballot reports should be publicly available, therefore,

unauthenticated users of the platform should have access to them.

In the remainder of this section, first we provide a POC Specification for a T3
platform, which verifies the ballot reports of an election between three hyphotethical
political parties; namely, P4, Pg and Ps. Then, we demonstrate the runtime behaviour
of a POC Application conforming the provided POC Specification. Lastly, we provide
an assessment of how well the constructed application addresses the requirements of

the T3 community.

4.1.1. A POC Specification for T3

Here, we construct a POC Specification for T3, which will be referred as Specrs.

There are two Role roles defined within Specys; namely, Observer and Verifier.

The representation of these roles in Specrs is demonstrated in Figure 4.1. Observer

represents the observers at the ballot stations, who upload the photographs of ballot

64

reports. Verifier represents the volunteers, who fill web forms with the information of

vote distributions depicted in the photographs.

_:0Observer a poc:Role;
rdfs:label "Observer"Qen.

_:Verifier a poc:Role;

rdfs:label "Verifier'"Qen.

Figure 4.1. The Roles defined in Specyrs, serialized in Turtle.

Specrs contains two UserDefinedDatatype definitions; namely, Photo and Veri-

fierReport.

Photo represents the photographs of the ballot reports that are uploaded by
Observers. Specification of Photo within Specrs is depicted by Figure 4.2. It is a
DerivedDatatype with a baseDatatype of ImageType. As these photographs contain
handwritten information to be interpreted by humans, they need to be large enough
to be readable. We, thereby, arbitrarily define the minimum frame height as 600 pixels

and the minimum frame width as 400 pixels for Photo.

_:Photo a poc:DerivedDatatype;
rdfs:label "Photo"@en;
poc:baseDatatype poc:ImageType;

poc:minFrameWidth 400;

poc:minFrameHeight 600.

Figure 4.2. Definition of Photo in Specrs, serialized in Turtle.

VerifierReport represents the information provided by the Verifiers for each
Photo they are prompted. Figure 4.3 demonstrates the definition of VerifierReport
within Specrs. VerifierReport is a CompositeDatatype with four dataFields. The first

65

DataFueld is labeled "ID", and represents the unique ID of a ballot report. The other
three DataFields are labeled "Votes for A", "Votes for B" and "Votes for C",
and represent the vote counts for the political parties P4, Pgp and P respectively.
Each DataField has a datatype of integer and identified to be required, indicating that
they cannot be left blank.

_:VerifierReport a poc:CompositeDatatype;
rdfs:label "Verifier Report'"@en;
poc:dataField [rdfs:label "ID";

poc:isRequired true;
poc:fieldType xsd:integer],
[rdfs:label "Votes for A";
poc:isRequired true;
poc:fieldType xsd:integer],
[rdfs:label "Votes for B";
poc:isRequired true;
poc:fieldType xsd:integer],
[rdfs:label "Votes for C";
poc:isRequired true;

poc:fieldType xsd:integer].

Figure 4.3. Definition of VerifierReport in Specrs, serialized in Turtle.

There are three Datalnstances defined in Specrs: UnverifiedPhotos (UP), Can-
didateReports (CR) and VerifiedReports (VR). Definition of these Datalnstances in
Specrs is demonstrated in Figure 4.4. UP is a List that contains the Photos that are
not verified by the community yet. CR is a List that contains the VerifierReports
that are provided by Verifiers. UP and CR has constraints that restrict the access of
these resources for any user. VR is a List that contains the VerifierReports which are
regarded as verified, as the information they encapsulate has been provided by three

independent Verifiers.

66

_:UnverifiedPhotos a poc:List;

rdfs:label "Unverified Photos"@en;

poc:constraint [poc:allowIf "false"~~poc:Expression].
_:CandidateReports a poc:List;

rdfs:label "Candidate Reports'"@en;

poc:constraint [poc:allowIf "false"~~poc:Expression].
_:VerifiedReports a poc:List;

rdfs:label "Verified Reports'"@en.

Figure 4.4. Definition of the Datalnstances in Specrs, serialized in Turtle.

There are two Workflows defined within Specrs: PhotoSubmission and Report Ver-

ification.

PhotoSubmission represents the photograph uploading operation to be performed
by Observers. The definition of PhotoSubmission within Specrs is demonstrated in
Figure 4.6. A visual representation of PhotoSubmission is depicted in Figure 4.5. Pho-
toSubmission has a constraint that specifies that it can only be invoked by Observers.

PhotoSubmission encapsulates two Steps: Sy and .S;.

% object > larget>
Create result
datatype object
So

Insert

S

Figure 4.5. A visual representation of PhotoSubmission.

Sp involves the creation of an Image with a datatype of Photo. The task of

Sp is Crreate, indicating that it involves the creation of a Datalnstance. Sy has a

67

view Template, which is identified by V' in Figure 4.5. .S is the targetStep of two Pipes.
The first is a DirectPipe whose targetPort is "datatype" and sourceValue is Photo.
This Pipe indicates that the Datalnstances to be created are of datatype Photo. The
second Pipe is a HumanPipe with a targetPort of "object". This Pipe indicates that
the Datalnstances to be created are to be provided by human users. Sy has a constraint

indicating that it can only be performed by a user who invoked the Workflow.

S1 involves the insertion of the Image created by Sy to UP. The task of S; is
Insert, indicating that it involves the insertion of an item to a List. It is the targetStep
of two Pipes. The first is a DirectPipe whose targetPort is "target" and source Value
is UP. This Pipe indicates that the List the item is to be added is UP. The second
Pipe is a PortPipe whose sourcePortis "result" and targetPort is "object". This
Pipe indicates that the item to be added is an output of Sy, and is advertised by its

"result" port.

ReportVerification is a relatively complex Workflow, representing the form filling
operation to be performed by Verifiers, and the verification mechanism it entails. A
visual representation of ReportVerification is depicted in Figure 4.7. Ezpressions and
ViewTemplates involved in this Workflow are represented with enumerated labels for

brevity, and they represent the following values.

Ey : "@list.size > 0"~ “poc:Expression

E; : "@list.size - 1"""poc:Expression

E5 : "Qreport == Qitem"""poc:Expression

E3 : "@list.size == 3"""poc:Expression

Vo : "<p>Please enter the information on the displayed ballot report
into the form.</p>
"""poc:ViewTemplate

Vi : "<p>No unverified report at the moment.

Thank you!</p>"""poc:ViewTemplate

68

:PhotoSubmission a poc:Workflow;
rdfs:label "PhotoSubmission"Qen;
dcterms:title "Submit Photo"@en;
poc:step _:80, _:81;

poc:constraint [poc:allowedRole _:0bserver];

poc:pipe [a poc:HumanPipe; poc:targetStep _:S0; poc:targetPort
"object"],
[a poc:DirectPipe; poc:targetStep _:S0; poc:targetPort "datatype";
poc:sourceValue _:Photo],
[a poc:PortPipe; poc:sourceStep _:S0 ; poc:sourcePort "result";
poc:targetStep _:S1 ; poc:targetPort "object"],
[a poc:DirectPipe; poc:targetStep _:S1 ; poc:targetPort "target";
poc:sourceValue _:UnverifiedPhotos;].
:S0 a poc:Step;

"n-~~

poc:constraint [poc:allowIf "@user == Qinvoker"~~poc:Expression];

poc:viewTemplate "<p>Please upload a photograph of a ballot
report.</p>";

dcterms:description "Submit a photogragh of a ballot report."@en;

poc:task poc:Create;

poc:inputPort [rdfs:label "object"], [rdfs:label "datatype"];

poc:outputPort [rdfs:label "result"].

:S1 a poc:Step;

poc:task poc:Insert;

poc:inputPort [rdfs:label "object"], [rdfs:label "target"];

poc:outputPort [rdfs:label "result"].

Figure 4.6. Definition of PhotoSubmission in Specrs, serialized in Turtle.

69

ReportVerification has a constraint that specifies that it can only be invoked by
Verifiers. ReportVerification encapsulates ten Steps: S, S3, Sy, S5, Se, S7, Sg, So, S10

and S7;. The functionality of each Step and their relations are as follows.

e S, returns a boolean value indicating whether UP is empty. If it is not empty;,
S3 is invoked, otherwise, Sii.

e 53 generates a random integer between zero and the size of UP minus one.

e S, outputs the item of UP whose index is the number outputed by S3. This item
is expected to be a Photo.

e Sy prompts the user with the Photo outputed by S4, with a message asking the
user to enter data. Vj is compiled to generate the message to be displayed to the
user. The entered data is outputed as a VerifierReport.

e Sy inserts the VerifierReport generated by S5 to CR, and outputs CR.

e S; outputs a List containing the items of CR that have the same field Values as
the VerifierReport outputed by Ss. S; uses F, as the filtering condition.

e Sg checks whether the List outputed by S7 contains exactly three items. If so, Sy
and Sjo are invoked.

e Sy inserts the VerifierReport outputed by Ss.

e 5o removes the Photo outputed by Sy from UP, since it is now verified by the
system.

e Si; informs the user that there is no unverified photographs present.

4.1.2. Execution of a T3 POC Application

Here, we examine the runtime behaviour of a POC Application that conforms
Specrs, which is the POC Specification described in Section 4.1.1. This POC Applica-
tion will be referred as Apprs, and assumed to have a POC Server that is identified by
the URI http://example-t3.org. This section represents a scenario involving mul-
tiple users, and discuss the execution behaviour of Apprs and the data interchange

between the POC Server of Apprs and its clients.

@
>

Random | resutt

erifierReport

o> 1 ./

Evaluate Eult

Eoed>

)

false @ @ S
4

@—<> Identity

Si1

Get

Filter

result Insert

So

Evaluate Eult true
B>

true

-

Figure 4.7. A visual representation of ReportVerification.

71

The scenario to be discussed in this section involves numerous HTTP transac-
tions. HT'TP headers interchanged within these transactions are mostly omitted, unless

they play an important role in the scenario.

Three users are involved in this scenario: Uy, U; and Us. Uy has a UserAccount
that is associated with Verifier role, and the UserAccount of U; is associated with
Observer role. Uy does not have a UserAccount. Since POC Model does not impose a

specific authentication mechanism, this scenario omits how the users are authenticated.

The scenario is discussed in four consequtive sections, each involving one of the

users.

4.1.2.1. Verification Attempt in the Absence of Photographs. In the first part of our

scenario, Uy attempts to verify reports.

Up uses a POC Client to retrieve a representation of the POC Server of Apprs,
submitting the HTTP request demonstrated by Figure 4.8.

GET / HTTP/1.1
Host: example-t3.org

Accept: text/turtle

Figure 4.8. An HTTP request message on the POC Server of Apprs.

The received response is depicted by Figure 4.9, which indicates that the requested
resource is POC Server and advertises available Workflows for U, through the relative

URI <workflows>.

Uy triggers an HTTP request to the advertised relative URI to retrieve the avail-
able Workflows, which is depicted in Figure 4.10.

72

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<http://example-t3.org> a poc-1ldp:POC_Server;
poc-ldp:datalnstances <http://example-t3.org/data_instances/>;
poc-ldp:datatypes <http://example-t3.org/datatypes/>;
poc-1dp:workflows <http://example-t3.org/workflows/> .

Figure 4.9. An HTTP response message advertising a representation of the POC
Server of Apprs.

GET /workflows/ HTTP/1.1
Host: example-t3.org

Accept: text/turtle

Figure 4.10. An HTTP request for the retrieval of the Workflows available for a user

of Apprs.

The response message is depicted by Figure 4.11, which indicates that the re-
quested resource is a LDP Basic Container, with a single element identified by the
relative URI <report_verification>. This element is a Workflow and has "Verify

Report" as its title, which cues Uy on the functionality of the Workflow.

In order to invoke the advertised Workflow, Uy submits an HT'TP POST request
to its URI, as depicted in Figure 4.12.

The corresponding HTTP response message is depicted by Figure 4.13. It adver-

tises that a resource is created as a result of the transaction, which is identified by the

73

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <report_verification>.

<report_verification> a poc:Workflow;

dcterms:title "Verify Report"@en.

Figure 4.11. An HTTP response message advertising the Workflows available for a
user of Apprs.

POST /workflows/report_verification HTTP/1.1
Host: example-t3.org

Accept: text/turtle

Figure 4.12. An HTTP request message for the invocation of ReportVerification by
Uy.

Location header. A representation of the created resource is included in the message
body. The created resource is a WorkflowInstance whose datatype is ReportVerification.
The status of this WorkflowInstance is "completed", indicating that its execution is
finished. It identifies a single StepInstance available for Uj to perform. The represen-
tation of this StepInstance is included in the response as well. This StepInstance has

a view to be displayed, informing U, that there is no unverified report.

4.1.2.2. Photograph Submission. In the second section of the scenario, U; adds a

photograph of a ballot report to be verified.

74

HTTP/1.1 201 Created
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

Location: http://example.com/t3/workflows/report_verification/rv0

<> a poc:WorkflowInstance;

dcterms:created "2015-12-03T23:48:20Z"""xsd:dateTime;
dcterms:creator <http://example-t3.org/user_accounts/U0>;
poc:status "completed";

poc:datatype <http://example.org/workflows/report_verification>;
poc-ldp:step_instances </step_instances> .

</step_instances> a ldp:BasicContainer;

ldp:contains </step_instances/inform>.

</step_instances/inform> a poc:Steplnstance;

poc:datatype
<http://example-t3.org/workflows/report_verification/steps/s11>;

dcterms:created "2015-12-03T23:48:20Z"""xsd:dateTime;

dcterms:creator <http://example-t3.org/users/U0>;

poc:status "completed";

poc:view "<p>No unverified report at the moment. Thank you!</p>".

Figure 4.13. The HTTP response message for the invocation of ReportVerification by
Up.

U, uses a POC Client to trigger an HT'TP transaction to receive a representation
of the POC Server of Apprs, which is identical to the transaction depicted by Figure 4.8
and 4.9. U; requests the available Workflows, triggering an HTTP request as depicted
by Figure 4.14.

75

GET /workflows/ HTTP/1.1
Host: example-t3.org

Accept: text/turtle

Figure 4.14. An HTTP request for retrieving the available Workflows for Uy .

The POC Server answers with an HTTP response message as demonstrated
by Figure 4.15. The response message advertises that the represented resource is a
LDP Basic Container, which contains a single element identified by the relative URI
<photo_submission>. This element is a Workflow and has "Submit Photo" as its

title, which cues U; on the functionality of the Workflow.

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <photo_submission>.

<photo_submission> a poc:Workflow;

dcterms:title "Submit Photo"@Qen.

Figure 4.15. An HTTP response message advertising the available Workflows for U;.

In order to invoke the Workflow, U; submits an HTTP POST request that is
demonstrated by Figure 4.16.

The corresponding HT'TP response is depicted by Figure 4.17. The response ad-
vertises that a resource is created as a result of this transaction, which is identified

by the Location header. A representation of the created resource is included in the

76

POST /workflows/photo_submission HTTP/1.1
Host: example-t3.org

Accept: text/turtle

Figure 4.16. An HTTP request for the invocation of PhotoSubmission by Uy .

response body. The created resource is a WorkflowInstance whose datatype is Photo-
Submission. The status of this WorkflowInstance is "ongoing", indicating that it is
invoked and it has StepInstances that are not performed. This WorkflowInstance has a
single StepInstance available for U; to perform. The representation of this StepInstance

is included in the response as well.

The StepInstance has a "ready" status, indicating that it is available to be per-
formed. It also has a wview to be displayed, informing U; that submission of an image
is expected. It is identified to be an instance of Sy, which is discussed in Section 4.1.1.
Lastly, the StepInstance has a input declaration for the inputPort labeled "datatype".
The declared value is Photo, which is also discussed in Section 4.1.1. This cues the
used POC Client to prompt U; with a form enabling the user to provide an image
conforming the constraints defined by Photo. The exact means how this image is to
be provided by the human user is an implementation detail to be handled by the used
POC Client. It can accept a URL of an image hosted on the Web, or automatically
the provided image to a hosting service. The response also includes representations of
So and Photo, saving POC Client from sending additional requests to retrieve their

representations.

U, provides an image with the URL http://example.org/report. jpg through
the used POC Client, which triggers the HTTP request depicted by Figure 4.18. The
submitted request is a HI'TP PATCH request, indicating that the request is intended
to modify the target resource. A "Content-Type" header with value "text/ldpatch"

is provided by the request, indicating that the request message conforms the Linked

7

HTTP/1.1 201 Created
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

Location: http://example.com/t3/workflows/photo_submission/ps0

<> a poc:WorkflowInstance; poc:status "ongoing";
poc:datatype <http://example.org/workflows/photo_submission>;
dcterms:created "2015-12-03T23:52:41Z"""xsd:dateTime;
dcterms:creator <http://example-t3.org/user_accounts/ul>;
poc-ldp:step_instances </step_instances> .
</step_instances> a ldp:BasicContainer;
1dp:contains </step_instances/submit_photo>.
</step_instances/submit_photo> a poc:StepInstance;
poc:datatype
<http://example-t3.org/workflows/photo_submission/steps/s0>;
dcterms:created "2015-12-03T23:52:41Z"~"xsd:dateTime;
dcterms:creator <http://example-t3.org/users/ul>;
poc:status "ready";
poc:view "<p>Please upload a photograph of a ballot report.</p>";
poc:input [rdfs:label "datatype"; poc:value
<http://example-t3.org/datatypes/photo>] .
<http://example-t3.org/workflows/photo_submission/steps/s0> a poc:Step;
poc:inputPort [rdfs:label "datatype"], [rdfs:label "object"];

poc:task poc:Create .

<http://example-t3.org/datatypes/photo> a poc:DerivedDatatype;
rdfs:label "Photo"@en; poc:baseDatatype poc:ImageType;

poc:minFrameWidth 400; poc:minFrameHeight 600.

Figure 4.17. An HTTP request for the invocation of PhotoSubmission by U.

78

Data Patch Format [39].

PATCH /workflows/photo_submission/ps0/step_instances/submit_photo
HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Content-Type: text/ldpatch

Add { <> poc:input [

rdfs:label "object"

poc:value [a poc:Image;
poc:datatype <http://example-t3.org/datatypes/photo>;
ma:locator "http://example.org/report.jpg"~"xsd:anyURI
1.

Figure 4.18. An HTTP request message, submitted by U; for performing Sp.

The corresponding HT'TP response is depicted by Figure 4.19. The response
carries no message but has status code 200, indicating the StepInstance was performed

successfully.

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

Figure 4.19. The HTTP response message after the successful performance of Sy by
Us.

79

4.1.2.3. Verification of Ballot Reports. In the third part of the scenario, Uy attempts

to verify ballot reports again.

Uy uses a POC Client to retrieve the description of Apprs, triggering a HTTP
transaction which is identical to the one depicted by Figure 4.8 and 4.9. Up, then,
requests the available Workflows, triggering the a HT'TP transaction which is identical
to the one depicted by Figure 4.10 and 4.11. U, invokes the advertised Workflow
through the HT'TP request depicted by Figure 4.20.

POST /workflows/report_verification HTTP/1.1
Host: example-t3.org

Accept: text/turtle

Figure 4.20. The HTTP request by Uy, invoking ReportVerification for the second

time.

The corresponding HTTP response message is depicted by Figure 4.11. The re-
sponse advertises that a resource is created as a result of this transaction, which is
identified by the Location header. A representation of the created resource is included
in the response body. The created resource is a WorkflowInstance whose datatype
is ReportVerification. The status of this WorkflowInstance is "ongoing", indicating
that it is invoked and it has StepInstances that are not performed. This WorkflowIn-
stance has a single StepInstance available for Uy to perform. The representation of this

StepInstance is included in the response as well.

The StepInstance has a "ready" status, indicating that it is available to be per-
formed. The StepInstance is identified to be an instance of S5, which is discussed in
Section 4.1.1. It has a wview to be displayed, instructing Uy to fill the web form with
the information depicted in the displayed image. Notice that, the image URL submit-
ted by U; is inserted into the ViewTemplate Vj to yield the provided view. Lastly,
the StepInstance has a input declaration for the inputPort labeled "datatype". The

80

declared value is VerifierReport. This cues the used POC Client to prompt U, with a
form that asks for individual DataFields of VerifierReport. The response also includes
representations of S5 and VerifierReport, saving POC Client from sending additional
requests to retrieve their representations. For the sake of brevity, the representation of
VerifierReport is trimmed in Figure 4.21. A complete representation of VerifierReport

can be found in Figure 4.3.

Uy fills the provided form and submits, triggering the HT'TP request depicted in
Figure 4.22.

The POC Server answers with the HT'TP response message depicted by Figure

4.23. The response carries no message but has status code 200, indicating the StepIn-

stance was performed successfully.

4.1.2.4. Accessing Verified Reports. In the last part of our scenario, U; attempts to

access the verified reports by Apprs. In this section, we assume that two other Verifiers
have verified the Photo submitted by U; in the second part of the scenario, providing

the same information Uy provided in the third part.

U uses a POC Client to retrieve the description of the POC Server of Apprs,
triggering a HT'TP transaction which is identical to the one depicted by Figure 4.8
and 4.9. U,, then, requests the available Datalnstances, submitting the HT'TP request
depicted by Figure 4.24.

The POC Server answers with an HT'TP response message as depicted by Figure
4.25. The response exhibits a LDP Basic Container, which contains a single element

identified by the relative URI </verified_reports>.

U, requests the representation of the accessible data resource, triggering the

HTTP request demonstrated by Figure 4.26.

81

HTTP/1.1 201 Created
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

Location: http://example.com/t3/workflows/report_verification/rvil

<> a poc:WorkflowInstance;
dcterms:created "2015-12-03T23:56:26Z"~"xsd:dateTime;
dcterms:creator <http://example-t3.org/user_accounts/u0>;
poc:status "ongoing";
poc:datatype <http://example.org/workflows/report_verification>;
poc-ldp:step_instances </step_instances> .
</step_instances> a ldp:BasicContainer;
ldp:contains </step_instances/fill_form>.
</step_instances/fill_form> a poc:StepInstance;
poc:datatype
<http://example-t3.org/workflows/report_verification/steps/sb>;
dcterms:created "2015-12-03T23:56:26Z""~"xsd:dateTime;
dcterms:creator <http://example-t3.org/users/u0>;
poc:status "ready";
poc:view "<p>Please enter the information depicted in the photograph
into the form.</p> ";
poc:input [rdfs:label "datatype"; poc:value
<http://example-t3.org/datatypes/VerifierReport>].
<http://example-t3.org/workflows/PhotoSubmission/steps/s5> a poc:Step;
poc:inputPort [rdfs:label "datatype"], [rdfs:label "object"];

poc:task poc:Create .

<http://example-t3.org/workflows/datatypes/VerifierReport> a ...

Figure 4.21. The HTTP response message received after a successful invocation of

ReportVerification.

82

PATCH /workflows/photo_submission/psO/step_instances/submit_photo
HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Content-Type: text/ldpatch

Add { <> poc:input [
rdfs:label "object"
poc:value [a poc:CompositeDatalnstance;
poc:datatype <http://example-t3.org/datatypes/verifier_report>;
fieldValue [rdfs:label "ID"; poc:literalValue 4124],
[rdfs:1label "Votes for A"; poc:literalValue 113],
[rdfs:1label "Votes for B"; poc:literalValue 54],

[rdfs:label "Votes for C"; poc:literalValue 12]

Figure 4.22. The HTTP request message submitted by Uy for the performance of Ss.

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

Figure 4.23. The HTTP response message received after a successful performance of

55 by Uo.

83

GET /data_instances/ HTTP/1.1
Host: example-t3.org

Accept: text/turtle

Figure 4.24. The HTTP request message for retrieving the Datalnstances accessible

by UQ.

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD
<> a ldp:BasicContainer;

ldp:contains </verified_reports>.

Figure 4.25. The HTTP response advertising the Datalnstances accessible by Us,.

GET /data_instances/verified_reports HTTP/1.1
Host: example-t3.org

Accept: text/turtle

Figure 4.26. The HTTP request message retrieving a representation of

Verified Reports.

The POC Server answers with the HT'TP response message depicted by Figure
4.27. The response message contains a representation of VR which is defined in Specrs.
VR contains a single item. The representation of this item is also included in the
response message, which is a CompositeDatalnstance. This CompositeDatalnstance has
VerifierReport as its datatype and possesses field Values that contain the information

submitted by Uy in the third part of the scenario.

84

HTTP/1.1 200 OK
Content-Type: text/turtle
Allow: GET,OPTIONS,HEAD

<> a poc:List;

poc:items (<http://example-t3.org/datatypes/verifier_report/vr2>).

<http://example-t3.org/datatypes/verifier_report/VR2> a
poc:CompositeDatalnstance;
poc:datatype <http://example-t3.org/datatypes/verifier_report>;
dataField [rdfs:label "ID"; poc:literalValue 4124],
[rdfs:label "Votes for A"; poc:literalValue 113],
[rdfs:1label "Votes for B"; poc:literalValue 54],

[rdfs:1label "Votes for C"; poc:literalValue 12].

Figure 4.27. The HTTP response message advertising a representation of

VerifiedReports.

4.1.3. An Assessment of T3 POC Application

In Section 4.1.1, a POC Specification for T3, Specrs, is demonstrated. In Sec-
tion 4.1.2, the runtime behaviour of a POC Application conforming Specrs, Apprs, is
examined. In this section, we recite the requirements previously identified for T3, and

provide an assessment of how well Apprs addresses them.

The first requirement identified for T3, Requirement (i), indicates that Observers
should be able to submit photographs. PhotoSubmission represents this action, which
is a Workflow defined in Specrs. It has a constraint specifying that it is allowed for
Observers. Section 4.1.2.2 demonstrates a scenario describing the execution behaviour

of PhotoSubmission.

85

Requirement (ii) indicates that people who are not Observers should be restricted
from submiting photographs. PhotoSubmission has a constraint whose allowedRole is
Observer, indicating that possesion of Observer is required for invoking this Workflow.
The scenario discussed in Section 4.1.2.1 reveals how a user who is not an Observer is

not provided with the information of PhotoSubmission.

Requirement (iii) indicates that Verifiers should be prompted with a random pho-
tograph and a web form for capturing the information of ballot reports. Report Verifica-
tion encapsulates this action, which is a Workflow defined in Specys. It has a constraint
specifying that it is allowed for Verifiers. Ss is a step of ReportVerification that repre-
sent the operation of prompting a Verifier with a photograph and capturing the report

information. The scenario discussed in Section 4.1.2.3 explains this mechanims.

Requirement (iv) indicates that if there is no photographs to be verified, the
Verifiers should be informed so. Sy is a step of ReportVerification that represent the
action of informing a Verifier if there is no Photo in UP. The scenario discussed in

Section 4.1.2.1 demonstrates how Sy, is enacted.

Requirement (v) indicates that the verified reports should be available for any
user. The Datalnstances defined within a POC Specification are available for any
user unless the access is restricted by a Constraint. VR, which is the List containing
verified reports, has no constraint, and is therefore available for any user. Section

4.1.2.4 demonstrates a scenario involving an unauthenticated user to access the content

of VR.

We conclude that POC Model has enough expressive power to construct an ap-

plication that address the requirements we identified for T'3.

4.2. An Application Generating Prototype

In this section, we briefly describe the prototype developed within the scope of

our work.

86

The developed prototype is a web based interpreter for POC Specifications. More
specifically, it is a Ruby on Rails applicaiton that utilize a Fuseki RDF database and
a Redis in-memory cache store, which are linked together by a Docker container. It is
hosted on a virtual machine on Azure, and deployed through a continuous deployment

mechanism that utilize CircleCI and Github.

This prototype is developed solely as a sanity check for the author, and is not
used for a systematic evaluation of this study. It helped us verify that the Workflows
encapsulating multiple steps can be automatically performed, given that they do not
implement loops. The prototype utilizes a Ruby implementation of Tarjan’s strongly
connected components algorithm [55] to obtain a topological sorting of the Steps within

a Workflow. This sorting is used by selecting which Step should be invoked next.

The prototype provides a web page that enable submission of POC Specifications
in Turtle, which is depicted in Figure 4.28.

Submit a file containing a POC
specification serialized in Turtle
format!

Browse... | No file selected. Submit

Figure 4.28. A screenshot of the submission page.

When a valid POC Specification is submitted, the prototype displays an endpoint
for a POC Application with limited capability, which reflects a certain set of structures
contained within the POC Specification. The endpoint displaying page is depicted in
Figure 4.29.

The advertised endpoints only support Turtle. The advertised endpoint can be

consumed with numerous tools. Figure 4.29 demonstrates a screenshot of its con-

87

The generated API for the provided file is accessible
through http://137.116.245.97:3000/api and
supports only 'text/turtle’ content-type.

Figure 4.29. A screenshot of the endpoint displaying page.

sumption with HttpRequester [56] which is a browser add-on enabling transmission of

custom HTTP requests.

RESPONSE
GET on http:/f137.116.245.97:3000/api

Status: 200 OK (O Browser (= Text [] Pretty format View raw transaction

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-nsé> .

<> a <http:/f/www.cmpe. boun. edu.tr/soslab/ontologies/pocApplications;
<http:/fwww. cmpe. boun. edu. tr/soslab/vocabularies/poc-ldp#datalnstances> </data_instances>;
<http:/fwww.crmpe. boun. edu. tr/soslab/vocabularies/poc-ldp#datatypes> </datatypes=;
<http:/fwww. cmpe. boun. edu.tr/soslab/vocabularies/poc-ldp#steplnstances= </step_instances=;
<http:/fwww.cmpe. boun. edu.tr/soslab/vocabularies/poc-ldp#users> <fuserss;
<http:/fiwww. cmpe. boun.edu.tr/soslab/vocabularies/poc-ldp#workflowinstances> </workflow_instances>;
<http:/fwww. cmpe. boun. edu.tr/soslab/vocabularies/poc-ld p#workflows> </workflows> .

Figure 4.30. A screenshot demonstrating the consumption of an endpoint advertised

by the prototype.

88

5. RELATED WORK

In this chapter, we represent some related literature and tools, and discuss how

they relate with our work.

5.1. Related Work Utilizing Semantic Web Technologies in the Context of

Online Communities

The Semantic Web technologies have been utilized by many studies to express

the online communities and to examine their dynamics.

Some Web ontologies were developed to represent online community related data,
e.g. FOAF [57] vocabulary specifies concepts related to human collaboration, friendship
and association, SIOC [44, 45] ontology describes discussion forum and post related

concepts in online communities, and SCOT [58] models the tagging activities.

Mika 2005 [59] proposed using tripartite graphs to represent social networks of
actors, concepts and resources. Tripartite graphs provided a richer representation of
the online community data, than raw graphs. However, instead of manipulating a
tripartite graphs directly, Mika reduced it to three bipartite graphs in advance. Using
this approach, Mika 2005 [60] constructed a social network of Semantic Web community
from the FOAF profiles, academic publications and e-mails crawled from the web. He
used JUNG, a Java Graph API, to evaluate Social Network Analysis (SNA) metrics,

and provided an interface to visualize the network and the computed metrics.

Some subsequent studies [61-63] revealed that the Semantic Web technologies
are powerful enough to make meaningful manipulations over this rich data directly,

including computation of SNA measures.

San Martin et al. 2009 [61] proposed a data model for social networks based on

RDF, and a query and transformation language based on SPARQL 1.0. The proposed

89

data model represented the relations in the social networks as concepts, enabling one
to define n-ary relations. The language they developed provided the ability to query
for some SNA measures requiring aggregation, however cannot be used to compute
SNA metrics depending on paths, such as betweenness centrality. [61] set a good ex-
ample for representing, querying and transforming the data of social networks, yet,
their methodology is out-of-date with the subsequent release of SPARQL 1.1, which is

inherently capable of aggregation.

Erétéo et al. 2009 [62] developed an ontology called SemSNA [64] that models
a set of SNA notions. SemSNA is meant to be combined with a domain ontology,
modeling a social network of any domain. SemSNA aims to provide means to abstract
social network constructs from the domain ontologies, and enrich the concepts of do-
main ontologies with annotations of Social Network Analysis indices. [62] also proposes
a procedure to compute and store the SNA measures. The developed procedure makes
use of a SPARQL search engine, CORESE, which extends SPARQL with aggregation
and path retrieval features. They used CORESE to generate RDF dumps from rela-
tional databases and performed CONSTRUCT queries of SPARQL to create instances
of SNA concepts and associate them with the actor instances. The procedure enables
one to update the SNA related constructs and indices as the network changes, without
calculating everything from the beginning. It is noteworthy that while the procedure
proposed in [62] is capable of computing SNA measures requiring aggregation or path
computation, it also defines new SNA measures exploiting the rich representation of

the network data.

Angeletou et al. 2011 [63| approached the online communities from a different
angle. Rather than SNA, [63] focused on the behavioral roles exhibited by the users,
with an aim to determine and forecast the health of the online communities. The au-
thors used a predefined set of behavioral roles, and specified different activity patterns
required for each role. They also defined a behavior ontology [65] that models the
online community users, their interactions and behavioral roles. The study proposes
a method that tests each user against the activity patterns to identify the behavioral

roles they hold, and produce a role composition of the online community. The pro-

90

posed method adjusts the numerical boundaries for the activity patterns dynamically,
updating the role extraction queries via SPIN framework extending SPARQL. This
enables the role composition extraction process to be applicable to online communities
of different sizes, and thus repeatable on an evolving online community in different

periods.

ActivityStreams 2.0 [66] is specification that is currently being developed by W3C,
aiming to provide a JSON-based syntax for expressing various activities in a machine-
interpretable manner. It is intended to provide a standard format for the interchange
of social Web application data, in terms of activities performed through those appli-
cations. Activity Vocabulary [67] is a vocabulary of the classes and properties utilized

by ActivityStreams 2.0 to specify activities.

Many of the mentioned work involve Web ontologies that are used either to spec-
ify the actions performed within online communities, or to specify some meta-data
related with such actions. None of these ontologies, however, aim to specify the un-
derlyng application behavior that facilitate the actions on online communities. The
most fundamental difference of POC Core Ontology with such ontologies is that, POC
Core Ontology models the inner mechanics of online applicaitons as well as the data

generated or advertised by them.

5.2. Related Work on the Automated Geneartion of Application Behavior

There has been numerous efforts towards the automated generation of application
behavior. Some of these work modeled the application behavior as pipelines, consisting
of predefined tasks put together with data dependencies. Yahoo! Pipes [68] brought
the pipes metaphor to the Web, providing a graphical user interface to define pipes that
process XML documents (which are mostly in RSS) and generate mash-ups. XProc [69]
is an XML pipeline language, recommended by W3C to be used to describe process-
ing operations on XML documents. XProc aims to provide a scalable and reusable
method to construct XML processing workflows, representing basic processing opera-

tions as small, simple pipelines, which can be combined into larger, complex pipelines.

91

An XML Pipeline specifies a sequence of operations to be performed on zero or more
XML documents. These pipelines accept zero or more XML documents as input and
produce zero or more XML documents as output. XML Pipelines are made up of
simple steps, which perform atomic operations on XML documents, and auxiliary con-
structs, i.e., conditionals, iteration, and exception handlers. There are three types of
steps in XProc: atomic, compound, multi-container. Atomic steps perform a single
operation. A library of atomic steps is provided by XProc. A compound step is one
that contains at least one subpipeline. A multi-container step consists of two or more
alternate subpipelines, which are either processed depending on a conditional state-
ment, or used to construct a try-catch mechanism. Any XML Pipeline can be used as
a step, or subpipeline, in another pipeline. The design of Workflows in POC Model is
inspired from XML Pipelines in XProc, thereby, there is a strong resemblence between
their structures. Both Workflows and XML Pipelines consist of steps that represent
individual operations with interdependencies. The library of atomic steps in XProc are
analogous with the predefined set of Tasks in POC Model. An important difference is,
ofcourse, that XProc handles automated processing of XML documents, whereas, POC
Model targets Web applications that involve asyncronous operations to be performed

automatically or with human input.

Le-Phuoc et al. [70] proposes Semantic Web Pipes(SWP), a conceptual pipeline
framework for semantic data. SWP expresses semantic data mash-ups as pipelines
of operations on serialized RDF data. The operations supported by SWP includes
SPARQL CONSTRUCT and SELECT queries, operations to load RDF and XML
data, split and merge of RDF documents and inference for RDFS and OWL. The
pipeline mechanism implemented by SWP is similar with the one presented by XProc
for XML documents. The authors implemented a web-based prototype of the proposed
system, which provides a graphical interface to be used to construct Web pipes. The

developed Web pipes are stored as XML documents, and can be shared and reused.

Kokciyan et al. [71] proposes a framework, WeFlow, that generates collaborative
human computation applications. The authors modeled an application as a single

collaborative workflow, consisting of tasks having control and data interdependencies,

92

which can be performed by different users. WeFlow follows a three step process for
the generation of the applications: specification of the workflow, generation of the
application, execution of the generated application. The first step involves providing
a specification file in XML. Then, the application behavior is generated according to
the provided specification. Lastly, the execution engine runs the application and serves
the application workflow as a set of interlinked web views. The authors note that the
system does not support concurrency. Another framework to generate applications is
Simple Flow by Jara et al. [72]. Simple Flow provides uses a single directed graph to
model the control flow between the actions performable by the users. The tool provides
a simple user interface to be used to design the control flow of the application. Using
the interface, the community builder selects performable actions from a predefined set
of actions and specifies their dependencies. The constructed action graphs are then

interpreted by the tool to create the web views dynamically.

Curbera et al. [73]| developed Bite, which is an explicit, workflow based composi-
tion model for Web applications. Bite represents a business process as a single graph
of activities with data dependencies in between, which is stored in an XML document.
The model follows the principle of “use implies definition”, and thus the data being
transmitted between the activities is not strongly typed. Each business process in
Bite is assigned a URL. An HTTP POST request against such a URL initiates an
instance of the associated process and returns the URL of the initiated instance. The
proposed model supports asynchronous execution of the business logic and multi-party

Interactions.

93

6. DISCUSSION AND FUTURE WORK

In this chapter, we discuss the current state of our work and its future prospects.

As discussed in Section 2, the Semantic Web technologies need a widespread
adoption to reveal their power. This, however, has not been succeeded as anticipated
in 2001 [23|, although most of the technologies in the Semantic Web stack are avail-
able for a considerable time. We think that an important cause of this lack of short
term incentives for application developers to bear the nontrivial adoption of these tech-
nologies. This issue could be tackled by applicatoin building frameworks that provide
support for such technologies, without imposing the burden of understanding them
to the application developers. We think the approach proposed within POC Model
is a promising step in this direction, as it facilitates specification of applications that

consume and advertise Linked Data.

In Section 4.1, we concluded that the proposed model is capable of addressing the
needs of a real world community. However, it has a number of significant shortcomings,

which would hinder its effectiveness in a complex production environment.

An important shortcoming the ambiguity of the behaviour of POC Applications
in case of errors. The proposed model does not specify what happens to a WorkflowIn-
stance if an intermediate StepInstance fails its execution, or simply if the user provides
the wrong type of input. This issue can be addressed with a systematic list of error

definitions, identifying which kind of error occurs in which case, and how these errors

should be handled by a POC Application.

Conceptualization provided by POC Core Ontology have apparent drawbacks as
well. The provided domain model does not allow definition of complex Tusks that
are combinations of the set of primitive Tasks provided by the ontology. This hinders
reusability of POC Specifications, since Workflows are not reusable. This issue can be

addressed with introducing a new complex Task type, which resemble Workflows but

94

have input and outputs.

Moreover, Steps and Pipes of a Workflow constructs a directed graph, where
each Step is represented as a node and each Pipe is represented as an edge. Topolog-
ical sorting of this graph is required for an unambiguous runtime behaviour, which is
only possible for acyclic graphs. Therefore, loops cannot be expressed by our current

conceptualization.

95

7. CONCLUSION

In this chapter, we provide conclusive comments on the work described within

this document.

We proposed a novel ontology-driven model for building community-centric online
applicaitons that consume and publish Linked Open Data. We also introduced an
novel OWL 2 ontology that models such community-centric applications in terms of
community specific information types and workflows. We attempted to assess the
expressivity of the proposed model through a real purposeful online community, and

identified a number of shortcomings it exhibits.

10.

96

REFERENCES

. Twitter, L., “Twitter”, http://www.twitter.com/, accessed at January 2016.

. Facebook, 1., Facebook, accessed at January 2016.

Howard, P. N. and M. M. Hussain, “The role of digital media”, Journal of democ-
racy, Vol. 22, No. 3, pp. 3548, 2011.

Lovejoy, K. and G. D. Saxton, “Information, community, and action: how nonprofit
organizations use social media”, Journal of Computer-Mediated Communication,

Vol. 17, No. 3, pp. 337-353, 2012.

. Eltantawy, N. and J. B. Wiest, “The Arab spring| Social media in the Egyptian

revolution: reconsidering resource mobilization theory”, International Journal of

Communication, Vol. 5, p. 18, 2011.

Dugdale, J., B. Van de Walle and C. Koeppinghoff, “Social media and SMS in the
Haiti earthquake”, Proceedings of the 21st international conference companion on

World Wide Web, pp. 713714, ACM, 2012.

Group, W. O. W., “OWL 2 Web Ontology Language Document Overview (Second
Edition)”, http://www.w3.org/TR/owl2-overview/, accessed at December 2015.

. Hitzler, P. and M. Krétzsch, “OWL 2 Web Ontology Language Primer (Second

Edition)”, http://www.w3.org/TR/owl2-primer/, accessed at December 2015.

. Berners-Lee, T., “Linked Data”, http://www.w3.org/DesignIssues/

LinkedData.html, accessed at December 2015.

Law, E. and L. v. Ahn, “Human computation”, Synthesis Lectures on Artificial

Intelligence and Machine Learning, Vol. 5, No. 3, pp. 1-121, 2011.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

97

Von Ahn, L., B. Maurer, C. McMillen, D. Abraham and M. Blum, “recaptcha:
Human-based character recognition via web security measures”, Science, Vol. 321,

No. 5895, pp. 1465-1468, 2008.

Von Ahn, L., “Games with a purpose”, Computer, Vol. 39, No. 6, pp. 92-94, 2006.

Amazon.com, 1., “Mechanical Turk”, https://www.mturk.com/mturk/welcome,

accessed at December 2015.

Buhrmester, M., T. Kwang and S. D. Gosling, “Amazon’s Mechanical Turk a new
source of inexpensive, yet high-quality, data?”, Perspectives on psychological sci-

ence, Vol. 6, No. 1, pp. 3-5, 2011.

von Ahn, L., “Duolingo: learn a language for free while helping to translate the
web”, Proceedings of the 2013 international conference on Intelligent user inter-

faces, pp. 1-2, ACM, 2013.

Hollingsworth, D. and U. Hampshire, “Workflow management coalition the work-

flow reference model”, Workflow Management Coalition, Vol. 68, p. 26, 1993.

Fielding, R. T., Architectural styles and the design of network-based software ar-
chitectures, Ph.D. Thesis, University of California, Irvine, 2000.

Berners-Lee, T., R. Fielding and L. Masinter, Uniform resource identifier (URI):
Generic syntax, Tech. rep., 2004.

Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-
Lee, Hypertext transfer protocol-HTTP/1.1, Tech. rep., 1999.

Fielding, R. T. and R. N. Taylor, “Principled design of the modern Web archi-
tecture”, ACM Transactions on Internet Technology (TOIT), Vol. 2, No. 2, pp.
115-150, 2002.

Fielding, R. T., “REST APIs must be hypertext-driven”, http://roy.gbiv.com/

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

98

untangled/2008/rest-apis-must-be-hypertext-driven, accessed at December

2015.

Jaffe, J., “The World Wide Web Consortium”, https://www.w3.org/, accessed at
December 2015.

Berners-Lee, T., J. Hendler, O. Lassila et al., “The semantic web”, Scientific amer-

tcan, Vol. 284, No. 5, pp. 28-37, 2001.

Cyganiak, R. and D. Wood, “RDF 1.1 Concepts and Abstract Syntax”, http:
//www.w3.org/TR/rdf11-concepts/, accessed at December 2015.

Schreiber, G. and Y. Raimond, “RDF 1.1 Primer”, http://www.w3.org/TR/
rdf11-primer/, accessed at December 2015.

Beckett, D. and B.-L. T, “RDF 1.1 Turtle”, http://www.w3.org/TR/turtle/, ac-

cessed at December 2015.

Sporny, M. and D. Longley, “JSON-LD 1.0: A JSON-based Serialization for Linked
Data”, http://www.w3.org/TR/json-1d/, accessed at December 2015.

Gandon, F. and S. G, “RDF 1.1 XML Syntax”, http://www.w3.org/TR/

rdf-syntax-grammar/, accessed at December 2015.

Group, T. W. S. W., “SPARQL 1.1 Overview”, http://www.w3.org/TR/

sparqlil-overview/, accessed at December 2015.

Brickley, D. and R. V. Ruha, “RDF Schema 1.17, http://www.w3.org/TR/

rdf-schema/, accessed at December 2015.

Horrocks, I. and P. F. Patel-Schneider, “SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML”, http://www.w3.org/Submission/SWRL/,

accessed at December 2015.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

99

Schmachtenberg, M., C. Bizer, A. Jentzsch and R. Cyganiak, “Linking Open Data
cloud diagram 2014”, http://lod-cloud.net/, accessed at December 2015.

Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and Z. Ives, Dbpedia:
A nucleus for a web of open data, Springer, 2007.

Bizer, C., J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak and S. Hell-
mann, “DBpedia-A crystallization point for the Web of Data”, Web Semantics:

science, services and agents on the world wide web, Vol. 7, No. 3, pp. 154-165,

2009.

Wikimedia, F., “Wikipedia”, https://wikipedia.org/, accessed at December
2015.

Freudenberg, M. and D. Kontokostas, “DBpedia Version 2015-04 released”, http:
//blog.dbpedia.org/7p=148, accessed at December 2015.

Bergman, M. and F. Giasson, “Upper Mapping and Binding Exchange Layer
(UMBEL) Specification”, http://techwiki.umbel.org/index.php/UMBEL_

Specification, accessed at December 2015.

Speicher, S. and J. Arwe, “Linked Data Platform 1.0”, http://www.w3.org/TR/
1dp/, accessed at December 2015.

Bertails, A. and P. Champin, “Linked Data Patch Format”, http://www.w3.org/
TR/1dpatch/, accessed at December 2015.

Fielding, R. and J. Reshke, “Hypertext Transfer Protocol (HTTP/1.1): Message
Syntax and Routing”, https://tools.ietf.org/html/rfc7230, accessed at De-
cember 2015.

Dusseault, L. and J. Snell, “PATCH Method for HTTP” https://tools.ietf.
org/html/rfc5789, accessed at December 2015.

42.

43.

44.

45.

46.

47.

48.

49.

0.

ol.

100

Weibel, S., “The Dublin Core: a simple content description model for electronic re-
sources”’, Bulletin of the American Society for Information Science and Technology,

Vol. 24, No. 1, pp. 9-11, 1997.

Board, D. U., “Dublin Core Vocabulary”, http://dublincore.org/documents/

dcmi-terms/, accessed at December 2015.

Breslin, J. G., A. Harth, U. Bojars and S. Decker, “Towards semantically-
interlinked online communities”, The Semantic Web: Research and Applications,

pp- 500-514, Springer, 2005.

Bojars, U. and J. Breslin, “SIOC Core Ontology Specification”, http://rdfs.org/

sioc/spec/, accessed at December 2015.

Lee, W. and T. Bailer, “Ontology for Media Resources 1.0”, http://www.w3.org/

TR/mediaont-10/, accessed at December 2015.

Peterson, D. and S. Gao, “W3C XML Schema Definition Language (XSD) 1.1 Part
2: Datatypes”, http://www.w3.org/TR/xmlschemall-2/, accessed at December
2015.

Vatant, B. and M. Wick, “GeoNames Ontology”, http://www.geonames.org/

ontology, accessed at December 2015.

Snell, J., “Prefer Header for HTTP”, https://tools.ietf.org/html/rfc7240,

accessed at December 2015.

Fielding, R. and J. Reshke, “Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content”, https://tools.ietf.org/html/rfc7231, accessed at December
2015.

Kernighan, B. W.; D. M. Ritchie and P. Ejeklint, The C programming language,
Vol. 2, prentice-Hall Englewood Cliffs, 1988.

02.

23.

54.

29.

26.

o7.

28.

59.

60.

61.

101

Flanagan, D. and Y. Matsumoto, The ruby programming language, " O’Reilly
Media, Inc.", 2008.

Hickson, A. and R. Berjon, “HTML 5 - A vocabulary and associated APIs for
HTML and XHTML”, http://www.w3.org/TR/html5/, accessed at December
2015.

Oy ve Otesi, F., “An assessment of the Turkish general elections of 2015”, http:
//oyveotesi.org/7-haziran-2015-genel-secim-sonuc-degerlendirmeleri/,

accessed at December 2015.

Tarjan, R., “Depth-first search and linear graph algorithms”, SIAM journal on
computing, Vol. 1, No. 2, pp. 146-160, 1972.

Mutdosch, T., “HTTPRequester”, https://addons.mozilla.org/en-US/

firefox/addon/httprequester/, accessed at December 2015.

Brickley, D. and L. Miller, “FOAF Vocabulary Specification 0.99”, http://xmlns.
com/foaf/spec/, accessed at December 2015.

Kim, H. L. and J. G. Breslin, “Basic Geo (WGS84 lat/long) Vocabulary”, http:
//rdfs.org/scot/spec/, accessed at December 2015.

Mika, P., “Ontologies are us: A unified model of social networks and semantics”,

The Semantic Web—ISWC 2005, pp. 522-536, Springer, 2005.

Mika, P., “Flink: Semantic web technology for the extraction and analysis of social
networks”, Web Semantics: Science, Services and Agents on the World Wide Web,
Vol. 3, No. 2, pp. 211-223, 2005.

San Martin, M. and C. Gutierrez, “Representing, querying and transforming social
networks with RDF/SPARQL”, The Semantic Web: Research and Applications,
pp- 293-307, 2009.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

102

Erétéo, G., M. Buffa, F. Gandon and O. Corby, Analysis of a real online social

network using semantic web frameworks, Springer, 2009.

Angeletou, S., M. Rowe and H. Alani, “Modelling and analysis of user behaviour in

online communities”, The Semantic Web—-ISWC 2011, pp. 35-50, Springer, 2011.

Erétéo, G., M. Buffa, F. Gandon and O. Corby, “SemSNA Ontology”, http://ns.
inria.fr/semsna/2009/06/21/voc.rdf, accessed at December 2015.

Angeletou, S., M. Rowe and H. Alani, “Behaviour Ontology”, http://people.
kmi .open.ac.uk/miriam/ontology/BehaviourOntology.n3, accessed at Decem-

ber 2015.

Snell, J. M. and E. Prodromou, “Activity Streams 2.0”, https://www.w3.o0rg/TR/

activitystreams-core/, accessed at December 2015.

Snell, J. M. and E. Prodromou, “Activity Vocabulary”, https://www.w3.org/TR/

activitystreams-vocabulary/, accessed at December 2015.

Sadri, P. and E. Ho, “Yahoo! Pipes”, https://pipes.yahoo.com, accessed: 2014-
05-12.

Walsh, N.; A. Milowski and H. S. Thompson, “Xproc: An xml pipeline language”,
a conference on XML, p. 13, 2007.

Le-Phuoc, D.; A. Polleres, M. Hauswirth, G. Tummarello and C. Morbidoni, “Rapid
prototyping of semantic mash-ups through semantic web pipes”, Proceedings of the

18th international conference on World wide web, pp. 581-590, ACM, 2009.

Kokciyan, N., S. Uskudarli and T. Dinesh, “User generated human computation
applications”, Privacy, Security, Risk and Trust (PASSAT), 2012 International
Conference on and 2012 International Confernece on Social Computing (Social-

Com), pp. 593-598, IEEE, 2012.

72.

73.

103
Jara, J., F. Daniel, F. Casati and M. Marchese, “From a simple flow to social
applications”, Current Trends in Web Engineering, pp. 39-50, Springer, 2013.

Curbera, F., M. Duftler, R. Khalaf and D. Lovell, Bite: Workflow composition for
the web, Springer, 2007.

