
AN ONTOLOGY BASED FRAMEWORK FOR CREATING PURPOSEFUL

ONLINE COMMUNITIES

by

Murat Seyhan

B.S., Computer Engineering, Boğaziçi University, 2012

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2016

ii

AN ONTOLOGY BASED FRAMEWORK FOR CREATING PURPOSEFUL

ONLINE COMMUNITIES

APPROVED BY:

Suzan Üsküdarlı, Ph.D.

(Thesis Supervisor)

Assist. Prof. Arzucan Özgür

Assist. Prof. Reyhan Aydoğan

DATE OF APPROVAL: 15.01.2016

iii

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to my long-time advisor, Suzan Üskü-

darlı. This work would have never been possible without her guidence and under-

standing. I would also like to thank my parents and fiancée for their patience and

support.

iv

ABSTRACT

AN ONTOLOGY BASED FRAMEWORK FOR CREATING

PURPOSEFUL ONLINE COMMUNITIES

A purposeful community is a group of individuals whose actions help the com-

munity reach a set of goals. Such communities often use social network applications to

communicate, coordinate, and track their activities. Twitter and Facebook are widely

used for such purposes. These applications provide generic support for communica-

tion, whereas every community has different information and processing needs. For

example, a community who is responding to a natural disaster will be concerned about

the services and goods that need to reach victims or a community who is interested in

animal rights will be interested in documenting various animals and making health ser-

vices available. Clearly, the type of information for these communities is very different.

Providing support for domain specific information and its processing usually involves

custom applications by those who have the application building skills. Yet, many kinds

of information could easily be defined by end users. If only, the means for specifying

such needs were available. We propose an ontology-driven model for end users to cre-

ate community-specific web applications that consume and generate Linked Data. Our

model is based on the Purposeful Online Communities (POC) Core ontology, which

models online communities in terms of community-specific information and activity

structures. We demonstrate the use of this ontology with example communities.

v

ÖZET

AMAÇLI SANAL TOPLULUKLAR ÜRETEN ONTOLOJİ

TABANLI BİR YAPI

Amaçlı topluluklar, belirli hedeflere ulaşmak için müşterek çalışan insan gru-

plarıdır. Bu topluluklar iletişim, koordinasyon ve durum takibi için genellikle sosyal

ağ uygulamaları kullanırlar. Twitter ve Facebook bu tarz amaçlarla yoğun olarak

kullanılmaktadır. Bu uygulamalar genel iletişim ihtiyaçlarını karşılar, fakat her toplu-

luğun farklı bilgi ve bilgi işleme ihtiyaçları vardır. Örneğin, bir doğal afet müdahale

topluluğu, felaketzedelere ulaştırılması gereken hizmet ve eşyalara ilgilenirken, hay-

van haklarıyla ilgilenen başka bir topluluk, hayvanların kayıt altına alınması ve sağlık

hizmetlerinin sağlanmasıyla ilgilenecektir. Bu toplulukların bilgi ihtiyaçları açık bir

şekilde çok farklıdır. Belirli alanlara özel bilgi ve bilgi işleme ihtiyaçlarını gidermek için

genellikle ihtiyaçlara göre şekillendirilmiş özel uygulamalara ihtiyaç duyulur. Bu tarz

uygulamalar geliştirilmek yazılım becerileri isteyen bir iştir. Oysa, bu tarz ihtiyaçları

belirtmek için kolay yollar sağlansaydı, birçok bilgi tipi son kullanıcılar tarafından tarif

edilebilirdi. Bu çalışmada, son kullanıcıların amaçlı topluluklara yönelik Web uygu-

lamaları üretmelerini sağlayan, ontoloji tabanlı bir yapı sunuyoruz. Bu yapı, sanal

toplulukları özgün bilgi ve eylem çeşitleri ile modelleyen Purposeful Online Communi-

ties (POC) ontolojisini temel alır. Bu ontolojinin kullanımı örnek topluluklarla göster-

ilmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xv

LIST OF ACRONYMS/ABBREVIATIONS . xvi

1. INTRODUCTION . 1

2. BACKGROUND . 4

2.1. Representational State Transfer . 5

2.2. Semantic Web Technologies . 6

2.3. Followed Narrative Structure . 9

3. A MODEL FOR CREATING PURPOSEFUL ONLINE COMMUNITIES . 13

3.1. POC Core Ontology . 14

3.1.1. Representation of the Community Members and Their Roles . . 15

3.1.2. Representation of the Community Datatypes 15

3.1.3. Representation of the Community-Specific Processes 21

3.1.4. Representation of Instances . 25

3.1.5. Representation of Constraints 30

3.2. POC LDP Ontology . 30

3.3. Specification of POC Applications . 32

3.4. Execution of POC Applications . 40

3.4.1. Initialization of a POC Server 42

3.4.2. Retrieval of a POC Server’s Representation 43

3.4.3. Retrieval of the Community Datatypes 44

3.4.4. Retrieval and Invocation of the Community Workflows 46

3.4.5. Retrieval and Performance of Step Instances 51

3.4.6. Retrieval of the Data Resources 56

3.4.7. Execution Flow of Step Instances 59

3.4.8. Expressions and View Templates 60

vii

4. EVALUATION . 62

4.1. Utilization of POC Model for a Real World Community 62

4.1.1. A POC Specification for T3 . 63

4.1.2. Execution of a T3 POC Application 69

4.1.2.1. Verification Attempt in the Absence of Photographs . 71

4.1.2.2. Photograph Submission 73

4.1.2.3. Verification of Ballot Reports 79

4.1.2.4. Accessing Verified Reports 80

4.1.3. An Assessment of T3 POC Application 84

4.2. An Application Generating Prototype 85

5. RELATED WORK . 88

5.1. Related Work Utilizing Semantic Web Technologies in the Context of

Online Communities . 88

5.2. Related Work on the Automated Geneartion of Application Behavior . 90

6. DISCUSSION AND FUTURE WORK . 93

7. CONCLUSION . 95

REFERENCES . 96

viii

LIST OF FIGURES

Figure 2.1. Visualization of an example RDF graph. 7

Figure 2.2. An RDF graph serialized in Turtle. 8

Figure 2.3. A fragment of the Linked Datasets as of August 2014. 10

Figure 2.4. A representation of “A Car is a Vehicle.” statement in Turtle. . . 11

Figure 2.5. A representation of “MyCar is a Car .” statement in Turtle. 11

Figure 2.6. A representation of “MyCar has a productionDate of 1965.” state-

ment in Turtle. 12

Figure 2.7. The declerations of all namespace prefixes that are referred, serial-

ized in Turtle. 12

Figure 3.1. An overview of POC Model. 14

Figure 3.2. A visualization of the fundamental classes, properties and asser-

tions in POC Core Ontology. 16

Figure 3.3. A DerivedDatatype based on ImageType represented in Turtle. . . 19

Figure 3.4. An example CompositeDatatype with four dataFields with various

types, represented in Turtle. 20

Figure 3.5. An illustration of a Step with two inputPorts and an outputPort . . 22

ix

Figure 3.6. An illustration of a Workflow with two Steps and a PortPipe. . . . 22

Figure 3.7. An illustration of a Workflow with a Step and a DirectPipe. 23

Figure 3.8. An illustration of a Workflow with a Step and a HumanPipe. . . . 23

Figure 3.9. An illustration of a Workflow with two Steps and a ControlPipe. . 24

Figure 3.10. An illustration of a Workflow with three Steps and two Condition-

alPipes. 26

Figure 3.11. An example List with three items of different types, serialized in

Turtle. 26

Figure 3.12. An example Image, represented in Turtle. 26

Figure 3.13. An example CompositeDataInstance with three fieldValues, serial-

ized in Turtle. 29

Figure 3.14. A visualization of the classes, properties and assertions in POC

LDP Ontology. 31

Figure 3.15. An overview of specification process for POC Applications. 32

Figure 3.16. The Roles in SpecBirders, serialized in Turtle. 34

Figure 3.17. Observation serialized in Turtle. 36

Figure 3.18. The representation of ObservationList , serialized in Turtle. 37

Figure 3.19. A representation of ObservationEntry 37

x

Figure 3.20. ObservationEntry , serialized in Turtle. 38

Figure 3.21. A representation of BirdTypeEditing 39

Figure 3.22. A representation of BirdTypeEditing in SpecBirders, serialized in

Turtle. 39

Figure 3.23. An overview of the execution process in POC Model. 40

Figure 3.24. An HTTP request message for dereferencing the POC Server of

AppBirders. 43

Figure 3.25. An HTTP response message advertising a POC Server. 44

Figure 3.26. An HTTP request message for the retrieval of the community-

specific datatypes of AppBirders. 45

Figure 3.27. An HTTP response message advertising the community-specific

datatypes of AppBirders. 45

Figure 3.28. An HTTP request message for the retrieval of a community-specific

Datatype. 46

Figure 3.29. An HTTP response message advertising a representation of a cus-

tom Datatype. 47

Figure 3.30. An HTTP request message for the retrieval of the available work-

flows in AppBirders. 48

Figure 3.31. An HTTP response message for the retrieval of the available work-

flows in AppBirders. 48

xi

Figure 3.32. An HTTP request message for the retrieval of ObservationEntry . . 49

Figure 3.33. An HTTP response message advertising ObservationEntry 49

Figure 3.34. An HTTP request message invoking ObservationEntry 50

Figure 3.35. HTTP response message for the invocation of ObservationEntry . . 50

Figure 3.36. An example HTTP request message for retrieving the StepInstances

available for a user of AppBirders. 51

Figure 3.37. An example HTTP response message advertising the StepInstances

available for a user of AppBirders. 51

Figure 3.38. An HTTP request retrieving a representation of SI0. 52

Figure 3.39. An HTTP response message advertising SI0. 53

Figure 3.40. An example SPARQL query to fetch five bird species whose labels

start with "sto". 55

Figure 3.41. An HTTP PATCH request submitting the data for the execution

of SI0. 56

Figure 3.42. An HTTP response message, advertising the successfully performed

SI0. 57

Figure 3.43. An HTTP request message, retrieving the data resources available

for a user of AppBirders. 57

xii

Figure 3.44. An HTTP response message, advertising the data resources avail-

able for a user of AppBirders. 58

Figure 3.45. An HTTP request message, retrieving an available DataInstance. . 58

Figure 3.46. An HTTP response message, advertising a DataInstance. 59

Figure 4.1. The Roles defined in SpecT3, serialized in Turtle. 64

Figure 4.2. Definition of Photo in SpecT3, serialized in Turtle. 64

Figure 4.3. Definition of VerifierReport in SpecT3, serialized in Turtle. 65

Figure 4.4. Definition of the DataInstances in SpecT3, serialized in Turtle. . . 66

Figure 4.5. A visual representation of PhotoSubmission. 66

Figure 4.6. Definition of PhotoSubmission in SpecT3, serialized in Turtle. . . . 68

Figure 4.7. A visual representation of ReportVerification. 70

Figure 4.8. An HTTP request message on the POC Server of AppT3. 71

Figure 4.9. An HTTP response message advertising a representation of the

POC Server of AppT3. 72

Figure 4.10. An HTTP request for the retrieval of the Workflows available for

a user of AppT3. 72

Figure 4.11. An HTTP response message advertising the Workflows available

for a user of AppT3. 73

xiii

Figure 4.12. An HTTP request message for the invocation of ReportVerification

by U0. 73

Figure 4.13. The HTTP response message for the invocation of ReportVerifica-

tion by U0. 74

Figure 4.14. An HTTP request for retrieving the available Workflows for U1. . 75

Figure 4.15. An HTTP response message advertising the available Workflows

for U1. 75

Figure 4.16. An HTTP request for the invocation of PhotoSubmission by U1. . 76

Figure 4.17. An HTTP request for the invocation of PhotoSubmission by U1. . 77

Figure 4.18. An HTTP request message, submitted by U1 for performing S0. . 78

Figure 4.19. The HTTP response message after the successful performance of

S0 by U1. 78

Figure 4.20. The HTTP request by U0, invoking ReportVerification for the sec-

ond time. 79

Figure 4.21. The HTTP response message received after a successful invocation

of ReportVerification. 81

Figure 4.22. The HTTP request message submitted by U0 for the performance

of S5. 82

Figure 4.23. The HTTP response message received after a successful perfor-

mance of S5 by U0. 82

xiv

Figure 4.24. The HTTP request message for retrieving the DataInstances acces-

sible by U2. 83

Figure 4.25. The HTTP response message advertising the DataInstances acces-

sible by U2. 83

Figure 4.26. The HTTP request message retrieving a representation of Veri-

fiedReports . 83

Figure 4.27. The HTTP response message advertising a representation of Veri-

fiedReports . 84

Figure 4.28. A screenshot of the submission page. 86

Figure 4.29. A screenshot of the endpoint displaying page. 87

Figure 4.30. A screenshot demonstrating the consumption of an endpoint ad-

vertised by the prototype. 87

xv

LIST OF TABLES

Table 3.1. Derivation properties for DerivedDatatypes. 18

Table 3.2. Predefined Tasks. 27

Table 3.3. The results for the SPARQL query fetching bird species and their

labels. 55

xvi

LIST OF ACRONYMS/ABBREVIATIONS

POC Purposeful Online Community

1

1. INTRODUCTION

A Purposeful Community is a group of individuals whose actions help the com-

munity reach a set of goals. Such communities often use social network applications to

communicate, coordinate, and track their activities. These applications provide generic

support for communication, whereas every community has different information and

processing needs. For example, a community who is responding to a natural disas-

ter will be concerned about the services and goods that need to reach victims or a

community who is interested in animal rights will be interested in documenting various

animals and making health services available. Clearly, the type of information for these

communities is very different. Providing support for domain specific information and

its processing usually involves custom applications by those who have the application

building skills. Yet, many kinds of information could easily be defined by end users. If

only, the means for specifying such needs were available.

Social media applications such as Twitter [1] and Facebook [2] are widely used

in computer mediated communication for organizing and communications [3, 4]. The

use of such system become highly visible during events like the Occupy movement and

the Arab Spring [5] and the Haiti Earthquake [6], where social media was extensively

used to inform and coordinate. While these systems are very useful for transmitting

information necessary to respond and coordinate, they do not support the needs of

retaining or tracking information that is important for communities. In these contexts,

such work, if at all, is done by persons who fetch, process, and disseminate information.

Such persons are highly motivated community builders and managers who care about

the community and what they are working on. They, however, generally do not possess

the required technical knowledge to build applications that handle community-specific

knowledge and processes.

We refer to a group of individuals that collaborate towards a set of goals as

Purposeful Community, and Purposeful Online Community (POC) as a computer me-

diated Purposeful Community. The goals of POCs may vary considerably, so do their

2

information and processing needs. A POC typically utilizes multiple independent on-

line tools to perform various tasks to suit their needs. Synchronous and asynchronous

communication tools, calendars, document repositories are common tools for such pur-

poses. Such tools offer limited interoperability (if, any) and result in community data

being stored in different places and in different formats. As a result, the community

knowledge is scattered into silos and cannot be effectively combined or processed. To

interpret community information such as progress and status, it is typical for associ-

ated data to be manually fetched, processed, and disseminated (again, using different

applicaitons, tools, and methods). It would be very useful for community data and

information to be easily accessible with interesting results automatically computed

whenever possible.

In this work, we propose an ontology-driven model called Purposeful Online Com-

munities Model (POC Model) for enabling people who are savvy in online communi-

ties to build community-centric web applications. The proposed model is based on

an OWL 2 [7, 8] ontology called POC Core Ontology that we developed to model on-

line communities with specific purposes. This ontology facilitates the specification of

community-specific information and proccesses with a well-defined structure. Struc-

tured specification of community applications entails a straightforward integration with

the structured data available on the web, or Linked Open Data [9]. The contributions

of this study can be summarized as follows.

• An ontology-driven model for the specification and execution of community-

centric web applications that consume and publish Linked Open Data automati-

cally.

• An OWL 2 ontology that provides a workflow-based conceptualization for pur-

poseful online communities.

The remainder of this document is structured as follows. In the following section,

we provide a technical background for our study and discuss the narrative structure of

this document. Next, we discuss the proposed model in detail. Then, the prototype

we build for the model will be discussed. Later, an evaluation of the proposed model

3

is represented. Lastly, we discuss our current efforts and future aspects of this study,

along with a conclusion.

4

2. BACKGROUND

In this chapter, we discuss the terminology and technologies that our work de-

pends on.

The model we propose is inspired by crowdsourcing, human computation systems,

and computer mediated workflows.

Human computation is a research topic focused on exploiting human intelligence

for computational tasks that are computationally difficult for computers, but easy

for humans to solve [10]. Human computation systems form purposeful communities,

where the actions of the community members help the community reach certain goals,

even though the members may not be aware of what the goals are. Human computation

applications are utilized for various objectives. reCAPTCHA [11] is a well known such

application that is used to verify human users on the web. It presents the user two pieces

of distorted text, which they are supposed to type in text boxes in order to gain access

to a website. The system only knows the correct answer for one of the text images,

the other is from an un-deciphered optical reader. Humans happen to be very good

to deciphering distorted text. With this system, hundreds of thousands of man hours

per day were accumulated via very small actions of a massive number of users and a

great amount of digitization work was accomplished. Another example of such systems

is called games with a purpose [12], which are games that utilize the contributions

of their players for some computational tasks. Crowdsourcing marketplaces, such as

Mechanical Turk (MTurk) [13] enable human workers to perform computational tasks,

such as data labeling, for small monetary rewards. MTurk is reported to be a source of

inexpensive and high-quality data for research [14]. Another example is Duolingo [15]

that teaches languages while automatically translating the Web to all major languages.

Computer mediated workflows typically refer to the automation of whole or par-

tial business processes [16]. They consist of activities that are interdependent in accord-

ing to a set of procedural rules. Dependencies arise when activities must be ordered to

5

satisfy some constraints, such as need for information generated in a particular activity.

The work associated with activities may be performed by humans or computers. Our

model aims to apply the workflow notion to online communities that define their own

workflows.

2.1. Representational State Transfer

Representational State Transfer (REST) [17] is an architectural style for dis-

tributed hypermedia systems. REST is an abstract model of the Web architecture.

It is composed of the principles that guided the design of Uniform Resource Identi-

fier (URI) [18] and HTTP/1.1 [19], and is intended as a guideline for development of

overall Web applications [20]. REST style is composed of six architectural constraints,

namely: client-server, statelessness, cache, layered system, code on demand (optional),

and uniform interface. A system complying with these constraints is referred as a

RESTful system [21]. Client-server architectural style is the separation of user in-

terface concerns from the data store concerns, which is typical for web applications.

This constraint aims to improve scalability by simplifying the server constraints and

improve portability of the user interface. Second constraint is the statelessness of the

client-server communication, meaning that the requests from client to server must con-

tain all the information needed to process the request. Statelessness implies that the

session state must be stored on the client. This constraint aims to improve visibility,

reliability and scalability of the architecture, yet introduces an overhead of sending

repetitive data in requests in a shared context. Cache constraint dictates that the data

within a response to a request must be implicitly or explicitly labeled as cacheable

or non-cacheable, where cacheable responses can be cached and reused by the client.

This constraint aims to yield efficiency and scalability, but is noted to introduce a

possible decrease of reliability if stale cache data is not invalidated properly. Layered

system constraint requires the components of a system to form hierarchical layers, and

to have knowledge of only the immediate layers they interact with. Layered system

architecture limits the overall complexity of a system. As a side effect, processing of

data on multiple layers introduces a latency, diminishing the performance. Code-on-

demand style allows a client component that cannot process a set of resources to ask

6

a remote server for the code to process those resources, receive the code, and execute

it locally. It is the only optional constraint of REST, therefore a system not satisfying

this constraint may still be RESTful. Uniform interface constraint is a distinguishing

feature of REST. It implies the decoupling of the implementations from the services

they provide, to provide a standardized interface for the clients. A uniform interface

is obtained if a system satisfies the following four constraints. First, any concept that

can be targeted with a hypertext reference must fit within the definition of a resource,

where a resource is a conceptual mapping to a set of resource identifiers and/or repre-

sentations. The messages must identify resources using resource identifiers, which are

typically URIs in RESTful web applications. Secondly, the resources must be manipu-

lated through resource representations, e.g. an XML document in a RESTful web API.

Third, the messages must be self-descriptive. This must be ensured by the stateless

interaction between requests, the explicit representation of cachebility in responses,

and the utilization of standard methods and media types to indicate semantics and

exchange information. Last requirement for a uniform interface is the utilization of

hypermedia as the engine of the application state. This implies that the interaction

of a client with a server must depend only on the hypermedia provided by the server,

and must not assume a response structure beyond that defined by the specification of

the utilized media type [21].

2.2. Semantic Web Technologies

Traditional web technologies enable us to link related documents, or parts of

document, to one another. These hyperlinks do not carry a well-defined meaning, and

their interpretation is often left to human end users. Many applications we use over the

web aggregate data relevant for us. Combination of such distributed data outside the

context of individual applications would potentially yield powerful new applications.

This requires the data to be interlinked with well-defined meaning, so that it can be

discovered and processed by automated tools properly. Such data is typically not

interlinked at all, and, therefore, is segregated into silos formed by each application.

The World Wide Web Consortium (W3C) [22] aims to address this issue with a set

7

of standard technologies and principles to facilitate meaningful representation, linking

and processing of distributed data elements across the Web. The Semantic Web, or

the Web of Data, refers to a Web enriched with such standards, on which the data is

interlinked with well-defined meaning [23].

A fundamental building block of the Semantic Web is Resource Description

Framework 1.1 (RDF) [24, 25]. RDF is a model providing a standard way to iden-

tify data elements and express relations between them. In RDF, relations between two

resources are expressed with an RDF triple, which is composed of a subject, predicate

and an object. The structure of an RDF triple resembles an elementary sentence, e.g.

“Jack speaks English.”. The subject and the object of an RDF triple is a IRI, Literal

or a Blank node, and the predicate is typically a URI [18]. This facilitates the rela-

tions expressed in RDF to possess well-defined meanings, unlike hyperlinks between

web documents. Data expressed in RDF forms a directed graph, where each triple

identifies an edge, directed from the subject of the triple, towards its object. Figure

2.1 depicts an example RDF graph.

Figure 2.1. Visualization of an example RDF graph.

8

RDF data can be serialized in various formats, e.g. Turtle [26], JSON-LD [27]

and RDF/XML [28]. Figure 2.2 gives a Turtle serialization of the RDF graph depicted

in Figure 2.1.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix cito: <http://purl.org/spar/cito/>.

<http://example.org/Joe> rdf:type foaf:Person.

<http://example.org/BlogPost1> dcterms:creator

<http://example.org/Joe>.

<http://example.org/Jack> rdf:type foaf:Person;

foaf:knows <http://example.org/Joe>;

foaf:name "Jack White";

cito:likes <http://example.org/BlogPost1>.

Figure 2.2. An RDF graph serialized in Turtle.

Other core technologies by W3C enable us to query, model, infer and advertise

RDF data effectively. SPARQL 1.1 [29] is query language for RDF data, with a syntax

resembilng SQL. RDF Schema 1.1 (RDFS) [30] is a data-modelling vocabulary for RDF

data. OWL 2 Web Ontology Language (OWL 2) [7, 8] is a knowledge representation

language, enabling specification of domain knowledge in terms of concepts and their

relationships. Resulting ontologies are explicit specifications that may be published

on the Web, thereby provides means for shared semantics across applications. Rule

languages such as Semantic Web Rule Language (SWRL) [31] provides more expres-

sive power on top of OWL 2, enabling conceptualization of more complex domains.

Structured representation of the domain knowledge with the mentioned technologies

facilitate inference of new relations from the existing data.

9

In order for the Semantic Web to become a reality, a substantial amount of data

need to be published and interlinked in its standard formats. Such data is referred as

Linked Data [9], or Linked Open Data if it is publicly accessible. Figure 2.3 depicts a

graph of significant Linked Datasets as of August 2014 [32]. A notable effort towards

such Linked Data is DBpedia project [33,34]. DBpedia project is a community effort for

extracting information from Wikipedia [35] and advertising the extracted data through

the Semantic Web standards. English version of the DBpedia data set is reported to

contain more than 5 million entities [36]. Upper Mapping and Binding Exchange

Layer (UMBEL) [37] provides UMBEL Vocabulary, which is intended as a standard

framework for domain ontologies to structure Linked Open Data. UMBEL Reference

Concept Ontology is an ontology complying UMBEL Vocabulary that provides a set

of generic classes to be referenced by various Linked Datasets.

Linked Data Platform 1.0 (LDP) [38, 39] is a recently published specification by

W3C, defining a set of rules for accessing, updating, creating and deleting of Linked

Data over HTTP. An LDP Server is defined as an HTTP server [40] that conforms

the rules specified by LDP to advertise data. An LDP Client is defined an HTTP

client [40] that conforms the rules specified by LDP to consume data from an LDP

Server. Supporting HTTP PATCH method [41] for the modification of advertised data

is optional for LDP Servers. [39] defines a patch format for LDP Servers that support

HTTP PATCH.

2.3. Followed Narrative Structure

In this section, we discuss some key properties of the narrative structure followed

through this document.

This document contains a substaintial amount of discussion on the structure

of OWL 2 ontologies. For the sake of convenience, we refer to the entities in these

ontologies, such as OWL 2 classes, their instances and properties, with an italic font,

e.g. “Car is a class in the ontology.” Class names follow a camel case notation with

a capital first letter, e.g. CarWindow , whereas property names follow a camel case

Linked Datasets as of August 2014

Uniprot

Alexandria
Digital Library

Gazetteer

lobid
Organizations

chem2
bio2rdf

Multimedia
Lab University

Ghent

Open Data
Ecuador

Geo
Ecuador

Serendipity

UTPL
LOD

GovAgriBus
Denmark

DBpedia
live

URI
Burner

Linguistics

Social Networking

Life Sciences

Cross-Domain

Government

User-Generated Content

Publications

Geographic

Media

Identifiers

Eionet
RDF

lobid
Resources

Wiktionary
DBpedia

Viaf

Umthes

RKB
Explorer

Courseware

Opencyc

Olia

Gem.
Thesaurus

Audiovisuele
Archieven

Diseasome
FU-Berlin

Eurovoc
in

SKOS

DNB
GND

Cornetto

Bio2RDF
Pubmed

Bio2RDF
NDC

Bio2RDF
Mesh

IDS

Ontos
News
Portal

AEMET

ineverycrea

Linked
User

Feedback

Museos
Espania
GNOSS

Europeana

Nomenclator
Asturias

Red Uno
Internacional

GNOSS

Geo
Wordnet

Bio2RDF
HGNC

Ctic
Public

Dataset

Bio2RDF
Homologene

Bio2RDF
Affymetrix

Muninn
World War I

CKAN

Government
Web Integration

for
Linked
Data

Universidad
de Cuenca
Linkeddata

Freebase

Linklion

Ariadne

Organic
Edunet

Gene
Expression
Atlas RDF

Chembl
RDF

Biosamples
RDF

Identifiers
Org

Biomodels
RDF

Reactome
RDF

Disgenet

Semantic
Quran

IATI as
Linked Data

Dutch
Ships and

Sailors

Verrijktkoninkrijk

IServe

Arago-
dbpedia

Linked
TCGA

ABS
270a.info

RDF
License

Environmental
Applications

Reference
Thesaurus

Thist

JudaicaLink

BPR

OCD

Shoah
Victims
Names

Reload

Data for
Tourists in

Castilla y Leon

2001
Spanish
Census
to RDF

RKB
Explorer

Webscience

RKB
Explorer
Eprints
Harvest

NVS

EU Agencies
Bodies

EPO

Linked
NUTS

RKB
Explorer

Epsrc

Open
Mobile

Network

RKB
Explorer
Lisbon

RKB
Explorer

Italy

CE4R

Environment
Agency

Bathing Water
Quality

RKB
Explorer
Kaunas

Open
Data

Thesaurus

RKB
Explorer
Wordnet

RKB
Explorer

ECS

Austrian
Ski

Racers

Social-
semweb

Thesaurus

Data
Open
Ac Uk

RKB
Explorer

IEEE

RKB
Explorer

LAAS

RKB
Explorer

Wiki

RKB
Explorer

JISC

RKB
Explorer
Eprints

RKB
Explorer

Pisa

RKB
Explorer

Darmstadt

RKB
Explorer
unlocode

RKB
Explorer

Newcastle

RKB
Explorer

OS

RKB
Explorer

Curriculum

RKB
Explorer

Resex

RKB
Explorer

Roma

RKB
Explorer
Eurecom

RKB
Explorer

IBM

RKB
Explorer

NSF

RKB
Explorer

kisti

RKB
Explorer

DBLP

RKB
Explorer

ACM

RKB
Explorer
Citeseer

RKB
Explorer

Southampton

RKB
Explorer
Deepblue

RKB
Explorer
Deploy

RKB
Explorer

Risks

RKB
Explorer

ERA

RKB
Explorer

OAI

RKB
Explorer

FT

RKB
Explorer

Ulm

RKB
Explorer

Irit

RKB
Explorer
RAE2001

RKB
Explorer

Dotac

RKB
Explorer
Budapest

Swedish
Open Cultural

Heritage

Radatana

Courts
Thesaurus

German
Labor Law
Thesaurus

GovUK
Transport

Data

GovUK
Education

Data

Enakting
Mortality

Enakting
Energy

Enakting
Crime

Enakting
Population

Enakting
CO2Emission

Enakting
NHS

RKB
Explorer

Crime

RKB
Explorer
cordis

Govtrack

Geological
Survey of

Austria
Thesaurus

Geo
Linked
Data

Gesis
Thesoz

Bio2RDF
Pharmgkb

Bio2RDF
SabiorkBio2RDF

Ncbigene

Bio2RDF
Irefindex

Bio2RDF
Iproclass

Bio2RDF
GOA

Bio2RDF
Drugbank

Bio2RDF
CTD

Bio2RDF
Biomodels

Bio2RDF
DBSNP

Bio2RDF
Clinicaltrials

Bio2RDF
LSR

Bio2RDF
Orphanet

Bio2RDF
Wormbase

BIS
270a.info

DM2E

DBpedia
PT

DBpedia
ES

DBpedia
CS

DBnary

Alpino
RDF

YAGO

Pdev
Lemon

Lemonuby

Isocat

Ietflang

Core

KUPKB

Getty
AAT

Semantic
Web

Journal

OpenlinkSW
Dataspaces

MyOpenlink
Dataspaces

Jugem

Typepad

Aspire
Harper
Adams

NBN
Resolving

Worldcat

Bio2RDF

Bio2RDF
ECO

Taxon-
concept
Assets

Indymedia

GovUK
Societal

Wellbeing
Deprivation imd

Employment
Rank La 2010

GNU
Licenses

Greek
Wordnet

DBpedia

CIPFA

Yso.fi
Allars

Glottolog

StatusNet
Bonifaz

StatusNet
shnoulle

Revyu

StatusNet
Kathryl

Charging
Stations

Aspire
UCL

Tekord

Didactalia

Artenue
Vosmedios

GNOSS

Linked
Crunchbase

ESD
Standards

VIVO
University
of Florida

Bio2RDF
SGD

Resources

Product
Ontology

Datos
Bne.es

StatusNet
Mrblog

Bio2RDF
Dataset

EUNIS

GovUK
Housing
Market

LCSH

GovUK
Transparency
Impact ind.
Households

In temp.
Accom.

Uniprot
KB

StatusNet
Timttmy

Semantic
Web

Grundlagen

GovUK
Input ind.

Local Authority
Funding From
Government

Grant

StatusNet
Fcestrada

JITA

StatusNet
Somsants

StatusNet
Ilikefreedom

Drugbank
FU-Berlin

Semanlink

StatusNet
Dtdns

StatusNet
Status.net

DCS
Sheffield

Athelia
RFID

StatusNet
Tekk

Lista
Encabeza
Mientos
Materia

StatusNet
Fragdev

Morelab

DBTune
John Peel
Sessions

RDFize
last.fm

Open
Data

Euskadi

GovUK
Transparency

Input ind.
Local auth.
Funding f.

Gvmnt. Grant

MSC

Lexinfo

StatusNet
Equestriarp

Asn.us

GovUK
Societal

Wellbeing
Deprivation Imd
Health Rank la

2010

StatusNet
Macno

Oceandrilling
Borehole

Aspire
Qmul

GovUK
Impact

Indicators
Planning

Applications
Granted

Loius

Datahub.io

StatusNet
Maymay

Prospects
and

Trends
GNOSS

GovUK
Transparency

Impact Indicators
Energy Efficiency

new Builds

DBpedia
EU

Bio2RDF
Taxon

StatusNet
Tschlotfeldt

Jamendo
DBTune

Aspire
NTU

GovUK
Societal

Wellbeing
Deprivation Imd

Health Score
2010

Lotico
GNOSS

Uniprot
Metadata

Linked
Eurostat

Aspire
Sussex

Lexvo

Linked
Geo
Data

StatusNet
Spip

SORS

GovUK
Homeless-

ness
Accept. per

1000

TWC
IEEEvis

Aspire
Brunel

PlanetData
Project

Wiki

StatusNet
Freelish

Statistics
data.gov.uk

StatusNet
Mulestable

Enipedia

UK
Legislation

API

Linked
MDB

StatusNet
Qth

Sider
FU-Berlin

DBpedia
DE

GovUK
Households

Social lettings
General Needs

Lettings Prp
Number

Bedrooms

Agrovoc
Skos

My
Experiment

Proyecto
Apadrina

GovUK
Imd Crime
Rank 2010

SISVU

GovUK
Societal

Wellbeing
Deprivation Imd
Housing Rank la

2010

StatusNet
Uni

Siegen

Opendata
Scotland Simd

Education
Rank

StatusNet
Kaimi

GovUK
Households

Accommodated
per 1000

StatusNet
Planetlibre

DBpedia
EL

Sztaki
LOD

DBpedia
Lite

Drug
Interaction
Knowledge

Base
StatusNet

Qdnx

Amsterdam
Museum

AS EDN LOD

RDF
Ohloh

DBTune
artists
last.fm

Aspire
Uclan

Hellenic
Fire Brigade

Bibsonomy

Nottingham
Trent

Resource
Lists

Opendata
Scotland Simd
Income Rank

Randomness
Guide

London

Opendata
Scotland

Simd Health
Rank

Southampton
ECS Eprints

FRB
270a.info

StatusNet
Sebseb01

StatusNet
Bka

ESD
Toolkit

Hellenic
Police

StatusNet
Ced117

Open
Energy

Info Wiki

StatusNet
Lydiastench

Open
Data
RISP

Taxon-
concept

Occurences

Bio2RDF
SGD

UIS
270a.info

NYTimes
Linked Open

Data

Aspire
Keele

GovUK
Households
Projections
Population

W3C

Opendata
Scotland

Simd Housing
Rank

ZDB

StatusNet
1w6

StatusNet
Alexandre

Franke

Dewey
Decimal

Classification

StatusNet
Status

StatusNet
doomicile

Currency
Designators

StatusNet
Hiico

Linked
Edgar

GovUK
Households

2008

DOI

StatusNet
Pandaid

Brazilian
Politicians

NHS
Jargon

Theses.fr

Linked
Life
Data

Semantic Web
DogFood

UMBEL

Openly
Local

StatusNet
Ssweeny

Linked
Food

Interactive
Maps

GNOSS

OECD
270a.info

Sudoc.fr

Green
Competitive-

ness
GNOSS

StatusNet
Integralblue

WOLD

Linked
Stock
Index

Apache

KDATA

Linked
Open
Piracy

GovUK
Societal

Wellbeing
Deprv. Imd
Empl. Rank

La 2010

BBC
Music

StatusNet
Quitter

StatusNet
Scoffoni

Open
Election

Data
Project

Reference
data.gov.uk

StatusNet
Jonkman

Project
Gutenberg
FU-BerlinDBTropes

StatusNet
Spraci

Libris

ECB
270a.info

StatusNet
Thelovebug

Icane

Greek
Administrative

Geography

Bio2RDF
OMIM

StatusNet
Orangeseeds

National
Diet Library

WEB NDL
Authorities

Uniprot
Taxonomy

DBpedia
NL

L3S
DBLP

FAO
Geopolitical

Ontology

GovUK
Impact

Indicators
Housing Starts

Deutsche
Biographie

StatusNet
ldnfai

StatusNet
Keuser

StatusNet
Russwurm

GovUK Societal
Wellbeing

Deprivation Imd
Crime Rank 2010

GovUK
Imd Income

Rank La
2010

StatusNet
Datenfahrt

StatusNet
Imirhil

Southampton
ac.uk

LOD2
Project

Wiki

DBpedia
KO

Dailymed
FU-Berlin

WALS

DBpedia
IT

StatusNet
Recit

Livejournal

StatusNet
Exdc

Elviajero

Aves3D

Open
Calais

Zaragoza
Turruta

Aspire
Manchester

Wordnet
(VU)

GovUK
Transparency

Impact Indicators
Neighbourhood

Plans

StatusNet
David

Haberthuer

B3Kat

Pub
Bielefeld

Prefix.cc

NALT

Vulnera-
pedia

GovUK
Impact

Indicators
Affordable

Housing Starts

GovUK
Wellbeing lsoa

Happy
Yesterday

Mean

Flickr
Wrappr

Yso.fi
YSA

Open
Library

Aspire
Plymouth

StatusNet
Johndrink

Water

StatusNet
Gomertronic

Tags2con
Delicious

StatusNet
tl1n

StatusNet
Progval

Testee

World
Factbook
FU-Berlin

DBpedia
JA

StatusNet
Cooleysekula

Product
DB

IMF
270a.info

StatusNet
Postblue

StatusNet
Skilledtests

Nextweb
GNOSS

Eurostat
FU-Berlin

GovUK
Households

Social Lettings
General Needs

Lettings Prp
Household

Composition

StatusNet
Fcac

DWS
Group

Opendata
Scotland

Graph
Simd Rank

DNB

Clean
Energy
Data

Reegle

Opendata
Scotland Simd
Employment

Rank

Chronicling
America

GovUK
Societal

Wellbeing
Deprivation

Imd Rank 2010

StatusNet
Belfalas

Aspire
MMU

StatusNet
Legadolibre

Bluk
BNB

StatusNet
Lebsanft

GADM
Geovocab

GovUK
Imd Score

2010

Semantic
XBRL

UK
Postcodes

Geo
Names

EEARod
Aspire

Roehampton

BFS
270a.info

Camera
Deputati
Linked
Data

Bio2RDF
GeneID

GovUK
Transparency

Impact Indicators
Planning

Applications
Granted

StatusNet
Sweetie

Belle

O'Reilly

GNI

City
Lichfield

GovUK
Imd

Rank 2010

Bible
Ontology

Idref.fr

StatusNet
Atari

Frosch

Dev8d

Nobel
Prizes

StatusNet
Soucy

Archiveshub
Linked
Data

Linked
Railway

Data
Project

FAO
270a.info

GovUK
Wellbeing

Worthwhile
Mean

Bibbase

Semantic-
web.org

British
Museum

Collection

GovUK
Dev Local
Authority
Services

Code
Haus

Lingvoj

Ordnance
Survey
Linked
Data

Wordpress

Eurostat
RDF

StatusNet
Kenzoid

GEMET

GovUK
Societal

Wellbeing
Deprv. imd
Score '10

Mis
Museos
GNOSS

GovUK
Households
Projections

total
Houseolds

StatusNet
20100

EEA

Ciard
Ring

Opendata
Scotland Graph

Education
Pupils by

School and
Datazone

VIVO
Indiana

University

Pokepedia

Transparency
270a.info

StatusNet
Glou

GovUK
Homelessness

Households
Accommodated

Temporary
Housing Types

STW
Thesaurus

for
Economics

Debian
Package
Tracking
System

DBTune
Magnatune

NUTS
Geo-
vocab

GovUK
Societal

Wellbeing
Deprivation Imd
Income Rank La

2010

BBC
Wildlife
Finder

StatusNet
Mystatus

Miguiad
Eviajes
GNOSS

Acorn
Sat

Data
Bnf.fr

GovUK
imd env.

rank 2010

StatusNet
Opensimchat

Open
Food
Facts

GovUK
Societal

Wellbeing
Deprivation Imd

Education Rank La
2010

LOD
ACBDLS

FOAF-
Profiles

StatusNet
Samnoble

GovUK
Transparency

Impact Indicators
Affordable

Housing Starts

StatusNet
CoreyavisEnel

Shops

DBpedia
FR

StatusNet
Rainbowdash

StatusNet
Mamalibre

Princeton
Library

Findingaids

WWW
Foundation

Bio2RDF
OMIM

Resources

Opendata
Scotland Simd

Geographic
Access Rank

Gutenberg

StatusNet
Otbm

ODCL
SOA

StatusNet
Ourcoffs

Colinda

Web
Nmasuno
Traveler

StatusNet
Hackerposse

LOV

Garnica
Plywood

GovUK
wellb. happy

yesterday
std. dev.

StatusNet
Ludost

BBC
Program-

mes

GovUK
Societal

Wellbeing
Deprivation Imd

Environment
Rank 2010

Bio2RDF
Taxonomy

Worldbank
270a.info

OSM

DBTune
Music-
brainz

Linked
Mark
Mail

StatusNet
Deuxpi

GovUK
Transparency

Impact
Indicators

Housing Starts

Bizkai
Sense

GovUK
impact

indicators energy
efficiency new

builds

StatusNet
Morphtown

GovUK
Transparency

Input indicators
Local authorities

Working w. tr.
Families

ISO 639
Oasis

Aspire
Portsmouth

Zaragoza
Datos

Abiertos
Opendata
Scotland

Simd
Crime Rank

Berlios

StatusNet
piana

GovUK
Net Add.
Dwellings

Bootsnall

StatusNet
chromic

Geospecies

linkedct

Wordnet
(W3C)

StatusNet
thornton2

StatusNet
mkuttner

StatusNet
linuxwrangling

Eurostat
Linked
Data

GovUK
societal

wellbeing
deprv. imd

rank '07

GovUK
societal

wellbeing
deprv. imd
rank la '10

Linked
Open Data

of
Ecology

StatusNet
chickenkiller

StatusNet
gegeweb

Deusto
Tech

StatusNet
schiessle

GovUK
transparency

impact
indicators
tr. families

Taxon
concept

GovUK
service

expenditure

GovUK
societal

wellbeing
deprivation imd

employment
score 2010

Figure 2.3. A fragment of the Linked Datasets as of August 2014.

11

notation wtih lowercase first letter, e.g. productionDate. The reader should also note

that, when a class name is represented with a prepended Article or in plural form, the

referred entities are the instances of the class, e.g. “A Step is used to represent a single

operation.” or “Steps are used to represent operations.” In this context, a statement

such as “A Car is a Vehicle.” indicates that the instances of Car class are also instances

of Vehicle class, impling that Car is a subclass of Vehicle. A representation of such

statement in RDF is depicted in Figure 2.4.

poc:Car rdfs:subClassOf poc:Vehicle.

Figure 2.4. A representation of “A Car is a Vehicle.” statement in Turtle.

A statement such as “MyCar is a Car .” indicates that MyCar is an actualized

instance of Car . A representation of such statement in RDF is illustrated in Figure

2.5.

poc:MyCar rdf:type poc:Car.

Figure 2.5. A representation of “MyCar is a Car .” statement in Turtle.

Moreover, if a property name is mentioned in the context of a class instance,

the actual referred entity is the value that the property links to, e.g. “MyCar has a

productionDate of 1965.” A representation of such statement in RDF is depicted in

Figure 2.6.

The remainder of this document contains many listings representing RDF data,

which are all serialized in Turtle [26]. For the sake of convenience, the namespace

prefixes referred by such listings are omitted. The declaration of all namespace prefixes

referred by such listings are represented in Figure 2.7.

12

poc:MyCar poc:productionDate 1965.

Figure 2.6. A representation of “MyCar has a productionDate of 1965.” statement in

Turtle.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

@prefix sioc: <http://rdfs.org/sioc#>.

@prefix sioc-services: <http://rdfs.org/sioc/services#>.

@prefix gn: <http://www.geonames.org/ontology#>.

@prefix ma: <http://www.w3.org/ns/ma-ont#> .

@prefix umbel-rc: <http://umbel.org/umbel/rc/>.

@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.

Figure 2.7. The declerations of all namespace prefixes that are referred, serialized in

Turtle.

13

3. A MODEL FOR CREATING PURPOSEFUL ONLINE

COMMUNITIES

We propose a model for POCs by supporting the definition of community-specific

information and processes. Community-specific information is defined as user defined

data types by specifying a collection of typed fields. For example, community of bird

lovers may be interested in birds that are pets. Furthermore, they may want to collect

information about these pets in terms of the picture of the bird (as an image), the

type of the bird (name of species), and the location of the bird (as a geo-location).

Community processes are collections of simple tasks to create, access, and process

community-specific information. Tasks are coordinated via workflows that specify the

control and data flow between the tasks.

Purposeful communities tend to be self organizing and initiated by a few dedicated

core members. We refer to such persons as Community Builders and expect that they

would perform the lion share of defining the community information and processes.

Most of the community members will be participants who contribute to the community

work as specified by the the Community Builders.

To address the specification of community-specific information and processes,

we introduce an ontology-driven model called Purposeful Online Communities Model

(POC Model). Figure 3.1 shows an overview of the model. There are two major

concerns addressed by POC Model:

• the specification of community-specific information and workflows

• the execution of the application that realizes a specification.

The specification phase yields a POC Specification that specifies the community-

application. A POC Specification, in turn, is used to drive the execution of the corre-

sponding POC Application. POC Clients are clients that interact with POC Applica-

14

Figure 3.1. An overview of POC Model.

tions. In other words, to realize the specification. The POC LDP Ontology ontology

extends POC Core Ontology with a vocabulary to exchange data between POC Ap-

plications and POC Clients.

We introduce, POC Core Ontology, which is an ontology to specify Purposeful

Online Community communities (POC Specifications). POC Core Ontology is specified

with OWL 2 [7, 8]. POC Applications provide endpoints that advertise their data

according to a given POC Specification. Data is advertised consistent with Linked

Data standards [38]. POC Clients consume data served by POC Applications.

The remainder of this chapter focuses on the specification of a Purposeful Online

Community and the corresponding POC Core Ontology concepts and relations.

3.1. POC Core Ontology

POC Core Ontology is an OWL 2 ontology that specifies a conceptual model

for POCs. POC Core Ontology is identified by the namespace URI http://www.

cmpe.boun.edu.tr/soslab/ontologies/poc/core#. The namespace prefix poc is

used throughout this thesis to refer to this namespace.

The design of the POC Core Ontology adheres to the recommendations and

standard practices provided by W3C. Existing ontologies (or vocabularies) have been

15

utilized in POC Core Ontology. Dublin Core Vocabulary (DCTERMS) [42, 43] is

used for representing generic meta-data, Semantically-Interlinked Online Communities

(SIOC) [44, 45] for concepts related to online communities, and Ontology for Media

Resources [46] for media resources. Also, XSD datatypes [47] is utilized with the data-

type derivation mechanism supported by OWL 2.

The fundamental classes in POC Core Ontology and their relations are shown in

Figure 3.2. In this figure, circular nodes represent classes. Classes that are external to

POC Core Ontology are labeled as “external”. Edges are used to represent the domain

and range of properties. Dotted edges represent assertions. The POCConcept is the

root class in the ontology, thus, all other classes in the poc namespace is a subclass of

POCConcept .

3.1.1. Representation of the Community Members and Their Roles

Members of a POC Application community are represented with UserAccounts.

All the activities of a community member through the application are associated with

their account. In other words, it represents their identity.

Members of a POC may possess various authorities according to the the practices

of a community. Roles define such authorities, which can be assigned to members.

A user may have zero or more Roles granted by the community. This assignment

of a Role to a UserAccount is represented with the has_function property of SIOC

(sioc:has_function).

3.1.2. Representation of the Community Datatypes

Community data types consist of literal, primitive, and community-defined data

types. XSD datatypes [47] represent literal types, such as integer, string, and date. This

approach is common practice when specifying OWL 2 ontologies. Community specific

datatypes are represented with Datatypes, which has two subclasses: PrimitiveDatatype

and DerivedDatatype.

16

Figure 3.2. A visualization of the fundamental classes, properties and assertions in

POC Core Ontology.

17

PrimitiveDatatypes represent the basic, non-literal datatypes that are commonly

manipulated by POCs. ListType is a PrimitiveDatatype for lists. MediaType is a sub-

class of PrimitiveDatatype, representing the types for the Audiovisual media resources.

ImageType, AudioTrack and VideoTrack are PrimitiveDatatypes representing types for

images, audiotracks and videotracks.

OWL 2 [8] supports a mechanishm to derive new restricted datatypes from the

existing literals, e.g. a string with a maximum length of 144 characters. This, however,

does not give us enough expressivity to define all custom types that would be needed

by individual POCs. UserDefinedDatatypes represent community-specific types for the

data resources utilized within a POC. UserDefinedDatatype class has two subclasses;

namely, DerivedDatatype and CompositeDatatype.

DerivedDatatypes are constrained derivations from other Datatypes, e.g. an Im-

ageType for images that are not allowed to have a frame height larger than 800 pixels.

A DerivedDatatype has one or more baseDatatypes, which are the Datatypes that the

database derivation is based on. The baseDatatype of a DerivedDatatype can be a

PrimitiveDatatype or another DerivedDatatype. The properties that can be used to

define restrictions on DerivedDatatypes are represented in Table 3.1.

An example DerivedDatatype representation is depicted in Figure 3.3. It defines a

DerivedDatatype based on ImageType, which restricts its instances to have a maximum

frame width and height of 200 pixels, and a minimum file size of 100 kilobytes.

CompositeDatatypes are UserDefinedDatatypes representing types for data re-

sources consisting of one or more named fields of various types. A CompositeDatatype

has one or more dataFields, which are DataFields. A DataField has a string label , a

fieldType, and zero or one sourceService. It also has an optional boolean flag, isRe-

quired . If isRequired flag of a CompositeDatatype is true, its instances must contain a

value corresponding to the DataField . If isRequired flag is false or missing, the values

for the DataField can be left blank. A DataField is uniquely identified with its label

among the dataFields of a CompositeDatatype. fieldType of a DataField specifies what

18

Table 3.1. Derivation properties for DerivedDatatypes.

Name Range Description

maxFrameWidth xsd:integer The maximum frame width in pixels for Derived-

Datatypes based on ImageType and AudioType.

minFrameWidth xsd:integer The minimum frame width in pixels for Derived-

Datatypes based on ImageType and AudioType.

maxFrameHeight xsd:integer The maximum frame height in pixels for Derived-

Datatypes based on ImageType and AudioType.

minFrameHeight xsd:integer The minimum frame height in pixels for Derived-

Datatypes based on ImageType and AudioType.

maxTrackLength xsd:integer The maximum file size in kilobytes for Derived-

Datatypes based on MediaTypes.

maxTrackLength xsd:integer The maximum file size in kilobytes for Derived-

Datatypes based on MediaTypes.

maxFileSize xsd:integer The maximum file size for DerivedDatatypes based

on MediaTypes.

minFileSize xsd:integer The maximum file size for DerivedDatatypes based

on MediaTypes.

scaleWidth xsd:integer The target frame width in pixels for resources of

DerivedDatatypes based on ImageType to be scaled

before their storage.

scaleHeight xsd:integer The target frame height in pixels for resources of

DerivedDatatypes based on ImageType to be scaled

before their storage.

maxSize xsd:integer The maximum size for DerivedDatatypes based on

ListType.

19

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.

<http://example.org/SmallImageType> a poc:DerivedDatatype;

poc:baseDatatype poc:ImageType;

poc:maxFrameWidth 200;

poc:maxFrameHeigth 200;

poc:minFileSize 100.

Figure 3.3. A DerivedDatatype based on ImageType represented in Turtle.

kind of data is allowed for the DataField . It is typically a XSD datatype or a Datatype,

yet can be any other type that can be identified with a URI. Values for a DataField

can be expected to be retrieved from an external Linked Dataset. Endpoint of such a

datasets is identified by the sourceService of a DataField . Figure 3.4 demonstrates an

example CompositeDatatype. It defines a CompositeDatatype with a label "Haircut",

which has four dataFields. The first DataField has "Name" as its label and a field-

Type of string. This DataField is specified to be required, indicating that it does not

allow blank values. The second DataField has "Cost" as its label , and a fieldType

of decimal. The third DataField has "Difficulty" as its label , and a fieldType of a

datatype derived from integer, restricted to be greater than or equal to 0 and less than

or equal to 10. The forth DataField has "Photo" as its label , and a fieldType of the

DerivedDatatype we defined in Figure 3.3.

In addition to the mentioned types, POC Core Ontology introduce three special

literal types: Expression, ViewTemplate and View . These literal types are derived

from string of XML Schema Definition Language [47], with the datatype derivation

mechanism supported by OWL 2 Web Ontology Language [8]. POC Core Ontology

does not impose any further meaning on these literal types, and their utilization in

POC Model will be discussed in Section 3.4.8.

20

<http://example.org/Haircut> a poc:CompositeDatatype;

rdfs:label "Haircut";

poc:dataField

[a poc:DataField;

rdfs:label "Name";

dcterms:description "Name of the haircut."@en;

poc:isRequired true;

poc:fieldType xsd:string

], [a poc:DataField;

rdfs:label "Cost";

dcterms:description "Recommended cost of the haircut in USD."@en;

poc:fieldType xsd:decimal

], [a poc:DataField;

rdfs:label "Difficulty";

dcterms:description "A rating (0-10) indicating the difficulty to

perform the haircut."@en;

poc:fieldType [rdf:type rdfs:Datatype ;

owl:onDatatype xsd:integer ;

owl:withRestrictions ([xsd:minInclusive 0] [xsd:maxInclusive

10])

] .

], [a poc:DataField;

rdfs:label "Photo";

poc:fieldType <http://example.org/SmallImage>

].

Figure 3.4. An example CompositeDatatype with four dataFields with various types,

represented in Turtle.

21

3.1.3. Representation of the Community-Specific Processes

POCs have diverse purposes and their own ways to reach their goals. Applica-

tions that target specific POCs should, thereby, have the capability to perform custom

processes utilized by each community. Such processes often involve multiple steps, to

be performed by different members of the community or by the application itself, auto-

matically. Representation of such community-specific processes are the essence of our

conceptualizations of POCs.

Workflows represent community-specific processes, which are pipelines composed

of one or more basic operations. A Workflow encapsulates one or more interdependent

steps and zero or more pipes.

Each step of aWorkflow is a Step. A Step represents an invocation of a predefined

operation within a Workflow , which can be executed autonomously or manually by a

community member. A Step has a task , zero or one viewTemplate, zero or more

inputPorts and zero or more outputPorts. The inputPorts and outputPorts of a Step

are Ports. A Port is a data handle that is used to transfer data from or to a Step.

Each Port of a Step is uniquely identified with its label among its inputPorts and

outputPorts. The task of a Step identifies what kind of operation is involved by the

Step. For the sake of clarity, we will discuss other components of Workflows before

Tasks. The viewTemplate of a Step is a ViewTemplate, representing the information

to be displayed to the users who enact the Step. Figure 3.5 depicts a Step identified as

S0, with two inputPorts and an outputPort . The first inputPort of S0 has "input0"

as its label , and the second has "input1". The outputPort of S0 has "output0" as its

label .

Pipes represent data and control dependencies of Steps. They are typically used

to specify how Steps are related to one another in a Workflow . There are four types

of Pipes to represent the nature of the dependency: PortPipe, DirectPipe, HumanPipe

and ControlPipe.

22

Figure 3.5. An illustration of a Step with two inputPorts and an outputPort . The

large rectengle represents the Step. Small diamond and the circle labeled V represent

a viewTemplate. Small pentagons represent inputPorts and outputPorts of the Step.

The text on each pentagon represent the label of the Port .

PortPipes represent the data flow between Steps. A PortPipe is used to transmit

the outputs of a Step to another. Each PortPipe has a sourceStep, a sourcePort , a tar-

getStep and a targetPort . The sourcePort identifies which outputPort of the sourceStep

is the source of the data binding; and, the targetPort identifies which inputPort of the

targetStep is the target of the data binding. Figure 3.6 depicts a Workflow with two

Steps; S0 and S1, and a PortPipe. S0 has an outputPort labeld "output". S1 has an

inputPort labeld "input". The depicted PortPipe has S0 as its sourceStep, "output"

as its sourcePort , S1 as its targetPort and "input" as its targetPort .

Figure 3.6. An illustration of a Workflow with two Steps and a PortPipe. The

PortPipe is represented with a connecting line between the two Ports.

DirectPipes are used to insert values directly to Steps. Each DirectPipe has

a targetStep, targetPort , and a sourceValue. sourceValue represents the data to be

23

inserted, which can be a literal value or a DataInstance. targetPort specifies which

inputPort of targetStep will be bound with the data. Figure 3.7 depicts a Workflow

with a single Step, S0, and a DirectPipe. S0 has a single inputPort , labeld "input".

The DirectPipe has S0 as its targetStep, "input" as its targetPort , and "value" as its

sourceValue.

Figure 3.7. An illustration of a Workflow with a single Step and a DirectPipe. The

DirectPipe is represented with an ellipse and a connecting line between the ellipse

and the Port . The text inside the ellipse is the sourceValue of the DirectPipe.

HumanPipes represent manual data entries by the users to the Steps. A Human-

Pipe has a targetStep, a targetPort . targetPort of a HumanPipe identifies the inputPort

of targetStep that the input from users is intended for. Figure 3.8 depicts a Workflow

with a single Step, S0, and a HumanPipe. The HumanPipe has S0 as its targetStep

and "input" as its targetPort .

Figure 3.8. An illustration of a Workflow with a single Step and a HumanPipe. The

HumanPipe is represented with a stick figure and a connecting line between the stick

figure and the Port .

ControlPipes represent the control dependencies between Steps with no data flow.

Each ControlPipe has a targetStep and a sourceStep, which are two distinct Steps of a

24

Workflow . The targetStep of a ControlPipe cannot be executed before the sourceStep

is successfully completed. Figure 3.9 depicts a Workflow with two Steps; S0 and S1,

and a ControlPipe. The ControlPipe has S0 as its sourceStep and S1 as its targetStep.

Figure 3.9. An illustration of a Workflow with two Steps and a ControlPipe. The

ControlPipe is represented with an arrow between the Steps.

ConditionalPipes are ControlPipes that represent control dependencies between

Steps that determined by the value of a certain output. Each ConditionalPipe has a

sourcePort , which identifies which outputPort of its sourceStep determines the control

flow. There are two types of ConditionalPipes: TruePipe and FalsePipe. A TruePipe

represents a control flow that is only enacted if the sourcePort evaluates true. Similarly,

a FalsePipe represents a control flow that is only enacted if the sourcePort evaluates

false. Figure 3.10 depicts a Workflow with three Steps; S0, S1 and S2, a TruePipe and

a FalsePipe. The TruePipe has S0 as its sourceStep, "output" as its sourcePort and S1

as its targetStep. The FalsePipe has S0 as its sourceStep, "output" as its sourcePort

and S2 as its targetStep.

Tasks are predefined simple operations to be performed within Workflows Any,

complex or simple, process to be performed within a POC involves the enacment of one

or more Tasks. Tasks are invoked by Steps of a Workflow , with the values provided

for the inputPorts of a Step. Similar to the Steps that invoke them, each Task has

zero or more inputPorts and zero or more outputPorts. Tasks resemble functions in

a functional programming environment, since Steps, like function calls, invoke them

with a set of inputs and pass its outputs to the next Step, or function call. However,

this analogy is not perfect, as the data being passed to Tasks is mutable, and can be

manipulated by the Task . We introduce a set of predefined Tasks, details of which are

25

represented in Table 3.2. Implementations of POC Model can extend this predefined

set in order to facilitate more complex use cases.

3.1.4. Representation of Instances

Various POCConcepts that are discussed above can have multiple enactment,

or instances, within a POC. For instance, there can be multiple resources that are

instances of the same DerivedDatatype, or a Workflow can be enacted multiple times.

Such instances are represented with Instance class in POC Core Ontology. creator and

created properties of DCTERMS are exploited for identifying the UserAccounts that

have caused the creation of Instances and the time of their creation. Instance class has

three subclasses; namely DataInstance, WorkflowInstance and StepInstance.

Literal values, such as numbers, strings, dates, are represented through XSD

datatypes [47] in POC Core Ontology. More complex data resources are represented

with DataInstances. Each DataInstance has a datatype, representing the Datatype that

it actualize. There are five subclasses of DataInstance class; namely List , Location,

MediaResource and CompositeDataInstance.

A List represents a list of arbitrary items, which can be any literal value or uri.

A List has items , which identifes an RDF List that keeps the items. Figure 3.11

illustrates an example List representation. The List has a label of “My list of things”, a

UserAccount as its creator , and specified to be created at a specific time. It has three

items, all having different types.

MediaResource represents audiovisual data resources. There are three subclasses

of MediaResource; namely Image, VideoTrack and AudioTrack . A MediaResource has

a datatype that is either a MediaType or a DerivedDatatype that has a MediaType as an

ancestor. locator property in Ontology for Media Resources [46] is utilized to identify

the URL for the MediaResources. Figure 3.12 demonstrates an example Image whose

datatype is the DerivedDatatype represented in Figure 3.3.

26

Figure 3.10. An illustration of a Workflow with three Steps and two

ConditionalPipes. The ConditionalPipes are represented with labeled arrows.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.

<http://example.org/myList> a poc:List;

dcterms:created "2015-12-03T23:48:20Z"^^xsd:dateTime;

dcterms:creator <http://example.org/myUserAccount>;

dcterms:title "My list of things"@en;

poc:items (1 "two" <http://example.org/dummyURI>).

Figure 3.11. An example List with three items of different types, serialized in Turtle.

<http://example.org/mySmallImage> a poc:Image;

poc:datatype <http://example.org/SmallImageType>;

ma:locator "http://example.org/anImageURL.jpg"^^xsd:anyURI.

Figure 3.12. An example Image, represented in Turtle.

Table 3.2: Predefined Tasks.

Name Inputs Outputs Description

Create “object”,

“datatype”

“result” Creates a DataInstance and outputs it with the “result” port. The “object” port identifies

the DataInstance whose value is copied into the created one. The “datatype” port identifies

the expected Datatype for the “object” port.

Modify “object”,

“value”,

“property”,

“dataField”

“result” Modifies the DataInstance identified by the “object” port, inserting the entity identified by

the “value” port to the DataInstance. Only one of the “dataField” and “property” ports

must be provided. If “dataField” port is present the DataInstance is interpreted to be a

CompositeDataInstance, and the value is inserted to it as a fieldValue whose label is identified

by the “dataField” port. Otherwise, the property identified by the “property” port is used to

insert the value. In either case, the existing values are replaced.

Save “object” - Saves the DataInstance identified by the “object” port, redeeming it referrable.

Delete “object” - Deletes the DataInstance identified by the “object” port, redeeming it non-referrable.

Random “max” “result” Generates a random number greater than or equal to zero and less than or equal to the

number identified by the “max” port. The generated number has the same literal type as

the one identified by the “max” port and is advertised by the “result” port.

Size “object” “result” Outputs the size of the List identified by the “object” port, with the “result” port.

Evaluate “object” “result” Computes the Expression identified with the “object” port, and outputs the result with the

“result” port.

Table 3.2: Predefined Tasks. (Cont.)

Name Inputs Outputs Description

Insert “object”,

“target”,

“index”

“result” Inserts an item identified by the “object” port to the List identified by the “target” port, and

outputs the resulting List with the “result” port. The “index” port expects an integer value

and identifies the position in the list for insertion. If no value is provided for the “index”

port, the item is appended to the end of the list.

Remove “object”,

“source”,

“index”

“result” Removes an item from the List identified by the “target” port, and outputs the resulting List

with the “result” port. The item is either identified directly by the “object” port or with its

index by the “index” port.

Get “source”,

“index”

“result” The “result” port is used to output the item having the index, identified by the “index” port,

in the List , identified with the “source” port.

Filter “object”,

“condition”

“result” Filters the list identified with the “object” port using the Expression identified with the

“condition” port, and outputs the resulting list with the “result” port. The Expression is

computed for each item of the list, replacing the @item parameter in the Expression. If it

computes false or null, the item is excluded.

Identity - - Does not manipulate anything, and is intended to be used for displaying messages to users.

29

A CompositeDataInstance is a DataInstance, datatype of which is a Composite-

Datatype. A CompositeDataInstance has zero or more fieldValues, representing value

mappings for the corresponding DataFields of its datatype. Figure 3.13 depicts a Com-

positeDataInstance, whose datatype is the CompositeDatatype we defiend in Figure

3.4. The illustrated CompositeDataInstance has "American haircut" for the "Name"

dataField , 3 for the "Difficulty" dataField , and the Image represented in Figure

3.12 for the "Photo" dataField . Note that, it does not specify a value for the "Cost"

dataField , which is allowed to be blank since it is not specified to be required.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

@prefix dcterms: <http://purl.org/dc/terms/>.

@prefix poc: <http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/core#>.

<http://example.org/myHaircut> a poc:CompositeDataInstance;

poc:fieldValue

[rdfs:label "Name";

poc:literalValue "American haircut"

],

[rdfs:label "Difficulty";

poc:literalValue 3

],

[rdfs:label "Photo";

poc:uriValue <http://example.org/mySmallImage>

].

Figure 3.13. An example CompositeDataInstance with three fieldValues, serialized in

Turtle.

WorkflowInstances are enactments of Workflows. Each WorkflowInstance has a

datatype, a status and one or more stepInstances. The datatype of a WorkflowInstance

is the Workflow that is enacted by it. The status of a WorkflowInstance is a string

value. The stepInstances of a Workflow are the enacments of its individual Steps.

30

A StepInstance is an enactment of a Step. Each StepInstance has a datatype, a

status , zero or one view , zero or more inputs and zero or more outputs. The view of

a StepInstance is a View . The status of a StepInstance is a string value. The inputs

and outputs of a StepInstance represent the individual values bound for each Port of

its datatype Step.

3.1.5. Representation of Constraints

Constraints represent restrictions on when and by whom certain actions can be

taken within a POC. Each Constraint is associated with a Workflow , a Step or a

DataInstance, by constraint property. A Constraint of a Workflow restraints the invo-

cation of the Workflow by the users. A Constraint of a Step restraints its performance

by the users. A Constraint of a DataInstance restraints its access by the users. A Con-

straint is either an AuthorizationalConstraint or a TimeConstraint . A TimeConstraint

is a restriction on when a certain action is performable. It either enforces a specific

time interval or a lifetime for the availability of its target. AuthorizationalConstraints

are restrictions on who can perform certain actions. An AuthorizationalConstraint can

have zero or more allowedRoles and zero or more allowIf s. An allowedRole is a Role,

possesors of which are allowed by the Constraint to perform the restrained action. An

allowIf is an Expression that needs to evaluate true for the allowance of the restrained

action. A Constraint is deemed as “allowing” if one of its allowedRoles or allowIf s

allows the action. However, all the Constraints associated with an action needs to be

“allowing” for it to be allowed.

3.2. POC LDP Ontology

In this section, we discuss POC LDP Ontology, which is a lightweight exten-

sion of POC Core Ontology that provides a vocabulary for the data interchange

between POC Applications and POC Clients. POC LDP Ontology is identified by

the namespace URI http://www.cmpe.boun.edu.tr/soslab/ontologies/poc/ldp#.

The namespace prefix poc-ldp will be used for this namespace in this document.

31

Figure 3.14 depicts all the entities defined in POC LDP Ontology. Circle nodes

represent OWL 2 classes. The classes that do not belong to poc-ldp namespace are

labeled as “external”. Dotted edges represent the assertions in the ontology. Filled

edges represent the domain and range constraints for the properties. POCConcept and

WorkflowInstance belong to poc namespace. Container represents an LDP Container

[38].

Figure 3.14. A visualization of the classes, properties and assertions in POC LDP

Ontology.

An Endpoint represents the endpoint of a POC Application, which advertise all

information regarding the POC Application. The dataInstances property identifies

a Container that encapsulates the available DataInstances. The userAccounts prop-

erty identifies a Container that encapsulates the available UserAccounts. The work-

flows property identifies a Container that encapsulates the available Workflows. The

datatypes property identifies a Container that encapsulates the available Datatypes.

32

The instances property is used to identify a Container that encapsulates the

instances of instantiatable entities, such as Datatypes, Workflows and Steps. For in-

stance, a WorkflowInstance whose datatype is a specific Workflow , would be embodied

by a Container that is the instances of that Workflow .

The stepInstances property identifies a Container that encapsulates the stepIn-

stances of a WorkflowInstance.

3.3. Specification of POC Applications

In this section, we discuss the process of specification for applications to be gen-

erated.

Initialization of a POC Application requires a specification of its composing el-

ements. The specification process for POC Applications is depicted in Figure 3.15.

In the specification process, a description for a POC Application is captured from a

Community Builder, and accumulated into a POC Specification.

Figure 3.15. An overview of specification process for POC Applications.

POC Model does not provide exact details of how these specificaitons are cap-

tured from human users, but identifies the following requirements for the specification

33

process.

(i) People who know the specific needs of individual communities do not necessarily

have the technical skills to build applicaitons addressing those needs. The speci-

fication process should, therefore, involve an easy-to-use interface, enabling those

people to express the features they desire in the applications without manipulat-

ing complex source code.

(ii) The specification process must produce a POC Specification, which reflects the

input captured from the Community Builder, and complies with POC Core On-

tology.

(iii) The specification process must allow the import of external ontologies, which

may contain entities that are useful for the representation of community data

resources.

(iv) The specification process should provide means for the reuse of structures defined

in other POC Specifications, which may be accessible on the Web, or introduced

directly by the Community Builder.

(v) There is a substantial amount of Linked Data [9] accessible on the Web, covering

a variety of knowledge domains. Such Linked Data could be useful for POCs, if

they have the means to access and utilize it properly. Such data is advertised

by open data sets, and available for any type of application. The specification

process must allow the Community Builders to introduce Linked Data sets, data

from which will be referred by the generated POC Application.

A POC Specification is an explicit specification of the initial configuration of a

POC Application. These documents are RDF documents structured in according to

POC Core Ontology. A POC Specification typically contain a instances of UserDefined-

Datatypes, DataInstances, Roles, Workflows and Constraints for the POC Application

to be constructed. The instances defined within a POC Specification are typically rep-

resented with Blank nodes [24] in the process of specification. The rationale behind

this will be discussed in Section 3.4.

34

In the remainder of this section, we introduce a community of bird watchers,

referred as CBirders, and demonstrate how a POC Application serving this community

can be defined within a POC Specification.

CBirders is a community that aims to build a catalog of the observations they have

made of the birds they encountered in the wild. They would like to document their

observations with a photograph they have taken, the location where the photograph

was taken, the type of the bird in the photograph, and a descriptive title for their

observation.

Here, we demonstrate how a POC Application addressing the needs of CBirders

can be represented by a POC Specification, referred as SpecBirders. Note that, there can

be many acceptable ways to construct an application for a POC. Here, we are putting

ourselves in the shoes of a Community Builder, and building a POC Application that

we consider to be reasonable for this community.

There are two Roles defined in SpecBirders; namely, BirdWatcher and BirdExpert .

The representation of these Roles in SpecBirders is demonstrated in Figure 3.16. Bird-

Watchers are ordinary members of CBirders, who can share their observations with the

other members. BirdExperts are members who have a trusted expertise to identify the

birds shared by the other members.

_:Observer a poc:Role;

rdfs:label "Observer"@en.

_:BirdExpert a poc:Role;

rdfs:label "Bird Expert"@en.

Figure 3.16. The Roles in SpecBirders, serialized in Turtle.

SpecBirders contains a single UserDefinedDatatype, which is a CompositeDatatype

representing the observations of the community members. Figure 3.17 demonstrates

35

the repsentation of the datatype, which we refer as Observation. Observation has

"Observation" as its label , and the following four dataFields that are enumarated by

their labels.

• "Title": This DataField represents the descriptive titles provided for the obser-

vations. Its fieldType is string.

• "Photograph": This dataField represents the photographs the observers have

taken of the birds. It has a fieldType of ImageType.

• "Place": This DataField represents the location that the photogragh was taken.

We want the location data to be retrieved from an open Linked Dataset, so

that the geospacial relations of an Observation with another Observation, or

even other external resources, can be identified with well-defined meaning. This

DataField has a fieldType of Feature. Feature is a class defined in Geonames

Ontology [48] that represents any geospacial entity; such as cities, countries,

forests, oceans etc. This DataField has a sourceService identifying a web service

where the data for this field will be retrieved from. This service is identified

to conform the SPARQL-QUERY protocol, and to be accessible through the

endpoint http://factforge.net/sparql.

• "Bird Type": This DataField represents the type of the observed bird. Unlike

the other DataFields, it is not specified to be required, indicating that it can

be left blank. It has a fieldType of Bird , which is an entity defined in UMBEL

Reference Concept Ontology [37]. This DataField has a sourceService identifying

a web service where the data for this field will be retrieved from. This service is

identified to conform the SPARQL-QUERY protocol, and to be accessible through

the HTTP endpoint http://dbpedia.org/sparql.

The only DataInstance defined in SpecBirders is ObservationList . ObservationList

is a List that contains the Observations that are provided by the members. Represen-

tation of ObservationList in SpecBirders is depicted in Figure 3.18.

36

_:Observation a poc:CompositeDatatype;

rdfs:label "Observation"@en;

poc:dataField

[rdfs:label "Title"@en;

poc:isRequired true;

poc:fieldType xsd:string

],

[rdfs:label "Bird Type"@en;

poc:fieldType umbel-rc:Bird;

poc:sourceService

[sioc-services:service_protocol "SPARQL-QUERY";

sioc-services:service_endpoint <http://dbpedia.org/sparql>

]

],

[rdfs:label "Place"@en;

poc:isRequired true;

poc:fieldType gn:Feature;

poc:sourceService [

sioc-services:service_protocol "SPARQL-QUERY";

sioc-services:service_endpoint <http://factforge.net/sparql>

]

],

[rdfs:label "Photograph"@en;

poc:isRequired true;

poc:fieldType poc:ImageType

].

Figure 3.17. Observation serialized in Turtle.

37

_:ObservationList a poc:List;

rdfs:label "ObservationList"@en;

dcterms:title "Observations"@en;

dcterms:description "This is a list of all the bird observations we

have gathered so far."@en.

Figure 3.18. The representation of ObservationList , serialized in Turtle.

SpecBirders contains two Workflows; namely, ObservationEntry and BirdTypeEd-

iting . ObservationEntry is a Workflow that represents the operation of entering Obser-

vations. Its definition in SpecBirders is depicted in Figure 3.20. Figure 3.19 illustrates

ObservationEntry . It involves the entry of an Observation by a community member,

and its appending to ObservationList . ObservationEntry has a constraint , which is an

AuthorizationalConstraint whose allowedRole is BirdWatcher . This Constraint speci-

fies that it is invokable only by BirdWatchers.

Figure 3.19. A representation of ObservationEntry .

BirdTypeEditing is a Workflow that represents the modification that BirdExperts

can perform on Observations. Its definition in SpecBirders is depicted in Figure 3.22.

Figure 3.21 illustrates BirdTypeEditing . BirdTypeEditing enables BirdExperts to spec-

ify the bird types that are missing in Observations, or correct the bird types specified

wrongly by BirdWatchers. It has a constraint , which is an AuthorizationalConstraint

whose allowedRole is BirdExpert . This Constraint specifies that it is invokable only by

BirdExperts.

38

_:ObservationEntry a poc:Workflow;

rdfs:label "Observation Entry"@en;

poc:constraint [poc:allowedRole _:BirdWatcher];

poc:step _:S0, _:S1;

poc:pipe [a poc:HumanPipe; poc:targetStep _:S0; poc:targetPort

"object"],

[a poc:DirectPipe; poc:targetStep _:S0; poc:targetPort

"datatype"; poc:sourceValue _:Observation],

[a poc:PortPipe; poc:sourceStep _:S0 ; poc:sourcePort "result";

poc:targetStep _:S1 ; poc:targetPort "object"],

[a poc:DirectPipe; poc:targetStep _:S1 ; poc:targetPort "target";

poc:sourceValue _:ObservationList].

_:S0 a poc:Step;

poc:task poc:Create;

poc:viewTemplate "<p>Please submit an

observation.</p>"^^poc:ViewTemplate;

poc:inputPort [rdfs:label "object"],

[rdfs:label "datatype"];

poc:outputPort [rdfs:label "result"].

_:S1 a poc:Step;

poc:task poc:Insert;

poc:inputPort [rdfs:label "object"],

[rdfs:label "target"];

poc:outputPort [rdfs:label "result"].

Figure 3.20. ObservationEntry , serialized in Turtle.

39

Figure 3.21. A representation of BirdTypeEditing .

_:BirdTypeEditing a poc:Workflow;

rdfs:label "Bird Type Editing"@en;

poc:constraint [poc:allowedRole _:BirdExpert].

poc:step _:S3;

poc:pipe [a poc:HumanPipe; poc:targetStep _:S3; poc:targetPort

"object"],

[a poc:HumanPipe; poc:targetStep _:S3; poc:targetPort "value"],

[a poc:DirectPipe; poc:targetStep _:S3; poc:targetPort

"dataField", poc:sourceValue "Bird Type"@en],

_:S3 a poc:Step;

poc:task poc:Modify;

poc:viewTemplate "<p>Please select a bird type for this

observation.</p>"^^poc:ViewTemplate;

poc:inputPort [rdfs:label "object"], [rdfs:label "value"], [

rdfs:label "dataField"].

Figure 3.22. A representation of BirdTypeEditing in SpecBirders, serialized in Turtle.

40

3.4. Execution of POC Applications

In this section, we discuss the execution process in POC Model for applications

that actualize POC Specifications, which are called POC Applications. First, we give

an overview of the execution process for POC Applications. Then, we provide a list of

requirements we identified for POC Applications. Lastly, we discuss the architecture

and execution behaviour of POC Applications.

An overview of the execution process in POC Model is depicted in Figure 3.23.

The execution process involves the initialization of a POC Application that conforms

a POC Specification, and its communication with the members of a POC who may

use various client applications. Initialization of a POC Application and its runtime

behaviour is depended on the semantics defined within POC Core Ontology. The com-

munication of a POC Application with its users is structured by POC LDP Ontology,

which is an extention of POC Core Ontology.

Figure 3.23. An overview of the execution process in POC Model.

We identify the following requirements for a POC Application.

(i) A user shall be able to join the associated POC through the system.

(ii) A user shall be able to view the community data resources.

41

• The system shall only allow access to a data resource if the requesting user

satisfies the authorizational constraints associated with the data resource.

• The system shall only allow access to a data resource if the time constraints

associated with the data resource are satisfied.

(iii) A user shall be able to view and invoke workflows.

• The system shall only allow access and invocation of a workflow if the re-

questing user satisfies the authorizational constraints associated with the

workflow.

• The system shall only allow access and invocation of a workflow if the time

constraints associated with the workflow are satisfied.

(iv) The user shall be able to view the status of the workflow instances that s/he

invoked.

(v) A user shall be able to view and perform tasks.

• The system shall only allow access and performance of a task if the requesting

user satisfies the authorizational constraints associated with the task.

• The system shall only allow access and performance of a task if the time

constraints associated with the task are satisfied.

• The system shall allow access and performance of a task only if all of its

control and data dependencies are satisfied.

• The system shall present the data utilized within the task.

• The system shall provide instructions on how to perform the task.

• The system shall provide means for the entry of the data requried for the

execution of the task.

(vi) The user shall be able to view the information of a task that s/he previously

performed.

(vii) The system shall handle the execution of the tasks.

• The system shall execute the tasks that do not depend on human input

automatically when their control and data dependencies are satisfied.

In the remainder of this section, we discuss the architectural design and execution

details of POC Applications, and discuss how they address the listed requirements.

42

POC Applications follow the client-server architectural design pattern, which

entails a separation of the server-side concerns, such as persistence or business logic,

and the client-side concerns, such as the user interface. The server-side component of a

POC Application is called a POC Server. A client-side applicaiton that interacts with

a POC Server is called a POC Client.

POC Applications have a stateless architecture. This indicates that a POC Server

must be able to interpret any request properly without the information of previous

requests. POC Model does not assert specific authentication and authorization mecha-

nisms, however, any implemented mechanism must not interfere with the statelessness.

This necessitates POC Clients to keep track of the session state.

The communication between POC Servers and POC Clients conform Linked Data

Platform 1.0 (LDP) Specification [38], where POC Servers are LDP Servers and POC

Clients are LDP Clients. A POC Server and the resources it advertise are identified

by dereferenceable HTTP URIs, and represented as RDF data, structured with POC

Core Ontology and POC LDP Ontology.

The remaining discussion of POC Applications in this section include demon-

strative interchanges between POC Servers and POC Clients, for an example POC

Application that we will refer as AppBirders. AppBirders conforms SpecBirders, which is

the POC Specification discussed in the previous section. The POC Server of AppBirders

is assumed to be identified by the URI http://example.org/birders. For the sake of

brevity, the HTTP headers interchanged through the following HTTP transactions are

mostly omitted, unless they play an important role for the model. Also, for readabil-

ity, all the provided examples interchange RDF data only in Turtle. Although, POC

Servers must also support JSON-LD, as required by LDP.

3.4.1. Initialization of a POC Server

Initizalization of a POC Server typically involves the setup of a database en-

vironment to satisfy the persistence needs of the POC Application, a web server to

43

communicate with the clients, and any other ancillary construct, such as a load bal-

ancer or a cache store. POC Model does not assert constraints on the inner architecture

of the POC Servers, nonetheless, it specifies their communication with their clients.

As a POC Server is initialized, it generates and assigns a URI to each community-

specific element that is identified by a blank node in the POC Specification, such

as workflows, steps, datatypes, roles, data instances. Such URIs are needed for the

unambiguous identification of the community elements by POC Clients. POC Model

does not impose a specific rule on the structure of the generated URIs, yet, it is

advisable to implement a URI generation mechanism that produce human-readable

URIs. The subsequent discussion on the execution model includes examples on such

URIs.

3.4.2. Retrieval of a POC Server’s Representation

When dereferenced through its URI, a POC Server guides the client on where to

find the available resources within the application. Such resources include the com-

munity workflows, datatypes, data instances and user accounts if they exist. A POC

Server may advertise additional properties along with the mentioned elements. Figure

3.24 depicts an HTTP request for retrieving a representation of the POC Server of

AppBirders.

GET /birders HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.24. An HTTP request message for dereferencing the POC Server of

AppBirders.

The corresponding HTTP response is demonstrated by Figure 3.25. The response

message indicates that the requested resource is a POC Server, and identifies the URIs

44

of four LDP Basic Containers that instore various types of community resources. A

container of the available community workflows is identified via poc-ldp:workflows . A

container of the available data resources is identified via poc-ldp:dataInstances . A

container of the community datatypes is identified via poc-ldp:datatypes . A container

of the user accounts of the community members is identified via poc-ldp:userAccounts .

A POC Client may navigate through the provided URIs automatically, or expect input

from its user before submitting any additional requests.

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<http://example.org/birders> a poc-ldp:POC_Server;

poc-ldp:dataInstances <http://example.org/birders/data_instances/>;

poc-ldp:datatypes <http://example.org/birders/datatypes/>;

poc-ldp:workflows <http://example.org/birders/workflows/> .

Figure 3.25. An HTTP response message advertising the POC Server of AppBirders.

3.4.3. Retrieval of the Community Datatypes

A POC Server advertise the custom datatypes that structure the community re-

sources as elements of an LDP Basic Container. The URI of this container is identified

with poc-ldp:datatypes property in the representation of a POC Server, as demon-

strated in Section 3.4.2. An HTTP request message for the retrieval of the community

datatypes for AppBirders is demonstrated by Figure 3.26. The corresponding HTTP re-

sponse from the POC Server is depicted by Figure 3.27. The response message indicates

that the requested resource is an LDP Basic Container, with a single element that is

identified by the relative URI <observation>. There may be other datatypes structur-

ing the data resources within AppBirders, however, this is the only community-specific

datatype.

45

GET /birders/datatypes/ HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.26. An HTTP request message for the retrieval of the community-specific

datatypes of AppBirders.

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <observation>.

<observation> a poc:CompositeDatatype;

rdfs:label "Observation"@en.

Figure 3.27. An HTTP response message advertising the community-specific

datatypes of AppBirders.

An HTTP request to retrieve the advertised datatype is depicted by Figure 3.28.

The corresponding HTTP response from the POC Server is demonstrated in

Figure 3.29. The returned data is nearly identical to the specification of Observation

depicted by Figure 3.17 in Section 3.3, the only difference being that it is now identified

by a URI, rather than a blank node.

In order to interpret the data resources advertised by a POC Server, a POC Client

may also need the information of the datatypes defined within POC Core Ontology or

46

GET /birders/datatypes/observation HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.28. An HTTP request message for the retrieval of a community-specific

Datatype.

other external sources. Such datatypes should be dereferencable through their URIs,

so that they can be retrieved by POC Clients automatically.

3.4.4. Retrieval and Invocation of the Community Workflows

A POC Server advertise the community workflows available for the user as the

elements of an LDP Basic Container, addressing the aforementioned Requirement iii

of POC Applications. The URI of this container is identified with poc-ldp:workflows

property in the representation of a POC Server, as demonstrated in Section 3.4.2.

An HTTP request message for the retrieval of the available workflows for a user of

AppBirders is given in Figure 3.30.

The corresponding HTTP response is demonstrated in Figure 3.31. The user who

initiates the depicted transaction is assumed to possess the role BirdWatcher and not

BirdExpert , and therefore has access only to ObservationEntry workflow. The relative

URIs in the response are based on the URI of the requested resource, i.e. <> repre-

sents <http://example.org/birders/workflows/> and <observation_entry> rep-

resents <http://example.org/birders/workflows/observation_entry>. The re-

sponse message indicates that the requested resource is an LDP Basic Container, with a

single element identified by the relative URI <observation_entry>. A representation

of this element as well is included in the response message. This element is identified

to be a workflow, and is labeled as "Observation Entry".

47

<> a poc:CompositeDatatype;

rdfs:label "Observation"@en;

poc:dataField

[rdfs:label "Title"@en;

poc:isRequired true;

poc:fieldType xsd:string

],

[rdfs:label "Bird Type"@en;

poc:fieldType umbel-rc:Bird;

poc:sourceService

[sioc-services:service_protocol "SPARQL-QUERY";

sioc-services:service_endpoint <http://dbpedia.org/sparql>

]

],

[rdfs:label "Place"@en;

poc:isRequired true;

poc:fieldType gn:Feature;

poc:sourceService [

sioc-services:service_protocol "SPARQL-QUERY";

sioc-services:service_endpoint <http://factforge.net/sparql>

]

],

[rdfs:label "Photograph"@en;

poc:isRequired true;

poc:fieldType poc:ImageType

].

Figure 3.29. An HTTP response message advertising a representation of a

community-specific Datatype.

48

GET /birders/workflows/ HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.30. An HTTP request message for the retrieval of the available workflows in

AppBirders.

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <observation_entry>.

<observation_entry> a poc:Workflow;

rdfs:label "Observation Entry"@en.

Figure 3.31. An HTTP response message for the retrieval of the available workflows

in AppBirders.

POC Servers are not required to return the representations of individual elements

along with the containers, however, they may do so in order to relieve the clients of

submitting additional requests for their retrieval. A POC Client may utilize HTTP

Prefer header [49] to cue POC Servers on the desired verbosity for the representation

of LDP Containers, as described by LDP [38]. If the representation of the workflow

were not included in the response message above, the requesting POC Client would

need to retrieve its representation via an additional request, as demonstrated in Figure

3.32.

49

GET /birders/workflows/observation_entry HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.32. An HTTP request message for the retrieval of ObservationEntry .

The corresponding HTTP response message is demonstrated in Figure 3.33. The

POC Server answers with an HTTP response message that includes POST as an allowed

HTTP method, implying that the user is allowed to perform a POST request against

the requested URI [40].

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: POST,GET,OPTIONS,HEAD

<> a poc:Workflow;

rdfs:label "Observation Entry"@en.

Figure 3.33. An HTTP response message advertising ObservationEntry .

A POST request against the URI of a workflow creates an instance of that work-

flow, or in other words, invokes the workflow. Figure 3.34 demonstrates an HTTP

request message for such an invocation of ObservationEntry .

The corresponding HTTP response message is demonstrated by Figure 3.35. The

POC Server responses with the HTTP status code 201, indicating that one or more

new resources were created as a result of the request [50]. The response message

includes a Location header, identifying the URI of the resource that has been created

as a result of the transaction. A representation of the created resource is included

in the message body. The advertised resourse is a WorkflowInstance whose datatype

50

POST /birders/workflows/observation_entry HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.34. An HTTP request message invoking ObservationEntry .

is ObservationEntry . The status of the WorkflowInstance is "ongoing", indicating

that it was invoked, but has not been completed yet. It advertises a single associated

StepInstance that is available for the requesting user, identified by the URI http:

//example.org/birders/step_instances/si0.

HTTP/1.1 201 Created

Location: http://example.org/birders/workflows/observation_entry/oe0

Content-Type: text/turtle

<> a poc:WorkflowInstance;

poc:datatype <http://example.org/workflows/observation_entry>;

poc:status "ongoing";

dcterms:created "2015-12-03T23:48:20Z"^^xsd:dateTime;

dcterms:creator <http://example.org/birders/user_accounts/ua0>;

poc-ldp:step_instances <#step_instances>.

<#step_instances> a ldp:BasicContainer;

ldp:contains <http://example.org/birders/step_instances/si0>.

Figure 3.35. HTTP response message for the invocation of ObservationEntry .

51

3.4.5. Retrieval and Performance of Step Instances

A POC Server advertise the StepInstances available for the user as elements of an

LDP Basic Container. The URI of this container is identified wtih poc-ldp:stepInstances

property in the representation of a POC Server, as demonstrated in Section 3.4.2.

The presented StepInstances may belong to a WorkflowInstance invoked by the user,

or others. An HTTP request for retrieving the StepInstances available for a user of

AppBirders is demonstrated by Figure 3.36.

GET /birders/step_instances/ HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.36. An example HTTP request message for retrieving the StepInstances

available for a user of AppBirders.

The corresponding HTTP response message is demonstrated by Figure 3.35. The

response message states that the requested resource is an LDP Basic Container, with

three elements identified by the relative URIs <si0>, <si1> and <si2>.

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <si0>, <si1>, <si2>.

Figure 3.37. An example HTTP response message advertising the StepInstances

available for a user of AppBirders.

52

An HTTP request message for retrieving one of the identified StepInstances is

depicted in Figure 3.38. We will refer to this StepInstance as SI0.

GET /birders/step_instances/si0 HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.38. An HTTP request retrieving a representation of SI0.

The corresponding HTTP response message is demonstrated by Figure 3.39. The

response message includes PATCH as an allowed HTTP method, indicating that the

requester is allowed to perform a PATCH request against the requested URI [40]. A

representation SI0 is provided by the response message. The status of SI0 is "ready",

indicating that it is available for the user to perform. SI0 has a view to be displayed to

the user by the client. The Step that is the datatype of SI0 is identified, which we will

refer to as S0. A representation of S0 is also included in the response. S0 has Create

as its task . S0 has two inputPorts labeled as "datatype" and "object", informing the

client on the inputs required for performing SI0. SI0 has an input labeled "datatype"

with Observation as its value. This indicates that the value for the corresponding

InputPort of S0, which is labeled as "datatype", is given to be Observation, and

that the the value for the other InputPort , which is labeled as "object", should be

provided by the client for the execution of SI0. Observation is a CompositeDatatype

defined within SpecBirders. The specification of Observation is provided by Figure 3.17

in Section 3.3, and its retrieval by a POC Client is demonstrated by Figure 3.28 and

3.29 in Section 3.4.3.

A POC Client that has retrieved a representation of a StepInstance with "ready"

status must prompt the user with a Web form to capture the data required for the

execution of the StepInstance. Such a Web form needs to be structured in according

to the types of expected input types, and may need to fetch data from external data

sources and display them to the user as candidate input values. Such information

53

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: PATCH,GET,OPTIONS,HEAD

<> a poc:StepInstance;

poc:datatype

<http://example.org/birders/workflows/observation_entry/steps/s0>;

dcterms:created "2015-12-03T23:48:20Z"^^xsd:dateTime;

dcterms:creator <http://example.org//user_accounts/ua0>;

poc:status "ready";

poc:view "<p>Please submit an observation.</p>";

poc:input [rdfs:label "datatype";

poc:value <http://example.org/birders/datatypes/observation>].

<http://example.org/birders/workflows/observation_entry/steps/s0> a

poc:Step;

poc:task poc:Create;

poc:inputPort [rdfs:label "datatype"],

[rdfs:label "object"].

Figure 3.39. An HTTP response message advertising SI0.

is provided by the Step that is the datatype of the StepInstance and the Datatypes

associated with the inputs of the StepInstance. These resources can be advertised

within the representations of StepInstances by a POC Server, just as the representation

of SI0 includes a specification of S0. Otherwise, they should be retrieved via additional

requests by POC Clients, and cached for future references. A POC Client that has

received the representation of SI0 above, for instance, should retrieve Observation,

unless it is already fetched and cached.

54

A Web form capturing the human inputs for a StepInstance must provide means

for the submission of numerous types of data. Data structured with most of such

types, such as string, integer, image, can be captured through standard HTML form

elements. Handling CompositeDatatypes, such as Observation, are not as straightfor-

ward. CompositeDatatypes typically consist of multiple DataFields, each of which may

have different, and possibly external, types. A POC Client should discover and fetch

any of such types, and construct the form accordingly. For a DataField associated with

a sourceService, the POC Client must ensure that the provided values for the DataField

are selected from the data advertised by that service. A POC Client that initiates the

execution of SI0 in AppBirders, for example, would need to implement such a mechanism

for the DataFields labeled "Bird Type" and "Place" of Observation. POC Model does

not impose a specific means for the retrieval and presentation of candidate values for

such DataFields, nevertheless, a text auto-completion mechanism that suggest candi-

date values based on text entry could be a reasonable solution for many cases. For, say,

the "Bird Type" DataField of Observation, a POC Client could provide a text field for

the entry of a bird species and use the entered text to fetch and suggest candidate values

to the user. To fetch the candidate values, the POC Client needs to send a request to

the specified endpoint of the sourceService in the specified protocol. The endpoint for

the sourceService of the "Bird Type" DataField is http://dbpedia.org/sparql and

its protocol is SPARQL-QUERY [29]. If the user entered "sto" to the form field for

the "Bird Type" DataField , for instance, the POC Client could submit the SPARQL

query demonstrated by Figure 3.40 to http://dbpedia.org/sparql.

The service endpoint responds with a list of results as depicted in Table 3.3. The

POC Client that has received such data should, then, display the returned labels to the

user as candidates for the DataField . If the user selects one of the candidate labels, the

corresponding resource URI should be selected to be submitted for the "Bird Type"

DataField of Observation.

Performance of a StepInstance by a user requires the submission of the required

input data by a POC Client. Such submissions are enacted through PATCH requests

against the URI of the StepInstance, attaching input values to the StepInstances. The

55

SELECT DISTINCT ?bird ?label WHERE

{

?bird a umbel-rc:Bird.

?bird rdfs:label ?label.

FILTER regex(?label, "^sto.*", "i")

} LIMIT 5

Figure 3.40. An example SPARQL query to fetch five bird species whose labels start

with "sto".

patching of the StepInstances conforms Linked Data Patch Format (LD Patch) [39],

which is the patching mechanism for Linked Data resources favoured by LDP [38]. An

HTTP request for such a submission for SI0 is demonstrated by Figure 3.41. The

request message utilize the Add operation of Linked Data Patch Format to insert an

input to SI0. The inserted input is labeled as "object", and has a CompositeDataIn-

stance as its value. The CompositeDataInstance has Observation as its datatype and

four fieldValues, each corresponding to a different DataField of Observation.

Table 3.3. The results for the SPARQL query fetching bird species and their labels.

bird label

http://dbpedia.org/resource/Stork "Stork"@en

http://dbpedia.org/resource/Stork-billed_

Kingfisher

"Stork-billed

Kingfisher"@en

http://dbpedia.org/resource/Stout-billed_

Cuckoo-shrike

"Stout-billed

Cuckoo-shrike"@en

http://dbpedia.org/resource/Stolid_

Flycatcher

"Stolid

Flycatcher"@en

http://dbpedia.org/resource/Storm’s_Stork "Storm’s Stork"@en

56

PATCH /birders/step_instances/si0 HTTP/1.1

Host: example.org

Content-Type: text/ldpatch

Accept: text/turtle

Add { <> poc:input [

rdfs:label "object";

poc:value [a poc:CompositeDataInstance;

poc:datatype <http://example.org/datatypes/observation>;

fieldValue

[rdfs:label "Title"; poc:literalValue "Stork drinking water."],

[rdfs:label "Bird Type"; poc:uriValue

<http://dbpedia.org/resource/Stork>],

[rdfs:label "Place"; poc:uriValue

<http://dbpedia.org/resource/London>],

[rdfs:label "Photograph";

poc:uriValue [a poc:Image;

ma:locator "http://oi67.tinypic.com/254vyh3.jpg"^^xsd:anyURI]]

]

].}.

Figure 3.41. An HTTP PATCH request submitting the data for the execution of SI0.

The corresponding HTTP response message is demonstrated by Figure 3.42. The

response advertise a representation of the SI0, which now has a "completed" status .

3.4.6. Retrieval of the Data Resources

A POC Server advertise the data resources available for the user as the ele-

ments of an LDP Basic Container. The URI of this container is identified with poc-

57

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a poc:StepInstance;

poc:datatype

<http://example.org/birders/workflows/observation_entry/steps/s0>;

dcterms:created "2015-12-03T23:48:20Z"^^xsd:dateTime;

dcterms:creator <http://example.org/user_accounts/ua0>;

poc:performedAt "2015-12-03T23:51:04Z"^^xsd:dateTime;

poc:performer <http://example.org/user_accounts/ua0>;

poc:status "completed".

Figure 3.42. An HTTP response message, advertising the successfully performed SI0.

ldp:dataInstances property in the representation of POC Servers, as demonstrated in

Section 3.4.2. Figure 3.43 depicts an HTTP request message retrieving the data re-

sources available for a user of AppBirders.

GET /birders/data_instances HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.43. An HTTP request message, retrieving the data resources available for a

user of AppBirders.

A successful HTTP response for the request above is depicted by Figure 3.44.

The response message contains a representation of an LDP Basic Container, with a

single element identified by the URI http://example.org/birders/data_instances/

observations.

58

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains </observations>.

Figure 3.44. An HTTP response message, advertising the data resources available for

a user of AppBirders.

A POC Server may advertise the representation of individual data resources along

with the container that contains them. Otherwise, a POC Client needs to submit an

additional request for their retrieval. Figure 3.45 demonstrates such a request for the

retrieval of the DataInstance advertised by the server.

GET /birders/data_instances/observations HTTP/1.1

Host: example.org

Accept: text/turtle

Figure 3.45. An HTTP request message, retrieving an available DataInstance of

AppBirders.

The POC Server for AppBirders responds with a message as demonstrated by

Figure 3.46. The response message contains a representation of a List , with a single

item identified by the relative URI <o0>. A representation of the item is also included

in the message, which is a CompositeDataInstance. The datatype of this DataInstance

is specified to be Observation, and it has four fieldValues, each corresponding to a

different DataField of Observation.

59

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a poc:List;

poc:items <o0>.

<o0> a poc:CompositeDataInstance;

poc:datatype <http://example.org/datatypes/observation>;

fieldValue

[rdfs:label "Title"; poc:literalValue "Stork drinking water."],

[rdfs:label "Bird Type"; poc:uriValue

<http://dbpedia.org/resource/Stork>],

[rdfs:label "Place"; poc:uriValue

<http://dbpedia.org/resource/London>],

[rdfs:label "Photograph";

poc:uriValue [

a poc:Image;

ma:locator "http://oi67.tinypic.com/254vyh3.jpg"^^xsd:anyURI

]

].

Figure 3.46. An HTTP response message, advertising a DataInstance of AppBirders.

3.4.7. Execution Flow of Step Instances

In this section, we discuss how interdependent StepInstances are to be handled

by POC Servers.

The community-centric processes to be performed within a POC are represented

by its Workflows. Workflows are composed of interdependent Steps which are either

automated or human-based. A Step, S0, is said to be dependent on another Step, S1,

60

if there is a Pipe whose sourceStep is S1 and targetStep is S0.

Invocation of aWorkflow yields the creation of aWorkflowInstance whose datatype

is that Workflow . Creation of a WorkflowInstance involves the creation of a StepIn-

stance for each Step of the invoked Workflow . A StepInstance, SI0, is said to be

dependent on another StepInstance, SI1, if the Step that is the datatype of SI0 is de-

pendent on the Step that is the datatype of SI1. This dependence implies that SI0

cannot be executed unless the execution of SI1 is successfully completed.

A StepInstance is said to be ready, when all the StepInstances it is dependent

on have been executed, and thus, have a "completed" status. When a StepInstance

becomes ready, it is either executed immediately if it is automated, or assigned with

a "ready" status if it expects human input. If all the StepInstances of a WorkflowIn-

stance have "completed" as their status the WorkflowInstance must be assigned a

"completed" status as well.

3.4.8. Expressions and View Templates

Expressions resemble programming language expressions [51,52], yet have a much

limited expressivity. An Expression can contain values, constants, arithmetic operators,

comparison operators, and a set of basic methods. The constants in an Expression are

identified with a string of alphanumeric characters prepended with an @ character, e.g.

"@myConstant < @c0 + 4 && @c0 > 2". Expressions support the following methods

that provide access to information regarding Instances.

• Field getter: This method enables the retrieval of fieldValues of CompositeDataIn-

stances in an Expression, e.g. "@myHaircut[’price’]" returns the fieldValue

labeled "price" of a CompositeDataInstance, given that it is available through

"@myHaircut" constant.

• Size: This method returns the size of a List , e.g. "@list.size", given that

"@list" constant is associated with a List .

61

• Creator: This method returns the creator of an Instance, e.g.

"@myInstance.creator", given that the constant "@myInstance" is asso-

ciated with an Instance.

• Created: This method returns the creation time of an Instance, e.g.

"@myInstance.created", given that the constant "@myInstance" is associated

with an Instance.

ViewTemplates are HTML [53] formatted stirngs that can contain embedded Ex-

pressions. The content between the "{#" and "#}" tags in a ViewTemplate are treated

as Expressions. For instance, "" is a ViewTem-

plate that can be used to prompt an image to the user.

Views are similar with ViewTemplates, as they are HTML [53] formatted stirngs

as well. They, however do not allow embedding of Expressions. When a Step is invoked,

the embedded references in its ViewTemplate are replaced with their values, to generate

a View . The resulting View is associated with the StepInstance that enacts the Step.

62

4. EVALUATION

In this chapter, we discuss our efforts to evaluate this thesis work.

First, we examine the ability of POC Core Ontology to express a set of behavioral

features commonly seen in community applications. We, then, evaluate the convenience

of POC Model for real world applications. This investigation involves the introduction

of an existing POC and the examination of the capability of POC Model to satisfy the

specific needs of this community. Lastly, we introduce the proof-of-concept prototype

we developed to investigate and demonstrate the integrity of the model.

4.1. Utilization of POC Model for a Real World Community

In this section, we introduce a real world example for POCs, and discuss the

competence of POC Model to satify the needs of this POC.

Oy ve Ötesi is a volunteer organization that aims to increase the transparency of

the public elections in Turkey. Prior to the elections, Oy ve Ötesi provides an online

platform for the volunteers to track the number of required observers in ballot stations.

The volunteers can sign up as observers where needed, and inspect the activities of the

officers in each ballot station.

Oy ve Ötesi recently introduced an additinal mechanism to improve the trans-

parency of the elections, which is called Türkiye Tutanak Takip1 (T3). T3 is a human

computation application that aims validate the consistency of the officially announced

vote distributions with the vote counts reported by the volunteer observers. Observers

of each ballot station submit photographs of the ballot reports they observed to the

T3 platform. Each photograph is, then, displayed to random volunteer verifiers who

sign up to the T3 platform. The verifiers fill web forms with the information of vote

distributions depicted in the photographs. If three verifiers enter the exactly same vote

1In English: Turkey Report Tracking.

63

distribution for a ballot box, the ballot report is considered as verified. The differnce

between the official results and the T3 verified vote counts are then published publicly.

T3 was utilized for the first time in Turkish general elections of 2015, and reported [54]

to have verified more than 180 thousand ballot reports.

We observed that T3 platform is subject to the following key requirements.

(i) Volunteers who are assigned as observers should be able to submit photographs.

(ii) People who are not assigned as observers should not be able to submit pho-

tographs.

(iii) A volunteer who wants to verify ballot reports should be prompted with a ran-

dom photograph that was previously submited and a web form that captures the

information depicted in the photograph.

(iv) If there is no photograph to be verified on the platform, the verifying volunteers

should be informed so.

(v) Information of the verified ballot reports should be publicly available, therefore,

unauthenticated users of the platform should have access to them.

In the remainder of this section, first we provide a POC Specification for a T3

platform, which verifies the ballot reports of an election between three hyphotethical

political parties; namely, PA, PB and PC . Then, we demonstrate the runtime behaviour

of a POC Application conforming the provided POC Specification. Lastly, we provide

an assessment of how well the constructed application addresses the requirements of

the T3 community.

4.1.1. A POC Specification for T3

Here, we construct a POC Specification for T3, which will be referred as SpecT3.

There are two Role roles defined within SpecT3; namely, Observer and Verifier .

The representation of these roles in SpecT3 is demonstrated in Figure 4.1. Observer

represents the observers at the ballot stations, who upload the photographs of ballot

64

reports. Verifier represents the volunteers, who fill web forms with the information of

vote distributions depicted in the photographs.

_:Observer a poc:Role;

rdfs:label "Observer"@en.

_:Verifier a poc:Role;

rdfs:label "Verifier"@en.

Figure 4.1. The Roles defined in SpecT3, serialized in Turtle.

SpecT3 contains two UserDefinedDatatype definitions; namely, Photo and Veri-

fierReport .

Photo represents the photographs of the ballot reports that are uploaded by

Observers. Specification of Photo within SpecT3 is depicted by Figure 4.2. It is a

DerivedDatatype with a baseDatatype of ImageType. As these photographs contain

handwritten information to be interpreted by humans, they need to be large enough

to be readable. We, thereby, arbitrarily define the minimum frame height as 600 pixels

and the minimum frame width as 400 pixels for Photo.

_:Photo a poc:DerivedDatatype;

rdfs:label "Photo"@en;

poc:baseDatatype poc:ImageType;

poc:minFrameWidth 400;

poc:minFrameHeight 600.

Figure 4.2. Definition of Photo in SpecT3, serialized in Turtle.

VerifierReport represents the information provided by the Verifiers for each

Photo they are prompted. Figure 4.3 demonstrates the definition of VerifierReport

within SpecT3. VerifierReport is a CompositeDatatype with four dataFields. The first

65

DataField is labeled "ID", and represents the unique ID of a ballot report. The other

three DataFields are labeled "Votes for A", "Votes for B" and "Votes for C",

and represent the vote counts for the political parties PA, PB and PC respectively.

Each DataField has a datatype of integer and identified to be required, indicating that

they cannot be left blank.

_:VerifierReport a poc:CompositeDatatype;

rdfs:label "Verifier Report"@en;

poc:dataField [rdfs:label "ID";

poc:isRequired true;

poc:fieldType xsd:integer],

[rdfs:label "Votes for A";

poc:isRequired true;

poc:fieldType xsd:integer],

[rdfs:label "Votes for B";

poc:isRequired true;

poc:fieldType xsd:integer],

[rdfs:label "Votes for C";

poc:isRequired true;

poc:fieldType xsd:integer].

Figure 4.3. Definition of VerifierReport in SpecT3, serialized in Turtle.

There are three DataInstances defined in SpecT3: UnverifiedPhotos (UP), Can-

didateReports (CR) and VerifiedReports (VR). Definition of these DataInstances in

SpecT3 is demonstrated in Figure 4.4. UP is a List that contains the Photos that are

not verified by the community yet. CR is a List that contains the VerifierReports

that are provided by Verifiers. UP and CR has constraints that restrict the access of

these resources for any user. VR is a List that contains the VerifierReports which are

regarded as verified, as the information they encapsulate has been provided by three

independent Verifiers.

66

_:UnverifiedPhotos a poc:List;

rdfs:label "Unverified Photos"@en;

poc:constraint [poc:allowIf "false"^^poc:Expression].

_:CandidateReports a poc:List;

rdfs:label "Candidate Reports"@en;

poc:constraint [poc:allowIf "false"^^poc:Expression].

_:VerifiedReports a poc:List;

rdfs:label "Verified Reports"@en.

Figure 4.4. Definition of the DataInstances in SpecT3, serialized in Turtle.

There are twoWorkflows defined within SpecT3: PhotoSubmission and ReportVer-

ification.

PhotoSubmission represents the photograph uploading operation to be performed

by Observers. The definition of PhotoSubmission within SpecT3 is demonstrated in

Figure 4.6. A visual representation of PhotoSubmission is depicted in Figure 4.5. Pho-

toSubmission has a constraint that specifies that it can only be invoked by Observers.

PhotoSubmission encapsulates two Steps: S0 and S1.

Figure 4.5. A visual representation of PhotoSubmission.

S0 involves the creation of an Image with a datatype of Photo. The task of

S0 is Create, indicating that it involves the creation of a DataInstance. S0 has a

67

viewTemplate, which is identified by V in Figure 4.5. S0 is the targetStep of two Pipes.

The first is a DirectPipe whose targetPort is "datatype" and sourceValue is Photo.

This Pipe indicates that the DataInstances to be created are of datatype Photo. The

second Pipe is a HumanPipe with a targetPort of "object". This Pipe indicates that

the DataInstances to be created are to be provided by human users. S0 has a constraint

indicating that it can only be performed by a user who invoked the Workflow .

S1 involves the insertion of the Image created by S0 to UP . The task of S1 is

Insert , indicating that it involves the insertion of an item to a List . It is the targetStep

of two Pipes. The first is a DirectPipe whose targetPort is "target" and sourceValue

is UP . This Pipe indicates that the List the item is to be added is UP . The second

Pipe is a PortPipe whose sourcePort is "result" and targetPort is "object". This

Pipe indicates that the item to be added is an output of S0, and is advertised by its

"result" port.

ReportVerification is a relatively complex Workflow , representing the form filling

operation to be performed by Verifiers, and the verification mechanism it entails. A

visual representation of ReportVerification is depicted in Figure 4.7. Expressions and

ViewTemplates involved in this Workflow are represented with enumerated labels for

brevity, and they represent the following values.

E0 : "@list.size > 0"ˆˆpoc:Expression

E1 : "@list.size - 1"ˆˆpoc:Expression

E2 : "@report == @item"ˆˆpoc:Expression

E3 : "@list.size == 3"ˆˆpoc:Expression

V0 : "<p>Please enter the information on the displayed ballot report

into the form.</p>

"ˆˆpoc:ViewTemplate

V1 : "<p>No unverified report at the moment.

Thank you!</p>"ˆˆpoc:ViewTemplate

68

_:PhotoSubmission a poc:Workflow;

rdfs:label "PhotoSubmission"@en;

dcterms:title "Submit Photo"@en;

poc:step _:S0, _:S1;

poc:constraint [poc:allowedRole _:Observer];

poc:pipe [a poc:HumanPipe; poc:targetStep _:S0; poc:targetPort

"object"],

[a poc:DirectPipe; poc:targetStep _:S0; poc:targetPort "datatype";

poc:sourceValue _:Photo],

[a poc:PortPipe; poc:sourceStep _:S0 ; poc:sourcePort "result";

poc:targetStep _:S1 ; poc:targetPort "object"],

[a poc:DirectPipe; poc:targetStep _:S1 ; poc:targetPort "target";

poc:sourceValue _:UnverifiedPhotos;].

_:S0 a poc:Step;

poc:constraint [poc:allowIf "@user == @invoker"^^poc:Expression];

poc:viewTemplate "<p>Please upload a photograph of a ballot

report.</p>";

dcterms:description "Submit a photogragh of a ballot report."@en;

poc:task poc:Create;

poc:inputPort [rdfs:label "object"], [rdfs:label "datatype"];

poc:outputPort [rdfs:label "result"].

_:S1 a poc:Step;

poc:task poc:Insert;

poc:inputPort [rdfs:label "object"], [rdfs:label "target"];

poc:outputPort [rdfs:label "result"].

Figure 4.6. Definition of PhotoSubmission in SpecT3, serialized in Turtle.

69

ReportVerification has a constraint that specifies that it can only be invoked by

Verifiers. ReportVerification encapsulates ten Steps: S2, S3, S4, S5, S6, S7, S8, S9, S10

and S11. The functionality of each Step and their relations are as follows.

• S2 returns a boolean value indicating whether UP is empty. If it is not empty,

S3 is invoked, otherwise, S11.

• S3 generates a random integer between zero and the size of UP minus one.

• S4 outputs the item of UP whose index is the number outputed by S3. This item

is expected to be a Photo.

• S5 prompts the user with the Photo outputed by S4, with a message asking the

user to enter data. V0 is compiled to generate the message to be displayed to the

user. The entered data is outputed as a VerifierReport .

• S6 inserts the VerifierReport generated by S5 to CR, and outputs CR.

• S7 outputs a List containing the items of CR that have the same fieldValues as

the VerifierReport outputed by S5. S7 uses E2 as the filtering condition.

• S8 checks whether the List outputed by S7 contains exactly three items. If so, S9

and S10 are invoked.

• S9 inserts the VerifierReport outputed by S5.

• S10 removes the Photo outputed by S4 from UP , since it is now verified by the

system.

• S11 informs the user that there is no unverified photographs present.

4.1.2. Execution of a T3 POC Application

Here, we examine the runtime behaviour of a POC Application that conforms

SpecT3, which is the POC Specification described in Section 4.1.1. This POC Applica-

tion will be referred as AppT3, and assumed to have a POC Server that is identified by

the URI http://example-t3.org. This section represents a scenario involving mul-

tiple users, and discuss the execution behaviour of AppT3 and the data interchange

between the POC Server of AppT3 and its clients.

Figure 4.7. A visual representation of ReportVerification.

71

The scenario to be discussed in this section involves numerous HTTP transac-

tions. HTTP headers interchanged within these transactions are mostly omitted, unless

they play an important role in the scenario.

Three users are involved in this scenario: U0, U1 and U2. U0 has a UserAccount

that is associated with Verifier role, and the UserAccount of U1 is associated with

Observer role. U2 does not have a UserAccount . Since POC Model does not impose a

specific authentication mechanism, this scenario omits how the users are authenticated.

The scenario is discussed in four consequtive sections, each involving one of the

users.

4.1.2.1. Verification Attempt in the Absence of Photographs. In the first part of our

scenario, U0 attempts to verify reports.

U0 uses a POC Client to retrieve a representation of the POC Server of AppT3,

submitting the HTTP request demonstrated by Figure 4.8.

GET / HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Figure 4.8. An HTTP request message on the POC Server of AppT3.

The received response is depicted by Figure 4.9, which indicates that the requested

resource is POC Server and advertises available Workflows for U0 through the relative

URI <workflows>.

U0 triggers an HTTP request to the advertised relative URI to retrieve the avail-

able Workflows, which is depicted in Figure 4.10.

72

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<http://example-t3.org> a poc-ldp:POC_Server;

poc-ldp:dataInstances <http://example-t3.org/data_instances/>;

poc-ldp:datatypes <http://example-t3.org/datatypes/>;

poc-ldp:workflows <http://example-t3.org/workflows/> .

Figure 4.9. An HTTP response message advertising a representation of the POC

Server of AppT3.

GET /workflows/ HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Figure 4.10. An HTTP request for the retrieval of the Workflows available for a user

of AppT3.

The response message is depicted by Figure 4.11, which indicates that the re-

quested resource is a LDP Basic Container, with a single element identified by the

relative URI <report_verification>. This element is a Workflow and has "Verify

Report" as its title, which cues U0 on the functionality of the Workflow .

In order to invoke the advertised Workflow , U0 submits an HTTP POST request

to its URI, as depicted in Figure 4.12.

The corresponding HTTP response message is depicted by Figure 4.13. It adver-

tises that a resource is created as a result of the transaction, which is identified by the

73

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <report_verification>.

<report_verification> a poc:Workflow;

dcterms:title "Verify Report"@en.

Figure 4.11. An HTTP response message advertising the Workflows available for a

user of AppT3.

POST /workflows/report_verification HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Figure 4.12. An HTTP request message for the invocation of ReportVerification by

U0.

Location header. A representation of the created resource is included in the message

body. The created resource is aWorkflowInstance whose datatype is ReportVerification.

The status of this WorkflowInstance is "completed", indicating that its execution is

finished. It identifies a single StepInstance available for U0 to perform. The represen-

tation of this StepInstance is included in the response as well. This StepInstance has

a view to be displayed, informing U0 that there is no unverified report.

4.1.2.2. Photograph Submission. In the second section of the scenario, U1 adds a

photograph of a ballot report to be verified.

74

HTTP/1.1 201 Created

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

Location: http://example.com/t3/workflows/report_verification/rv0

<> a poc:WorkflowInstance;

dcterms:created "2015-12-03T23:48:20Z"^^xsd:dateTime;

dcterms:creator <http://example-t3.org/user_accounts/U0>;

poc:status "completed";

poc:datatype <http://example.org/workflows/report_verification>;

poc-ldp:step_instances </step_instances> .

</step_instances> a ldp:BasicContainer;

ldp:contains </step_instances/inform>.

</step_instances/inform> a poc:StepInstance;

poc:datatype

<http://example-t3.org/workflows/report_verification/steps/s11>;

dcterms:created "2015-12-03T23:48:20Z"^^xsd:dateTime;

dcterms:creator <http://example-t3.org/users/U0>;

poc:status "completed";

poc:view "<p>No unverified report at the moment. Thank you!</p>".

Figure 4.13. The HTTP response message for the invocation of ReportVerification by

U0.

U1 uses a POC Client to trigger an HTTP transaction to receive a representation

of the POC Server of AppT3, which is identical to the transaction depicted by Figure 4.8

and 4.9. U1 requests the available Workflows, triggering an HTTP request as depicted

by Figure 4.14.

75

GET /workflows/ HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Figure 4.14. An HTTP request for retrieving the available Workflows for U1.

The POC Server answers with an HTTP response message as demonstrated

by Figure 4.15. The response message advertises that the represented resource is a

LDP Basic Container, which contains a single element identified by the relative URI

<photo_submission>. This element is a Workflow and has "Submit Photo" as its

title, which cues U1 on the functionality of the Workflow .

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains <photo_submission>.

<photo_submission> a poc:Workflow;

dcterms:title "Submit Photo"@en.

Figure 4.15. An HTTP response message advertising the available Workflows for U1.

In order to invoke the Workflow , U1 submits an HTTP POST request that is

demonstrated by Figure 4.16.

The corresponding HTTP response is depicted by Figure 4.17. The response ad-

vertises that a resource is created as a result of this transaction, which is identified

by the Location header. A representation of the created resource is included in the

76

POST /workflows/photo_submission HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Figure 4.16. An HTTP request for the invocation of PhotoSubmission by U1.

response body. The created resource is a WorkflowInstance whose datatype is Photo-

Submission. The status of this WorkflowInstance is "ongoing", indicating that it is

invoked and it has StepInstances that are not performed. This WorkflowInstance has a

single StepInstance available for U1 to perform. The representation of this StepInstance

is included in the response as well.

The StepInstance has a "ready" status , indicating that it is available to be per-

formed. It also has a view to be displayed, informing U1 that submission of an image

is expected. It is identified to be an instance of S0, which is discussed in Section 4.1.1.

Lastly, the StepInstance has a input declaration for the inputPort labeled "datatype".

The declared value is Photo, which is also discussed in Section 4.1.1. This cues the

used POC Client to prompt U1 with a form enabling the user to provide an image

conforming the constraints defined by Photo. The exact means how this image is to

be provided by the human user is an implementation detail to be handled by the used

POC Client. It can accept a URL of an image hosted on the Web, or automatically

the provided image to a hosting service. The response also includes representations of

S0 and Photo, saving POC Client from sending additional requests to retrieve their

representations.

U1 provides an image with the URL http://example.org/report.jpg through

the used POC Client, which triggers the HTTP request depicted by Figure 4.18. The

submitted request is a HTTP PATCH request, indicating that the request is intended

to modify the target resource. A "Content-Type" header with value "text/ldpatch"

is provided by the request, indicating that the request message conforms the Linked

77

HTTP/1.1 201 Created

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

Location: http://example.com/t3/workflows/photo_submission/ps0

<> a poc:WorkflowInstance; poc:status "ongoing";

poc:datatype <http://example.org/workflows/photo_submission>;

dcterms:created "2015-12-03T23:52:41Z"^^xsd:dateTime;

dcterms:creator <http://example-t3.org/user_accounts/u1>;

poc-ldp:step_instances </step_instances> .

</step_instances> a ldp:BasicContainer;

ldp:contains </step_instances/submit_photo>.

</step_instances/submit_photo> a poc:StepInstance;

poc:datatype

<http://example-t3.org/workflows/photo_submission/steps/s0>;

dcterms:created "2015-12-03T23:52:41Z"^^xsd:dateTime;

dcterms:creator <http://example-t3.org/users/u1>;

poc:status "ready";

poc:view "<p>Please upload a photograph of a ballot report.</p>";

poc:input [rdfs:label "datatype"; poc:value

<http://example-t3.org/datatypes/photo>].

<http://example-t3.org/workflows/photo_submission/steps/s0> a poc:Step;

poc:inputPort [rdfs:label "datatype"], [rdfs:label "object"];

poc:task poc:Create .

<http://example-t3.org/datatypes/photo> a poc:DerivedDatatype;

rdfs:label "Photo"@en; poc:baseDatatype poc:ImageType;

poc:minFrameWidth 400; poc:minFrameHeight 600.

Figure 4.17. An HTTP request for the invocation of PhotoSubmission by U1.

78

Data Patch Format [39].

PATCH /workflows/photo_submission/ps0/step_instances/submit_photo

HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Content-Type: text/ldpatch

Add { <> poc:input [

rdfs:label "object"

poc:value [a poc:Image;

poc:datatype <http://example-t3.org/datatypes/photo>;

ma:locator "http://example.org/report.jpg"^^xsd:anyURI

].

}.

Figure 4.18. An HTTP request message, submitted by U1 for performing S0.

The corresponding HTTP response is depicted by Figure 4.19. The response

carries no message but has status code 200, indicating the StepInstance was performed

successfully.

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

Figure 4.19. The HTTP response message after the successful performance of S0 by

U1.

79

4.1.2.3. Verification of Ballot Reports. In the third part of the scenario, U0 attempts

to verify ballot reports again.

U0 uses a POC Client to retrieve the description of AppT3, triggering a HTTP

transaction which is identical to the one depicted by Figure 4.8 and 4.9. U0, then,

requests the available Workflows, triggering the a HTTP transaction which is identical

to the one depicted by Figure 4.10 and 4.11. U0 invokes the advertised Workflow

through the HTTP request depicted by Figure 4.20.

POST /workflows/report_verification HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Figure 4.20. The HTTP request by U0, invoking ReportVerification for the second

time.

The corresponding HTTP response message is depicted by Figure 4.11. The re-

sponse advertises that a resource is created as a result of this transaction, which is

identified by the Location header. A representation of the created resource is included

in the response body. The created resource is a WorkflowInstance whose datatype

is ReportVerification. The status of this WorkflowInstance is "ongoing", indicating

that it is invoked and it has StepInstances that are not performed. This WorkflowIn-

stance has a single StepInstance available for U0 to perform. The representation of this

StepInstance is included in the response as well.

The StepInstance has a "ready" status , indicating that it is available to be per-

formed. The StepInstance is identified to be an instance of S5, which is discussed in

Section 4.1.1. It has a view to be displayed, instructing U0 to fill the web form with

the information depicted in the displayed image. Notice that, the image URL submit-

ted by U1 is inserted into the ViewTemplate V0 to yield the provided view . Lastly,

the StepInstance has a input declaration for the inputPort labeled "datatype". The

80

declared value is VerifierReport . This cues the used POC Client to prompt U0 with a

form that asks for individual DataFields of VerifierReport . The response also includes

representations of S5 and VerifierReport , saving POC Client from sending additional

requests to retrieve their representations. For the sake of brevity, the representation of

VerifierReport is trimmed in Figure 4.21. A complete representation of VerifierReport

can be found in Figure 4.3.

U0 fills the provided form and submits, triggering the HTTP request depicted in

Figure 4.22.

The POC Server answers with the HTTP response message depicted by Figure

4.23. The response carries no message but has status code 200, indicating the StepIn-

stance was performed successfully.

4.1.2.4. Accessing Verified Reports. In the last part of our scenario, U2 attempts to

access the verified reports by AppT3. In this section, we assume that two other Verifiers

have verified the Photo submitted by U1 in the second part of the scenario, providing

the same information U0 provided in the third part.

U2 uses a POC Client to retrieve the description of the POC Server of AppT3,

triggering a HTTP transaction which is identical to the one depicted by Figure 4.8

and 4.9. U2, then, requests the available DataInstances, submitting the HTTP request

depicted by Figure 4.24.

The POC Server answers with an HTTP response message as depicted by Figure

4.25. The response exhibits a LDP Basic Container, which contains a single element

identified by the relative URI </verified_reports>.

U2 requests the representation of the accessible data resource, triggering the

HTTP request demonstrated by Figure 4.26.

81

HTTP/1.1 201 Created

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

Location: http://example.com/t3/workflows/report_verification/rv1

<> a poc:WorkflowInstance;

dcterms:created "2015-12-03T23:56:26Z"^^xsd:dateTime;

dcterms:creator <http://example-t3.org/user_accounts/u0>;

poc:status "ongoing";

poc:datatype <http://example.org/workflows/report_verification>;

poc-ldp:step_instances </step_instances> .

</step_instances> a ldp:BasicContainer;

ldp:contains </step_instances/fill_form>.

</step_instances/fill_form> a poc:StepInstance;

poc:datatype

<http://example-t3.org/workflows/report_verification/steps/s5>;

dcterms:created "2015-12-03T23:56:26Z"^^xsd:dateTime;

dcterms:creator <http://example-t3.org/users/u0>;

poc:status "ready";

poc:view "<p>Please enter the information depicted in the photograph

into the form.</p> ";

poc:input [rdfs:label "datatype"; poc:value

<http://example-t3.org/datatypes/VerifierReport>].

<http://example-t3.org/workflows/PhotoSubmission/steps/s5> a poc:Step;

poc:inputPort [rdfs:label "datatype"], [rdfs:label "object"];

poc:task poc:Create .

<http://example-t3.org/workflows/datatypes/VerifierReport> a ...

Figure 4.21. The HTTP response message received after a successful invocation of

ReportVerification.

82

PATCH /workflows/photo_submission/ps0/step_instances/submit_photo

HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Content-Type: text/ldpatch

Add { <> poc:input [

rdfs:label "object"

poc:value [a poc:CompositeDataInstance;

poc:datatype <http://example-t3.org/datatypes/verifier_report>;

fieldValue [rdfs:label "ID"; poc:literalValue 4124],

[rdfs:label "Votes for A"; poc:literalValue 113],

[rdfs:label "Votes for B"; poc:literalValue 54],

[rdfs:label "Votes for C"; poc:literalValue 12]

].

}.

Figure 4.22. The HTTP request message submitted by U0 for the performance of S5.

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

Figure 4.23. The HTTP response message received after a successful performance of

S5 by U0.

83

GET /data_instances/ HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Figure 4.24. The HTTP request message for retrieving the DataInstances accessible

by U2.

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a ldp:BasicContainer;

ldp:contains </verified_reports>.

Figure 4.25. The HTTP response advertising the DataInstances accessible by U2.

GET /data_instances/verified_reports HTTP/1.1

Host: example-t3.org

Accept: text/turtle

Figure 4.26. The HTTP request message retrieving a representation of

VerifiedReports .

The POC Server answers with the HTTP response message depicted by Figure

4.27. The response message contains a representation of VR which is defined in SpecT3.

VR contains a single item. The representation of this item is also included in the

response message, which is a CompositeDataInstance. This CompositeDataInstance has

VerifierReport as its datatype and possesses fieldValues that contain the information

submitted by U0 in the third part of the scenario.

84

HTTP/1.1 200 OK

Content-Type: text/turtle

Allow: GET,OPTIONS,HEAD

<> a poc:List;

poc:items (<http://example-t3.org/datatypes/verifier_report/vr2>).

<http://example-t3.org/datatypes/verifier_report/VR2> a

poc:CompositeDataInstance;

poc:datatype <http://example-t3.org/datatypes/verifier_report>;

dataField [rdfs:label "ID"; poc:literalValue 4124],

[rdfs:label "Votes for A"; poc:literalValue 113],

[rdfs:label "Votes for B"; poc:literalValue 54],

[rdfs:label "Votes for C"; poc:literalValue 12].

Figure 4.27. The HTTP response message advertising a representation of

VerifiedReports .

4.1.3. An Assessment of T3 POC Application

In Section 4.1.1, a POC Specification for T3, SpecT3, is demonstrated. In Sec-

tion 4.1.2, the runtime behaviour of a POC Application conforming SpecT3, AppT3, is

examined. In this section, we recite the requirements previously identified for T3, and

provide an assessment of how well AppT3 addresses them.

The first requirement identified for T3, Requirement (i), indicates that Observers

should be able to submit photographs. PhotoSubmission represents this action, which

is a Workflow defined in SpecT3. It has a constraint specifying that it is allowed for

Observers. Section 4.1.2.2 demonstrates a scenario describing the execution behaviour

of PhotoSubmission.

85

Requirement (ii) indicates that people who are not Observers should be restricted

from submiting photographs. PhotoSubmission has a constraint whose allowedRole is

Observer , indicating that possesion of Observer is required for invoking this Workflow .

The scenario discussed in Section 4.1.2.1 reveals how a user who is not an Observer is

not provided with the information of PhotoSubmission.

Requirement (iii) indicates that Verifiers should be prompted with a random pho-

tograph and a web form for capturing the information of ballot reports. ReportVerifica-

tion encapsulates this action, which is aWorkflow defined in SpecT3. It has a constraint

specifying that it is allowed for Verifiers. S5 is a step of ReportVerification that repre-

sent the operation of prompting a Verifier with a photograph and capturing the report

information. The scenario discussed in Section 4.1.2.3 explains this mechanims.

Requirement (iv) indicates that if there is no photographs to be verified, the

Verifiers should be informed so. S11 is a step of ReportVerification that represent the

action of informing a Verifier if there is no Photo in UP . The scenario discussed in

Section 4.1.2.1 demonstrates how S11 is enacted.

Requirement (v) indicates that the verified reports should be available for any

user. The DataInstances defined within a POC Specification are available for any

user unless the access is restricted by a Constraint . VR, which is the List containing

verified reports, has no constraint , and is therefore available for any user. Section

4.1.2.4 demonstrates a scenario involving an unauthenticated user to access the content

of VR.

We conclude that POC Model has enough expressive power to construct an ap-

plication that address the requirements we identified for T3.

4.2. An Application Generating Prototype

In this section, we briefly describe the prototype developed within the scope of

our work.

86

The developed prototype is a web based interpreter for POC Specifications. More

specifically, it is a Ruby on Rails applicaiton that utilize a Fuseki RDF database and

a Redis in-memory cache store, which are linked together by a Docker container. It is

hosted on a virtual machine on Azure, and deployed through a continuous deployment

mechanism that utilize CircleCI and Github.

This prototype is developed solely as a sanity check for the author, and is not

used for a systematic evaluation of this study. It helped us verify that the Workflows

encapsulating multiple steps can be automatically performed, given that they do not

implement loops. The prototype utilizes a Ruby implementation of Tarjan’s strongly

connected components algorithm [55] to obtain a topological sorting of the Steps within

a Workflow . This sorting is used by selecting which Step should be invoked next.

The prototype provides a web page that enable submission of POC Specifications

in Turtle, which is depicted in Figure 4.28.

Figure 4.28. A screenshot of the submission page.

When a valid POC Specification is submitted, the prototype displays an endpoint

for a POC Application with limited capability, which reflects a certain set of structures

contained within the POC Specification. The endpoint displaying page is depicted in

Figure 4.29.

The advertised endpoints only support Turtle. The advertised endpoint can be

consumed with numerous tools. Figure 4.29 demonstrates a screenshot of its con-

87

Figure 4.29. A screenshot of the endpoint displaying page.

sumption with HttpRequester [56] which is a browser add-on enabling transmission of

custom HTTP requests.

Figure 4.30. A screenshot demonstrating the consumption of an endpoint advertised

by the prototype.

88

5. RELATED WORK

In this chapter, we represent some related literature and tools, and discuss how

they relate with our work.

5.1. Related Work Utilizing Semantic Web Technologies in the Context of

Online Communities

The Semantic Web technologies have been utilized by many studies to express

the online communities and to examine their dynamics.

Some Web ontologies were developed to represent online community related data,

e.g. FOAF [57] vocabulary specifies concepts related to human collaboration, friendship

and association, SIOC [44, 45] ontology describes discussion forum and post related

concepts in online communities, and SCOT [58] models the tagging activities.

Mika 2005 [59] proposed using tripartite graphs to represent social networks of

actors, concepts and resources. Tripartite graphs provided a richer representation of

the online community data, than raw graphs. However, instead of manipulating a

tripartite graphs directly, Mika reduced it to three bipartite graphs in advance. Using

this approach, Mika 2005 [60] constructed a social network of Semantic Web community

from the FOAF profiles, academic publications and e-mails crawled from the web. He

used JUNG, a Java Graph API, to evaluate Social Network Analysis (SNA) metrics,

and provided an interface to visualize the network and the computed metrics.

Some subsequent studies [61–63] revealed that the Semantic Web technologies

are powerful enough to make meaningful manipulations over this rich data directly,

including computation of SNA measures.

San Martín et al. 2009 [61] proposed a data model for social networks based on

RDF, and a query and transformation language based on SPARQL 1.0. The proposed

89

data model represented the relations in the social networks as concepts, enabling one

to define n-ary relations. The language they developed provided the ability to query

for some SNA measures requiring aggregation, however cannot be used to compute

SNA metrics depending on paths, such as betweenness centrality. [61] set a good ex-

ample for representing, querying and transforming the data of social networks, yet,

their methodology is out-of-date with the subsequent release of SPARQL 1.1, which is

inherently capable of aggregation.

Erétéo et al. 2009 [62] developed an ontology called SemSNA [64] that models

a set of SNA notions. SemSNA is meant to be combined with a domain ontology,

modeling a social network of any domain. SemSNA aims to provide means to abstract

social network constructs from the domain ontologies, and enrich the concepts of do-

main ontologies with annotations of Social Network Analysis indices. [62] also proposes

a procedure to compute and store the SNA measures. The developed procedure makes

use of a SPARQL search engine, CORESE, which extends SPARQL with aggregation

and path retrieval features. They used CORESE to generate RDF dumps from rela-

tional databases and performed CONSTRUCT queries of SPARQL to create instances

of SNA concepts and associate them with the actor instances. The procedure enables

one to update the SNA related constructs and indices as the network changes, without

calculating everything from the beginning. It is noteworthy that while the procedure

proposed in [62] is capable of computing SNA measures requiring aggregation or path

computation, it also defines new SNA measures exploiting the rich representation of

the network data.

Angeletou et al. 2011 [63] approached the online communities from a different

angle. Rather than SNA, [63] focused on the behavioral roles exhibited by the users,

with an aim to determine and forecast the health of the online communities. The au-

thors used a predefined set of behavioral roles, and specified different activity patterns

required for each role. They also defined a behavior ontology [65] that models the

online community users, their interactions and behavioral roles. The study proposes

a method that tests each user against the activity patterns to identify the behavioral

roles they hold, and produce a role composition of the online community. The pro-

90

posed method adjusts the numerical boundaries for the activity patterns dynamically,

updating the role extraction queries via SPIN framework extending SPARQL. This

enables the role composition extraction process to be applicable to online communities

of different sizes, and thus repeatable on an evolving online community in different

periods.

ActivityStreams 2.0 [66] is specification that is currently being developed byW3C,

aiming to provide a JSON-based syntax for expressing various activities in a machine-

interpretable manner. It is intended to provide a standard format for the interchange

of social Web application data, in terms of activities performed through those appli-

cations. Activity Vocabulary [67] is a vocabulary of the classes and properties utilized

by ActivityStreams 2.0 to specify activities.

Many of the mentioned work involve Web ontologies that are used either to spec-

ify the actions performed within online communities, or to specify some meta-data

related with such actions. None of these ontologies, however, aim to specify the un-

derlyng application behavior that facilitate the actions on online communities. The

most fundamental difference of POC Core Ontology with such ontologies is that, POC

Core Ontology models the inner mechanics of online applicaitons as well as the data

generated or advertised by them.

5.2. Related Work on the Automated Geneartion of Application Behavior

There has been numerous efforts towards the automated generation of application

behavior. Some of these work modeled the application behavior as pipelines, consisting

of predefined tasks put together with data dependencies. Yahoo! Pipes [68] brought

the pipes metaphor to the Web, providing a graphical user interface to define pipes that

process XML documents (which are mostly in RSS) and generate mash-ups. XProc [69]

is an XML pipeline language, recommended by W3C to be used to describe process-

ing operations on XML documents. XProc aims to provide a scalable and reusable

method to construct XML processing workflows, representing basic processing opera-

tions as small, simple pipelines, which can be combined into larger, complex pipelines.

91

An XML Pipeline specifies a sequence of operations to be performed on zero or more

XML documents. These pipelines accept zero or more XML documents as input and

produce zero or more XML documents as output. XML Pipelines are made up of

simple steps, which perform atomic operations on XML documents, and auxiliary con-

structs, i.e., conditionals, iteration, and exception handlers. There are three types of

steps in XProc: atomic, compound, multi-container. Atomic steps perform a single

operation. A library of atomic steps is provided by XProc. A compound step is one

that contains at least one subpipeline. A multi-container step consists of two or more

alternate subpipelines, which are either processed depending on a conditional state-

ment, or used to construct a try-catch mechanism. Any XML Pipeline can be used as

a step, or subpipeline, in another pipeline. The design of Workflows in POC Model is

inspired from XML Pipelines in XProc, thereby, there is a strong resemblence between

their structures. Both Workflows and XML Pipelines consist of steps that represent

individual operations with interdependencies. The library of atomic steps in XProc are

analogous with the predefined set of Tasks in POC Model. An important difference is,

ofcourse, that XProc handles automated processing of XML documents, whereas, POC

Model targets Web applications that involve asyncronous operations to be performed

automatically or with human input.

Le-Phuoc et al. [70] proposes Semantic Web Pipes(SWP), a conceptual pipeline

framework for semantic data. SWP expresses semantic data mash-ups as pipelines

of operations on serialized RDF data. The operations supported by SWP includes

SPARQL CONSTRUCT and SELECT queries, operations to load RDF and XML

data, split and merge of RDF documents and inference for RDFS and OWL. The

pipeline mechanism implemented by SWP is similar with the one presented by XProc

for XML documents. The authors implemented a web-based prototype of the proposed

system, which provides a graphical interface to be used to construct Web pipes. The

developed Web pipes are stored as XML documents, and can be shared and reused.

Kokciyan et al. [71] proposes a framework, WeFlow, that generates collaborative

human computation applications. The authors modeled an application as a single

collaborative workflow, consisting of tasks having control and data interdependencies,

92

which can be performed by different users. WeFlow follows a three step process for

the generation of the applications: specification of the workflow, generation of the

application, execution of the generated application. The first step involves providing

a specification file in XML. Then, the application behavior is generated according to

the provided specification. Lastly, the execution engine runs the application and serves

the application workflow as a set of interlinked web views. The authors note that the

system does not support concurrency. Another framework to generate applications is

Simple Flow by Jara et al. [72]. Simple Flow provides uses a single directed graph to

model the control flow between the actions performable by the users. The tool provides

a simple user interface to be used to design the control flow of the application. Using

the interface, the community builder selects performable actions from a predefined set

of actions and specifies their dependencies. The constructed action graphs are then

interpreted by the tool to create the web views dynamically.

Curbera et al. [73] developed Bite, which is an explicit, workflow based composi-

tion model for Web applications. Bite represents a business process as a single graph

of activities with data dependencies in between, which is stored in an XML document.

The model follows the principle of “use implies definition”, and thus the data being

transmitted between the activities is not strongly typed. Each business process in

Bite is assigned a URL. An HTTP POST request against such a URL initiates an

instance of the associated process and returns the URL of the initiated instance. The

proposed model supports asynchronous execution of the business logic and multi-party

interactions.

93

6. DISCUSSION AND FUTURE WORK

In this chapter, we discuss the current state of our work and its future prospects.

As discussed in Section 2, the Semantic Web technologies need a widespread

adoption to reveal their power. This, however, has not been succeeded as anticipated

in 2001 [23], although most of the technologies in the Semantic Web stack are avail-

able for a considerable time. We think that an important cause of this lack of short

term incentives for application developers to bear the nontrivial adoption of these tech-

nologies. This issue could be tackled by applicatoin building frameworks that provide

support for such technologies, without imposing the burden of understanding them

to the application developers. We think the approach proposed within POC Model

is a promising step in this direction, as it facilitates specification of applications that

consume and advertise Linked Data.

In Section 4.1, we concluded that the proposed model is capable of addressing the

needs of a real world community. However, it has a number of significant shortcomings,

which would hinder its effectiveness in a complex production environment.

An important shortcoming the ambiguity of the behaviour of POC Applications

in case of errors. The proposed model does not specify what happens to a WorkflowIn-

stance if an intermediate StepInstance fails its execution, or simply if the user provides

the wrong type of input. This issue can be addressed with a systematic list of error

definitions, identifying which kind of error occurs in which case, and how these errors

should be handled by a POC Application.

Conceptualization provided by POC Core Ontology have apparent drawbacks as

well. The provided domain model does not allow definition of complex Tasks that

are combinations of the set of primitive Tasks provided by the ontology. This hinders

reusability of POC Specifications, since Workflows are not reusable. This issue can be

addressed with introducing a new complex Task type, which resemble Workflows but

94

have input and outputs.

Moreover, Steps and Pipes of a Workflow constructs a directed graph, where

each Step is represented as a node and each Pipe is represented as an edge. Topolog-

ical sorting of this graph is required for an unambiguous runtime behaviour, which is

only possible for acyclic graphs. Therefore, loops cannot be expressed by our current

conceptualization.

95

7. CONCLUSION

In this chapter, we provide conclusive comments on the work described within

this document.

We proposed a novel ontology-driven model for building community-centric online

applicaitons that consume and publish Linked Open Data. We also introduced an

novel OWL 2 ontology that models such community-centric applications in terms of

community specific information types and workflows. We attempted to assess the

expressivity of the proposed model through a real purposeful online community, and

identified a number of shortcomings it exhibits.

96

REFERENCES

1. Twitter, I., “Twitter”, http://www.twitter.com/, accessed at January 2016.

2. Facebook, I., Facebook , accessed at January 2016.

3. Howard, P. N. and M. M. Hussain, “The role of digital media”, Journal of democ-

racy , Vol. 22, No. 3, pp. 35–48, 2011.

4. Lovejoy, K. and G. D. Saxton, “Information, community, and action: how nonprofit

organizations use social media”, Journal of Computer-Mediated Communication,

Vol. 17, No. 3, pp. 337–353, 2012.

5. Eltantawy, N. and J. B. Wiest, “The Arab spring| Social media in the Egyptian

revolution: reconsidering resource mobilization theory”, International Journal of

Communication, Vol. 5, p. 18, 2011.

6. Dugdale, J., B. Van de Walle and C. Koeppinghoff, “Social media and SMS in the

Haiti earthquake”, Proceedings of the 21st international conference companion on

World Wide Web, pp. 713–714, ACM, 2012.

7. Group, W. O. W., “OWL 2 Web Ontology Language Document Overview (Second

Edition)”, http://www.w3.org/TR/owl2-overview/, accessed at December 2015.

8. Hitzler, P. and M. Krötzsch, “OWL 2 Web Ontology Language Primer (Second

Edition)”, http://www.w3.org/TR/owl2-primer/, accessed at December 2015.

9. Berners-Lee, T., “Linked Data”, http://www.w3.org/DesignIssues/

LinkedData.html, accessed at December 2015.

10. Law, E. and L. v. Ahn, “Human computation”, Synthesis Lectures on Artificial

Intelligence and Machine Learning , Vol. 5, No. 3, pp. 1–121, 2011.

97

11. Von Ahn, L., B. Maurer, C. McMillen, D. Abraham and M. Blum, “recaptcha:

Human-based character recognition via web security measures”, Science, Vol. 321,

No. 5895, pp. 1465–1468, 2008.

12. Von Ahn, L., “Games with a purpose”, Computer , Vol. 39, No. 6, pp. 92–94, 2006.

13. Amazon.com, I., “Mechanical Turk”, https://www.mturk.com/mturk/welcome,

accessed at December 2015.

14. Buhrmester, M., T. Kwang and S. D. Gosling, “Amazon’s Mechanical Turk a new

source of inexpensive, yet high-quality, data?”, Perspectives on psychological sci-

ence, Vol. 6, No. 1, pp. 3–5, 2011.

15. von Ahn, L., “Duolingo: learn a language for free while helping to translate the

web”, Proceedings of the 2013 international conference on Intelligent user inter-

faces , pp. 1–2, ACM, 2013.

16. Hollingsworth, D. and U. Hampshire, “Workflow management coalition the work-

flow reference model”, Workflow Management Coalition, Vol. 68, p. 26, 1993.

17. Fielding, R. T., Architectural styles and the design of network-based software ar-

chitectures , Ph.D. Thesis, University of California, Irvine, 2000.

18. Berners-Lee, T., R. Fielding and L. Masinter, Uniform resource identifier (URI):

Generic syntax , Tech. rep., 2004.

19. Fielding, R., J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-

Lee, Hypertext transfer protocol–HTTP/1.1 , Tech. rep., 1999.

20. Fielding, R. T. and R. N. Taylor, “Principled design of the modern Web archi-

tecture”, ACM Transactions on Internet Technology (TOIT), Vol. 2, No. 2, pp.

115–150, 2002.

21. Fielding, R. T., “REST APIs must be hypertext-driven”, http://roy.gbiv.com/

98

untangled/2008/rest-apis-must-be-hypertext-driven, accessed at December

2015.

22. Jaffe, J., “The World Wide Web Consortium”, https://www.w3.org/, accessed at

December 2015.

23. Berners-Lee, T., J. Hendler, O. Lassila et al., “The semantic web”, Scientific amer-

ican, Vol. 284, No. 5, pp. 28–37, 2001.

24. Cyganiak, R. and D. Wood, “RDF 1.1 Concepts and Abstract Syntax”, http:

//www.w3.org/TR/rdf11-concepts/, accessed at December 2015.

25. Schreiber, G. and Y. Raimond, “RDF 1.1 Primer”, http://www.w3.org/TR/

rdf11-primer/, accessed at December 2015.

26. Beckett, D. and B.-L. T, “RDF 1.1 Turtle”, http://www.w3.org/TR/turtle/, ac-

cessed at December 2015.

27. Sporny, M. and D. Longley, “JSON-LD 1.0: A JSON-based Serialization for Linked

Data”, http://www.w3.org/TR/json-ld/, accessed at December 2015.

28. Gandon, F. and S. G, “RDF 1.1 XML Syntax”, http://www.w3.org/TR/

rdf-syntax-grammar/, accessed at December 2015.

29. Group, T. W. S. W., “SPARQL 1.1 Overview”, http://www.w3.org/TR/

sparql11-overview/, accessed at December 2015.

30. Brickley, D. and R. V. Ruha, “RDF Schema 1.1”, http://www.w3.org/TR/

rdf-schema/, accessed at December 2015.

31. Horrocks, I. and P. F. Patel-Schneider, “SWRL: A Semantic Web Rule Lan-

guage Combining OWL and RuleML”, http://www.w3.org/Submission/SWRL/,

accessed at December 2015.

99

32. Schmachtenberg, M., C. Bizer, A. Jentzsch and R. Cyganiak, “Linking Open Data

cloud diagram 2014”, http://lod-cloud.net/, accessed at December 2015.

33. Auer, S., C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak and Z. Ives, Dbpedia:

A nucleus for a web of open data, Springer, 2007.

34. Bizer, C., J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak and S. Hell-

mann, “DBpedia-A crystallization point for the Web of Data”, Web Semantics:

science, services and agents on the world wide web, Vol. 7, No. 3, pp. 154–165,

2009.

35. Wikimedia, F., “Wikipedia”, https://wikipedia.org/, accessed at December

2015.

36. Freudenberg, M. and D. Kontokostas, “DBpedia Version 2015-04 released”, http:

//blog.dbpedia.org/?p=148, accessed at December 2015.

37. Bergman, M. and F. Giasson, “Upper Mapping and Binding Exchange Layer

(UMBEL) Specification”, http://techwiki.umbel.org/index.php/UMBEL_

Specification, accessed at December 2015.

38. Speicher, S. and J. Arwe, “Linked Data Platform 1.0”, http://www.w3.org/TR/

ldp/, accessed at December 2015.

39. Bertails, A. and P. Champin, “Linked Data Patch Format”, http://www.w3.org/

TR/ldpatch/, accessed at December 2015.

40. Fielding, R. and J. Reshke, “Hypertext Transfer Protocol (HTTP/1.1): Message

Syntax and Routing”, https://tools.ietf.org/html/rfc7230, accessed at De-

cember 2015.

41. Dusseault, L. and J. Snell, “PATCH Method for HTTP”, https://tools.ietf.

org/html/rfc5789, accessed at December 2015.

100

42. Weibel, S., “The Dublin Core: a simple content description model for electronic re-

sources”, Bulletin of the American Society for Information Science and Technology ,

Vol. 24, No. 1, pp. 9–11, 1997.

43. Board, D. U., “Dublin Core Vocabulary”, http://dublincore.org/documents/

dcmi-terms/, accessed at December 2015.

44. Breslin, J. G., A. Harth, U. Bojars and S. Decker, “Towards semantically-

interlinked online communities”, The Semantic Web: Research and Applications ,

pp. 500–514, Springer, 2005.

45. Bojārs, U. and J. Breslin, “SIOC Core Ontology Specification”, http://rdfs.org/

sioc/spec/, accessed at December 2015.

46. Lee, W. and T. Bailer, “Ontology for Media Resources 1.0”, http://www.w3.org/

TR/mediaont-10/, accessed at December 2015.

47. Peterson, D. and S. Gao, “W3C XML Schema Definition Language (XSD) 1.1 Part

2: Datatypes”, http://www.w3.org/TR/xmlschema11-2/, accessed at December

2015.

48. Vatant, B. and M. Wick, “GeoNames Ontology”, http://www.geonames.org/

ontology, accessed at December 2015.

49. Snell, J., “Prefer Header for HTTP”, https://tools.ietf.org/html/rfc7240,

accessed at December 2015.

50. Fielding, R. and J. Reshke, “Hypertext Transfer Protocol (HTTP/1.1): Semantics

and Content”, https://tools.ietf.org/html/rfc7231, accessed at December

2015.

51. Kernighan, B. W., D. M. Ritchie and P. Ejeklint, The C programming language,

Vol. 2, prentice-Hall Englewood Cliffs, 1988.

101

52. Flanagan, D. and Y. Matsumoto, The ruby programming language, " O’Reilly

Media, Inc.", 2008.

53. Hickson, A. and R. Berjon, “HTML 5 - A vocabulary and associated APIs for

HTML and XHTML”, http://www.w3.org/TR/html5/, accessed at December

2015.

54. Oy ve Ötesi, F., “An assessment of the Turkish general elections of 2015”, http:

//oyveotesi.org/7-haziran-2015-genel-secim-sonuc-degerlendirmeleri/,

accessed at December 2015.

55. Tarjan, R., “Depth-first search and linear graph algorithms”, SIAM journal on

computing , Vol. 1, No. 2, pp. 146–160, 1972.

56. Mutdosch, T., “HTTPRequester”, https://addons.mozilla.org/en-US/

firefox/addon/httprequester/, accessed at December 2015.

57. Brickley, D. and L. Miller, “FOAF Vocabulary Specification 0.99”, http://xmlns.

com/foaf/spec/, accessed at December 2015.

58. Kim, H. L. and J. G. Breslin, “Basic Geo (WGS84 lat/long) Vocabulary”, http:

//rdfs.org/scot/spec/, accessed at December 2015.

59. Mika, P., “Ontologies are us: A unified model of social networks and semantics”,

The Semantic Web–ISWC 2005 , pp. 522–536, Springer, 2005.

60. Mika, P., “Flink: Semantic web technology for the extraction and analysis of social

networks”, Web Semantics: Science, Services and Agents on the World Wide Web,

Vol. 3, No. 2, pp. 211–223, 2005.

61. San Martín, M. and C. Gutierrez, “Representing, querying and transforming social

networks with RDF/SPARQL”, The Semantic Web: Research and Applications ,

pp. 293–307, 2009.

102

62. Erétéo, G., M. Buffa, F. Gandon and O. Corby, Analysis of a real online social

network using semantic web frameworks , Springer, 2009.

63. Angeletou, S., M. Rowe and H. Alani, “Modelling and analysis of user behaviour in

online communities”, The Semantic Web–ISWC 2011 , pp. 35–50, Springer, 2011.

64. Erétéo, G., M. Buffa, F. Gandon and O. Corby, “SemSNA Ontology”, http://ns.

inria.fr/semsna/2009/06/21/voc.rdf, accessed at December 2015.

65. Angeletou, S., M. Rowe and H. Alani, “Behaviour Ontology”, http://people.

kmi.open.ac.uk/miriam/ontology/BehaviourOntology.n3, accessed at Decem-

ber 2015.

66. Snell, J. M. and E. Prodromou, “Activity Streams 2.0”, https://www.w3.org/TR/

activitystreams-core/, accessed at December 2015.

67. Snell, J. M. and E. Prodromou, “Activity Vocabulary”, https://www.w3.org/TR/

activitystreams-vocabulary/, accessed at December 2015.

68. Sadri, P. and E. Ho, “Yahoo! Pipes”, https://pipes.yahoo.com, accessed: 2014-

05-12.

69. Walsh, N., A. Milowski and H. S. Thompson, “Xproc: An xml pipeline language”,

a conference on XML, p. 13, 2007.

70. Le-Phuoc, D., A. Polleres, M. Hauswirth, G. Tummarello and C. Morbidoni, “Rapid

prototyping of semantic mash-ups through semantic web pipes”, Proceedings of the

18th international conference on World wide web, pp. 581–590, ACM, 2009.

71. Kokciyan, N., S. Uskudarli and T. Dinesh, “User generated human computation

applications”, Privacy, Security, Risk and Trust (PASSAT), 2012 International

Conference on and 2012 International Confernece on Social Computing (Social-

Com), pp. 593–598, IEEE, 2012.

103

72. Jara, J., F. Daniel, F. Casati and M. Marchese, “From a simple flow to social

applications”, Current Trends in Web Engineering , pp. 39–50, Springer, 2013.

73. Curbera, F., M. Duftler, R. Khalaf and D. Lovell, Bite: Workflow composition for

the web, Springer, 2007.

