
JOB SCHEDULING FOR HETEROGENEOUS SUPERCOMPUTERS

by

Seren Soner

B.S, in Chemical Engineering, Boğaziçi University, 2007

M.S, in Chemical Engineering, Boğaziçi University, 2009

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2016

ii

JOB SCHEDULING FOR HETEROGENEOUS SUPERCOMPUTERS

APPROVED BY:

Prof. Can Özturan

(Thesis Supervisor)

Assoc. Prof. D. Turgay Altılar

Assoc. Prof. Alper Şen

Prof. Haluk Rahmi Topçuoğlu

Prof. Oğuz Tosun

DATE OF APPROVAL: 13.01.2016

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to offer my most sincere gratitude to my advisor

Prof Can Özturan. He has supported me both mentally and scientifically during my

PhD thesis. He has always pushed me forward and been understanding and friendly

at the same time. I could not ask for a thesis advisor that was friendlier, more helpful,

or a better guide.

I would like to thank Prof. Oğuz Tosun and Assoc. Prof. D. Turgay Altılar for

their valuable inputs over the years. I would also like to thank Prof. Haluk Rahmi

Topçuoğlu and Assoc. Prof. Alper Şen for reading and commenting on the thesis.

I would like to thank my friends at the Polymer Research Center for their help,

friendliness. They were always the best type of distractions one can hope for in an

office. I was really lucky to have you as colleagues.

I would like to acknowledge the financial support from TÜBİTAK BİDEB 2011.

This work was also financially supported by the PRACE project funded in part by

the EUs 7th Framework Programme (FP7/2007-2013) under grant agreement no. RI-

211528, FP7-261557 and RI-283493. Bogazici University Polymer Research Center’s

cluster has been used for the tests funded by DPT project 2009K120520.

Last but not least, I would like to offer my thanks to my parents, my sister, and

my wife, Dr. Zeynep Kurkcuoglu Soner. I am forever indebted to for their endless

care and love. This thesis (along with everything else I have in life) was made possible

thanks to your support and being with me whenever I need someone.

iv

ABSTRACT

JOB SCHEDULING FOR HETEROGENEOUS

SUPERCOMPUTERS

This thesis addresses the job scheduling problem for heterogeneous supercom-

puters where accelerators such as GPGPUs or co-processors are employed. On homoge-

neous supercomputers, the problem of scheduling user jobs to the available resources is

NP-hard. Heterogeneous systems make the scheduling problem combinatorially more

difficult. In this thesis, we aim to (i) design a new class of scheduling algorithms for

state-of-the-art heterogeneous supercomputers, (ii) implement these scheduling algo-

rithms as ready to use open source plugin software (iii) demonstrate the effectiveness

of these algorithms by emulating real life usages. We propose four different models

to solve the scheduling problem on heterogeneous supercomputers. In the first model,

we formulate a simple co-allocation problem that does not take topology into consid-

eration. In the second model, we implement the problem as an auction problem and

automatically generate multiple bids for each job by assuming a one dimensional sys-

tem topology. In the third model, we support moldable jobs that may request a range

of resources. In our fourth model, we also consider topologically aware scheduling for

hierarchical fat tree interconnection architectures. All of these models are formulated

as integer programming problems and are solved periodically at each scheduling step.

We use existing workloads to test the performance of our scheduling algorithms and

also develop our own workload generator that generates realistic workloads for hetero-

geneous systems. The tests carried out show that our algorithms perform better than

the traditional backfilling algorithm in terms of system utilization, average job waiting

time and/or job fragmentation.

v

ÖZET

HETEROJEN SÜPERBİLGİSAYARLAR İÇİN İŞ

ÇİZELGELEME

Bu tez, GPGPU veya ekişlemci gibi hızlandırıcıların kullanıldığı heterojen süper-

bilgisayarlardaki iş çizelgeleme problemini ele almaktadır. Homojen süperbilgisayar-

larda, mevcut kaynaklara kullanıcı işlerinin çizelgelenmesi problemi NP-zor sınıfındadır.

Heterojen sistemler iş çizelgeleme problemini birleşimsel olarak daha zor yapmak-

tadırlar. Bu tezde amaçlarımız (i) son teknoloji heterojen süperbilgisayarlar için yeni

tür iş çizelgeleme algoritmaları tasarlamak, (ii) bu algoritmaları kullanılmaya hazır açık

kaynak kodlu yazılım ekleri olarak gerçekleştirmek ve (iii) bu algoritmaların etkinliğini

gerçek hayat kullanımını öykünerek göstermektir. Heterojen süperbilgisayarlardaki

iş çizelgeleme problemini çözmek için dört farklı model önerilmiştir. İlk modelde,

topolojiyi dikkate almayan basit bir beraber tahsis etme problemi formülleştirilmiştir.

İkinci modelde, problemi bir müzayede problemi olarak ele alıp ve bir boyutlu bir sis-

tem topolojisi varsayarak her iş için otomatik olarak birden fazla teklif yaratılmıştır.

Üçüncü modelde, sayı aralıkları kullanarak kaynak istekleri yapabilen şekillendirilebilir

işler desteklenmiştir. Dördüncü ve son modelimizde, hiyerarşik şekilde bağlanmış

şişman-ağaç topolojisi de dikkate alınmıştır. Tüm bu modeller tam sayı programlama

problemi olarak formüle edilip, her çizelgeleme adımında periyodik olarak çözülmektedir.

Çizelgeleme algoritmalarının başarımlarını test etmek için daha önceden tanımlanmış

olan iş yüklerine ek olarak, heterojen sistemler için daha gerçekçi iş yükleri yaratacak

olan kendi iş yükü üreticimiz de geliştirilmiştır. Yapılan testler algoritmalarımızın ge-

leneksel geri dolgulama algoritmalarından sistem kullanımı, ortalama iş bekleme süresi

ve/veya iş parçalanması açılarından bakınca daha iyi performans ortaya koyduğunu

göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . xii

LIST OF SYMBOLS . xv

1. INTRODUCTION . 1

1.1. Architectures of the State-of-the-Art Supercomputers 1

1.2. A Scheduling Example . 7

1.3. Contributions of this Thesis . 9

1.4. Outline of this Thesis . 10

2. A SURVEY of JOB SCHEDULING in SUPERCOMPUTERS 12

2.1. Scheduling Algorithms . 14

2.1.1. Job Scheduling in Heterogeneous Supercomputers 17

2.1.2. Topology Awareness . 19

2.1.2.1. Fat-Tree Topology . 21

2.1.3. Energy Awareness . 22

2.2. Complexity of Scheduling . 23

2.2.1. Integer Programming . 23

2.2.1.1. Knapsack Problem . 25

2.2.1.2. Exact and Heuristic Solutions 27

2.2.2. Integer Programming in Scheduling and Auction Mechanisms . 28

3. SIMPLE INTEGER PROGRAMMING BASED SCHEDULER 30

3.1. Formulation . 30

3.2. IPSCHED Slurm Implementation . 35

4. AUCTION BASED SCHEDULER WITH LINEAR TOPOLOGY SUPPORT 37

4.1. Bid generation phase . 45

4.2. Preference value calculation . 47

4.3. AUCSCHED1 Slurm Implementation 49

vii

5. AUCTION BASED SCHEDULER WITH MOLDABILITY SUPPORT . . . 51

5.1. Improved IP Formulation . 51

5.2. aucsched2 Slurm Implementation . 55

6. AUCTION BASED SCHEDULER WITH HIERARCHICAL INTERCONNECT

SUPPORT . 58

6.1. aucsched3 Slurm Implementation . 62

7. EXPERIMENTAL SETUP . 65

7.1. Slurm Implementation . 65

7.2. Simulation vs Emulation . 66

7.3. Workloads and Test Conditions . 67

7.3.1. ESP Workloads . 67

7.3.2. Our workload generator . 68

7.3.3. Workloads generated with GPU ranges 70

7.4. Performance Metrics . 72

8. RESULTS and DISCUSSION . 75

8.1. General comparison of the models introduced 75

8.2. Comparison of IPSCHED and AUCSCHED1 76

8.3. Comparison of AUCSCHED2 with AUCSCHED1 80

8.4. AUCSCHED3 Tests . 89

8.4.1. Tests on a hypothetical 1024 node supercomputer 89

8.4.2. Tests on a simulated 1408 node TSUBAME 2.0 supercomputer . 93

9. CONCLUSIONS . 97

9.1. Future Work . 98

APPENDIX A: RESULT TABLES . 100

REFERENCES . 111

viii

LIST OF FIGURES

Figure 1.1. K-computer system configuration overview. 2

Figure 1.2. TSUBAME 2.0 system architecture. 4

Figure 1.3. Example assignment for i) backfilling algorithm and ii) co-allocation. 8

Figure 2.1. Slurm components. 15

Figure 2.2. Scheduling for an example of four jobs using (a) FCFS and (b)

backfilling. 17

Figure 2.3. An example fat-tree with 16 compute nodes, 4 intermediate level

and 2 root level switches. 21

Figure 3.1. Scheduling of windows of jobs. 30

Figure 3.2. IPSCHED scheduling steps. 34

Figure 3.3. An example assignment of jobs to 16 nodes by IPSCHED. 34

Figure 4.1. Auction Based Scheduler with Linear Topology Support (AUC-

SCHED1). 42

Figure 4.2. A sample assignment of jobs to 16 nodes by AUCSCHED1. 43

Figure 4.3. Detailed nodeset generation, bid generation and solution figure for

a 144 node system. 44

ix

Figure 4.4. Determination of nodesets for a 12-node system. 46

Figure 4.5. Bid generation algorithm. 48

Figure 5.1. A sample assignment of jobs to 16 nodes by AUCSCHED2. 55

Figure 6.1. Example switch configurations: (a) a tree and (b) a fat-tree. . . . 58

Figure 6.2. An example assignment of jobs to 16 nodes on a two level tree by

AUCSCHED3. 63

Figure 7.1. Fragmentation and spread values for two jobs, J1 and J2. 73

Figure 7.2. An example showing job spread and lowest level common switch

metrics. 74

Figure 8.1. Comparison of system utilization in different experiments for ESP

workloads. 78

Figure 8.2. Comparison of system utilization in different experiments for our

workloads. 79

Figure 8.3. Comparison of job waiting times (in hours) in different experiments

for ESP workload. 80

Figure 8.4. Comparison of job waiting times (in hours) in different experiments

for our workloads. 81

Figure 8.5. Comparison of job packing factors in different experiments for ESP

workload. 82

x

Figure 8.6. Comparison of job fragmentation in different experiments for ESP

workload. 83

Figure 8.7. Comparison of job fragmentation in different experiments for our

workloads. 84

Figure 8.8. Comparison of job spread in different experiments for ESP workload. 85

Figure 8.9. Comparison of job spread in different experiments for our workloads. 86

Figure 8.10. Utilization comparison in the tests. 87

Figure 8.11. Fragmentation comparison in the tests. 87

Figure 8.12. Spread comparison in the tests. 88

Figure 8.13. Average lowest level common switch of AUCSCHED3 compared to

Slurm/Backfill plug-in. 91

Figure 8.14. Average job spread of AUCSCHED3 compared to Slurm/Backfill

plug-in. 91

Figure 8.15. Distribution of percentage of jobs over switch levels (a) and per-

centage of total job durations over switch levels (b) for all workloads. 92

Figure 8.16. Distribution of percentage of jobs over switch levels (a) and per-

centage of total job durations over switch levels (b) for workloads

5, 6, 5’ and 6’. 92

xi

Figure 8.17. Utilization comparison between AUCSCHED3 and Slurm/Backfill

for simulated TSUBAME 2.0 system with different generated work-

loads as described in Table 8.6. 95

Figure 8.18. Lowest level common switch comparison between AUCSCHED3

and Slurm/Backfill for simulated TSUBAME 2.0 system with dif-

ferent generated workloads as described in Table 8.6. 96

Figure 8.19. Job spread comparison between AUCSCHED3 and Slurm/Backfill

for simulated TSUBAME 2.0 system with different generated work-

loads as described in Table 8.6. 96

xii

LIST OF TABLES

Table 1.1. Top ranked supercomputers in November 2015 Top500 List. 5

Table 1.2. Example illustrating advantage of solving collective allocation prob-

lem. 7

Table 2.1. Slurm plug-ins and their tasks. 15

Table 2.2. Different scheduling problems and their complexities and hetero-

geneity levels. 24

Table 3.1. List of main symbols, their meanings, and definitions for IPSCHED. 31

Table 3.2. Number of variables in IPSCHED IP formulation. 33

Table 3.3. Number of constraints in IPSCHED IP formulation. 33

Table 4.1. List of symbols, their meanings, and definitions for AUCSCHED1. 38

Table 4.2. Number of Variables in AUCSCHED1 model IP formulation. . . . 41

Table 4.3. Number of Constraints in AUCSCHED1 IP formulation. 41

Table 4.4. Constants for Fjc calculation for different job and bid classes. . . . 49

Table 5.1. List of symbols, their meanings, and definitions for Auction Based

Scheduler with Linear Topology Support. 52

Table 5.2. Constants for Fi calculation for different bid types in AUCSCHED2. 54

xiii

Table 6.1. List of symbols, their meanings, and definitions for AUCSCHED3. 59

Table 7.1. ESP Benchmark Job Characteristics. 69

Table 7.2. Workload types and job distributions. 70

Table 7.3. Job types in the workload. 71

Table 8.1. Number of variables in the IP problems for all models developed in

this thesis. 75

Table 8.2. Features for all models developed in this thesis. 76

Table 8.3. Experiments and their characteristics. 77

Table 8.4. Workload types and job distributions for AUCSCHED2 test. . . . 86

Table 8.5. Workload types and job distributions. 89

Table 8.6. Workload types and job distributions. 94

Table A.1. IPSCHED, AUCSCHED1 and Backfill comparison results for ESP

workload. 100

Table A.2. IPSCHED, AUCSCHED1 and Backfill comparison results for our

workload generator. 101

Table A.3. Results for AUCSCHED2, AUCSCHED1 and Backfill for the emu-

lated Tsubame 2.5 system. 106

xiv

Table A.4. AUCSCHED3 and Backfill comparison for an emulated 1024 node

hypothetical supercomputer. 109

Table A.5. AUCSCHED3 and Backfill comparison for an emulated TSUBAME

2.0 supercomputer using workloads in Table 8.6. 110

xv

LIST OF SYMBOLS

Acpu
n Number of available CPU cores on node n

Agpu
n Number of available GPUs on node n

bi binary variable corresponding to bid i

bjc Binary variable for a bid on class c of job j

B Set of all bids, B = {b1, . . . , b|B|}

Bj set of bid indices for job j : Bj = {i1, . . . , i|Bj |} variables

cj node packing variable for a job j

C Set of bid classes : C = {c1, . . . , c|C|}

Cjn The set {c ∈ C | c ∈ Bj and n ∈ Nc}

Fjc Preference value of bid c of job j in the interval (0, 1].

J Set of jobs that are in the window: J = {j1, . . . , j|J |}

Kji A heuristically assigned cost value in (0, 3] of bid i of job j

Li Level of lowest level common switch of the nodes requested

by bid i

Lmax Level of the highest level switch in the system

N Set of nodes : N = {n1, . . . , n|N |}

Nc Set of nodes making up a class c

Ni Number of nodes requested by bid i

Pj Priority of job j

Pmin diff Minimum absolute priority difference between any pair of jobs

in the window

rjn Non-negative integer variable giving the remaining number of

cores allocated to job j on node n (i.e. at most one less than

the total number allocated on a node)

Rcpn
j Number of cores per node requested by job j. If not specified,

this parameter gets a value of 0

Rcpu
j Number of cores requested by job j

Rgpu
j Number of GPUs per node requested by job j

Rgres
j Number of generic resources per node requested by job j

xvi

Rnode
j,min Minimum number of nodes requested by job j

Rnode
j,max Maximum number of nodes requested by job j

Rcpu
jc Number of cores requested by job j in bid c

Rnode
jc Number of nodes requested by job j in bid c

sj Binary variable indicating whether job j is allocated or not

tnj binary variable showing whether job j is allocated any re-

source on node n

Tin no. of cores on node n requested by bid i.

ujn Binary variable indicating whether node n is allocated to job

j

Uin boolean parameter indicating whether bid i requires any re-

sources on node n.

xnj no. of cores allocated to job j at node n

α A factor multiplying the preference value Fjc so that the added

preference values do not change the job priority maximizing

solution

β a constant multiplying Kji

1

1. INTRODUCTION

The term supercomputer stands for the most predominant computer in terms

of computational rate, memory, cost, or size [1]. The use of supercomputers has in-

creased drastically in the last few decades. During 1970s, supercomputers were mainly

used for weather forecasting and aircraft design [2]. During 1980s, galaxy formation

was simulated [3]. During 1990s, supercomputers replaced wind tunnels in aeronau-

tics research [3]. By 2000s, supercomputers were also used for investigating protein

folding mechanisms [4]. Molecular dynamics simulations, cancer research, advanced

seismic analysis are just a few of the many application areas in this decade that utilize

supercomputers [5–7].

Technological progress has enabled more economical supercomputers to be devel-

oped. The approximate cost per giga-floating point operations per second (GFLOPS)

in 1960s was 8.3 trillion USD [8], which fell down to 42,000 USD in 1990s [9]. Cur-

rently, this cost is around 0.08 USD [10]. Besides this cost, the computational capacity

is also increasing. The first teraflop rate (1,068 GFLOPS) was reached in 1997 by Intel

ASCI Red [9, 11] which had one thousandth flop rate of the IBM Roadrunner [12] in

2008 [13]. Currently, the fastest supercomputer, Tianhe-2 [14], has a maximal LIN-

PACK benchmark [15] performance of 33,863 TFLOPS. Although the computational

capacity has increased by a factor of 33 in the last 7 years, the power consumption only

increased by a factor of 5, which is mainly due to the important emphasis put on green

supercomputing [13, 16]. The current fastest supercomputer is in peta-FLOPS scale.

In the next decade, the aim is to reach exa-FLOPS scale (also called exascale) [17].

1.1. Architectures of the State-of-the-Art Supercomputers

A distributed system is a collection of several computational entities, each having

local memory. The communication between these entities are handled by message pass-

ing mechanisms. Supercomputers are distributed systems having massive computing

power. The current supercomputer architectures include both homogeneous computa-

2

Figure 1.1. K-computer system configuration overview [18].

tional engines that are uniform and heterogeneous systems with multiple and different

computational engines such as co-processors and/or GPUs.

The components of a supercomputer are generally the following:

(i) Compute nodes

(ii) Parallel file systems

(iii) Networking infrastructure (i.e. switches and cables)

(iv) Cooling equipment

The components of a compute node are typically the following:

(i) Processor(s)

(ii) Local memory

(iii) Local disk drive

(iv) Network connection

(v) Accelerators or co-processors (for heterogeneous supercomputers)

For example, a homogeneous supercomputer, K-computer consists of 76,800 com-

3

putational nodes. In each of these computational nodes, there are 16 GB of memory,

8 cores, a torus network connection, local disks. Additionally, there is a global file

system, accessible from each compute node. The global I/O network enables access of

users to reach the file systems and the compute nodes. There is also a central resource

job management system that allows job user management [18]. The architecture is

shown in Figure 1.1.

A heterogeneous supercomputer has a hybrid architecture, and may include ac-

celerators like Graphics Processing Units (GPU), Xeon Phis or Field Programmable

Gate Array (FPGA) boards to carry out computational tasks. A notable example is

TSUBAME 2.0 [19], which has 1408 computational nodes. Each of these nodes em-

ploys 16 cores and 3 NVIDIA M2070 Graphics Processing Units (GPUs) and local solid

state disks (SSDs). The computation may be carried out on the cores and the GPUs.

Ideally, hybrid jobs will make use of all of these resources. TSUBAME’s compute

nodes are connected via Infiniband [20] using a widely used fat-tree architecture (see

Section 2.1.2.1 for detailed information on fat-tree architecture). These compute nodes

are also connected to an external parallel file system with this Infiniband network. The

description of the TSUBAME architecture is given in Figure 1.2.

Message Passing Interface [21] (MPI) is a communications protocol which aims

high performance, scalability and portability on distributed systems. It is the most

dominant communications protocol used in high performance computing. MPI can

also run on shared memory computers.

All supercomputers in the most recent Top 500 list use Linux/Unix based op-

erating systems [22]. In a traditional computer, the job scheduler is responsible for

assigning processors and other resources such as disks etc. to a job. On a super-

computer, however, the job scheduler has to be responsible for not only thousands of

cores but also for communication resources such as switch bandwidths and licenses etc.

Therefore, job resource management systems of supercomputers have evolved into a

complex piece of software. A resource job management system of a distributed system

efficiently assigns the jobs submitted by the users to the system resources. Some of the

4

1 2 3 14 15 16 17 18 19 30 31 32

SW1 SW2 SW3 SW4

6 core switches 6 core switches

x44 racks

1 rack

Figure 1.2. TSUBAME 2.0 system architecture.

available resource job management systems have been introduced in Chapter 2.

With the introduction of heterogeneity on the latest platforms, resource manage-

ment of different hardware components, and scheduling of jobs onto these components

have now become more important [23]. Some of the fastest supercomputers according

to the Top 500 list published in November 2015 [22] are listed in Table 1.1. In the

topmost 15 supercomputers in this list, there are seven heterogeneous supercomputers.

The speeds reported in Table 1.1 are the maximum computational rate a computer can

achieve when running the LINPACK benchmark [24].

The recent supercomputer designs use GPUs or Xeon Phis on heterogeneous com-

pute nodes such as those on Tianhe-2 [14], Titan [25], Piz Daint [28], Stampede [29],

TSUBAME 2.0 [19]. The two largest GPU manufacturers NVIDIA and AMD have a

variety of GPUs that have thousands of smaller cores optimized for handling massively

parallel arithmetic operations compared with multi-core CPUs with smaller number of

cores [30]. Intel is also in the race for heterogeneous supercomputing with its coproces-

sor, Xeon Phi or Intel Many Integrated Core Architecture [31]. All of the latest models

5

Table 1.1. Top ranked supercomputers in November 2015 Top500 List [16].

Rank
Name Speed Technical Properties

(Country) (PFLOPS) (on each node)

1
Tianhe-2

(China) [14]
33.86

16K nodes, 16 cores

and Xeon Phi on each node

2
Titan

(USA) [25]
17.59

18K nodes, 16 cores and Nvidia

Tesla K20X GPU on each node

3
Sequoia

(USA) [26]
17.17

98K nodes, 16 cores

on each node

4
K-Computer

(Japan) [18]
10.51 88K nodes, 8 cores on each node

5
Mira

(USA) [27]
8.59

49K nodes, 16 cores

on each node

7
Piz Daint

(Switzerland) [28]
6.27

5K nodes, 8 cores and Nvidia

Tesla K20X GPU on each node

10
Stampede

(USA) [29]
6.27

6.4K nodes, 16 cores and Xeon-Phi

co-processor on each node

25
TSUBAME 2.0

(Japan) [19]
2.78

1408 nodes, 16 cores and 3 Nvidia

M2070 GPUs on each node

of the three manufacturers have a similar price, capacity, and power consumption; the

price ranges between 3000 to 5000 USD, capacity ranges between 3 to 5 TFLOPS, and

the power consumption ranges between 250 to 400 W [32–34].

Green 500 [35] is another Top500 list that aims to list the most energy-efficient

supercomputers in the world. As a motivation for this list, it is stated that even though

the theoretical flop rate, and the linpack performance metrics in terms of FLOPS

are of interest, it is necessary to develop a new performance metric based on energy

consumption since more and more energy (both in terms of electrical power and cooling)

is needed to run the state-of-the-art supercomputers. This new metric considers the

6

FLOPS per the total energy consumed by the servers and the cooling facilities.

It should be noted that, of the topmost 40 supercomputers in the most recent

Green 500 list in November 2015, 38 employ GPUs or co-processors to achieve higher

computational rates with less energy consumption [36]. Two employ only CPU cores as

computation resources. Job schedulers developed for these supercomputers have only

focused on the management of mainly cores. Heterogeneous systems make schedul-

ing problem combinatorially more difficult. With the advances in the recent years,

GPUs and Intel’s coprocessor Xeon Phi have been playing increasing role in scientific

computing applications. The recently built supercomputers are employing Xeon Phi

co-processors or GPUs in order to exploit higher parallelism levels. TianHe-2 system,

which was built in 2013 and which ranks as first in the November 2015 Top500 List [22],

employs a total of 16K compute nodes, each having 2 Intel Ivy Bridge Xeon CPUs (16

cores) and Xeon Phi co-processors [14]. Titan supercomputer [25], which ranks as sec-

ond, has 18,688 nodes, each of which contains 16-core AMD Opteron 6274 CPUs and

Nvidia Tesla K20X GPU’s. TSUBAME 2.0 [19], built in 2011, has 1408 compute nodes

with 2 Intel X5670 CPU’s (12 cores) and 3 NVIDIA M2050 GPU’s per node. TSUB-

AME 2.0 supercomputer ranks 26th in the Green500 list [35], and ranks as 25th in the

November 2015 list with a capacity per power consumption of 2,952 GFLOPS/KW.

The emergence of such heterogeneous supercomputers also necessitates schedulers

that can handle generic resources such as GPUs or coprocessors available on the nodes.

The users of these supercomputers may submit jobs which utilize only CPU cores, or

combination of CPU cores and one or more generic resource on each node. A scheduler

of such heterogeneous systems needs to efficiently assign the available resources to the

nodes, so that the jobs in the queue will not wait unnecessarily. Most of the schedulers,

such as Slurm [37], employ a priority ordered queue and schedule the jobs by taking

them one by one from the front of the queue, using a First-Come First-Served (FCFS)

or backfilling algorithm. In FCFS, the scheduler starts the jobs from the priority

ordered queue one by one. In backfilling algorithm, if the system cannot start the first

job due to resource unavailability, it can start another job in the queue, as long as that

job does not delay the first job’s starting time (see Section 2.1 for more information on

7

FCFS and backfilling). The following example shows how such a scheduling mechanism

based on taking one job at a time from the front of the queue may cause unnecessary

waiting for some jobs in the queue.

1.2. A Scheduling Example

Consider a small heterogeneous cluster with 4 nodes. On this cluster, each node

has 12 cores and 3 GPU’s, similar to configuration of the nodes of the Tsubame su-

percomputer [19]. In this example, there are three jobs. The jobs J1, J2 and J3, whose

resource requests are given in Table 1.2 arrive in the given order. i) The backfilling

Table 1.2. Example illustrating advantage of solving collective allocation problem.

Job Resources Requested

J1 24 cores

J2 6 cores and 2 GPUs per node

J3 6 cores and 3 GPUs per node

algorithm would take the first job at the front of the queue, go through the list of nodes

and best-fit the job’s resource requirements to the nodes that have available resources.

Therefore, the resulting allocation would be as follows:

• J1 will be allocated the first 2 nodes, leaving the GPUs of that nodes unutilized.

• J2 will be allocated the last 2 nodes, using 6 cores and 2 GPUs on each node,

leaving half of the cores unutilized.

• After one of the jobs finishes, J3 will be allocated resources, therefore, increasing

the total turn around time for J3.

ii) If we take all the jobs in the queue, and solve an assignment problem, we can come

up with an efficient solution where all the jobs in the queue are allocated at the same

time, and all the resources in the system are utilized, in the following manner.

8

Figure 1.3. Example assignment for i) backfilling algorithm and ii) co-allocation.

• J1 will be allocated 6 cores on all of the 4 nodes.

• J2 will be allocated 6 cores and 2 GPUs on the first two nodes.

• J3 will be allocated 6 cores and 3 GPUs on the last two nodes.

Figure 1.3 illustrates the system and the assignment outcomes for i) and ii).

In order to overcome such problems we propose algorithms which instead of tak-

ing one job, take a window of jobs from the front of the queue and solve an integer

programming problem at every scheduling step. We formulate an integer programming

(IP) problem which is similar to an m-dimensional multiple knapsack problem for-

mulation, in which the jobs have multiple dimensions (number of cores and number of

resources per node), and there are multiple knapsacks (nodes). The difference from the

m-dimensional multiple knapsack problem is that, the jobs can be allocated more than

one node. A more detailed information on m-dimensional multiple knapsack problem

has been given in Subsubsection 2.2.1.1.

9

1.3. Contributions of this Thesis

As we move towards the exascale computing, the emergence of heterogeneous

supercomputers with massive numbers of cores and accelerators necessitate design and

development of new generation of schedulers that can handle heterogeneity of the

resources. The traditional scheduling problems on homogeneous systems require the

solution of NP-hard problems. With the introduction of heterogeneity, even more

combinatorially complex problems have to be solved. The good news is that new

generation of fast integer programming solvers help us to solve combinatorially complex

problems with large numbers of variables in a fast manner. The main objectives of

this thesis are (i) the design of new class of scheduling algorithms for state-of-the-art

heterogeneous supercomputers (ii) development of scheduling software that can easily

and readily be used on the current supercomputers and (iii) demonstration of the

effectiveness of newly developed algorithms not by simulation but rather in a setting

that is close to the real life usage. To achieve these objectives, the thesis makes the

following contributions:

(i) The jobs and the vast number of heterogeneous supercomputer resources are

viewed as a market where jobs need to acquire resources. This view enables

us tackle the complex heterogeneity scenario and develop a new class of job

scheduling models where the jobs bid for resources that are most appropriate for

themselves just like people bid for goods that have the most utility for themselves

in auction markets.

(ii) Four new combinatorial optimization problems are developed for models ranging

from a simple one involving no topology to an advanced one involving topology

aware scheduling. These optimizations are formulated as integer programs and

solved using state-of-the-art IP packages. Furthermore, based on the performance

of the IP solvers for our IP formulations, automatic bid generation processes

adjusts the number of bids generated so as to solve the resulting IP problems in a

few seconds which makes the use of IP solvers in supercomputer jobs scheduling

practical in real life settings.

10

(iii) Open source and free General Public License (GPL) licensed software in the form

of a Slurm plug-in is developed that incorporates our various scheduling models

and algorithms. The software can easily and readily be installed and used on a

supercomputer system. It is distributed at: https://github.com/aucsched/.

(iv) The models and algorithms developed are tested in settings that are close to

a realistic supercomputer usage scenario. Instead of simulation, more realistic

emulation techniques are used to demonstrate effectiveness of our models and

algorithms.

1.4. Outline of this Thesis

Chapter 2 briefly reviews the recent work in supercomputing, integer program-

ming and knapsack problems in particular.

Chapter 3 covers our first model named Simple Integer Programming Based

Scheduler. In this model, we formulate and solve a simple co-allocation problem that

does not use any topology information. In our tests, we show that this model performs

better in terms of system utilization and resource fragmentation than the Slurm’s back-

fill model under different system conditions and settings.

Chapter 4 covers our second model named Auction Based Scheduler with Linear

Topology Support. In this model, we view the job scheduling problem as an auction

problem and multiple bids are generated for each job automatically. In this model,

the topology of the system is assumed as linear one dimensional array. We compare

our implementation of Auction Based Scheduler with Linear Topology Support with

Simple Integer Programming Based Scheduler and Slurm’s backfill method and show

that in our tests this model performs better in terms of system utilization and resource

fragmentation.

Moldable jobs are jobs that may run on different resource sizes and configurations,

but these resources are fixed at the start of execution. Chapter 5 covers our third model

named Auction Based Scheduler with Moldability Support. In this model, we introduce

11

moldability support by allowing a job to request a range of generic resources. Such

jobs can run with the defined minimal generic resource request, but may exhibit better

performance with higher number of generic resources. This model is similar to the

model defined in Chapter 4. However, the main difference is that, this model enables

the moldability of generic resources at the start of the execution. With this feature,

the users can submit a range for the generic resources they request so that they will get

at least some number and at most some number of generic resources. If possible, the

scheduler will allocate them higher number requested resources for better performance.

This feature can be very useful for jobs with moldability capability. Additionally, in

this model, the integer programming problem formulation is redefined. The number of

variables in the new formulation is reduced drastically which in turn allows the system

to generate higher number of bids and obtain better solutions.

Chapter 6 covers our fourth model named Auction Based Scheduler with Hierar-

chical Interconnect Support. In this model, a fat-tree system topology is considered.

Instead of reducing the distances between the nodes on a one dimensional linear ar-

rangement, this method aims to do topologically aware scheduling so as to reduce the

number of links (hops) that need to be traversed while the job processes communicate.

In Chapter 7, available workloads in the literature, experimental settings and per-

formance metrics are presented. In Chapter 8, comparisons of the models proposed in

this thesis, results obtained for the four different scheduler models, and their compar-

isons with the current Backfill method are presented. Finally, the thesis is concluded

in Chapter 9, and future work is discussed.

12

2. A SURVEY of JOB SCHEDULING in

SUPERCOMPUTERS

High Performance Computing (HPC) clusters generally have a uniform hardware

and configuration. This hardware is connected with high speed switches. In such

clusters, job schedulers, together with resource management systems are used in order

to schedule the jobs and watch the status of the available resources and the job queue.

In a cluster, when jobs are submitted, there are a few parameters that are taken

into consideration by the scheduler. The priority of a job increases when the waiting

time of a job in the queue increases. Some supercomputers assign higher priorities to

the jobs with a larger job size, in order to encourage running larger parallel jobs in

systems. In some cases, a certain user or a group may use a larger portion of the system

for a certain amount of time. In order to allow fair usage of the system resources, a

fair-share policy may be used, which assigns a lower priority to those that have already

been consuming the system resources.

Most batch schedulers used in these HPC clusters prioritize the queue of pending

jobs, and attempt to run the highest priority job. If no resources are available for

this job, the scheduler tries to run the next job in the queue. In order to tune these

schedulers, the administrator can either change the priority calculation or the resource

selection.

In priority calculation, several factors can be used:

• Waiting time

• Job size

• Fair-share

In resource selection, several factors should be considered:

13

• Core and node requests of the jobs

• Additional constraints such as memory, GPU, disk requests

• Node-to-node communication delays

• Node contiguity

• Packing of jobs into a small set of nodes

A recent PhD thesis by Georgiou [38] makes an in-depth assessment of widely

used job schedulers. Resource and job management systems aim to (i) satisfy users de-

mands for carrying out their computations and (ii) achieve good utilization by efficient

allocation of resources to jobs. Examples to the widely used resource job management

systems include PBS Pro [39], Moab [40], TORQUE [41], Maui [42], and SGE [43].

Basically, all of the schedulers above support FCFS scheduling, backfilling, fair share,

preemption (releasing a job from resources for higher priority jobs that are in the

queue), multi-factor priority (allowing different factors to calculate the job priority),

advanced reservation (reservation of resources in a future time), application licenses.

Below, we briefly explain each resource job management system’s features.

PBS Pro [39] (and its unsupported open source version TORQUE [41]) is a com-

mercial scheduler. It supports GPU scheduling in two approaches: (i) the basic ap-

proach where only one GPU job can be run on any given node at a time and (ii)

advanced approach where the job can request each GPU on any node explicity. The

second approach is applicable when a single node is shared among multiple jobs. TSUB-

AME 2.0 [19] uses PBSPro and its advanced GPU scheduling property. PBS Pro also

extends accounting by keeping GPU usage data by the users.

Moab [40] (and its open source version Maui) is also a commercial job scheduler,

but it needs to be coupled with a job/resource manager system such as Torque, Slurm,

LSF etc. Moab only handles the scheduling of the jobs in the queue. Moab has GPU

support, and automatically selects the coldest GPU by tracking their temperatures.

SGE [43] is a commercial job resource management system from Oracle. Open

Grid Scheduler/Grid Engine [44] is the open source version based on SGE. Both SGE

14

and OGS have simple GPU scheduling support. In SGE, queues are defined to man-

age priority policies and job execution on the hosts. SGE also supports advanced

reservations and application licenses.

Slurm [37] is an open source job resource management system, distributed under

GPL. The main design goals behind Slurm were portability and scalability. The plug-in

mechanism allows the developers to extend Slurm functionality to different systems or

purposes. It is designed as a light-weight system. There is a central controller daemon,

Slurmctld on the central management node. This controller daemon is responsible for

reading the configuration file, monitoring and managing the nodes, grouping nodes

into partitions, accept job submission/cancellation requests from the users, and assign

resources to the jobs in the pending queue. There are also separate daemons named,

Slurmd, at each compute node. Slurmd communicates with Slurmctld and passes

information about the node’s status, the resources, and the job currently running on

that node [37]. The user commands can run anywhere in the cluster but interact with

the controller daemon. Some of the Slurm commands are scontrol ; for administration

purposes by root user, sinfo; for reporting Slurm partition and node status, squeue; for

reporting Slurm jobs with their properties such as job names, user names, scancel ; for

cancelling previously submitted Slurm jobs, sacct ; for displaying Slurm job accounting

data and srun; for running jobs accessing resources managed by Slurm.

Figure 2.1 depicts some of the Slurm commands and their interactions with the

daemons. Slurm separates the cluster into partitions, which are basically job queues

with different constraints. The jobs in a partition are allocated nodes within that

partition. In Slurm, there are different plug-ins for each task. Some of the widely used

plug-ins and their definitions are given in Table 2.1. All of these plug-ins run at the

central daemon Slurmctld.

2.1. Scheduling Algorithms

Given a finite set A of tasks, a length l(a) ∈ Z+ for each a ∈ A, a number

m ∈ Z+ of processors, and a deadline D ∈ Z+, the problem of finding a partition A =

15

Table 2.1. Slurm plug-ins and their tasks.

Plug-in Type
Plug-in

Name
Task

scheduling
basic FCFS schedulling

backfill Backilling

Resource Selection

linear Treat each node as one resource

cons res
Treat each consumable resource (core

or memory) separately

Priority Calculation

basic
decremental counter, first job in the

queue has the highest priority

multifactor

Different factors are used to calculate

each job’s priority such as the job’s

age, fair-share usage, size

Generic resources gpu
Handle GPUs as generic resources on

each node

Figure 2.1. Slurm components [45].

16

A1∪A2∪· · ·∪Am of A into m disjoint sets such that max{
∑

a∈Ai
l(a) : 1 ≤ i ≤ m} ≤ D

is proven to be NP-complete by restriction to Partition Problem, by choosing m = 2

and D = 1
2

∑
a∈Ai

l(a) [46]. Other, harder NP-complete scheduling problems are shown

in Table 2.2. Therefore heuristics algorithms are used at the supercomputer centers to

find a good scheduling solution.

The first, and the most basic scheduling algorithm is FCFS. The first job in the

queue to arrive is selected, and run to completion. However, in the current schedulers,

the queue is ordered by the priorities of the jobs, which is not only dependent on the job

arrival time, but also other features such as job size and fair-share policies as described

above.

The most commonly used algorithm is Argonne Extensible Scheduler System

(EASY) Backfilling [47]. In the EASY backfilling algorithm, if the first job in the

queue has to wait due to the job’s requirements, some of the resources may stay idle,

even though there are enough resources to accommodate requirements of other jobs

in the queue. The EASY backfiling algorithm calculates the expected ending time of

each job running in the system, and calculates the earliest future-time to start for the

jobs currently waiting in the queue. The scheduler than scans the queue for smaller

jobs,that could currently run, and end before the earliest future-time calculated above.

This method was introduced by the Argonne lab in [48]. In this method, the users to

supply an estimate for their job’s runtimes.

The number of reservations (the number of jobs that the earliest future-time is

calculated for), the lookahead (the number of jobs to scan in the queue in order to

backfill) are some of the parameters for the EASY backfilling method [49].

An example comparing the FCFS and the backfilling method has been given in

Figure 2.2. Assume four jobs are submitted in the order of J1, J2, J3 and J4 with the

CPU requests as 4, 4, 8, 4 and priori known execution times as 1, 2, 1, 1. In first-come

first-served, the scheduler would start J1 and J2 at t = 0, wait until J3 can be started,

and start J3 at t = 2 and J4 at t = 3. However, when backfilling is employed, the

17

scheduler would know that J2 would end at t = 2, so the earliest future-time of J3 is

at t = 3, and since there is availablew resources and enough time for J4 to execute, it

could be backfilled into the system.

J1

J2

J3

J4

(a)

J1

J2

J3

J4

(b)

Figure 2.2. Scheduling for an example of four jobs using (a) FCFS and (b)

backfilling. X-axis gives the time and y-axis gives the processors.

Another concept widely used in supercomputers is preemption. Preemption is

the interruption of a preemptee job by a preemptor job in the queue which has higher

priority. Preemption can be used to optimize FCFS or backfilling techniques by defining

a priority gap between the preemptee and preemptor jobs. In this thesis, we have not

focused on preemption.

2.1.1. Job Scheduling in Heterogeneous Supercomputers

Heterogeneous supercomputers are systems that utilize multiple processor types

such as CPUs, GPUs, or co-processors such as Xeon Phi. For heterogeneous super-

computers, like homogeneous ones, the optimal scheduling problem is an NP-complete

problem [50].

In practice, the schedulers of many resource managers deal with heterogeneity

problem by defining different partitions in the same cluster. Some resource managers

even supply a hierarchical view of resources, which allows a better view of the cluster

topology to the users [23]. There are also task placement approaches like cgroups and

Non-Uniform Memory Access (NUMA) which allow hierarchical views inside the nodes,

in CPU level [51,52]. However, these approaches require the users to be more aware of

18

the system properties and their jobs characteristics.

Many heuristics have been proposed to solve this optimal scheduling problem in

heterogeneous clusters. In Min-Min scheduling algorithm, tasks are scheduled to differ-

ent machines based on their expected completion times. The expected completion table

is updated after each job is scheduled. In [53], the authors present an energy-aware task

scheduling algorithm based on the Min-Min scheduling algorithm named EAMM. Their

proposed algorithm performs better than the original Min-Min scheduling algorithm

under a simulated heterogeneous cluster.

Another study considers a job as a directed acyclic graph which schedules parallel

tasks, which in turn assigns the job to a certain processor or a set of processors [54].

They have implemented two scheduling algorithms, and tested their scheduling algo-

rithms on a simulation for a 10-processor homogeneous machine and a 20-processor

heterogeneous machine. Both of their algorithms performed better than the common

method which fix the number of processors per job.

In order to make better use of heterogeneity, Iserte et al. [55] introduces a new

type of device called rgpu which allows the users to use GPUs from any node in the

system, unlike the current Slurm implementation where the job can only use the GPUs

on the nodes allocated to it. Iserte et al. supports remote GPU virtualization in Slurm

by viewing all GPUs as being in a global pool.

The concept of moldability is also important for heterogeneous systems. Moldable

jobs are jobs that have resource requirements fixed at submittal time, instead of static

jobs which have resource requirements are fixed at development. Moldability of a job

helps increasing the resource utilization of the system [56]. Demand for moldability fea-

tures of schedulers are starting to appear in recent works. For example, OmpSs, which

is a new parallel programming model built on OpenMP standard, aims to achieve asyn-

chronous parallelism and heterogeneity [57]. The system can choose at run-time any of

different specialized versions of tasks to achieve higher performance by making use of

the flexibility of the model [58]. Qasem delivers another framework that automatically

19

tunes the applications to different architectures to gain high performance [59].

2.1.2. Topology Awareness

Computation performance is related to the the number of switches a job’s tasks

has to go through to communicate with other tasks. Finding the right set of resources

for a job reduces the number of switches required for a job’s different tasks to commu-

nicate, and increases the system performance.

Topology aware mapping problem is an NP-hard problem [60, 61]. Many meta-

heuristics have been developed to solve this problem, including simulated annealing [62]

and genetic algorithms [63]. Bokhari [60] has developed a method which uses pairwise

exchanges between nodes. However, none of these techniques are used in real machines,

due to their computational cost and the fact that they are generally developed for

topologies those are not currently used.

Bhatele [64], surveys effects of topology aware placement of jobs in his PhD

thesis. He describes a metric named hop-bytes, which is calculated by summing up

the message size multiplied by number of hops between source and destination, for all

messages. He proposes that hop-bytes is a better metric to evaluate the performance

than the previously used maximum dilation, and proposes various algorithms for three

dimensional networks to automatically place the jobs on a network so as to minimize the

hop-bytes. He develops application specific topology-aware job placement techniques

for widely used softwares such as NAMD and OpenAtom.

Pascual et al. [65], carries out a simulation based study in order to test whether

the system performance can be increased by assigning resources to jobs in a more topo-

logically aware way. They introduce a speed-up factor, suggesting that a job would

perform better due to the topologically aware resource assignment, which would lead

to a communication locality [65]. In order to improve communication performance,

a contiguous network partition is assigned to each job in the work by [65]. Contigu-

ous network partition, although increases the communication performance, results in

20

a scheduling inefficiency due to system fragmentation. However, quasi-contiguous al-

location, which is a relaxed version of contiguous allocation reduces this affect and

therefore improve the overall system performance.

cpuset is a Linux mechanism to assign set of CPUs and memory to a set of

tasks. In a recent study, cpusets were used to allow a topologically aware assignment

of cores within a node to the jobs, which was also integrated into IBM Platform Load

Sharing Facility [66]. Their implementation allows allocation of cpusets to jobs in a

first-fit algorithm of resources into jobs, by also taking into consideration the memory

constraints of the jobs.

In a similar study, a new topologically aware scheduling algorithm has been de-

veloped for Slurm, which considers the InfiniBand topology [67]. The proposed relaxed

topology-aware scheduling algorithm allows the users to choose a process distribution

scheme. The algorithm discovers the topology, makes a topology-aware mapping for

the compute nodes and find the best possible set of nodes that is available in the

system by considering the available bandwidth in the switches. Their implementation

increases the performance of a system of 64 nodes by up to 8%, and can decrease the

network latency by up to 40% [67].

The topologies of the supercomputers in the Top500 list are also listed. The

most commonly used are the fat-tree, 3-D torus and mesh topologies. Many of the

supercomputers in Table 1.1, including Tianhe-2 (which is ranked first), Stampede and

TSUBAME use fat-tree topologies [14, 19, 29]. Supercomputers employing InfiniBand

network [20] most commonly use a fat-tree topology. More detailed information on fat-

tree topology has been given in Subsubsection 2.1.2.1 and in Figure 2.3. The fourth

model proposed in this thesis includes topology aware scheduling for hierarchically

interconnected supercomputers.

In meshes (and in tori), the compute nodes are connected directly to one another

instead of going through a switch. In n-dimensional meshes, compute nodes are con-

nected to their neighbours in n dimensions. The most common case in mesh and torus

21

topologies is 3D mesh and torus. A torus, is essentially a mesh, with the only difference

being the nodes at the end of each dimension are connected to each other. Titan [25]

employs 3D torus topology as interconnect. Mira [27] and Sequoia [26] employ 5D and

K-computer [18] employs a 6-D torus topology.

Besides the fat-tree and 3D torus topologies, another popular topology is drag-

onfly topology. In this topology, nodes are grouped together. Within each group, there

is an intra-group connection network and groups are linked together using inter-group

connection network. The Piz Daint supercomputer is connected using the dragonfly

topology [28].

2.1.2.1. Fat-Tree Topology. Fat-tree topology has been presented as a network topol-

ogy in 1985 by Leiserson [68]. This type of network defines the compute nodes as the

leaves, and the switches as the intermediate nodes of a tree. From the root to the

leaves, the bandwidth on the links decreases. When building a fat-tree network, many

switches are redundantly used to allow reliability. A three-level fat-tree network, with

16 nodes and 4 intermediate level switches is given in Figure 2.3. It should be noted

that the edges on the higher levels are bolder, which shows that the bandwidth of these

links are higher.

Root-Level Switch Root-Level Switch

S0 S1 S2 S3

N0 N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12 N13 N14 N15

Figure 2.3. An example fat-tree with 16 compute nodes, 4 intermediate level and 2

root level switches. Nn stands for the nth node and Sm stands for the mth switch.

22

2.1.3. Energy Awareness

In this subsection, we present some of the energy awareness techniques that are

being studied in the recent years. In this thesis, we do not directly deal with energy

awareness. However, we are interested in obtaining high CPU utilization and accelera-

tor utilization values for the supercomputers, which would in turn lead to more energy

efficient systems.

The petascale supercomputers in the Top500 list [69] have a power consumption

of ranging from 1.5 MW to 18MW. Piz Daint, which is ranked 7 in the latest Top 500

list (see Table 1.1) has a total power consumption of 1.75 MW and a computational

capacity per power of 3,186 GFLOPS/KW. TSUBAME 2.0, which is ranked 15 has

a a power consumption of 927 KW and a computational capacity per power of 2,951

GFLOPS/KW [35]. Most other top supercomputers in the Top500 list have relatively

lower computational capacity per power consumed, and this value goes down to 1,901

GFLOPS/KW for Tianhe-2, which is on the top of that list [69].

Since the aim is to reach exascale rate in the next decade. If the power consump-

tion per computational capacity stays the same, an exascale supercomputer will require

a power plant which needs to produce 530 MWH energy per hour. This high power cost

also means that there should be a dedicated power plant next to each supercomputer

to cover this supercomputer’s power requirement. A study in 2005 shows that, 1.2%

of total energy in the United States is consumed by the servers and their peripheral

units, and this percentage is doubled every 5 years [70]. Therefore, new techniques are

studied to make the schedulers of these new supercomputers more energy aware [71].

Some of these techniques are presented here.

One approach is to enable Dynamic Voltage and Frequency Scaling (DVFS)-

enabled scheduling [71]. The aim is to minimize the power consumption by mini-

mizing the processor supply voltage, by scaling down processor frequency. DVFS-

enabled scheduling is studied in [72] by considering the problem as a directed acyclic

graph. Since the model is an NP-complete problem, approximation algorithms are

23

suggested [72] for its solution.

Etinski et al. [73] suggests policy named MaxJobPerf, which aims to maximize

the job performance under a power limit. Their method uses an integer programming

problem to decide which jobs to run from the queue and their CPU frequencies.

2.2. Complexity of Scheduling

Table 2.2 shows a list of scheduling problems and their complexities. Distributed

computing on a two-processor computer problem can be solved by reducing the problem

to a minimum cut problem, where the source and the sink are the two processors, and

there is a node for every module of the program [74]. Multiprocessor scheduling with a

set deadline problem can be proved to be NP-complete by transformation from partition

problem [46]. Other scheduling problems are even harder, and the heterogeneity level

increases as we go down in Table 2.2.

2.2.1. Integer Programming

A linear programming (LP) problem is defined as an optimization problem for

which the goal is to maximize or minimize a linear objective function of the decision

variables. The values of the decision variables must satisfy some linear equality or

inequality constraints.

An integer programming problem is a linear programming problem in which the

variables are integers. If all of the variables are integers, the problem is called a

pure integer programming problem [75]. Traveling salesman problem [76], vertex cover

problem [46] and knapsack problems are examples that can be expressed as integer

programming problems.

There are many algorithms for solving linear programming problems. The most

famous is Simplex Algorithm [77]. In Simplex Algorithm, linear problems are converted

24

Table 2.2. Different scheduling problems and their complexities and heterogeneity

levels.

Problem Complexity Resources Heterogenity

Level

Distributed computing on a

2-processor computer [74]

P 2 processors Homogeneous

Multiprocessor scheduling

with deadline [46]

NP-complete m processors

xy
Scheduling with multiple

nodes

NP-hard N nodes, m

processors

Scheduling with multiple

nodes and generic resources

NP-hard N nodes, m

processors, G

generic resources

Topology aware scheduling

with multiple nodes and

generic resources

NP-hard N nodes, m

processors, G

generic resources, s

switches

Heterogeneous

25

into the following standard form:

maximize cx (2.1)

subject to

Ax ≤ b (2.2)

x ≥ 0 (2.3)

A basic feasible solution is obtained from the standard form. If the basic feasible solu-

tion is not optimal, successive pivot operations are performed to improve this feasible

solution at each step.

2.2.1.1. Knapsack Problem. In our models, we will be using modified versions of knap-

sack problems. A knapsack problem is an NP-hard combinatorial optimization prob-

lem, where the objective is to find the total value of a set of items possible, given a

maximum total weight W , and each item i’s weight and value denoted as vi and wi,

respectively. The decision variable xi represents the number of copies from item i is

taken into the knapsack and there are total of N items. Then the knapsack problem

is defined as follows:

maximize
N∑
i=1

vi · xi (2.4)

subject to

N∑
i=1

wi · xi ≤ W (2.5)

xi ∈ Z+ ∀i 1 ≤ i ≤ N (2.6)

Knapsack problem has many variants. The most notable is the 0-1 knapsack

26

problem, in which case an item is either selected, or not; the decision variables xi are

binary.

maximize
N∑
i=1

vi · xi (2.7)

subject to

N∑
i=1

wi · xi ≤ W (2.8)

xi ∈ {0, 1} (2.9)

In another variant of the knapsack problem, m-dimensional knapsack prob-

lem, each item i has a size in m dimensions (wi,1, wi,2, ..., wi,m) and the knapsack has

a capacity of m-dimensions (W1,W2, ...,Wm) [78].

maximize
N∑
i=1

vi · xi (2.10)

subject to

N∑
i=1

wi,j · xi ≤ Wj ∀j 1 ≤ j ≤M (2.11)

xi ∈ Z+ ∀i 1 ≤ i ≤ N (2.12)

In multiple knapsack problem, which is similar to bin packing problem, there

are multiple (K) knapsacks with different capacities (W1,W2, ...,WK) and the aim is

to maximize the selected set of items in all knapsacks. In this problem, the decision

variable xi,j indicates the number of copies of item i is placed in knapsack j.

maximize
N∑
i=1

K∑
j=1

vi · xi,j (2.13)

27

subject to

N∑
i=1

wi · xi,j ≤ Wj ∀j 1 ≤ j ≤ K (2.14)

xi,j ∈ Z+ ∀i 1 ≤ i ≤ N ∀j 1 ≤ j ≤ K (2.15)

In the following chapters, we show that our integer programming models for

solving the scheduling problem for a heterogeneous system, is a combination of multiple

knapsack problem and the m-dimensional knapsack problem.

2.2.1.2. Exact and Heuristic Solutions. Branch-and-bound method for solving integer

programming problems relies on the following observation: If a solution to a linear

programming problem relaxation of an integer programming problem has all variables

as integers, the optimal solution to the former is also the optimal solution to the

latter [79]. The algorithm creates a space search tree, by exploring the branches of

this tree. The branches are checked against estimated upper and lower bounds on the

optimal solution. These branches are excluded if it cannot produce better solution

than the previously known solutions.

LP-solvers try to find the optimal solution for a given problem using various

algorithms. CPLEX, lp solve, SCIP, SoPlex, Gurobi are some of the popular LP-

solvers. Some of them are commercial and some of them are open-source [80].

lp solve is the most widely used open-source linear programming solver. Its so-

lution is based on branch and bound method and a modified version of the simplex

method. It can also solve pure linear, mixed integer and binary problems. lp solve

offers a direct interface for writing and solving the LP problems, or it can be used

externally via a programming interface.

The most widely known commercial LP solver is IBM ILOG CPLEX Optimiza-

tion Studio, or shortly CPLEX. CPLEX uses primal and dual simplex algorithms,

28

sifting algorithms and logarithmic barrier algorithms [81]. CPLEX can be used from

its direct interface, or CPLEX calls can be made externally via its Application Pro-

gramming Interface (API).

In a recent survey [82], it has been shown that cumulative speed-up in CPLEX

in the last two decades is over 30,000 fold. The speed up from version 10 to 11 is

around 8 [83] on the same set of hardware. This is due to both a better usage of the

current hardware and better algorithms. With the usage of multiple threads, it is now

possible to solve integer programming problems with around 100,000 variables in a

matter of seconds. This has allowed us to model the scheduling problem as an integer

programming problem, solve it using CPLEX, and repeat this mechanism in every few

seconds.

Additionally, heuristic methods have been developed to search for solutions of in-

teger programming problems. Some of these include tabu search, simulated annealing,

or ant colony optimization. These meta-heuristic methods can be applied to various

integer programming problems.

2.2.2. Integer Programming in Scheduling and Auction Mechanisms

Integer and linear programming solvers have been made use of in proposed sched-

ulers before. Erbas et al. [84] proposed the use of linear programming solvers for job

scheduling in grids. Shen et al. [85] solves an integer programming problem for resource

provisioning and job allocation policies. Blanco et al. [86] proposes the solution of a

mixed integer problem that aims to minimize the overall makespan.

In [87], a reservation based scheduling approach is proposed for big-data clusters.

In this approach, they use a mixed-integer-linear-programming formulation to solve the

scheduling problem. This work is tested on a 256-node system running Hadoop, using

real and synthetic workloads. Their results show that they can improve latency for al-

most 40% of the jobs. In [88], authors propose a method composed of graph algorithms

and linear programming to produce optimal mapping of tasks to a heterogeneous ar-

29

chitecture. They show that using their method they can reduce the total system cost

(defined as the execution cost of tasks and the communication cost between nodes) by

13% on a simulated system.

Dynamic pricing for resources in cloud computing has been investigated several

times [89–91]. It has been shown that maximum profit scheduling for a cloud can be

formulated as a multiple knapsack problem [89]. This model uses the demand for the

resources to calculate a price for the resource at the cloud. If the price a user is willing

to pay is higher than that calculated price, the resource is allocated. This has also

been shown for infinite horizon case, where the optimal price is not time-dependent

but varies with utilization [90]. In [91], it is suggested that the acceptance of a request

would depend on the bid price and the system utilization in a cloud. G-commerce [92]

defines the resource producers as sellers and resource consumers as buyers in a grid

environment. It uses auction mechanism and market economy to come up with a market

equilibrium at a certain price. In [93] a tool for the grid users has been designed to

come up with a necessary budget to calculate the cost of completing a certain project

at a given deadline.

[94] defines a model and heuristic algorithms for multi-unit nondiscriminatory

combinatorial auctions. The model finds the most profitable set of bids by designing the

auction problem as an integer programming problem. It has been shown that bartering

models can be used on grids to trade multiple resources using directed hypergraphs [95].

These models can enable resource owners to automatically get something in return

from job owners. In [96], a model has been proposed to use combinatorial auctions to

handle resource scheduling in supercomputing grids. Double auction market for grid

resource allocation has also been used in [97], where the price is flexible in a grid.

The environment is thought of as a two-sided market; both the resource demanders

and the suppliers are consumers and providers of the market. They propose a method

named Stable Continuous Double Action (SCDA) method which reduces unneccessary

price volatility and is efficient in both economic and scheduling points of view. We are

not aware of any method that uses integer programming solvers to schedule jobs to

resources for heterogeneous clusters.

30

3. SIMPLE INTEGER PROGRAMMING BASED

SCHEDULER

Our first model, Simple Integer Programming Based Scheduler, abbreviated as

IPSCHED [98], is based on a knapsack-like formulation, which is NP hard. Figure 3.1

depicts our window based scheduling approach. At each scheduling step, we pick a

window of jobs from the front of the priority ordered job queue and the available

resource information (cores and GPUs or other generic resources) from the nodes. We

form and solve an integer programming problem. The problem aims to maximize

the sum of selected jobs’ priorities, while reducing the number of nodes over which a

selected job’s allocated resources are packed. This is an assignment problem and its

solution tells us how to co-allocate multiple cores and generic resources on the nodes.

This process is repeated periodically.

Figure 3.1. Scheduling of windows of jobs.

3.1. Formulation

To formulate the assignment problem as an IP, we first make the definitions in

Table 3.1. The IP formulation of the IPSCHED model is then given as follows:

max
∑
j∈J

Pj (sj − cj) (3.1)

31

Table 3.1. List of main symbols, their meanings, and definitions for IPSCHED.

Symbol Meaning

J Set of jobs that are in the window: J = {j1, . . . , j|J |}

Pj Priority of job j

N Set of nodes : N = {n1, . . . , n|N |}

Acpu
n Number of available CPU cores on node n

Agres
n Number of available generic resources on node n

Rcpu
j Number of cores requested by job j

Rgres
j Number of generic resources per node requested by job j

Rnode
j,min Minimum number of nodes requested by job j

Rnode
j,max Maximum number of nodes requested by job j

sj Binary variable indicating whether job j is allocated or not,

cj

node packing variable for job j. This variable is set as the ratio

of the number of nodes allocated to a job to the total number of

nodes in the system.

xnj no. of cores allocated to job j at node n

tnj
binary variable showing whether job j is allocated any resource on

node n

∑
j∈J

xnj ≤ Acpu
n ∀n ∈ N (3.2)

∑
n∈N

xnj = Rcpu
j sj ∀j ∈ J (3.3)

∑
j∈J

Rgres
j tnj ≤ Agres

n ∀n ∈ N (3.4)

32

cj =

∑
n∈N tnj

2|N |
∀j ∈ J (3.5)

Rnode
j,min ≤ 2|N |cj ≤ Rnode

j,max ∀j ∈ J (3.6)

tnj =

 1, xnj > 0

0, xnj = 0
∀n ∈ N, j ∈ J (3.7)

Constraint 3.2 limits the total number of processes that can be assigned to any

node n by the number of available CPUs on that. Constraint 3.3 sets the total number

of CPUs allocated for a job to either 0 (if the job is not selected), or to Rcpu
j (if the

job is selected) for each node n and each job j. Constraint 3.4 limits the total number

of generic resources that can be assigned to any node n by the number of available

generic resources on that node. It also ensures that if a job is allocated some CPUs

on any given node, it should also be allocated Rgres
j generic resources on that node. In

constraint 3.5 packing factor, cj, of job j is calculated by considering the number of

nodes on which a job is allocated resources. The total number of nodes allocated to

a job is divided by 2|N | so that the value of cj is in the interval [0, 1
2
], and hence the

value of the objective function given in 3.1 is always positive.

The number of variables and constraints of the IP formulation are given in Ta-

bles 3.2 and 3.3 in terms of number of jobs in the window (|J |) and the number of

nodes in the system (|N |). The total number of variables is |J | · |N |, which is quite

large. This in turn necessitates putting of a limit on the number of jobs in the window

(defined as MAX JOB COUNT). In this model, only three types of job submission

requests are available:

(i) total number of cores

(ii) total number of nodes

(iii) certain number of generic resources per node

33

Table 8.2 lists a comparison of available job submission requests in different mod-

els.

Table 3.2. Number of variables in IPSCHED IP formulation.

Variable name Number of variables

sj |J |

cj |J |

xij |J | · |N |

tij |J | · |N |

Total 2|J | · (1 + |N |)

Table 3.3. Number of constraints in IPSCHED IP formulation.

Constraint Number of constraints

3.2 |N |

3.3 |J |

3.4 |N |

3.5 |J |

3.6 2|N |

3.7 2|J ||N |

Total 2 · (|J |+ 2|N |+ |J ||N |)

The algorithm of IPSCHED is given in Figure 3.2. In IPSCHED, we first define a

job window size named MAX JOB COUNT. The priorities of each job are set by the job

resource management system. For each job in the window, we retrieve the priority, CPU

and generic resource request of that job from the central controller. Also, for each node,

we retrieve the number of available CPUs and generic resources. This information, i.e.

(Pj, R
cpu
j , Rgres

j , Acpu
n , Agres

n), gives us all the parameters necessary to form our integer

programming problem. We use CPLEX to solve the integer programming problem

and the job selection. Thus, the resource selection problems are solved simultaneously.

34

1 Generate priority ordered job window of size up to MAX JOB COUNT

2 From each job j in the window, collect the following into job list array

3 a. priority Pj

4 b. CPU request Rcpu
j

5 c. Gres request Rgres
j

6 From each node n in the system, collect the following into node info array

7 a. number of available CPUs Acpu
n

8 b. number of available gres Agres
n

9 Form the IP problem

10 Solve the IP problem and get sj, tnj and xnj values

11 For jobs with sj = 1, set job’s process layout matrix and start the job by

12 a. For each node n, assign processors on that node according to xnj

13 b. Start the job, no more node selection algorithm is necessary.

Figure 3.2. IPSCHED scheduling steps.

Each job having sj = 1 are started by the scheduler on the nodes where tnj = 1.

Additionally, the number of cores assigned to any job j on node n is given by xnj.

In this model, the topology of the system is not considered. In the integer pro-

gramming formulation, when resources are assigned to jobs, it may be the case that

the resources assigned to a job are not consecutive. This is due to the fact that every

tnj is an independent variable, and there is no constraint limiting those tnj variables to

be consecutive. Figure 3.3 shows an example assignment of 5 jobs to a 16 node system

using IPSCHED scheduler.

Figure 3.3. An example assignment of jobs to 16 nodes by IPSCHED. Jobs are

designated in different colors (red, green, blue, orange, yellow, black).

35

3.2. IPSCHED Slurm Implementation

Since scheduling mechanism is designed as a plug-in for Slurm, we have designed

our own plug-in, which is named as ipsched. This plug-in works on the controller

daemon and is similar to the backfill plug-in already included in Slurm. As described in

Figure 3.2, this ipsched plug-in responsible for gathering available resource information

and job requirement information, forming and solving the IP problem. As a result of

this IP problem, we know which jobs to be scheduled, and the resources that are going

to be assigned to these jobs.

In Slurm, the selection of the specific resources is handled by a plug-in called

resource selection. Slurm also provides a resource selection plug-ins called linear that

allocates whole nodes to jobs and consumable resources that allocates individual proces-

sors and/or memory to jobs [99]. In this work, a plug-in called ipconsres was designed,

which is a variation of SLURM’s own cons res plug-in. ipconsres allows our IP based

scheduler plug-in (which we named ipsched) to make decisions about the node layouts

of the selected jobs. The priorities of the jobs are calculated by SLURM. Our plug-in

does not change these values, but only collects them when an assignment problem is

solved.

In Slurm, generic resources are handled as generic resources. Each node has a

specified number of GPUs (and other generic resources if defined) dedicated to that

node. When a user submits a job that uses GPUs, he has to state the number of

GPUs per node that he requests. The GPU request can be 0 if the job is running only

on CPU. The ipsched plug-in has been designed in such a way that only one small

change needs to be made to the common files used by Slurm. This change which is

located in Slurm’s common/job scheduler.c file disables the FIFO scheduler of Slurm;

thus allowing each job to be scheduled by our ipsched plug-in. Even if the queue is

empty and the nodes are idle, a submitted job will wait a certain number of seconds

(named as SCHED INTERVAL) and run when it is scheduled by our ipsched plug-in.

ipsched plug-in runs every SCHED INTERVAL seconds. By default this value is 3 and

can be changed in the Slurm configuration file.

36

The SCHED INTERVAL is also used to set a time limit during the solution of

the IP problem. If the time limit is exceeded, in that scheduling interval, none of the

jobs are started, and the number of jobs in the window is halved for the next scheduling

interval. In step 6, a layout matrix which has nodes as columns and selected jobs as

rows is used to show mapping of jobs to the nodes. This matrix is used to assign and

start the job on its allocated nodes.

Note that ipsched can handle a job’s minimum/maximum and processor/node

requests but it assumes that the jobs cannot make explicit node requests. Such job

definitions may break up the system, since the selection of jobs is made based only on

the availability of resources on the nodes.

Finally, we also note that our ipsched plug-in has been developed and tested on

version 2.3.3 of SLURM, which was the latest stable version during the time of devel-

opment. ipsched is publicly available at https://github.com/aucsched/ipsched.

37

4. AUCTION BASED SCHEDULER WITH LINEAR

TOPOLOGY SUPPORT

If a job is allocated some resources, then depending on what resources it has

been assigned, the job itself may perform tuning to achieve better performance on these

resources, for example, by using topologically aware communication. A complementary

tuning can also be performed by the scheduler of a resource manager by helping a job

to achieve better run-time performance by placing it on resources that will lead to

faster execution. Such may be the case, for example, if a communication intensive

job is allocated nodes that are in close vicinity to each other. As it will be shown in

Chapter 8, the allocation process does not consider topology. Therefore, the allocation

of jobs to nodes are spread across nodes randomly. This would, in turn, decrease

the communication performance of a job. Since a scheduler has access to information

about available resources and is the authority that makes the allocation decisions, it

can enumerate and consider alternative candidate resource allocations to each job.

This model considers this complementary approach that aims to tune mappings of

jobs at the scheduling level. Auction Based Scheduler with Linear Topology Support,

abbreviated AUCSCHED1, attempts to allocate contiguous blocks on one-dimensional

array of nodes [100].

Our proposed methodology is similar to that of the IPSCHED discussed earlier.

Our algorithm takes a window of jobs from the front of the job queue, generates

multiple bids for available resources for each job, and solves an assignment problem that

maximizes an objective function involving priorities of jobs. To achieve a topologically

aware mapping of jobs to processors, the bids generated include requests for contiguous

allocations.

Given the list of symbols and their meanings in Table 4.1, the IP formulation of

AUCSCHED1 model is as follows:

38

Table 4.1. List of symbols, their meanings, and definitions for AUCSCHED1.

Symbol Meaning

J Set of jobs that are in the window: J = {j1, . . . , j|J |}

Pj Priority of job j

N Set of nodes : N = {n1, . . . , n|N |}

C Set of bid classes : C = {c1, . . . , c|C|}

Nc Set of nodes making up a class c

B Set of all bids, B = {b1, . . . , b|B|}

Bj Set of bid classes on which job j bids, i.e. Bj ⊆ C

Cjn The set {c ∈ C | c ∈ Bj and n ∈ Nc}

Rcpu
jc Number of cores requested by job j in bid c

Rnode
jc Number of nodes requested by job j in bid c

Rcpn
j

Number of cores per node requested by job j. If not specified, this

parameter gets a value of 0.

Fjc

Preference value of bid c of job j in the interval (0, 1]. This is used

to favor bids with less fragmentation.

α

A factor multiplying the preference value Fjc so that the added

preference values do not change the job priority maximizing solution

(See Equation 4.9).

bjc Binary variable for a bid on class c of job j.

ujn Binary variable indicating whether node n is allocated to job j

rjn

Non-negative integer variable giving the remaining number of cores

allocated to job j on node n (i.e. at most one less than the total

number allocated on a node).

Maximize
∑
j∈J

∑
c∈Bj

(Pj + α · Fjc) · bjc (4.1)

39

subject to constraints :

∑
c∈Bj

bjc ≤ 1 for each j ∈ J (4.2)

∑
n∈Nc

ujn = bjc ·Rnode
jc

for each (j, c) ∈ J · C s.t. c ∈ Bj (4.3)

∑
n∈Nc

∑
c∈Bj

ujn + rjn =
∑
c∈Bj

bjc ·Rcpu
jc for each j ∈ J (4.4)

∑
j∈J

ujn + rjn ≤ Acpu
n for each n ∈ N (4.5)

∑
j∈J

ujn ·Rgres
j ≤ Agres

n for each n ∈ N (4.6)

0 ≤ rjn ≤ ujn ·min(Acpu
n − 1, Rcpu

j,max − 1)

for each (j, n) ∈ J ·N (4.7)

ujn + rjn =
∑
c∈Cjn

bjc ·Rcpn
j

for each (j, n) ∈ J ·N s.t.

Rcpn
j > 0 and Cjn 6= ∅ (4.8)

Our objective as given by equation 4.1 is to maximize the summation of selected

bids’ priorities. In case there are multiple solutions that maximize the summation of

40

priorities Pj, (i.e. the value of
∑

j∈J
∑

c∈Bj
Pj · bjc) an additional positive contribution

α · Fjc is added to the priority in order to favour bids with less fragmentation. Since

we do not want the added contributions to change the solution that maximizes the

summation of priorities, we can choose this contribution as follows:

Pmin > α · (|B|+ 1) >
∑
j∈J

∑
c∈Bj

α · Fjc (4.9)

The bid preference values, Fjc, are selected as explained in the Section 4.1 and are in

the interval (0, 1]. α is chosen as follows, so that inequality 4.9 holds:

α =
Pmin

|B|+ 1
(4.10)

At most one bid per job can be selected in a solution set, this is ensured by Con-

straint 4.2. Constraint 4.3 makes sure that the number of nodes requested by a job is

allocated exactly if the corresponding bid that requests the nodes is selected. The left

hand side in this constraint gives the number of nodes allocated. The right hand side

becomes equal to the number of nodes requested by bid for class c of job j if the bid

variable bjc is set to 1. Note that for some jobs Rnode
jc , the number of nodes requested,

is fixed during job submission time. For other jobs, this parameter is set during bid

generation phase (see Section 4.1). Constraint 4.4 ensures that if a bid is selected, than

the total number of CPU cores allocated to a job is exactly as many as requested by

that bid. Constraint 4.5 and 4.6 make sure that total number of allocated cores and

generic resources on any given nodes does not exceed that are available on that node,

respectively. Constraint 4.7 ensures that for a selected bid, we do not have the case

where rjn > 0 and ujn = 0 ; in other words, if cores are allocated on a node, then

we should have ujn = 1 and the remaining number should be assigned to rjn. The

final constraint, i.e. 4.8, is generated for jobs for which cores per node option (Rcpn
j) is

specified, and ensures that the number of cores allocated on each node is equal for a

bid.

The variable and constraint types in AUCSCHED1 model are given in Tables 4.2

41

Table 4.2. Number of Variables in AUCSCHED1 model IP formulation.

Variable name Number of variables

bjc |B|

ujn |Nc|

rjn |Nc|

Total 2 · |Nc|+ |B|

Table 4.3. Number of Constraints in AUCSCHED1 IP formulation.

Constraint Number of constraints

4.2 |J |

4.3 |B|

4.4 |J |

4.5 |N |

4.6 |N |

4.7 none

4.8 |Nc|

Total 2 · |N |+ 2 · |J |+ |B|+ |Nc|

and 4.3, respectively. The number of variables in AUCSCHED1 is 2 · |Nc| + |B|. It

should be noted that the number of variables are in order of number of bids and number

of nodes included in the bids, which is in the order of O (|N | · |B|). Therefore, we have

set a limit on maximum number of bids created in the bid generation phase, which we

refer to as MAXBIDS. In our implementation, we have allowed each job to generate

15 bids and we have set MAXBIDS as 150.

The algorithm of AUCSCHED1 is given in Figure 4.1. Similar to the algorithm

given in Figure 3.2, the information regarding the job resource requests, job priority,

and available resource information of each node is gathered. Afterwards, nodesets are

42

1 Generate priority ordered job window.

2 From each job j in the window, collect the following into job list array

3 a. priority Pj

4 b. CPU request Rcpu
j

5 c. Gres request Rgres
j

6 From each node n in the system, collect the following into node info array

7 a. number of available CPUs Acpu
n

8 b. number of available gres Agres
n

9 Generate nodesets

10 Generate bids (up to MAX BIDS), and create the IP problem

11 Solve the IP problem and get bjc, ujn and rjn values

12 For bids with bjc = 1, set job’s process layout matrix and start the job by

13 a. For each node n ∈ Nc, assign ujn processors on that node.

14 b. Start the job, no more node selection algorithm is necessary.

Figure 4.1. Auction Based Scheduler with Linear Topology Support (AUCSCHED1).

generated, which are contiguous blocks of nodes, defined in Section 4.1. Using the job

resource requests and the nodeset information, multiple bids (up to MAX BIDS) are

generated for each job in the window. Finally, CPLEX is used to solve an assignment

problem that maximizes the objective function involving the priorities and preference

value of each job.

In this model, there are four types of job submission requests available:

(i) total number of cores

(ii) total number of nodes

(iii) certain number of generic resources per node

(iv) certain number of cores per node

(v) contiguous allocation

Table 8.2 lists a comparison of available job submission requests in different mod-

43

els.

Figure 4.2 shows an example assignment of 5 jobs to a 16 node system using

AUCSCHED1.

Figure 4.2. A sample assignment of jobs to 16 nodes by AUCSCHED1. The job

requirements are same as in Figure 3.3.

We illustrate the bid generation and solution process of AUCSCHED1 with the

aid of an example shown in Figure 4.3. Figure 4.3 shows the bid generation process

and the outcome of the auction that tells us what resource allocations are to be done.

AUCSCHED1 first retrieves system state and information about the jobs in the queue.

Jobs’ resource requirements, their priorities and information about whether they want

contiguous allocations are retrieved. For the example Figure 4.3, the window size is

taken as four for simplicity. Because of this only the first four of the jobs participate in

the auction for resources. The resource requirements of these four jobs are as follows:

• J1: Rcpu
j = 512 cores,

• J2: Rnode
j = 64 nodes, Rcpn

j = 2 cores per node, Rgpu
j = 1 GPU per node,

• J3: Rnode
j = 64 nodes, Rcpn

j = 4 cores per node node, Rgpu
j = 2 GPUs/node,

• J4: Rnode
j = 128 nodes, Rcpn

j = 1 core per node.

The scheduler looks at the system state. There are two available blocks of nodes

from node 1 to node 64, and the other from node 81 to node 144 that form nodesets

(1, 64, 512, g) and (81, 144, 512, g) for g = 0, 1, 2. After the nodesets are created, now

possible bid classes are generated. The generated bids have different preference values,

Fjc. Section 4.2 explains how preference values are assigned. In general, we do not

enumerate all possible bids. Since each bid appears as a binary variable in the IP

solved, such an act would explode the total number of variables. Hence, it would not

be possible to solve our IP problem within an an acceptable time. In our plug-in there

44

1
6
4

8
0

1
4
4

S
y
s
te

m

s
ta

te

N
o

d
e

s
e

t

g
e

n
e

ra
ti
o

n

8
 c

o
re

s
,
2
 G

P
U

s
/n

o
d

e
,

1
2
8
 i
d
le

,
1
6
 a

llo
c
a
te

d
 n

o
d
e
s

J
o

b
 q

u
e

u
e

B
id

g
e

n
e

ra
ti
o

n

nodeset 1: (1, 64, 512, g) for g = 0, 1, 2

nodeset 2: (81, 144, 512, g) for g = 0, 1, 2

jo
b
 1

:
b
id

 1
:
{1

-6
4
},

 F
 =

 0
.8

9

jo
b
 1

:
b
id

 2
:
{8

1
-1

4
4
},

 F
 =

 0
.8

9

jo
b
 1

:
b
id

 3
:
{1

-6
4

,
8
1
-1

2
8
},

 F
=

 0
.1

4

jo
b
 1

:
b
id

 4
:
{1

-6
4

,
8
1
-1

4
4
},

 F
=

 0
.1

1

jo
b
 2

:
b
id

 5
:
{1

-6
4
},

 F
 =

 1
.0

0

jo
b
 1

:
b
id

 6
:
{8

1
-1

4
4
},

 F
 =

 1
.0

0

jo
b
 1

:
b
id

 7
:
{1

6
-6

4
,
8
1
-9

6
},

 F
 =

 0
.3

3

jo
b
 3

:
b
id

 8
:
{1

-6
4
},

 F
 =

 1
.0

0

jo
b
 1

:
b
id

 9
:
{8

1
-1

4
4
},

 F
 =

 1
.0

0

jo
b
 1

:
b
id

 1
0
:
{3

2
-6

4
,
8
1
-1

1
2
},

 F
 =

 0
.6

7

C
P

L
E

X

s
o

lv
e

r

jo
b
 4

:
b
id

 1
1
:
{1

-6
4
,
8
1
-1

4
4
},

 F
 =

 0
.6

7

S
O
L
U
T
IO
N

b
4
,
b

5
,
b

8
,
b

1
1
 =

 1

a
ll

o
th

e
r

b
i =

 0

J
5

J
4

J
3

J
2

J
1

w
in

d
o
w

Figure 4.3. Detailed nodeset generation, bid generation and solution figure for a 144

node system.

45

is a variable called MAXBIDSPERJOB which is the limit on the number of bids

generated by our system for each job. In Figure 4.3, we have shown at most 4 bids

generated by the bid generator. The curly brackets next to the bids show the nodes

requested by these bids.

CPLEX Solver [81] takes all bids as the input, and solves the IP problem. In this

example, bids b4, b5, b8 and b11 win the auction. As a result, the following resource

allocations are performed:

• J1 is allocated to the nodes {1− 64, 81− 144},

• J2 is allocated to the nodes {1− 64},

• J3 is allocated to the nodes {81− 144},

• J4 is allocated to the nodes {1− 64, 81− 144}.

4.1. Bid generation phase

Before generating the bids, we generate nodesets. Nodesets are contiguous block

of nodes, which have some total number of cores and some generic resources available

per node in these nodes. It can be defined as a 4-tuple (ni, nj, c, g) such that the

following statements hold:

Acpu
n > 0 ∀n ∈ {ni, . . . , nj}

Agres
n ≥ g ∀n ∈ {ni, . . . , nj}

∑
n∈{ni,...,nj}

Acpu
n = c

Here, ni and nj are the first and the last nodes respectively, c is the total number

of cores, and g is the number of generic resources per node in the nodeset. Figure

46

4.4 illustrates nodesets on a small 12 node system. Suppose that the topmost 1D

array shows the numbers of available cores/generic resources on the system. The eight

nodesets constructed are shown in the figure.

1

4/1

2

8/2

3

2/2

4

4/0

5

0/0

6

4/2

7

1/2

8

2/1

9

2/1

10

2/0

11

0/0

12

4/1

(1, 4, 18, 0) (6, 10, 11, 0) (12, 12, 4, 0)

(1, 3, 14, 1)

(2, 3, 10, 2) (6, 7, 5, 2)

0 GPUs:

1 GPUs:

2 GPUs:

(12, 12, 4, 1)(6, 9, 9, 1)

Figure 4.4. Determination of nodesets for a 12-node system.

From these nodesets, bid classes are generated according type of each job. Bid

classes are sets of nodes, and bids are instantiations of bid classes. Multiple jobs can

have bids of the same class, which means they are bidding for the same set of nodes.

We have classified jobs with respect to its resource requests in the following manner:

1. Only total number of cores (Rcpu
j) is specified.

2. Number of nodes (Rnode
j), total number of cores (Rcpu

j) and number of generic re-

sources per node (Rgres
j) are specified.

3. Number of nodes (Rnode
j), cores per node (Rcpn

j) and number of generic resources

per node (Rgres
j) are specified.

For job type 1, nodesets which have g = 0 are tested for the total number of cores

available in the nodeset.

A. c ≥ Rcpu
j , i.e. the nodeset has enough cores for the job, the bid class requires as

few nodes as possible aligning the bid class to the beginning or end of that node

set, satisfying the number of cores constraint.

B. Same mechanism as in (A) is applied, but the bid class is not aligned to the begin-

ning or end of the nodeset.

C. The nodeset may be combined with the neighbouring nodesets to create non-

contiguous nodesets, with higher number of cores, so that ck + cl + cm ≥ Rcpu
j ,

where k, l and m are nodeset indices. This type of bid class is only created if a job

does not explicitly request contiguous allocations.

47

For job type 2, nodesets which have g = Rgres
j are tested for the total number of

cores available in the nodeset.

A. c ≥ Rcpu
j and nj − ni + 1 = Rnode

j i.e. the nodeset has enough cores for the job on

the exact number of nodes that job requests. The bid class is created aligning to

the beginning or end of that node set.

B. Same mechanism as in (A) is applied, but the bid class is not aligned to the begin-

ning or end of the nodeset.

C. The nodeset may be combined with the neighbouring nodesets to create non-

contiguous nodesets, with higher number of cores, so that ck + ... + cm ≥ Rcpu
j ,

where m − k + 1 = Rnode
j . This type of bid class is only created if a job does not

explicitly request contiguous allocations.

Job type 3 is very similar to job type 2. There is one additional constraint for

creating bid classes for jobs with type 3, and that is each node is checked if there is at

least Rcpn
j cores.

After the bid classes are generated, AUCSCHED1 generates the bids. While

generating the bids, the algorithm in Figure 4.5 is used. In total, there is at most

MAXBIDS bids are created. For each job, at most MAXBIDSPERJOB are created.

4.2. Preference value calculation

The bids should have different preference values due to their contiguity ratios

and allocated locations. FjcA > FjcB > FjcC inequality should hold, since type A bid

has a contiguous allocation, and is aligned to the nodeset, type B bid has a contiguous

allocation, and type C bid has a non-contiguous allocation. We have implemented a

function which results in the following preference value ranges:

FjcC ∈ (0,
1

2
), FjcB ∈ (

1

2
,
3

4
), FjcA ∈ (

3

4
, 1) (4.11)

48

1 Generate priority ordered job window (J) of size up to MAX JOB COUNT

2 Generate nodesets

3 btotal ← 0 ; // the total number of bids

4 while j = 0 to |J | − 1 do

5 bj ← 0 ; // number of bids for job j

6 get type of job j

7 generate bid classes (A) of type type, increment bj, btotal

8 generate bid classes (B) of type type, increment bj, btotal

9 if bj < MAXBIDSPERJOB then

10 generate bid classes (C) of type type, increment bj, btotal

11 end

12 if btotal ≥MAXBIDS then

13 break

14 end

15 end

Figure 4.5. Bid generation algorithm.

49

Let S denote the set of all nodesets and Sc denote the set of nodesets from which a

bid c’s nodes comes from. Since they have contiguous allocations, there is only one

nodeset involved, and |Sc| = 1, for type A and B bids. For type C bids, on the other

hand, |Sc| > 1. The formula used to calculate the preference value Fjc of a bid c is

given as follows:

Fjc = 1.0− k1 − k2 ·
|Nc|
|N |+ 1

− k3 ·
|Sc|
|S|+ 1

(4.12)

This function together with the constants k1, k2 and k3 that are given in Table 4.4

satisfies the range constraints given in Equation 4.11. The idea behind the function is

to basically disfavour allocations that are fragmented or that leads to fragmentation.

Table 4.4. Constants for Fjc calculation for different job and bid classes.

Job type 1

bid type A bid type B bid type C

k1 0 0.25 0.5

k2 0.25 0.25 0.25

k3 0 0 0.25

Job types 2 and 3

bid type A bid type B bid type C

k1 0 0.5 0.5

k2 0 0 0

k3 0 0 0.5

4.3. AUCSCHED1 Slurm Implementation

The implementation of this model, named aucsched1, is similar to the implemen-

tation of IPSCHED. Similarly, we have disabled the FIFO scheduling of Slurm, and

use the same resource selection mechanism (ipconsres).

50

In addition to what is available in IPSCHED, in AUCSCHED1, the users may now

use Slurm options --ntasks-per-node and --contiguous. The former allows defining

Rcpn
j , the number of cores per node requested by job j. If this is not specified explicitly,

this parameter gets a value of 0. The latter allows requesting a contiguous allocation

of resources (i.e. type B and type C bids defined in Section 4.1). If a contiguous

allocation is requested, non-contiguous bids which are combination of non-consecutive

nodesets will not be generated.

AUCSCHED1 was developed and tested on version 2.5.4 of SLURM, which was

the latest stable version during the time of development. AUCSCHED1 is publicly

available at https://github.com/aucsched/aucsched.

51

5. AUCTION BASED SCHEDULER WITH

MOLDABILITY SUPPORT

Auction Based Scheduler with Moldability Support (AUCSCHED2) is another

scheduler model that enhances our AUCSCHED1 Auction Based Scheduler with Linear

Topology Support given in Chapter 4. The two main enhancements are:

(i) A new integer programming (IP) formulation: The IP formulation used in AUC-

SCHED2 greatly reduces the number of variables and hence allows faster solution

and larger number of bids to be generated. This is explained in detail in Sec-

tion 5.1.

(ii) Extension of Slurm to support generic resource ranges: The current schedulers

support specification of node ranges but not of generic resource ranges. Such a

feature can be very useful to runtime auto-tuning applications and systems that

can make use of variable number of generic resources (or other accelerators). This

is explained in detail in Section 5.2.

5.1. Improved IP Formulation

Given a window of jobs from the front of the job queue, a number of bids are

generated for each job in the bid generation phase as explained in detail in Section 4.1.

An allocation problem that maximizes an objective function involving priorities of jobs

is then solved as an IP problem.

Given the symbols and their meanings in Table 5.1 , the new objective function

and the constraints of the optimization problem are as follows:

Maximize
∑
j∈J

∑
i∈Bj

(Pj + α · Fi) · bi (5.1)

52

Table 5.1. List of symbols, their meanings, and definitions for Auction Based

Scheduler with Linear Topology Support.

Symbol Meaning

J Set of jobs that are in the window: J = {j1, . . . , j|J |}

Pj Priority of job j

N Set of nodes : N = {n1, . . . , n|N |}

N Set of nodes requested by bid i: N = {n1, . . . , n|N |}

B Set of all bids, B = {b1, . . . , b|B|}

Bj Set of bids for job j : Bj = {i1, . . . , i|Bj |} variables

Tin no. of cores on node n requested by bid i.

Uin

boolean parameter indicating whether bid i requires any resources

on node n.

Rgres
i number of generic resources per node requested by bid i.

Rgres
j minimum number of generic resources per node requested by job j.

Rgres,max
j

maximum number of generic resources per node requested by job

j. If not set, this is taken as equal to Rgres
j .

Rcpu
j Number of cores requested by job j

Acpu
n number of available CPU cores on node n

Agres
n number of available generic resources on node n

Rcpn
j

Number of cores per node requested by job j. If not specified, this

parameter gets a value of 0.

Fi preference value of bid i ranging between 0 and 1.

α

A factor multiplying the preference value Fi so that the added pref-

erence values do not change the job priority maximizing solution

(See Equation 5.6).

bi binary variable corresponding to bid i

subject to constraints :

∑
i∈Bj

bi ≤ 1 for each j ∈ J (5.2)

53

∑
j∈J

∑
i∈Bj

bi · Tin ≤ Acpu
n for each n ∈ N (5.3)

∑
j∈J

∑
i∈Bj

bi · Uin ·Rgres
i ≤ Agres

n for each n ∈ N (5.4)

The objective function given by equation 5.1 is the same as the one in the previous

Auction Based Scheduler with Linear Topology Support formulation (see Chapter 4).

It maximizes the summation of selected bids’ priorities with positive contribution α ·Fi

added to the priority in order to favour bids with less fragmentation (see Section 4.1).

Constraint 5.2 ensures that at most one bid is selected for each job. Constraint 5.3

makes sure that the number of allocated cores to jobs do not exceed available (free)

number of cores on each node. Tin is the number of cores on node n that is requested by

bid i. This information is determined during bid generation phase, and it is an input

to the IP solver and not a variable. Constraint 5.4 ensures that the number of generic

resources allocated to jobs are available on each node. Uin is a boolean parameter, and

is set to 1 in the bid generation phase if Tin is positive, 0 otherwise. Similar to the

previous Auction Based Scheduler with Linear Topology Support formulation, we do

not want the added positive contribution α ·Fjc to change the solution that maximizes

the summation of priorities. When we choose α as in Equation 5.6, the inequality in

Equation 5.5 holds, thus conserving the original priority order.

Pmin > α · (|B|+ 1) >
∑
j∈J

∑
c∈Bj

α · Fjc (5.5)

α =
Pmin

|B|+ 1
(5.6)

In the bid generation phase, bids are generated so that the number of generic

resources requested by a bid is within the limits set during submission for that job,

54

or formally Rgres
j ≤ Rgres

i ≤ Rgres,max
j . Also, if the job requests a certain number of

cores per node (Rcpn
j), this is also satisfied during the bid generation phase by setting

Tin = Rcpn
j for all nodes n ∈ Ni.

In AUCSCHED2, in order to favour a job’s bids with a higher number of generic

resources over this job’s other bids, the preference value calculation of Fi has also been

modified and is now calculated as in Equation 5.7.

Fjc = 1.0− k1 − k2 ·
|Nc|
|N |+ 1

− k3 ·
|Sc|
|S|+ 1

+ k4 ·
Rgres

i + 1

Rgres,max
j + 1

(5.7)

The last term in Equation 5.7, k4 · Rgres
i +1

Rgres,max
j +1

, is added so that bids requesting higher

number of gress obtain higher preference values. It should be noted that preference

value only affects the selection between bids of the same job. The constants for the

calculation for Fi in AUCSCHED2 are given in Table 5.2.

Table 5.2. Constants for Fi calculation for different bid types in AUCSCHED2.

Job type 1

bid type A bid type B bid type C

k1 0 0.25 0.4

k2 0.25 0.25 0.25

k3 0 0 0.25

k4 0.1 0.1 0.1

Job types 2 and 3

bid type A bid type B bid type C

k1 0 0.5 0.4

k2 0 0 0

k3 0 0 0.1

k4 0.1 0.1 0.1

55

In this new formulation, the only type of variable is bi, and hence, the total num-

ber of variables is |B|. The number of constraints is also reduced to |J |+ 2|N |. When

compared with those in AUCSCHED1, these numbers are greatly reduced enabling us

to increase the number of bids in the bid generation phase. This in turn helps us find

better solutions.

Figure 5.1 shows a sample assignment of 5 jobs to a 16 node system using AUC-

SCHED2, where all jobs are allocated a contiguous set of nodes.

Figure 5.1. A sample assignment of jobs to 16 nodes by AUCSCHED2. The job

requirements are same as in Figure 3.3, except all jobs are contiguously allocated.

5.2. aucsched2 Slurm Implementation

This model is also implemented in Slurm, and it is named aucsched2. aucsched2

is implemented in a very similar fashion as aucsched. Hence, the implementation details

regarding preference value calculation, nodeset generation, bid generation and general

working logic explained above still hold for aucsched2. aucsched2 is implemented as a

scheduler plug-in along with resource selection plug-in ipconsres (which is a variation

of Slurm’s own cons res plug-in). Here, we just present aucsched2 specific details.

Currently, if a user wants to run his job on GPUs, he can submit the job with

the following command to Slurm:

srun -n x -N y --gres=gpu:z

and the system will allocate x cores on y nodes with z GPUs on each node to the

job. However, the job may have the capability to tune itself at runtime to make use

of any number of GPUs on the nodes assigned to it. In such a case, specification of

56

an exact number of GPUs may delay the starting of the job if the nodes with the

specified exact number of GPUs are not available. Another negative consequence may

also be possible: if less than z GPUs per node are available, and yet, if there are

no other jobs in the queue requesting less than z GPUs per node, this implies these

GPUs will not be allocated and hence not utilized during the time interval in question.

When heterogeneous resources are present in a system and when job requests are also

heterogeneous (i.e. varied), it may be more difficult to find a matching allocation

especially if the resource requests are specified as exact numbers. This in turn may

lead to a lower utilization of the system. Motivated by these, we want to let Slurm

users be able to request a a range of GPUs on each node. In aucsched2, users may

submit their job as follows:

srun -n x -N y --gres=gpu:zmin-zmax

where zmin is the minimum number of GPUs, and zmax is the maximum number of

GPUs requested on each node.

In aucsched2, we have modified the options processing files for sbatch, srun, and

salloc; which are various job submission commands used in Slurm. We have also

modified the gres.c file in order to parse the requests for a range of generic resources.

In the original Slurm implementation, the gres.c file parses the string gpu:z in the

submission srun -n x --gres=gpu:z. We extend this capability by allowing the user

to submit the job by srun -n x --gres=gpu:zmin − zmax, which allows the job to

request at least zmin, at most zmax GPUs per node. This submission is still backwards

compatible; submitting a job using srun -n x --gres=gpu:z will still work as in the

original Slurm implementation.

When a job is submitted with the srun -n x -N y --gres=gpu:zmin−zmax option,

the bid generator will try to bid on nodesets which have

• at least x cores on y nodes

57

• at least zmin GPUs on each node.

The bids will be generated in a way that, zmin ≤ Rgpu
i ≤ zmax will hold. aucsched2

is publicly available at https://github.com/aucsched/aucsched2.

58

6. AUCTION BASED SCHEDULER WITH

HIERARCHICAL INTERCONNECT SUPPORT

The previous versions of auction based scheduler consider the topology of a system

as a 1-D array of nodes. However, when the supercomputers in the Top 500 list [22]

are considered, we can see many supercomputers with tree and fat-tree interconnect,

such as the Tianhe-2 [14] that ranked first in the Top 500 list in November 2015 [22]

or the Tsubame 2.5 [19] that ranked thirteenth in the same list. In this section, we

present a new model, Auction Based Scheduler with Hierarchical Interconnect Support,

abbreviated AUCSCHED3, which considers tree and fat-tree topologies similar to those

shown in Figure 6.1.

Figure 6.1. Example switch configurations: (a) a tree and (b) a fat-tree.

Our auction based scheduling algorithms described in Chapters 3, 4, 5 work by

(i) taking a window of jobs from the front of the job queue and the available resource

information from the nodes (ii) generating a number of bids for each job and (iii)

solving an integer programming (IP) problem to select the bids of the jobs for deciding

which resources to allocate to the jobs. We first present the IP formulation which is

derived in Chapters 4 and used in our AUCSCHED1 model. We then present modi-

fications that we make to this IP formulation in the current work in order to make it

topologically aware for hierarchically interconnected systems.

59

Table 6.1. List of symbols, their meanings, and definitions for AUCSCHED3.

Symbol Meaning

J Set of jobs that are in the window: J = {j1, . . . , j|J |}

Pj Priority of job j

Pmin diff

Minimum absolute priority difference between any pair of jobs in

the window

N Set of nodes : N = {n1, . . . , n|N |}

N Set of nodes requested by bid i: N = {n1, . . . , n|N |}

B Set of all bids, B = {b1, . . . , b|B|}

Bj Set of bids for job j : Bj = {i1, . . . , i|Bj |} variables

Li

Level of lowest level common switch of the nodes requested by bid

i

Lmax Level of the highest level switch in the system

Kji A heuristically assigned cost value in (0, 3] of bid i of job j

Tin no. of cores on node n requested by bid i.

Uin

boolean parameter indicating whether bid i requires any resources

on node n.

Rgres
i number of generic resources per node requested by bid i.

Rgres
j minimum number of generic resources per node requested by job j.

Rgres,max
j

maximum number of generic resources per node requested by job

j. If not set, this is taken as equal to Rgres
j .

Rcpu
j Number of cores requested by job j

Acpu
n number of available CPU cores on node n

Agres
n number of available generic resources on node n

Rcpn
j

Number of cores per node requested by job j. If not specified, this

parameter gets a value of 0.

β a constant multiplying Kji

bi binary variable corresponding to bid i

60

Given the definitions and names of the symbols in Table 6.1, our IP formulation

presented below selects a number a jobs whose bids maximize an objective function

that sums the priorities of jobs adjusted with a heuristically assigned cost value that

makes it topologically and generic resource aware:

maximize
∑
j∈J

∑
i∈Bj

(Pj − β ·Kji) · bi (6.1)

subject to constraints :

∑
i∈Bj

bi ≤ 1 for each j ∈ J (6.2)

∑
j∈J

∑
i∈Bj

bi · Tin ≤ Acpu
n for each n ∈ N (6.3)

∑
j∈J

∑
i∈Bj

bi · Uin ·Rgres
i ≤ Agres

n for each n ∈ N (6.4)

The objective function given by (6.1) is different from that used in our previous AUC-

SCHED1 model formulation. In the objective function, we subtract the cost Kji (mul-

tiplied by a constant called β) of each bid from the priority of the job. The idea is to

let the factor β ·Kji slightly adjust the priority by a small amount in order to disfavour

topologically not so good bids from being selected. The constraints (eqs. (6.2) to (6.4))

are the same as those used in AUCSCHED1 model and are explained in Section 5.1.

Our heuristic basically involves defining a function Kji that penalizes topologi-

cally not so good bids in a careful way so as to maintain the original ordering of the

jobs in the queue. The following function is used calculate the cost of a bid i and, as

will be shown, it also helps us to maintain the ordering when multiplied by the scaling

61

constant β:

Kji = 1.0 +
Ni

|N |
+

Li

Lmax

− Rgres
i

Gmax

(6.5)

Here, Ni, Li and Rgres
i are respectively the number of nodes, the level of common lowest

level switch of the nodes and the number of generic resources (e.g. GPU or Xeon Phi)

requested by bid i. |N |, Lmax and Gmax are respectively the number of nodes, the level

of the highest level switch and the maximum number of generic resources per node

available in the system. Note that Kji ∈ (0, 3], since Ni

|N | ∈ (0, 1], Li

Lmax
∈ [0, 1] and

Rgres
j

Gmax
∈ [0, 1].

Let Pmin diff denote minimum absolute priority difference between any pair (j1, j2)

of jobs in the window:

Pmin diff = min
j1,j2∈J

|Pj1 − Pj2| (6.6)

We choose the scaling constant β as follows:

β =
Pmin diff

3
(6.7)

Now, we can prove that this β value always preserves the priority order. We do proof

by contradiction. We want to show that if Pj1 > Pj2 , then Pj1−β ·Cj1,i1 > Pj2−β ·Cj2,i2

for any given j1, j2 ∈ J , j1 6= j2, i1 ∈ Bj1 and i2 ∈ Bj2 . Suppose that this is not the

case, i.e.:

Pj1 − β · Cj1,i1 ≤ Pj2 − β · Cj2,i2 (6.8)

62

Then,

Pj1 − Pj2 ≤ β · (Cj1,i1 − Cj2,i2) (6.9)

Pmin diff ≤ Pj1 − Pj2 ≤ β · (Cj1,i1 − Cj2,i2) (6.10)

Pmin diff ≤ Pj1 − Pj2 ≤
Pmin diff

3
· (Cx,i1 − Cj2,i2) (6.11)

3 ≤ Cj1,i1 − Cj2,i2 (6.12)

But since Cj1,i1 , Cj2,i2 ∈ (0, 3], we know that the following is true:

−3 < Cj1,i1 − Cj2,i2 < 3 (6.13)

Inequality (6.12) then contradicts with inequality (6.13). Therefore, the value of β

given in equation (6.7) maintains the order of priorities of jobs in the window after

they are adjusted by the costs.

Figure 6.2 shows an example assignment of 5 jobs to a 16 node system with tree

topology using AUCSCHED3.

6.1. aucsched3 Slurm Implementation

Slurm provides two primary modes of operation for topology-aware job placement

in order to reduce network contention: One mode for hierarchical interconnects like a

tree (or a fat-tree) and another mode for three-dimensional torus architectures. Slurm

documentation [101] states the following about the technique used to optimize job

performance: on a hierarchical interconnect “The basic algorithm is to identify the

lowest level switch in the hierarchy that can satisfy a job’s request and then allocate

resources on its underlying leaf switches using a best-fit algorithm.”

Slurm document [101] remarks that listing every switch connection results in a

slower scheduling algorithm for SLURM to optimize job placement and as a matter of

practicality suggests configuring a fat-tree topology like the one in Figure 6.1(b) as the

63

Figure 6.2. An example assignment of jobs to 16 nodes on a two level tree by

AUCSCHED3. The job requirements are same as in Figure 3.3.

one in Figure 6.1(a). Therefore we consider the fat-tree topology as a tree topology in

our implementation.

This model is also implemented in Slurm, and it is named aucsched3. aucsched3

is publicly available at https://github.com/aucsched/aucsched3. The implemen-

tation of aucsched2 is very similar to the implementation of aucsched. Hence, the

implementation details regarding preference value calculation, nodeset generation, bid

generation and general working logic explained above still hold for aucsched2 except

the nodeset generation scheme.

The bid generation phase used in AUCSCHED3 model is similar to that of AUC-

SCHED1 model. In AUCSCHED1 model, a 1-D array of nodes is scanned in order

to generate nodesets which are contiguous sets of nodes (see Section 4.1 for detailed

description of nodesets). Using the nodesets, bids of jobs are then generated. In AUC-

SCHED3 model, we proceed in a similar fashion with some modifications. We generate

the nodesets by using the switch information along with the available resource informa-

tion at each node. We scan the nodes which are covered by each switch for contiguous

64

set of resources. After the nodesets are generated, we generate the bids.

65

7. EXPERIMENTAL SETUP

In this chapter, we present the details of our setup for experiments that we

carried out to asses the performance of our algorithms. We first discuss scheduling

mechanisms and plugins of Slurm. We then explain our testing methodology which

is based on emulation rather than simulation. Workloads that are used and the test

environment are discussed next. Finally, performance metrics used are presented.

7.1. Slurm Implementation

To test the performance of the models, we have implemented and integrated the

models proposed in the previous chapters into Slurm as scheduling plug-ins. Due to the

reasons described in Section 7.2, instead of coding a simulator, we wanted to integrate

our scheduler models into a resource-job management system, so that it would give us

the chance to see its performance on real systems, and that the scientific community

would be able to use it on real systems. We chose Slurm for this purpose, since Slurm

is one of the most widely used scheduler [102, 103] in the Top500 supercomputers list.

It is also open-source, portable and scalable [104].

In Slurm, the backfilling mechanism works as follows: The first job in the queue

is considered for execution on available resources. If it can be started (i.e. requested

resources can be satisfied), the job goes to the resource selection phase. If it cannot be

started, the earliest possible future time to start that job is calculated, and a reservation

is created for that job in the future. In the resource selection phase, the best-fit nodes

are selected that satisfies the constraints of the job, such as required nodes and generic

resources etc.

The scheduling mechanism is implemented as plugins in Slurm. A scheduling

plugin chooses which job to run at a time, and a resource selection plug-in chooses the

appropriate resources to run this job on. Our models work in such a way that, the

scheduling plugin also decides on the resources required for this job. ipsched, aucsched,

66

aucsched2 and aucsched3 are publicly available at https://github.com/aucsched/

ipsched, https://github.com/aucsched/aucsched, https://github.com/aucsched/

aucsched2 and https://github.com/aucsched/aucsched3, respectively. We have

also developed a resource selection plugin which works as a counterpart of the schedul-

ing plugin, named lpconsres.

7.2. Simulation vs Emulation

In a simulation, a specific aspect of the system is focused, and the rest of the

system is not considered. The main advantage is that the experiment is reproducible

and controllable. Slurm simulator [105] can intercept time calls in Slurm, and speed

up tests in Slurm for different scheduling and priority settings.

An emulation on the other hand, allows us to use a model of the system and

the actual software of the system. Slurm has an emulation mode, in which, jobs

are submitted to an actual Slurm system just like in a real life Slurm usage; the only

difference being that the jobs do not carry out any real computation or communication,

but rather they just sleep. In emulation tests, jobs are submitted to an actual Slurm

system just like in real life Slurm usage. Such an approach is more advantageous than

testing by simulation since it allows us to test the actual Slurm system rather than an

abstraction of it.

Since in our approach the most time consuming operation is the solution of the

NP-hard problem using CPLEX, the simulation approach would not be attractive to

us. Instead, we have decided to carry out realistic Slurm emulation tests, so the Slurm

system we run is actually active, and the jobs in the workload are submitted just like

on a real supercomputer. The only difference is that the jobs do not include any real

computation or communication, but they are only sleep jobs.

67

7.3. Workloads and Test Conditions

A workload of a supercomputer consists of sequence of jobs, submitted at arbi-

trary times by different users [49]. The arrival times of these jobs are unknown to the

scheduler, hence, this scenario is also called on-line. The workload selection is one of

the most important part for experimentation.

The parallel workload archive [106] is a repository which includes information

about the supercomputers and their workloads. It is widely used in order to test dif-

ferent schedulers, priority and QOS calculations. In the archive, there are 31 different

workloads from 1993 to 2010 ranging from machines with 64 cores to 163,840 cores.

However, none of these workloads include any information about GPUs. Also, logs

maintained in the PWA [106] range from 4 months to years. Since we are perform-

ing simulation instead of emulation, we have to make sure that the tests are can be

completed in a reasonable amount of time. Besides, it has been shown that if systems

are underloaded, system performances are typically the same. We should, therefore,

consider higher load conditions in order to expose the differences of systems [107].

To test the performance of our scheduler models and the implemented plugins,

we use three kinds of workloads:

• Workloads derived from ESP (Effective System Performance) benchmarks [108]

(to be more precise, derived from version 2, i.e. ESP-2).

• Workloads generated by our own workload generator.

• Workloads generated by our own workload generator with GPU ranges capability.

The workloads used in our tests are described in detail in the next subsections.

7.3.1. ESP Workloads

ESP workload [108] is designed to test the performance of a scheduler under a

heavy workload. Table 7.1 lists the normalized job sizes (no. of cores requested by

68

job), count and execution time characteristics for the ESP workload. The sum of the

completion times of the original ESP jobs is 10984 seconds (3.05 hours). All ESP jobs,

except Z-jobs are submitted randomly with inter-arrival times that have a Gaussian

distribution. The Z-jobs are submitted at 40th and 120th minutes.

In ESP workloads, the job’s resource requests are made in such a way that a

job spans across multiple nodes, but since the number of cores a job requests is the

multiple of the number of cores on any node, no two jobs can run on any given node.

We have modified the ESP workload by duplicating each job, and letting the duplicate

job request 2 GPUs per node along with the CPU-cores it already requests. Since

we have doubled all of the jobs other than the Z-jobs in the workload, we have also

doubled the earliest time to submit Z-jobs [108]. In our modified ESP workload set

that resulted, there are a total of 458 jobs, and the sum of completion times is 21822

seconds (6.06 hours).

7.3.2. Our workload generator

Since original ESP workloads do not have node, core per nodes and GPUs re-

quests, we have decided to implement our own workload generator that generate work-

loads with such resource requests. The workload generator that was developed takes

the following as input :

• the maximum number of cores a job can request,

• minimum and maximum execution times of each job,

• estimated run time of a workload,

• job type as explained in Section 4.1,

• number of CPU cores per node if specified by a job (a list of possible values),

• number of CPU cores per GPU if specified by a job (a list of possible values).

Table 8.5 shows the workloads generated and their different kinds of job composi-

tions. The execution time of each job in the workload is distributed uniformly between

69

Table 7.1. ESP Benchmark Job Characteristics.

Job Size Count Execution time (s)

A 0.03125 75 257

B 0.06250 9 341

C 0.50000 3 536

D 0.25000 3 601

E 0.50000 3 312

F 0.06250 9 1846

G 0.12500 6 1321

H 0.15820 6 1078

I 0.03125 24 1438

J 0.06250 24 715

K 0.09570 15 495

L 0.12500 36 369

M 0.25000 15 192

Z 1.00000 2 100

70

60 and 600 seconds. Other parameters such as the job type, the number of CPU cores

per node and the number of cores per GPU are selected from a list of possible values

uniformly. The number of CPU cores, Rcpu
j , a job requests is taken as multiples of the

CPU cores per node in the system. Then, given this Rcpu
j number of cores:

• If a job requests cores only, then Slurm option -n Rcpu
j is submitted.

• If a job requests nodes and cores, --cores-per-node option is taken to be either

4 or 8. The number of nodes specified with -N option is then taken to be Rcpu
j /4

or Rcpu
j /8 respectively.

• If a job requests Rgpu
j GPUs per node, then the number of nodes is given by

Rcpu
j /(x ·Rgpu

j), where x is the number of cores per GPU, given in Table 8.5.

Table 7.2. Workload types and job distributions.

core node 1 GPU/node 2 GPU/node

request request request request

only (4 or 8 (1 or 2 (1 or 2

cores/node) cores/GPU) cores/GPU)

Workload I 100% 0% 0% 0%

Workload II 0% 100% 0% 0%

Workload III 50% 50% 0% 0%

Workload IV 40% 40% 20% 0%

Workload V 33.3% 33.3% 16.6% 16.6%

7.3.3. Workloads generated with GPU ranges

We design a workload that takes into consideration the types of jobs that can

be submitted to Slurm. There are seven types of jobs with each type making a dif-

ferent resource request as described below. When testing Slurm/Backfill, we use type

A,B,C,D,E jobs. When testing aucsched2 without GPU ranges, we use A,B,C,D,E

type jobs. aucsched2 that offers GPU ranges support is tested by using A,B,C’,D’,E

type jobs. The probability of each job type in the workload is taken as equal.

71

Table 7.3. Job types in the workload.

Job Type Description Slurm job submission

A only x cores srun -n x

B x cores on y nodes srun -n x -N y

C x cores on y nodes, 1 GPU

on each node

srun -n x -N y --gres=gpu:1

C’ x cores on y nodes, 1 to 3

GPUs on each node

srun -n x -N y --gres=gpu:1-3

D x cores on y nodes, 2 GPUs

on each node

srun -n x -N y --gres=gpu:2

D’ x cores on y nodes, 2 to 3

GPUs on each node

srun -n x -N y --gres=gpu:2-3

E x cores on y nodes, 3 GPUs

on each node

srun -n x -N y --gres=gpu:3

While generating the workloads, for job types C’ and D’, we assume that the

execution time of each job is inversely related to the number of GPUs allocated to that

job. Our motivation in using this assumption is that, such jobs with generic resource

ranges scale their performance with the number of generic resources allocated on a

node. We assume that not all jobs can scale in a linear fashion with the number of

generic resources allocated, therefore we use normal distribution to scale the execution

time. On a node, there are a few GPU cards. If there is much overhead with the use

of variable number of GPUs on a node, the user might as well use a specific (exact)

number of GPUs on a node that gives the best performance and, hence, not submit

the job with GPU ranges. Given the execution time t when the minimum number of

GPUs is used, the execution time in aucsched2 is calculated as follows:

t′ = t ·N (1, 0.5) ·
(
minimum no. of gres requested

no. of allocated gres

)
(7.1)

72

For example, suppose a job of type C’ takes 150 seconds when running with 1 GPU

on each node and it requests at least 1 and at most 3 GPUs on each node. If the job is

allocated 2 GPUs, the execution time of that job will be taken as 150 ·N (1, 0.5) ·
(
1
2

)
,

which is normally distributed with a mean of 75 seconds.

It should be noted that this new execution time is decided by the job itself and

not by the scheduler. Therefore, the scheduler is unaware of the jobs actual execution

time, t′, but is only informed of the wallclock time by the user, t. The user defines

a time limit, but the job itself may take less time than planned, when using multiple

GPUs. Since we design online schedulers, the execution time is unknown, and the jobs

are scheduled without prior knowledge.

7.4. Performance Metrics

The results obtained in the tests are analyzed using the following performance

measures:

• Theoretical Runtime: Theoretical run-time (Ttheo in Equation 7.3) is taken to be

the summation of duration of each job times its requested core count, all divided

by the total number of cores in the system. This theoretical run time assumes

a homogeneous, CPU-only system. Note that this definition of theoretical run-

time we use is only a lower bound ; it is not the optimal value. Computation

of the optimal schedule and hence the optimal run-time value is an NP-hard

problem [46].

Ttheo =

∑
j∈J tj ·R

cpu
j

Acpu
n

(7.2)

• CPU Utilization: The ratio of the theoretical run-time to the observed run-time

taken by the test (workload). Run-time is the time it takes to complete all the

73

jobs in a workload.

U =
Ttheo
Tactual

(7.3)

• GPU Utilization: The ratio of the total allocated GPU time to the total available

GPU time. The available GPU time is calculated by multiplying the run-time

taken by the test, the number of GPUs at each node and the number of nodes.

The allocated GPU time is calculated by summing up the total number of GPUs

allocated at each time at any node.

• Waiting time: The waiting time of each job in the workload, from submission

until scheduling.

• Packing Factor: The ratio of the number of nodes a job is allocated to the

minimum number of nodes that job could be allocated onto (i.e. packed into).

• Fragmentation: Number of contiguous node blocks allocated to a job. See Fig-

ure 7.1 for an example on a system with linear topology.

• Lowest level common switch: The lowest level common switch from which all the

nodes allocated to a job can be reached. See Figure 7.2 for an example. Average

value for all the jobs is reported in the table.

• Spread: Ratio of the difference between the indices of the last and first nodes

plus one to the number of nodes allocated to a job (assuming node indices start

with 1). See Figure 7.1 for an example for a system with linear topology and

Figure 7.2 for a system with tree topology.

Figure 7.1. Fragmentation and spread values for two jobs, J1 and J2.

74

Figure 7.2. An example showing job spread and lowest level common switch metrics.

75

8. RESULTS and DISCUSSION

8.1. General comparison of the models introduced

The first model, IPSCHED presented in Chapter 3, does not pay attention to the

location of nodes allocated to jobs. The nodes assigned to a job may be close or far

apart in the network topology. If multiple processes of a job have high communication

when placed on different nodes, the time spent for communication may exceed the

time allocated for computation. Therefore, in the second model, AUCSCHED1 given

in Chapter 4, we also pay attention to the topology of the system. The jobs are

allocated to the nodes in close vicinity to each other as much as possible. The system

is considered as a 1-D array of nodes. In this problem, jobs may also explicitly request a

contiguous set of nodes. Our third model, AUCSCHED2 given in Chapter 5, considers

another integer programming problem. It is similar to the second one, but in this

model, we reduce the number of variables in the IP problem and allow users to submit

jobs with GPU ranges, therefore, allowing the user jobs to be malleable from system

perspective. In the fourth model, AUCSCHED3 given in Chapter 6, we allow the

system to have a hierarchical interconnect topology, and use the switch information in

order to obtain topology aware allocation of resources to jobs.

Table 8.1. Number of variables in the IP problems for all models developed in this

thesis.

IPSCHED AUCSCHED1 AUCSCHED2 AUCSCHED3

Number of

variables

2|J | · (1+ |N |) 2 · |Nc|+ |B| |B| |B|

Number of

constraints

2 · (|J |+

2|N |+ |J ||N |)

2 · |Nc|+ |B| |J |+ 2|N | |J |+ 2|N |

Table 8.1 summarizes the number of variables in the integer programming formu-

lation for each model. Table 8.2 summarizes the features supported in each model. In

76

these tables, the oldest model developed is IPSCHED and the newest is AUCSCHED3.

As can be observed, the number of variables in the newer models are lower than those

in the earlier model. Also, the features that are supported by each new model are a

superset of those in the earlier models, e.g. any feature that exists in AUCSCHED2

for example also exists in AUCSCHED3.

Table 8.2. Features for all models developed in this thesis.

Option Explanation IPSCHED
AUCSCHED1

1 2 3

-n number of cores X X X X

-N number of nodes X X X X

–ntasks-per-node number of cores per node X X X

–gres=gpu:X X gpu’s per node X X X X

–contiguous contiguous node allocation X X X

–gres=gpu:X-Y range of GPUs [X-Y] X X

topology system topology none 1-D 1-D Tree

8.2. Comparison of IPSCHED and AUCSCHED1

In this section, we compare our first two models: IPSCHED and AUCSCHED1

with each other and the Slurm Backfill plugin. Table 8.3 summarizes the characteristics

of the emulation experiments that we have carried out. Two sets of priority options

were selected for conducting the tests. These are basic [109] and multifactor [110]. Our

models do not change these values, but only collects them. In this work, two types of

priorities are used. Basic priority setting corresponds to a FCFS scheduling. Slurm

takes the priority of the first submitted job to be a large number, and every arriving

job’s priority will be one less than that of the previously arrived job. Multifactor

priority setting allows the job priorities to increase with increasing job size and aging.

Multifactor priority is calculated using parameters such as the age, the job size, fair-

share partition and QoS.

77

Table 8.3. Experiments and their characteristics.

Experiment Plug-in Priority Type Objective Function

1 Slurm Backfill Basic -

2 Slurm Backfill Multifactor -

3 IPSCHED Basic max
∑
PJ (sj − cj)

4 IPSCHED Multifactor max
∑
PJ (sj − cj)

5 IPSCHED Basic max
∑
PJR

cpu
j (sj − cj)

6 IPSCHED Multifactor max
∑
PJR

cpu
j (sj − cj)

7 AUCSCHED1 Basic max
∑

j∈J
∑

c∈Bj
(Pj + α · Fjc) bjc

8 AUCSCHED1 Multifactor max
∑

j∈J
∑

c∈Bj
(Pj + α · Fjc) bjc

Every test is repeated under equal conditions for each workload and for each

experiment given in Table 8.3. For ESP workloads, 56 tests are conducted (7 repetitions

× 8 experiments). For our workloads, 280 tests are conducted (7 repetitions × 5

workloads × 8 experiments).

Results obtained from each experiment are given in Table A.1 for ESP workloads

and Table A.2 for our workloads, and are plotted in Figures 8.1 through 8.9. The test

results for each experiment have been averaged in ESP workloads. Similarly, the test

results for each experiment-workload pair are averaged for our workloads.

In Figures 8.1 and 8.2, we plot the utilizations obtained from ESP and our work-

loads respectively. When ESP workloads are used, AUCSCHED1 clearly gives the best

utilization, followed by IPSCHED, and Slurm Backfill performing the worst. In the

case of our workloads, IPSCHED is taking the lead by a few percentage points when I,

II and III type workloads are used. In these first three workloads, there are no jobs that

make requests for GPUs. In the case of workload IV which contain some jobs requesting

1 GPU per node, AUCSCHED1 is again performing the best and IPSCHED and Slurm

coming behind with more or less same utilization values. When workloads contain jobs

78

Figure 8.1. Comparison of system utilization in different experiments for ESP

workloads.

that request 2 GPUs per node (i.e. in the case of workload V), it is observed that

the system utilizations drops drastically to 57-70% range. As stated earlier, since the

definition of theoretical run-time that we used in the calculation of utilization is only a

lower bound and not the optimal value, we may be faced with the following scenarios:

(i) The algorithms in all plug-ins are working properly but this low utilization may

be close to the best that can be obtained due to more complex combinatorial nature

of the problem (i.e. allocation of multiple unit heterogeneous CPU-GPU resources),

(ii) the algorithms employed in all plug-ins need further improvements to produce

higher utilization solutions. Both cases, however, point to the need to further study of

scheduling jobs that utilize multiple GPU cards on nodes. Also, it is notable that with

70% utilization performance, AUCSCHED1 has outperformed Slurm’s Backfill in this

case.

When we look at the waiting times in Figures 8.3 and 8.4, we see that they are

the lowest for IPSCHED, followed by Slurm Backfill, followed by AUSCHED. This is

due to the fact that, IPSCHED generally favours smaller sized jobs.

79

Figure 8.2. Comparison of system utilization in different experiments for our

workloads.

Figure 8.5 shows the packing factor performance of the three plug-ins for ESP

experiments. The jobs are best packed using AUCSCHED1, followed by IPSCHED

and finally Slurm backfill. Note that packing factor has not been calculated for our

workloads, since we may have explicit cores per node requests by jobs these workloads.

Figures 8.6 and 8.7 show the fragmentation performance of ESP and our work-

loads respectively. We do not plot fragmentation performance of IPSCHED since no

optimization is done by IPSCHED to allocate contiguous blocks and hence reduce

fragmentation. As the two plots show, Slurm Backfill does better job of reducing

fragmentation than AUCSCHED1 in both ESP and our workloads.

Note there may be cases, where, even though an allocation can be fragmented,

(i.e. placed on multiple blocks), the gaps between the blocks can still be small ; perhaps

by one node. In such cases, these multiple blocks may in fact be close to each other

in terms of topological placement (for example by being on the same communication

switch). Hence, a large fragmentation value may not necessarily imply a bad placement

80

Figure 8.3. Comparison of job waiting times (in hours) in different experiments for

ESP workload.

for the purpose of communication. Spread measure allows us to look into this kind of

separation on allocations. As seen in plots in Figures 8.8 and 8.9, AUCSCHED1 is

doing a better job of reducing the spread in allocations. We do not again report spread

performance of IPSCHED since no special optimization is done by it to reduce spread.

8.3. Comparison of AUCSCHED2 with AUCSCHED1

In this section, we present our tests comparing AUCSCHED2 with AUCSCHED1

and Slurm Backfill plugins. In order to test our AUCSCHED2 model, we conduct Slurm

emulation tests. The 1408 node system that we emulate is Japan’s Tsubame [19] system

which has 12 cores and 3 NVIDIA M2090 GPU’s on each of its nodes. In this section,

we compare AUCSCHED2 with AUCSCHED1 and the Slurm Backfill method.

We design a workload that takes into consideration the types of jobs that can be

submitted to Slurm. There are seven types of jobs with each type making a different

resource request as described below. When testing Slurm’s Backfill plug-in, we use

81

Figure 8.4. Comparison of job waiting times (in hours) in different experiments for

our workloads.

type {A, B, C, D, E} jobs. AUCSCHED2 that offers generic resource ranges support

is tested by using {A, B, C’, D’, E} type jobs. The probability of each job type in the

workload is taken as equal. While generating the workloads, for job types C’ and D’,

we assume that the execution time of each job is inversely related to the number of

generic resources allocated to that job as described in Equation 7.1.

We also have a parameter that sets the ratio of jobs that request contiguous

allocation in the workload. For workloads with a contiguity ratio of 0.00, 0.50 and 1.00,

none, half, and all of the jobs in the workload request contiguous resource allocation,

respectively. The system may still allocate a set of contiguous nodes for a job which

does not explicitly request a set of contiguous nodes, since the preference value of such

bids is set higher (see Equation 4.12). We have generated several workloads of different

lengths in order to test the scheduler’s performance more extensively. Workloads 1 to

3 and 7 to 9 have a mean theoretical runtime of 5 hours, where workloads 4 to 6 and 10

to 12 have an average theoretical runtime of 10 hours. Workloads 1 to 6 only include

type A jobs, 7 to 12 include all types of jobs. Table 8.4 give a detailed explanation for

82

Figure 8.5. Comparison of job packing factors in different experiments for ESP

workload.

the number of jobs in the workloads, the job types etc.

Note that fragmentation and spread metrics give us information about the topo-

logical goodness of allocations. Smaller fragmentation and spread values indicate a

better allocation since communication costs will be lower due to allocated nodes being

closer to each other. Example Figure 7.1 given in Section 7.4 illustrates fragmentation

and spread values for two jobs J1 and J2 on a system with 24 nodes. J1 has a spread

of 6 and a fragmentation of 4. J2 has a spread of 10 and a fragmentation of 2. Note

that if nodes 2-8 are covered by one level of switch whereas nodes 12-22 are covered

by two levels of switches, then this example shows that, although fragmentation is an

important metric for communication, if spread is lower, job J1 allocation can result in

better communication.

When we look at the results in Table A.3 and the plots in Figures 8.10, 8.11 and

8.12, we observe the following:

83

Figure 8.6. Comparison of job fragmentation in different experiments for ESP

workload.

• In all the tests, AUCSCHED2 achieves better utilization than both AUCSCHED1

and Slurm’s Backfill. Utilization increases between 4 to 10 percentage points are

realized by AUCSCHED2 compared to Slurm’s Backfill. In tests 7 through 12

that involves GPU ranges (moldability), AUCSCHED2 again surpasses Slurm’s

Backfill in utilization performance by 4 to 6 percentage points. As expected, the

utilizations are lower in the cases of 3, 6, 9 and 12 where all jobs request contiguous

allocation (ranging between 82% to 92% for AUCSCHED2 and 79% to 83% for

Slurm’s Backfill) since the additional contiguity parameter may make it more

difficult to find a contiguous allocation for a jobs (even though non-contiguous

allocations may exist).

• When we compare waiting time metric for three plugins, we observe that the the

waiting time is smaller in AUCSCHED2 in both cases. The ratio of waiting time

ranges from 1.03 to 1.07 between AUCSCHED1 and AUCSCHED2 and from 1.05

to 1.12 between Slurm Backfill and AUCSCHED2.

• In all the tests (except for 3, 6, 9 and 12), AUCSCHED2 achieves better spread

measures than both AUCSCHED1 and Slurm’s Backfill. In tests 3, 6, 9 and

84

Figure 8.7. Comparison of job fragmentation in different experiments for our

workloads.

12, all jobs request contiguous allocation and hence spread values should be 1

for both AUCSCHED2 and Slurm Backfill. In other cases, the ratio between

the spread values range from 1.54 to 2.61 for AUCSCHED2 and Slurm’s Backfill

and from 1.07 to 1.51 for AUCSCHED2 and AUCSCHED1. It is interesting to

note here that AUCSCHED2 achieves higher utilizations than Slurm Backfill by

4 to 10 percentage points when all jobs are explicitly requested to be laid out

in contiguous manner. We can then consider using AUCSCHED2 to do contigu-

ous allocation for all jobs (irrespective of whether the jobs explicitly requested

contiguous allocation or not) and expect to achieve better utilization than Slurm

Backfill. With better spread values, we can assume that for a real system, due to

lower number of hops in the network, the job execution times would be smaller

for AUCSCHED2, hence the utilization would be higher than reported above.

• In workloads 1 to 6, which include only type A jobs (see Table 8.5), the fragmen-

tation is high in AUCSCHED2 compared to AUCSCHED1 and Slurm’s Backfill.

The fragmentation value is equal to 1 in tests 3, 6, 9 and 12. In tests 1, 2, 4, 5,

the ratio between the spread values range from 7.75 to 2.62 for AUCSCHED2

85

Figure 8.8. Comparison of job spread in different experiments for ESP workload.

and Slurm’s Backfill and from 8.82 to 2.73 for AUCSCHED2 and AUCSCHED1.

In tests 7, 8, 10, 11 the ratio ranges between 0.93 and 1.03 for AUCSCHED2 and

Slurm’s Backfill and between 0.98 and 1.17 for AUCSCHED2 and AUCSCHED1.

This is a design choice we made in AUCSCHED2. In order to increase the system

utilization, AUCSCHED2 creates bids for type A jobs spanning a large number

of nodes. Therefore, these jobs may have large fragmentation. The preference

value of bids which span a large number of nodes is low.

• In tests 1 and 7, very high utilizations are achieved by AUCSCHED2 but frag-

mentation values are noticeably higher than that of Slurm Backfill (97% and 86%

for AUCSCHED2, compared to 87% and 81% for Slurm Backfill). Even though

this may look inferior when compared with Slurm Backfill, it is not so, especially,

when we consider the spread values. In these two cases, spread values of AUC-

SCHED2 are still better than those of Slurm Backfill. Figure 7.1 illustrates that

we can in fact have allocations with high fragmentation and low spread values

which are superior from communication cost perspective since nodes can be closer

together on the interconnection network.

86

Figure 8.9. Comparison of job spread in different experiments for our workloads.

Table 8.4. Workload types and job distributions for AUCSCHED2 test.

Workload Average length Contiguity Percentage of job types

ID (hours) ratio A B C D E

1 6.28 0.00 100 0 0 0 0

2 6.27 0.50 100 0 0 0 0

3 6.26 1.00 100 0 0 0 0

4 12.53 0.00 100 0 0 0 0

5 12.54 0.50 100 0 0 0 0

6 12.48 1.00 100 0 0 0 0

7 5.43 0.00 20 20 20 20 20

8 5.42 0.50 20 20 20 20 20

9 5.50 1.00 20 20 20 20 20

10 10.90 0.00 20 20 20 20 20

11 10.63 0.50 20 20 20 20 20

12 10.89 1.00 20 20 20 20 20

87

Figure 8.10. Utilization comparison in the tests.

Figure 8.11. Fragmentation comparison in the tests.

88

Figure 8.12. Spread comparison in the tests.

89

8.4. AUCSCHED3 Tests

8.4.1. Tests on a hypothetical 1024 node supercomputer

We test the effectiveness of our new AUCSCHED3 plug-in on a hierarchically

interconnected 1024 node system with 16 cores and 3 GPUs on each of its nodes.

Figure 7.2 shows the switch topology of the system.

Table 8.5. Workload types and job distributions.

Workload Number Percentage of job types

ID of jobs A B C D E

1 350 100 0 0 0 0

2 2095 100 0 0 0 0

3 350 0 100 0 0 0

4 2095 0 100 0 0 0

5 350 20 20 20 20 20

6 2095 20 20 20 20 20

5’ same as 5, but uses GPU ranges

6’ same as 6, but uses GPU ranges

We design six different workloads (numbered 1 through 6) that take into consid-

eration the types of jobs that can be submitted to Slurm. There are five types of jobs

(named A, B, C, D, E) with each type making different resource requests as shown in

Table 7.3. This table shows the Slurm job submission commands for each type of job.

The workloads are made of as various percentages of these job types and are shown

in Table 8.5. As pointed out in Table 8.5, workloads 1 and 2 include jobs with only

core requests. Workloads 3 and 4 includes jobs with both core and node requests. In

workloads 5 and 6 the percentage of each job type in the workload is taken equally as

20

When testing Slurm’s Backfill plug-in, we use type A, B, C, D and E jobs. AUC-

90

SCHED2 and AUCSCHED3 also provides generic resource ranges support (which is

not available in Slurm/Backfill). Such a feature can be useful to runtime auto-tuning

applications and systems that can make use of variable number of generic resource

such as GPUs. Job types C’ and D’ and workloads 5’ and 6’ are the same as their

counterparts but use GPU ranges. Therefore, we only test these using AUCSCHED3.

To test our new AUCSCHED3 plug-in, we proceed in a similar fashion as before

by conducting emulation tests. We are able to retrieve topology related information

of allocated jobs and hence we can evaluate goodness of allocations. On the other

hand, we should be careful about interpretation of results. Jobs with good topology

mappings are likely to run faster since communication will be faster. Hence:

• From the users’ perspectives, our allocation topology improvements are definitely

important and are going to be welcomed by the users.

• From the overall system utilization perspective (i.e. the administrators’ per-

spective), topology improvements will also increase the utilization of the system.

However, this should not come at the expense of reduced overall system utiliza-

tion.

Since we are performing emulation with jobs doing no computation and communication,

improvements in execution times and utilizations are not going to be reflected in the

results. Hence, when comparing performances of AUCSCHED3 and Slurm/Backfill

from system administrators’ perspective, we should expect AUCSCHED3 results to

provide not only better topology mappings but also be accompanied by more or less

the same utilizations than Slurm/Backfill.

The emulation tests are conducted on a local cluster system with 7 nodes with

each node having two Intel X5670 6-core 3.20 Ghz CPU’s and 48 GB’s of memory.

Slurm is compiled with the enable-frontend mode, which enables one Slurmd daemon

to virtually configure all of the 1024 nodes in the supercomputer system that we emu-

late. The results are analyzed using the lowest level common switch, spread, utilization

performance measures explained in Section 7.4.

91

The results are given in Table A.4. We also plot average lowest common switch

level and the average spread measures in Figures 8.13 and 8.14. To get a better insight,

the distribution of jobs and the total job durations over lowest common switch levels of

all jobs in all workloads (119,805 jobs in total) are given in Figure 8.15(a,b) respectively.

The plots in Figure 8.16(a,b) show the same information for all type 5, 6, 5’ and 6’ type

jobs (51,345 jobs in total). We note that (a) plots show percentages of the numbers of

jobs whereas (b) plots show percentages of total job durations but these distributions

are almost the same.

Figure 8.13. Average lowest level common switch of AUCSCHED3 compared to

Slurm/Backfill plug-in.

Figure 8.14. Average job spread of AUCSCHED3 compared to Slurm/Backfill plug-in.

The results we have obtained on the emulated 1024 node system shows that our

92

(a) (b)

Figure 8.15. Distribution of percentage of jobs over switch levels (a) and percentage

of total job durations over switch levels (b) for all workloads.

(a) (b)

Figure 8.16. Distribution of percentage of jobs over switch levels (a) and percentage

of total job durations over switch levels (b) for workloads 5, 6, 5’ and 6’.

93

AUSCHED3 plug-in is able to generate better topological mappings than Slurm/Backfill.

It can do this while keeping system utilization levels even higher than that of Slurm/Backfill

in the case of workloads 1,2,5,6,5’,6’. In the case of workloads 3 and 4, utilizations drop

slightly by 4% and 5% respectively. But, considering the fact that the switch levels of

AUCSCHED3 mappings are lower, the execution times are likely to be shorter due to

fast communication and hence the differences in utilizations in these cases are likely to

be smaller.

8.4.2. Tests on a simulated 1408 node TSUBAME 2.0 supercomputer

We have decided to test our plugin on a realistic system, TSUBAME 2.0 [19],

which is one of the Top500 supercomputers in the world, as we did with our AUC-

SCHED2 plugin. TSUBAME 2.0 built in 2011, has 1408 compute nodes with 2 Intel

X5670 CPU’s (12 cores) and 3 NVIDIA M2050 GPU’s per node [19].

As in Figure 6.1, we have simplified the fat-tree topology to make it easier for

Slurm to parse and handle. In our implementation, every 16 node is connected to a first

level switch. Every 8 first level switch is connected to a second level switch. And all

of the second level switches are connected to a third level switch, which is the highest

level.

In order to better test our plugin, we have increased the number of jobs, and

average time a workload takes to execute. We have preserved the job fractions described

in Section 8.3. The details of each workload can be found in Table 8.6. Each test has

been repeated 7 times on a node with two Intel X5670 6-core 3.20 Ghz CPU’s and 48

GB’s of memory. The average of these results are given in Table A.5 and Figures 8.17,

8.18 and 8.19.

From Figure 8.17, we can observe that AUCSCHED3 always performs better than

Slurm/Backfill in terms of utilization. The workloads in Table 8.6 are much longer than

the workloads used in the previous cases. Therefore, the initial filling time becomes

more negligible in the overall execution period. Therefore, utilization rates are much

94

Table 8.6. Workload types and job distributions.

Workload

ID

Number

of jobs

Average

Workload

Time

(hours)

Fraction of

Contiguous

Jobs
Percentage of job types

A B C D E

1 3491 5.02 0.0 100 0 0 0 0

2 2095 2.98 0.0 0 100 0 0 0

3 3491 4.94 0.0 20 20 20 20 20

4 3491 5.02 0.5 100 0 0 0 0

5 2095 3.02 0.5 0 100 0 0 0

6 3491 4.95 0.5 20 20 20 20 20

7 3491 4.98 1.0 100 0 0 0 0

8 2095 2.96 1.0 0 100 0 0 0

9 3491 5.00 1.0 20 20 20 20 20

higher than the previous cases. The difference in utilization can increase up to 9%, in

the workloads 3, 6 and 9, which are the cases that involve GPUs. The co-allocation

feature of AUCSCHED3 avoids the inefficiencies caused by the traditional sequential

scheduling mechanisms for heterogeneous systems.

In Figure 8.18, the lowest level common switch has been compared for AUC-

SCHED3 and Slurm/Backfill (see Section 7.4 for lowest level common switch descrip-

tion). In all workloads except 1, 4 and 7, the lowest level common switch is lower for

AUCSCHED3 by a small margin. However, in the workloads, the lowest level common

switch for AUCSCHED3 is slightly higher than Slurm/Backfill (around 4%). This is

caused by the bid generation algorithm in AUCSCHED3, which tries to create as many

bids as possible for jobs requesting only cores (type A jobs). Therefore, jobs may be

too distributed in the system.

As can be observed from Figure 8.19, the job spread is always lower for AUC-

95

Figure 8.17. Utilization comparison between AUCSCHED3 and Slurm/Backfill for

simulated TSUBAME 2.0 system with different generated workloads as described in

Table 8.6.

SCHED3 compared to Slurm/Backfill. The difference in spread between different mech-

anisms ranges from 6% to 21%. The difference is lowest in the workloads 1, 4 and 7,

this is caused by the bid generation algorithm in AUCSCHED3, as explained in the

lowest level common switch case.

96

Figure 8.18. Lowest level common switch comparison between AUCSCHED3 and

Slurm/Backfill for simulated TSUBAME 2.0 system with different generated

workloads as described in Table 8.6.

Figure 8.19. Job spread comparison between AUCSCHED3 and Slurm/Backfill for

simulated TSUBAME 2.0 system with different generated workloads as described in

Table 8.6.

97

9. CONCLUSIONS

In this thesis we present four different scheduling algorithms. Our IPSCHED,

AUCSCHED1, AUCSCHED2 and AUCSCHED3 algorithms utilize IP solvers and are

implemented as ready to use Slurm plug-ins. We are not aware of any integer program-

ming based scheduler algorithms being implemented in real schedulers. Our plugins

are available at https://code.google.com/p/Slurm-ipsched/. Implementing our

algorithms as Slurm plug-ins allows us to make realistic tests by emulating a real

heterogeneous supercomputer.

The auction based AUCSCHED1 job scheduler employs bids that compete in an

auction for acquiring resources. We consider tightly coupled supercomputer clusters

where multiple cores and GPU resources will be acquired at the same time and the

auction will be repeated frequently (roughly every 5 seconds). Hence, we are required

to solve a far more complex combinatorial optimization problem in a very short period

of time. To the best of our knowledge, our AUCSCHED1 is probably the first auction

based scheduler that has been developed for clusters. Our AUCSCHED1 scheduler

performs better in terms of utilization than the currently used Backfill algorithm.

Our AUCSCHED2 scheduler makes two major contributions: (i) It extends Slurm

to support generic resources (e.g. GPU) moldability by specification of resource ranges

and (ii) it provides a new integer programming formulation with drastically reduced

number of variables for our existing auction based scheduler. Generic resource mold-

ability feature can be very useful to run-time auto-tuning applications that can make

use of variable number of generic resources such as GPUs. It can also increase utiliza-

tion of expensive supercomputer resources by providing flexibity in resource allocation.

The results we obtain indeed provide evidence of increased utilizations. The new inte-

ger formulation enables us to generate higher number of bids for each job and obtain

solution in a shorter period of time. When compared with the results of our previous

AUCSCHED1 implementation, we see improvements in utilization, mainly as a result

of being able to generate higher number of bids for each job.

98

In our AUCSCHED3 scheduler, we have also considered a fat-tree based system

interconnection topology. AUCSCHED3 is able to generate both topologically aware

better mappings of jobs and achieve higher system utilizations especially in workloads

involving jobs that request both CPU and GPU resources.

It should be noted that the schedulers that have been proposed in this thesis are

designed for supercomputers with high utilization rates. If the utilization rates are

low, the advantages of using this scheduler cannot not be observed. It should also be

noted that, the schedulers proposed will not be suitable for grids. In grids, using a

distributed scheduler will be more advantageous.

9.1. Future Work

In the future, the importance of the schedulers for the heterogeneous supercom-

puters will keep increasing since supercomputer usage is becoming mainstream not

only in academic and research environments but also in industry. Some of the possible

research topics that can be conducted in the future are as follows:

• A future research topic may be on how to do topologically aware mappings for

the torus architecture. One approach may be linearization of the topology of

the system by using Hilbert space filling curves and making allocation decisions

based on this linearized topology.

• Another possible research topic may be the addition of an accounting system

which also make use of preemption. A model can be developed where each user

has some credits in their account. If the user needs the job to be completed

quickly, they submit the job with a higher credit/core-hour. If some job, currently

running in the system, has lower credit/core-hours assigned to the job, this job

may be preempted by the job in the queue. This model maximizes the profit for

the supercomputer. Users who are struggling to meet deadlines can give more

credits to have their jobs completed jobs quickly.

• Another future work area could be the development of heuristic algorithms for the

models that were proposed in this thesis. One possible heuristic could be based

99

on relaxation of the variables in the IP, and testing the solution for feasibility.

• If one also aims to take into account reservations, the proposed models and the

algorithms may be slightly altered to achieve that. One possible option is to add

reservation support for the nodes at future times, and then check for them during

the bid generation phase.

100

APPENDIX A: RESULT TABLES

Table A.1. IPSCHED, AUCSCHED1 and Backfill comparison results for ESP

workload.

Experiment
Waiting time Slowdown Ratio Utilization

mean (std) mean (std) mean

1 1.60 (0.836) 18.11 (25.49) 0.90

2 0.91 (1.224) 11.31 (18.97) 0.93

3 0.77 (1.257) 9.95 (18.87) 0.92

4 1.88 (1.612) 20.64 (26.52) 0.94

5 2.42 (1.758) 22.75 (22.02) 0.89

6 0.88 (1.223) 10.75 (18.20) 0.94

7 2.08 (1.577) 22.06 (21.84) 0.93

8 2.69 (1.497) 29.14 (26.93) 0.95

Table A.2. IPSCHED, AUCSCHED1 and Backfill comparison results for our

workload generator.

Average Average Average Average Slowdown

Workload Theoretical Experiment Utilization Runtime Waiting Time Ratio

Version Run-time (hours) mean (std) mean (std)

I 4.00

1 95% 4.21 1.69 (1.18) 23.68 (22.33)

2 97% 4.12 1.31 (1.20) 21.45 (27.31)

3 97% 4.12 1.26 (1.15) 21.53 (28.05)

4 96% 4.17 1.75 (1.15) 27.98 (29.06)

5 96% 4.15 2.28 (1.23) 31.90 (24.23)

6 97% 4.14 2.03 (1.23) 32.87 (33.13)

7 97% 4.12 2.06 (1.25) 32.63 (33.00)

8 94% 4.24 2.62 (1.22) 41.87 (32.46)

Table A.2. IPSCHED, AUCSCHED1 and Backfill comparison results for our

workload generator (continued).

Average Average Average Average Slowdown

Workload Theoretical Experiment Utilization Runtime Waiting Time Ratio

Version Run-time (hours) mean (std) mean (std)

II 4.06

1 95% 4.27 1.67 (1.16 23.60 (22.51)

2 96% 4.24 1.35 (1.22) 22.15 (28.11)

3 96% 4.23 1.33 (1.18) 22.16 (28.15)

4 96% 4.22 1.75 (1.17) 27.99 (32.46)

5 96% 4.23 2.22 (1.23) 30.91 (24.01)

6 97% 4.19 2.00 (1.22) 32.28 (32.47)

7 97% 4.19 2.09 (1.25) 33.41 (34.00)

8 94% 4.31 2.60 (1.25) 35.84 (32.46)

Table A.2. IPSCHED, AUCSCHED1 and Backfill comparison results for our

workload generator (continued).

Average Average Average Average Slowdown

Workload Theoretical Experiment Utilization Runtime Waiting Time Ratio

Version Run-time (hours) mean (std) mean (std)

III 3.96

1 95% 4.16 1.74 (1.19) 24.33 (23.65)

2 96% 4.12 1.41 (1.24) 22.95 (29.20)

3 96% 4.11 1.34 (1.22) 22.01 (28.56)

4 95% 4.17 1.72 (1.15) 27.38 (32.46)

5 96% 4.13 2.14 (1.26) 28.44 (20.42)

6 97% 4.09 1.87 (1.14) 28.27 (28.94)

7 96% 4.08 1.77 (1.15) 27.65 (28.19)

8 96% 4.12 2.31 (1.16) 36.07 (32.46)

Table A.2. IPSCHED, AUCSCHED1 and Backfill comparison results for our

workload generator (continued).

Average Average Average Average Slowdown

Workload Theoretical Experiment Utilization Runtime Waiting Time Ratio

Version Run-time (hours) mean (std) mean (std)

IV 4.01

1 88% 4.56 1.68 (1.18) 22.42 (18.89)

2 90% 4.46 1.51 (1.23) 21.87 (17.96)

3 89% 4.48 1.43 (1.17) 21.54 (17.41)

4 95% 4.22 1.72 (1.15) 27.23 (32.46)

5 88% 4.57 1.95 (1.26) 22.86 (12.41)

6 88% 4.54 2.03 (1.23) 25.17 (19.44)

7 88% 4.54 1.93 (1.31) 24.81 (22.27)

8 93% 4.31 2.50 (1.27) 39.53 (32.46)

Table A.2. IPSCHED, AUCSCHED1 and Backfill comparison results for our

workload generator (continued).

Average Average Average Average Slowdown

Workload Theoretical Experiment Utilization Runtime Waiting Time Ratio

Version Run-time (hours) mean (std) mean (std)

V 3.95

1 62% 6.37 1.73 (1.39) 21.36 (18.20)

2 62% 6.36 1.71 (1.31) 21.21 (17.65)

3 62% 6.41 1.67 (1.28) 20.98 (16.98)

4 65% 6.11 1.93 (1.40) 30.84 (32.46)

5 68% 5.81 2.21 (1.54) 26.30 (18.72)

6 58% 6.81 2.12 (1.36) 44.71 (34.21)

7 60% 6.58 2.13 (1.38) 40.19 (30.17)

8 70% 5.65 3.72 (1.64) 58.57 (32.46)

Table A.3. Results for AUCSCHED2, AUCSCHED1 and Backfill for the emulated

Tsubame 2.5 system.

Average Waiting

WLID Method Utilization Run-Time Time Fragmentation Spread

(%) (hours) mean (std) mean (std) mean (std)

1

AUCSCHED2 97.17 6.45 2.42 (1.37) 17.80 (13.86) 8.2 (11.45)

AUCSCHED1 91.01 6.90 2.45 (1.39) 2.25 (1.98) 11.87 (18.02)

Backfill 87.17 7.18 3.23 (1.32) 2.42 (2.33) 17.36 (35.97)

2

AUCSCHED2 93.83 6.70 2.51 (1.55) 5.58 (7.35) 4.47 (7.66)

AUCSCHED1 87.81 7.14 3.09 (1.52) 1.98 (1.79) 6.75 (9.16)

Backfill 86.00 7.27 2.96 (1.43) 2.12 (2.18) 11.68 (26.00)

3

AUCSCHED2 92.17 6.77 2.71 (1.55) 1.00 (0.00) 1.00 (0.00)

AUCSCHED1 86.70 7.22 2.78 (1.60) 1.00 (0.00) 1.00 (0.00)

Backfill 82.50 7.58 2.98 (1.68) 1.00 (0.00) 1.00 (0.00)

4

AUCSCHED2 98.00 12.83 4.52 (2.54) 18.79 (14.17) 8.31 (11.61)

AUCSCHED1 92.23 13.59 4.73 (2.60) 2.13 (2.09) 12.45 (23.54)

Backfill 88.00 14.29 4.91 (2.71) 2.42 (2.34) 17.24 (35.32)

Table A.3. Results for AUCSCHED2, AUCSCHED1 and Backfill for the emulated

Tsubame 2.5 system.

Average Waiting

WLID Method Utilization Run-Time Time Fragmentation Spread

(%) (hours) mean (std) mean (std) mean (std)

5

AUCSCHED2 94.00 13.33 4.27 (2.19) 5.66 (7.41) 4.42 (7.70)

AUCSCHED1 89.87 13.95 4.63 (2.43) 2.07 (2.10) 8.79 (15.45)

Backfill 86.83 14.48 4.94 (2.68) 2.14 (2.23) 11.9 (27.07)

6

AUCSCHED2 92.67 13.51 4.79 (2.72) 1.00 (0.00) 1.00 (0.00)

AUCSCHED1 88.47 14.11 5.09 (2.79) 1.00 (0.00) 1.00 (0.00)

Backfill 83.00 15.09 5.43 (2.82) 1.00 (0.00) 1.00 (0.00)

7

AUCSCHED2 86.33 6.28 2.60 (1.73) 2.16 (1.63) 1.98 (3.19)

AUCSCHED1 82.73 6.56 2.27 (1.76) 2.07 (1.13) 2.13 (1.52)

Backfill 81.17 6.69 1.94 (1.83) 2.10 (1.39) 4.16 (10.07)

8

AUCSCHED2 84.00 6.46 2.60 (1.75) 1.52 (1.11) 1.52 (2.10)

AUCSCHED1 81.35 6.67 2.34 (1.70) 1.3 (0.85) 1.70 (1.08)

Backfill 79.00 6.87 1.95 (1.86) 1.55 (1.10) 2.35 (7.24)

Table A.3. Results for AUCSCHED2, AUCSCHED1 and Backfill for the emulated

Tsubame 2.5 system.

Average Waiting

WLID Method Utilization Run-Time Time Fragmentation Spread

(%) (hours) mean (std) mean (std) mean (std)

9

AUCSCHED2 84.00 6.55 2.72 (1.82) 1.00 (0.00) 1.00 (0.00)

AUCSCHED1 79.85 6.89 2.50 (1.89) 1.00 (0.00) 1.00 (0.00)

Backfill 76.83 7.16 1.98 (1.97 1.00 (0.00) 1.00 (0.00)

10

AUCSCHED2 87.00 12.50 5.63 (3.52) 2.16 (1.65) 1.93 (3.00)

AUCSCHED1 82.45 13.20 5.13 (3.58) 2.05 (1.29) 2.13 (2.99)

Backfill 81.67 13.32 4.05 (3.60) 2.09 (1.34) 3.88 (10.76)

11

AUCSCHED2 85.33 12.44 5.52 (3.48) 1.5 (1.09) 1.45 (1.79)

AUCSCHED1 81.24 13.08 4.29 (3.48) 1.52 (1.11) 1.74 (1.89)

Backfill 80.33 13.25 3.92 (3.58) 1.61 (1.14) 2.50 (7.06)

12

AUCSCHED2 82.83 13.16 5.88 (3.63) 1.00 (0.00) 1.00 (0.00)

AUCSCHED1 80.01 13.62 5.27 (3.67) 1.00 (0.00) 1.00 (0.00)

Backfill 78.83 13.85 4.08 (3.76) 1.00 (0.00) 1.00 (0.00)

109

Table A.4. AUCSCHED3 and Backfill comparison for

an emulated 1024 node hypothetical supercomputer.

Plugin

Lowest Level

Workload Common Switch Average Utilization

ID mean (std) Spread (%)

1
AUCSCHED3 1.05 (0.68) 77.2 90

Slurm/Backfill 1.06 (0.77) 110.7 89

2
AUCSCHED3 1.17 (0.62) 90.9 96

Slurm/Backfill 1.19 (0.69) 131.9 95

3
AUCSCHED3 1.04 (0.58) 65.4 78

Slurm/Backfill 1.26 (0.68) 139.4 82

4
AUCSCHED3 1.04 (0.58) 61.1 85

Slurm/Backfill 1.36 (0.69) 167.8 88

5
AUCSCHED3 1.01 (0.67) 63.5 83

Slurm/Backfill 1.24 (0.72) 144.3 81

6
AUCSCHED3 0.98 (0.56) 60.9 89

Slurm/Backfill 1.33 (0.70) 162.7 87

5’
AUCSCHED3 0.99 (0.65) 64.4 86

Slurm/Backfill 1.24 (0.72) 144.3 81

6’
AUCSCHED3 1.00 (0.59) 61.4 91

Slurm/Backfill 1.33 (0.70) 162.7 87

110

Table A.5. AUCSCHED3 and Backfill comparison for an emulated TSUBAME 2.0

supercomputer using workloads in Table 8.6.

Plugin

Lowest level

Workload common switch Average Utilization

ID mean (std) spread (%)

1
AUCSCHED3 1.88 (0.41) 243.8 98

Slurm/Backfill 1.8 (0.53) 259.3 97

2
AUCSCHED3 1.77 (0.53) 236 90

Slurm/Backfill 1.81 (0.52) 271.5 89

3
AUCSCHED3 1.75 (0.55) 223.7 97

Slurm/Backfill 1.81 (0.53) 282.7 89

4
AUCSCHED3 1.87 (0.42) 243.7 98

Slurm/Backfill 1.81 (0.52) 259.7 97

5
AUCSCHED3 1.77 (0.52) 242.2 90

Slurm/Backfill 1.82 (0.50) 275.8 89

6
AUCSCHED3 1.74 (0.56) 218.4 98

Slurm/Backfill 1.8 (0.54) 281.3 89

7
AUCSCHED3 1.87 (0.42) 242.1 98

Slurm/Backfill 1.81 (0.52) 260.8 97

8
AUCSCHED3 1.76 (0.54) 234.4 90

Slurm/Backfill 1.82 (0.51) 272.8 89

9
AUCSCHED3 1.76 (0.54) 218.9 97

Slurm/Backfill 1.8 (0.53) 272.7 90

111

REFERENCES

1. Segall, R., Research and Applications in Global Supercomputing , Advances in

Systems Analysis, Software Engineering, and High Performance Computing.

2. Cray Research Inc., The CRAY-1 Computer System, 1976, http://web.

archive.org/web/20150801213906/http://archive.computerhistory.org/

resources/text/Cray/Cray.Cray1.1977.102638650.pdf, August 2015.

3. Hickey, H., “Bringing Supercomputers to Life (Sciences)”, Biomedical Computa-

tion Review , Vol. 6, pp. 7–15.

4. Anderson, D. P., J. Cobb, E. Korpela, M. Lebofsky and D. Werthimer,

“SETI@Home: An Experiment in Public-resource Computing”, Communications

of the ACM , Vol. 45, No. 11, pp. 56–61, Nov. 2002.

5. “Short Inverted Repeats Are Hotspots for Genetic Instability: Relevance to Can-

cer Genomes”, Cell Reports , Vol. 10, No. 10, pp. 1674 – 1680, 2015.

6. Salazar, J., Supercomputers Surprisingly Link DNA Crosses to Cancer , 2015,

http://web.archive.org/web/20150801213658/https://www.tacc.utexas.

edu/-/supercomputers-surprisingly-link-dna-crosses-to-cancer, Au-

gust 2015.

7. Gupta, S., China’s Investment in GPU Supercomputing Be-

gins To Pay Off Big Time! , 2011, http://web.archive.org/

web/20150801213732/http://blogs.nvidia.com/blog/2011/06/09/

chinas-investment-in-gpu-supercomputing-begins-to-pay-off-big-time/,

August 2015.

8. IBM Corporation, IBM 1401 Data Processing System, 1961, http:

//web.archive.org/web/20150801213801/http://ed-thelen.org/

112

comp-hist/BRL61-ibm1401.html, August 2015.

9. Warren, M., J. Salmon, D. Becker, M. Goda, T. Sterling and W. Winckel-

mans, “Pentium Pro Inside: I. A Treecode at 430 Gigaflops on ASCI Red, II.

Price/Performance of $50/Mflop on Loki and Hyglac”, Proceedings of the 2007

ACM/IEEE conference on Supercomputing , pp. 61–61, Nov 1997.

10. Angelini, C. and I. Wallossek, Radeon R9 295X2 8 GB Review: Project

Hydra Gets Liquid Cooling , 2014, http://www.tomshardware.com/reviews/

radeon-r9-295x2-review-benchmark-performance,3799.html, August 2015.

11. Top 500 Supercomputer Sites - June 1997 , 1997, http://web.archive.org/web/

20150801213521/http://www.top500.org/lists/1997/06/, August 2015.

12. Barker, K. J., K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin and J. C.

Sancho, “Entering The PetaFLOP Era: The Architecture and Performance of

Roadrunner”, Proceedings of the 2008 ACM/IEEE conference on Supercomputing ,

p. 1, IEEE Press, 2008.

13. Top 500 Supercomputer Sites - June 2008 , 1997, http://web.archive.org/web/

20150801213640/http://www.top500.org/lists/2008/06/, August 2015.

14. Alba, D., China’s Tianhe-2 Caps Top 10 Supercomputers , 2013,

http://web.archive.org/web/20150801214058/http://spectrum.ieee.org/

tech-talk/computing/hardware/tianhe2-caps-top-10-supercomputers,

August 2015.

15. Dongarra, J. J., P. Luszczek and A. Petitet, “The LINPACK benchmark: Past,

present, and future”, Concurrency and Computation: Practice and Experience,

Vol. 15, pp. 803–820, 2003.

16. Top 500 Supercomputer Sites - November 2014 , 2014, http://web.archive.org/

web/20150801214749/http://www.top500.org/lists/2014/11/, August 2015.

113

17. Ashby, S., P. Beckman, J. Chen, P. Colella, B. Collins, D. Crawford, J. Dongarra,

D. Kothe, R. Lusk, P. Messina et al., “The Opportunities and Challenges of

Exascale Computing”, Summary Report of the Advanced Scientific Computing

Advisory Committee (ASCAC) Subcommittee, pp. 1–77, 2010.

18. Yokokawa, M., F. Shoji, A. Uno, M. Kurokawa and T. Watanabe, “The K com-

puter: Japanese Next-generation Supercomputer Development Project”, Proceed-

ings of the 17th IEEE/ACM International Symposium on Low-Power Electronics

and Design, pp. 371–372, 2011.

19. TSUBAME 2.0 Hardware and Software Specifications , 2011, http://www.gsic.

titech.ac.jp/sites/default/files/TSUBAME_SPECIFICATIONS_en_0.pdf,

August 2015.

20. InfiniBand Trade Association, InfiniBand Architecture Specification: Release 1.0 ,

2000.

21. Gropp, W., E. Lusk, N. Doss and A. Skjellum, “A High-performance, Portable

Implementation of the MPI Message Passing Interface Standard”, Parallel com-

puting , Vol. 22, No. 6, pp. 789–828, 1996.

22. Top 500 Supercomputer Sites - November 2015 , 2015, http://web.archive.

org/web/20151215233700/http://www.top500.org/lists/2015/11/, [Decem-

ber 2015.

23. Georgiou, Y., Contributions For Resource and Job Management in High Perfor-

mance Computing , Ph.D. Thesis, Universite de Grenoble, France, 2010.

24. Dongarra, J. and P. Luszczek, “LINPACK Benchmark”, Encyclopedia of Parallel

Computing , pp. 1033–1036, 2011.

25. ORNL Debuts Titan Supercomputer , 2012, http://web.archive.org/

web/20150801214857/http://www.ornl.gov/ornl/news/news-releases?

114

ReleaseNumber=mr20121029-00, August 2015.

26. Wait, P., IBM’s Sequoia is World’s Fastest Supercomputer , 2012,

http://www.informationweek.com/software/information-management/

ibms-sequoia-is-worlds-fastest-supercomputer/d/d-id/1104906?, Jan-

uary 2016.

27. Chen, D., N. Eisley, P. Heidelberger, S. Kumar, A. Mamidala, F. Petrini, R. Sen-

ger, Y. Sugawara, R. Walkup, B. Steinmacher-Burow et al., “Looking Under

the Hood of the IBM Blue Gene/Q Network”, Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analysis ,

p. 69, 2012.

28. CSCS, Piz Daint , 2013, http://web.archive.org/web/20150801212737/http:

//www.cscs.ch/computers/piz_daint/index.html, August 2015.

29. Texas Advanced Computing Center Stampede, 2013, http://web.archive.

org/web/20150801212737/https://www.tacc.utexas.edu/stampede/, August

2015.

30. NVIDIA, What is GPU computing? GPGPU, CUDA and Kepler ex-

plained , 2015, http://web.archive.org/web/20150801212315/http://www.

nvidia.com/object/what-is-gpu-computing.html, August 2015.

31. Jeffers, J. and J. Reinders, Intel Xeon Phi Coprocessor High-Performance Pro-

gramming , Elsevier Science, 2013.

32. The Register, High Five From AMD: New Supercomputer GPU Maxes Out at

5.07 TFLOPS , 2014, http://web.archive.org/web/20150801212235/http://

www.theregister.co.uk/2014/08/06/amd_s9150_s9050_gpus/, August 2015.

33. NVIDIA, NVIDIA Tesla K40 , 2014, http://web.archive.org/

web/20150801212301/http://www.nvidia.com/content/tesla/pdf/

115

nvidia-tesla-k40-2014mar-lr.pdf, August 2015.

34. Intel, Intel Xeon Phi Coprocessor 7120A (16GB, 1.238 GHz, 61 core), 2014, http:

//web.archive.org/web/20150801212210/http://ark.intel.com/products/

80555/Intel-Xeon-Phi-Coprocessor-7120A-16GB-1_238-GHz-61-core,

August 2015.

35. Sharma, S., C.-H. Hsu and W. chun Feng, “Making a Case For a Green500 List”,

20th International Parallel and Distributed Processing Symposium, April 2006.

36. The Green500 List - November 2015 , 2015, http://web.archive.org/

web/20151215233551/http://www.green500.org/lists/green201511&

green500from=1&green500to=100, December 2015.

37. Yoo, A., M. Jette and M. Grondona, “SLURM: Simple Linux Utility for Resource

Management”, Job Scheduling Strategies for Parallel Processing , Vol. 2862 of Lec-

ture Notes in Computer Science, pp. 44–60, Springer Berlin Heidelberg, 2003.

38. Georgiou, Y., Contributions For Resource and Job Management in High Perfor-

mance Computing , Ph.D. Thesis, Universite de Grenoble, France, 2010.

39. Nitzberg, B., J. Schopf and J. Jones, “PBS Pro: Grid Computing and Schedul-

ing Attributes”, Grid Resource Management , Vol. 64 of International Series in

Operations Research & Management Science, pp. 183–190, Springer US, 2003.

40. Moab, Workload Manager Documentation, 2012, http://docs.

adaptivecomputing.com/, December 2015.

41. Adaptive Computing, Torque Resource Manager Documentation, 2012, http:

//web.archive.org/web/20160112185238/http://docs.adaptivecomputing.

com/, January 2016.

42. Bode, B., D. M. Halstead, R. Kendall, Z. Lei and D. Jackson, “The Portable

116

Batch Scheduler and The Maui Scheduler on Linux Clusters”, Proceedings of the

4th Annual Linux Showcase & Conference, ALS ’00 , 2000.

43. Gentzsch, W., “Sun Grid Engine: Towards Creating a Compute Power Grid”,

Proceedings of the First IEEE/ACM International Symposium on Cluster Com-

puting and the Grid (CCGrid 2001), pp. 35 –36, 2001.

44. Open Grid Scheduler/Grid Engine, 2012, http://web.archive.org/web/

20150801215102/http://gridscheduler.sourceforge.net/, August 2015.

45. Slurm, Slurm Quick Start User Guide, 2014, http://web.archive.org/web/

20150801211715/http://Slurm.schedmd.com/quickstart.html, August 2015.

46. Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-Completeness , W. H. Freeman & Co., New York, NY, USA, 1979.

47. Schwiegelshohn, U., “How to Design a Job Scheduling Algorithm”, W. Cirne

and N. Desai (Editors), Job Scheduling Strategies for Parallel Processing , Vol.

8828 of Lecture Notes in Computer Science, pp. 147–167, Springer International

Publishing, 2015.

48. Skovira, J., W. Chan, H. Zhou and D. Lifka, “The EASY — LoadLeveler API

project”, D. Feitelson and L. Rudolph (Editors), Job Scheduling Strategies for

Parallel Processing , Vol. 1162 of Lecture Notes in Computer Science, pp. 41–47,

Springer Berlin Heidelberg, 1996.

49. Tsafrir, D., Modeling, Evaluating, and Improving the Performance of Supercom-

puter Scheduling , Ph.D. Thesis, School of Computer Science and Engineering, the

Hebrew University, Jerusalem, Israel, September 2006.

50. Lee, G., Resource Allocation and Scheduling in Heterogeneous Cloud Environ-

ments , Ph.D. Thesis, Electrical Engineering and Computer Sciences, University

of California at Berkley, California, USA, 2012.

117

51. Corbet, J., Notes From a Container , 2007, http://web.archive.org/web/

20150801212113/https://lwn.net/Articles/256389/, August 2015.

52. Lameter, C., “NUMA (Non-Uniform Memory Access): An Overview”, Queue,

Vol. 11, No. 7, pp. 40–51, Jul. 2013.

53. Li, Y., Y. Liu and D. Qian, “A Heuristic Energy-aware Scheduling Algorithm

for Heterogeneous Clusters”, 15th International Conference on Parallel and Dis-

tributed Systems (ICPADS 2009), pp. 407–413, IEEE, 2009.

54. Barbosa, J. and B. Moreira, “Dynamic Job Scheduling on Heterogeneous Clus-

ters”, 8th International Symposium on Parallel and Distributed Computing , pp.

3–10, 2009.

55. Iserte, S., A. Castello, R. Mayo, E. Quintana-Orti, F. Silla, J. Duato, C. Reano

and J. Prades, “SLURM Support for Remote GPU Virtualization: Implementa-

tion and Performance Study”, IEEE 26th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD), pp. 318–325, Oct

2014.

56. Klein-Halmaghi, C., Cooperative Resource Management for Parallel and Dis-

tributed Systems , Ph.D. Thesis, Université de Lyon, Lyon, France, 2012.

57. Ayguadé, E., R. Badia, P. Bellens, D. Cabrera, A. Duran, R. Ferrer, M. Gonzàlez,

F. Igual, D. Jiménez-González, J. Labarta, L. Martinell, X. Martorell, R. Mayo,

J. Pérez, J. Planas and E. Quintana-Ort́ı, “Extending OpenMP to Survive the

Heterogeneous Multi-Core Era”, International Journal of Parallel Programming ,

Vol. 38, pp. 440–459, 2010.

58. Planas, J., R. Badia, E. Ayguade and J. Labarta, “Self-Adaptive OmpSs Tasks in

Heterogeneous Environments”, IEEE 27th International Symposium on Parallel

Distributed Processing (IPDPS 2013), pp. 138–149, May 2013.

118

59. Qasem, A., Automatic Tuning of Scientific Applications , Ph.D. Thesis, Rice Uni-

versity, Houston, TX, USA, 2008.

60. Bokhari, S. H., “On the Mapping Problem”, IEEE Transactions on Computers ,

Vol. 100, No. 3, pp. 207–214, 1981.

61. Lee, S.-Y. and J. Aggarwal, “A mapping strategy for parallel processing”, IEEE

Transactions on Computers , Vol. 100, No. 4, pp. 433–442, 1987.

62. Kirkpatrick, S., C. D. Gelatt, M. P. Vecchi et al., “Optimization by Simulated

Annealing”, Science, Vol. 220, No. 4598, pp. 671–680, 1983.

63. Bäck, T., Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms , Oxford University Press, 1996.

64. Bhatele, A., Automating Topology Aware Mapping for Supercomputers , Ph.D.

Thesis, Dept. of Computer Science, University of Illinois, USA, 2010.

65. Pascual, J. A., J. Navaridas and J. Miguel-Alonso, “Job Scheduling Strategies

for Parallel Processing”, chap. Effects of Topology-Aware Allocation Policies on

Scheduling Performance, pp. 138–156, Springer-Verlag, Berlin, Heidelberg, 2009.

66. Smith, C., B. McMillan and I. Lumb, Topology Aware Scheduling in the

LSF Distributed Resource Manager , 2001, http://web.archive.org/web/

20160121225141/https://cug.org/5-publications/proceedings_attendee_

lists/2001CD/S01_Proceedings/Pages/Authors/Smith_C/Smith.htm, Jan-

uary 2016.

67. Subramoni, H., D. Bureddy, K. Kandalla, K. Schulz, B. Barth, J. Perkins,

M. Arnold and D. K. Panda, “Design of Network Topology Aware Scheduling

Services for Large InfiniBand Clusters”, IEEE International Conference on Clus-

ter Computing , pp. 1–8, 2013.

119

68. Leiserson, C. E., “Fat-trees: Universal Networks for Hardware-Efficient Super-

computing”, IEEE Transactions on Computers , Vol. 100, No. 10, pp. 892–901,

1985.

69. TOP 500 Supercomputer Sites for November 2012 , 2012, http://web.archive.

org/web/20150801215018/http://www.top500.org/lists/2012/11/, August

2015.

70. Koomey, J. G., Estimating Total Power Consumption by Servers in the US

and the World , Vol. 15, February, 2007, http://energy.lbl.gov/EA/mills/

HT/documents/data_centers/svrpwrusecompletefinal.pdf, January 2016.

71. Hagimont, D., L. Broto, A. Gadafi and N. D. Palma, “Experience with Autonomic

Energy Management Policies for JavaEE Clusters.”, Handbook of Energy-Aware

and Green Computing , pp. 855–872, 2012.

72. Aupy, G., A. Benoit, F. Dufossé and Y. Robert, “Reclaiming the Energy of a

Schedule: Models and Algorithms”, Concurrency and Computation: Practice and

Experience, Vol. 25, No. 11, pp. 1505–1523, 2013.

73. Etinski, M., J. Corbalan, J. Labarta and M. Valero, “Linear Programming Based

Parallel Job Scheduling for Power Constrained Systems”, International Confer-

ence on High Performance Computing and Simulation (HPCS), pp. 72 –80, July

2011.

74. Ahuja, R. K., T. L. Magnanti and J. B. Orlin, Network Flows , Prentice Hall,

1988.

75. Winston, W. L. and J. B. Goldberg, Operations Research: Applications and Al-

gorithms , Vol. 3, Duxbury Press, Boston, MA, USA, 2004.

76. Lawler, E., The Traveling Salesman Problem: A Guided Tour of Combinatorial

Optimization, Wiley, New York, NY, USA, 1985.

120

77. Murty, K. G., Linear Programming , Wiley, New York, NY, USA, 1983.

78. Shih, W., “A Branch and Bound Method for the Multiconstraint Zero-One Knap-

sack Problem”, Journal of the Operational Research Society , Vol. 30, pp. 369–378,

1979.

79. Land, A. H. and A. G. Doig, “An Automatic Method of Solving Discrete Pro-

gramming Problems”, Econometrica, Vol. 28, No. 3, pp. 497–520, 1960.

80. Meindl, B. and M. Templ, “Analysis of Commercial and Free and Open Source

Solvers for the Cell Suppression Problem”, Transactions on Data Privacy , Vol. 6,

No. 2, pp. 147–159, 2013.

81. “IBM ILOG CPLEX Optimizer”, http://web.archive.org/web/

20150801215704/http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/index.html, 2012.

82. Bixby, R. E., “A Brief History of Linear and Mixed-Integer Programming Com-

putation”, Documenta Mathematica, pp. 107–121, 2012.

83. IBM, IBM ILOG CPLEX Optimizer Performance Benchmarks , 2014,

http://web.archive.org/web/20150801211733/http://www-01.ibm.com/

software/commerce/optimization/cplex-performance/, August 2015.

84. Erbas, O. and C. Ozturan, “Collective Match-Making Heuristics for Grid Resource

Scheduling”, High Performance Grid Middleware, Brasov, Romania, September

2007.

85. Shen, S., K. Deng, A. Iosup and D. Epema, “Scheduling Jobs in the Cloud Using

On-Demand and Reserved Instances”, F. Wolf, B. Mohr and D. an Mey (Edi-

tors), Euro-Par 2013 Parallel Processing , Vol. 8097 of Lecture Notes in Computer

Science, pp. 242–254, Springer Berlin Heidelberg, 2013.

121

86. Blanco, H., F. Guirado, J. Lérida and V. Albornoz, “MIP Model Scheduling for

Multi-Clusters”, Euro-Par 2012: Parallel Processing Workshops , Vol. 7640 of

Lecture Notes in Computer Science, pp. 196–206, 2013.

87. Curino, C., D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan and S. Rao,

“Reservation-based Scheduling: If You’re Late Don’t Blame Us!”, Proceedings of

the ACM Symposium on Cloud Computing , pp. 1–14, 2014.

88. Sun, Q., Q. Zhuge, J. Hu, J. Yi and E. H.-M. Sha, “Efficient Grouping-Based

Mapping and Scheduling on Heterogeneous Cluster Architectures”, Computers &

Electrical Engineering , 2014.

89. Zhang, Q., E. Gürses, R. Boutaba and J. Xiao, “Dynamic Resource Allocation

For Spot Markets in Clouds”, Proceedings of the 11th USENIX Conference on Hot

Topics in Management of Internet, Cloud, and Enterprise Networks and Services

(Hot-ICE’11), 2011.

90. Xu, H. and B. Li, “Maximizing Revenue with Dynamic Cloud Pricing: The Infinite

Horizon Case”, IEEE International Conference on Communications (ICC 2012),

pp. 2929–2933, June 2012.

91. Anandasivam, A. and M. Premm, “Bid Price Control and Dynamic Pricing In

Clouds”, Proceedings of the European Conference on Information Systems (ECIS

2009), pp. 1077–1089, 2009.

92. Wolski, R., J. Plank, T. Bryan and J. Brevik, “G-commerce: Market Formulations

Controlling Resource Allocation on the Computational Grid”, 15th International

Parallel and Distributed Processing Symposium (IPDPS 2001), 2001.

93. Sandholm, T., K. Lai, J. Ortiz and J. Odeberg, “Market-Based Resource Alloca-

tion using Price Prediction in a High Performance Computing Grid for Scientific

Applications”, 15th IEEE International Symposium on High Performance Dis-

tributed Computing (HPDC 2006), pp. 132–143, 2006.

122

94. Özer, A. H. and C. Özturan, “A Model and Heuristic Algorithms for Multi-Unit

Nondiscriminatory Combinatorial Auction”, Computers & Operations Research,

Vol. 36, No. 1, pp. 196–208, 2009.

95. Özturan, C., “Resource Bartering in Data Grids”, Scientific Programming ,

Vol. 12, No. 3, pp. 155–168, 2004.

96. Harchol-Balter, M., “Auction-Based Scheduling for the TeraGrid”, , 2007,

http://web.archive.org/web/20150801211555/http://www.cs.cmu.edu/

~harchol/teragrid.pdf, August 2015.

97. Tan, Z., Market-Based Grid Resource Allocation Using a Stable Continuous Dou-

ble Auction, Ph.D. Thesis, Faculty of Engineering and Physical Sciences, Univer-

sity of Manchester, Manchester, United Kingdom, 2007.

98. Soner, S. and C. Özturan, “Integer Programming Based Heterogeneous CPU-

GPU Cluster Schedulers for SLURM Resource Manager”, Journal of Computer

and System Sciences , Vol. 81, No. 1, pp. 38–56, 2014.

99. Slurm, Slurm Documentation, 2012, http://web.archive.org/web/

20150801214353/http://slurm.schedmd.com/documentation.html, August

2015.

100. Soner, S. and C. Ozturan, “A New Auction-Based Scheduler for Heterogeneous

Systems with Moldable Generic Resources Support”, Concurrency and Compu-

tation: Practice and Experience, 2015.

101. Slurm, Slurm Topology Guide, 2014, http://web.archive.org/web/

20150801211652/http://slurm.schedmd.com/topology.html, August 2015.

102. Slurm Used on the Fastest of the TOP500 Supercomputers , 2012,

http://web.archive.org/web/20150801213418/http://slurm.net/2012/

11/21/slurm-used-on-the-fastest-of-the-top500-supercomputers/,

123

August 2015.

103. “Slurm User Group Meeting in Supercomputing 2013”, http://web.archive.

org/web/20150801213438/http://slurm.schedmd.com/SC13_BOF/SC13_BOF_

SchedMD.pdf.

104. Hussain, H., S. U. R. Malik, A. Hameed, S. U. Khan, G. Bickler, N. Min-Allah,

M. B. Qureshi, L. Zhang, W. Yongji, N. Ghani, J. Kolodziej, A. Y. Zomaya,

C.-Z. Xu, P. Balaji, A. Vishnu, F. Pinel, J. E. Pecero, D. Kliazovich, P. Bouvry,

H. Li, L. Wang, D. Chen and A. Rayes, “A Survey on Resource Allocation in

High Performance Distributed Computing Systems”, Parallel Computing , Vol. 39,

No. 11, pp. 709 – 736, 2013.

105. Lucero, A., “Simulation of Batch Scheduling Using Real Production-Ready Soft-

ware Tools”, Proceedings of the 5th IBERGRID , 2011, https://www.bsc.es/

media/4856.pdf.

106. Feitelson, D., Parallel Workloads Archive, 2005, http://web.archive.org/web/

20150801212505/http://www.cs.huji.ac.il/labs/parallel/workload/,

August 2015.

107. Feitelson, D. G., “Metric and Workload Effects on Computer Systems Evalua-

tion”, Computer , Vol. 36, No. 9, pp. 18–25, 2003.

108. Wong, A., L. Oliker, W. Kramer, T. Kaltz and D. Bailey, “ESP: A System Uti-

lization Benchmark”, Proceedings of the 2000 ACM/IEEE conference on Super-

computing , p. 15, nov. 2000.

109. SLURM Priority Plugin API, Slurm Documentation, 2012, http:

//web.archive.org/web/20150801220158/http://slurm.schedmd.com/

priority_plugins.html, August 2015.

110. Multifactor Priority Plugin, Slurm Documentation, 2012, http://web.

124

archive.org/web/20150801220033/http://slurm.schedmd.com/priority_

multifactor.html, August 2015.

