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ABSTRACT

EDDY CURRENT DAMPING APPLICATIONS FOR

VIBRATION ISOLATION PURPOSES

In this thesis, passive eddy current damping (ECD) is used in two different

novel designs that show vibration stop bands. One includes an inertial amplification

mechanism and the other includes local resonators. In both designs, copper tube-ring

magnet couple is used as a passive eddy current damper. The reason for such usage

arises from the fact that this damping method does not require an external power source

and its damping constant can be easily changed. The change in the damping constant

is obtained by adjusting the distance between the conducting material which is the

copper tube and the magnetic field generator which is the magnet. In the first design,

which includes an inertial amplification mechanism, vertical motion is dampened by

copper tube-ring magnet couple, which serves as a viscous damping component. For

this design, a prototype is produced and experimental measurements are taken to show

the effect of damping on vibration amplitudes. In the second design, which includes

local resonators, it is aimed to generate a vibration stop band at low frequencies. The

effect of ECD on stop band width, resonance peaks and anti-resonance depth on the

frequency response results are observed. For comparison purposes, frequency response

of this design is obtained analytically, experimentally and numerically. By both of

these designs, it is shown that ECD can be used in different structures to attenuate

vibrations.
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ÖZET

BURGAÇ AKIMI İLE SÖNÜMLE TEKNİĞİNİN

TİTREŞİM YALITIMINA YÖNELİK UYGULAMARI

Bu tezde burgaç akımı ile pasif sönümleme tekniği titreşim bant aralığı gösteren

iki farklı özgün yapıya uygulanmıştır. Bu yapılardan ilki atalet artırım mekanizması

içerirken, ikincisi yerel rezonatör içeren periyodik bir yapı olmuştur. Her iki yapıda da

bakır tüp-halka mıknatıs ikilisi pasif sönümleyici olarak kullanılmıştır. Bu sönümleme

yönteminin tercih edilmesi harici bir güç kaynağına gerek duyulmaması ve sönüm

katsayısının kolayca değiştirilebilmesinden kaynaklanmaktadır. İletken malzeme olan

bakır tüp ve manyetik alan üreticisi olan hareket halindeki halka mıknatıs arasındaki

mesafe ayarlanarak sönüm katsayısı değiştirilebilmiştir. Atalet artırım mekanizması

içeren ilk yapıda, dikey doğrultudaki titreşim genliğinin sönümlenmesi, halka mıknatıs

ve bakır tüp ikilisinin viskoz tipi bir sönümleyici işlevi görmesi ile sağlanmıştır. Bu

bağlamda üretilen prototip ile yapılan deneysel ölçümlerde sönümlemenin titreşim gen-

liklerine etkisi incelenmiştir. Yerel rezonatör içeren ikinci yapıda, düşük frekanslarda

titreşim bant aralığı elde edilmesi hedeflenmiştir. Ayrıca burgaç akımı ile sönümlemenin

titreşim bant aralığına, rezonans tepelerine ve anti-rezonans derinliğine etkisi ince-

lenmiştir. Bu prototipin frekans tepki sonucu deneysel, analitik ve sayısal olarak elde

edilip karşılaştırılmıştır. Bu iki tasarım vasıtasıyla, burgaç akımı ile sönümlemenin

farklı yapılarda titreşim genliklerini azaltmak için kullanılabileceği gösterilmiştir.
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1. INTRODUCTION

The repetitive motion disturbing the equilibrium position of an object in a time

interval is called vibration or oscillation [1]. It occurs in various dynamic systems

leading to dynamic stresses that can cause failure [2]. Damping is used to avoid such

failures caused by this repetitive motion. It is the mechanism behind the conversion of

kinetic energy to heat [3, 4].

1.1. Passive and Active Damping

In dynamic systems, unless resonance could be avoided by design, damping is used

to decrease the amplitude of free oscillations [5]. There are two types of damping, which

are used to control such unpleasant motions, active and passive damping. In active

damping, dissipation of energy from the system is achieved by external means, such as

a controlled actuator. Sensors are used to measure the response at each instant and

actuators are used to automatically apply forces which oppose the measured vibration

response in prescribed manner. In passive damping, dissipation of energy from the

system is accomplished by add-on damping devices such as isolator, structural joints

and supports, or structural member’s internal damping [3, 6].

Examples of passive damping mechanisms include Coulomb or dry friction damp-

ing, viscoelastic materials, viscous fluids, magnets, smart materials, high damping al-

loys, and particle damping. Among them magnet usage can be considered as eddy

current damping. This mechanism utilizes the interaction between the generated mag-

netic field (usually from a strong permanent magnet) and eddy currents induced in a

solid conductor, which is attached to the vibrating object, moving inside this magnetic

field [7]. The resistive force caused via this damping method is proportional to velocity

of the conductor. Thus, it can be considered as a viscous-like damping force.
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1.1.1. Eddy Current Damping

Eddy currents are formed when a moving non-magnetic conductor intersects a

stationary magnetic field, or vice-versa [8,9]. Circulating eddy currents inside the non-

magnetic conductor induce their own magnetic field with the opposite polarity of the

applied field that causes a resistive force. Since the resistive force induced by eddy

currents is proportional to the relative velocity, the conductor and the magnet can be

allowed to function as a type of viscous damping [10, 11]. The use of eddy currents

for damping of dynamic systems has been known for decades and its applications are

various.

Damping effect caused by the permanent magnet moving on an infinite conducting

sheet is investigated in [12]. The theoretical model for the eddy current damper is

derived by using the electromagnetic theory combined with the image method. In this

model, effect of surface charges on the eddy current damping (ECD) force is taken into

consideration. In the case of finite conducting sheet, instead of using infinite imaginary

eddy currents, one pair (left and right imaginary eddy currents) is considered to obtain

the net eddy current density.

A non-contacting passive damper shown in Figure 1.1 is proposed by [13] to

dampen the transverse vibrations of a beam. The beam’s motion is in line with the

poling axis of the magnet. Experimental and numerical validations are done for the

permanent magnet being positioned at numerous distances from the conducting plate

attached on the beam’s surface to show the damping effect.

Figure 1.1. Cantilever Beam in Magnetic Field Generated by Permanent Magnet [13].
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In [14], ECD is used in a magnetic levitation system to enhance the levitation

precision of miniaturized objects. Undesired vibrations are suppressed via ECD intro-

duced through a non-ferromagnetic plate being placed beneath the levitated magnet

as shown in Figure 1.2.

Figure 1.2. Schematic of the Magnetic Levitation Syste [14].

Two cylindrical magnets whose like poles are in close proximity and a ring-shaped

conductive aluminium plate are used in [15]. Both spring and variable damping effect

are generated by utilizing these components in the design shown in Figure 1.3.

Figure 1.3. Schematic View of the Magnetic Shock Absorber [15].
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Another design made by [16] consists of a classical tuned mass damper (TMD)

with ECD as seen in Figure 1.4. Magnetically TMD is introduced to improve the

damping performance of the conventional TMD by using ECD.

Figure 1.4. Schematic of the Magnetic Tuned Mass Damper [16].

[17] proposed a new type of eddy current damper given in Figure 1.5 with re-

markably high efficiency and compactness. Magnetic field is split into multiple ones to

reduce the electrical resistance of the eddy current loops and to increase the damping

force and damping coefficient.

Figure 1.5. Assemblies of Magnetic Array and Conductor Plates and Their Top

View [17].

In [18], to overcome the disadvantages of viscous dampers embedded to TMDs,

ECD is introduced. It is demonstrated that by varying the air gap between permanent

magnets and conductive plates damping ratio can be adjusted. In Figure 1.6, one of

the magnetic configurations is given for the proposed TMD with ECD included.
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Figure 1.6. Magnet Position Configuration of the Magnetic Tuned Mass Damper [18].

It is targeted in this research to use ECD with two of the band gap generating

methods which are local resonances and inertial amplification. ECD is used for the

first time with these methods and its effect on the frequency response is investigated.

1.2. Band Gap Generation Methods

The theory of wave propagation in periodic structures was developed by solid

state physicists and electrical engineers several decades ago. In the last two decades,

prevention of propagation of acoustic or elastic waves in certain frequency ranges via

periodic materials and structures received considerable attention. The frequency ranges

where the vibration is suppressed can be considered as phononic band gap in infinitely

periodic case. [19] investigated the vibrational response of the finite case subjected to

periodic loading. For this case, frequency ranges where the vibration is suppressed can

be considered as stop bands.

Three different methods are presented to generate phononic band gaps that hinder

the wave propagation in certain frequency ranges. They are called Bragg scattering,

local resonances and inertial amplification.

In Bragg scattering, reflected waves from the heavy inclusions in a soft media are

the cause of the band gap generation. In order to have a band gap at low frequencies,
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low wave speed and large lattice constant are required in this method. A mass-spring

system, shown in Figure 1.7, is used to demonstrate a one-dimensional (1D) periodic

structure which uses Bragg scattering method to generate band gap.

Figure 1.7. Mass Spring Array to Induce a Band Gap via Bragg Scattering [20].

There is another method called local resonances (Resonance Scattering) which can

also induce band gaps by blocking wave propagation nearby the resonance frequencies

of the resonators [21–23]. This method extracts the energy of the propagating wave

when the attached resonators get excited around their resonance frequencies. To obtain

wide band gaps at low frequencies via this method, large volume filling fractions are

required [24–26]. Large weight and size are not good attributes for band gap structures

that are to be used for practical purposes. Sketch of a system with local resonators

attached to each unit cell is given in Figure 1.8.

Figure 1.8. Resonators Attached to Each Unit Cell to Induce a Band Gap via

Resonance Scattering [20].

To avoid the short comings of the previous methods inertial amplification is pro-

posed in [27]. In the inertial amplification method, the mass m is attached to the
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output end of a displacement amplification mechanism. As the two ends of the mech-

anism move with respect to each other, mass ma moves with large amplitude if θ is

small. As a result, large effective inertia is achieved. It is shown that this method gives

rise to very wide band gaps at low frequencies with fewer unit cells compared to the

previous methods [28,29]. A 1D array of inertial amplification mechanism is shown in

Figure 1.9.

Figure 1.9. 1D Array of Inertial Amplification Mechanisms [20].

In finite periodic structures, the frequencies where sharp attenuation occurs are

known as anti-resonance frequencies. Generally, anti-resonance frequencies in a struc-

ture can be created by local resonance and inertial amplification method. Both meth-

ods are capable of generating low-frequency band gaps in finite and infinite periodic

structures.

1.3. Motivation and Research Objective

In this research, implementation of ECD to an inertial amplification mechanism

involving structure is targeted. Furthermore, embedding ECD into a locally resonant

periodic structure is aimed. Motivations behind this research can be summarized as

• Using ECD that does not require any external power source as a non-contact

damping method which does not wear due to friction as other viscous damping

methods.

• Building two novel structures in which vibration attenuation is accomplished via

ECD usage.
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• Observing the effect of ECD on the generated frequency response results through

an inertial amplification mechanism including structure.

• Generating a stop band at low frequencies through a locally resonant periodic

structure to hinder the 1D axial wave propagation.

ECD is embedded into the four legged inertial amplification mechanism to observe

its effect on resonance peaks and anti-resonance depth. This is followed by inclusion of

ECD into a locally resonant periodic structure to generate stop band at low frequencies.

The inclusion of ECD to these structures are accomplished through the relative motion

in between a ring magnet and a copper tube.



9

2. INERTIAL AMPLIFICATION MECHANISM

The lumped parameter model of the inertial amplification mechanism used in this

thesis is composed of two rigid links connected directly from one end with an attached

point mass (ma), and connected via spring and damper from the other end as shown

in Figure 2.1.

Figure 2.1. Sketch of the Lumped Parameter Model of the Inertial Amplification

Mechanism.

For small θ values, the displacement of the ends of the spring is amplified through

the mechanism, and the displacement of the point mass is greater for smaller θ values.

The relation between the end displacements and the displacement of the point mass is

given in Equation 2.1 and Equation 2.2.

uv =
z0 + z

2
(2.1)
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uh =
z0 − z

2
cot θ (2.2)

where uv is the vertical and uh is the horizontal displacement of the attached point

mass. The potential energy (V ) and the kinetic energy (T ) of the lumped parameter

model shown in Figure 2.1 are given in Equation 2.3 and Equation 2.4, respectively.

V =
1

2
k(z − z0)2 (2.3)

T =
1

2
ma

((
ż0 + ż

2

)2

+

(
ż0 − ż

2
cot θ

)2
)

+
1

2
mż2 (2.4)

where k is the spring constant. Moreover, Rayleigh Dissipation Function (F̃ ) can be

found as

F̃ =
1

2
c(ż − ż0)2 (2.5)

where c is the damping constant. Equation of motion of the lumped parameter model

given in Equation 2.7 is found through Lagrange Method shown in Equation 2.6 where

L = T − V

d

dt

(
∂L

∂ż

)
− ∂L

∂z
= Q, Q =

−dF̃
dż

(2.6)

(
1

2
ma(1 + cot θ) +m

)
z̈ + cż + kz =

(
1

2
ma(cot θ − 1)

)
z̈0 + cż0 + kz0 (2.7)

The effective mass (meff = 1
2
ma(1 + cot θ) + m) and the equivalent stiffness

(keq = k) of the model is obtained to be used in damping constant calculation.
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2.1. Distributed Parameter Model

A distributed parameter model, first mode of which is equivalent to the lumped

parameter model, is designed. The isometric and side view of this distributed parameter

model can be seen in Figure 2.2. This model is a single branch of a four legged design

in which ECD is not included, yet.

(a)

(b)

Figure 2.2. (a) Isometric View and (b) Side View of the Distributed Parameter Model

of a Single Branch of the Four Legged Design. Here, li, ti and mi are the Length,

Thickness and Mass of the ith Section that Forms the Structure.

First mode shape of this distributed parameter model for a single branch is given

in Figure 2.3 in which both ends are free to move vertically. The equivalent stiffness

(keq) and the effective mass (meff ) of the four legged structure is obtained through the

calculation of the kinetic and potential energy of this single branch’s first mode shape.

Relative vertical displacements of the two ends of beam section 2, section 3 and

the half of the beam section 4 in the middle part of the single branch are given in

Equations 2.8−2.10 respectively and shown in Figure 2.3. Length, thickness and mass
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of beam sections 1 and 7, beam sections 2, 4, and 6 and beam sections 3 and 5 are

equal.

z1 = l2

(
1− sin θ

θ

)
(2.8)

z2 = l3(1− cos θ) + (t3 + t2) sin θ (2.9)

z3 =
l2
2

(
1− sin θ

θ

)
(2.10)

Figure 2.3. Sketch of the Distributed Parameter Model of a Single Branch of the Four

Legged Design.
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The relative displacement between the bottom and the top parts is given in

Equation 2.11.

z0 − z = 2(z1 + z2 + z3) (2.11)

Assuming angular displacements are small by inserting sin θ = θ and cos θ = 1

into Equation 2.11, the relative displacement of the bottom portion with respect to the

top part can be found in terms of the angular displacement, as

z0 − z = 2(t3 + t2)θ (2.12)

Through equating the potential energy of the distributed parameter model (Equa-

tion 2.13) [20] to the lumped parameter model (Equation 2.14) keq is obtained as in

Equation 2.15.

Vdistributed =
24EI2θ

2

l2
(2.13)

where I2 is the moment of inertia and E is the Young’s Modulus.

Vlumped =
1

2
k(z − z0)2 = 2k(t3 + t2)

2θ2 (2.14)

keq =
12EI2

l2(t3 + t2)2
(2.15)

Beam sections 2, 4, and 6, which are flexible connections, are considered to have

negligible mass. Thus, the kinetic energy of the system is calculated by considering

the rotational and linear motion of sections 3 and 5, and the linear motion of section

1 and 7. To calculate the rotational kinetic energy of the sections 3 and 5, mass
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moment of inertia of them with respect to the center of mass of sections 2 and 6 are

calculated, respectively as given in Equation 2.16 by using the parallel axis theorem.

Mass moments of inertia (I0) of sections 3 and 5 are the same.

I0 = m3

(
t23 + l23

12

)
+m3

((
l3 + l2

2

)2

+

(
t3 + t2

2

)2
)

(2.16)

Total rotational kinetic energy (Tr) including four pieces of section 3 and four

pieces of section 5 is given in Equation 2.17.

Tr =
I0(ż0 − ż)2

(t3 + t2)2
(2.17)

Translation of the center of mass of the four pieces of section 3 and four pieces

of section 5 with masses m3 and m5 is (z + z0)/2. Thus, the total translational kinetic

energy (Tt) of four pieces of section 3, four pieces of section 5, four pieces of section 1

and four pieces of section 7 is given in Equation 2.18. Equation 2.18 will be modified

when ECD is included to the structure since the mass under translational motion will

change.

Tt = m3(ż + ż0)
2 + 2m1ż

2 + 2m7ż0
2 (2.18)

As a result, the total kinetic energy of the mechanism is

T = Tr + Tt =
I0(ż0 − ż)2

(t3 + t2)2
+m3(ż + ż0)

2 + 2m1ż
2 + 2m7ż0

2 (2.19)

The equation of motion is written using the Lagrange Method given in Equation

2.6. Lagrange’s equation for the distributed parameter model for the z coordinate is
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given as follows:

d

dt

(
∂L

∂ż

)
− ∂L

∂z
=

d

dt

(
∂T

∂ż

)
+
∂V

∂z
=
−dF̃
dż

(2.20)

Equation of motion given in Equation 2.21 is found by inserting the potential

energy given in Equation 2.14 and the total kinetic energy given in Equation 2.19 into

Equation 2.20.

(
2I0

(t3 + t2)2
+ 2m3 + 4m1

)
z̈+ cż+ keqz =

(
2I0

(t3 + t2)2
− 2m3

)
z̈0 + cż0 + keqz0 (2.21)

Notice that the term which multiplies z̈ in Equation 2.21 is the effective mass of

this system,

meff =
2I0

(t3 + t2)2
+ 2m3 + 4m1 (2.22)

As mentioned before, effective mass formula given in Equation 2.22 will be mod-

ified because of the mass change in beam section 1 caused by the inclusion of ECD.

2.2. Eddy Current Damping Inclusion

The most widely known example of eddy currents for demonstration purposes is

“Drag on a Magnet Falling Down a Conductive Tube” [30–33]. Dropping a magnet

down the tube as it falls nearly with a constant velocity gives a remarkable manifesta-

tion of the reality of eddy currents. In [34,35] the effect of the number of magnets, the

tube’s wall thickness, and the offset between the magnet’s and the tube’s symmetry

axes on induced eddy currents have been investigated.
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In this part of the research, eddy currents are induced by the relative motion of

a ring magnet attached to the vibrating object with respect to the stationary copper

tube. Damping coefficient of this viscous type of damper is obtained experimentally,

analytically and numerically.

2.2.1. Analytically Obtained Damping Constant

Calculation of the damping constant of a permanent magnet moving through a

conductive tube was the focus of numerous studies so far [36–39]. By modeling the

magnetic field of the falling magnet as a dipole and assuming that the magnet height is

small compared to its diameter, the terminal velocity of the falling cylindrical magnet

through a conductive cylindrical tube can be found as [40,41]

vterminal =
128(mg)(8r4mean)

45σδtµ2
0m

2
B

(2.23)

where µ0 is the permability of the free space, mB is the magnetic dipole moment of

the magnet, δt is the wall thickness of the tube, σ is the conductivity of the tube,

rmean is the mean radius of the tube, and mg is the weight of the magnet. The only

unknown, magnetic dipole moment is calculated by using Equation 2.24 and 2.25 [40]

with remanence (Br) value for N35 type magnet taken as 1.17 T.

Bz(z) =
Br

2

(
hc + z√

r2c + (hc + z)2
− z√

r2c + z2

)
(2.24)

In Equation 2.24, hc is the cylindrical magnet’s height, rc is its radius and z is the

distance above from the surface center. Table 2.1 shows the Gaussmeter measurements

and the calculated magnetic field values by Equation 2.24. It is seen that measured and

calculated values show quite good match, which validates the reliability of the formula

given in 2.24 for the cylindrical magnet.
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Table 2.1. Measured and Calculated Bz(z) Values

Distance above surface (mm) Measurement values (mT) Calculated values (mT)

0 404 410

20 73 71

25 46 47

30 32 33

35 23 23

40 18 17

45 13 13

50 10 10

In Equation 2.25, the axial magnetic field due to dipole approximation is given

[41].

Bz(z) =
2µ0mB

4πz3
(2.25)

If the magnetic field values for several points above the magnet’s surface on

the axis of symmetry through Equation 2.24 are calculated and then by equating these

values with Equation 2.25, several magnetic dipole moments can be found. Afterwards,

with the most suitable magnetic dipole moment, terminal velocity can be calculated

for the cylindrical magnet.

In order to use Equation 2.23 for a ring magnet, principle of superposition can

be applied as given in Figure 2.4.
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Figure 2.4. Superposition of Two Concentric Cylindrical Magnets [42].

For the ring magnet used in experimental measurements whose dimensions are

given in Table 2.2, superposition of two cylindrical magnets with same height differing

in radius can be done.

Figure 2.5. Ring Magnet’s Magnetic Field on the Axis-of-Symmetry.

For the ring magnet shown in Figure 2.5, the magnetic field formula in Equation

2.24 can be modified as in [43]

Bz =
Br

2

(
hr + z√

r2o + (hr + z)2
− z√

r2o + z2
− hr + z√

r2i + (hr + z)2
+

z√
r2i + z2

)
(2.26)
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Figure 2.6. (a) Ring Magnet’s Magnetic Field on the Axis-of-Symmetry above the

Top Surface, (b) Corresponding Terminal Velocity.

The magnetic fields and corresponding terminal velocities for various distances

above the top surface area of the ring magnet is given in Figure 2.6. For the ring

magnet whose dimensions are given in Table 2.2 that falls through a copper tube with

a mean radius (r) of 16.35 mm, wall thickness (δt) of 1.5 mm,and conductivity (σ) of

5.88× 107Ω−1m−1, vterminal approaches to 0.103 m/s when Equation 2.23 is used. By

dividing the magnet weight to this terminal velocity, damping constant found by the

dipole approximation (cana−dipole) can be calculated as 7.18 kg/s.

Since in short amount of time, velocity becomes constant for a falling magnet

inside a copper tube, it can be assumed that the magnet moves with constant velocity.

Its kinetic energy does not change and the gravitational potential energy is transformed

into the ohmic heating of the copper tube. In steady state, the rate of gravitational

energy lost by the magnet is equal to the rate of the energy dissipation by the ohmic

resistance (R),

mgvterminal =
∑
z

I(z)2R (2.27)
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where I is the electrical current.

Using the terminal velocity calculations done for the cylindrical magnet in [44] a

similar formula for the magnetic flux Φtotal can be derived for a ring magnet as given

in Equation 2.28 assuming that the ring magnet has uniform magnetization.

Φtotal = Φo − Φi =
µ0

2

(
z + h√

(z + h)2 + r2internal
− z√

z2 + r2internal

)
(qo − qi) (2.28)

where Φo and Φi represents the magnetic flux on copper rings generated by cylindrical

magnets with radius ro and ri, respectively. For both magnets, the heights (h) are the

same. rinternal is the internal radius of the copper tube. By subtracting Φo from Φi the

magnetic flux generated on a copper ring by a ring magnet is acquired. qo = πr2oσM−o

and qi = πr2i σM−i are the representations of charge disks which are the top and bottom

surfaces of the cylindrical magnets, as point monopoles having the same net charge as

the disks. It is assumed that the magnets have uniform magnetization M=Mẑ. That is

the effective magnetic charge density inside each magnet is zero, and effective magnetic

charge density σM vanishes on the side of the magnet and is±M on the top and bottom.

As the magnet falls, the flux through each copper ring changes, which results in

an electromotive force given by Faraday’s law,

ε(z) = −dΦtotal(z)

dt
(2.29)

and an electrical current

I(z) =
µo(qo − qi)r2internalvterminal

2R
C (2.30)

The rate of energy dissipation can be calculated by evaluating the sum on the

right-hand side of Equation 2.27. By taking the continuum limit, we find the power
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(P ) dissipated to be

P =
µ2
o(qo − qi)2r4internalv2terminal

4R

∫ ∞
−∞

C2

l
dz (2.31)

where C = 1
(z2+r2internal)

3/2 − 1
((z+h)2+r2internal)

3/2 .

The resistance of each copper tube is R = 2πrinternalρ/(δtl), where ρ is the elec-

trical resistivity, δt is the copper wall thickness and l is the copper tube length.

For the uniform magnetization approximation, the value for σM can be found by

using Equation 2.32 on the axis of symmetry as

σM−o =
2Bo

√
h2 + r2o
µ0h

(2.32)

for the large magnet and

σM−i =
2Bi

√
h2 + r2i
µ0h

(2.33)

for the small magnet.

By calculating the surface magnetic field (B) values on the axis of symmetry for

both of these cylindrical magnets, qlarge and qsmall are obtained be used in Equation

2.31. Substituting Equation 2.31 into Equation 2.27, vterminal can be found as 0.111

m/s and by dividing the magnet weight to this terminal velocity, damping constant

found by the power dissipation method (cana−power) can be obtained for the ring magnet

as 6.77 kg/s.

2.2.2. Numerically Obtained Damping Constant

A finite element model (FEM) is created by COMSOL-Multiphysics 4.3b as given

in Figure 2.7 for the ring magnet whose dimensions are given in Table 2.2. Through the
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analysis of this numerical model, terminal velocity of the magnet (vterminal) is found as

0.054 m/s (see Figure 2.7 (e)). Since vterminal is reached in short duration (less than

0.05 seconds according to our FEM analysis), by Equation 2.34 the damping constant

of the cylindrical magnet can be obtained.

mg = cvterminal (2.34)

where m represents the mass of the falling magnet, g represents the earth’s gravity, and

c is the damping constant. Consequently, the damping constant (cnumerical) is found to

be 13.45 kg/s.

(a) (b)

(c) (d)

(e) (f)

Figure 2.7. (a) 2D Axi-Symmetric FEM of the Copper Tube and the Ring Magnet,

(b) Magnetic Flux Density Norm (T) Contour Plot, (c) Current Density Norm (T)

Contour Plot, (d) Lorentz Force Acting on the Ring Magnet, (e) Velocity Profile of

the Ring Magnet, (f) Acceleration Profile of the Ring Magnet
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2.2.3. Experimentally Obtained Damping Constant

2.2.3.1. Free Fall Experiment for Damping Constant Estimation. The basic free fall

of a cylindrical magnet through a conducting tube experiment given in Figure 2.8 is

done to obtain the damping constant. In this experiment, the copper tube’s length,

inner radius, wall thickness, and conductivity are 600 mm, 15.6 mm, 1.5 mm, and

5.88×107 1/Ω.m respectively. Terminal velocity is calculated by dividing the length of

the copper tube with the measured time of fall with a digital chronometer. Average of

10 free fall experiments are used and standard deviations are calculated. The same set

of experiments is performed for a ring magnet, too. Experimentally obtained values of

vterminal and c are given in Table 2.2.

Table 2.2. Calculated Velocity and Damping Constant for the Given Ring Magnet.

Cylindrical Magnet Ring Magnet

Magnet Height (mm) 10 15

Magnet Inner Radius (mm) − 4.25

Magnet Outer Radius (mm) 15.35 15.35

Magnet Weight (N) 0.667 0.740

Free Fall Time (s) 8.69± 0.096 10.16± 0.111

Terminal Velocity (m/s) 0.069 0.059

Damping Constant (kg/s) 9.67 12.5

Figure 2.8. Measurement of the Time of Magnet Fall Inside the Copper Tube.
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2.2.3.2. Production of the Prototype. Aluminium beams, fasteners and spring steels

are used to design the four legged inertial amplification mechanism. The structure

produced is shown in Figure 2.9 and the dimensions and masses of its parts are given

in Table 2.3. A ring magnet is used to add the ECD effect to this structure. The ring

magnet is fixed to the tip of a threaded rod that passes through the axis of symmetry

of the four legged structure. The height of the ring magnet relative to the copper tube

can be adjusted by rotating the threaded rod. When the copper tube, situated at the

bottom part of the structure, interacts with the ring magnet, ECD effect is observed.

Table 2.3. Design Parameters for the Inertial Amplification Mechanism.

w (m) 0.009

E (N/m2) 210× 109

t2 (m) 0.0005

l2 (m) 0.009

t3 (m) 0.030

l3 (m) 0.150

m1 (kg) 0.265

m3 (kg) 0.126

When the threaded rod, copper tube and ring magnet is included to the system

Equation 2.22 needs to be modified due to the additional translational kinetic energy

caused by the added parts to the system. Since the copper tube is attached to beam

section 7, just the masses of ring magnet and threaded rod attached to beam section

1 is taken into consideration. Thus, effective mass in Equation 2.22 is modified as

meff =

(
2I0

(t3 + t2)2
+ 2m3 + 4m1 +mECD

)
(2.35)

With the given design parameters and mECD being 0.185 kg, effective mass

(meff = 3.8 kg) and the equivalent stiffness (keq = 28.22 kN/m) of the structure

including ECD is obtained to be used in the logarithmic decrement method in order
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to calculate the damping constant of the ring magnet.

(a) (b)

(c)

Figure 2.9. (a) Fully Inserted Ring Magnet. (b) Ring Magnet and Copper Tube

Situated Separately. (c) Full View of the Four Legged Inertial Amplification

Mechanism.
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2.2.3.3. Laser Vibrometer Measurements to Estimate the ECD Constant. Logarithmic

decrement method is used to obtain the damping constant (cexp−logdec) of the ring mag-

net. The top surface speed of the inertial amplification mechanism setup is measured

with a Laser Vibrometer when ECD effect is not included in the system. Afterwards,

two consecutive measurements are taken when half of the ring magnet is within the

copper tube and when it is fully inside the tube. The effect of ECD is seen in Figure

2.10. Note that the decay rate is highest when the ring magnet is fully inside the tube.

Figure 2.10. Laser Vibrometer Measurements of the Four Legged Inertial

Amplification Mechanism.

Generally, this method can be formulated as follows [45]:

δ =
1

n
ln

(
x(t)

x(t+ nT )

)
(2.36)

ζ =
δ√

4π2 + δ2
(2.37)

where δ is the logarithmic decrement, x(t) is the peak displacement amplitude at time

t, x(t+ nT ) is the peak displacement amplitude after n periods (T ).
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Notice that in Equation 2.36 displacement amplitude information is used. How-

ever, vibration velocity is measured by the laser vibrometer. Therefore, Equation 2.36

needs to be modified. Since this equation is derived by assuming that the motion is

underdamped, displacement amplitudes are related by Equation 2.38

x(t+ nT ) = e−ζωnnTx(t) (2.38)

where ωn is the undamped natural frequency of the system. When we take the time

derivative of Equation 2.38 the following equation is obtained:

v(t+ nT ) = e−ζωnnTv(t) (2.39)

where v(t) is the velocity amplitude at time t, v(t+nT ) is the velocity amplitude after

n periods (T ). There is a phase difference between peak velocity and peak displacement

values. Nevertheless, for all values of t, the following relationship holds:

x(t)/x(t+ nT ) = v(t)/v(t+ nT ) = eζωnnT (2.40)

Therefore, Equation 2.40 can be used for the peak values in the velocity measurements.

As a result, Equation 2.36 can be reformulated as

δ =
1

n
ln

(
v(t)

v(t+ nT )

)
(2.41)

Logarithmic decrement (δ) and damping ratio (ζ) values for the three conditions

shown in Figure 2.10 are obtained by Equation 2.41 and Equation 2.37 and they are

shown in Table 2.4. Damping constant values given in Table 2.4 are calculated by

Equation 2.42 in which modified effective mass in Equation 2.35 and equivalent stiffness

in Equation 2.15 are used.

c = 2ζ
√
meffkeq (2.42)



28

Table 2.4. Calculated Damping Ratios and Constants According to Magnet Position

via Logarithmic Decrement Method.

No ECD Half Inserted Fully Inserted

Peak Number 6th 33th 3rd 14th 3rd 22th

Time (s) 0.4354 2.658 0.1812 1.087 0.1771 1.74

Velocity (m/s) 2.04 0.9608 0.9301 0.3429 0.6319 0.03467

δ 0.028 0.091 0.153

ζ 0.00446 0.0145 0.0243

c (kg/s) 2.92 9.50 15.91

When the damping constant for no eddy current damping case (just structural

damping case) is subtracted from the fully inserted case cexp−logdec for the ring magnet

is obtained as 12.99 kg/s. In Table 2.5 analytically, numerically and experimentally

obtained damping constants are given. The difference seen in the analytically calcu-

lated ones with the others is due to the dipole approximation. It is seen that dipole

approximation is not applicable for magnets having comparable height with respect to

the inner radius of the copper tube.

Table 2.5. Analytical, Numerical and Experimental Damping Constant (kg/s)

Estimations.

cana−dipole cana−power cnumerical cexp−freefall cexp−logdec

7.18 6.77 13.45 12.50 12.99

2.3. Finite Element Analysis

In order to see the frequency response of the four legged structure, a finite element

model is built by using ANSYS-Workbench 14.5 as shown in Figure 2.11 (a). Point

masses are added to the top and bottom portion to include the fasteners’ masses. Since

the structure is situated vertically, the bottom portion is assumed to be fixed during

modal analysis.
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Then the four legged structure is modified when the components of ECD mecha-

nism including copper tube, threaded bolt and ring magnet are included into the design

as shown in Figure 2.11 (b).

(a)

(b)

Figure 2.11. (a) Inertial Amplification Mechanism without ECD, (b) Inertial

Amplification Mechanism with ECD.

2.3.1. Modal Analysis

Modal analysis for the structure w/ and w/o ECD mechanism is performed up

to 700 Hz. The natural frequencies corresponding to each mode shape is found as

given in Table 2.6. The first column shows the natural frequencies of the design given

in Figure 2.11 (a). The second column shows the natural frequencies of the ECD
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included structure given in Figure 2.11 (b).

Table 2.6. Undamped Natural Frequencies of the Four Legged Inertial Amplification

Mechanism w/o and w/ ECD mass up to 700 Hz.

Mode Number Nat. Freqs. w/o ECD mass (Hz) Nat. Freqs. w/ ECD mass (Hz)

1 23.3 14.3

2 34.6 147.9

3 34.8 150.8

4 126.4 154.4

5 196.1 155.1

6 200.7 255.4

7 250.8 261.8

8 352.5 286.6

9 359.8 353.6

10 407.4 397.0

11 427.2 432.9

12 522.1 436.2

13 547.4 444.0

14 575.5 452.2

15 583.3 468.2

16 602.1 471.3

17 611.1 473.1

18 616.7 475.9

19 637.9 516.9

20 658.3 542.0

21 673.3 560.2

22 685.2 620.0

23 692.2 628.4

24 − 651.7

25 − 659.0
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2.3.2. Harmonic Analysis

In order to include the ECD effect to the structure, a damping constant should

be selected among the various estimations in Table 2.5. As the free fall experiment

is widely used in the literature, cexp−freefall = 12.50 kg/s is chosen to be used. More-

over, this value is also quite close to the other experimental and numerical estimations

(cexp−logdec = 12.99 kg/s and cnumerical = 13.45 kg/s). A damper with a damping con-

stant of 12.50 kg/s is added to the structure as shown in Figure 2.12 in between the

circumference of the top portion of copper tube and the lateral surface of the ring

magnet.

Figure 2.12. ECD Representation in the FEM.

During the harmonic analysis the damper shown in Figure 2.12 is initially not

activated. Then, the damper is activated to see the changes in the resonance peaks. In

Figure 2.13, frequency response results of two cases which are; four legged structure w/

ECD mechanism included when it is not activated and w/ ECD mechanism included

when it is activated are shown. When ECD mechanism is activated it is seen that

the first resonance peak is significantly suppressed without altering the other peaks.

Besides, an almost resonance free frequency range is observed between 14.3 Hz and

516.9 Hz. The resonances in Table 2.5 are not observed much in this frequency range

as the structure is forced axially.



32

Figure 2.13. Frequency Response Results of the Four Legged Structure when the

ECD Mechanism is Activated and not Activated.
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3. LOCALLY RESONANT PERIODIC STRUCTURE

In this part of the research, ECD is combined with the local resonance method for

the first time. A 1D periodic structure is designed that shows a wide local resonance

induced band gap. The periodic structure is manufactured to see the effect of ECD on

resonance peaks, stop band width, and anti-resonance depth in the frequency response

plots.

ECD within the periodic structure are realized through ring magnet and copper

tube assemblies. Electromagnetic FEMs of these assemblies are formed to calculate

their damping coefficients. Moreover, structural FEMs of the periodic structure are

generated to be used for modal analysis. The equivalent viscous damping coefficients

of the ring magnet and copper tube assemblies are used in the structural finite element

and lumped parameter models. Finally, frequency response results of the lumped

parameter and FEMs are compared.

3.1. Analytical Model

(a) (b)

Figure 3.1. Lumped Parameter Model of the Locally Resonant Periodic Structure

Including ECD. (a) 1D Array with Local Resonators, (b) The Equivalent Array with

Effective Mass.

A 1D locally resonant periodic structure that includes ECD is modelled as in

Figure 3.1. During modeling of the periodic structure, five parameters are taken into
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account, which are resonator mass (mr), total mass of the remaining parts in the unit

cell when the resonator mass is excluded (m), stiffness of the spring connecting the

resonator mass to the unit cell (kr), total stiffness between the unit cells (k) and the

ECD constant (c). As ECD force is velocity proportional, c can be considered as a

viscous damping constant.

Phononic band structure and the frequency response of the periodic structure will

be determined by the transfer matrix method [46]. Through mechanical impedance to

mass conversion, periodic structure’s effective mass can be calculated to be used in its

overall transfer matrix. Mechanical impedance representations for mass, spring and

damper elements are jωm, k/jω and c, respectively [47]. By using these impedances,

effective mass of the unit cell of the system shown in Figure 3.1(b) is obtained as

follows.

meff = m+
1

1
mr
− ω2

kr+jωc

(3.1)

The point transfer matrix for meff given in Equation 3.2 and the field transfer

matrix for k given in Equation 3.3 are used [46] to obtain the relationship between the

consecutive unit cells through the state vector relationships as shown in Equation 3.4.

Pi =

 1 0

−meffω
2 1

 (3.2)

Fi =

1 1
k

0 1

 (3.3)

zRi =

u
N

R
i

(3.4)
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where u is displacement and N is internal force. To construct the band structure of the

locally resonant periodic structure including ECD, Bloch’s Theorem given in Equation

3.5 is applied [48].

zRi = zRi−1e
iγ (3.5)

Here, γ represents the wave number. Equations 3.4 and 3.5 can be used to obtain

the relationship between the state vectors for the successive unit cells given in Equation

3.6.

u
N

R
i

=

 1 0

−meffω
2 1

1 1
k

0 1

u
N

R
i

e−iγ (3.6)

Due to periodic boundary conditions, the determinant expressed in Equation 3.7

is obtained.

∣∣∣∣∣∣ 1− eiγ 1
k

−meffω
2 −meffω

2

k
+ 1− eiγ

∣∣∣∣∣∣ = 0 (3.7)

Consequently, dispersion equation given in Equation 3.8 for the periodic structure

including infinite number of unit cells is attained. ω values that satisfy this disper-

sion equation are obtained for γ values in between 0 and π. As a result, the five

aforementioned design parameters can be optimized for a desired band gap width.

1− 2eiγ + e2iγ +
meffω

2eiγ

k
= 0 (3.8)

On the other hand, to obtain the transmissibility plot for the periodic structure

with a finite number of unit cells, overall transfer matrix of the structure should be



36

calculated by using Equations 3.2 and 3.3. In the overall transfer matrix, the U22 entry

is used to find the displacement or acceleration transmissibility (TR(ω))(see Equation

3.10)

Uoverall = (PiFi)
n =

U11 U12

U21 U22

 n = 1, 2, 3, . . . (3.9)

TR(ω) =

∣∣∣∣x(ω)

y(ω)

∣∣∣∣ =

∣∣∣∣ ẍ(ω)

ÿ(ω)

∣∣∣∣ =
1

U22

(3.10)

where x(ω) and y(ω) are the output and input displacements. Moreover, the frequency

range where TR(ω) < 1 is defined as the stop band.

In order to show the effect of ECD on the frequency response of the periodic

structure, its lumped parameter model is optimized to obtain a stop band between 50-

100 Hz frequency range. During optimization, parametric studies are conducted with

the use of the dispersion equation (Equation 3.8) and the transmissibility (Equation

3.10) of the lumped parameter model shown in Figure 3.1.

3.2. Parametric Studies

First two parametric studies focuses on the effect of mass distribution within the

unit cell and the number of unit cells to the width and depth of the stop band of the

periodic structure. While the latter two focuses on the effect of ECD to the frequency

response of the periodic structure.

First of all, the effect of the main mass (m) to resonator mass (mr) ratio is

investigated. In this study, two different ring magnets with masses 0.032 kg and 0.052

kg are planned to be used for ECD purposes. Thus, the main mass (m) of the unit

cell including these magnets is predicted to be around 0.1 kg. On the other hand, the

resonator mass (mr) which mainly consists of copper tube can be varied to change the
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band gap frequency range. Figure 3.2 shows that as m/mr ratio decreases, wider band

gaps can be obtained. It is seen that m/mr = 1/3 provides a band gap in the target

frequency range (50 − 100 Hz). Moreover,
√
kr/mr is taken as 2π × 50 so that, the

lower limit of the stop band is around 50 Hz.

(a)

(b)

(c)

Figure 3.2. Band Structure Plots for Three Different Mass Ratios (a) m/mr = 1/2,

(b) m/mr = 1/3, (c) m/mr = 1/4. In all Plots m = 0.1 kg, k = 126 kN/m and√
kr/mr = 2π × 50 rad/s.
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Secondly, the effect of number of unit cells to the width and depth of the stop

band is investigated. Figure 3.3 shows that as the number of unit cells is increased, anti-

resonance depth at 50 Hz also increases. Therefore, vibration isolation performance

in between 50 − 100 Hz is improved. However, as the number of unit cells increases,

the overall size and mass of the periodic structure increases, as well. Considering the

compromise between stop band depth and mass of the periodic structure, four unit

cells are chosen to be used in the design.

Figure 3.3. The Effect of Number of Unit Cells in the Periodic Structure on the

Depth of the Stop Band between 50− 100 Hz. Here, m = 0.1 kg, mr = 0.3 kg,

k = 126 kN/m, kr = 29.6 kN/m.

Within the unit cell of the periodic structure, a ring magnet will be used inside a

copper tube to generate ECD. In the third parametric study, the effect of damping ratio

to the stop band width and depth of the structure will be investigated. Only the ECD

constant or equivalent viscous damping coefficient (c) will be varied in the lumped

parameter model of the periodic structure. Figure 3.4 shows that as the damping

ratio of the resonators (see Equation 3.11) increases all the resonance peaks and the
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anti-resonance depth at 50 Hz decreases.

ζ =
c

2
√
mrkr

(3.11)

Also note that the increase in the damping ratio slightly increases the stop band

width. However, if larger damping coefficients are to be realized by the use of larger

magnets in the design, then the main mass m will increase. Consequently, m/mr ratio

will increase, resulting in a narrower stop band as shown in Figure 3.2(a).

Figure 3.4. The Effect of Damping Ratio of the Resonators on Stop Band Width,

Resonance Peaks and Anti-Resonance Depth for a Periodic Structure with Four Unit

Cells. Here, m = 0.1 kg, mr = 0.3 kg, k = 126 kN/m, kr = 29.6 kN/m.

In the literature, many parametric studies are conducted regarding cylindrical

magnets moving inside copper tubes. [34, 35, 40, 41, 44, 49] investigated the effect of

cylindrical magnet’s radius, height, and grade; copper tube’s height and wall thick-

ness, and the air gap width between this couple on the ECD force or Lorentz force.

However, ring magnets are not investigated in these studies. [50] proposed a hybrid



40

damping structure including air damping and ECD. Yet, no parametric studies are

done regarding the geometry of the ring magnet to be used.

Table 3.1. Dimensions, Weights and Remanent Flux Density Intervals of the Ring

Magnets.

Small Magnet Large Magnet

Magnet Outer Radius (mm) 12.5 15.35

Magnet İnner Radius (mm) 4.25 4.25

Magnet Height (mm) 10 10

Magnet Weight (N) 0.31 0.51

Remanent Flux Density Interval (T) 0.9− 1.5 0.9− 1.5

Two set of NdFeB ring magnets (see Table 3.1) will be used in the locally resonant

periodic structure to generate ECD. Notice that the remanent flux densities for these

N35 grade magnets can be in a quite wide range depending on the manufacturer. In

order to determine the remanent flux densities of these magnets accurately, free fall

experiments are conducted. To that end, a 550 mm long 1.5 mm thick copper tube

is used in which the ring magnets are let to free fall. The falling times for each ring

magnet are measured with a digital chronometer. The average of 10 measurements are

recorded. Later, the length of the copper tube is divided to these falling times and

terminal velocities are obtained. Since at terminal velocity (vterminal) Lorentz force

(Florentz) is equal to the weight of the magnet (mg), by dividing the Lorentz force to

the terminal velocity, damping constant (c) can be obtained as in Equation 3.12.

c =
Florentz
vterminal

=
mg

vterminal
(3.12)

Following this experiment, an electromagnetic FEM which is a duplicate of this

experiment is prepared. During the finite element analysis (FEA), remanent flux den-

sities for each ring magnet are varied from 0.9 T to 1.5 T with 0.01 T increments

to get the same terminal velocity values as in the free fall experiment. In Table 3.2,
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corresponding remanent flux densities are given.

Table 3.2. Free Fall Experiment Results for Ring Magnets. Here, the Copper Tube is

550 mm Long, 1.5 mm Thick and It’s Inner Diameter is 32 mm.

Small Magnet Large Magnet

Measured Falling Time (s) 3.18 9.59

Terminal Velocity (m/s) 0.173 0.057

Lorentz Force (N) 0.31 0.51

Damping Constant (kg/s) 1.81 8.90

Remanent Flux Density (T) 1.03 1.14

A final parametric study will be conducted to obtain the maximum amount of

damping for the given ring magnets. To that end, an electromagnetic FEM of the ring

magnets and copper tube will be generated. The magnets will be subjected to free

fall due to gravity and the Lorentz force between magnets and copper tubes will be

calculated. During the analyses, mass of the copper tube is kept constant at 0.3 kg.

Moreover, its inner radius is fixed at 16 mm while its height and wall thickness is varied

considering the mass constraint. Height of the tube is decreased as the wall thickness

is increased from 1 mm to 20 mm with 1 mm increments.

One of these analyses is shown in Figure 3.5. Here, the wall thickness of the

copper (ρ = 8700 kg/m3) tube is 11 mm, and its height is 23.2 mm satisfying the

mass constraint of 0.3 kg. Notice that as the magnet velocity reaches a terminal value,

the Lorentz force in the direction of free fall (z-direction) reaches 0.51 N, which is the

weight of the large magnet. Then, damping constant can be found using Equation

3.12. For this case, vterminal = 0.0167 m/s giving c = 30.5 N.s/m.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5. Computational Analysis for the Free Fall of the Large Ring Magnet Inside

a Copper Tube with 11 mm Wall Thickness and 23.2 mm Height. (a) Section View,

(b) 2D Axi-Symmetric Meshed Geometry, (c) Magnetic Density Norm (T) Contour

Plot, (d) Current Density Norm (A/m2) Contour Plot, (e) Relative Velocity Between

Magnet and Copper Tube, (f) Lorentz Force Between Magnet and Copper Tube that

is Generated due to Eddy Currents within the Copper Tube.

Figure 3.6 shows the effect of wall thickness of the copper tube on the ECD

constant and the damping ratio of the resonator. It is seen that to acquire the maximum

damping ratio with a mass constraint, there is an optimum copper wall thickness value.
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For a copper tube having an inner radius of 16 mm with mass constraint of 0.3 kg, the

optimum wall thickness value is around 11 mm.

(a)

(b)

Figure 3.6. The Effect of Copper Tube’s Wall Thickness on Damping Behaviour for a

Constant Resonator Mass of 0.3kg (a) Effect of the Copper Wall Thickness on

Damping Constant, (b) Effect of Copper Tube Wall Thickness on Damping Ratio.

Here, mr = 0.3 kg, kr = 29.6 kN/m.
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3.3. Design and Finite Element Analysis

In Figure 3.7, lumped parameter model of the unit cell of the periodic structure

and the corresponding distributed parameter model can be seen. In Figure 3.7(b) two

sets of parallel spiral springs are used to realize the stiffnesses k and kr. The two

parallel spiral springs (kr/2) that are attached to the copper tube (mr) allow the ring

magnet to move concentrically inside the tube without any contact. Notice that as the

large magnet diameter is 30.7 mm and the inner diameter of the tube is 32 mm, there

is very little clearance between them. The other two parallel spiral springs (k/2) are

used to connect the unit cells with each other. Due to their parallel design, they only

allow axial relative motion between the unit cells. As a result, 1D locally resonant

periodic structure can be realized.

(a)

(b)

Figure 3.7. (a) Lumped Parameter Model of the Unit Cell. (b) Distributed

Parameter Model of the Unit Cell.
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In the analyses with the lumped parameter model, the stiffnesses kr and k are

determined as 29.6 kN/m and 126 kN/m (see Figures 3.3 and 3.4). In order to realize

these stiffness values, the spiral springs shown in Figure 3.8(a) and 3.8(b) are designed.

Both of these stainless steel (E = 193 GPa, ρ = 7750 kg/m3, ν = 0.31) springs have 60

mm outer diameter, 8.5 mm inner diameter and 0.7 mm thickness. The spiral shaped

slots are chosen such that the stiffness of these springs are close to half of the stiffness

values in the lumped parameter model.

(a) (b)

Figure 3.8. (a) Spiral Spring with kr/2 = 13.5 kN/m Stiffness. (b) Spiral Spring with

k/2 = 62.0 kN/m Stiffness

The locally resonant periodic structure with four unit cells can be seen in Figure

3.9. The whole structure has an outer diameter of 60 mm and length of 376 mm.

Notice that the central stainless steel M8 bolts connect all parts within each unit cell.

The bolt head is connected to a stainless steel circular plate that has 1 mm thickness.

Moreover, three stainless steel M4 bolts are used near the periphery of each circular

plate to make the connection with the neighbouring unit cell. Small plastic rings and

nuts with negligible masses will be used during the assembly of the locally resonant

periodic structure. However, as the effect of these plastic parts are assumed to be

negligible, they are not included in the model shown in Figure 3.9.
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(a)

(b)

Figure 3.9. The Locally Resonant Periodic Structure with Four Unit Cells. (a)

Isometric View and (b) Side View.

In the parametric studies with the lumped parameter model, m andmr were taken

as round numbers like 100 gr and 300 gr. When the distributed parameter model of

the structure is formed, m is calculated as 0.143 kg for the unit cell with small magnet.

However, mr is 0.392 kg giving m/mr = 0.365 which is close to the target mass ratio

of 1/3. Furthermore, m becomes 0.162 kg and 0.111 kg for the unit cell with large

magnet and no magnet. As a result, mass ratio for the large magnet and no magnet

cases are 0.413 and 0.283, respectively.

The copper tube with mass mr in Figure 3.7(b) does not have constant wall

thickness as in Figure 3.5(a). Notice that the wall thickness is smaller on the two

faces allowing room for out-of-plane deformations of the spiral springs (kr/2). The

wall thickness in the middle cross-section is chosen as 14 mm, which is a little higher

than the optimum value of 11 mm to compensate the decrease in the wall thickness on

the two faces.

In Figure 3.10, electromagnetic FEA of the designed copper tube shape can be

seen. Here, the large magnet is shown inside the tube. The same analysis is conducted

for the small magnet, as well. As a result of these analyses, the damping constants
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for the small and large magnets are found as 4.02 N.s/m and 20.4 N.s/m, respectively.

These values are a little lower than the peak values in Figure 3.6(a). When the current

density plots in Figure 3.5(d) and Figure 3.10(d) are compared, higher current densities

are seen over larger areas in Figure 3.5(d). This explains the lower damping constants

for the designed copper tube.

(a) (b)

(c) (d)

Figure 3.10. (a) Section View of a Large Ring Magnet Inside the Designed Copper

Tube. (b) 2D Axi-Symmetric FEM of the Designed Copper Tube and Large Ring

Magnet. (c) Magnetic Flux Density Norm (T) Contour Plot. (d) Current Density

Norm (A/m2) Contour Plot.

In order to check the effect of other elements within the resonator on the damping

behaviour, a more detailed model of the resonator is analyzed. In Figure 3.11, the

stainless steel (σ = 1.32× 106 Siemens/m) spiral springs kr/2, stainless steel M8 bolt

in the middle and the plastic rings that are used to separate the magnet and the spiral

springs are included in the model.
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(a) (b)

(c) (d)

Figure 3.11. (a) Section View of the Fully Represented Resonator. (b) Fully

Represented 2D Axi-Symmetric Resonator Geometry With Large Magnet Included.

(c) Magnetic Flux Density Norm (T) Contour Plot. (d) Current Density Norm

(A/m2) Contour Plot.

As a result of this analysis, the damping constants for the small and large magnets

are found as 2.31 N.s/m and 10.8 N.s/m, respectively. The smaller damping constant

values in this analysis can be explained by observing that the stainless steel bolt and

stainless steel spiral springs reduce magnetic flux density close to the copper tube

(please compare Figures 3.10(c) and 3.11(c)). Consequently, smaller eddy current

densities are obtained in Figure 3.11(d) when compared to Figure 3.10(d).

3.3.1. Structural Finite Element Analysis

The FEM of the locally resonant periodic structure shown in Figure 3.9 is formed

and its first 10 natural frequencies are determined for three cases: resonators with no

magnets, resonators with small magnets, and resonators with large magnets. The finite
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element mesh for the case with small magnets can be seen in Figure 3.12. Similar mesh

sizes are used in the other two cases. In all cases, the structures are fixed from the

right side and frictionless supports are used around the resonators.

Figure 3.12. Finite Element Mesh for the Locally Resonant Periodic Structure with

Small Magnets Included. The Resonator of the Second Unit Cell is Suppressed for

Visual Purposes.

Table 3.3 shows the first 10 natural frequencies of the locally resonant periodic

structure without any magnets. When the corresponding mode shapes are investigated,

it is seen that the 5th mode is torsional as shown in Figure 3.13(b). Therefore, this

mode is not expected to be seen in the frequency response if the system is excited

axially. As a result, the stop band will occur between the 4th and 6th modes, which

are shown in Figures 3.13(a) and 3.13(c).

Table 3.3. First 10 Natural Frequencies of the Periodic Structure without any

Magnets. In the Last Row, Types of the Modes are Indicated as Axial (A) or

Torsional (T).

Mode # 1 2 3 4 5 6 7 8 9 10

Freq. (Hz) 30.7 45.2 47.2 47.7 66.2 130.8 170.5 231.5 257.6 258.3

Mode Type A A A A T A T T A T
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(a)

(b)

(c)

Figure 3.13. Mode Shapes of Periodic Structure without any Ring Magnets that

Determine the Lower and Upper Limits of the Stop Band With a Torsional Mode in

between. (a) 4th Mode Shape at 47.7 Hz, (b) 5th Mode Shape at 66.2 Hz and (c) 6th

Mode Shape at 130.8 Hz.

Second modal analysis is done when small ring magnets are inserted inside the

copper tubes. The first 10 natural frequencies are shown in Table 3.4. The stop band

will occur in between 4th and 6th modes and they are depicted in Figure 3.14 with

the torsional mode in between at 62.9 Hz. These limiting mode shapes are shown in

Figures 3.14(a) and 3.14(c).
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Table 3.4. First 10 Natural Frequencies of the Periodic Structure Including Small

Ring Magnets. In the Last Row, Types of the Modes are Indicated as Axial (A) or

Torsional (T).

Mode # 1 2 3 4 5 6 7 8 9 10

Freq. (Hz) 28.7 43.1 44.6 46.5 62.9 111.3 163.2 215.4 220.1 244.3

Mode Type A A A A T A T T A T

(a)

(b)

(c)

Figure 3.14. Mode Shapes of Periodic Structure with Small Magnets that Determine

the Lower and Upper Limits of the Stop Band with a Torsional Mode in between. (a)

4th Mode Shape at 46.5 Hz, (b) 5th Mode Shape at 62.9 Hz and (c) 6th Mode Shape

at 111.3 Hz.

Finally, a modal analysis is done when large ring magnets are inserted inside the

copper tubes. The first 10 natural frequencies are shown in Table 3.5. The stop band
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will again occur in between 4th and 6th modes with a torsional mode in between and

they are shown in Figure 3.15.

Table 3.5. First 10 Natural Frequencies of the Periodic Structure Including Large

Magnets. In the Last Row, Types of the Modes are Indicated as Axial (A) or

Torsional (T).

Mode # 1 2 3 4 5 6 7 8 9 10

Freq. (Hz) 28.9 43.0 45.1 46.7 64.5 106.1 164.3 202.5 221.8 245.5

Mode Type A A A A T A T T A T

(a)

(b)

(c)

Figure 3.15. Mode Shapes of Periodic Structure with Large Magnets that Determine

the Lower and Upper Limits of the Stop Band with a Torsional Mode in between. (a)

4th Mode Shape at 46.7 Hz, (b) 5th Mode Shape at 64.5 Hz and (c) 6th Mode Shape

at 106.1 Hz.
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3.4. Experimental Measurements and Results

3.4.1. Laser Vibrometer Measurements to Estimate the ECD Constants

To validate the damping constant values obtained through the electromagnetic

FEA, measurements are taken via a laser vibrometer for the three types of resonators.

Figure 3.16 shows one of these resonators.

Figure 3.16. Measured Resonator with Small Ring Magnet Inside.

Figure 3.17. ECD Effect Measured with Laser Vibrometer.
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In the first measurement no ring magnet is inserted inside the copper tube. In

the second and third measurements, small and large ring magnets are inserted inside

the copper tube to create ECD. The damping coefficient in all three case are calculated

through Equation 3.13.

c = 2ζ
√
meffkr (3.13)

In the experiments, the copper tube is fixed and the inner part is allowed to

vibrate. Thus, effective mass (meff ) used in Equation 3.13 differs depending on the

mass of the magnet used inside the resonator (see Table 3.1). In Equation (3.13),

kr = 27 kN/m and ζ is determined by the logarithmic decrement method. Three

different measurement results are shown in Figure 3.17 with six data points taken in

order to apply the logarithmic decrement method via Equations 2.41 and 2.37.

In Table 3.6, peak points taken for each measurement to be used in logarithmic

decrement method are given, which are followed by the calculated damping ratios and

damping constants.

Table 3.6. Calculated Damping Ratios and Constants via Logarithmic Decrement

Method.

No Magnet Small Magnet Large Magnet

Peak Number 7th 15th 7th 14th 3rd 6th

Time (s) 0.0423 0.0958 0.0544 0.1158 0.0225 0.0529

Velocity (m/s) 0.0396 0.0291 0.0142 0.00485 0.00716 0.000909

δ 0.0387 0.1537 0.6882

ζ 0.0062 0.0245 0.1088

meff (kg) 0.034 0.066 0.085

kr (kN/m) 27.0 27.0 27.0

c (kg/s) 0.37 2.06 10.43
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If the damping constant of the no ring magnet case is subtracted from the other

cases, ECD constants for each ring magnet can be obtained. Notice that these damping

constant values are close to the values obtained through the fully represented resonator

model (Figure 3.11).

3.4.2. Experimental Modal Analysis of the Prototype Produced

The prototype of the locally resonant periodic structure and the experimental

setup can be seen in Figure 3.18. Notice that the prototype is hanged by rubber

cords to simulate free boundary conditions. Excitation is given from one end by a

modal shaker. The input acceleration is measured through an impedance head and the

output acceleration on the other end of the prototype is measured by an accelerometer.

Transmissibility is calculated as the ratio of output acceleration to input acceleration

(see Equation 3.10).

Figure 3.18. Experimental Setup for the Locally Resonant Structure.



56

In the three measurements taken, modal shaker excites the structure up to 400

Hz. In the first measurement, to observe the effect of structural damping effect within

the prototype on the vibration stop band, ring magnets are not inserted inside the

copper tubes. During the second and third measurements, small and large ring magnet

are used, respectively. The effect of ECD can be seen in Figure 3.19 via the decrease in

all resonance peaks. The stop band width does not change much due to magnet usage.

Figure 3.19. Frequency Response Results Obtained from the Experimental

Measurements.

For comparison purposes, frequency response plots are obtained analytically and

numerically using the lumped parameter and FEMs, respectively. In Figure 3.20,

frequency response plots for the lumped parameter models can be seen. From the ana-

lytical calculations done by using the lumped parameter model without ring magnets,

stop band is obtained in between 40.1 − 88.8 Hz for mr = 0.392 kg, m = 0.111 kg,

k = 124 kN/m and kr = 27 kN/m. When small ring magnets are included, stop band

is obtained in between 38.7 − 80.9 Hz for mr = 0.392 kg, m = 0.143 kg, k = 124

kN/m and kr = 27 kN/m. It is seen that only the m value changes due to small

ring magnet inclusion. This causes a decrease in stop band width due to mass ratio

(m/mr) increase. Finally, when the large ring magnets are inserted inside the copper
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tubes, stop band is obtained in between 37.4− 78.8 Hz for mr = 0.392 kg, m = 0.162

kg, k = 124 kN/m and kr = 27 kN/m. Inclusion of large ring magnets with higher

damping decreases the stop band width. On the other hand, the resonance peaks are

suppressed the most with the use of large ring magnets. Hence, there is a compromise

between stop band width and damping.

Figure 3.20. Frequency Response Results Obtained via the Lumped Parameter

Models.

Figure 3.21 shows the frequency response plots for the FEMs. Notice that the

frequency response plots obtained analytically, numerically and experimentally are

quite similar (see Figures 3.19−3.21). There are small peaks around 60 Hz and 160

Hz in the numerical frequency response plot due to the torsional modes (see Tables

3.3−3.5). However, these peaks are insignificant and do not change the stop band

characteristics. In Table 3.7, lower and upper stop band limits, and their ratios are

presented. One can see that there are some shifts in the stop band frequency limits

obtained through three different approaches. Nevertheless, ωu/ωl ratios are almost the

same.
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Figure 3.21. Frequency Response Results obtained via the FEMs.

Table 3.7. Lower (ωl) and Upper (ωu) Stop Band Limits, and Their Ratios (ωu/ωl)

Obtained from the Analytical, Numerical and Experimental Frequency Response

Results. Here, all Frequencies are in Hz.

No Magnet Small Magnet Large Magnet

ωl ωu ωu/ωl ωl ωu ωu/ωl ωl ωu ωu/ωl

Analytical 40.1 88.8 2.21 38.7 80.9 2.09 37.4 78.8 2.11

Numerical 47.7 105.2 2.20 43.6 92 2.11 38.2 89.3 2.34

Experimental 52 110 2.11 46.1 100.4 2.18 39.1 100.4 2.57
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4. CONCLUSIONS

First of all, eddy current damping (ECD) inclusion to the inertial amplification

mechanism is successfully accomplished. By adjusting the distance between the ring

magnet and the copper tube, damping strength is varied. Also the advantage of ECD

is that it requires no external power source. With the inclusion of ECD, the vibra-

tion amplitudes in the four legged structure are suppressed in short amount of time

compared to the case in which there is just structural damping. ECD constant found

experimentally and numerically match quite well. On the other hand, analytically cal-

culated damping constant differs due to the dipole approximation while calculating the

magnetic field and magnetic flux of the ring magnet.

Secondly, a novel 1D locally resonant periodic structure is designed to generate

a stop band at low frequencies. In order to analyze the periodic structure, a lumped

parameter and a finite element model are generated. Within the unit cell of the periodic

structure, two sets of spiral springs are used. Axial relative motion between the unit

cells is accomplished by the parallel placement of these spiral springs. Parametric

studies regarding the effect of mass distribution within the unit cell and the number

of unit cells on the stop band characteristics are conducted. It is seen that when the

main mass of the unit cell to resonator mass ratio is about one-third, the targeted

stop band width is achieved. As the number of unit cells increases, deeper stop bands

are obtained with the burden of increasing the overall size and mass of the periodic

structure. Considering the compromise between stop band depth and mass of the

periodic structure, four unit cells are chosen. Furthermore, ECD effect is included to

the periodic structure through resonator masses being made of copper tubes in which

ring magnets can vibrate. If the mass distribution within the unit cell is kept constant

while the damping effect is increased, then slightly wider stop bands can be obtained.

In order to attain the maximum ECD effect for the two different size ring magnets

used in the analyses, an optimization study is performed. In this study, the copper

tube mass and its inner radius are kept constant while its wall thickness and height

are varied. Consequently, optimum geometry of the copper tube is determined. A
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prototype of the locally resonant periodic structure including ECD is produced for

experimental validation. During the assembly of the prototype, additional components

are used within the unit cell for connection purposes. Their influence on the magnetic

density and eddy current density are observed via electromagnetic FEA. It is seen

that the stainless steel components in the vicinity of the ring magnet and copper tube

decrease the ECD effect.

To sum up, ECD is implemented to an inertial amplification mechanism including

four legged structure and to a 1D locally resonant periodic structure. ECD constant at-

tained in both structures is obtained analytically, numerically and experimentally. For

future work, non-magnetic materials can be used in order not to disturb the generated

eddy currents in the copper tube.
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