
INCREASING ACCESSIBILITY OF WEB CONTENT VIA SEMANTIC

RENARRATION

by

Emrah Güder

B.S, Computer Engineering, I³�k University, 2006

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial ful�llment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Bo§aziçi University

2016

ii

INCREASING ACCESSIBILITY OF WEB CONTENT VIA SEMANTIC

RENARRATION

APPROVED BY:

Suzan Üsküdarl�, Ph.D.

(Thesis Supervisor)

Assoc. Prof. Haluk Bingöl

Prof. Ya§mur Denizhan

DATE OF APPROVAL: 16.12.2015

iii

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Suzan

Üsküdarl�for the continuous support of my M.S. study and research. Her patience,

enthusiasm, and immense knowledge guided me all the time of my research and writing

of this thesis. I've learned many things since I became Dr. Suzan Üsküdarl�'s student.

Besides my advisor, I would like to thank T.B. Dinesh for his insightful comments,

and discussions. In addition to discussions, readings he suggested throughout my study

and research were incredibly helpful.

Last but not least, I owe more than thanks to my family members which includes

my parents, elder brother and my wife for their support and encouragement throughout

my life. In addition to them, I would like to mention our dog, Bulut, who helped me

a lot during stressful times.

iv

ABSTRACT

INCREASING ACCESSIBILITY OF WEB CONTENT VIA

SEMANTIC RENARRATION

Much of the content on the Web is not accessible to a large portion of the global

population due to barriers such as language, literacy levels, physical impairments,

expertise, etc. Attempts to make content more accessible are made by those who

translate or otherwise transform material for wider consumption. However, such e�orts

are often limited to a particular collections (i.e.Wikipedia) or by people who make it

a point to create alternatives via blogs and web sites. There is need for a framework

that supports the speci�cation of providing alternative narrations (renarrations) in a

form that is processable so that they can be located and otherwise utilized.

In this thesis we propose a framework for a crowdsourced approach to renarrat-

ing Web documents. This framework aims to support the creation of relations between

Web resource elements. A renarration ontology is created for supporting this frame-

work. Furthermore, it utilizes renarrations with external resources establishing rela-

tions among existing resources. Establishing relations has the potential of increasing

the utility for further accessibility. A prototype for proof of concept has been built.

v

ÖZET

�ÇER�K ER���LEB�L�RL���N�N ANLAMSAL

AÇIKLAMALAR �LE ARTIRILMASI

�nternet ortam�nda bulunan bilgilerin birço§u, dil, �ziksel engeller, okuryazarl�k

düzeyi, uzmanl�k ve buna benzer birçok engel sebebiyle küresel nüfusun büyük bir k�sm�

için eri³ilememekte. �çeri§i daha eri³ilebilir hale getirmek için giri³imlere, tercüme

edilmesi ya da de§i³tirilerek daha geni³ kitlelerce ula³�labilmesini sa§lamaya çal�³mak

örnek olarak gosterilebilir. Ancak, bu yöntemler ço§u kez özel derlemeler (Wikipedia)

ya da ki³ilerin bloglar ya da web siteleri üzerinden olu³turdu§u alternatif içeriklerle

s�n�rl�d�r. Alternatif içeriklerin(renarration) olu³turulabildi§i ve bu içeriklerin bulun-

abilmesinin yan�s�ra, kullan�labildi§i bir altyap�ya ihtiyaç bulunmaktad�r.

Bu tezde, Web üzerindeki veriler için alternatif olu³turulmas�na olanak veren

bir altyap� tasarlanm�³t�r. Bu altyap� alternatif verilerin olu³turulmas�na ek olarak,

veriler aras�ndaki ili³kilerin de tutulmas�na olanak vermektedir. Önerilen altyap�, tez

kapsam�nda geli³tirilen bir ontolojiyi kullanmaktad�r. Bunlara ek olarak, alternatif ver-

iler olu³turulurken harici kaynaklar�n kullan�lmas�n�n yan�s�ra, bu kaynaklar aras�ndaki

ili³kiler de altyap� kapsam�nda saklanmaktad�r. Bu ili³kilerin saklanmas�, içeriklerin

daha eri³ilebilir hale gelmesi ad�na büyük bir potansiyele sahiptir. Önerilen ontoloji ve

altyap�n�n ispat� ad�na bir prototip geli³tirilmi³tir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . x

LIST OF TABLES . xviii

Listings . xix

LIST OF ACRONYMS/ABBREVIATIONS . xx

1. INTRODUCTION . 1

1.1. Motivation and Problem Statement . 1

1.2. Proposed Solution . 3

1.3. Structure of this thesis . 4

2. BACKGROUND AND RELATED WORK 5

2.1. Semantic Web Technologies . 5

2.1.1. XML . 5

2.1.1.1. XML declaration . 5

2.1.1.2. Elements . 6

2.1.1.3. Attributes . 6

2.1.2. RDF . 7

2.1.2.1. Resources . 7

2.1.2.2. Properties . 7

2.1.2.3. Statements . 7

2.1.3. RDF Schema . 8

2.1.4. OWL . 9

2.1.5. SPARQL . 10

2.1.6. JSON-LD . 13

2.2. Annotation . 13

2.2.1. Web Annotation Data Model 14

2.2.1.1. Core Annotation Framework 14

2.2.1.2. Speci�ers and Speci�c Resources 17

vii

2.2.1.3. States . 18

2.2.1.4. Highlighting and Styles 19

2.2.1.5. Multiplicity Constructs 20

2.2.2. Other Annotation Related Studies 21

2.3. Renarration . 23

2.3.1. Accessibility . 23

2.3.2. Barriers . 24

2.3.2.1. Language Barriers . 24

2.3.2.2. Literacy Barriers . 24

2.3.2.3. Other Accessibility Issues 25

2.3.3. Addressing Accessibility on the Web 25

2.4. Applications . 25

2.4.1. Annotator . 26

2.4.1.1. Storage API . 26

2.4.1.2. Plugins . 27

2.4.2. Alipi . 28

2.4.2.1. Approach . 28

2.4.2.2. Architecture . 28

2.4.2.3. Alipi Prototype . 29

2.4.3. Other Crowd-sourced Applications 30

3. MODEL . 34

3.1. Renarration Data Model . 34

3.1.1. Renarration Transformation . 38

3.1.2. Actions on Documents . 42

3.1.3. Selectors . 45

3.1.4. Motivations . 51

3.1.5. Lists . 55

4. IMPLEMENTATION . 59

4.1. Technologies . 59

4.2. System Architecture . 60

4.3. Storage . 61

4.4. Library Injector . 61

viii

4.5. Annotation Implementation . 63

4.5.1. Implementation of Annotation Target 64

4.5.1.1. Annotations Using XPath 65

4.5.1.2. Annotations Targeting Fragments of Elements 65

4.5.2. Implementation of Annotation Body 66

4.5.2.1. Embedded Content Annotations 67

4.5.2.2. Visual Representations 67

4.5.2.3. Semantic Annotations 67

4.5.2.4. Annotations Using DBPedia Resources 69

4.6. Renarration Implementation . 71

4.6.1. Renarration Actions . 72

4.6.1.1. Remove . 72

4.6.1.2. Replace . 73

4.6.2. Renarration Transforms as Collections 74

4.6.3. Usage of Annotations in SemRen Framework 75

4.6.4. Target Audience and Deployment 76

5. EVALUATION . 78

5.1. Evaluation of the Renarration Data Model 78

5.1.1. Evaluation of Proposed Data Model Using Test Cases 78

5.1.1.1. Replacement of paragraph with paragraph 78

5.1.1.2. Replacement of paragraph with audio 80

5.1.1.3. Removal of content . 80

5.1.1.4. Replacement using content from an annotation 82

5.1.1.5. Insertion of new content between two elements 86

5.1.2. Evaluation Using FIR Web Page 88

5.2. Evaluation Using Implemented Prototype 90

5.3. Use Case 1 . 93

5.4. Use Case 2 . 96

5.5. Results and Discussion . 99

6. FUTURE WORK AND CONCLUSIONS . 105

REFERENCES . 108

APPENDIX A: JSON-LD Context And Implemented JavaScript For Prototype 114

ix

A.1. JSON-LD Context . 114

A.2. Injected JavaScript Used For Prototype 115

A.3. Algorithm For Handling XPath Change 117

x

LIST OF FIGURES

Figure 2.1. XML formalization for Das Capital written by Karl Marx 7

Figure 2.2. XML-based syntax of RDF for Das Capital 8

Figure 2.3. Simple ontology for books and writers using XML based RDF syntax 9

Figure 2.4. Simple ontology for books and writers using XML based RDF syn-

tax and OWL . 11

Figure 2.5. Simple SPARQL query selecting foaf:name data property for in-

stances of foaf:Person . 12

Figure 2.6. An annotation example of Semantic Tagging for an image of Istanbul 16

Figure 2.7. Annotation Target with a oa:TextQuoteSelector selecting textual

content "K�z Kulesi" . 18

Figure 2.8. Annotation Target de�ning the state of target resource by using

oa:TimeState . 19

Figure 2.9. Annotation for which content is styled by using oa:EmbeddedContent

and oa:CSSStyle . 20

Figure 2.10. Annotation having a body of an instance of oa:Choice, consisting

of two images of K�z Kulesi . 21

Figure 2.11. A Web Page about �re safety originally written in English 24

xi

Figure 2.12. User interface for creation of an annotation using Share Annotator

Plugin . 26

Figure 2.13. The creation and indexing of renarrations of a page P with url U

using Alipi prototype . 29

Figure 2.14. The page on �re safety being edited for renarration. Note the popup

on the image inviting its replacement 30

Figure 2.15. Renarrated version of the �re safety page in Figure 2.17. 30

Figure 2.16. Translation of a tutorial about how to create a Django views. . . . 31

Figure 2.17. Duolingo screen showing a discussion of a particular question where

user wants to discuss the answer with others. 32

Figure 2.18. An example Google translation for a course equivalence for an ex-

change student. 33

Figure 3.1. Pseudo code for creation of renarration of a resource 35

Figure 3.2. Renarration Of A Document . 35

Figure 3.3. The Renarration Model consisting of a Renarrator, a source docu-

ment, and a renarrated document, and the time of renarration. . . 38

Figure 3.4. Serialization of a basic Renarration renarrated by a person in JSON-

LD . 39

Figure 3.5. Renarration Transformation on an element of a source document . 39

xii

Figure 3.6. Diagram for relations between a renarration and renarration trans-

formation with a narration, source document and renarrated doc-

ument . 40

Figure 3.7. Serialization of a basic renarration transform in JSON-LD 42

Figure 3.8. Diagram for renarration having replacement and removal actions . 43

Figure 3.9. Diagram for list of actions can be de�ned for renarration transform 45

Figure 3.10. Serialization in JSON-LD format for a basic action for which con-

tent is replaced with a textual content 46

Figure 3.11. Diagram for renarration of a child element 47

Figure 3.12. Document Selectors in the Renarration Data Model 49

Figure 3.13. Serialization in JSON-LD format for selection of 10 bytes 51

Figure 3.14. The relationship between rn:Renarration and rn:Motivation classes. 52

Figure 3.15. Serialization in JSON-LD format for creating an alternative renar-

ration for a source document . 54

Figure 3.16. Renarration Transformation as a list-like structure 56

Figure 3.17. Serialization in JSON-LD format for using rn:List for de�ning a

selection order . 58

Figure 4.1. System Architecture . 60

Figure 4.2. Collections required in MongoDB instance 61

xiii

Figure 4.3. Pseudo code of getPathTo function for retrieving xpaths of elements 62

Figure 4.4. Highlighting an element on which mouse is hovered 63

Figure 4.5. System architecture of SemAnn framework 64

Figure 4.6. Annotation popup when clicked on an element 65

Figure 4.7. Annotation popup when clicked on an image with fragment selected 66

Figure 4.8. Creation of textual body of an annotation 67

Figure 4.9. Annotation body using visual representations 68

Figure 4.10. SPARQL query to �nd all properties for a speci�c class 68

Figure 4.11. De�ning an instance for foaf:Person class using foaf:�rstName and

foaf:lastName data properties . 69

Figure 4.12. De�ning foaf:knows object property between Fname1 and Fname2

which are two instances of foaf:Person class 69

Figure 4.13. De�ning semantic annotation using DBPedia resources to �nd list

of software via querying DBPedia SPARQL service using Java as

keyword . 70

Figure 4.14. Query template used for DBPedia SPARQL Service 71

Figure 4.15. System architecture of SemRen framework. 72

Figure 4.16. De�ning removal of selected content via user interface 73

xiv

Figure 4.17. De�ning replacement of selected content with a text via user interface 73

Figure 4.18. Replacement of text '2015' with '2016' using nested selection . . . 74

Figure 4.19. De�ning a list of renarration transforms whose elements are textual

content and an image . 74

Figure 4.20. An example java code to be renarrated 75

Figure 4.21. Replacement of java code with comments added as well as an image

showing how it is compiled . 75

Figure 4.22. Renarration transform using reference data from an annotation. . 76

Figure 4.23. De�ning target audience and deployment name for renarration of

a web resource. 77

Figure 5.1. HTML code of a web page consisting of a paragraph with textual

content "Text1" . 79

Figure 5.2. A renarration speci�cation in JSON-LD of a web page for which

"Text1" is replaced with "Text2" 79

Figure 5.3. HTML code of a web page renarrated via replacing "Text2" with

"Text1" in original content . 80

Figure 5.4. A renarration speci�cation in JSON-LD of a web page for which

"Text1" is replaced with audio with url "http://audio1.ogg" in au-

dio/ogg format . 81

Figure 5.5. HTML code of a web page renarrated via replacing "Text2" with

an audio . 81

xv

Figure 5.6. HTML code of a web page consisting of three paragraphs 82

Figure 5.7. Renarration done on original page in JSON-LD format for trans-

formations on two paragraphs including remove and replace 83

Figure 5.8. HTML code of renarrated page when a paragraph is replaced after

removal of previous paragraph . 84

Figure 5.9. Annotation in JSON-LD created for Text2 using oa:TextQuoteSelector 84

Figure 5.10. Renarration done on original page in JSON-LD format for replacing

second paragraph by using content from an annotation 85

Figure 5.11. Renarrated page for which second paragraph's content is referenced

from an annotation . 86

Figure 5.12. HTML code of a web page consisting of two paragraphs 86

Figure 5.13. A renarration speci�cation in JSON-LD of the web page describing

insertion of new paragraph . 87

Figure 5.14. HTML code of renarrated web page including inserted paragraph 88

Figure 5.15. Web page created using content from Wikipedia about how to �le

�rst information report. 89

Figure 5.16. A renarration transform speci�cation in JSON-LD of a web page

describing replacement and removal of two paragraphs 91

Figure 5.17. A renarration transform speci�cation in JSON-LD of a web page

describing insertion of alternative content by using BetweenSelector. 92

xvi

Figure 5.18. A renarration transform speci�cation in JSON-LD of a web page

describing replacement of content with an interactive resource. . . 93

Figure 5.19. Web page renarrated by applying transformations on the FIR source

page . 94

Figure 5.20. Web Page about overriding feature in C++ Programming Language. 95

Figure 5.21. A renarration transform speci�cation (in JSON-LD) of textual

content describing replacement of text for a web page about method

overriding in C++ to one for the Java Programming Language . . 96

Figure 5.22. A renarration transform speci�cation (in JSON-LD) describing re-

placement of a paragraph and an image of a web page about method

overriding in C++ to create an alternative for the Java Program-

ming Language . 97

Figure 5.23. Short message about a black guy who spent nearly 25 years in prison. 98

Figure 5.24. HTML code of a short message about a wrongful conviction . . . 99

Figure 5.25. Annotation in JSON-LD format created for textual content "black

man" . 100

Figure 5.26. Annotation questioning the meaning of short message in Turkish . 101

Figure 5.27. Renarration in json-ld format for creation of an alternative page in

Turkish for the short message about Jonathan Fleming who wong-

fully put in prison for 25 years. 102

Figure 5.28. Deployed renarrated page of short message in HTML format. . . . 103

xvii

Figure A.1. Pseudo code for handling XPath changes of HTML elements . . . 118

xviii

LIST OF TABLES

Table 2.1. Namespaces used in the Web Annotation Data Model [1] 15

Table 3.1. Namespaces used in the Renarration Data Model 36

Table 3.2. De�nitions of classes and properties related directly to renarration 37

Table 3.3. Description of items for a Renarration Transformation on source

documents . 41

Table 3.4. Class and Property De�nitions of Actions 44

Table 3.5. Class De�nitions of Selectors . 48

Table 3.6. Description of the properties related to selectors 50

Table 3.7. Class and Property De�nitions for Motivations 53

Table 3.8. De�nition of classes and object properties for list structures 57

Table 4.1. Classes and Data Properties Used to Query DBPedia 70

xix

Listings

A.1 JSON-LD context recommended for the Renarration Data Model . . . 114

A.2 Injected JavaScript for adding event listeners to web resources 115

xx

LIST OF ACRONYMS/ABBREVIATIONS

DAWG RDF Data Access Working Group

FOAF Friend Of A Friend Vocabulary Speci�cation

JSON Javascript Object Notation

RDF Resource Description Framework

RDFS RDF Schema

OWL Web Ontology Language

W3C World Wide Web Consortium

TSI Turkey Statistical Institue

XML Extensible Markup Language

URI Uniform Resource Identi�er

1

1. INTRODUCTION

1.1. Motivation and Problem Statement

The way that we communicate has changed a lot with the World Wide Web.

The World Wide Web has also changed the way we think of computers. It wouldn't

be wrong to say that they were used for numerical calculations only. Nowadays, we

use computers for information processing such as preparing monthly reports by using

database applications, or text processing, and for lots of other purposes as well.

Most of the data on the Web is consumable by human. The way it is consumed

is that people seek for the data and use the information gathered and seek/get in

touch with people, order products, etc. The connections between Web documents is

established by links. Another way is to use search engines such as AltaVista, Google [2]

or Yahoo [3]. Even though search engines are great tools for �nding information and

people, there are some serious problems such as: Low precision, low recall, sensitivity

to the vocabulary, resulting just a web page, etc. Although the result of search is

successful, it is just a web page, so the resulting data are ready by human to consume.

One may conclude that information retrieval is performed by human rather than search

engines. The main problem with that is the Web content cannot be easily interpreted

by machines.

In the context of knowledge management, retrieving, accessing and maintaining

data is crucial. Data play very important role from which new values can be created,

and productivity can be increased. Even though there is lots of data, searching it still

depends on keyword-based search engines. After data are extracted by using search

engines, human time is required to process the returned data. Extracted data can also

have inconsistencies in terminology and be outdated as well. Data mining plays very

important role in creating new knowledge implicitly. However, this task is very hard

when unstructured data are used.

2

Semantic Web [4] can assist in solving the problems mentioned above. The word

"semantic" itself means "meaning". So, the fundamental di�erence between Seman-

tic Web technologies and other technologies is that the Semantic Web is concerned

with the meaning of data. This fundamental di�erence brings along completely dif-

ferent outlook on how to store, query and display information. Semantic Web aims

to allow more advanced knowledge management techniques. In Semantic Web world,

knowledge is organized according to conceptual models. By the use of automated

tools, inconsistencies can be checked and new knowledge can be extracted. Instead of

keyword-based search, data will be queried, and retrieved in a human friendly format.

Since knowledge is presented in a structure, it is also possible to view parts of doc-

uments instead retrieving them as a whole. According to the W3C, "The Semantic

Web provides a common framework that allows data to be shared and reused across

application, enterprise, and community boundaries" [5]. The basis for the Semantic

Web are computer-understandable descriptions of resources. The Semantic Web is all

about shared terminology which is achieved through consistent use of URIs. URIs can

be seen as the atoms of the Semantic Web.

The data on the Web are generally hidden in HTML �les and amount of data is

massive and continually growing. Due to the characteristics of the content, it is not

accessible by huge amount of people due to a variety of barriers. The barriers to ac-

cessibility range from limited Internet connectivity, to physical impairment, linguistic

di�erences, and also social, cultural and economic factors [6]. Therefore, it is cru-

cial to create meaningful relations between Web elements and to provide accessibility.

Annotation is one of the methods to increase content accessibility on the Web. Gen-

erally speaking, annotation means to attach data to some piece of data. Annotations

can be done manually, semi-automatically or full-automatically. Manual annotations

are created by people whereas semi-automatic annotations are based on suggestions.

A research by Digital Enterprise Research Institute, National University of Ireland,

Galway [7] di�erentiated three types of annotations: informal, formal and ontological.

Renarration is another method to increase content accessibility on the Web. It

can be de�ned as the process of rewriting a web page or elements within the web page.

3

For instance, a paragraph which is written by a lawyer can be hard to understand by

someone else even if the text is in the same language. So, more accessible version of this

paragraph can be created, and this process is called renarration. W3C Director and

inventor of the World Wide Web, Tim Berners-Lee, said that the Web fundamentally

designed for all people. Therefore, it is crucial that the content should be accessible to

everyone.

1.2. Proposed Solution

This thesis focuses on making contents on the Web accessible to a wider audi-

ence. We provide a framework which enables renarrating contents by creating semantic

relations between URIs and contents of web pages. We investigated the Web contents

and detected the concepts and relations between them. In order to represent relations

between Web elements, an ontology has been created and terms are used to assist the

proposed accessibility which is beyond the traditional accessibility that focuses on lim-

itations of vision. We have used Web technologies and Semantic Web in order to give

context for the renarration process.

In an XML [8] document, XPath is used to navigate through elements and at-

tributes. Since all HTML documents can be considered as XML documents, XPaths

can be used to address individual elements as well. We have used XPaths for de�ning

parts of HTML documents. In order to represent relations between Web elements, we

have used Web Annotation Data Model [1,9,10] as a starting ontology. This ontology is

used in semantic annotation(SemAnn) framework. A prototype has been implemented

for semantic annotation process. The prototype allows users to select individual ele-

ments in Web pages, and create annotations for them. Created annotations are stored

in a database, and can be queried through MongoDB collections.

Another framework has been designed for renarration of Web pages. The input to

renarration framework(SemRen) is the output of SemAnn framework. The framework

is not just bounded to stored annotations, but also users can create content during

renarration process. Using the implemented prototype all annotations can be listed for

4

an element in a Web page, and the element can be renarrated by using annotations

and/or other content on the Web.

In order to test the proposed ontologies and the prototype, di�erent kinds of

annotations and renarrations are created. The usability of the framework is evaluated

in Chapter 5. Experiments show that the proposed ontology can be used to de�ne

relations between elements of Web pages in order to increase content accessibility. In

addition to the ontologies proposed, it is also evaluated that the prototype implemen-

tation can be used to de�ne for semantic annotation and renarration.

1.3. Structure of this thesis

The structure of this thesis is as follows. Chapter 2 gives background information

about technologies used for semantic web. In addition to the technologies, related

work will be discussed in detail. Di�erent models and applications for both annotation

and renarration will be researched. Chapter 3 presents a detailed model for semantic

annotation. Chapter 4 provides implementation decisions in detail. Chapter 5 presents

the evaluations of semantic annotation, and renarration models and implementation.

Finally, Chapter 6 presents conclusions and discusses ideas for future work.

5

2. BACKGROUND AND RELATED WORK

In this section, fundamental knowledge about the subjects mentioned in our thesis

is given. General information about Semantic Web technologies, the de�nition of an

annotation, and annotation related studies are introduced. After that, the de�nition

of renarration and the renarration approach for accessibility problem are provided.

Finally, applications for increasing accessibility of content are provided.

2.1. Semantic Web Technologies

2.1.1. XML

HTML (hypertext markup language) is the standard language which is used to

create Web pages. It was derived from SGML (standard generalized markup language)

which is an international standard for representing information both human-readable

and machine-readable. Since applications which conform to SGML are called SGML

applications, HTML is such an application. The reason why HTML is used instead

using SGML is that it was considered too complex for Internet-related purposes [11].

XML is also an SGML application which stands for extensible markup language. It is

de�ned W3C's XML 1.0 Speci�cation.

An XML document consist of a declaration, a number of elements, properties and

comments.

2.1.1.1. XML declaration. XML documents may contain a declaration which is an

information about the XML document itself.

<?xml version="1.0" encoding="UTF-8"?>

6

Above is an example of XML declaration which is a processing instruction that

identi�es the document as being XML. It speci�es that the document is an XML

document, the version and the character encoding used. The character encoding is

not mandatory but it is a good practice. In XML declaration part, it can also be

speci�ed that the XML document is self-contained or not. If an XML document is a

self-contained document then it can be said that the document doesn't refer to external

documents.

2.1.1.2. Elements. XML elements are used to represent things in XML documents.

An element consist of a start tag, content and end tag. For example, the following

shows an element which is used to de�ne a university name.

<university>Bo§aziçi University</university>

2.1.1.3. Attributes. It is not mandatory that elements should have content; there can

also be empty elements. An empty element is not meaningless, because it may have

some attributes. An attribute is a markup construct which consists of name/value

pairs. Attributes exist within a start tag or empty element tag. The following is an

example of an element named as university with one attribute.

<university page="http://www.boun.edu.tr">Bo§aziçi University</university>

An XML document can be considered as well-formed [12] when it respects certain

rules. However, these rules say nothing about the structure of the document. It is

very important to know the structure of documents when di�erent applications try to

communicate [11]. The structure of the documents is de�ned in documents which have

all elements and attributes an XML document can use. The documents which de�ne

the structure are also XML documents. There are two ways to de�ne the structure.

DTDs [13], the older way and using XML Schema. XML Schema o�ers a richer language

for de�ning the structure.

7

2.1.2. RDF

XML is a markup language which is used for interchange of data between appli-

cations. However, XML express the meaning of data. In Figure 2.1, even though the

same information is represented, there are two di�erent formalizations. This can also

be expressed as there is no standard way of expressing information.

1 <person name="Karl Marx">

2 <wrote>Das Capital </wrote>

3 </person>

4

5 <book name="Das Capi ta l">

6 <writtenBy>Karl Marx</writtenBy>

7 </book>

Figure 2.1. XML formalization for Das Capital written by Karl Marx

RDF(Resource Description Framework) is a standard model for data interchange

on the Web [14]. It extends the linking structure of the Web to use URIs to name the

relationship between things and two ends of the links. This is usually referred to as

"triple".

The fundamental concepts of RDF are resources, properties and statements.

2.1.2.1. Resources. A resource is an object, a "thing" for which it is desired to be

talked about. For example, resources are person and book (Lines 1 and 5) in Figure

2.1. Every resource has a URI(Uniform Resource Identi�er)

2.1.2.2. Properties. Properties are special kinds of resources which are used to describe

relations between resources. Considering Figure 2.1, properties would be "wrote" and

"writtenBy". (Lines 2 and 6)

2.1.2.3. Statements. A statement is used to de�ne relations between subject and ob-

ject. RDF statements are also known as RDF triples. An example of statement can

be seen in Figure 2.2.

8

<?xml ve r s i on ="1.0" encoding="UTF−16"?>
<rd f :RDF xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#" xlmns : mydomain

="http ://mydomain . com">

<rd f : Desc r ip t i on rd f : about="Das Capi ta l">

<mydomain : writtenBy rd f : r e s ou r c e="Karl Marx"/>

<rd f : Descr ipt ion>

<rd f :RDF>

Figure 2.2. XML-based syntax of RDF for Das Capital

In Figure 2.2, the �rst line speci�es that XML is used. rdf:Description element

makes a statement about the book "Das Capital". The relation, writtenBy between

object, "Karl Marx", is de�ned in http://www.mydomain.org/my-rdf-ns which is a

namespace. The di�erence between plain XML formalization and this one is that the

relation, writtenBy, has semantics. In other words, applications use the statements in

Figure 2.2 will know that writtenBy means to write a book and the resource connected

to this relation would be a person.

2.1.3. RDF Schema

Resources can be described using RDF; however, RDF does not make any assump-

tions about any particular domain. This can be done using RDFS (RDF Schema) [15].

RDFS provides the framework to describe application-speci�c classes and properties.

A class can be thought as a set of elements and objects which belong to a par-

ticular class are referred as instances of that class [11].

Using classes are not enough to describe particular domains, but also restrictions

should be de�ned. For example, considering two statements below, both of them are

using the same property, "writtenBy". Although, the �rst statement makes sense, the

second one isn't correct. Restrictions can be de�ned using domain and range.

Das Capital is written by Karl Marx.

Karl Marx is written by Das Capital.

9

In order to restrict above property, domain should be restricted to be a book,

and range should be restricted to be only a writer. In Figure 2.3, we present a simple

ontology for books and writers. In the example ontology, a property "writtenBy" is

de�ned to model books written by writers, and it's restricted to book and writer classes.

<rd f :RDF xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns : r d f s="http ://www.w3 . org /2000/01/ rdf−schema#">

<rd f s : Class rd f : ID="book">

<rd f s : comment>

The c l a s s o f books . Al l books should be wr i t t en by someone

</rd f s : comment>

</rd f s : Class>

<rd f s : Class rd f : ID="wr i t e r">

<rd f s : comment>

The c l a s s o f w r i t e r s

</rd f s : comment>

</rd f s : Class>

<rd f : Property rd f : ID="writtenBy">

<rd f s : comment>

I t r e l a t e s books to w r i t e r s

</rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="#book"/>

<rd f s : range rd f : r e s ou r c e="#wr i t e r "/>

</rd f : Property>

</rd f :RDF>

Figure 2.3. Simple ontology for books and writers using XML based RDF syntax

2.1.4. OWL

The W3C Web Ontology Language (OWL) is a Semantic Web language designed

to represent rich and complex knowledge about things, groups of things, and relations

between things [16]. OWL is a logic-based language which can be used to express

knowledge that computer programs can process.

The expressivity of RDF and RDF Schema is very limited. RDF is limited to

binary ground predicates, and RDF Schema is limited to a subclass and property

hierarchies.

10

OWL documents are called OWL ontologies and are RDF documents [11]. The

root element of an OWL ontology is an rdf:RDF element, which can be used to specify

namespaces used in the ontology. Using OWL language, classes can be de�ned with

owl:Class element. It can also be expressed that the class is disjoint or equivalent with

another class where this expressivity doesn't exist in RDF Schema. OWL language has

two prede�ned classes which are owl:Thing and owl:Nothing. The former is the most

general class and every class de�ned with OWL language is a subclass of the class. The

latter is an empty class. Thus every class is a superclass of owl:Nothing.

In addition to property elements in RDF Schema, OWL language o�ers more ca-

pable properties. For example, inverse properties can be related. Also, with rdfs:subClassOf

it can be speci�ed that a class C to be subclass of C'. This means every instance of C

is also an instance of C'. However, restrictions cannot be de�ned with RDF Schema.

For instance, suppose that a course should be taken only after a course is taken. Such

a restriction can be declared using owl:Restriction.

OWL Language also includes some additional properties like cardinalities on

restrictions, transitive, symmetric, functional and inverse functional properties, and

boolean combinations like owl:unionOf, owl:intersectionOf, owl:complementOf.

In Figure 2.4, the ontology presented in Figure 2.3 is declared using OWL. In

addition to class declarations, new properties are also de�ned which OWL supports.

Classes are distincly de�ned; in other words, intersection of book and writer classes is

empty. This is done using owl:disjointWith. Also, another object property is declared

just by using owl:inverseOf which means writes object property is inverse of writtenBy

object property. This implies that for writes object property rdfs:domain can be an

instance of writer class and rdfs:range can be an instance of book class.

2.1.5. SPARQL

SPARQL is an RDF query language which can be used to retrieve and manipulate

data stored in Resource Description Framework(RDF) format. It was made a standard

11

<rd f :RDF xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"
xmlns : r d f s="http ://www.w3 . org /2000/01/ rdf−schema#"

xmlns : owl ="http ://www.w3 . org /2002/07/ owl#">

<owl : Class rd f : ID="book">

<rd f s : comment>

The c l a s s o f books . Al l books should be wr i t t en by at l e a s t one wr i t e r

</rd f s : comment>

<owl : d i s j o in tWith rd f : r e s ou r c e="#wr i t e r "/>

<rd f s : subClassOf>

<owl : Re s t r i c t i on>

<owl : onProperty rd f : r e s ou r c e="#writtenBy"/>

<owl : someValuesFrom rd f : r e s ou r c e="#wr i t e r "/>

</owl : Re s t r i c t i on>

</rd f s : subClassOf>

</owl : Class>

<owl : Class rd f : ID="wr i t e r">

<rd f s : comment>

The c l a s s o f w r i t e r s

</rd f s : comment>

<owl : d i s j o in tWith rd f : r e s ou r c e="#book"/>

</owl : Class>

<owl : ObjectProperty rd f : ID="writtenBy">

<rd f s : comment>

I t r e l a t e s books to w r i t e r s

</rd f s : comment>

<rd f s : domain rd f : r e s ou r c e="#book"/>

<rd f s : range rd f : r e s ou r c e="#wr i t e r "/>

</owl : ObjectProperty>

<owl : ObjectProperty rd f : ID="wr i t e s">

<owl : inve r seOf rd f : r e s ou r c e="#writtenBy"/>

</owl : ObjectProperty>

</rd f :RDF>

Figure 2.4. Simple ontology for books and writers using XML based RDF syntax and

OWL

12

by the DAWG(RDF Data Access Working Group) of World Wide Web Consortium,

and is recognized as one of the key technologies of the semantic web [17].

SPARQL query language is based on matching graph patterns. Graph pattern

used in SPARQL is very similar to an RDF triple but with the possibility of a variable

instead of an RDF term. Variables can be used to point subject, predicate or object

of the pattern.

In Figure 2.5, foaf pre�x is used for "friend-of-a-friend" ontology. The query

returns names of every person in the dataset. The query references the subject with the

variable name ?person. "?person a foaf:Person" states that the subject is a foaf:Person.

Another triple, "?person foaf:name ?name" states that the same person, because the

subject is referenced with the same variable name, has a name. The query returns just

names of persons since ?name variable is the only variable selected.

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ?name

WHERE {

? person a f o a f : Person .

? person f o a f : name ?name .

}

Figure 2.5. Simple SPARQL query selecting foaf:name data property for instances of

foaf:Person

SPARQL uses namespace mechanism to de�ne pre�xes and namespaces so that

queries can be simpler and shorter. In Figure 2.5, foaf (Line 1) is used as a namespace

for friend-of-a-friend ontology.

As in SQL, SPARQL uses select-from-where structure. SELECT speci�es the

order of retrieved data. FROM is used to specify the source being queried. Finally,

WHERE is used to impose constraints in the form of graph pattern templates.

13

2.1.6. JSON-LD

JSON is a useful messaging and data serialization format. The data model used

for JSON-LD [18] is a labeled, directed graph which contains nodes which are connected

by edges. It is easy to parse and generate JSON data.

For example, one line of JSON document is obvious for a human to interpret that

this is a name of a person. A machine wouldn't be able to understand the meaning of

the document.

"name" : "Karl Marx"

Linked data and Web in general, uses IRIs for unambiguous identi�cation. IRIs

to assign unambiguous identi�ers to data that may be of use to other developers [18].

For instance, instead of using just name, one can use schema.org speci�cation [19] so

that above could be unambiguously expressed.

"http://schema.org/name" : "Karl Marx"

JSON-LD is a lightweight Linked Data format. It is easy for humans to read and

write. It is based on the already successful JSON format and provides a way to help

JSON data interoperate at Web-scale.

2.2. Annotation

Semantic Web enables machines to interpret, combine and use data on the Web.

Whereas the current Web is understandable mostly by humans, but Semantic Web

can be used by computers as well. The basis for the Semantic Web are computer un-

derstandable description of resources. Such descriptions can be created by annotating

resources with metadata [7].

14

Several tools, paradigms and models exist to create annotations of Web resources.

In this section, we analyze the Web Annotation Data Model which is a interoperable

framework for creating associations between related resources and uses a methodology

that conforms to the architecture of the World Wide Web. After analyzing the model,

we talk about some applications to create annotations. Lastly, we will talk about

studies related to annotations.

2.2.1. Web Annotation Data Model

The primary problem about creating annotations on the Web, is that user-created

annotations cannot be shared or reused due to lack of common approach to expressing

them. The Web Annotation Data Model species an interoperable framework for cre-

ating associations between related resources, annotations, using a methodology that

conforms to the Architecture of the World Wide Web. [1]

In the model, an annotation is considered to be a set of connected resources,

including a body and a target where the body is somewhat related to the target.

Other possible relationships include choosing a representation of a resource, enabling

content to be embedded within annotation, selecting segments of resources and de�ning

styling hints for clients. In Table 2.1 namespaces used in speci�cation are listed.

2.2.1.1. Core Annotation Framework. An Annotation can be expressed as the rela-

tionship between two or more resources using an RDF graph. Three basic resources,

the Annotation itself, which is used to identify the concept of this relationship, the Body

and the Target, are described in the RDF graph. The Body and Target resources can

be any media type.

The Data Model states that an Annotation is a web resource and should have an

HTTP URI. All annotations must be instances of the class oa:Annotation. Annotations

may also have provanence information such as who created them.

15

Table 2.1. Namespaces used in the Web Annotation Data Model [1]

Pre�x Namespace Description

oa http://www.w3.org/ns/oa# The Web Annotation Data

Model

dc http://purl.org/dc/elements/1.1/ Dublin Core Elements [20]

dcterms http://purl.org/dc/terms/ Dublin Core Terms [21]

dctypes http://purl.org/dc/dcmitype/ Dublin Core Type Vocabulary

[22]

foaf http://xmlns.com/foaf/0.1/ Friend-of-a-Friend Vocabulary

[23]

prov http://www.w3.org/ns/prov# Provenance Ontology [24]

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# RDF [25]

rdfs http://www.w3.org/2000/01/rdf-schema# RDF Schema [15]

skos http://www.w3.org/2004/02/skos/core# Simple Knowledge Organiza-

tion System [26]

The model also allows tagging of resources either with a text or with a URI. The

tag is represented as the Body of Annotation, and the resource being tagged is the

Target. For example, "Istanbul" can be associated with an image of the most crowded

city of Turkey to describe what is depicted. If a resource is being tagged, the Body

should have the oa:Tag class assigned to it because of applications may render tags in

di�erent ways.

For semantic tags, the tag is expressed with a URI. The example above, can use

http://dbpedia.org/page/Istanbul as the Body. The model doesn't recommend to use

the URI of a document as a Semantic Tag. The reason is that it might also be used as

a regular Body in other annotations. Instead, it recommends to create a new URI and

link it to the document. Using foaf:page is recommended for semantic tagging. If the

URI does not have a representation and the URI truly identi�es the concept itself, the

data model recommends using skos:related property.

16

An Annotation may not have a Body resource. An example to this would be

bookmarking a particular resource or highlighting a section of a resource. On the

contrary, it is also possible for an Annotation to have multiple Bodies and/or Targets.

Having multiple bodies and/or targets is allowed as long as dropping any of them

would not invalidate the Annotation's meaning. Examples may be comparing Targets,

ordering the Bodies, etc.

It is important for clients to understand when the Annotation is created and what

software is used to serialize the model, and the creator of the Annotation. Provenance

information can be attached to the Annotation, Body, Target any other resource in the

RDF graph.

Figure 2.6. An annotation example of Semantic Tagging for an image of Istanbul

Figure 2.6 shows an annotation which has a target whose type is a dctypes:Image

and has a URI http://www.balsoy.com/Turkiye/inpictures/pictures/istanbul01.jpg.The

annotation has a body which is an instance of oa:SemanticTag and has foaf:page prop-

erty as http://dbpedia.org/page/Istanbul. The annotation's motivation is tagging and

it is annotated by a person whose name is "A Person" with an open id "openid1".

17

The model is serialized by a software agent named as "agent1".

2.2.1.2. Speci�ers and Speci�c Resources. The core of theWeb Annotation Data Model

is adequate to handle majority of use cases; however considerable number of use cases

remain not covered. Resource segment selection is one of these use cases.

The resource that identi�es the segment is called the Speci�c Resource, and the

resource which describes how to extract the targeted segment is called Selector. Within

the Web Annotation Data Model, only one Selector can be associated with a Speci�c

Resource.

Fragment Selectors : The Web Annotation Data Model de�nes a fragment-

based selector called the FragmentSelector with which the segment of interest can be

described through the use of the fragment identi�er component of a URI. The descrip-

tion of the segment is included in the Annotation graph via the rdf:value property.

Range Selectors : The model de�nes several extractors which describe how to

extract segments that have a start and end in linear data. There are two text selectors

and one for bitstreams.

Text Quote Selector is a class which is used to describe a textual segment by

quoting the target, plus text before and after it. For example, if the document were

"The Maiden's Tower (Turkish: K�z Kulesi), also known as Leander's Tower", "K�z

Kulesi" could be selected by a pre�x of "Turkish: " and a su�x of "), also".

If the content is copyright, then this method can be dangerous as one might

select entire document. For such cases, the use of the Text Position Selector is more

appropriate. The Selector describes a range of text based on its start and end positions.

The properties used to describe the positions are oa:start and oa:end. Previous example

would be described as start would be 29, and end would be 39, then the selection again

would be "K�z Kulesi".

18

Figure 2.7. Annotation Target with a oa:TextQuoteSelector selecting textual content

"K�z Kulesi"

Figure 2.7 shows an example of Text Quote Selector. The Target is a Speci�c

Resource which has a source of a URI "https://en.wikipedia.org/wiki/Maiden'sTower".

The target in the �gure is not the whole page, but the text "K�z Kulesi". In order to

select the content, Text Quote Selector is used with a pre�x and a su�x.

SVG Selectors : Even though fragment selectors can be used to descrive

rectangular areas, it is useful to describe circles, ellipses and polygons. SVGSelector

is de�ned a subclass of oa:Selector and can be used to de�ne shapes using the SVG

standard.

2.2.1.3. States. Resources on the Web are increasingly dynamic or they can be avail-

able in multiple formats. The Web Annotation Data Model also addresses this problem.

To resolve this issue, the data model introduces the oa:State class which is used to de-

scribe how to retrieve a representation of a resource.

19

A Time State speci�er records the time that the Annotation was created. Ap-

plications consuming Annotation, can then use this information to �gure out an ap-

propriate representation of the resource.

HttpRequestState is a class which can be used to describe how to retrieve an

appropriate representation of a resource based on the HTTP Request headers.

In Figure 2.8, time state information is added to the instance of the Target.

state1 is an instance of oa:TimeState class and has a property oa:when which is

used to store the timestamp at which the Source resource should be interpreted.

Figure 2.8. Annotation Target de�ning the state of target resource by using

oa:TimeState

2.2.1.4. Highlighting and Styles. In the Web Annotation Data Model, the Style re-

source is associated with the Annotation itself. The content of the resource provides

the rendering hints. oa:Style is used to de�ne a resource which describes the style the

selection or resource should be rendered. The model doesn't recommend to use the

class directly in Annotations, but only its subclasses.

20

CSS is used in the model via the oa:CssStyle class which is a subclass of oa:Style.

The class label is attached to a Speci�c Resource using the oa:styleClass property.

Figure 2.9 shows an example of CSS Style. In the annotation, Speci�c Resource

is styled with green style class. The style class is de�ned as ".green {color : green}".

Figure 2.9. Annotation for which content is styled by using oa:EmbeddedContent and

oa:CSSStyle

2.2.1.5. Multiplicity Constructs . Even though an Annotation may have multiple

Bodies, Targets or both, the semantics are that each Body individually is about each

Target, is not always the case. Using the Web Annotation Data Model, an Annotation

can be associated with one resource from a group of alternatives. An example to this

would be having a comment that is available in Turkish and English.

TheWeb Annotation Data Model includes three multiplicity constructs : oa:Choice,

oa:Composite and oa:List.

oa:Choice : A Choice is a set of resources for which a consuming application

21

should select only one to process or display.

oa:Composite : A Composite is a set of resources which are all required for

an Annotation. For instance, an Annotation which compares the di�erences between

two resources.

oa:List : A List is a set of resources which should be in order in the context of

the Annotation.

The following �gure shows an example of a Choice construct. The annotation

has a Body whose type is oa:Choice and it includes to images.

Figure 2.10. Annotation having a body of an instance of oa:Choice, consisting of two

images of K�z Kulesi

2.2.2. Other Annotation Related Studies

In this section, we will summarize studies related to annotation topic. We will

just give notion of the related studies.

22

� A Web application called SAPIENT [27] is introduced by Maria Liakata, Claire

Q, and Larisa N. Soldatova for sentence based annotation of full papers with

semantic information. The application enables annotation of scienti�c papers

sentence by sentence and also linkin related sentences together.

� Another study related to semantic annotation of unstructured and ungrammatical

text is carried out by Matthew Michelson and Craig A. Knoblock. The study

[28] is about annotation of informal data. The method they used is to leverate

collections of known entities and their common attributes, called "reference sets,"

so that these unstructured data can be annotated despite lack of grammar and

structure.

� An open ontology in OWL presented by for scienti�c documents on the web. The

Annotation Ontology supports both human and algorithmic contents [29]. The

presented model supports versioning and a set model for specifying groups and

containers of annotation.

� SAWSDL [30] de�nes how to add semantic annotations to various parts of a

WSDL document such as input and output message structures, interfaces and

operations. In addition to this, it also de�nes an annotation mechanism for

specifying the structural mapping of XML Schema types to and from an ontology.

� Since tweets contain mentions of numerous entities, persons and events, and often

additional information, like an opinion that can be viewed as an annotation of

that entity [31]. In the study, a natural processing approach is discussed to extract

information about entities and their annotations from tweets.

� Semi-automatic semantic moderation of web annotations [32] is a research that

focuses on leveraging the context and content features of social web annotations

for semi-automatic semantic moderation. In the study, an approach for semi-

automatic semantic moderation by analyzing and exploiting both content and

context dimensions of annotations.

� A study about annotation of images and videos for multimedia analysis is carried

out to propose an approach di�erent than older methods which mainly focus

on the content dimension and corresponding annotations, such as a person or

vehicle [33]. In this study, a software environment is presented to bridge between

two directions by linking low level MPEG-7 visual descriptions to conventional

23

Semantic Web ontologies and annotations.

� Django [34] is a free and open source web application framework which is written

in Python in order to create open sourced online tutorials and curate amazing

�rst experiences with technology. The web framework is a set of components

that helps people to develop websites faster and easier. Within this framework,

there is translation as well as renarration. Tutorials are translated by sentence

by sentence while keeping the links between translated version and the original

version.

2.3. Renarration

According to W3C website, the Web is fundamentally designed to work for all

people whatever the hardware, software, language, culture, location, etc. However,

when websites, web technologies or web tools are badly designed, they can create

barriers that exclude people from using the Web [35]. In the renarration model, a web

page or even an element of a web page is rewritten, renarrated, to make it accessible

for a target audience. [6]

2.3.1. Accessibility

As with the improvement in the Web technologies, the impact of disability is

radically changed because of barriers being removed. However, there are accessibility

issues on the Web due to social, cultural geographical and other factors.

Figure 2.11 shows an example of accessibility issue. In the �gure, there is a web

page P about �re safety which is originally written in English. A blind person B, might

be able to read this page with help of a screen-reader software. This would be possible

only if the author of this page, doesn't violate any guidelines.

Renarration architecture enables someone X, not necessarily the authors, to pro-

vide a renarration of this �re safety page which might be more accessible for blinds.

X might create Blind(P) and put it on the Web. Whenever B visits the page P,

24

Figure 2.11. A Web Page about �re safety originally written in English [6]

alternative page Blind(P), could be accessed.

2.3.2. Barriers

In this section, we'll talk about kinds of accessibility issues such as language,

literacy, etc.

2.3.2.1. Language Barriers. Considering the example, in Figure 2.11, another barrier

might lead the page inaccessible. For instance, if the page is visited by a person who

cannot read English, it would mean nothing. When a person Y, who know how to read

in Turkish, and if a Turkish version of P Turkish(P) exists, then Y can read that page

instead.

In addition to this, �re engine in the image might not be familiar to Y. So, the

renarrated page Turkish(P) might also substitute an image of the �re engine found in

Turkey instead.

2.3.2.2. Literacy Barriers. According to statistics retrieved from TSI [36], almost 5

percent of the population are still not lettered in Turkey by 2014. It is obvious that

most of the content on the Web is text dominated. This kind of statistics doesn't

mean that the content will be consumable to them, if it was made available in di�erent

25

format. For instance, audio, video might be more appropriate for such audience. The

renarration approach provides a good way to handle this kind of accessibility issues.

2.3.2.3. Other Accessibility Issues. Even though there are many di�erent ways of im-

plementing web pages, many of them violate guidelines. An example to this would

be that tables within the HTML are used mostly for formatting, not just for data in

tabular format. Not only violating guidelines might make web pages inaccessible, but

also some other accessibility issues might occur. For instance, a page might be inacces-

sible because of simply poor writing or because the writing is too technical. In those

situations, simplifying the content, alternative narration, clearly might be helpful.

2.3.3. Addressing Accessibility on the Web

The section Designing for Inclusion of the W3C site states :

"Inclusive design, design for all, digital inclusion, universal usability, and similar

e�orts address a broad range of issues in making technology available to and usable

by all people whatever their abilities, age, economic situation, education, geographic

location, language, etc." [6]

The renarration approach is one of the ways of making the web more inclusive.

The approach doesn't prescribe any speci�c implementation or any choices which any

implementation should make. It just states the problem of accessibility more broadly

and move the discussion towards inclusion.

2.4. Applications

In this section, we provide list of applications which have attempted to increase

accessibility of contents on the Web. First, we'll list an annotation and a renarration

application. After that, we'll list crowd-sourced applications which are : Django Girls

[34], Duolingo [37] and Google Translate [38].

26

2.4.1. Annotator

Annotator is an open-source JavaScript library which can be used to add annota-

tion functionality to any webpage. Annotations can have comments, tags, links, users

and more [39]. Annotator library is designed for easy extensibility.

In order to initialize the library, the following javascript needs to be added.

var ann = Annotator(document.body);

In order to setup default plugins, annotator.min.css and annotator-full.min.js

should be included and the following method should be called.

ann.setupPlugins();

Figure 2.12 shows an example of the Share Annotator Plugin [40], which enables

sharing annotations in social networks.

Figure 2.12. User interface for creation of an annotation using Share Annotator

Plugin [40]

2.4.1.1. Storage API. The Annotator library de�nes storage API in terms of a pre�x

and a number of endpoints. The API follows the principles of REST. Each of the

endpoints for the storage API is expected to be existing on the Web. For example, if the

pre�x were http://example.storage/api, then the index endpoint would be http:

//example.storage/api/annotations. There are six core endpoints, root, index,

create, read, update, delete.

27

2.4.1.2. Plugins. The Annotator is a highly modular architecture and plugins provide

a great deal of functionality.

The Auth plugin complements the Store plugin and provides authentication for

requests. The plugin works by requesting a token from the local server and the token

is used for all requests to the store.

The Filter plugin allows users to �lter the displayed annotations. When the

plugin is used, a toolbar is added to the top of the window. The toolbar contains

available �lters which can be applied to the annotations.

The Markdown plugin allows users to use Markdown [41] in annotation com-

ments. These comments are then rendered in the viewer. Markdown is a text-to-HTML

conversion tool for web writers. It allows writing using an easy-to-read and easy-to-

write plain text format, then convert it to valid XHTML.

The Permissions plugin handles the user and permissions properties on anno-

tations. The plugin adds Viewer section to a viewed annotation and this displays the

name of the user who created it. It also adds two �elds to the annotation editor which

are showed only when current user has admin permissions on the annotation.

The Store plugin sends annotations to the server. The plugin sends the anno-

tations serialised as JSON. The annotator can perform create, update, destroy and

search actions.

The Tags plugin allows annotators to tag their annotations with keywords. Again

when the plugin is used, viewer, which displays any tags, is automatically added. The

plugin also adds an input �eld to the editor which is used to enter space separated list

of tags.

28

2.4.2. Alipi

Alipi [6] is designed with the objective of enabling one set of web users, the

renarrators to renarrate any web page or its element, and consumers who consume the

web resources renarrated.

2.4.2.1. Approach. From a DOM perspective, renarration is a syntactic restructuring

of the DOM structure of the document. [6] Traditional solutions for accessibility is

usually done by the author specifying a rewriting rule. For instance, specifying alt

tag for an image. However, the approach taken by the Alipi that these rewriting rules

will not be a �xed; there might me multiple versions of these rewrites e.g., by a user,

the author of the page, or even a service. Alipi accomodates multiple strategies for

accessibility : fetching renarrations of a page from a store anywhere on the web, or

restructuring a page on the place, or combination of two.

2.4.2.2. Architecture. The architecture of Alipi relies on three main subsystems: (a)

a subsystem for renarrators to create renarrations, (b) a subsystem for indexing web

pages or its elements to renarrations, and (c) another subsystem for renarrating web

pages.

Figure 2.13 shows creation and indexing of renarrations of a page P consisting

of elements (E and E'). Renarrations E1 and E2 are being created for the element

E. The renarrations exist on the Web each with its own url U1 and U2, etc. The

Alipi architecture requires all renarrations accessible on the Web. That also ensures a

decentralised renarration model. Each renarration contain an attribute called foruri

which is used to refer to the original object.

Crawler and indexer fetches the original page and existing renarrations created

for the page P 's elements U/E and generates an index.

When a user requests the page at url U, semantic attributes for the user's pro�le

29

Figure 2.13. The creation and indexing of renarrations of a page P with url U using

Alipi prototype [6]

are being used and to match appropriate renarrations of the requested page. The

appropriate renarration then rendered in the user's browser as renarration P' of P at

the same url.

2.4.2.3. Alipi Prototype. Renarration is implemented as a service in the Alipi proto-

type. Using the service, a user can choose a web page for renarration and specify target

groups and publish the renarration.

Any number of renarrations may be created for any given web page. The renar-

rator can de�ne translations, simpli�cations or provide alternative media to the target

audience. In addition, the renarrator can provide the language, geographical region,

and tags.

Figure 2.14 shows a page on �re safety in English. In the �gure, a popup is shown

to the renarrator with the image of �re truck can be replaced.

30

Figure 2.14. The page on �re safety being edited for renarration. Note the popup on

the image inviting its replacement [6]

Figure 2.15 shows renarrated version of the �re safety page in Figure 2.14. The

second paragraph has been replaced by text in Hindu and the picture has been replaced

with an image of Indian �re truck.

Figure 2.15. Renarrated version of the �re safety page in Figure 2.14. [6]

2.4.3. Other Crowd-sourced Applications

There are several systems that have attempted to increase the accessibility of

content on the Web. In this subsection, we'll talk about three of them : Django

Girls [34], Duolingo [37] and Google Translate [38].

Django Girls is a non-pro�t organization that empowers and helps women to

organize free one-day programming workshops by providing tools, resources and sup-

port. It is a crowdin translation application for collaborative translations. The mission

31

of Django Girls is to bring more women into the world of technology and increase the

diversity. The barrier that they are dealing with is language. Other barriers are trying

to be resolved with mentors. Figure 2.16 shows the translation of a tutorial about how

to create a Django views. In the �gure, it can be seen that each sentence is indexed

and relation between original content and its translation is kept.

Figure 2.16. Translation of a tutorial about how to create a Django views.

Duolingo is a free language-learning platform that includes a language-learning

website and app along with a crowdsourced text translation platform and a language

pro�ciency assessment center. The website o�ers over 50 di�erent language courses

across 23 languages. It employs a crowd sourced business model, where members of

the public are invited to translate content and vote on translations. The content comes

from organizations that pay Duolingo to translate it. Figure 2.17 shows a discussion

of a particular question. User wants to discuss the answer with others. People who are

native or know language well often answer.

32

Figure 2.17. Duolingo screen showing a discussion of a particular question where user

wants to discuss the answer with others.

Google Translate is a free multilingual statistical machine translation service

provided by Google to translate text, speech, images, or real-time video from one

language into another. It does not apply grammatical rules, since its algorithms are

based on statistical analysis rather than traditional rule-based analysis. It also has

gami�cation and crowd wisdom. Figure 2.18 shows an example translation for a course

equivalence for an exchange student. The aim of the student is to �gure out whether

the content of courses matches or not.

33

Figure 2.18. An example Google translation for a course equivalence for an exchange

student.

34

3. MODEL

This chapter proposes a model for creating renarrations of resources. The model

has been realized through the design of �ve major sub-systems: Renarration Trans-

formation for describing di�erent type of actions on HTML elements, Selectors for

describing parts of resources, Actions to describe the activity done on the element in

source documents, Motivations for describing the reason of renarration transformations

and/or whole renarrations, and lastly Lists for de�ning ordered constructs for select-

ing parts of source documents in an order or creating ordered narrations of source

documents.

3.1. Renarration Data Model

Renarration Data Model speci�es a framework for creating alternative narrations

of source documents by transformation of their elements such as translation of a para-

graph or replacing an element with an image.

Figure 3.1 shows high level pseudo code of renarration process on a source docu-

ment.

A Renarration is considered to be an alternative narration described by a given

user at a given time consisting of a set of transformations. Figure 3.2 shows renarration

of a source document. The source document is renarrated by a set of transformations

on the elements of the document, as a result target document is composed. The whole

process is called a Renarration.

The Model de�nes a namespace for its classes, and properties. It also uses other

namespaces. Table 3.1 shows namespaces used in the data model.

The speci�cation for the data model is divided into distinct modules. Figure

3.1 shows the relationship between rn:Renarration and rn:Renarrator classes. The

35

let SD be a web resource to be renarrated

let TD be a target document (renarrated document)

list← list of elements inSD

for each element E in list do

if E is renarrated then

action← insert, replace, remove

E ′ ← apply action on E

create semantic relation between E and E'

TD ← E'

end if

end for

return TD

Figure 3.1. Pseudo code for creation of renarration of a resource

Figure 3.2. Renarration Of A Document

36

Table 3.1. Namespaces used in the Renarration Data Model

Pre�x Namespace Description

oa http://www.w3.org/ns/oa# Web Annotation Data Model

[1]

foaf http://xmlns.com/foaf/0.1/ Friend-of-a-Friend Vocabulary

[23]

rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# RDF [25]

rdfs http://www.w3.org/2000/01/rdf-schema# RDF Schema [15]

skos http://www.w3.org/2004/02/skos/core# Simple Knowledge Organiza-

tion System [26]

owl http://www.w3.org/2002/07/owl# OWL Web Ontology Lan-

guage [16]

xsd http://www.w3.org/2001/XMLSchema# XML Schema [42]

cnt http://www.w3.org/2011/content# Content in RDF [43]

data model proposes that each renarration must be created by a renarrator and each

renarrator must be a person not a software agent. The equivalent class of rn:Renarrator

is de�ned as foaf:person. Table 3.2 shows explanation of terms used in Figure 3.1.

37

Table 3.2. De�nitions of classes and properties related directly to renarration

Item Type Description

rn:Renarration Class The class for Renarrations. The rn:Renarration

class must be associated with a renarrator and

a time stamp.

rn:Renarrator Class The class for Renarrators. Each renarrator must

be equivalent with foaf:Person.

rn:Document Class Any type of resource on the Web. If a more spe-

ci�c type is known, than it should be associated

with source or renarrated documents.

rn:renarratedBy Object Property The relationship between a Renarration and

a Renarrator. There must be at least one

rn:renarratedBy relationship associated with a

Renarration. The object of the relationship

must be an instance of rn:Renarrator class,

which is the person who is responsible for the

creation of the Renarration.

rn:onSourceDocument Object Property The relationship between a Renarration and

a source document. There must be at least

one rn:onSourceDocument relationship associ-

ated with a Renarration. The object of the re-

lationship must be a document for which the re-

narration is being done.

rn:toTargetDocument Object Property The relationship between a Renarration and a

target document (renarrated document). There

must be at least one rn:toTargetDocument re-

lationship associated with a Renarration. The

object of the relationship must be an instance of

rn:Document class.

rn:renarratedAt Data Property The time at which the Renarration is created.

There must be exactly one rn:renarratedAt prop-

erty associated with a Renarration.

38

Figure 3.3. The Renarration Model consisting of a Renarrator, a source document,

and a renarrated document, and the time of renarration.

Figure 3.4 shows serialization of a basic renarration in JSON-LD format. In the

serialization, it is assumed that there is a source document 'document1' (Line 6) and

target document (Line 15).

3.1.1. Renarration Transformation

Renarration of a source document is done by transformation of elements in the

document. Renarration Transformation can be de�ned as an atomic modi�cation

to part of a source document to create an alternative version of it.

In Figure 3.5, source document SD includes 4 elements: E1, E2, E3, and E4. The

source document is renarrated and the only transformation done on the element E1.

As it can be seen in the �gure, the text in E1 is updated. This atomic operation itself

is called a Renarration Transformation, and whole process is called a Renarration.

Renarration Transformation(E1) = E1'

Renarration(SD) = E1' U E2' U ... EN'

39

1 {

2 "@id" : " r ena r r a t i on1 " ,

3 "@type " : " rn : Renarrat ion " ,

4 " rn : renarratedAt " : "2015−09−14T00 : 0 0 : 0 0Z" ,
5 " rn : onSourceDocument " : {

6 "@id " : "document1 " ,

7 "@type " : " rn : Document"

8 } ,

9 " rn : renarratedBy " : {

10 "@id " : " http :// ex . org / person1 " ,

11 "@type " : " f o a f : Person " ,

12 " f o a f : name" : "Person One"

13 } ,

14 " rn : toTargetDocument " : {

15 "@id " : " renarratedDocument " ,

16 "@type " : " rn : Document"

17 }

18 }

Figure 3.4. Serialization of a basic Renarration renarrated by a person in JSON-LD

Figure 3.5. Renarration Transformation on an element of a source document

40

In the Renarration Data Model, each renarration transformation must be done on

the same source document for a renarration. Each renarration transformation should

have rn:onSourceDocument, and rn:hasNarration relationships. rn:onSourceDocument

is the relationship between renarration transformation and selected part of source doc-

ument. rn:hasNarration is used to de�ne relationship between the renarration transfor-

mation and narration created by renarrator. rn:toTargetDocument de�nes part of the

renarrated document which is related to selected part in the source document. If the

source and target selections are the same, it's not mandatory to de�ne target selection

with rn:toTargetDocument. Table 3.3 shows explanation of terms used in Figure 3.6.

Figure 3.6. Diagram for relations between a renarration and renarration

transformation with a narration, source document and renarrated document

41

Table 3.3. Description of items for a Renarration Transformation on source

documents
Item Type Description

rn:RenarrationTransformation Class The class for Renarration Transfor-

mations de�ning speci�c actions on

parts of source documents.

rn:hasRenarrationTransformation Object

Property

The relationship between a Renar-

ration and Renarration Transforma-

tion. The object of the relation-

ship can also be an instance of struc-

ture(rdf:List).

rn:hasNarration Object

Property

The relationship between a Renar-

ration Transformation and a narra-

tion de�ning content being created

for source content.

rn:sourceDocumentSelection Object

Property

The relationship between a Renar-

ration Transformation and part of a

source document. The object of the

relationship must be an instance of

a selector class.

rn:targetDocumentSelection Object

Property

The relationship between a Renarra-

tion Transformation and part of the

renarrated document. The object of

the relationship must be an instance

of a selector class.

rn:createdAt Data Prop-

erty

The time at which the Renarration

Transformation is created. There

must be exactly one rn:createdAt

property associated with a Renarra-

tion Transformation.

rn:accessedFrom Object

Property

The relation between a narration

and external resource from which

the content may be referenced.

42

Normally, it would be very rare that there will be only one transformation for

a renarration. The data model recommends using rdf:List [15] where there are more

than one transformation on the elements of a source document. The list-like structures

are covered in following sections.

Figure 3.7 shows serialization of a basic renarration transform in JSON-LD for-

mat. Note that in the example, the narration type is de�ned as cnt:ContentAsText.

The cnt:ContentAsText that RDF [43] is for any type of textual content.

{

"@id " : " r ena r r a t i on1 " ,

"@type " : " rn : Renarrat ion " ,

" rn : renarratedAt " : "2015−09−14T00 : 0 0 : 0 0Z" ,
" rn : renarratedBy " : {

"@id " : " http :// ex . org / person1 " ,

"@type " : " f o a f : Person " ,

" f o a f : name" : "Person One"

} ,

" rn : onSourceDocument " : {

"@id " : "document1 " ,

"@type " : " rn : Document"

} ,

" rn : hasRenarrat ionTransformat ion " :{

"@id " : " renar rat ionTrans fo rmat ion1 " ,

"@type " : " rn : Renarrat ionTransformat ion " ,

" rn : hasNarrat ion " : {

"@id " : " nar ra t i on1 " ,

"@type " : " cnt : ContentAsText " ,

" cnt : chars " : " content o f na r ra t i on "

} ,

" rn : createdAt " : "2015−09−14T22 : 2 0 : 0 0Z"
} ,

" rn : toTargetDocument " : {

"@id " : " renarratedDocument " ,

"@type " : " rn : Document"

}

}

Figure 3.7. Serialization of a basic renarration transform in JSON-LD

3.1.2. Actions on Documents

In many cases, a renarration transformation on a source document or on part of

the source document has an activity on the element itself. In other words, a renarrator

43

might want to remove, replace or insert some content in the source document when

creating a narration.

Action can be de�ned as type of atomic activity done on part(elements) of

source document, where the result of the activity is the narration created by the

renarrator. Each instance of rn:RenarrationTransformation must have at least one

rn:actionOnDocument relationship to an instance of rn:Action class which is a sub-

Class of skos:Concept.

Figure 3.8 shows an example of two actions on source document. Element E1

in the source document is replaced with new content and this is shown as E1' in

target document. Another action on the source document is removal of E3; the target

document doesn't have that element.

Figure 3.8. Diagram for renarration having replacement and removal actions

In Figure 3.9 the relationship between rn:RenarrationTransformation and rn:Action

classes is shown. The data model uses SKOS Concepts and SKOS Concept Schemes for

de�ning actions. rn:Action is de�ned as a subClass of skos:Concept and each instance

of rn:Action is de�ned under rn:actionScheme which is an instance of skos:ConceptScheme.

Table 3.4 shows explanation of terms used in Figure 3.9.

44

Table 3.4. Class and Property De�nitions of Actions

Type Name Description

C
la
ss

rn:Action subClass of skos:Concept. The rn:Action

class must be associated with a Renarra-

tion Transformation.

O
b
je
ct

P
ro
p
er
ty qnamernactionOnDocument The relationship between

rn:RenarrationTransformation and

rn:Action for de�ning type of action on

targeted source element.

N
am

ed
In
d
iv
id
u
al

rn:actionScheme Instance of skos:ConceptScheme. The

concept scheme for de�ning a set of in-

stances of rn:Action.

rn:replace Instance of rn:Action. The action that

represents replacing content in a source

document with new content which will re-

side in a target document.

rn:remove Instance of rn:Action. The action that

represents replacing content in a source

document with nothing in a target doc-

ument.

rn:insert Instance of rn:Action. The action that

represents insertion of content to a spec-

i�ed location.

45

Figure 3.9. Diagram for list of actions can be de�ned for renarration transform

In Figure 3.10 which is a continuation of Figure 3.7, content in source document

is replaced with new content which is de�ned by using cnt:ContentAsText.

3.1.3. Selectors

Even though a renarration can have more than one renarration transformation,

all transformations on a document are thought to be only one renarration. However,

renarration transformations usually refer to part of a source document instead all of it.

A Document can be described any web resource which can be identi�ed by a

URI. In order to determine parts of source documents, the Renarration Data Model

uses selectors. A Document Selector is a superclass for all selectors to describe how

to determine parts of source documents. There must be at least one selector class

associated with a class rn:Document.

In Figure 3.11, an example of selection is shown. Source document has an element

46

{

"@id " : " r ena r r a t i on1 " ,

"@type " : " rn : Renarrat ion " ,

" rn : renarratedAt " : "2015−09−14T00 : 0 0 : 0 0Z" ,
" rn : onSourceDocument " : {

"@id " : "document1 " ,

"@type " : " rn : Document"

} ,

" rn : renarratedBy " : {

"@id " : " http :// ex . org / person1 " ,

"@type " : " f o a f : Person " ,

" f o a f : name" : "Person One"

} ,

" rn : hasRenarrat ionTransformat ion " :{

"@id " : " renar rat ionTrans fo rmat ion1 " ,

"@type " : " rn : Renarrat ionTransformat ion " ,

" rn : hasNarrat ion " : {

"@id " : " nar ra t i on1 " ,

"@type " : " cnt : ContentAsText " ,

" cnt : chars " : " content o f na r ra t i on "

} ,

" rn : createdAt " : "2015−09−14T22 : 2 0 : 0 0Z" ,
" rn : actionOnDocument" : " rn : r ep l a c e "

} ,

" rn : toTargetDocument " : {

"@id " : " renarratedDocument " ,

"@type " : " rn : Document"

}

}

Figure 3.10. Serialization in JSON-LD format for a basic action for which content is

replaced with a textual content

E1 which includes elements E11 and E12. In the example, renarrator renarrates E11

and creates E11' in the target document. In order to select an element which is inside

another element, a selector can be used.

TextSelector is a superclass for Pre�xSu�xSelector and rn:ByteSelector.

This selector is used to select text based resources or parts of resources which are

in text format. The main reason to have two di�erent selectors is that rn:ByteSelector

is aimed to select large chunks of texts. For applications implementing the Renarration

Data Model, it would be a lot easier to use o�sets when larger text is targeted. Pre�x-

Su�xSelector has three data properties such as pre�x, su�x and selected text. It is

47

Figure 3.11. Diagram for renarration of a child element

not necessary to de�ne pre�x or su�x for a selected text which would mean all instances

of selected text within the context. For instance, assuming a renarrator renarrating a

sentence S in a paragraph P which is in a web page WP. Pre�xSu�xSelector(S in P,

pre�x="", su�x="") would mean all S in P.

Even though most of the content on the Web is in text format, there are many

other data formats. XML is just one of these formats, and HTML documents can

also be treated like XML documents. XPath is used to navigate through elements and

attributes of XML documents and it is a major element in W3C's XSLT standard. It

can be described as a syntax for de�ning parts of an XML document. XPath models

an XML document as a tree of nodes and it de�nes a way to compute a string value for

each type of node. XPathSelector is used to select elements of an XML document.

The reason that the model includes such a selector is that it is easy to target elements

of HTML documents. In addition to this, consuming applications can use JavaScript

to �nd targeted elements easily. XPathSelector uses http://tools.ietf.org/rfc/

rfc3023 speci�cation to de�ne syntax of the selection.

In order to select part of media on the Web, the model proposes MediaSe-

lector. This selector uses http://www.w3.org/TR/media-frags/ speci�cation which

describes the Media Fragments basic speci�cation. The speci�cation speci�es the syn-

tax for constructing media fragment URIs. It also explains how to handle them over

the HTTP protocol. This selector can be used to select fragments of images, videos,

and/or audio �les.

48

While renarrating web resources, selection of part of documents between speci-

�ed positions can also be de�ned by using BetweenSelector. This selector uses an

object property between for which the object should be an instance of rn:List class.

For selections like 'insertion of content before selection', we de�ne an instance of Be-

tweenSelector class for which the object of between object property is a list that

has �rst element an instance rn:Empty class and next element being an instance of any

selector.

Table 3.5. Class De�nitions of Selectors
Name Description

rdf:DocumentSelector The superclass for all selectors.

rn:TextSelector subClass of rn:DocumentSelector and superclass

of rn:Pre�xSu�xSelector and rn:ByteSelector.

The class describes a range of text either by the

use of start and end positions or by using pre�x

and su�xes.

rn:XPathSelector subClass of rn:DocumentSelector. The class de-

scribes a targeted segment by using a fragment

identi�er using xpath.

rn:MediaSelector subClass of rn:DocumentSelector. The class de-

scribes a targeted segment of any media on the

Web by use of a fragment identi�er.

rn:Pre�xSu�xSelector subClass of rn:TextSelector. The class describes

a range of text by the use of pre�x and su�x.

rn:ByteSelector subClass of rn:TextSelector. The class describes

a range of text by the use of start and end bytes.

rn:BetweenSelector subClass of rn:DocumentSelector. The class de-

scribes a selection between two selectors.

rn:EmptySelector subClass of rn:DocumentSelector. The class de-

scribes no selection. Special class designed to be

used with rn:BetweenSelector.

49

Figure 3.12. Document Selectors in the Renarration Data Model

50

Table 3.6. Description of the properties related to selectors

Type Name Description

O
b
je
ct

rn:sourceSelection associates the source document of a

rennaration with a selector

rn:targetSelection associates the target document of a

rennaration with a selector

rn:isBetween speci�es a position with a

rn:BetweenSelector in a rn:List.

D
at
a

rn:pre�x subsstring prior the target text

rn:su�x The snippet of text occurs after the

targeted text in a resource.

rn:selectedText The snippet of text which is tar-

geted.

rn:o�set The starting position of the content

to be selected.

rn:byteNumber The number of bytes should be se-

lected after the value of rn:o�set

rdf:value The value of fragment identi�er.

dc:conformsTo Each rn:XPathSelector and

rn:MediaSelector classes must

have dc:conformsTo relationship.

De�nes an established standard

to which the described resource

conforms.

51

Figure 3.13 is a continuation of Figure 3.10, where rn:ByteSelector is used to

select 20 bytes starting from 10 bytes within the source document.

{

"@id " : " r ena r r a t i on1 " ,

"@type " : " rn : Renarrat ion " ,

" rn : renarratedAt " : "2015−09−14T00 : 0 0 : 0 0Z" ,
" rn : renarratedBy " : {

"@id " : " http :// ex . org / person1 " ,

"@type " : " f o a f : Person " ,

" f o a f : name" : "Person One"

} ,

" rn : onSourceDocument " : {

"@id " : "document1 " ,

"@type " : " rn : Document"

} ,

" rn : hasRenarrat ionTransformat ion " :{

"@id " : " renar rat ionTrans fo rmat ion1 " ,

"@type " : " rn : Renarrat ionTransformat ion " ,

" rn : sourceDocumentSelect ion " : {

"@id " : " s e l e c t o r 1 " ,

"@type " : " rn : ByteSe l e c to r " ,

" rn : o f f s e t " : "10" ,

" rn : byteNumber " : "20"

} ,

" rn : hasNarrat ion " : {

"@id " : " nar ra t i on1 " ,

"@type " : " cnt : ContentAsText " ,

" cnt : chars " : " content o f na r ra t i on "

} ,

" rn : createdAt " : "2015−09−14T22 : 2 0 : 0 0Z" ,
" rn : actionOnDocument " : " rn : r ep l a c e "

} ,

" rn : toTargetDocument " : {

"@id " : " renarratedDocument " ,

"@type " : " rn : Document"

}

}

.

Figure 3.13. Serialization in JSON-LD format for selection of 10 bytes

3.1.4. Motivations

It is very important to know the motivation behind a renarration in order to make

content on the Web more accessible. The Motivation can be de�ned as the reason why

renarration or renarration transformation within a renarration is created.

52

The Renarration Data Model proposes 4 types of motivations for creating re-

narrations. These named individuals are created as instances of rn:Motivation class.

rn:Motivation class is de�ned as subClass of skos:Concept. Each renarration must

have at least one rn:hasMotivation relationship to an instance of rn:Motivation class

which is a subClass of skos:Concept.

Figure 3.14 shows the relationship between rn:RenarrationTransformation and

rn:Motivation classes.

Figure 3.14. The relationship between rn:Renarration and rn:Motivation classes.

The Renarration Data Model allows usage of motivations for both renarration

transformation and the renarration itself. For instance, the subject of the relationship

can be an instance of rn:Renarration or an instance of rn:RenarrationTransformation.

Table 3.7 shows explanation of terms used in Figure 3.14.

53

Table 3.7. Class and Property De�nitions for Motivations

Type Name Description

C
la
ss rn:Motivation subClass of skos:Concept. The reason behind

the creation of a renarration or a renarration

transformation. Motivations can be things like

translation, simpli�cation, correction, or alter-

native.

skos:conceptScheme A SKOS concept scheme can be de�ned as an

aggregation of one or more SKOS concepts.

O
b
je
ct

P
ro
p
er
ty

rn:hasTargetAudience The relationship between a renarration and a

group of people renarration is aimed for.

rn:hasMotivation The relationship between a renarration and mo-

tivation.

skos:inScheme The relationship between a Thing and an in-

stance of skos:ConceptScheme.

N
am

ed
In
d
iv
id
u
al rn:motivationScheme The concept scheme for motivations.

rn:translation The motivation that represents interpretation of

source content in another language.

rn:simpli�cation The motivation that represents simplifying con-

tent in a source document so that it will be easier

to consume.

rn:correction The motivation that represents updating content

either for veri�cation or adjustment.

rn:alternative The motivation that represents providing a new

content which alternates content in a source doc-

ument.

54

Figure 3.15 shows an example usage for a motivation. In the example, whole

renarration is created with the purpose of providing an alternative content to content

within a source document which is de�ned as document1.

{

"@id " : " r ena r r a t i on1 " ,

"@type " : " rn : Renarrat ion " ,

" rn : renarratedAt " : "2015−09−14T00 : 0 0 : 0 0Z" ,
" rn : hasMotivat ion " : " rn : a l t e r n a t i v e " ,

" rn : renarratedBy " : {

"@id " : " http :// ex . org / person1 " ,

"@type " : " f o a f : Person " ,

" f o a f : name" : "Person One"

} ,

" rn : onSourceDocument " : {

"@id " : "document1 " ,

"@type " : " rn : Document"

} ,

" rn : hasRenarrat ionTransformat ion " :{

"@id " : " renar rat ionTrans fo rmat ion1 " ,

"@type " : " rn : Renarrat ionTransformat ion " ,

" rn : sourceDocumentSelect ion " : {

"@id " : " s e l e c t o r 1 " ,

"@type " : " rn : ByteSe l e c to r " ,

" rn : o f f s e t " : "10" ,

" rn : byteNumber " : "20"

} ,

" rn : hasNarrat ion " : {

"@id " : " nar ra t i on1 " ,

"@type " : " cnt : ContentAsText " ,

" cnt : chars " : " content o f na r ra t i on "

} ,

" rn : createdAt " : "2015−09−14T22 : 2 0 : 0 0Z" ,
" rn : actionOnDocument " : " rn : r ep l a c e "

} ,

" rn : toTargetDocument " : {

"@id " : " renarratedDocument " ,

"@type " : " rn : Document"

}

}

Figure 3.15. Serialization in JSON-LD format for creating an alternative renarration

for a source document

55

3.1.5. Lists

In some cases, order for a renarration can be very important. A List is a linear

data structure where each node is a resource of any type. rn:List provides an order

for a set of resources that are all required to be processed in the order de�ned. For

instance, a user U might renarrate a paragraph P with concatenation of some text T1

and T2 each obtained from di�erent resources on the Web. For such a renarration,

the order can be very important because if the order is di�erent for each instance of

resource, then the renarration is not the same for di�erent orders.

Renarration(T1, T2, ordered) != Renarration(T2, T1, ordered).

In the Renarration Data Model, rn:List is de�ned as subClass of rdf:Bag. The model

uses rn:List for both ordered narrations and ordered selections from documents. An

example to ordered selections from documents would be selecting part of a text in a

paragraph from a Web page. The �rst item in the list would be the element selected, in

this case the paragraph, using rn:XPathSelector, and the second item would be selected

text by using rn:TextSelector.

Figure 3.16 shows usage of rn:List as a renarration of a document. The source

document assumed to be existing with rn:onSourceDocumentrelationship. There must

be an instance of rn:List whose domain must be an instance of a rn:Renarration

class. In the data model, rn:List class is de�ned as a subClass of rdf:Bag which is also

subClass of rdfs:Container. The object of the relationship of rn:nodes should be an in-

stance of rdf:List class. A list must have a list of nodes(resources) of rn:RenarrationTransform

type. The Renarration Data Model recommends using rn:RenarrationTransformation

class for types of each node in a list when the relationship between rn:List and

rn:Renarration is rn:hasRenarrationTransformation. Table 3.8 shows explanation of

terms used in Figure 3.16.

56

Figure 3.16. Renarration Transformation as a list-like structure.

57

Table 3.8. De�nition of classes and object properties for list structures

Item Type Description

rn:List Class subClass of rdf:Bag. De�nes a list of narrations,

which should be interpreted in de�ned order, for

a source document or part of a source document.

rdf:bag Class subClass of rdfs:Container. A container that

can be used to de�ne a set of elements.

rn:nodes Object Property The relationship between a resource and an in-

stance of rdf:List class. When the relation-

ship is rn:RenarrationTransformation rn:nodes

is used to de�ne a list of Renarration

Transformation. When the relationship is

rn:hasNarration, it is used to de�ne a list of

narrations(rn:hasNarration). Lastly, when the

relationship is rn:onSourceDocument, it is used

to de�ne nested selections of source documents.

As it is explained in Table 3.8, rn:List is used for many goals. In Figure 3.16 it

is used for a list of Renarration Transformations. The other usage is for presentation

relation. We use term, presentation relation, for de�ning the order of narrations.

For example, a renarrator might decide to �rst show a �gure right after a text which

would make the content easier to understand. Another usage of rn:List is for selection

order. The reason behind this is that the content on the Web is mostly nested. For

instance a renarrator might want to renarrate some text in a row which is in a table

in a div element. In that case, the selection would be such as:

Selection Order: ["div/table/tr", "text"]

Figure 3.17 shows usage of rn:List for de�ning a selection order. In the example,

document1 is selected by the use of two selectors. First, rn:XPathSelector is used to

select an element in the source document. After that, rn:ByteSelector is used to select

some text within the selected context.

58

{

"@id " : " r ena r r a t i on1 " ,

"@type " : " rn : Renarrat ion " ,

" rn : renarratedAt " : "2015−09−14T00 : 0 0 : 0 0Z" ,
" rn : hasMotivat ion " : " rn : a l t e r n a t i v e " ,

" rn : renarratedBy " : {

"@id " : " http :// ex . org / person1 " ,

"@type " : " f o a f : Person " ,

" f o a f : name" : "Person One"

} ,

" rn : onSourceDocument " : {

"@id " : "document1 " ,

"@type " : " rn : Document"

} ,

" rn : hasRenarrat ionTransformat ion " :{

"@id " : " renar rat ionTrans fo rmat ion1 " ,

"@type " : " rn : Renarrat ionTransformat ion " ,

" rn : sourceDocumentSelect ion " : {

"@id " : " l i s t 1 " ,

"@type " : " rn : L i s t " ,

" rn : nodes " : [

{

"@id " : " s e l e c t o r 1 " ,

"@type " : " rn : XPathSelector "

} ,

{

"@id " : " s e l e c t o r 2 " ,

"@type " : " rn : ByteSe l e c to r "

}

]

} ,

" rn : hasNarrat ion " : {

"@id " : " nar ra t i on1 " ,

"@type " : " cnt : ContentAsText " ,

" cnt : chars " : " content o f na r ra t i on "

} ,

" rn : createdAt " : "2015−09−14T22 : 2 0 : 0 0Z" ,
" rn : actionOnDocument " : " rn : r ep l a c e "

} ,

" rn : toTargetDocument " : {

"@id " : " renarratedDocument " ,

"@type " : " rn : Document"

}

}

Figure 3.17. Serialization in JSON-LD format for using rn:List for de�ning a

selection order

59

4. IMPLEMENTATION

In order to examine the model described in Chapter 3 a prototype built at proof

of concept. The prototype implements the transformation of content from a source

web document using the rennaration model's alternative speci�cation. The prototype

focuses on the use of model introduced in the context of the Web protocols, existing

speci�cations, and the signi�cant work done in the W3C Workgroup on Web Anno-

tation Data Model [1]. The main objective of using Web Annotation Data Model is

to demonstrate the use of relationships among rennarated content and existing con-

tent. However, we are of the opinion that annotation is a highly signi�cant activity

and information on the web, and the Web Annotation Data Model work is very im-

portant in standardizing the content and protocols related to annotation. This will be

demonstrated with examples in the Chapter 5 that evaluates this model.

This chapter is organized as follows: Section 4.1 outlines the technologies used for

the implementation of the model discussed in Chapter 1 and proposed in Chapter 3;

Section 4.2 presents the high level architecture of the implementation; and Section 4.5

provides the implementation details of the prototype.

4.1. Technologies

The prototype is implemented with publicly available tools and technologies. The

Java language is used as the main programming language. The Spring Framework [44]

to design Java-based EE application. The graphical user interface (GUI) of SemAnn

and SemRen are implemented by using JavaScript [45] and HTML (HyperText Markup

Language) [46]. In order to enable annotation and renarration of web resources, jsoup

[47] Java Library, an open source project distributed under the liberal MIT license,

is used. When working with ontologies, Jena Framework [48], an open source Java

Framework for building Semantic Web and Linked Data application, is used. Finally,

for the storage of annotations and renarrations of web resources, Mongo DB [49], an

open source document database, is used.

60

4.2. System Architecture

The system architecture is divided into six main components :

� The Web Annotation Data Model speci�cation describes a structured model

and format to enable annotations to be shared and reused across di�erent hard-

ware and software platforms. [1] Fundamentals of the data model is mentioned in

Chapter 2.

� The Renarration Data Model speci�es a framework for creating alternative

narrations of source documents by transforming elements of the documents.

Figure 4.1. System Architecture

� SemAnn is an implementation that uses the Web Annotation Data Model. The

implementation stores serialized annotations in a collection in a Mongo DB.

� SemRen is an implementation that uses the Renarration Data Model. The imple-

mentation stores serialized renarrations in a collection in a Mongo DB instance.

In addition to storing renarrations in a database, it also enables renarrators to

save target(renarrated) documents.

� Library Injector is a JavaScript library implemented to be used for both Se-

mAnn and SemRen implementations. The library is used to enable source docu-

ments for creating annotations and renarrations.

61

� Storage is an instance of MongoDB used for storing serialized annotations and

renarrations. Serializations are stored in two distinct collections.

4.3. Storage

The implementation uses MongoDB for the storage of serializations of annotations

and renarrations. MongoDB is an open-source, document database designed for ease

of development and scaling. [49]

Both data models, the Web Annotation Data Model, and the Renarration Data

Model, use JSON-LD, a lightweight Linked Data format. Since a record in MongoDB

is a document and documents are similar to JSON objects, MongoDB is selected as

database for the storage. Another reason for using MongoDB is the support for dynamic

schema.

Two di�erent collections are needed in an instance of MongoDB. annotations col-

lection is used for storing serialized annotations, and the collection named renarrations

is used for renarrations.

Figure 4.2. Collections required in MongoDB instance

4.4. Library Injector

Library Injector is a JavaScript library implemented to be used for both SemAnn

and SemRen implementations. The library is used to enable source documents for

creating annotations and renarrations.

In order to enable creation of annotations and renarrations on web resources, the

62

library uses jsoup HTML parser. jsoup is a Java library for working with real-world

HTML. It provides a very convenient API for extracting and manipulating data, using

the best of DOM, CSS, and jquery-like methods [47]. By using jsoup external library,

the web resource is cached on a local storage. After caching the resource, two main

tasks are done by jsoup. The �rst one is to update all relative urls. The main reason

of doing this is to make the page looking exactly similar to original content. The last

task is to inject implemented JavaScript library.

The injected library enables three mouse events on cached resource. The events

enabled are : onmouseover, onmouseout and onclick. Each event is used di�erently

for each implementation. For instance, when creating annotations, the library talks to

annotation collection and queries related annotations for the source document being

annotated. The library also includes some functions for �nding xpaths of elements.

The following is pseudo code of the getPathTo function which is used to �nd xpaths.

e is an element for which xpath is to be found

if e is HTML body then

return '//html[1]/body[1]'

end if

let P be parent node of e

for each sibling of P do

if sibling and e are the same elements then

return concatenation of getPathTo(P), '/' name of e, '[', current sib-

ling index, ']'

end if

end for

Figure 4.3. Pseudo code of getPathTo function for retrieving xpaths of elements

In Figure 4.4, the Web page with http://en.wikipedia.org/wiki/Semantic_Web

URI is being annotated. After injecting the library into cached page, the actions

63

mentioned before are activated on all the elements of the resource. It shows that the

element is shown as dashed red border. Before showing the dashed red border, the

library copies original style of the element in local cache. When the mouse is hovered

on a di�erent element, then original style of the element is copied back, and no border

is shown on the element.

Figure 4.4. Highlighting an element on which mouse is hovered

4.5. Annotation Implementation

The implementation of annotations is named SemAnn in the architecture. Using

the annotation implementation, annotators can annotate web elements or fragments of

elements. The implementation allows di�erent types of annotations such as : embed-

ded content, visual representations, semantic annotations, and annotations which use

DBPedia resources.

Figure 4.5 shows the system architecture of SemAnn framework. The framework

uses Web Annotation Data Model as the base model. All annotations are stored in

serialized JSON-LD format. Serialization of JSON-LD is done by JavaScript utilities.

64

When an annotator loads a web resource, the framework injects library using the

Library Injector and the Jsoup library. The injection of the library enables all elements

of web resources annotatable. The web resource is cached on application server where

the deployment is made. The annotator may choose using existing ontologies, existing

resources or can choose to create content for the body of the annotation. Created

annotations are saved in a MongoDB instance.

Figure 4.5. System architecture of SemAnn framework

4.5.1. Implementation of Annotation Target

Many Annotations refer to part of a resource, rather than all of it, as the Tar-

get. Examples include Annotations on an area within an image or video, a range of

characters in text, a time segment in an audio �le or a slice of a dataset. Equally, the

65

segment may be the Body of the Annotation, where the comment is given at a particular

point in the video, or in a particular paragraph of text. [1]

SemAnn enables annotators selecting elements or fragments of elements of web

resources. For instance, an annotator may chose to select all the elements of a web page.

This would result selection of body, and XPathSelector would be good candidate for

the selection. The value of xpath would be html[1]/body[1]. In the following sections,

the details of de�ning targets are being described.

4.5.1.1. Annotations Using XPath. The implementation uses XPath when enabling

users to annotate parts of source documents. When a user hovers an element, the

framework highlights the hovered element. When the user clicks on the element a

popup is shown for the user to create an annotation. In Figure 4.6, the screenshot of

the popup is shown.

Figure 4.6. Annotation popup when clicked on an element.

In Figure 4.6, the selected element is a paragraph. This can be seen from the

xpath on top left. The xpath of the element is "//html[1]/body[1]/div[3]/div[3]/div[4]/

p[1]". In the popup the content of the source is also shown on the left. On the right

of the popup, four di�erent types of categories are shown. User can create a text

annotation, a semantic annotation, or can link the content with a visual representation

of it. Tagging with DBPedia resources is also allowed.

4.5.1.2. Annotations Targeting Fragments of Elements. SemAnn also enables annota-

tors selecting part of elements of web resources. For instance, a user can choose a text

in a paragraph or some part of an image. The SemAnn keeps track of di�erent element

types user is annotating. If a user is annotating an image, the framework allows selec-

tion of part of the image. However, if the content of the selection is composed of text

66

content, the framework allows selection of text.

Figure 4.7. Annotation popup when clicked on an image with fragment selected

Figure 4.7 shows selection of part of an image. The box with "Ontologies:OWL"

is selected as the target of the annotation. Selected part is shown in red color. The

body of the annotation is a text content created by an annotator, and the content is

"Ontologies : Web Ontology Language".

When such a selection is created by an annotator, the framework keeps track of

the position of selected image, and stores values in cache of the local machine. After

the annotator selects part of the image, stored values are used to �nd actual position

of the selection relative to these values. In such annotations, the framework uses

two stage selections. The �rst selection uses XPath selector which stored the xpath

value of the element. Next selection is the fragment of the image which is stored as

"xywh=89,179,140,48".

4.5.2. Implementation of Annotation Body

SemAnn enables annotators to create four types of annotation bodies. Annota-

tors can create annotations by creating embedded content which is usually created by

the annotator, by linking visual representations such as images, audio, and/or video.

In addition to this, semantic annotations can also be created. The implementation

67

currently supports FOAF ontology. Lastly, source documents can be annotated by

using DBPedia resources.

4.5.2.1. Embedded Content Annotations. Semantic Annotation implementation en-

ables users to de�ne embedded content which are then assigned to the body of an-

notations. Currently, the implementation allows users to create their own content; it

doesn't allow usage of external content of other web resources.

In Figure 4.8, an example of embedded textual annotation is shown. On the left

the selected content is shown, and the selection will be assigned to the target of the

annotation. The content created by the user on the right, will be assigned to the body.

Figure 4.8. Creation of textual body of an annotation

4.5.2.2. Visual Representations. Although most of the content on the Web is text

based, visual representations also play very important role. Taking this into consid-

eration, the implementation also enables users to annotate with visual content. For

example, the users can annotate with three types of representations which are im-

age, sound and moving image. When users choose these types, the implementation

uses DCMI(Dublin Core Metadata Initiative) Metadata Terms [22]. After de�ning the

type, the url of the resource should be de�ned.

Figure 4.9 shows an example of an annotation for which an image is assigned to

the body of the annotation.

4.5.2.3. Semantic Annotations. The prototype allows creation of semantic annota-

tions. Currently, it only supports FOAF Vocabulary Speci�cation [23]. It is required

68

Figure 4.9. Annotation body using visual representations.

for a user to de�ne the type of entity where it corresponds to classes de�ned in the

speci�cation. When a user selects an entity, it is allowed to de�ne subjects and/or

objects. In addition de�ning instances, the users can also de�ne relationships between

instances.

Figure 4.10 shows SPARQL query which is used to �nd all properties when an

entity is chosen by the user. In the Figure, $ONTOLOGY_CLASS shows the parameter

which is de�ned by the user through the user interface.

The query �nds three sets of data and unions them. The �rst is a set of all prop-

erties which are de�ned as a subclass for the class which is de�ned by the parameter.

The second set is list of properties of the class. Lastly, the properties which are not

de�ned for a speci�c class - owl:Thing is the set of all individuals.

PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>

SELECT d i s t i n c t ? property where

{

{ ? property a rd f : Property . ? property r d f s : domain ? c l a s s . <$ONTOLOGY_CLASS> rd f s :

subClassOf ? c l a s s . }

UNION

{ ? property a rd f : Property . ? property r d f s : domain <$ONTOLOGY_CLASS> }

UNION

{ ? property a rd f : Property . ? property r d f s : domain owl : Thing }

}

Figure 4.10. SPARQL query to �nd all properties for a speci�c class

Figure 4.11 shows an example of de�ning an instance of foaf:Person. Within the

�gure, two properties, foaf:�rstName and foaf:lastName, are being used.

69

Figure 4.11. De�ning an instance for foaf:Person class using foaf:�rstName and

foaf:lastName data properties

This section assumes that there are two instances of foaf:Person class which

are de�ned in annotation collection in MongoDB. Users can de�ne object proper-

ties(relations) between those instances. In Figure 4.12, the type of the entity is chosen

as foaf:Person, and "De�ne Relations" is selected. When de�ning relations, the im-

plementation queries the ontology(FOAF) using SPARQL to �nd object properties.

When the user chooses an object property, the implementation again uses SPARQL

to �nd types of objects allowed for the object property. For instance, in the �gure,

foaf:knows is chosen as the object property. When this is selected, the type of the

object can only be an instance of foaf:Person class. After the user selects the type of

the object, the annotation collection is queried to �nd all instances that match the

following triple : "foaf:Person foaf:knows foaf:Person".

Figure 4.12. De�ning foaf:knows object property between Fname1 and Fname2 which

are two instances of foaf:Person class

4.5.2.4. Annotations Using DBPedia Resources. DBPedia is a crowd-sourced commu-

nity e�ort to extract structured information from Wikipedia and make this information

70

available on the Web. DBPedia supports sophisticated queries against Wikipedia and

to link Web based data sets to Wikipedia data. [50].

The screenshot in Figure 4.13 shows an example of annotation which uses DB-

Pedia resources. The content selected is a textual content "Java (programming lan-

guage)". The screeshot shows the result of query of a resource for which object is a

Software (http://DBPedia.org/ontology/Software) and the value of the data prop-

erty used for the regular expression is "Java". The result of the query is a list of

resources (triples) which satisfy the conditions. In the example, the resource whose

URI is, http://DBPedia.org/resource/Java_(programming_language), selected.

Figure 4.13. De�ning semantic annotation using DBPedia resources to �nd list of

software via querying DBPedia SPARQL service using Java as keyword

SemAnn provides 5 categories to be searched through DBPedia SPARQL API.

These are listed in Table 4.1.

Table 4.1. Classes and Data Properties Used to Query DBPedia

URI of Property URI of Class

http://xmlns.com/foaf/0.1/name http://xmlns.com/foaf/0.1/Person

http://DBPedia.org/property/name http://DBPedia.org/ontology/Place

http://DBPedia.org/property/name http://DBPedia.org/ontology/Animal

http://DBPedia.org/property/name http://DBPedia.org/ontology/Software

http://DBPedia.org/property/name http://DBPedia.org/ontology/Food

Figure 4.14 shows the query used within the implemented prototype. Within the

query DATA_PROPERTY is the predicate used. For Java programming example, it

is replaced with http://DBPedia.org/property/name (Line 14). OBJECT_TYPE

(Line 15) is http://DBPedia.org/ontology/Software with the regular expression:

"Java" (Line 16).

71

1 PREFIX owl : <http ://www.w3 . org /2002/07/ owl#>

2 PREFIX xsd : <http ://www.w3 . org /2001/XMLSchema#>

3 PREFIX rd f s : <http ://www.w3 . org /2000/01/ rdf−schema#>

4 PREFIX rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#>
5 PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

6 PREFIX : <http :// dbpedia . org / r e sou r c e/>

7 PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>

8 PREFIX dbpedia2 : <http :// dbpedia . org / property/>

9 PREFIX dbpedia : <http :// dbpedia . org/>

10 PREFIX skos : <http ://www.w3 . org /2004/02/ skos / core#>

11 SELECT d i s t i n c t ? s

12 WHERE

13 {

14 ? s <DATA_PROPERTY> ?o .

15 ? s rd f : type <OBJECT_TYPE> .

16 FILTER (regex (? o , \"REGEX\" , \" i \"))

17 } ORDER BY ? s

Figure 4.14. Query template used for DBPedia SPARQL Service

4.6. Renarration Implementation

The implementation is named SemRen in the architecture. By using the renar-

ration implementation renarrators can renarrate web resources. The implementation

allows di�erent types of renarration creation such as creating embedded content, re-

narrations which use visual representations (image, audio, video).

The implementation also allows users to use annotations. When an annotation is

created for a web resource, during renarration process, renarrator can see all annota-

tions. In addition to annotation data, reference data is extracted from DBPedia if an

annotation is created using DBPedia resources.

Figure 4.15 shows the system architecture of SemRen framework. The framework

uses an ontology created to model renarrations of web resources which is covered in

Chapter 3. Very similar to SemAnn, SemRen framework also uses Jsoup library in

order to cache the web resource. The framework uses annotation collections which

can help renarration of web resources. The contents renarrated by users are stored

in renarration collection in an MongoDB instance. When the users �nish with the

renarration, another resource is created which can be accessed via a URI.

72

Figure 4.15. System architecture of SemRen framework.

4.6.1. Renarration Actions

SemRen allows two types of renarration actions, remove and replace. These are

explained in the following sections.

4.6.1.1. Remove. When renarrating content in source documents, removing some con-

tent can be so useful. The reasons behind removing a content can be because of the

content is not suitable for the target audience for which the renarration is being done.

The SemRen framework allows renarrators to remove elements of web pages. For in-

stance, in Figure 4.16 a div element is choosen for renarration transform. The xpath of

73

the element is : //html[1]/body[1]/div[3]/div[3]/div[4]/div[1]. The renarrator decides

to remove the content of the chosen element. The action of the renarration transform

is chosen as 'Remove'.

Figure 4.16. De�ning removal of selected content via user interface

When this transform is applied, the element is hidden from the user. It's not

removed from the source document not to change xpaths of elements. Currently, the

prototype just updates the style of the element and sets its display to 'none'.

4.6.1.2. Replace. Another action that SemRen Framework allows on elements of source

documents is replace. Renarrators can choose to replace the content in source docu-

ments with text content, images, audios, and/or videos. In Figure 4.17, 'Replace' is

chosen as the action of Renarration Transform. The renarrator can choose four types

content to be replaced with the source content.

Figure 4.17. De�ning replacement of selected content with a text via user interface

The SemRen framework, replaces source content with target content within the se-

lected element. In other words, it just creates necessary HTML tags within the selected

context. For instance, in Figure 4.17 all content de�ned by renarrator is to be replaced

with html content of element with xpath://html[1]/body[1]/div[3]/div[3]/div[4]/p[1].

The replacement of source content can also be done by selection of content within

the selected element. Figure 4.18 shows, the replacement of text '2015' with '2016'

within the selected element.

74

Figure 4.18. Replacement of text '2015' with '2016' using nested selection

The prototype currently doesn't allow replacement of elements from which xpath

can change. An example, to this could be replacing an image with a paragraph. All the

xpaths of elements after the insertion of new paragraph can change. The reason behind

this restriction is not to change the xpath of the elements while allowing renarration

of source documents, and being able to keep relationships between source documents

and renarrated content.

4.6.2. Renarration Transforms as Collections

When renarrating source documents, not always one to one relationship is used.

Often, it is very important for a user interface to allow renarration of an element by

using more than one transform. SemRen framework allows collections of transforms as

a renarration transform. Collections of renarration transforms are stored as ordered

instances of rdf:List class.

Figure 4.19. De�ning a list of renarration transforms whose elements are textual

content and an image

Figure 4.19 shows an example of a list of Renarration Transforms. In the example,

75

the content which can be accessed via xpath : //html[1]/body[1]/div[3]/div[3]/div[4]/

div[15]/pre[1] is replaced with a text content and an image. The text content aims to

give some explanations for each line of code. The image [65] illustrates that a class �le

is created from .java �le and created class �le can be executed in di�erent platforms.

The target of the renarration in source document can be seen in Figure 4.20.

Figure 4.20. An example java code to be renarrated

Figure 4.21 below shows the renarration of source content when it is replaced by

a text and an image.

Figure 4.21. Replacement of java code with comments added as well as an image

showing how it is compiled

4.6.3. Usage of Annotations in SemRen Framework

When doing renarrations, SemRen framework also allows renarrators using data

created in annotations created by annotators. When a user renarrates a web page

through the framework, �rst the annotations are queried for the resource. The renar-

rator may choose to use data from annotations.

The prototype also retrieves referenced data when it's available. Currently,

when an annotation is created using DBPedia resources, data type property http:

76

//DBPedia.org/ontology/abstract is used to fetch abstract information related to

the annotation.

Figure 4.22. Renarration transform using reference data from an annotation.

In Figure 4.22, an annotation is already created by an annotator and the text

�Barack Obama� is annotated by using http://DBPedia.org/page/Barack_ObamaDB-

Pedia resource. SemRen framework, uses DBPedia SPARQL service to query abstract

information for the resource used in the annotation. When renarrator chooses to use

some of the data from annotation itself or from referenced data, a link is created be-

tween the renarration transform and the annotation.

4.6.4. Target Audience and Deployment

Renarrations targeted for an audience can be de�ned by using SemRen framework.

The audience used within the framework is modeled in the Renarration Data Model

as a subclass of skos:Concept. The audience used within the framework is speci�cally

de�ned for use cases for the evaluation of the model and the implementation which are

all covered in the next chapter.

When a renarrator saves transform(s) of a renarration, the framework shows an

interface for de�ning a target audience and whether the page is desired to be saved

within the application server storage area. If a name for deployment is de�ned, the

content of the renarration is saved in HTML format.

77

Figure 4.23. De�ning target audience and deployment name for renarration of a web

resource.

78

5. EVALUATION

In this chapter, we are evaluating our model using some pages which are manually

prepared. The pages are created using HTML. Section 5.1 discusses the adequacy of the

Renarration Data Model using di�erent types of renarrations. In Section 5.2, we have

experimented di�erent types of renarrations using the prototype we have developed.

5.1. Evaluation of the Renarration Data Model

In order to evaluate the proposed data model, we've created a suite of test cases

to prove that di�erent types of renarrations can be de�ned using the data model. Test

cases can be found in a repository created on GitHub [51]. The url of the repository for

test cases is : https://github.com/EmrahGuder/Renarration/tree/master/Test_Cases.

The following is a list of for the subset of selected test cases.

(i) Replacement of paragraph with paragraph

(ii) Replacement of paragraph with audio

(iii) Removal of content

(iv) Replacement using content from an annotation

(v) Insertion of new content between two elements

In addition to evaluation with above test cases, we've also evaluated the data

model by using a manually created web page about FIR (First Information Report)

[52] which is a document prepared by police organizations in Bangladesh, India and

Pakistan.

5.1.1. Evaluation of Proposed Data Model Using Test Cases

5.1.1.1. Replacement of paragraph with paragraph. The motivation behind this test

case is to demonstrate that replacement of text content can be de�ned using the pro-

79

posed data model. For this purpose, we assume that the following content "Text1" is

to be renarrated with "Text2".

<html>

<body>

<p>Text1</p>

</body>

</html>

Figure 5.1. HTML code of a web page consisting of a paragraph with textual content

"Text1"

Renarration of textual content "Text1" with "Text2" can be de�ned by the Re-

narration Data Model in JSON-LD format as in Figure 5.2. It shows that the model

can de�ne text selections by using a text selector.

{

" trans form " : {

"@id " : "20 ca990d−b233−4047−b40a−258a8278fada " ,
"@type " : " rn : Renarrat ionTransformat ion " ,

" s ou r c eS e l e c t i o n " : {

"@id " : " fb60d831−7c18−4e83−b8da−341e46482106 " ,
"@type " : " rn : XPathSelector " ,

" va lue " : "#xpo inte r (// html [1] / body [1] / p [1]) "} ,

" createdAt " : "2015−11−20T13 : 0 7 : 2 7 . 9 6 7Z" ,
" ac t i on " : " rn : Replace " ,

" na r ra t i on " : {

"@id " : "554 f2 f73−0d93−4426−851 f −56613d1194d1 " ,

"@type " : " cnt : ContentAsText " ,

" content " : "Text2"

} ,

" t a r g e t S e l e c t i o n " : {

"@id " : "6322109a−e221−4c61−9e51−5d31287a4dc9 " ,
"@type " : " rn : XPathSelector " ,

" va lue " : "#xpo inte r (// html [1] / body [1] / p [1]) "

}

}

}

Figure 5.2. A renarration speci�cation in JSON-LD of a web page for which "Text1"

is replaced with "Text2"

After applying transformations on source document, the target document can be

constructed as in Figure 5.3.

80

<html>

<body>

<p>Text2</p>

</body>

</html>

Figure 5.3. HTML code of a web page renarrated via replacing "Text2" with "Text1"

in original content

5.1.1.2. Replacement of paragraph with audio. The motivation behind this test case

is to demonstrate that an element in a Web page can be replaced with an element of

di�erent type such as replacing a paragraph with an audio element. For this purpose,

we assume that the HTML code of original web page is the same as in Figure 5.1.

The aim of the renarration is to replace the paragraph with an audio with the url of

http://audio1.ogg.

Renarration of textual content "Text1" with audio can be de�ned by the Renar-

ration Data Model in JSON-LD format as in Figure 5.4. It shows that the model can

de�ne replacement of di�erent types of HTML elements. It also shows that selections

can be done using rn:XPathSelector. After transformation applied on source Web page,

the content of the renarrated page can be seen in Figure 5.5.

5.1.1.3. Removal of content. As we de�ne renarration, the process of rewriting of web

resources, keeping relations between elements of resources becomes crucial when the

process changes xpath of elements. One of the renarration trasformation that changes

xpath of elements is removal of them. So, the motivation of this section is to prove

that the proposed model can handle removal of elements. Figure 5.6 shows the source

in HTML format. Originally, there are three paragraph elements in the source. The

renarration aims to remove second paragraph and to create an alternative for the third

paragraph with textual content 'Text4'.

Figure 5.7 shows the removal process de�ned with the proposed ontology in JSON-

LD format.

81

{

"@type " : " rn : Renarrat ion " ,

" renarratedAt " : "2015−11−20T13 : 0 8 : 0 0 . 6 5 0Z" ,
" source " : {

"@id " : " replacement_of_paragraph_with_audio_original . html " ,

"@type " : [" f o a f : Page " , " rn : Document "]

} ,

" trans form " : {

"@id " : "20 ca990d−b233−4047−b40a−258a8278fada " ,
"@type " : " rn : Renarrat ionTransformat ion " ,

" s ou r c eS e l e c t i o n " : {

"@id " : "6322109a−e221−4c61−9e51−5d31287a4dc9 " ,
"@type " : " rn : XPathSelector " ,

" va lue " : "#xpo inte r (// html [1] / body [1] / p [1]) "

} ,

" createdAt " : "2015−11−20T13 : 0 7 : 2 7 . 9 6 7Z" ,
" ac t i on " : " rn : Replace " ,

" na r ra t i on " : {

"@id " : " http :// audio1 . ogg " ,

"@type " : " dctypes : Sound" ,

" format " : " audio /ogg"

} ,

" t a r g e t S e l e c t i o n " : {

"@id " : " fb60d831−7c18−4e83−b8da−341e46482106 " ,
"@type " : " rn : XPathSelector " ,

" va lue " : "#xpo inte r (// html [1] / body [1] / audio [1]) "}

} ,

" t a r g e t " : {

"@id " : " replacement_of_paragraph_with_audio_renarrated . html " ,

"@type " : [" f o a f : Page " , " rn : Document "]

}

}

Figure 5.4. A renarration speci�cation in JSON-LD of a web page for which "Text1"

is replaced with audio with url "http://audio1.ogg" in audio/ogg format

<html>

<body>

<audio cont ro l s >

<source s r c="http :// audio1 . ogg" type="audio /ogg">

Your browser does not support the audio tag .

</audio>

</body>

</html>

Figure 5.5. HTML code of a web page renarrated via replacing "Text2" with an audio

82

<html>

<body>

<p>Text1</p>

<p>Text2</p>

<p>Text3</p>

</body>

</html>

Figure 5.6. HTML code of a web page consisting of three paragraphs

Figure 5.8 shows that second paragraph whose xpath is //html[1]/body[1]/p[2]

is removed. Also third paragraph in original page with 'Text3' textual content is

renarrated with 'Text4' where the renarrated content's xpath is //html[1]/body[1]/p[2].

This test case shows that the proposed data model can express, removal of con-

tent, and transforms being done after removal of content. This evaluation also shows

that when a transform which can change xpath of elements is done, all transformations

after the one changing xpaths, must have targetSelection object property.

5.1.1.4. Replacement using content from an annotation. In this test case, we have

evaluated usage of annotation in a renarration. We have assumed that the annota-

tion is already created by an annotator. The annotation created assumed to be a text

annotation with textual content 'Annotation Text'.

For this test case we assume that original page is the same as in Figure 5.6, and

the annotation is assumed to be created on the second paragraph whose content is

'Text2'.

Annotation created can be seen in Figure 5.9 in JSON-LD format. Lines between

23 and 25 shows that the annotation is created for 'Text2', and the line 24 shows that

annotation is an embedded content type annotation with value of 'Annotation Text'.

We assume that renarrator uses content from annotation and renarrates the sec-

ond paragraph. Line 27 in Figure 5.10 shows that 'Annotation Text' is text. Lines

between 28 and 30 indicates that this content is accessed from annotation.

83

{

"@type " : " rn : Renarrat ion " ,

" source " : {

"@id " : " transform_after_removal_of_content_orig inal . html " ,

"@type " : [" f o a f : Page " , " rn : Document "]

} ,

" t rans f o rmLi s t " : {

"@type " : " rn : L i s t " ,

"nodes " : [

{

"@id " : "19 ca990d−b233−4047−b40a−258a8278fada " ,
"@type " : " rn : Renarrat ionTransformat ion " ,

" s ou r c eS e l e c t i o n " : {

"@id " : "6322109a−e221−4c61−9e51−5d31287a4dc9 " ,
"@type " : " rn : XPathSelector " ,

" va lue " : "#xpo inte r (// html [1] / body [1] / p [2]) "

} ,

" createdAt " : "2015−11−20T13 : 0 7 : 2 7 . 9 6 7Z" ,
" ac t i on " : " rn : Remove"

} ,

{

"@id " : "20 ca990d−b233−4047−b40a−258a8278fada " ,
"@type " : " rn : Renarrat ionTransformat ion " ,

" s ou r c eS e l e c t i o n " : {

"@id " : "6322109a−e221−4c61−9e51−5d31287a4dc9 " ,
"@type " : " rn : XPathSelector " ,

" va lue " : "#xpo inte r (// html [1] / body [1] / p [3]) "

} ,

" createdAt " : "2015−11−20T13 : 0 7 : 2 7 . 9 6 7Z" ,
" ac t i on " : " rn : Replace " ,

" na r ra t i on " : {

"@id " : "243b6a94−d16f−4c30−a f f 4 −7800be645415 " ,
"@type " : " cnt : ContentAsText " ,

" content " : "Text4"

} ,

" t a r g e t S e l e c t i o n " : {

"@id " : " fb60d831−7c18−4e83−b8da−341e46482106 " ,
"@type " : " rn : XPathSelector " ,

" va lue " : "#xpo inte r (// html [1] / body [1] / p [2]) "

}

}]

} ,

" t a r g e t " : {

"@id " : " transform_after_removal_of_content_renarrated . html " ,

"@type " : [" f o a f : Page " , " rn : Document "]

}

}

Figure 5.7. Renarration done on original page in JSON-LD format for

transformations on two paragraphs including remove and replace

84

<html>

<body>

<p>Text1</p>

<p>Text4</p>

</body>

</html>

Figure 5.8. HTML code of renarrated page when a paragraph is replaced after

removal of previous paragraph

1 {

2 "@id " : "88b64849−fbdb−4157−8393−08bb509bcd80 " ,
3 "@type " : "oa : Annotation " ,

4 "annotatedAt " : "2015−11−20T11 : 4 6 : 4 8 . 7 4 7Z" ,
5 " s e r i a l i z e dA t " : "2015−11−20T11 : 4 6 : 4 8 . 7 4 7Z" ,
6 "annotatedBy " : {

7 "@id " : "749 bf220−4e8b−481d−8b7a−e5e735e684 f1 " ,
8 "@type " : " f o a f : Person " ,

9 "name" : "Annotator"

10 } ,

11 "body " : {

12 "@id " : "d1f273c6−3f93−4e37−b93c−8b58d 01017 ec " ,

13 "@type " : "oa : EmbeddedContent " ,

14 " value " : "Annotation Text " ,

15 " format " : " t ext / p l a i n "

16 } ,

17 " t a r g e t " : {

18 "@id " : " c25cf552−2bcf−40c8−8424− f46b77287595 " ,

19 "@type " : "oa : Spe c i f i cRe sou r c e " ,

20 " s e l e c t o r " : {

21 "@id " : "7 b0fa8bc−d7c4−4685−81e5−6a90a15d7241 " ,
22 "@type " : "oa : TextQuoteSelector " ,

23 " exact " : "Text2 " ,

24 " p r e f i x " : "Text1 " ,

25 " s u f f i x " : "Text3"

26 } ,

27 " source " : {

28 "@id " : " transform_after_removal_of_content_orig inal . html " ,

29 "@type " : " f o a f : page"

30 }

31 }

32 }

Figure 5.9. Annotation in JSON-LD created for Text2 using oa:TextQuoteSelector

85

1 {

2 "@id " : " fbae30fa −2687−499e−9a85−1b12d75367d7 " ,
3 "@type " : " rn : Renarrat ion " ,

4 " renarratedAt " : "2015−11−20T13 : 0 8 : 0 0 . 6 5 0Z" ,
5 " r ena r r a t o r " : {

6 "@id " : " e8 f551 f8 −33ea−429d−8932−9 f16bd8ef3b7 " ,
7 "@type " : " f o a f : Person " ,

8 "name" : "A Person"

9 } ,

10 " source " : {

11 "@id " : " us ing_annotat ion_content_or ig ina l . html " ,

12 "@type " : [" f o a f : Page " , " rn : Document "]

13 } ,

14 " trans form " : {

15 "@id " : "20 ca990d−b233−4047−b40a−258a8278fada " ,
16 "@type " : " rn : Renarrat ionTransformation " ,

17 " s ou r c eS e l e c t i o n " : {

18 "@id " : "6322109a−e221−4c61−9e51−5d31287a4dc9 " ,
19 "@type " : " rn : XPathSelector " ,

20 " value " : "#xpo inte r (// html [1] / body [1] / p [2]) "

21 } ,

22 " createdAt " : "2015−11−20T13 : 0 7 : 2 7 . 9 6 7Z" ,
23 " ac t i on " : " rn : Replace " ,

24 " nar ra t i on " : {

25 "@id " : "243b6a94−d16f−4c30−a f f 4 −7800be645415 " ,
26 "@type " : " cnt : ContentAsText " ,

27 " content " : "Annotation Text " ,

28 "accessedFrom " : {

29 "@id " : "88b64849−fbdb−4157−8393−08bb509bcd80 " ,
30 "@type " : "oa : Annotation"

31 }

32 } ,

33 " t a r g e t S e l e c t i o n " : {

34 "@id " : " fb60d831−7c18−4e83−b8da−341e46482106 " ,
35 "@type " : " rn : XPathSelector " ,

36 " value " : "#xpo inte r (// html [1] / body [1] / p [2]) "

37 }

38 } ,

39 " t a r g e t " : {

40 "@id " : " using_annotation_content_renarrated . html " ,

41 "@type " : [" f o a f : Page " , " rn : Document "]

42 }

43 }

Figure 5.10. Renarration done on original page in JSON-LD format for replacing

second paragraph by using content from an annotation

86

Assuming that renarrations transforms applied on source page, and generated

page is deployed as 'using_annotation_content_renarrated.html', renarrated page would

be as in Figure 5.11.

<html>

<body>

<p>Text1</p>

<p>Annotation Text</p>

<p>Text3</p>

</body>

</html>

Figure 5.11. Renarrated page for which second paragraph's content is referenced from

an annotation

5.1.1.5. Insertion of new content between two elements. Insertion of new content can

be very useful during the process of renarration. Renarrators may choose to insert new

content at speci�ed locations in web resources. In order to evaluate if the proposed

model can de�ne such operations, we have assumed that renarrator inserts a new

paragraph between two paragraphs.

The source page for which a paragraph should be inserted between two paragraphs

can be seen in Figure 5.12.

<html>

<body>

<p>Text1</p>

<p>Text3</p>

</body>

</html>

Figure 5.12. HTML code of a web page consisting of two paragraphs

A renarration speci�cation in JSON-LD of the web page describing insertion of

new paragraph can be seen in Figure 5.13. Lines between 7 and 42 in the �gure shows

the insertion of new paragraph.

87

1 {

2 . . .

3 " source " : {

4 "@id " : " insert_between_two_elements_original . html " ,

5 "@type " : [" f o a f : Page " , " rn : Document "]

6 } ,

7 " trans form " : {

8 "@id " : "20 ca990d−b233−4047−b40a−258a8278fada " ,
9 "@type " : " rn : Renarrat ionTransformat ion " ,

10 " s ou r c eS e l e c t i o n " : {

11 "@id " : "6322109a−e221−4c61−9e51−5d31287a4dc9 " ,
12 "@type " : " rn : BetweenSe lector " ,

13 "between " : {

14 "@id " : "243b6a65−d16f−4c30−a f f 4 −7800be645415 " ,
15 "@type " : " rn : L i s t " ,

16 "nodes " : [

17 {

18 "@id " : "7544109a−e221−4c61−9e51−5d31287a6bh8 " ,
19 "@type " : " rn : XPathSelector " ,

20 " value " : "#xpo inte r (// html [1] / body [1] / p [1]) "

21 } ,

22 {

23 "@id " : "7544109a−e221−4c61−9e51−5d31287a6bh9 " ,
24 "@type " : " rn : XPathSelector " ,

25 " value " : "#xpo inte r (// html [1] / body [1] / p [2]) "

26 }

27]

28 }

29 } ,

30 " createdAt " : "2015−11−20T13 : 0 7 : 2 7 . 9 6 7Z" ,
31 " ac t i on " : " rn : I n s e r t " ,

32 " nar ra t i on " : {

33 "@id " : "243b6a94−d16f−4c30−a f f 4 −7800be645415 " ,
34 "@type " : " cnt : ContentAsText " ,

35 " content " : "Text2"

36 } ,

37 " t a r g e t S e l e c t i o n " : {

38 "@id " : " fb60d831−7c18−4e83−b8da−341e46482106 " ,
39 "@type " : " rn : XPathSelector " ,

40 " value " : "#xpo inte r (// html [1] / body [1] / p [2]) "

41 }

42 } ,

43 " t a r g e t " : {

44 "@id " : " insert_between_two_elements_renarrated . html " ,

45 "@type " : [" f o a f : Page " , " rn : Document "]

46 }

47 }

Figure 5.13. A renarration speci�cation in JSON-LD of the web page describing

insertion of new paragraph

88

After applying transformations de�ned in Figure 5.13 on original page, renarrated

page can be constructed as in Figure 5.14.

<html>

<body>

<p>Text1</p>

<p>Text2</p>

<p>Text3</p>

</body>

</html>

Figure 5.14. HTML code of renarrated web page including inserted paragraph

5.1.2. Evaluation Using FIR Web Page

In order to demonstrate that the proposed model can also be used for renar-

ration of pages on the Web, we have manually created a web page using content on

Wikipedia [52]. The content is about FIR (First Information Report) which is a docu-

ment prepared by police organizations in Bangladesh, India, and Pakistan. The content

of the resource can be seen in the following �gure. Even though the page is just com-

posed of text content, there are nested elements as there would be in real web pages.

During the evaluation of the model, we have assumed that HTML document is well

formed [12]. Figure 5.15 shows the content of the FIR page.

The purpose of the renarration is assumed to be that the page can be constructed

for low literate people so that the content can be easily consumable.

For the �rst transform, it is assumed that renarrator decides to renarrate a sen-

tence. The content to be renarrated is "It is generally a complaint lodged with the

police by the victim of a cognizable o�ense or by someone on his or her behalf, but

anyone can make such a report either orally or in writing to the police" [52]. Looking

at the structure of the sentence, it may be hard to understand for low literate. We

have assumed that this sentence is replaced with the following content: "If you have

been a victim, or a witness to a crime or someone who has information of a crime

and want to punish the criminal you can report to police." [53]. Figure 5.16 shows the

replacement of this sentence. The action also shows that nested selection is used. The

89

Figure 5.15. Web page created using content from Wikipedia about how to �le �rst

information report

way that this is expressed is done by using �rst XPathSelector (Lines between 9 and

13) and then Pre�xSu�xSelector (Lines between 14 and 20).

For the second transform, we have assumed that the renarrator decides the second

paragraph in original page does not help low literate to understand the content. So,

the renarrator decides to remove this paragraph. Lines between 30 and 40 in Figure

5.16 shows how this is expressed within the model speci�cation.

90

For the next transform, we have assumed that an annotator created an annotation

for text content "cognizable o�ence" in original page. The annotation created assumed

to be a textual annotation with the following content :

"Generally, cognisable o�ence means a police o�cer has the authority to make

an arrest without a warrant. The police is also allowed to start an investigation with

or without the permission of a court" [54].

Lines between 5 and 22 in Figure 5.17 shows the selection after the third para-

graph. The meaning of these lines is that the content of the narration will be inserted

after the third paragraph (whose xpath is "//html/body/div[1]/p[3]") in the source.

Lines between 33 and 35 in the �gure, shows that the inserted content is referenced

from an annotation.

Lastly, we have assumed that the renarrator decides that it can be easier to

understand if the content about how to �le a �rst information report is replaced with an

interactive resources. For the interactive resource, we have used content from Prezi [53].

The content interactively guides user what to do in such a situation. Line 17 in the

Figure 5.18 shows that DCMI Metadata Term can be used to de�ne an interactive

resource.

After all transforms applied on the source content, and assuming that the page

is saved, the renarrated page can be constructed as in Figure 5.19.

5.2. Evaluation Using Implemented Prototype

In previous section, we have evaluated the model if it is expressive enough to

de�ne di�erent types of renarrations. In this section, we have created two web pages

in text/html format, and used the implemented prototype.

The �rst use case, includes renarration of a web page which is about method

overriding in C++, an object oriented programming language. The purpose of the

91

1 {

2 "@id " : "3 cc9b52d−26db−4ccc−8450−0baec2435e99 " ,
3 "@type " : " rn : Renarrat ionTransformation " ,

4 " ac t i on " : " rn : Replace " ,

5 " s o u r c e S e l e c t i o nL i s t " : {

6 "@id " : "77 d9f63f−a806−4e06−8022−66 f f 4 f c 1 f f d d " ,
7 "@type " : " rn : L i s t " ,

8 "nodes " : [

9 {

10 "@id " : " e0c0956d−3914−462 1−bf0e −76936 d68 f2 fb " ,

11 "@type " : " rn : XPathSelector " ,

12 " value " : "#xpo inte r (// html/body/div [1] / p [1]) "

13 } ,

14 {

15 "@id " : "2 f305684−d300−4493−88ce−217cfb836d49 " ,
16 "@type " : " rn : P r e f i x S u f f i x S e l e c t o r " ,

17 " p r e f i x " : "Pakistan when they r e c e i v e about the commission o f a cogn i zab l e o f f e n c e

. " ,

18 " s u f f i x " : "" ,

19 " text " : " I t i s g en e r a l l y a complaint lodged with the p o l i c e by the v ic t im o f a

cogn i zab l e o f f e n s e or by someone on h i s or her beha l f , but anyone can make

such a repo r t e i t h e r o r a l l y or in wr i t i ng to the p o l i c e . "

20 }

21]

22

23 " nar ra t i on " : {

24 "@id " : " c41e9d39−2d09−442d−9ea1−018986 c53801 " ,

25 "@type " : " cnt : ContentAsText " ,

26 " content " : " I f you have been a vict im , or a wi tnes s to a crime or someone who has

in fo rmat ion o f a crime and want to punish the c r im ina l you can repor t to p o l i c e . "

27 } ,

28 " createdAt " : "2015−11−05T13 : 4 8 : 0 0Z"
29 } ,

30 {

31 "@id " : "3 cc9b52d−26db−4ccc−8450−0baec2435f99 " ,
32 "@type " : " rn : Renarrat ionTransformation " ,

33 " ac t i on " : " rn : Remove" ,

34 " s ou r c eS e l e c t i o n " : {

35 "@id " : "77 d9f63f−a806−4e06−8022−66 f f 4 f c 1 f f e d " ,

36 "@type " : " rn : XPathSelector " ,

37 " value " : "#xpo inte r (// html/body/div [1] / p [2]) "

38 } ,

39 " createdAt " : "2015−11−05T13 : 5 0 : 0 0Z"
40 }

Figure 5.16. A renarration transform speci�cation in JSON-LD of a web page

describing replacement and removal of two paragraphs

92

1 {

2 "@id " : "3cd9b52d−26db−4ccc−8450−0baec2455f99 " ,
3 "@type " : " rn : Renarrat ionTransformation " ,

4 " ac t i on " : " rn : I n s e r t " ,

5 " s o u r c e S e l e c t i o nL i s t " : {

6 "@id " : "6322109a−e221−4c61−9e51−5d31287a4dc9 " ,
7 "@type " : " rn : BetweenSe lector " ,

8 "between " : {

9 "@id " : "243b6a65−d16f−4c30−a f f 4 −7800be645415 " ,
10 "@type " : " rn : L i s t " ,

11 "nodes " : [

12 {

13 "@id " : "7544109a−e221−4c61−9e51−5d31287a6bh8 " ,
14 "@type " : " rn : XPathSelector " ,

15 " value " : "#xpo inte r (// html/body/div [1] / p [3]) "

16 } ,

17 {

18 "@id " : "7544109a−e221−4c61−9e51−5d31287a6bh8 " ,
19 "@type " : " rn : NoSe lector "

20 }

21]

22 }

23 } ,

24 " t a r g e t S e l e c t i o n " : {

25 "@id " : "77 d9f63f−a806−4e06−8022−66 f f 4 f c 1 f f e d " ,

26 "@type " : " rn : XPathSelector " ,

27 " value " : "#xpo inte r (// html/body/div [1] / p [2]) "

28 } ,

29 " nar ra t i on " : {

30 "@id " : " c41e9d39−2d09−442d−9ea1−018986 c53801 " ,

31 "@type " : " cnt : ContentAsText " ,

32 " content " : "General ly , c ogn i s ab l e o f f e n c e means a p o l i c e o f f i c e r has the author i ty

to make an a r r e s t without a warrant . The p o l i c e i s a l s o a l lowed to s t a r t an

i n v e s t i g a t i o n with or without the permis s ion o f a court . " ,

33 "accessedFrom " : {

34 "@id " : " f23ede35−837b−4316−a6a1−110c359e7002 " ,
35 "@type " : "oa : Annotation"

36 }

37 } ,

38 " createdAt " : "2015−11−05T15 : 5 0 : 0 0Z"
39 }

Figure 5.17. A renarration transform speci�cation in JSON-LD of a web page

describing insertion of alternative content by using BetweenSelector.

93

1 {

2 "@id " : "3cd9b52d−89db−4ccc−8450−0baec2455f99 " ,
3 "@type " : " rn : Renarrat ionTransformat ion " ,

4 " ac t i on " : " rn : Replace " ,

5 " s ou r c eS e l e c t i o n " : {

6 "@id " : "77 d9f63f−a806−4e06−8022−66 f f 4 f c 1 f f e d " ,

7 "@type " : " rn : XPathSelector " ,

8 " value " : "#xpo inte r (// html/body/div [2]) "

9 } ,

10 " t a r g e t S e l e c t i o n " : {

11 "@id " : "77 d9f63f−a806−4e06−8022−66 f f 4 f c 1 f f e d " ,

12 "@type " : " rn : XPathSelector " ,

13 " value " : "#xpo inte r (// html/body/embed [1]) "

14 } ,

15 " nar ra t i on " : {

16 "@id " : " https : // p r e z i . com/embed/ fxk9h96h0zyp /? bgco lo r= f f f f f f . . . " ,

17 "@type " : " dctypes : I n t e r a c t i v eRe sou r c e "

18 } ,

19 " createdAt " : "2015−11−05T16 : 0 5 : 0 0Z"
20 }

Figure 5.18. A renarration transform speci�cation in JSON-LD of a web page

describing replacement of content with an interactive resource.

renarration is to renarrate the content so that Java programmers can consume the

page. Another use case includes renarration of a simple text. In this scenario, the

content in English, cannot be consumed by people who can't understand the language.

The aim of the renarration is to renarrate the content so that it can be understood by

Turkish speakers.

5.3. Use Case 1

In this use case, we have created a Web page in text/html format. The page is

about method overriding in C++, an object oriented language. Content used to create

pages and renarrations is originated in Wikipedia [55]. The purpose of this use case

is to check whether the model and the prototype is capable of renarrate the content.

The content of the page can be seen in Figure 5.20.

94

Figure 5.19. Web page renarrated by applying transformations on the FIR source

page

List of renarration transforms applied to the source are as follows :

(i) Textual content "Function" is replaced with "Method". This renarration trans-

forms aims to assert that "Method Overriding" is most suitable in Java Program-

ming Language. Renarrtion Transform can be seen in Figure 5.21.

95

Figure 5.20. Web Page about overriding feature in C++ Programming Language.

(ii) Content which can be accessed via xpath(//html/body/div/div[2]/div[1]/p[2]) is

replaced with alternative content. The original paragraph is about overriding a

method in C++ programming language, and the paragraph explains subsequent

image. This paragraph is renarrated and the renarration mainly talks about

overriding methods of superclasses in Java programming language. Lines between

1 and 16 in Figure 5.22.

(iii) The image whose xpath is //html/body/div/div[2]/img, is replaced by alternative

one. The alternative image gives an example override in Java. Lines between 17

and 31 in Figure 5.22.

After using the prototype for the renarrations, generated json-ld can be seen in

Figure 5.21 and Figure 5.22. All renarration transforms are in the order they applied on

the source content. Also, please note that the renarration is done using an application

96

server on a local machine.

1 {

2 "@id " : "095555b3−40f9−4120−bb67−2db9f4dc40b6 " ,
3 "@type " : " rn : Renarrat ionTransformation " ,

4 " s o u r c e S e l e c t i o nL i s t " : {

5 "@id " : "67d115be−ae56−470 f−b a59−dc4b4c0290c9 " ,
6 "@type " : " rn : L i s t " ,

7 "nodes " : [

8 {

9 "@id " : "23b6e472−3cbf−421 c−8100−59be8d021556 " ,
10 "@type " : " rn : XPathSelector " ,

11 " value " : "#xpo inte r (// html [1] / body [1] / div [1] / div [1] / h1 [1]) "

12 } ,

13 {

14 "@id " : "5d40b6da−888b−4c91−8079−1f016b887 2 f9 " ,

15 "@type " : " rn : P r e f i x S u f f i x S e l e c t o r " ,

16 " p r e f i x " : "" ,

17 " s u f f i x " : "" ,

18 " text " : "Function"

19 }

20]

21 } ,

22 " createdAt " : "2015−11−19T11 : 4 8 : 2 6 . 7 1 9Z" ,
23 " ac t i on " : "oa : Replace " ,

24 " nar ra t i on " : {

25 "@id " : "6322109a−e221−4c61−9e51−5d31287a4dc9 " ,
26 "@type " : " cnt : ContentAsText " ,

27 " content " : "Method"

28 }

29 }

Figure 5.21. A renarration transform speci�cation (in JSON-LD) of textual content

describing replacement of text for a web page about method overriding in C++ to

one for the Java Programming Language

5.4. Use Case 2

In this use case, we have created a Web page in text/html format in which only

a short message exists. The aim of this use case is also to show that the model can

be used for renarration of short messages which are very common in social networking

websites.

The short message in the Web resource is about a black guy, Jonathan Fleming,

97

1 {

2 "@id " : "04 17 e211−2535−4168−8b53−b808f5 fe1d89 " ,
3 "@type " : " rn : Renarrat ionTransformation " ,

4 " s ou r c eS e l e c t i o n " : {

5 "@id " : " c02b505e−b6f2−4c2a−b570−4b81472ebcb4 " ,
6 "@type " : " rn :XPa thSe l e c t o r " ,

7 " value " : "#xpo inte r (// html [1] / body [1] / div [1] / div [2] / div [1] / p [2]) "

8 } ,

9 " createdAt " : "2015−11−19T11 : 5 0 : 0 0 . 1 5 4Z" ,
10 " ac t i on " : "oa : Replace " ,

11 " nar ra t i on " : {

12 "@id " : "0 f586d5a−ad05−4df7−a4c8−b8aa2980ad5a " ,
13 "@type " : " cnt : ContentAsText " ,

14 " content " : " In Java , when a subc l a s s conta in s a method that ov e r r i d e s a method o f

the supe r c l a s s , i t can a l s o invoke the s up e r c l a s s method by us ing the k eyword

super . Example shows that Box c l a s s o v e r r i d e s the p r i n t () method o f Rectangle

c l a s s . Add i t iona l ly , i t p r i n t s he ight in fo rmat ion . "

15 }

16 } ,

17 {

18 "@id " : "366d2697−6550−4e39−94fc−3d0c3b30da7b " ,
19 "@type " : " rn : Renarrat ionTransformation " ,

20 " s ou r c eS e l e c t i o n " : {

21 "@id " : "8 e113cc8−70b7−4a9b−9c3d−38d7dedde661 " ,
22 "@type " : " rn : XPathSelector " ,

23 " value " : "#xpo inte r (// html [1] / body [1] / div [1] / div [2] / img [1]) "

24 } ,

25 " createdAt " : "2015−11−19T11 : 5 0 : 4 3 . 4 7 2Z" ,
26 " ac t i on " : "oa : Replace " ,

27 " nar ra t i on " : {

28 "@id " : " http :// l o c a l h o s t :8181/ r ena r r a t i on / r e s ou r c e s / java_overr ide . png " ,

29 "@type " : " dctypes : Image " ,

30 }

31 }

Figure 5.22. A renarration transform speci�cation (in JSON-LD) describing

replacement of a paragraph and an image of a web page about method overriding in

C++ to create an alternative for the Java Programming Language

who spent 25 years in prison for murder he did not commit. Discovered evidence - a

phone receipt - provided that he was vacationing with his family at Disney World in

Bay Lake, Florida. [73] The text of the short message is as follows :

"Wrongly convicted black man has been freed after spending nearly 25 years

behind bars."

98

The message doesn't say anything about the event; it does not even say who

the person is. It is very common to see such messages on the Web. The following

list of actions are assumed for the evaluation of the use case. The purpose of the

renarration is to make the short message more meaningful for Turkish speakers. The

text in the short message and the content in renarration transforms are referenced from

morallowground.com [56] and www.commondreams.org [57].

(i) An annotator who knows a little English creates an annotation and asks whether

someone to explain what the message is all about. Figure 5.26.

(ii) Another annotator creates an annotation for the textual content "black man"

and the content of the annotation is "Jonathan Fleming" as in Figure 5.25.

(iii) Renarrator sees all the annotations and decides to create a renarration of the

short message. The renarration includes one transformation which is an instance

of rn:List. Line number between 16 and 43 in Figure 5.27.

The HTML code of short message in Figure 5.23 can be seen in Figure 5.24.

Figure 5.23. Short message about a black guy who spent nearly 25 years in prison.

A semantic annotation for the text "black man" within the short message can be

seen in Figure 5.25. Another annotation questioning the event in Turkish can be seen

in Figure 5.26.

Renarrator renarrates the short message and �rst summarizes what happened

to Jonathan Fleming between lines 30 and 33 in Figure 5.27. After summarization,

renarrator talks about evidences that might prevent him being put in prison. Lines

between 34 and 38 in Figure 5.27.

As it can be seen in the renarration target, the page is deployed as jonathan_�eming

99

<?xml ve r s i on ="1.0" encoding="utf−8"?>
<html>

<head>

<t i t l e >Black man spent 25 years in pr i son </ t i t l e >

</head>

<body>

<div a l i g n="cente r">

<div s t y l e="width :650 px ; border−rad iu s : 10px ; border : 2 px s o l i d l i g h t g r ay ; padding : 10

px ; he ight=30px ; " a l i g n="cente r">

<div a l i g n=" l e f t ">

<p a l i g n=" l e f t ">

Wrongly conv ic ted black man has been f r e ed a f t e r spending near ly 25 years behind

bars .

</p>

</div>

</div>

</div>

</body>

</html>

Figure 5.24. HTML code of a short message about a wrongful conviction

_turkish.html. Deployed page can be used for people who know Turkish, and when

they visit the page in which the short message exists, they can be shown the renarrated

page instead. The renarrated page can be seen in Figure 5.28.

5.5. Results and Discussion

The amount of data on the Web is massive and continually growing. Because of

characteristics of the content, it is not accessible by huge amount of people due to a va-

riety of barriers. The barriers to accessibility range from limited Internet connectivity,

to physical impairment, linguistic di�erences, and also social, cultural and economic

factors [6]. In order to create accessibility to the content, it is very important to create

meaningful relations between Web elements and to provide accessibility.

Annotation is one of the methods to increase accessibility for Web content. The

way that annotation method uses is to attach data to some piece of data. However,

considering evaluations in this chapter in earlier sections, attaching some piece of data

may be ine�cient. For instance, for the evaluation created for how to create an FIR,

100

{

"@type " : "oa : Annotation " ,

"annotatedAt " : "2015−11−20T11 : 4 6 : 4 8 . 7 4 7Z" ,
" s e r i a l i z e dA t " : "2015−11−20T11 : 4 6 : 4 8 . 7 4 7Z" ,
"annotatedBy " : {

"@id " : "749 bf220−4e8b−481d−8b7a−e5e735e684f1 " ,
"@type " : " f o a f : Person " ,

"name" : "Person1"

} ,

"mot ivat ion " : "oa : commenting " ,

"body " : {

"@id " : "d1f273c6−3f93−4e37−b93c−8b58d 01017 ec " ,

"@type " : " f o a f : Person " ,

" f o a f : f i r stName " : "Jonathan " ,

" f o a f : lastName " : "Fleming"

} ,

" t a r g e t " : {

"@id " : " c25cf552−2bcf−40c8−8424− f46b77287595 " ,

"@type " : "oa : Spe c i f i cRe sou r c e " ,

" s e l e c t o r " : {

"@id " : " c2cca973−b418−484b−be6e−5 8 afd271edfd " ,

"@type " : "oa : L i s t " ,

"members " :

[

{

"@id " : "5294370a−f 13 f −4596−a 687−2c0868a6c28e " ,
"@type " : " rn : XPathSelector " ,

"xpath " : "#xpo inte r (// html [1] / body [1] / div [1] / div [1] / div [1] / p [1]) "

} ,

{

"@id " : "7 b0fa8bc−d7c4−4685−81e5−6a90a15d7241 " ,
"@type " : "oa : TextQuoteSelector " ,

" exact " : " black man" ,

" p r e f i x " : "" ,

" s u f f i x " : ""

}

]

} ,

" source " : {

"@id " : " http :// l o c a l h o s t :8181/ r ena r r a t i on / r e s ou r c e s / jonathan_fleming . html " ,

"@type " : " f o a f : page"

}

}

}

Figure 5.25. Annotation in JSON-LD format created for textual content "black man"

101

{

"_id " : ObjectId ("564 f08b413c11b5d787b3074 ") ,

"@context " :

[

" http ://www.w3 . org / ns/oa−context −20130208. j son " ,

{" rn " : " http :// l o c a l h o s t :8181/ r ena r r a t i on /ns /20151001. j son "}

] ,

"@id " : "03 b2f719−341a−4db6−b6e0−5700da0dd6d5 " ,
"@type " : "oa : Annotation " ,

"annotatedAt " : "2015−11−20T11 : 4 9 : 0 5 . 6 2 0Z" ,
" s e r i a l i z e d At " : "2015−11−20T11 : 4 9 : 0 5 . 6 2 0Z" ,
"annotatedBy " : {

"@id " : " e8 f551 f8 −33ea−429d−8932−9f16bd8bd3b7 " ,
"@type " : " f o a f : Person " ,

"name" : "Person2"

} ,

" s e r i a l i z e dBy " : {

"@id " : " http :// l o c a l h o s t :8181/ r ena r r a t i on /" ,

"@type " : "prov : SoftwareAgent " ,

"name" : "Code v1 . 1" ,

"homepage " : " http :// l o c a l h o s t :8181/ r ena r r a t i on /"

} ,

"mot ivat ion " : "oa : que s t i on ing " ,

"body " : {

"@id " : "b780c41c−2edb−49db−a5e1−0630 62 e f3689 " ,

"@type " : "oa : EmbeddedContent " ,

" va lue " : "Tam ola rak o lay � n nas � l oldu §unu a n l a t a b i l i r m i s i n i z ?" ,

" format " : " t ex t / p l a i n "

} ,

" t a r g e t " : {

"@id " : "19 ca990d−b233−4047−b40a−258a8278fada " ,
"@type " : "oa : Spe c i f i cRe sou r c e " ,

" s e l e c t o r " : {

"@id " : "02 f5474c−90b9−48c6−8e19−859347884945" ,

"@type " : " rn : XPathSelector " ,

"xpath " : "#xpo inte r (// html [1] / body [1] / div [1] / div [1]) "

} ,

" source " : {

"@id " : " http :// l o c a l h o s t :8181/ r ena r r a t i on / r e s ou r c e s / jonathan_fleming . html " ,

"@type " : " f o a f : page"

}

}

}

Figure 5.26. Annotation questioning the meaning of short message in Turkish

102

1 { . . .

2 " t rans f o rmLi s t " : {

3 "@id " : "a8d33924−cd22−42dc−b8aa−385bb728341c " ,
4 "@type " : " rn : L i s t " ,

5 "nodes " : [

6 {

7 "@id " : " e14c99ed−1d39−43f1−894c−25e162e4d749 " ,
8 "@type " : " rn : Renarrat ionTransformat ion " ,

9 " s ou r c eS e l e c t i o n " : {

10 "@id " : " fb60d831−7c18−4e83−b8da−341e46482106 " ,
11 "@type " : " rn : XPathSelector " ,

12 " value " : "#xpo inte r (// html [1] / body [1] / div [1] / div [1] / div [1] / p [1]) "

13 } ,

14 " createdAt " : "2015−11−20T13 : 0 7 : 2 7 . 9 6 7Z" ,
15 " ac t i on " : "oa : Replace " ,

16 " na r r a t i onL i s t " : {

17 "@id " : " e5a992f2−ac54−424b−af2a−4da794635bd1 " ,
18 "@type " : " rn : L i s t " ,

19 "nodes " : [

20 {

21 "@id " : "58438a86−9c97−43b7−b82e−37dbb8417a5d " ,
22 "@type " : " cnt : ContentAsText " ,

23 " content " : "Jonathan Fleming " ,

24 "accessedFrom " : {

25 "@id " : "88b64849−fbdb−4157−8393−08bb509bcd80 " ,
26 "@type " : "oa : Annotation"

27 }

28 } ,

29 {

30 "@id " : "7664 abaf−3fe4 −471c−b7f1−a5040eb8428c " ,
31 "@type " : " cnt : ContentAsText " ,

32 " content " : "1989 y i l i n d a Broklyn ' da uyusturucu s a t i c i s i Darryl Alston ' i

oldurmek sucundan muebbet hapse mahkum e d i l d i . Uzun b i r zamandan sonra

saklanan k an i t l a r ortaya c i k i n c a s e r b e s t b i r a k i l d i . Fleming daima o l ay in

oldugu anda Flor ida ' da t a t i l d e oldugu uzer inde i s r a r ediyordu . . . "

33 } ,

34 {

35 "@id " : "243b6a94−d16f−4c30−a f f 4 −7800be645415 " ,
36 "@type " : " cnt : ContentAsText " ,

37 " content " : " Fleming ' in c i n a y e t i i s l emed i g i n e da i r en guclu kan i t Orlanda

o t e l i n d e saat 21 :27 ' ye a i t odenmis b i r t e l e f o n f a t u r a s i n i n bulunmasiydi .

Cinayet i s e sonrak i gun sabaha ka r s i 02 : 15 ' de i s l e nd i g i nd en c i n a y e t i

i s l emed i g i ac ikca ortadaydi . Bu kan i t i n neden i l k durusmada ortaya

c i k a r i lmad i g i i s e buyuk b i r muamma . . . " }]

38 . . . }

Figure 5.27. Renarration in json-ld format for creation of an alternative page in

Turkish for the short message about Jonathan Fleming who wongfully put in prison

for 25 years.

103

Figure 5.28. Deployed renarrated page of short message in HTML format.

attaching some data wouldn't make the content consumable for low literate consumers.

Renarration approach focuses on content and the renarrated content while creat-

ing semantic relationships. For example, a low literate consumer visiting FIR page can

be redirected for the renarrated page which is targeted for low literate people. Alter-

natively, assuming there is a audio of the content for creating FIR report, a consumer

doesn't know how to read might be directed to the audio instead.

Alipi prototype implements renarration as a service. Using the service, a user can

choose a web page for renarration and specify target groups and publish the renarration.

Any number of renarrations may be created for any given web page. The renarrator can

de�ne translations, simpli�cations or provide alternative media to the target audience.

However, the approach doesn't use a prede�ned vocabulory, an ontology, to de�ne

relationships between content and the related content. Using proposed Renarration

Data Model, the relationships can be de�ned.

Even though the prototype implemented doesn't cover some special transforma-

tions such as the ones that change xpath of elements, it shows that it can be used as

a basis for renarrations of documents. The prototype also doesn't cover of removal of

104

elements which again may change the xpath hierarchy of documents. However, solution

to this can be implemented by simple algorithms as one can be found in Appendix.

Experiments show that the data model provides a standardized method for creat-

ing renarrations of content. The data model scales from very simple to more complex

use cases such as removal and replacement of web elements. The model also allows

usage of external resources such as annotations and content in another web pages.

105

6. FUTURE WORK AND CONCLUSIONS

This thesis presents a framework which enables renarrating contents to make it

available to a wider audience by creating semantic relations between URIs and contents

of web pages.

In order to address the accessibility problem, an ontology framework model and

prototype implementation which generates semantically processable data, have been

developed. Web Annotation Data Model was chosen as the framework model for de�n-

ing annotations. The Web Annotation Data Model provides an extensible framework

for de�ning annotations so that they can easily be shared between platforms. The

proposed approach supports working with this data model as well as other knowledge

bases.

Evaluations show that our proposed model is capable of de�ning renarrations of

web pages while keeping semantic relations between elements. It is observed that even

though annotation is a very useful method for making contents more accessible and

consumable, renarration provides more comprehensive framework. The main reason

behind that the proposed data model keeps semantic relations between original content

and the renarrated content. However, it is also observed that annotation provides a

useful mechanism for linking external sources such as resources from DBpedia.

Proposed data model uses external ontologies for de�ning di�erent types of con-

tent and narrations. The Dublin Core Schema is a small set of vocabulary terms which

can be used to de�ne web resources including images, video, web pages, etc. However,

evaluations show that including links, tables in an ontology and using in renarration

framework would de�nitely improve expressiveness of renarrations.

The potential bene�ts of annotation are demonstrated by the design and imple-

mentation of SemAnn (Semantic Annotation) framework. SemAnn provides a user

interface for creating annotations of di�erent types such as text, image, semantic tags,

106

etc. Advantages of annotations are demonstrated by the use of renarration implemen-

tation.

Semantic Renarration framework provides a user interface for creating renarra-

tions. Evaluations on this framework shows that such user interfaces can easily be

developed for creating renarrations of web resources and linking individual contents.

The evaluations show that the designed model and the implemented prototype

would be a useful system to increase accessibility of content.

Throughout this study, we have learned a lot from the maturity of the Web

Annotation Data Model even though the model was still in draft version. It was also

a great opportunity to join weekly meetings for the data model. This showed us that

even a small amount of work is concluded after enormous amount of discussions and

meetings.

As future work, the proposed renarration approach could be improved in several

directions.

� Annotations can be created using a smart text editor to allow di�erent types

of annotations. The current implementation doesn't cover annotation of web

resources such as audio, video, pdf, etc. These types can be implemented by

integration of open source implementations.

� SemRen can be improved so that it may cover removal of elements. Currently the

framework just hides the element from the user. In addition to this, the imple-

mentation may support transformations that change xpath of elements between

source and target resources.

� A Social Network can be formed in SemRen and SemAnn frameworks. Users

can be represented based on their annotations and renarrations. Social network

analysis could be performed using the tool and users can be related with each

other.

� Renarration Data Model can be extended with a domain-speci�c ontology so that

107

it covers all necessary elements used in web pages.

� The proposed model can be extended so that it supports renarration of renarra-

tions. In addition to that, it could be improved so that it supports versioning of

renarrations.

108

REFERENCES

1. Web Annotation Data Model , http://www.w3.org/TR/

2014/WD-annotation-model-20141211, accessed at February 2015.

2. Google Search Engine, https://www.google.com.tr, accessed at September 2014.

3. Yahoo Search Engine, https://www.yahoo.com, accessed at September 2014.

4. Semantic Web - W3C , http://www.w3.org/standards/semanticweb/, accessed

at September 2014.

5. "W3C Semantic Web Activity". World Wide Web Consortium (W3C)., http://

www.w3.org/2001/sw/Activity, .

6. Dinesh, T., S. Uskudarli, S. Sastry, D. Aggarwal and V. Choppella, �Alipi: A

framework for re-narrating web pages�, Proceedings of the International Cross-

Disciplinary Conference on Web Accessibility , p. 22, ACM, 2012.

7. Oren, E., K. Möller, S. Scerri, S. Handschuh and M. Sintek, �What are semantic

annotations�, Relatório técnico. DERI Galway , 2006.

8. Extensible Markup Language - XML, http://www.w3.org/XML/, accessed at

September 2014.

9. Sanderson, R., P. Ciccarese, H. Van de Sompel, S. Bradshaw, D. Brickley, L. J. G.

Castro, T. Clark, T. Cole, P. Desenne, A. Gerber et al., �Open annotation data

model�, W3C Community Draft , 2013.

10. Sanderson, R., P. Ciccarese and H. Van de Sompel, �Designing the W3C open anno-

tation data model�, Proceedings of the 5th Annual ACM Web Science Conference,

pp. 366�375, ACM, 2013.

109

11. Antoniou, G. and F. Van Harmelen, A semantic web primer , MIT press, 2004.

12. Well-formed element - Wikipedia, the free encyclopedia, https://en.wikipedia.

org/wiki/Well-formed\textunderscoreelement, accessed at September 2014.

13. HTML 4 Document Type De�nition, http://www.w3.org/TR/html4/sgml/dtd.

html, accessed at December 2014.

14. RDF - Semantic Web Standards, http://www.w3.org/RDF/, accessed at December

2014.

15. RDF Schema 1.1 , http://www.w3.org/TR/rdf-schema/, accessed at December

2014.

16. OWL Web Ontology Language, http://www.w3.org/TR/owl-features/, accessed

at December 2014.

17. SPARQL Query Language for RDF , http://www.w3.org/TR/

rdf-sparql-query/, accessed at December 2014.

18. JSON-LD 1.0 Speci�cation, http://www.w3.org/TR/json-ld-syntax/, accessed

at September 2014.

19. Schema.org Speci�cation, http://schema.org/, accessed at September 2014.

20. Dublin Core Elements , http://purl.org/dc/elements/1.1/, accessed at Decem-

ber 2014.

21. Dublin Core Terms , http://purl.org/dc/terms/, accessed at December 2014.

22. DCMI Metadata Terms , http://purl.org/dc/dcmitype/, accessed at December

2014.

23. FOAF Vocabulary Speci�cation, http://xmlns.com/foaf/spec/, accessed at De-

110

cember 2014.

24. Provenance Ontology , http://www.w3.org/ns/prov\#, accessed at December

2014.

25. RDF 1.1 XML Syntax , http://www.w3.org/TR/rdf-syntax-grammar/, accessed

at December 2014.

26. SKOS Simple Knowledge Organization System Reference, http://www.w3.org/

TR/skos-reference/, accessed at December 2014.

27. Liakata, M., L. N. Soldatova et al., �Semantic annotation of papers: Interface

& enrichment tool (sapient)�, Proceedings of the Workshop on Current Trends in

Biomedical Natural Language Processing , pp. 193�200, Association for Computa-

tional Linguistics, 2009.

28. Michelson, M. and C. A. Knoblock, �Semantic annotation of unstructured and un-

grammatical text�, International Joint Conference on Arti�cal Intelligence, Vol. 19,

p. 1091, Lawrence Erlbaum Associates Ltd, 2005.

29. Ciccarese, P., M. Ocana, L. J. Garcia-Castro, S. Das and T. Clark, �An open

annotation ontology for science on web 3.0.�, J. Biomedical Semantics , Vol. 2, No.

S-2, p. S4, 2011.

30. Lausen, H. and J. Farrell, �Semantic annotations for WSDL and XML schema�,

W3C recommendation, W3C , 2007.

31. Narr, S., E. W. De Luca and S. Albayrak, �Extracting semantic annotations from

twitter�, Proceedings of the fourth workshop on Exploiting semantic annotations in

information retrieval , pp. 15�16, ACM, 2011.

32. Momeni, E., �Semi-automatic semantic moderation of web annotations�, Proceed-

ings of the 21st international conference companion on World Wide Web, pp. 167�

172, ACM, 2012.

111

33. Bloehdorn, S., K. Petridis, C. Saatho�, N. Simou, V. Tzouvaras, Y. Avrithis,

S. Handschuh, Y. Kompatsiaris, S. Staab and M. G. Strintzis, �Semantic anno-

tation of images and videos for multimedia analysis�, The semantic web: research

and applications , pp. 592�607, Springer, 2005.

34. Django Girls website, https://djangogirls.org/, accessed at October 2015.

35. Accessibility W3C , http://www.w3.org/standards/webdesign/accessibility,

accessed at December 2014.

36. Turkiye Istatistik Kurumu, http://www.tuik.gov.tr/, accessed at December

2014.

37. Duolingo, https://www.duolingo.com/, accessed at September 2014.

38. Google Translate, https://translate.google.com, accessed at September 2014.

39. Annotator - Annotating The Web, http://annotatorjs.org/, accessed at Jan-

uary 2015.

40. Daniel Cebrián Robles , http://danielcebrian.com/?lang=en, accessed at Jan-

uary 2015.

41. Daring Fireball: Markdown, http://daringfireball.net/projects/

markdown/, accessed at January 2015.

42. XML Schema, http://www.w3.org/2001/XMLSchema#, accessed at December

2014.

43. Representing Content in RDF 1.0 , http://www.w3.org/TR/Content-in-RDF/,

accessed at December 2014.

44. Spring Framework , https://spring.io/, accessed at December 2014.

112

45. JavaScript Programming Language, https://developer.mozilla.org/en-US/

docs/Web/JavaScript, accessed at December 2014.

46. W3C XHTML, http://www.w3.org/MarkUp/, accessed at December 2014.

47. Jsoup Java HTML Parser , http://jsoup.org/, accessed at December 2014.

48. Jena Semantic Web Framework website, https://jena.apache.org/, accessed at

December 2014.

49. MongoDB website, https://www.mongodb.org/, accessed at December 2014.

50. DBPedia website, http://wiki.dbpedia.org/, accessed at December 2014.

51. GitHub website, https://github.com/, accessed at December 2014.

52. First Information Report , https://en.wikipedia.org/wiki/First_

Information_Report, accessed at September 2015.

53. Prezi website, https://prezi.com/fxk9h96h0zyp/

first-information-report/, accessed at September 2015.

54. Cognisable o�ence - Wikipedia, the free encyclopedia, https://en.wikipedia.

org/wiki/Cognisable_offence, accessed at September 2015.

55. Method overriding - Wikipedia, the free encyclopedia, https://en.wikipedia.

org/wiki/Method_overriding, accessed at September 2015.

56. Moral Low Ground website, http://morallowground.com/2014/04/10/, accessed

at September 2015.

57. After Nearly 25 Years Behind Bars, Wrongfully Convicted Man Free -

Common Dreams website, http://www.commondreams.org/news/2014/04/08/

after-nearly-25-years-behind-bars-wrongfully-convicted-man-free, ac-

113

cessed at September 2015.

114

APPENDIX A: JSON-LD Context And Implemented

JavaScript For Prototype

A.1. JSON-LD Context

This section provides recommended JSON-LD context recommended for the Re-

narration Data Model. The usage of the context is recommended because it prevents

developers to deal with complex json template as well as enrusing consistency.

Listing A.1 shows the JSON-LD context.

Listing A.1. JSON-LD context recommended for the Renarration Data Model
{

"@context " : {

" rn " : " https : // github . com/EmrahGuder/Renarrat ion /#",

"oa " : " http ://www.w3 . org /ns/oa#",

" f o a f " : " http :// xmlns . com/ f o a f /0 .1/" ,

" rd f " : " http ://www.w3 . org /1999/02/22− rdf−syntax−ns#",

" r d f s " : " http ://www.w3 . org /2000/01/ rdf−schema#",

" cnt " : " http ://www.w3 . org /2011/ content#",

" skos " : " http ://www.w3 . org /2004/02/ skos / core#",

"dc " : " http :// pur l . org /dc/ e lements /1 .1/" ,

" dctypes " : " http :// pur l . org /dc/dcmitype /" ,

"owl " : " http ://www.w3 . org /2002/07/ owl#",

"xsd " : " http ://www.w3 . org /2001/XMLSchema#",

" s ou r c eS e l e c t i o n " : {"@type " :"@id " , "@id" : " rn : s ou r c eS e l e c t i o n "} ,

" s o u r c e S e l e c t i o nL i s t " : {"@type " :"@id " , "@id" : " rn : s ou r c eS e l e c t i o n " ," @container " :

" @ l i s t "} ,

" t a r g e t S e l e c t i o n " : {"@type " :"@id " , "@id" : " rn : t a r g e t S e l e c t i o n "} ,

" t a r g e t S e l e c t i o nL i s t " : {"@type " :"@id " , "@id" : " rn : t a r g e t S e l e c t i o n " ," @container " :

" @ l i s t "} ,

" audience " : {"@type " :"@id " , "@id" : " rn : hasTargetAudience "} ,

" source " : {"@type " :"@id " , "@id" : " rn : onSourceDocument "} ,

" t a r g e t " : {"@type " :"@id " , "@id" : " rn : onTargetDocument "} ,

" t rans f o rmLi s t " : {"@type " :"@id " , "@id" : " rn : hasRenarrat ionTransformat ion " ,"

@container " : " @ l i s t "} ,

" trans form" : {"@type " :"@id " , "@id" : " rn : hasRenarrat ionTransformat ion "} ,

"nodes " : {"@type " :"@id " , "@id" : " rn : nodes " , "@container " : " @ l i s t "} ,

" ac t i on " : {"@type " :"@id " , "@id" : " rn : actionOnDocument "} ,

"between" : {"@type " :"@id " , "@id" : " rn : isBetween " ," @container " : " @ l i s t "} ,

" na r ra t i on " : {"@type " :"@id " , "@id" : " rn : hasNarrat ion "} ,

" na r r a t i onL i s t " : {"@type " :"@id " , "@id" : " rn : hasNarrat ion " ," @container " : " @ l i s t "} ,

115

"accessedFrom" : {"@type " :"@id " , "@id" : " rn : accessedFrom "} ,

" r ena r r a t o r " : {"@type " :"@id " , "@id" : " rn : renarratedBy "} ,

"mot ivat ion " : {"@type " :"@id " , "@id" : " rn : hasMotivat ion "} ,

" content " : " cnt : content " ,

" renarratedAt " : " rn : renarratedAt " ,

" va lue " : " rd f : va lue " ,

" createdAt " : " rn : createdAt " ,

" p r e f i x " : " rn : p r e f i x " ,

" language " : "dc : language " ,

" s u f f i x " : " rn : s u f f i x " ,

" t ext " : " rn : s e l e c t edText " ,

"name" : " f o a f : name" ,

"mbox" : " f o a f :mbox" ,

" o f f s e t " : { "@type " : "xsd : nonNegat iveInteger " , "@id " : " rn : o f f s e t " } ,

"byteNumber " : { "@type " : "xsd : nonNegat iveInteger " , "@id " : " rn : byteNumber" }

}

}

A.2. Injected JavaScript Used For Prototype

This section provides JavaScript code which is used in the implemented prototype

for enabling web resources annotatable and renarratable. The script is injected into

the web resource, and de�nes three listeners for mouse events.

Listing A.2. Injected JavaScript for adding event listeners to web resources
// v a r i a b l e s used

var mouseOverElement , mouseOverElementStyleBorderColor , mouseOverElementStyleBorder ;

var mouseOutElement ;

var c l i ckedElement ;

// Window Event L i s t e n e r s

window . addEventListener ("mousedown" , bodyMouseDown , f a l s e) ;

window . addEventListener ("mouseover " , bodyMouseOver , f a l s e) ;

window . addEventListener ("mouseout " , bodyMouseOut , f a l s e) ;

// Window Event L i s t e n e r s

// Event L i s t en e r Funct ions

func t i on bodyMouseOver (event) {

mouseOverElement = event . t a r g e t ;

i f (getPathTo (mouseOverElement) . toLowerCase () != '// html [1] / body [1] ') {

mouseOverElementStyleBorderColor = mouseOverElement . s t y l e . borderColor ;

mouseOverElementStyleBorder = mouseOverElement . s t y l e . border ;

mouseOverElement . s t y l e . border = '2px dashed red ' ;

}

116

window . parent . Parent_mouseOverElement = mouseOverElement ;

window . parent . Parent_mouseOverElement_XPath = getPathTo (mouseOverElement) . toLowerCase

() ;

}

func t i on bodyMouseOut (event) {

mouseOutElement = event . t a r g e t ;

i f (window . parent . type=="annotat ion ") {

i f (window . parent . f indAnnotationUsingXPath (getPathTo (mouseOutElement) . toLowerCase ())

>=0){

i f (getPathTo (mouseOutElement) . toLowerCase () != '// html [1] / body [1] ') {

mouseOutElement . s t y l e . borderColor = ' yel low ' ;

mouseOutElement . s t y l e . border = '2px s o l i d yel low ' ;

}

}

e l s e {

i f (getPathTo (mouseOutElement) . toLowerCase () != '// html [1] / body [1] ') {

mouseOutElement . s t y l e . borderColor = mouseOverElementStyleBorderColor ;

mouseOutElement . s t y l e . border = mouseOverElementStyleBorder ;

}

}

}

e l s e {

i f (getPathTo (mouseOutElement) . toLowerCase () != '// html [1] / body [1] ') {

mouseOutElement . s t y l e . borderColor = mouseOverElementStyleBorderColor ;

mouseOutElement . s t y l e . border = mouseOverElementStyleBorder ;

}

}

//window . parent . hideAnnotationDivOnElement () ;

// a l e r t (currentElement . innerHTML) ;

}

func t i on bodyMouseDown(event) {

c l i ckedElement = event . t a r g e t ;

window . parent . Parent_mouseOverElement = cl i ckedElement ;

var x = new Number () ;

var y = new Number () ;

i f (event . x != undef ined && event . y != undef ined)

{

x = event . x ;

y = event . y ;

}

e l s e // F i r e f ox method to get the po s i t i o n

{

x = event . c l i en tX + document . body . s c r o l l L e f t + document . documentElement . s c r o l l L e f t ;

y = event . c l i en tY + document . body . s c ro l lTop + document . documentElement . s c ro l lTop ;

}

updateParentDiv () ;

}

117

// Event L i s t en e r Funct ions

// Library Functions

func t i on updateElementContent (element) {

element . innerHTML = 'This i s a t e s t ' ;

}

func t i on getPathTo (element) {

i f (element===document . body)

re turn '// html [1] / ' + element . tagName + ' [1] ' ;

var ix= 0 ;

var s i b l i n g s= element . parentNode . chi ldNodes ;

f o r (var i= 0 ; i<s i b l i n g s . l ength ; i++) {

var s i b l i n g= s i b l i n g s [i] ;

i f (s i b l i n g===element)

re turn getPathTo (element . parentNode)+ '/ '+element . tagName+ ' ['+(ix+1)+ '] ' ;

i f (s i b l i n g . nodeType===1 && s i b l i n g . tagName===element . tagName)

ix++;

}

}

func t i on getElementByXpath (path) {

re turn document . eva luate (path , document , nu l l , XPathResult .FIRST_ORDERED_NODE_TYPE,

nu l l) . s ingleNodeValue ;

}

func t i on updateParentDiv () {

var divElement = window . parent . document . getElementById (' ReNarrationDiv ') ;

divElement . s t y l e . d i sp l ay = ' block ' ;

// s e t parent element

window . parent . Parent_selectedElement = cl i ckedElement ;

window . parent . Parent_selectedElement_XPath = getPathTo (c l i ckedElement) . toLowerCase () ;

window . parent . setContentInDiv () ;

}

func t i on highl ightElementsWithAnnotat ions (xpath) {

elem = getElementByXpath (xpath) ;

elem . s t y l e . borderColor = ' yel low ' ;

elem . s t y l e . border = '2px s o l i d yel low ' ;

}

A.3. Algorithm For Handling XPath Change

This section provides an algorithm for handling XPath changes for transforms

that can change the indices of HTML elements. Even though this is not implemented

118

in the prototype we have done some evaluation about how this can be achieved. Figure

A.3 shows a recommended algorithm.

let WR be a web resource to be renarrated

create a local copy of web resource WR'

for each HTML element in WR' do

�nd XPath of current element

create a dummy attribute

set value of dummy attribute to XPath of current element

end for

return WR'

Figure A.1. Pseudo code for handling XPath changes of HTML elements

