INCREASING ACCESSIBILITY OF WEB CONTENT VIA SEMANTIC
RENARRATION

by
Emrah Giider
B.S, Computer Engineering, Igik University, 2006

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
Bogazici University
2016

INCREASING ACCESSIBILITY OF WEB CONTENT VIA SEMANTIC
RENARRATION

APPROVED BY:

Suzan Uskiidarl, Ph.D.

(Thesis Supervisor)

Assoc. Prof. Haluk Bingol

Prof. Yagmur Denizhan —

DATE OF APPROVAL: 16.12.2015

il

ACKNOWLEDGEMENTS

Foremost, I would like to express my sincere gratitude to my advisor Dr. Suzan
Uskiidarhfor the continuous support of my M.S. study and research. Her patience,
enthusiasm, and immense knowledge guided me all the time of my research and writing

of this thesis. I've learned many things since I became Dr. Suzan Uskiidarli’s student.

Besides my advisor, I would like to thank T.B. Dinesh for his insightful comments,
and discussions. In addition to discussions, readings he suggested throughout my study

and research were incredibly helpful.

Last but not least, I owe more than thanks to my family members which includes
my parents, elder brother and my wife for their support and encouragement throughout
my life. In addition to them, I would like to mention our dog, Bulut, who helped me

a lot during stressful times.

v

ABSTRACT

INCREASING ACCESSIBILITY OF WEB CONTENT VIA
SEMANTIC RENARRATION

Much of the content on the Web is not accessible to a large portion of the global
population due to barriers such as language, literacy levels, physical impairments,
expertise, etc. Attempts to make content more accessible are made by those who
translate or otherwise transform material for wider consumption. However, such efforts
are often limited to a particular collections (i.e.Wikipedia) or by people who make it
a point to create alternatives via blogs and web sites. There is need for a framework
that supports the specification of providing alternative narrations (renarrations) in a

form that is processable so that they can be located and otherwise utilized.

In this thesis we propose a framework for a crowdsourced approach to renarrat-
ing Web documents. This framework aims to support the creation of relations between
Web resource elements. A renarration ontology is created for supporting this frame-
work. Furthermore, it utilizes renarrations with external resources establishing rela-
tions among existing resources. Establishing relations has the potential of increasing

the utility for further accessibility. A prototype for proof of concept has been built.

OZET

ICERIK ERISILEBILIRLIGININ ANLAMSAL
ACIKLAMALAR ILE ARTIRILMASI

Internet ortaminda bulunan bilgilerin bircogu, dil, fiziksel engeller, okuryazarlik
diizeyi, uzmanlik ve buna benzer bircok engel sebebiyle kiiresel niifusun biiyiik bir kismi1
icin erigilememekte. Icerigi daha erigilebilir hale getirmek icin girisimlere, terciime
edilmesi ya da degistirilerek daha genis kitlelerce ulagilabilmesini saglamaya ¢aligmak
ornek olarak gosterilebilir. Ancak, bu yontemler ¢ogu kez 6zel derlemeler (Wikipedia)
yva da Kkigilerin bloglar ya da web siteleri iizerinden olugturdugu alternatif iceriklerle
siirhdir. Alternatif igeriklerin(renarration) olusturulabildigi ve bu igeriklerin bulun-

abilmesinin yanisira, kullanilabildigi bir altyapiya ihtiya¢ bulunmaktadir.

Bu tezde, Web iizerindeki veriler icin alternatif olugturulmasina olanak veren
bir altyap: tasarlanmistir. Bu altyapi alternatif verilerin olusturulmasina ek olarak,
veriler arasindaki iligkilerin de tutulmasina olanak vermektedir. Onerilen altyapi, tez
kapsaminda gelistirilen bir ontolojiyi kullanmaktadir. Bunlara ek olarak, alternatif ver-
iler olugturulurken harici kaynaklarin kullanilmasinin yanisira, bu kaynaklar arasindaki
iligkiler de altyap1 kapsaminda saklanmaktadir. Bu iligkilerin saklanmasi, iceriklerin
daha erigilebilir hale gelmesi adina biiyiik bir potansiyele sahiptir. Onerilen ontoloji ve

altyapinin ispati adina bir prototip gelistirilmistir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS o . il
ABSTRACT e iv
OZET . . . e v
LIST OF FIGURES o e X
LIST OF TABLES e xviii
Listings e Xix
LIST OF ACRONYMS/ABBREVIATIONS XX
1. INTRODUCTION e e 1
1.1. Motivation and Problem Statement 1
1.2. Proposed Solution 3
1.3. Structure of this thesis Lo oo 4

2. BACKGROUND AND RELATED WORK 5
2.1. Semantic Web Technologies D
2.1.1. XML . . .o 5

2.1.1.1. XML declaration)

2.1.1.2. Elements 6

2.1.1.3. Attributes 6

2.1.2. RDF o 7

2.1.2.1. Resources 7

2.1.2.2. Properties o 7

2.1.2.3. Statementso 7

2.1.3. RDF Schema 8

2.1.4. OWL 9

2.1.5. SPARQL 10

2.1.6. JSON-LD 13

2.2. Annotation 13
2.2.1. Web Annotation Data Model 14

2.2.1.1. Core Annotation Framework 14

2.2.1.2. Specifiers and Specific Resources 17

vii

2.2.1.3. States 18

2.2.1.4. Highlighting and Styles 19

2.2.1.5. Multiplicity Constructs 20

2.2.2. Other Annotation Related Studies 21

2.3. Renarrationo 23
2.3.1. Accessibility 23
2.3.2. Barrierso 24
2.3.2.1. Language Barriers 24

2.3.2.2. Literacy Barriers 24

2.3.2.3. Other Accessibility Issues 25

2.3.3. Addressing Accessibility on the Web 25

2.4. Applicationso 25
2.4.1. Annotator 26
24.1.1. Storage API. 26

24.1.2. Plugins 27

gEr.. Alir. . . 4" . 4.Y T 28
2.4.2.1. Approach 28

2.4.2.2. Architecture 28

2.4.2.3. Alipi Prototype 29

2.4.3. Other Crowd-sourced Applications 30

3. MODEL e 34
3.1. Renarration Data Model 0oL 34
3.1.1. Renarration Transformation 38
3.1.2. Actions on Documents 42
3.1.3. Selectors 45
3.1.4. Motivations o1
3.1.5. Listso 99

4. IMPLEMENTATION e 59
4.1. Technologies 29
4.2. System Architecture oo 60
4.3. Storage 61
4.4. Library Injector 61

4.5.

4.6.

Annotation Implementation L.
4.5.1. Implementation of Annotation Target
4.5.1.1. Annotations Using XPath
4.5.1.2. Annotations Targeting Fragments of Elements
4.5.2. Implementation of Annotation Body
4.5.2.1. Embedded Content Annotations
4.5.2.2. Visual Representations
4.5.2.3. Semantic Annotations
4.5.2.4. Annotations Using DBPedia Resources
Renarration Implementation
4.6.1. Renarration Actions
4.6.1.1. Remove
4.6.1.2. Replace
4.6.2. Renarration Transforms as Collections
4.6.3. Usage of Annotations in SemRen Framework

4.6.4. Target Audience and Deployment

5. EVALUATION s e

5.1

0.2
2.3.
5.4.
2.5.

Evaluation of the Renarration Data Model
5.1.1. Evaluation of Proposed Data Model Using Test Cases
5.1.1.1. Replacement of paragraph with paragraph
5.1.1.2. Replacement of paragraph with audio
5.1.1.3. Removal of content
5.1.1.4. Replacement using content from an annotation
5.1.1.5. Insertion of new content between two elements
5.1.2. Evaluation Using FIR Web Page
Evaluation Using Implemented Prototype
Use Case 1. o
Use Case 2. o o e

Results and Discussion

6. FUTURE WORK AND CONCLUSIONS
REFERENCES
APPENDIX A: JSON-LD Context And Implemented JavaScript For Prototype 114

viil

A.1. JSON-LD Context e
A.2. Injected JavaScript Used For Prototype
A.3. Algorithm For Handling XPath Change

1X

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 2.8.

Figure 2.9.

Figure 2.10.

Figure 2.11.

LIST OF FIGURES

XML formalization for Das Capital written by Karl Marx 7

XML-based syntax of RDF for Das Capital 8

Simple ontology for books and writers using XML based RDF syntax 9

Simple ontology for books and writers using XML based RDF syn-
taxand OWL 11

Simple SPARQL query selecting foaf:name data property for in-

stances of foaf:Person 12

An annotation example of Semantic Tagging for an image of Istanbul 16

Annotation Target with a oa:TextQuoteSelector selecting textual

content "Kiz Kulesi" 18

Annotation Target defining the state of target resource by using

oa:TimeState 19

Annotation for which content is styled by using oa:EmbeddedContent
and 0a:CSSStyle 20

Annotation having a body of an instance of oa:Choice, consisting

of two images of Kiz Kulesi 21

A Web Page about fire safety originally written in English 24

Figure 2.12.

Figure 2.13.

Figure 2.14.

Figure 2.15.

Figure 2.16.

Figure 2.17.

Figure 2.18.

Figure 3.1.

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

User interface for creation of an annotation using Share Annotator

Plugin

The creation and indexing of renarrations of a page P with url U

using Alipi prototype

The page on fire safety being edited for renarration. Note the popup

on the image inviting its replacement

Renarrated version of the fire safety page in Figure 2.17.

Translation of a tutorial about how to create a Django views. . . .

Duolingo screen showing a discussion of a particular question where

user wants to discuss the answer with others.

An example Google translation for a course equivalence for an ex-

change student.

Pseudo code for creation of renarration of a resource

Renarration Of A Document

The Renarration Model consisting of a Renarrator, a source docu-

ment, and a renarrated document, and the time of renarration. . .

Serialization of a basic Renarration renarrated by a person in JSON-

Renarration Transformation on an element of a source document .

xi

31

38

39

Figure 3.6.

Figure 3.7.

Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 3.11.

Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15.

Figure 3.16.

Figure 3.17.

Figure 4.1.

Figure 4.2.

Diagram for relations between a renarration and renarration trans-

formation with a narration, source document and renarrated doc-

Diagram for renarration having replacement and removal actions .

Diagram for list of actions can be defined for renarration transform

Serialization in JSON-LD format for a basic action for which con-

tent is replaced with a textual content

Diagram for renarration of a child element

Document Selectors in the Renarration Data Model

Serialization in JSON-LD format for selection of 10 bytes

The relationship between rn:Renarration and rn:Motivation classes.

Serialization in JSON-LD format for creating an alternative renar-
ration for a source document

Renarration Transformation as a list-like structure

Serialization in JSON-LD format for using rn:List for defining a

selection order

System Architecture oL

Collections required in MongoDB instance

xii

40

42

43

45

46

47

49

ol

02

Figure 4.3.

Figure 4.4.

Figure 4.5.

Figure 4.6.

Figure 4.7.

Figure 4.8.

Figure 4.9.

Figure 4.10.

Figure 4.11.

Figure 4.12.

Figure 4.13.

Figure 4.14.

Figure 4.15.

Figure 4.16.

xiil

Pseudo code of getPathTo function for retrieving xpaths of elements 62

Highlighting an element on which mouse is hovered 63
System architecture of SemAnn framework 64
Annotation popup when clicked on an element 65

Annotation popup when clicked on an image with fragment selected 66

Creation of textual body of an annotation. 67
Annotation body using visual representations 68
SPARQL query to find all properties for a specific class 68

Defining an instance for foaf:Person class using foaf:firstName and

foaf:lastName data properties 69
Defining foaf:knows object property between Fnamel and Fname2
which are two instances of foaf:Person class 69
Defining semantic annotation using DBPedia resources to find list
of software via querying DBPedia SPARQL service using Java as
keyword 70
Query template used for DBPedia SPARQL Service 71
System architecture of SemRen framework. 72
Defining removal of selected content via user interface 73

Figure 4.17.

Figure 4.18.

Figure 4.19.

Figure 4.20.

Figure 4.21.

Figure 4.22.

Figure 4.23.

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Xiv

Defining replacement of selected content with a text via user interface 73

Replacement of text ’2015” with 2016’ using nested selection . . . 74

Defining a list of renarration transforms whose elements are textual

content and an imageo 74
An example java code to be renarrated 75
Replacement of java code with comments added as well as an image
showing how it is compiled Lo 75
Renarration transform using reference data from an annotation. . 76
Defining target audience and deployment name for renarration of
a web resource. 7
HTML code of a web page consisting of a paragraph with textual
content "Text1" L oo 79
A renarration specification in JSON-LD of a web page for which
"Text1" is replaced with "Text2" 79
HTML code of a web page renarrated via replacing "Text2" with
"Text1" in original content L. 80
A renarration specification in JSON-LD of a web page for which
"Text1" is replaced with audio with url "http://audiol.ogg" in au-
dio/ogg format 81
HTML code of a web page renarrated via replacing "Text2" with
an audio Lo 81

XV

Figure 5.6. HTML code of a web page consisting of three paragraphs 82

Figure 5.7. Renarration done on original page in JSON-LD format for trans-

formations on two paragraphs including remove and replace 83

Figure 5.8. HTML code of renarrated page when a paragraph is replaced after

removal of previous paragraph 84

Figure 5.9. Annotation in JSON-LD created for Text2 using oa:TextQuoteSelector 84

Figure 5.10. Renarration done on original page in JSON-LD format for replacing

second paragraph by using content from an annotation 85

Figure 5.11. Renarrated page for which second paragraph’s content is referenced

from an annotation 86

Figure 5.12. HTML code of a web page consisting of two paragraphs 86

Figure 5.13. A renarration specification in JSON-LD of the web page describing

insertion of new paragraph 87

Figure 5.14. HTML code of renarrated web page including inserted paragraph 88

Figure 5.15. Web page created using content from Wikipedia about how to file

first information report.o oo 89

Figure 5.16. A renarration transform specification in JSON-LD of a web page

describing replacement and removal of two paragraphs 91

Figure 5.17. A renarration transform specification in JSON-LD of a web page

describing insertion of alternative content by using BetweenSelector. 92

Figure 5.18.

Figure 5.19.

Figure 5.20.

Figure 5.21.

Figure 5.22.

Figure 5.23.

Figure 5.24.

Figure 5.25.

Figure 5.26.

Figure 5.27.

Figure 5.28.

XVi

A renarration transform specification in JSON-LD of a web page

describing replacement of content with an interactive resource. . . 93

Web page renarrated by applying transformations on the FIR source

Web Page about overriding feature in C++ Programming Language. 95

A renarration transform specification (in JSON-LD) of textual
content describing replacement of text for a web page about method

overriding in C++ to one for the Java Programming Language . . 96
A renarration transform specification (in JSON-LD) describing re-
placement of a paragraph and an image of a web page about method
overriding in C++ to create an alternative for the Java Program-
ming Language
Short message about a black guy who spent nearly 25 years in prison. 98

HTML code of a short message about a wrongful conviction . .. 99

Annotation in JSON-LD format created for textual content "black

man' ... 100

Annotation questioning the meaning of short message in Turkish . 101
Renarration in json-ld format for creation of an alternative page in
Turkish for the short message about Jonathan Fleming who wong-
fully put in prison for 25 years. 102
Deployed renarrated page of short message in HI'ML format. . . . 103

xXvii

Figure A.1. Pseudo code for handling XPath changes of HTML elements . . . 118

Table 2.1.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

Table 3.6.

Table 3.7.

Table 3.8.

Table 4.1.

XViil

LIST OF TABLES

Namespaces used in the Web Annotation Data Model [1]. 15

Namespaces used in the Renarration Data Model 36

Definitions of classes and properties related directly to renarration 37

Description of items for a Renarration Transformation on source

documents 41
Class and Property Definitions of Actions 44
Class Definitions of Selectors 48
Description of the properties related to selectors 50
Class and Property Definitions for Motivations 03
Definition of classes and object properties for list structures 57

Classes and Data Properties Used to Query DBPedia 70

Listings

A.1 JSON-LD context recommended for the Renarration Data Model

A.2 Injected JavaScript for adding event listeners to web resources

X1X

LIST OF ACRONYMS/ABBREVIATIONS

DAWG RDF Data Access Working Group

FOAF Friend Of A Friend Vocabulary Specification
JSON Javascript Object Notation

RDF Resource Description Framework

RDFS RDF Schema

OWL Web Ontology Language

W3C World Wide Web Consortium

TSI Turkey Statistical Institue

XML Extensible Markup Language

URI Uniform Resource Identifier

XX

1. INTRODUCTION

1.1. Motivation and Problem Statement

The way that we communicate has changed a lot with the World Wide Web.
The World Wide Web has also changed the way we think of computers. It wouldn’t
be wrong to say that they were used for numerical calculations only. Nowadays, we
use computers for information processing such as preparing monthly reports by using

database applications, or text processing, and for lots of other purposes as well.

Most of the data on the Web is consumable by human. The way it is consumed
is that people seek for the data and use the information gathered and seek/get in
touch with people, order products, etc. The connections between Web documents is
established by links. Another way is to use search engines such as AltaVista, Google [2]
or Yahoo [3]. Even though search engines are great tools for finding information and
people, there are some serious problems such as: Low precision, low recall, sensitivity
to the vocabulary, resulting just a web page, etc. Although the result of search is
successful, it is just a web page, so the resulting data are ready by human to consume.
One may conclude that information retrieval is performed by human rather than search
engines. The main problem with that is the Web content cannot be easily interpreted

by machines.

In the context of knowledge management, retrieving, accessing and maintaining
data is crucial. Data play very important role from which new values can be created,
and productivity can be increased. Even though there is lots of data, searching it still
depends on keyword-based search engines. After data are extracted by using search
engines, human time is required to process the returned data. Extracted data can also
have inconsistencies in terminology and be outdated as well. Data mining plays very
important role in creating new knowledge implicitly. However, this task is very hard

when unstructured data are used.

Semantic Web [4] can assist in solving the problems mentioned above. The word
"semantic" itself means "meaning". So, the fundamental difference between Seman-
tic Web technologies and other technologies is that the Semantic Web is concerned
with the meaning of data. This fundamental difference brings along completely dif-
ferent outlook on how to store, query and display information. Semantic Web aims
to allow more advanced knowledge management techniques. In Semantic Web world,
knowledge is organized according to conceptual models. By the use of automated
tools, inconsistencies can be checked and new knowledge can be extracted. Instead of
keyword-based search, data will be queried, and retrieved in a human friendly format.
Since knowledge is presented in a structure, it is also possible to view parts of doc-
uments instead retrieving them as a whole. According to the W3C, "The Semantic
Web provides a common framework that allows data to be shared and reused across
application, enterprise, and community boundaries" [5]. The basis for the Semantic
Web are computer-understandable descriptions of resources. The Semantic Web is all
about shared terminology which is achieved through consistent use of URIs. URIs can

be seen as the atoms of the Semantic Web.

The data on the Web are generally hidden in HTML files and amount of data is
massive and continually growing. Due to the characteristics of the content, it is not
accessible by huge amount of people due to a variety of barriers. The barriers to ac-
cessibility range from limited Internet connectivity, to physical impairment, linguistic
differences, and also social, cultural and economic factors [6]. Therefore, it is cru-
cial to create meaningful relations between Web elements and to provide accessibility.
Annotation is one of the methods to increase content accessibility on the Web. Gen-
erally speaking, annotation means to attach data to some piece of data. Annotations
can be done manually, semi-automatically or full-automatically. Manual annotations
are created by people whereas semi-automatic annotations are based on suggestions.
A research by Digital Enterprise Research Institute, National University of Ireland,

Galway |7] differentiated three types of annotations: informal, formal and ontological.

Renarration is another method to increase content accessibility on the Web. It

can be defined as the process of rewriting a web page or elements within the web page.

For instance, a paragraph which is written by a lawyer can be hard to understand by
someone else even if the text is in the same language. So, more accessible version of this
paragraph can be created, and this process is called renarration. W3C Director and
inventor of the World Wide Web, Tim Berners-Lee, said that the Web fundamentally
designed for all people. Therefore, it is crucial that the content should be accessible to

everyone.

1.2. Proposed Solution

This thesis focuses on making contents on the Web accessible to a wider audi-
ence. We provide a framework which enables renarrating contents by creating semantic
relations between URIs and contents of web pages. We investigated the Web contents
and detected the concepts and relations between them. In order to represent relations
between Web elements, an ontology has been created and terms are used to assist the
proposed accessibility which is beyond the traditional accessibility that focuses on lim-
itations of vision. We have used Web technologies and Semantic Web in order to give

context for the renarration process.

In an XML [8] document, XPath is used to navigate through elements and at-
tributes. Since all HTML documents can be considered as XML documents, XPaths
can be used to address individual elements as well. We have used XPaths for defining
parts of HTML documents. In order to represent relations between Web elements, we
have used Web Annotation Data Model [1,9,10] as a starting ontology. This ontology is
used in semantic annotation(SemAnn) framework. A prototype has been implemented
for semantic annotation process. The prototype allows users to select individual ele-
ments in Web pages, and create annotations for them. Created annotations are stored

in a database, and can be queried through MongoDB collections.

Another framework has been designed for renarration of Web pages. The input to
renarration framework(SemRen) is the output of SemAnn framework. The framework
is not just bounded to stored annotations, but also users can create content during

renarration process. Using the implemented prototype all annotations can be listed for

an element in a Web page, and the element can be renarrated by using annotations

and /or other content on the Web.

In order to test the proposed ontologies and the prototype, different kinds of
annotations and renarrations are created. The usability of the framework is evaluated
in Chapter 5. Experiments show that the proposed ontology can be used to define
relations between elements of Web pages in order to increase content accessibility. In
addition to the ontologies proposed, it is also evaluated that the prototype implemen-

tation can be used to define for semantic annotation and renarration.

1.3. Structure of this thesis

The structure of this thesis is as follows. Chapter 2 gives background information
about technologies used for semantic web. In addition to the technologies, related
work will be discussed in detail. Different models and applications for both annotation
and renarration will be researched. Chapter 3 presents a detailed model for semantic
annotation. Chapter 4 provides implementation decisions in detail. Chapter 5 presents
the evaluations of semantic annotation, and renarration models and implementation.

Finally, Chapter 6 presents conclusions and discusses ideas for future work.

2. BACKGROUND AND RELATED WORK

In this section, fundamental knowledge about the subjects mentioned in our thesis
is given. General information about Semantic Web technologies, the definition of an
annotation, and annotation related studies are introduced. After that, the definition
of renarration and the renarration approach for accessibility problem are provided.

Finally, applications for increasing accessibility of content are provided.

2.1. Semantic Web Technologies

2.1.1. XML

HTML (hypertext markup language) is the standard language which is used to
create Web pages. It was derived from SGML (standard generalized markup language)
which is an international standard for representing information both human-readable
and machine-readable. Since applications which conform to SGML are called SGML
applications, HT'ML is such an application. The reason why HTML is used instead
using SGML is that it was considered too complex for Internet-related purposes [11].
XML is also an SGML application which stands for extensible markup language. It is
defined W3C’s XML 1.0 Specification.

An XML document consist of a declaration, a number of elements, properties and

comments.

2.1.1.1. XML declaration. XML documents may contain a declaration which is an

information about the XML document itself.

<7xml version="1.0" encoding="UTF-8"7>

Above is an example of XML declaration which is a processing instruction that
identifies the document as being XML. It specifies that the document is an XML
document, the version and the character encoding used. The character encoding is
not mandatory but it is a good practice. In XML declaration part, it can also be
specified that the XML document is self-contained or not. If an XML document is a
self-contained document then it can be said that the document doesn’t refer to external

documents.

2.1.1.2. Elements. XML elements are used to represent things in XML documents.

An element consist of a start tag, content and end tag. For example, the following

shows an element which is used to define a university name.

<university >Bogazi¢i University < /university >

2.1.1.3. Attributes. It is not mandatory that elements should have content; there can

also be empty elements. An empty element is not meaningless, because it may have
some attributes. An attribute is a markup construct which consists of name/value
pairs. Attributes exist within a start tag or empty element tag. The following is an

example of an element named as university with one attribute.

<university page="http://www.boun.edu.tr" >Bogazi¢i University< /university >

An XML document can be considered as well-formed [12] when it respects certain
rules. However, these rules say nothing about the structure of the document. It is
very important to know the structure of documents when different applications try to
communicate [11]. The structure of the documents is defined in documents which have
all elements and attributes an XML document can use. The documents which define
the structure are also XML documents. There are two ways to define the structure.
DTDs [13], the older way and using XML Schema. XML Schema offers a richer language

for defining the structure.

2.1.2. RDF

XML is a markup language which is used for interchange of data between appli-
cations. However, XML express the meaning of data. In Figure 2.1, even though the
same information is represented, there are two different formalizations. This can also

be expressed as there is no standard way of expressing information.

<person name="Karl Marx">
<wrote>Das Capital </wrote>
</person>

<book name="Das Capital">
<writtenBy>Karl Marx</writtenBy>
</book>

Figure 2.1. XML formalization for Das Capital written by Karl Marx

RDF (Resource Description Framework) is a standard model for data interchange
on the Web [14]. It extends the linking structure of the Web to use URIs to name the
relationship between things and two ends of the links. This is usually referred to as

"triple".

The fundamental concepts of RDF are resources, properties and statements.

2.1.2.1. Resources. A resource is an object, a "thing" for which it is desired to be

talked about. For example, resources are person and book (Lines 1 and 5) in Figure

2.1. Every resource has a URI(Uniform Resource Identifier)

2.1.2.2. Properties. Properties are special kinds of resources which are used to describe

relations between resources. Considering Figure 2.1, properties would be "wrote" and

"writtenBy". (Lines 2 and 6)

2.1.2.3. Statements. A statement is used to define relations between subject and ob-

ject. RDF statements are also known as RDF triples. An example of statement can

be seen in Figure 2.2.

<?xml version="1.0" encoding="UTF-16"7>
<rdf:RDF xmlns: rdf="http://www.w3.0rg/1999/02/22 —rdf —syntax—ns#" xlmns:mydomain
="http://mydomain.com">
<rdf:Description rdf:about="Das Capital">
<mydomain: writtenBy rdf:resource="Karl Marx"/>
<rdf:Description >
<rdf :RDE>

Figure 2.2. XML-based syntax of RDF for Das Capital

In Figure 2.2, the first line specifies that XML is used. rdf:Description element
makes a statement about the book "Das Capital". The relation, writtenBy between
object, "Karl Marx", is defined in http://www.mydomain.org/my-rdf-ns which is a
namespace. The difference between plain XML formalization and this one is that the
relation, writtenBy, has semantics. In other words, applications use the statements in
Figure 2.2 will know that writtenBy means to write a book and the resource connected

to this relation would be a person.

2.1.3. RDF Schema

Resources can be described using RDF; however, RDF does not make any assump-
tions about any particular domain. This can be done using RDFS (RDF Schema) [15].

RDEFES provides the framework to describe application-specific classes and properties.

A class can be thought as a set of elements and objects which belong to a par-

ticular class are referred as instances of that class [11].

Using classes are not enough to describe particular domains, but also restrictions
should be defined. For example, considering two statements below, both of them are
using the same property, "writtenBy". Although, the first statement makes sense, the

second one isn’t correct. Restrictions can be defined using domain and range.

Das Capital is written by Karl Marz.
Karl Marz is written by Das Capital.

In order to restrict above property, domain should be restricted to be a book,
and range should be restricted to be only a writer. In Figure 2.3, we present a simple
ontology for books and writers. In the example ontology, a property "writtenBy" is

defined to model books written by writers, and it’s restricted to book and writer classes.

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22—rdf—syntax—ns#"
xmlns: rdfs="http://www.w3.0rg/2000/01/rdf —schema#">

<rdfs:Class rdf:ID="book">

<rdfs :comment>
The class of books.All books should be written by someone
</rdfs :comment>

</rdfs:Class>

<rdfs:Class rdf:ID="writer">
<rdfs:comment>

The class of writers
</rdfs:comment>
</rdfs:Class>

<rdf:Property rdf:ID="writtenBy">
<rdfs :comment>
It relates books to writers
</rdfs:comment>
<rdfs:domain rdf:resource="#book"/>
<rdfs:range rdf:resource="#writer"/>
</rdf:Property>
</rdf :RDF>

Figure 2.3. Simple ontology for books and writers using XML based RDF syntax

2.1.4. OWL

The W3C Web Ontology Language (OWL) is a Semantic Web language designed
to represent rich and complex knowledge about things, groups of things, and relations
between things [16]. OWL is a logic-based language which can be used to express

knowledge that computer programs can process.

The expressivity of RDF and RDF Schema is very limited. RDF is limited to
binary ground predicates, and RDF Schema is limited to a subclass and property

hierarchies.

10

OWL documents are called OWL ontologies and are RDF documents [11]. The
root element of an OWL ontology is an rdf:RDF element, which can be used to specify
namespaces used in the ontology. Using OWL language, classes can be defined with
owl:Class element. It can also be expressed that the class is disjoint or equivalent with
another class where this expressivity doesn’t exist in RDF Schema. OWL language has
two predefined classes which are owl:Thing and owl:Nothing. The former is the most
general class and every class defined with OWL language is a subclass of the class. The

latter is an empty class. Thus every class is a superclass of owl:Nothing.

In addition to property elements in RDF Schema, OWL language offers more ca-
pable properties. For example, inverse properties can be related. Also, with rdfs:subClassOf
it can be specified that a class C' to be subclass of C”. This means every instance of C
is also an instance of C’. However, restrictions cannot be defined with RDF Schema.
For instance, suppose that a course should be taken only after a course is taken. Such

a restriction can be declared using ow!l:Restriction.

OWL Language also includes some additional properties like cardinalities on
restrictions, transitive, symmetric, functional and inverse functional properties, and

boolean combinations like owl:unionOf, owl:intersectionOf, owl:complementOf.

In Figure 2.4, the ontology presented in Figure 2.3 is declared using OWL. In
addition to class declarations, new properties are also defined which OWL supports.
Classes are distincly defined; in other words, intersection of book and writer classes is
empty. This is done using owl:disjoint With. Also, another object property is declared
just by using owl:inverseOf which means writes object property is inverse of writtenBy
object property. This implies that for writes object property rdfs:domain can be an

instance of writer class and rdfs:range can be an instance of book class.

2.1.5. SPARQL

SPARQL is an RDF query language which can be used to retrieve and manipulate

data stored in Resource Description Framework(RDF) format. It was made a standard

11

<rdf:RDF xmlns:rdf="http://www.w3.0rg/1999/02/22 —rdf —syntax—ns#"
xmlns: rdfs="http://www.w3.0rg/2000/01/rdf —schema#"
xmlns:owl ="http://www.w3.0rg/2002/07/owl#">

<owl: Class rdf:ID="book">
<rdfs :comment>
The class of books.All books should be written by at least one writer
</rdfs:comment>
<owl:disjointWith rdf:resource="#writer"/>
<rdfs:subClassOf>
<owl: Restriction>
<owl:onProperty rdf:resource="#writtenBy"/>
<owl:someValuesFrom rdf:resource="#writer"/>
</owl: Restriction>
</rdfs:subClassOf>
</owl: Class>

<owl:Class rdf:ID="writer">
<rdfs:comment>

The class of writers

</rdfs :comment>

<owl:disjointWith rdf:resource="#book"/>
</owl: Class>

<owl:ObjectProperty rdf:ID="writtenBy">
<rdfs:comment>

It relates books to writers
</rdfs:comment>

<rdfs:domain rdf:resource="#book"/>
<rdfs:range rdf:resource="#writer"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="writes">
<owl:inverseOf rdf:resource="#writtenBy"/>
</owl:ObjectProperty>
</rdf :RDF>

Figure 2.4. Simple ontology for books and writers using XML based RDF syntax and
OWL

12

by the DAWG(RDF Data Access Working Group) of World Wide Web Consortium,

and is recognized as one of the key technologies of the semantic web [17].

SPARQL query language is based on matching graph patterns. Graph pattern
used in SPARQL is very similar to an RDF triple but with the possibility of a variable
instead of an RDF term. Variables can be used to point subject, predicate or object

of the pattern.

In Figure 2.5, foaf prefix is used for "friend-of-a-friend" ontology. The query
returns names of every person in the dataset. The query references the subject with the
variable name ?person. " ?person a foaf:Person" states that the subject is a foaf: Person.
Another triple, " ?person foaf:name ?name" states that the same person, because the
subject is referenced with the same variable name, has a name. The query returns just

names of persons since ?name variable is the only variable selected.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?name
WHERE {

?person a foaf:Person.

?person foaf:name ?name.

}

Figure 2.5. Simple SPARQL query selecting foaf:name data property for instances of

foaf:Person

SPARQL uses namespace mechanism to define prefixes and namespaces so that
queries can be simpler and shorter. In Figure 2.5, foaf (Line 1) is used as a namespace

for friend-of-a-friend ontology.

As in SQL, SPARQL uses select-from-where structure. SELECT specifies the
order of retrieved data. FROM is used to specify the source being queried. Finally,
WHERE is used to impose constraints in the form of graph pattern templates.

13

2.1.6. JSON-LD

JSON is a useful messaging and data serialization format. The data model used
for JSON-LD [18] is a labeled, directed graph which contains nodes which are connected
by edges. It is easy to parse and generate JSON data.

For example, one line of JSON document is obvious for a human to interpret that
this is a name of a person. A machine wouldn’t be able to understand the meaning of

the document.

"name" : "Karl Marx"

Linked data and Web in general, uses IRIs for unambiguous identification. IRIs
to assign unambiguous identifiers to data that may be of use to other developers [18|.
For instance, instead of using just name, one can use schema.org specification [19] so

that above could be unambiguously expressed.

"http://schema.org/name" : "Karl Marx"

JSON-LD is a lightweight Linked Data format. It is easy for humans to read and
write. It is based on the already successful JSON format and provides a way to help

JSON data interoperate at Web-scale.

2.2. Annotation

Semantic Web enables machines to interpret, combine and use data on the Web.
Whereas the current Web is understandable mostly by humans, but Semantic Web
can be used by computers as well. The basis for the Semantic Web are computer un-
derstandable description of resources. Such descriptions can be created by annotating

resources with metadata [7].

14

Several tools, paradigms and models exist to create annotations of Web resources.
In this section, we analyze the Web Annotation Data Model which is a interoperable
framework for creating associations between related resources and uses a methodology
that conforms to the architecture of the World Wide Web. After analyzing the model,
we talk about some applications to create annotations. Lastly, we will talk about

studies related to annotations.

2.2.1. Web Annotation Data Model

The primary problem about creating annotations on the Web, is that user-created
annotations cannot be shared or reused due to lack of common approach to expressing
them. The Web Annotation Data Model species an interoperable framework for cre-

ating associations between related resources, annotations, using a methodology that

conforms to the Architecture of the World Wide Web. [1]

In the model, an annotation is considered to be a set of connected resources,
including a body and a target where the body is somewhat related to the target.
Other possible relationships include choosing a representation of a resource, enabling
content to be embedded within annotation, selecting segments of resources and defining

styling hints for clients. In Table 2.1 namespaces used in specification are listed.

2.2.1.1. Core Annotation Framework. An Annotation can be expressed as the rela-

tionship between two or more resources using an RDF graph. Three basic resources,
the Annotation itself, which is used to identify the concept of this relationship, the Body
and the Target, are described in the RDF graph. The Body and Target resources can
be any media type.

The Data Model states that an Annotation is a web resource and should have an
HTTP URI. All annotations must be instances of the class oa:Annotation. Annotations

may also have provanence information such as who created them.

15

Table 2.1. Namespaces used in the Web Annotation Data Model [1]

Prefix Namespace Description

oa http://www.w3.org/ns/oa# The Web Annotation Data
Model

de http://purl.org/dc/elements/1.1/ Dublin Core Elements [20]

dcterms | http://purl.org/dc/terms/ Dublin Core Terms [21]

detypes | http://purl.org/dc/demitype/ Dublin Core Type Vocabulary
[22)

foaf http://xmlns.com/foaf/0.1/ Friend-of-a-Friend Vocabulary
23]

prov http://www.w3.org/ns/prov# Provenance Ontology [24]

rdf http://www.w3.0rg/1999/02/22-rdf-syntax-ns# | RDF [25]

rdfs http://www.w3.0org/2000/01 /rdf-schema# RDF Schema [15]

skos http://www.w3.org/2004/02/skos/core# Simple Knowledge Organiza-
tion System [26]

The model also allows tagging of resources either with a text or with a URI. The
tag is represented as the Body of Annotation, and the resource being tagged is the
Target. For example, "Istanbul" can be associated with an image of the most crowded
city of Turkey to describe what is depicted. If a resource is being tagged, the Body
should have the oa:Tag class assigned to it because of applications may render tags in

different ways.

For semantic tags, the tag is expressed with a URI. The example above, can use
http://dbpedia.org/page/Istanbul as the Body. The model doesn’t recommend to use
the URI of a document as a Semantic Tag. The reason is that it might also be used as
a regular Body in other annotations. Instead, it recommends to create a new URI and
link it to the document. Using foaf:page is recommended for semantic tagging. If the
URI does not have a representation and the URI truly identifies the concept itself, the

data model recommends using skos:related property.

16

An Annotation may not have a Body resource. An example to this would be
bookmarking a particular resource or highlighting a section of a resource. On the
contrary, it is also possible for an Annotation to have multiple Bodies and/or Targets.
Having multiple bodies and/or targets is allowed as long as dropping any of them
would not invalidate the Annotation’s meaning. Examples may be comparing Targets,

ordering the Bodies, etc.

It is important for clients to understand when the Annotation is created and what
software is used to serialize the model, and the creator of the Annotation. Provenance
information can be attached to the Annotation, Body, Target any other resource in the

RDF graph.

oa Annotation o

I homepagel) .

- S rafjty pe Mmool prov:SoftwareAgent |-
- - X - - Codevl.l

ba-taggmg:u__&@?;__(annol)
foaf. Person — 5 ~ page
rdfty pe
rd tyne =
TD “hame agentl x}
\person_l ¥
oa SemanticTag oa hasTarget
dctypes image

"J__‘IE[E _IJ'_d_bp_ed ia.org/pagellstan IEEJ_[)

Figure 2.6. An annotation example of Semantic Tagging for an image of Istanbul

Figure 2.6 shows an annotation which has a target whose type is a dctypes:Image
and has a URI http://www.balsoy.com/Turkiye/inpictures/pictures/istanbul01.jpg. The
annotation has a body which is an instance of oa:SemanticTag and has foaf:page prop-
erty as http://dbpedia.org/page/Istanbul. The annotation’s motivation is tagging and

it is annotated by a person whose name is "A Person" with an open id "openid1".

17

The model is serialized by a software agent named as "agent1".

2.2.1.2. Specifiers and Specific Resources. The core of the Web Annotation Data Model

is adequate to handle majority of use cases; however considerable number of use cases

remain not covered. Resource segment selection is one of these use cases.

The resource that identifies the segment is called the Specific Resource, and the
resource which describes how to extract the targeted segment is called Selector. Within
the Web Annotation Data Model, only one Selector can be associated with a Specific

Resource.

Fragment Selectors : The Web Annotation Data Model defines a fragment-
based selector called the FragmentSelector with which the segment of interest can be
described through the use of the fragment identifier component of a URIL. The descrip-

tion of the segment is included in the Annotation graph via the rdf:value property.

Range Selectors : The model defines several extractors which describe how to
extract segments that have a start and end in linear data. There are two text selectors

and one for bitstreams.

Text Quote Selector is a class which is used to describe a textual segment by
quoting the target, plus text before and after it. For example, if the document were
"The Maiden’s Tower (Turkish: Kiz Kulesi), also known as Leander’s Tower", "Kiz

"and a suffix of "), also".

Kulesi" could be selected by a prefix of " Turkish: '

If the content is copyright, then this method can be dangerous as one might
select entire document. For such cases, the use of the Text Position Selector is more
appropriate. The Selector describes a range of text based on its start and end positions.
The properties used to describe the positions are oa:start and oa:end. Previous example
would be described as start would be 29, and end would be 39, then the selection again

would be "Kiz Kulesi".

18

oa Annotation

oavhasTarget

ha SpecificResource

oa TextQuoteSelector

foaf page

Figure 2.7. Annotation Target with a oa:TextQuoteSelector selecting textual content

"Kiz Kulesi"

Figure 2.7 shows an example of Text Quote Selector. The Target is a Specific
Resource which has a source of a URI "https://en.wikipedia.org/wiki/Maiden’sTower".
The target in the figure is not the whole page, but the text " Kz Kulesi". In order to

select the content, Text Quote Selector is used with a prefix and a suffix.

SVG Selectors : Even though fragment selectors can be used to descrive
rectangular areas, it is useful to describe circles, ellipses and polygons. SVGSelector
is defined a subclass of oa:Selector and can be used to define shapes using the SVG

standard.

2.2.1.3. States. Resources on the Web are increasingly dynamic or they can be avail-

able in multiple formats. The Web Annotation Data Model also addresses this problem.
To resolve this issue, the data model introduces the oa:State class which is used to de-

scribe how to retrieve a representation of a resource.

19

A Time State specifier records the time that the Annotation was created. Ap-
plications consuming Annotation, can then use this information to figure out an ap-

propriate representation of the resource.

HttpRequestState is a class which can be used to describe how to retrieve an

appropriate representation of a resource based on the HT'TP Request headers.

In Figure 2.8, time state information is added to the instance of the Target.
statel is an instance of oa:TimeState class and has a property oa:when which is

used to store the timestamp at which the Source resource should be interpreted.

rarype ® oaAnnotation

oa TimeState

oa TextQuoteSelector

foaf page

[Kz Kules® |), 8lso”

Figure 2.8. Annotation Target defining the state of target resource by using

oa:TimeState

2.2.1.4. Highlighting and Styles. In the Web Annotation Data Model, the Style re-
source is associated with the Annotation itself. The content of the resource provides
the rendering hints. oa:Style is used to define a resource which describes the style the
selection or resource should be rendered. The model doesn’t recommend to use the

class directly in Annotations, but only its subclasses.

20

CSS is used in the model via the oa:CssStyle class which is a subclass of oa:Style.

The class label is attached to a Specific Resource using the oa:styleClass property.

Figure 2.9 shows an example of CSS Style. In the annotation, Specific Resource

is styled with green style class. The style class is defined as ".green {color : green}".

_ _ oz Annotation
— = o type oa EmbeddedContent

_\-’fgreeﬂ {color : green}]
rdf: type 0 CS5 Style

fsun, 30 Aug 2015 08:33.03 GMT’|

pa SpecificResourcd

oaTimeState

oa TextQuoteSelector

o suffix

[=Kiz kulesr [) also”

foaf: page

Figure 2.9. Annotation for which content is styled by using oa:EmbeddedContent and
0a:CSSStyle

2.2.1.5. Multiplicity Constructs . Even though an Annotation may have multiple

Bodies, Targets or both, the semantics are that each Body individually is about each
Target, is not always the case. Using the Web Annotation Data Model, an Annotation
can be associated with one resource from a group of alternatives. An example to this

would be having a comment that is available in Turkish and English.

The Web Annotation Data Model includes three multiplicity constructs : oa:Choice,

oa:Composite and oa:List.

oa:Choice : A Choice is a set of resources for which a consuming application

21

should select only one to process or display.

oa:Composite : A Composite is a set of resources which are all required for
an Annotation. For instance, an Annotation which compares the differences between

two resources.

oa:List : A List is a set of resources which should be in order in the context of

the Annotation.

The following figure shows an example of a Choice construct. The annotation

has a Body whose type is oa:Choice and it includes to images.

ca:Spedfiches ource

Figure 2.10. Annotation having a body of an instance of oa:Choice, consisting of two

images of Kiz Kulesi

2.2.2. Other Annotation Related Studies

In this section, we will summarize studies related to annotation topic. We will

just give notion of the related studies.

22

e A Web application called SAPIENT 27| is introduced by Maria Liakata, Claire
Q, and Larisa N. Soldatova for sentence based annotation of full papers with
semantic information. The application enables annotation of scientific papers
sentence by sentence and also linkin related sentences together.

e Another study related to semantic annotation of unstructured and ungrammatical
text is carried out by Matthew Michelson and Craig A. Knoblock. The study
[28] is about annotation of informal data. The method they used is to leverate
collections of known entities and their common attributes, called "reference sets,"
so that these unstructured data can be annotated despite lack of grammar and
structure.

e An open ontology in OWL presented by for scientific documents on the web. The
Annotation Ontology supports both human and algorithmic contents [29]. The
presented model supports versioning and a set model for specifying groups and
containers of annotation.

e SAWSDL [30] defines how to add semantic annotations to various parts of a
WSDL document such as input and output message structures, interfaces and
operations. In addition to this, it also defines an annotation mechanism for
specifying the structural mapping of XML Schema types to and from an ontology.

e Since tweets contain mentions of numerous entities, persons and events, and often
additional information, like an opinion that can be viewed as an annotation of
that entity [31]. In the study, a natural processing approach is discussed to extract
information about entities and their annotations from tweets.

e Semi-automatic semantic moderation of web annotations [32] is a research that
focuses on leveraging the context and content features of social web annotations
for semi-automatic semantic moderation. In the study, an approach for semi-
automatic semantic moderation by analyzing and exploiting both content and
context dimensions of annotations.

e A study about annotation of images and videos for multimedia analysis is carried
out to propose an approach different than older methods which mainly focus
on the content dimension and corresponding annotations, such as a person or
vehicle [33]. In this study, a software environment is presented to bridge between

two directions by linking low level MPEG-7 visual descriptions to conventional

23

Semantic Web ontologies and annotations.

e Django [34] is a free and open source web application framework which is written
in Python in order to create open sourced online tutorials and curate amazing
first experiences with technology. The web framework is a set of components
that helps people to develop websites faster and easier. Within this framework,
there is translation as well as renarration. Tutorials are translated by sentence
by sentence while keeping the links between translated version and the original

version.

2.3. Renarration

According to W3C website, the Web is fundamentally designed to work for all
people whatever the hardware, software, language, culture, location, etc. However,
when websites, web technologies or web tools are badly designed, they can create
barriers that exclude people from using the Web [35]. In the renarration model, a web
page or even an element of a web page is rewritten, renarrated, to make it accessible

for a target audience. [6]

2.3.1. Accessibility

As with the improvement in the Web technologies, the impact of disability is
radically changed because of barriers being removed. However, there are accessibility

issues on the Web due to social, cultural geographical and other factors.

Figure 2.11 shows an example of accessibility issue. In the figure, there is a web
page P about fire safety which is originally written in English. A blind person B, might
be able to read this page with help of a screen-reader software. This would be possible

only if the author of this page, doesn’t violate any guidelines.

Renarration architecture enables someone X, not necessarily the authors, to pro-
vide a renarration of this fire safety page which might be more accessible for blinds.

X might create Blind(P) and put it on the Web. Whenever B visits the page P,

24

Vi

-Eﬁ -
8

i

e

Figure 2.11. A Web Page about fire safety originally written in English [6]

alternative page Blind(P), could be accessed.

2.3.2. Barriers

In this section, we’ll talk about kinds of accessibility issues such as language,

literacy, etc.

2.3.2.1. Language Barriers. Considering the example, in Figure 2.11, another barrier

might lead the page inaccessible. For instance, if the page is visited by a person who
cannot read English, it would mean nothing. When a person Y, who know how to read
in Turkish, and if a Turkish version of P Turkish(P) exists, then Y can read that page

instead.
In addition to this, fire engine in the image might not be familiar to Y. So, the

renarrated page Turkish(P) might also substitute an image of the fire engine found in

Turkey instead.

2.3.2.2. Literacy Barriers. According to statistics retrieved from TSI [36], almost 5

percent of the population are still not lettered in Turkey by 2014. It is obvious that
most of the content on the Web is text dominated. This kind of statistics doesn’t

mean that the content will be consumable to them, if it was made available in different

25

format. For instance, audio, video might be more appropriate for such audience. The

renarration approach provides a good way to handle this kind of accessibility issues.

2.3.2.3. Other Accessibility Issues. Even though there are many different ways of im-

plementing web pages, many of them violate guidelines. An example to this would
be that tables within the HI'ML are used mostly for formatting, not just for data in
tabular format. Not only violating guidelines might make web pages inaccessible, but
also some other accessibility issues might occur. For instance, a page might be inacces-
sible because of simply poor writing or because the writing is too technical. In those

situations, simplifying the content, alternative narration, clearly might be helpful.

2.3.3. Addressing Accessibility on the Web

The section Designing for Inclusion of the W3C site states :

"Inclusive design, design for all, digital inclusion, universal usability, and similar
efforts address a broad range of issues in making technology available to and usable
by all people whatever their abilities, age, economic situation, education, geographic

location, language, etc." (6]

The renarration approach is one of the ways of making the web more inclusive.
The approach doesn’t prescribe any specific implementation or any choices which any
implementation should make. It just states the problem of accessibility more broadly

and move the discussion towards inclusion.

2.4. Applications

In this section, we provide list of applications which have attempted to increase
accessibility of contents on the Web. First, we’ll list an annotation and a renarration
application. After that, we’ll list crowd-sourced applications which are : Django Girls

[34], Duolingo [37] and Google Translate |38|.

26

2.4.1. Annotator

Annotator is an open-source JavaScript library which can be used to add annota-
tion functionality to any webpage. Annotations can have comments, tags, links, users
and more [39]. Annotator library is designed for easy extensibility.

In order to initialize the library, the following javascript needs to be added.

var ann = Annotator(document.body);

In order to setup default plugins, annotator.min.css and annotator-full.min.js

should be included and the following method should be called.

ann.setup Plugins();

Figure 2.12 shows an example of the Share Annotator Plugin [40], which enables

sharing annotations in social networks.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac
furpis egestas. Vestibulum tortor quam, feugiat vitae, ultricies eget, tempor sit ame

ante. Donec eu libero sit amet quam egestas semper. .denean ultricies mi vitae est, May Share wihoutsaving

placerat eleifend leo. Quisque sit amet est et sapien ullamcorper pharetra. Vestibuly w—
=z = 2 c .- ance SZvE

erat wisi, condimentum sed, commodo vitae, ornare sit amet, wisi. Aenean b ’

. Lo o
fermentum, elit eget tincidunt condimentum, eros ipsum ritnum orci, SAZITHS tempus
lacus enim ac dui. Donec non enim in turpis pulvinar facilisis. Ut felis.

Figure 2.12. User interface for creation of an annotation using Share Annotator

Plugin [40]

2.4.1.1. Storage API. The Annotator library defines storage API in terms of a prefix

and a number of endpoints. The API follows the principles of REST. Each of the
endpoints for the storage API is expected to be existing on the Web. For example, if the
prefix were http://example.storage/api, then the index endpoint would be http:
//example.storage/api/annotations. There are six core endpoints, root, index,

create, read, update, delete.

27

2.4.1.2. Plugins. The Annotator is a highly modular architecture and plugins provide

a great deal of functionality.

The Auth plugin complements the Store plugin and provides authentication for
requests. The plugin works by requesting a token from the local server and the token

is used for all requests to the store.

The Filter plugin allows users to filter the displayed annotations. When the
plugin is used, a toolbar is added to the top of the window. The toolbar contains

available filters which can be applied to the annotations.

The Markdown plugin allows users to use Markdown [41] in annotation com-
ments. These comments are then rendered in the viewer. Markdown is a text-to-HTML
conversion tool for web writers. It allows writing using an easy-to-read and easy-to-

write plain text format, then convert it to valid XHTML.

The Permissions plugin handles the user and permissions properties on anno-
tations. The plugin adds Viewer section to a viewed annotation and this displays the
name of the user who created it. It also adds two fields to the annotation editor which

are showed only when current user has admin permissions on the annotation.

The Store plugin sends annotations to the server. The plugin sends the anno-
tations serialised as JSON. The annotator can perform create, update, destroy and

search actions.

The Tags plugin allows annotators to tag their annotations with keywords. Again
when the plugin is used, viewer, which displays any tags, is automatically added. The
plugin also adds an input field to the editor which is used to enter space separated list

of tags.

28

2.4.2. Alipi
Alipi [6] is designed with the objective of enabling one set of web users, the

renarrators to renarrate any web page or its element, and consumers who consume the

web resources renarrated.

2.4.2.1. Approach. From a DOM perspective, renarration is a syntactic restructuring

of the DOM structure of the document. [6] Traditional solutions for accessibility is
usually done by the author specifying a rewriting rule. For instance, specifying alt
tag for an image. However, the approach taken by the Alipi that these rewriting rules
will not be a fixed; there might me multiple versions of these rewrites e.g., by a user,
the author of the page, or even a service. Alipi accomodates multiple strategies for
accessibility : fetching renarrations of a page from a store anywhere on the web, or

restructuring a page on the place, or combination of two.

2.4.2.2. Architecture. The architecture of Alipi relies on three main subsystems: (a)

a subsystem for renarrators to create renarrations, (b) a subsystem for indexing web

pages or its elements to renarrations, and (c) another subsystem for renarrating web

pages.

Figure 2.13 shows creation and indexing of renarrations of a page P consisting
of elements (E and E’). Renarrations E1 and E2 are being created for the element
E. The renarrations exist on the Web each with its own url Ul and U2, etc. The
Alipi architecture requires all renarrations accessible on the Web. That also ensures a
decentralised renarration model. Each renarration contain an attribute called foruri

which is used to refer to the original object.

Crawler and indexer fetches the original page and existing renarrations created

for the page P’s elements U/E and generates an index.

When a user requests the page at url U, semantic attributes for the user’s profile

29

~ EL UL

Toor wri: EI_, Lz

LUE
Tedani:
T

E3, U3

Re-narrating - E4. L4
= eement E h-::t ' Re-narrations
o

1 . | muf'la.[n | >

~— 3 v 2
T | erawler and Indeser |

ls
o
e~
{i"'* LUI3/E3
= U4/E4

Magping of ariginal pageelement
ko re-narrations

RE-rarrabors

CQiriginal Page

Figure 2.13. The creation and indexing of renarrations of a page P with url U using

Alipi prototype |6]

are being used and to match appropriate renarrations of the requested page. The
appropriate renarration then rendered in the user’s browser as renarration P’ of P at

the same url.

2.4.2.3. Alipi Prototype. Renarration is implemented as a service in the Alipi proto-

type. Using the service, a user can choose a web page for renarration and specify target

groups and publish the renarration.

Any number of renarrations may be created for any given web page. The renar-
rator can define translations, simplifications or provide alternative media to the target
audience. In addition, the renarrator can provide the language, geographical region,

and tags.

Figure 2.14 shows a page on fire safety in English. In the figure, a popup is shown

to the renarrator with the image of fire truck can be replaced.

30

Figure 2.14. The page on fire safety being edited for renarration. Note the popup on

the image inviting its replacement [6]

Figure 2.15 shows renarrated version of the fire safety page in Figure 2.14. The
second paragraph has been replaced by text in Hindu and the picture has been replaced

with an image of Indian fire truck.

Figure 2.15. Renarrated version of the fire safety page in Figure 2.14. [6]

2.4.3. Other Crowd-sourced Applications

There are several systems that have attempted to increase the accessibility of
content on the Web. In this subsection, we’ll talk about three of them : Django
Girls [34], Duolingo [37] and Google Translate [38].

Django Girls is a non-profit organization that empowers and helps women to
organize free one-day programming workshops by providing tools, resources and sup-

port. It is a crowdin translation application for collaborative translations. The mission

31

of Django Girls is to bring more women into the world of technology and increase the
diversity. The barrier that they are dealing with is language. Other barriers are trying
to be resolved with mentors. Figure 2.16 shows the translation of a tutorial about how
to create a Django views. In the figure, it can be seen that each sentence is indexed
and relation between original content and its translation is kept.

=/ o A

Views are placed in the <0=views.py=/0= file. We will add our <1>views</1> to the

Django views - yaratma zamani geldi! <0-bloghvens py</0> i

Evvelki botimde yaptiz hatay yok edelim °) ~ Context | Request Context

Gérimiim (view). uygulamanmn "mantigi"'mn ifade edildigi verdir Daha énce olusturulan
medel den bilg alip template (sablon)'a iletir. Gelecek biliimde bir sablon (femplate)
olusturacagtz. Gériniimler bildiginiz Python metodlandir. Ancak. Python'a Giris

bolumiinde yazdigimiz metodlardan biraz daha karmagtktir. Gorundmler <
<1=gorindm ¢

Goruniimler views.py doyasma yazilir. $imdi. blog/views.py dosyasina gorimion (view)

ekleyelim

blog/views.py

Figure 2.16. Translation of a tutorial about how to create a Django views.

Duolingo is a free language-learning platform that includes a language-learning
website and app along with a crowdsourced text translation platform and a language
proficiency assessment center. The website offers over 50 different language courses
across 23 languages. It employs a crowd sourced business model, where members of
the public are invited to translate content and vote on translations. The content comes
from organizations that pay Duolingo to translate it. Figure 2.17 shows a discussion
of a particular question. User wants to discuss the answer with others. People who are

native or know language well often answer.

32

@ 'Eravamo entrati senza biglietti"

0

Translation: We had entered without tickets.

15 Comments

Antonio_93 ()10 E£7 @
=S OT Common thing in Italy

1 Reply Give Lingot

0 silkwarrior () 24 ¢ 666
used to be on the buses - don't know if now - | well remember someone

telling me to not pay as the natives didn't - they saw this as being
culturally sensitive/fitting in/being a person of the world/non judgemental

1

Figure 2.17. Duolingo screen showing a discussion of a particular question where user

wants to discuss the answer with others.

Google Translate is a free multilingual statistical machine translation service
provided by Google to translate text, speech, images, or real-time video from one
language into another. It does not apply grammatical rules, since its algorithms are
based on statistical analysis rather than traditional rule-based analysis. It also has
gamification and crowd wisdom. Figure 2.18 shows an example translation for a course
equivalence for an exchange student. The aim of the student is to figure out whether

the content of courses matches or not.

33

Go gle hiip://cse.deneyi.net/softwareengineering himl “ Suzan i o o

Translate From: German j To: English j View: Translation Original 2

Course: 24518 - Software Engineering I (SS 2015)

« Detailed information
« Further information

content

Description:

Contents of the lecture is the entire life cycle of software from the project planning, systems analysis, cost estimation, design and implementation, validation and verification, to the

maintenance of software. Next UML, desian patterns, software tools, proaramming environments and confiquration control are handled.

Learning goals: Original German text: Google]
Studierende kennen Aubau und Gliederung eines Lastenhefts und verstehen die Notwendigkeit eines Glossars und einer

Know students and under: Durchfihrbarkeitsuntersuchung.

model of the software dev
Contribute beter translation

ting and acceptance, use and maintenance of the waterfall
Students master the mode!MgOTapPICAHONS, @ SCENATIo ST UMLTSE. - of requirements and problems and techniques of requirements
elicitation. Students know structure and organization of specifications and understand the need for a glossary and a feasibility study.

Students can create a specification in accordance with the specifications described schema for a given task.

Students understand the concept of modeling and various types of UML models and their elements. Students master the creation of object models and dynamic models with the UML
diagram types class diagram, use case diagram, activity diagram, interaction diagram, sequence diagram, state diagram and package diagram.

Students understand the basic OO concepts object, class, copy, attribute, condition, Kapselungsprinzip, association and relation, cardinality, multiplicity, inheritance is-a relationship,
abstract method, interface, co- / contravariance, Germany / variance, polymorphism , visibility / "Access Protection”.

Students understand the need of design trade-offs and the concepts of modular and object-oriented design and architecture and design patterns, and can compare these and apply.

Students know the terms abstract machine / virtual machine and program Family / software product line.

Knnw chndente and nnderctand the architertiral chilae Har architartira client / emnlaver (enm Client / Qarverl nartnar natwnrke (anrr Pasr.tn.neer) data ctnrana fenn Renncitnr)

Figure 2.18. An example Google translation for a course equivalence for an exchange

student.

34

3. MODEL

This chapter proposes a model for creating renarrations of resources. The model
has been realized through the design of five major sub-systems: Renarration Trans-
formation for describing different type of actions on HTML elements, Selectors for
describing parts of resources, Actions to describe the activity done on the element in
source documents, Motivations for describing the reason of renarration transformations
and /or whole renarrations, and lastly Lists for defining ordered constructs for select-
ing parts of source documents in an order or creating ordered narrations of source

documents.

3.1. Renarration Data Model

Renarration Data Model specifies a framework for creating alternative narrations
of source documents by transformation of their elements such as translation of a para-

graph or replacing an element with an image.

Figure 3.1 shows high level pseudo code of renarration process on a source docu-

ment.

A Renarration is considered to be an alternative narration described by a given
user at a given time consisting of a set of transformations. Figure 3.2 shows renarration
of a source document. The source document is renarrated by a set of transformations
on the elements of the document, as a result target document is composed. The whole

process is called a Renarration.

The Model defines a namespace for its classes, and properties. It also uses other

namespaces. Table 3.1 shows namespaces used in the data model.

The specification for the data model is divided into distinct modules. Figure

3.1 shows the relationship between rn:Renarration and rn:Renarrator classes. The

let SD be a web resource to be renarrated
let TD be a target document (renarrated document)
list < list of elements inSD
for each element E in [ist do
if E is renarrated then
action <— insert, replace, remove
E’ + apply action on E

create semantic relation between £ and E’

TD + F’
end if
end for

return T'D

Figure 3.1. Pseudo code for creation of renarration of a resource

e i Renarrated Az —

i7 v

Source Document

Target Docum ent

Figure 3.2. Renarration Of A Document

36

Table 3.1. Namespaces used in the Renarration Data Model

Prefix | Namespace Description

oa http://www.w3.org/ns/oca# Web Annotation Data Model
1]

foaf | http://xmlns.com/foaf/0.1/ Friend-of-a-Friend Vocabulary
23]

rdf http://www.w3.0rg/1999/02/22-rdf -syntax-ns# | RDF [25]

rdfs | http://www.w3.0rg/2000/01/rdf-schema# RDF Schema [15]

skos | http://www.w3.0rg/2004/02/skos/core# Simple Knowledge Organiza-
tion System [26]

owl http://www.w3.org/2002/07/owl# OWL Web Ontology Lan-
guage [16]

xsd http://www.w3.0rg/2001/XMLSchema# XML Schema [42]

cnt http://www.w3.0rg/2011/content# Content in RDF [43]

data model proposes that each renarration must be created by a renarrator and each

renarrator must be a person not a software agent. The equivalent class of rn: Renarrator

is defined as foaf:person. Table 3.2 shows explanation of terms used in Figure 3.1.

37

Table 3.2. Definitions of classes and properties related directly to renarration

Item Type Description

rn: Renarration Class The class for Renarrations. The rn: Renarration
class must be associated with a renarrator and
a time stamp.

rn: Renarrator Class The class for Renarrators. Each renarrator must
be equivalent with foaf:Person.

rn: Document Class Any type of resource on the Web. If a more spe-

cific type is known, than it should be associated

with source or renarrated documents.

rn:renarrated By

Object Property

The relationship between a Renarration and
a Renarrator. There must be at least one
rn:renarratedBy relationship associated with a
Renarration. The object of the relationship
must be an instance of rn:Renarrator class,
which is the person who is responsible for the

creation of the Renarration.

rn:onSourceDocument

Object Property

The relationship between a Renarration and
a source document. There must be at least
one rn:onSourceDocument relationship associ-
ated with a Renarration. The object of the re-
lationship must be a document for which the re-

narration is being done.

rn:toTargetDocument

Object Property

The relationship between a Renarration and a
target document (renarrated document). There
must be at least one rn:toTargetDocument re-
lationship associated with a Renarration. The
object of the relationship must be an instance of

rn:Document class.

rn:renarratedAt

Data Property

The time at which the Renarration is created.
There must be exactly one rn:renarrated At prop-

erty associated with a Renarration.

38

xwsd.dateTimeStamp

owd-equivalentClass

foaf:Persan . documentl . renarratedDocument

Figure 3.3. The Renarration Model consisting of a Renarrator, a source document,

and a renarrated document, and the time of renarration.

Figure 3.4 shows serialization of a basic renarration in JSON-LD format. In the
serialization, it is assumed that there is a source document ’documentl’ (Line 6) and

target document (Line 15).

3.1.1. Renarration Transformation

Renarration of a source document is done by transformation of elements in the
document. Renarration Transformation can be defined as an atomic modification

to part of a source document to create an alternative version of it.

In Figure 3.5, source document SD includes 4 elements: E1, E2, E3, and E4. The
source document is renarrated and the only transformation done on the element E1.
As it can be seen in the figure, the text in E1 is updated. This atomic operation itself

is called a Renarration Transformation, and whole process is called a Renarration.

Renarration Transformation(E1) = E1’

Renarration(SD) — E1” U E2’ U ... EN’

C X N Y Tt W N

e e e e T
0O N O Ut s W NN = O

39

{
"@id" : "renarrationl",
"Qtype": "rn:Renarration",
"rn:renarratedAt": "2015—-09-14T00:00:00Z",
"rn:onSourceDocument": {
"@Qid": "documentl",
"@Qtype": "rn:Document"
I
"rn:renarratedBy": {
"@id": "http://ex.org/personl",
"Qtype": "foaf:Person",
"foaf:name": "Person One"
}s
"rn:toTargetDocument": {
"@Qid": "renarratedDocument",
"@Qtype": "rn:Document"
}
}

Figure 3.4. Serialization of a basic Renarration renarrated by a person in JSON-LD

E1l E2 E1 E2

—— E— Renarrated As

E3 B4 E3 2

Source Document Tamet Docum ent

Figure 3.5. Renarration Transformation on an element of a source document

40

In the Renarration Data Model, each renarration transformation must be done on
the same source document for a renarration. Each renarration transformation should
have rn:onSourceDocument, and rn:hasNarration relationships. rn:onSourceDocument
is the relationship between renarration transformation and selected part of source doc-
ument. rn:hasNarration is used to define relationship between the renarration transfor-
mation and narration created by renarrator. rn:toTargetDocument defines part of the
renarrated document which is related to selected part in the source document. If the
source and target selections are the same, it’s not mandatory to define target selection

with rn:toTargetDocument. Table 3.3 shows explanation of terms used in Figure 3.6.

i dAt

nTransformation (N
xsd dateTimeStamp

owl:equivalentClass

(m:RenarraIionTranstrmahm :)

-

foafPerson

narrationl

selection2

selectionl

rn:accesssdFrom) ‘
Asd-dateTimeStamp

externalResource

Figure 3.6. Diagram for relations between a renarration and renarration

transformation with a narration, source document and renarrated document

Table 3.3. Description of items for a Renarration Transformation on source

41

documents
Item Type Description
rn: Renarration Transformation Class The class for Renarration Transfor-
mations defining specific actions on
parts of source documents.
rn:hasRenarration Transformation | Object The relationship between a Renar-
Property ration and Renarration Transforma-
tion. The object of the relation-
ship can also be an instance of struc-
ture(rdf: List).
rn:hasNarration Object The relationship between a Renar-
Property ration Transformation and a narra-
tion defining content being created
for source content.
rn:sourceDocumentSelection Object The relationship between a Renar-
Property ration Transformation and part of a
source document. The object of the
relationship must be an instance of
a selector class.
rn:targetDocumentSelection Object The relationship between a Renarra-
Property tion Transformation and part of the
renarrated document. The object of
the relationship must be an instance
of a selector class.
rn:created At Data Prop- | The time at which the Renarration
erty Transformation is created. There
must be exactly one rn:createdAt
property associated with a Renarra-
tion Transformation.
rn:accessedFrom Object The relation between a narration
Property and external resource from which

the content may be referenced.

42

Normally, it would be very rare that there will be only one transformation for
a renarration. The data model recommends using rdf:List [15] where there are more
than one transformation on the elements of a source document. The list-like structures

are covered in following sections.

Figure 3.7 shows serialization of a basic renarration transform in JSON-LD for-
mat. Note that in the example, the narration type is defined as cnt: ContentAsText.

The cnt:ContentAsText that RDF [43] is for any type of textual content.

"@id": "renarrationl",
"Qtype": "rn:Renarration",
"rn:renarratedAt": "2015—-09-14T00:00:00Z",
"rn:renarratedBy": {
"@id": "http://ex.org/personl",
"Qtype": "foaf:Person",
"foaf:name": "Person One"
b
"rn:onSourceDocument ": {
"@Qid": "documentl",
"@type": "rn:Document"
I
"rn:hasRenarrationTransformation":{
"@Qid": "renarrationTransformationl",
"@Qtype": "rn:RenarrationTransformation",
"rn:hasNarration": {
"@id": "narrationl",
"Qtype": "cnt:ContentAsText",
"cnt:chars": "content of narration"
b
"rn:createdAt": "2015—-09—-14T22:20:00Z"
b
"rn:toTargetDocument": {
"@id": "renarratedDocument",

"Q@Qtype": "rn:Document"

}

Figure 3.7. Serialization of a basic renarration transform in JSON-LD

3.1.2. Actions on Documents

In many cases, a renarration transformation on a source document or on part of

the source document has an activity on the element itself. In other words, a renarrator

43

might want to remove, replace or insert some content in the source document when

creating a narration.

Action can be defined as type of atomic activity done on part(elements) of
source document, where the result of the activity is the narration created by the
renarrator. Each instance of rn:RenarrationTransformation must have at least one
rn:actionOnDocument relationship to an instance of rn:Action class which is a sub-

Class of skos: Concept.

Figure 3.8 shows an example of two actions on source document. Element E1
in the source document is replaced with new content and this is shown as E1’ in
target document. Another action on the source document is removal of E3; the target

document doesn’t have that element.

El EZ2 El’ E2
e i Renarrated As
E3 E4 e E4 |-
) Iy
Source Document Target Document

Figure 3.8. Diagram for renarration having replacement and removal actions

In Figure 3.9 the relationship between rn: Renarration Transformation and rn: Action
classes is shown. The data model uses SKOS Concepts and SKOS Concept Schemes for
defining actions. rn:Action is defined as a subClass of skos: Concept and each instance
of rn: Action is defined under rn:actionScheme which is an instance of skos: ConceptScheme.

Table 3.4 shows explanation of terms used in Figure 3.9.

Table 3.4. Class and Property Definitions of Actions

Type

Name

Description

Class

rn:Action

subClass of skos:Concept. The rn:Action
class must be associated with a Renarra-

tion Transformation.

Object Property

gnamernactionOnDocument

The relationship between
rn: Renarration Transformation and
rn: Action for defining type of action on

targeted source element.

Named Individual

rn:actionScheme

Instance of skos:ConceptScheme. The
concept scheme for defining a set of in-

stances of rn:Action.

rn:replace

Instance of rn:Action. The action that
represents replacing content in a source
document with new content which will re-

side in a target document.

rn:remove

Instance of rn:Action. The action that
represents replacing content in a source
document with nothing in a target doc-

ument.

rn:insert

Instance of rn:Action. The action that
represents insertion of content to a spec-

ified location.

44

45

{" m:RenarrationTransformation

skos . ConceptScheme

rn:actionOnDocument

rfth pe rm:replace

T s
rm:actionScheme rm:Action)
\\-.__ .a/
rm.remaove —
rdfs.subfClass0of
skos:Concept

Figure 3.9. Diagram for list of actions can be defined for renarration transform

In Figure 3.10 which is a continuation of Figure 3.7, content in source document

is replaced with new content which is defined by using cnt:ContentAsText.

3.1.3. Selectors

Even though a renarration can have more than one renarration transformation,
all transformations on a document are thought to be only one renarration. However,

renarration transformations usually refer to part of a source document instead all of it.

A Document can be described any web resource which can be identified by a
URI. In order to determine parts of source documents, the Renarration Data Model
uses selectors. A Document Selector is a superclass for all selectors to describe how
to determine parts of source documents. There must be at least one selector class

associated with a class rn:Document.

In Figure 3.11, an example of selection is shown. Source document has an element

46

"@Qid": "renarrationl",
"@Qtype": "rn:Renarration",
"rn:renarratedAt": "2015—-09-14T00:00:007Z",
"rn:onSourceDocument": {
"@Qid": "documentl",
"Qtype": "rn:Document"
I
"rn:renarratedBy": {
"@id": "http://ex.org/personl",
"Qtype": "foaf:Person",
"foaf:name": "Person One"
b
"rn:hasRenarrationTransformation ":{
"@id": "renarrationTransformationl",
"@Qtype": "rn:RenarrationTransformation",
"rn:hasNarration": {
"@id": "narrationl",
"Qtype": "cnt:ContentAsText",
"cnt:chars": "content of narration"
b
"rn:createdAt": "2015—-09—-14T22:20:00Z",
"rn:actionOnDocument" : "rn:replace"
b
"rn:toTargetDocument": {
"@id": "renarratedDocument",

"Qtype": "rn:Document"

}

Figure 3.10. Serialization in JSON-LD format for a basic action for which content is

replaced with a textual content

E1 which includes elements E11 and E12. In the example, renarrator renarrates E11
and creates E117 in the target document. In order to select an element which is inside

another element, a selector can be used.

TextSelector is a superclass for PrefixSuffixSelector and rn:ByteSelector.
This selector is used to select text based resources or parts of resources which are
in text format. The main reason to have two different selectors is that rn: ByteSelector
is aimed to select large chunks of texts. For applications implementing the Renarration
Data Model, it would be a lot easier to use offsets when larger text is targeted. Prefix-

SuffixSelector has three data properties such as prefix, suffix and selected text. It is

47

El El

. B . -
. E1? Renamasd Az . E1Z?

v I 4

Source Dooument Target Document

Figure 3.11. Diagram for renarration of a child element

not necessary to define prefix or suffix for a selected text which would mean all instances
of selected text within the context. For instance, assuming a renarrator renarrating a
sentence S in a paragraph P which is in a web page WP. PrefixSuffixSelector(S in P,

prefix=""_suffix="") would mean all S in P.

Even though most of the content on the Web is in text format, there are many
other data formats. XML is just one of these formats, and HTML documents can
also be treated like XML documents. XPath is used to navigate through elements and
attributes of XML documents and it is a major element in W3C’s XSLT standard. It
can be described as a syntax for defining parts of an XML document. XPath models
an XML document as a tree of nodes and it defines a way to compute a string value for
each type of node. XPathSelector is used to select elements of an XML document.
The reason that the model includes such a selector is that it is easy to target elements
of HTML documents. In addition to this, consuming applications can use JavaScript
to find targeted elements easily. XPathSelector uses http://tools.ietf.org/rfc/

rfc3023 specification to define syntax of the selection.

In order to select part of media on the Web, the model proposes MediaSe-
lector. This selector uses http://www.w3.org/TR/media-frags/ specification which
describes the Media Fragments basic specification. The specification specifies the syn-
tax for constructing media fragment URIs. It also explains how to handle them over
the HTTP protocol. This selector can be used to select fragments of images, videos,

and /or audio files.

48

While renarrating web resources, selection of part of documents between speci-
fied positions can also be defined by using BetweenSelector. This selector uses an
object property between for which the object should be an instance of rn:List class.
For selections like ’insertion of content before selection’, we define an instance of Be-
tweenSelector class for which the object of between object property is a list that
has first element an instance rn: Empty class and next element being an instance of any

selector.

Table 3.5. Class Definitions of Selectors

Name Description

rdf: DocumentSelector | The superclass for all selectors.

rn: TextSelector subClass of rn: DocumentSelector and superclass
of rn:PrefizSuffizSelector and rn:ByteSelector.
The class describes a range of text either by the
use of start and end positions or by using prefix

and suffixes.

rn: X PathSelector subClass of rn:DocumentSelector. The class de-
scribes a targeted segment by using a fragment

identifier using xpath.

rn: MediaSelector subClass of rn:DocumentSelector. The class de-
scribes a targeted segment of any media on the

Web by use of a fragment identifier.

rn: PrefizSuffivSelector | subClass of rn: TextSelector. The class describes

a range of text by the use of prefix and suffix.

rn: ByteSelector subClass of rn: TextSelector. The class describes

a range of text by the use of start and end bytes.

rn:BetweenSelector subClass of rn: DocumentSelector. The class de-

scribes a selection between two selectors.

rn: EmptySelector subClass of rn:DocumentSelector. The class de-

scribes no selection. Special class designed to be

used with rn:BetweenSelector.

49

h

listl

xsdistring

hetp:itock i org/fot 023

Figure 3.12. Document Selectors in the Renarration Data Model

Table 3.6. Description of the properties related to selectors

Type | Name Description
rn:sourceSelection | associates the source document of a
rennaration with a selector
g rn:targetSelection | associates the target document of a
8 rennaration with a selector
rn:isBetween specifies a position with a
rn: BetweenSelector in a rn:List.
rn:prefic subsstring prior the target text
rn:suffiz The snippet of text occurs after the
targeted text in a resource.
rn:selected Text The snippet of text which is tar-
geted.
rn:offset The starting position of the content
c@ to be selected.
g rn:byte Number The number of bytes should be se-

lected after the value of rn:offset

rdf:value

The value of fragment identifier.

dc:conformsTo

Each rn: X PathSelector and
rn: MediaSelector ~ classes must
have dc:conformsTo relationship.
Defines an established standard
to which the described resource

conforms.

20

ol

Figure 3.13 is a continuation of Figure 3.10, where rn:ByteSelector is used to

select 20 bytes starting from 10 bytes within the source document.

{

"@id": "renarrationl",
"@type": "rn:Renarration",
"rn:renarratedAt": "2015—09—14T00:00:00Z",
"rn:renarratedBy": {
"@id": "http://ex.org/personl",
"Qtype": "foaf:Person",
"foaf:name": "Person One"
b
"rn:onSourceDocument": {
"@Qid": "documentl",
"@Qtype": "rn:Document"
I
"rn:hasRenarrationTransformation":{
"@Qid": "renarrationTransformationl",
"@Qtype": "rn:RenarrationTransformation",
"rn:sourceDocumentSelection": {
"@id": "selectorl",
"Qtype": "rn:ByteSelector",
"rn:offset": "10",
"rn:byteNumber": "20"
I
"rn:hasNarration": {
"@id": "narrationl",
"Qtype": "cnt:ContentAsText",
"cnt:chars": "content of narration"
b
"rn:createdAt": "2015—-09—-14T22:20:007",
"rn:actionOnDocument": "rn:replace"
b
"rn:toTargetDocument": {
"@Qid": "renarratedDocument",

"@Qtype": "rn:Document"

}

Figure 3.13. Serialization in JSON-LD format for selection of 10 bytes
3.1.4. Motivations
It is very important to know the motivation behind a renarration in order to make

content on the Web more accessible. The Motivation can be defined as the reason why

renarration or renarration transformation within a renarration is created.

52

The Renarration Data Model proposes 4 types of motivations for creating re-
narrations. These named individuals are created as instances of rn:Motivation class.
rn: Motivation class is defined as subClass of skos:Concept. Each renarration must
have at least one rn:hasMotivation relationship to an instance of rn: Motivation class

which is a subClass of skos: Concept.

Figure 3.14 shows the relationship between rn:RenarrationTransformation and

rn: Motivation classes.

skos:ConceptScheme

rn translation

skos:Concept

o rdlszm; assOf
L

m:Motiv ation }

rn-motvationScheme

m-hasfativation

m-correction

malternatve

| r . h
(m:Renarration)

M

audiencel

Figure 3.14. The relationship between rn:Renarration and rn: Motivation classes.

The Renarration Data Model allows usage of motivations for both renarration
transformation and the renarration itself. For instance, the subject of the relationship
can be an instance of rn:Renarration or an instance of rn: Renarration Transformation.

Table 3.7 shows explanation of terms used in Figure 3.14.

Table 3.7. Class and Property Definitions for Motivations

Type | Name Description
% rn: Motivation subClass of skos:Concept. The reason behind
© the creation of a renarration or a renarration
transformation. Motivations can be things like
translation, simplification, correction, or alter-
native.
skos:conceptScheme A SKOS concept scheme can be defined as an
aggregation of one or more SKOS concepts.
% rn:hasTargetAudience | The relationship between a renarration and a
E group of people renarration is aimed for.
g rn:hasMotivation The relationship between a renarration and mo-
g tivation.
skos:inScheme The relationship between a Thing and an in-
stance of skos: ConceptScheme.
Tg rn:motivationScheme | The concept scheme for motivations.
E rn:translation The motivation that represents interpretation of
F'—'Z source content in another language.
% rn:simplification The motivation that represents simplifying con-
.

tent in a source document so that it will be easier

to consume.

rn:correction

The motivation that represents updating content

either for verification or adjustment.

rn:alternative

The motivation that represents providing a new
content which alternates content in a source doc-

ument.

93

o4

Figure 3.15 shows an example usage for a motivation. In the example, whole
renarration is created with the purpose of providing an alternative content to content

within a source document which is defined as documentl1.

"@id": "renarrationl",
"Qtype": "rn:Renarration",
"rn:renarratedAt": "2015—-09—-14T00:00:00Z",
"rn:hasMotivation": "rn:alternative",
"rn:renarratedBy": {
"@id": "http://ex.org/personl",
"Qtype": "foaf:Person",
"foaf:name": "Person One"
b
"rn:onSourceDocument ": {
"@Qid": "documentl",
"@Qtype": "rn:Document"
b
"rn:hasRenarrationTransformation":{
"@Qid": "renarrationTransformationl",
"Q@Qtype": "rn:RenarrationTransformation",
"rn:sourceDocumentSelection": {
"@Qid": "selectorl",
"Qtype": "rn:ByteSelector",
"rn:offset": "10",
"rn:byteNumber": "20"
I
"rn:hasNarration": {
"@id": "narrationl",
"Qtype": "cnt:ContentAsText",
"cnt:chars": "content of narration"
b
"rn:createdAt": "2015—-09—-14T22:20:007",
"rn:actionOnDocument": "rn:replace"
b
"rn:toTargetDocument": {
"@id": "renarratedDocument",

"@Qtype": "rn:Document"

}

Figure 3.15. Serialization in JSON-LD format for creating an alternative renarration

for a source document

%)

3.1.5. Lists

In some cases, order for a renarration can be very important. A List is a linear
data structure where each node is a resource of any type. rn:List provides an order
for a set of resources that are all required to be processed in the order defined. For
instance, a user U might renarrate a paragraph P with concatenation of some text 71
and T2 each obtained from different resources on the Web. For such a renarration,
the order can be very important because if the order is different for each instance of

resource, then the renarration is not the same for different orders.

Renarration(T1, T2, ordered) '= Renarration(T2, T1, ordered).

In the Renarration Data Model, rn:List is defined as subClass of rdf: Bag. The model
uses rn:List for both ordered narrations and ordered selections from documents. An
example to ordered selections from documents would be selecting part of a text in a
paragraph from a Web page. The first item in the list would be the element selected, in
this case the paragraph, using rn: XPathSelector, and the second item would be selected

text by using rn: TextSelector.

Figure 3.16 shows usage of rn:List as a renarration of a document. The source
document assumed to be existing with rn:onSourceDocumentrelationship. There must
be an instance of rn:List whose domain must be an instance of a rn:Renarration
class. In the data model, rn:List class is defined as a subClass of rdf: Bag which is also
subClass of rdfs: Container. The object of the relationship of rn:nodes should be an in-
stance of rdf: List class. A list must have a list of nodes(resources) of rn: Renarration Transform
type. The Renarration Data Model recommends using rn: Renarration Transformation
class for types of each node in a list when the relationship between rn:List and
rn: Renarration is rn:hasRenarrationTransformation. Table 3.8 shows explanation of

terms used in Figure 3.16.

/f_ rm:Renaration >
~ -

rafBag

rarmtionl 1 3 narmtion2] narrationh

i .

- e,
lf/rn:Hena'ra‘tionTrarEbrmaﬁop
\\"\-\..__ —

Figure 3.16. Renarration Transformation as a list-like structure.

o6

Table 3.8. Definition of classes and object properties for list structures

Item Type Description

rn: List Class subClass of rdf: Bag. Defines a list of narrations,
which should be interpreted in defined order, for
a source document or part of a source document.

rdf:bag | Class subClass of rdfs:Container. A container that
can be used to define a set of elements.

rn:nodes | Object Property | The relationship between a resource and an in-

stance of rdf:List class. When the relation-
ship is rn:RenarrationTransformation rn:nodes
is used to define a list of Renarration
Transformation. When the relationship is
rn:hasNarration, it is used to define a list of
narrations(rn:hasNarration). Lastly, when the
relationship is rn:onSourceDocument, it is used

to define nested selections of source documents.

57

As it is explained in Table 3.8, rn:List is used for many goals. In Figure 3.16 it

is used for a list of Renarration Transformations. The other usage is for presentation

relation. We use term, presentation relation, for defining the order of narrations.

For example, a renarrator might decide to first show a figure right after a text which

would make the content easier to understand. Another usage of rn:List is for selection

order. The reason behind this is that the content on the Web is mostly nested. For

instance a renarrator might want to renarrate some text in a row which is in a table

in a div element. In that case, the selection would be such as:

Selection Order: ["div/table/tr", "text"]

Figure 3.17 shows usage of rn:List for defining a selection order. In the example,

documentl is selected by the use of two selectors. First, rn: XPathSelector is used to

select an element in the source document. After that, rn: ByteSelector is used to select

some text within the selected context.

o8

"@Qid": "renarrationl",
"@Qtype": "rn:Renarration",
"rn:renarratedAt": "2015—09—14T00:00:00Z",
"rn:hasMotivation": "rn:alternative",
"rn:renarratedBy ": {
"@id": "http://ex.org/personl",
"Qtype": "foaf:Person",
"foaf:name": "Person One"
b
"rn:onSourceDocument ": {
"@Qid": "documentl",
"Q@Qtype": "rn:Document"
b
"rn:hasRenarrationTransformation ":{
"@id": "renarrationTransformationl",
"@Qtype": "rn:RenarrationTransformation",
"rn:sourceDocumentSelection": {
"@id": "list1",
"Qtype": "rn:List",
"rn:nodes": |
{
"@Qid": "selectorl",
"@Qtype": "rn:XPathSelector"
b
{

"@Qid": "selector2",
"@Qtype": "rn:ByteSelector"
}
|
T

"rn:hasNarration": {

"@Qid": "narrationl",

"Qtype": "cnt:ContentAsText",
"cnt:chars": "content of narration"

b
"rn:createdAt": "2015—-09-14T22:20:00Z2",

"rn:actionOnDocument": "rn:replace"
b
"rn:toTargetDocument": {
"@Qid": "renarratedDocument",
"Q@type": "rn:Document"

}

Figure 3.17. Serialization in JSON-LD format for using rn:List for defining a

selection order

29

4. IMPLEMENTATION

In order to examine the model described in Chapter 3 a prototype built at proof
of concept. The prototype implements the transformation of content from a source
web document using the rennaration model’s alternative specification. The prototype
focuses on the use of model introduced in the context of the Web protocols, existing
specifications, and the significant work done in the W3C Workgroup on Web Anno-
tation Data Model [1]. The main objective of using Web Annotation Data Model is
to demonstrate the use of relationships among rennarated content and existing con-
tent. However, we are of the opinion that annotation is a highly significant activity
and information on the web, and the Web Annotation Data Model work is very im-
portant in standardizing the content and protocols related to annotation. This will be

demonstrated with examples in the Chapter 5 that evaluates this model.

This chapter is organized as follows: Section 4.1 outlines the technologies used for
the implementation of the model discussed in Chapter 1 and proposed in Chapter 3;
Section 4.2 presents the high level architecture of the implementation; and Section 4.5

provides the implementation details of the prototype.

4.1. Technologies

The prototype is implemented with publicly available tools and technologies. The
Java language is used as the main programming language. The Spring Framework [44]
to design Java-based EE application. The graphical user interface (GUI) of SemAnn
and SemRen are implemented by using JavaScript [45] and HTML (HyperText Markup
Language) [46]. In order to enable annotation and renarration of web resources, jsoup
[47] Java Library, an open source project distributed under the liberal MIT license,
is used. When working with ontologies, Jena Framework [48], an open source Java
Framework for building Semantic Web and Linked Data application, is used. Finally,
for the storage of annotations and renarrations of web resources, Mongo DB [49], an

open source document database, is used.

60

4.2. System Architecture

The system architecture is divided into six main components :

e The Web Annotation Data Model specification describes a structured model
and format to enable annotations to be shared and reused across different hard-
ware and software platforms. [1| Fundamentals of the data model is mentioned in
Chapter 2.

e The Renarration Data Model specifies a framework for creating alternative

narrations of source documents by transforming elements of the documents.

Lol Annceation Collsction

Lol Annotation Collection

Renarration Collection] >
SemRen . H F - SemAnn

Renarration Data Model } [Web Annotation Data Model

Figure 4.1. System Architecture

e SemAnn is an implementation that uses the Web Annotation Data Model. The
implementation stores serialized annotations in a collection in a Mongo DB.

e SemRen is an implementation that uses the Renarration Data Model. The imple-
mentation stores serialized renarrations in a collection in a Mongo DB instance.
In addition to storing renarrations in a database, it also enables renarrators to
save target(renarrated) documents.

e Library Injector is a JavaScript library implemented to be used for both Se-
mAnn and SemRen implementations. The library is used to enable source docu-

ments for creating annotations and renarrations.

61

e Storage is an instance of MongoDB used for storing serialized annotations and

renarrations. Serializations are stored in two distinct collections.

4.3. Storage

The implementation uses MongoDB for the storage of serializations of annotations
and renarrations. MongoDB is an open-source, document database designed for ease

of development and scaling. [49]

Both data models, the Web Annotation Data Model, and the Renarration Data
Model, use JSON-LD, a lightweight Linked Data format. Since a record in MongoDB
is a document and documents are similar to JSON objects, MongoDB is selected as
database for the storage. Another reason for using MongoDB is the support for dynamic

schema.

Two different collections are needed in an instance of MongoDB. annotations col-
lection is used for storing serialized annotations, and the collection named renarrations

is used for renarrations.

show collections
nnotations

renarrations
ystem.indexes

Figure 4.2. Collections required in MongoDB instance

4.4. Library Injector
Library Injector is a JavaScript library implemented to be used for both SemAnn
and SemRen implementations. The library is used to enable source documents for

creating annotations and renarrations.

In order to enable creation of annotations and renarrations on web resources, the

62

library uses jsoup HTML parser. jsoup is a Java library for working with real-world
HTML. It provides a very convenient API for extracting and manipulating data, using
the best of DOM, CSS, and jquery-like methods [47|. By using jsoup external library,
the web resource is cached on a local storage. After caching the resource, two main
tasks are done by jsoup. The first one is to update all relative urls. The main reason
of doing this is to make the page looking exactly similar to original content. The last

task is to inject implemented JavaScript library.

The injected library enables three mouse events on cached resource. The events
enabled are : onmouseover, onmouseout and onclick. Each event is used differently
for each implementation. For instance, when creating annotations, the library talks to
annotation collection and queries related annotations for the source document being
annotated. The library also includes some functions for finding xpaths of elements.

The following is pseudo code of the getPathTo function which is used to find xpaths.

e is an element for which xpath is to be found
if e is HTML body then
return ’//html|1]/body[1]’
end if
let P be parent node of e
for each sibling of P do
if sibling and e are the same elements then
return concatenation of getPathTo(P), ’/’ name of e, ’[’, current sib-
ling index, ’|’
end if

end for

Figure 4.3. Pseudo code of getPathTo function for retrieving xpaths of elements

In Figure 4.4, the Web page with http://en.wikipedia.org/wiki/Semantic Web
URI is being annotated. After injecting the library into cached page, the actions

63

mentioned before are activated on all the elements of the resource. It shows that the
element is shown as dashed red border. Before showing the dashed red border, the
library copies original style of the element in local cache. When the mouse is hovered
on a different element, then original style of the element is copied back, and no border

is shown on the element.

ST WhmL Al L WlEEmmam .

€« €' | [3 localhost:8181/renarration/url?page = https://en.wikipedia.org/wiki/Semantic_Web&action=annotate =

| Try Another Web Page || Save Annotations |

2 Create account Login
7 s,

¢
]
‘e
v
fa " Aicle Talk Read Edit View history Q
@
e

Wikpzprd | Semantic Web

e

[Eefetriesis From Wikipedia, the free encyclopedia
arEsos The Semantic Web is an exiension of the \Web through Standards by the Worid Wide Web Consortum (WG, The standards promote common cata formats
e a0 exchenge protouss o e e, st ndamenialy e Resouce escipion Famework A0F)_]
Currentevents According to the W3C, "The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and
fandomiaiicic community boundaries” I The term was coined by Tim Berners-Lee for a web of data that can be processed by machines I While its critics have questioned its
a:'a:‘;;::g::em feasibility, propanents argue that applications in industry. biology and human sciences research have already proven the validity of the original concept 1
nieracion The 2001 Scientific American article by Berners-Lee, Hendler, and Lassila described an expected evolution of the existing Web to a Semantic Web.¥ In 2006,
Help Berners-Lee and colleagues stated that: "This simple idea...remains largely unrealized" ¥l In 2013, more than four million Web domains contained Semantic
AboutWikipedia Web markup)

Community portal

Recent hanges

Contactpage 1 Example

2 Background
2.1 Limitations of HTML
22 Semantic Web solutions

Contents

Tools
Whatlinks here
Related changes

Upload fie 23Web30

Special pages 3 Challenges

Permanent link 4 Standards

Page information 4.1 Components

k== 4.2 Current state of standardization
Cite this page

5 Applications
Printexport 6 Skeptical reactions v

Figure 4.4. Highlighting an element on which mouse is hovered

4.5. Annotation Implementation

The implementation of annotations is named SemAnn in the architecture. Using
the annotation implementation, annotators can annotate web elements or fragments of
elements. The implementation allows different types of annotations such as : embed-
ded content, visual representations, semantic annotations, and annotations which use

DBPedia resources.

Figure 4.5 shows the system architecture of SemAnn framework. The framework
uses Web Annotation Data Model as the base model. All annotations are stored in

serialized JSON-LD format. Serialization of JSON-LD is done by JavaScript utilities.

64

When an annotator loads a web resource, the framework injects library using the
Library Injector and the Jsoup library. The injection of the library enables all elements
of web resources annotatable. The web resource is cached on application server where
the deployment is made. The annotator may choose using existing ontologies, existing
resources or can choose to create content for the body of the annotation. Created

annotations are saved in a MongoDB instance.

Jsoup Library
Library .
Injector Cached Rad ource with
i Injected Library
Local cache
=
e i
. Local Annotation Collection
T .
e]
RC
! J SemAnn
[Web Annotation Data Model J

Figure 4.5. System architecture of SemAnn framework

4.5.1. Implementation of Annotation Target

Many Annotations refer to part of a resource, rather than all of it, as the Tar-
get. Ezxamples include Annotations on an area within an image or video, a range of

characters in text, a time segment in an audio file or a slice of a dataset. FEqually, the

65

segment may be the Body of the Annotation, where the comment is given at a particular

point in the video, or in a particular paragraph of text. [1]

SemAnn enables annotators selecting elements or fragments of elements of web
resources. For instance, an annotator may chose to select all the elements of a web page.
This would result selection of body, and XPathSelector would be good candidate for
the selection. The value of xpath would be html[1]/body[1]. In the following sections,
the details of defining targets are being described.

4.5.1.1. Annotations Using XPath. The implementation uses XPath when enabling

users to annotate parts of source documents. When a user hovers an element, the
framework highlights the hovered element. When the user clicks on the element a
popup is shown for the user to create an annotation. In Figure 4.6, the screenshot of

the popup is shown.

Annotations

Selected Element : //htmi[1]/body[1]/drv{3)/dw[3)/div[2] fp[1]
Conten Annotation Details :

The Semantic Web s an extension of the Web through standards by the World Wide Web Consortum (W3€]2! The standards) Text Annotaton) Semantic Annotation) VisuslRepresentation | DBpeda
mon dataformats and sxchangs protoco’s on the Web, most fundamentaly the Resource Dezription

Apply || Cancel

Figure 4.6. Annotation popup when clicked on an element.

In Figure 4.6, the selected element is a paragraph. This can be seen from the
xpath on top left. The xpath of the element is "//html[1]/body[1]/div[3]/div[3]/div[4]/
p[1]". In the popup the content of the source is also shown on the left. On the right
of the popup, four different types of categories are shown. User can create a text
annotation, a semantic annotation, or can link the content with a visual representation

of it. Tagging with DBPedia resources is also allowed.

4.5.1.2. Annotations Targeting Fragments of Elements. SemAnn also enables annota-

tors selecting part of elements of web resources. For instance, a user can choose a text
in a paragraph or some part of an image. The SemAnn keeps track of different element
types user is annotating. If a user is annotating an image, the framework allows selec-

tion of part of the image. However, if the content of the selection is composed of text

66

content, the framework allows selection of text.

Annotations

Selected Element : //hemi[1)/body[1]/div[3)/div(3]/div[2) /div[12]/dv{1]/a[1] fimg{1]
Content : Annotation Details :

I ® Text Annotation - Semartic Annotation ' Visual Representation - DBpedia

I User interface and applications
Content as Text

I Proof
4
I Unifying Logic I
I Ontologies: I | Rules: I
Querying: OWL RIF/SWRL

SPARQL I

Taxonomies: RDFS I

AydeisBbordflin

I Data interchange:RDF I

I Syntax: XML I

Identifiers: URI Character Set: UNICODE

Apply | Cancel

Figure 4.7. Annotation popup when clicked on an image with fragment selected

Figure 4.7 shows selection of part of an image. The box with "Ontologies:OWL"
is selected as the target of the annotation. Selected part is shown in red color. The
body of the annotation is a text content created by an annotator, and the content is

"Ontologies : Web Ontology Language".

When such a selection is created by an annotator, the framework keeps track of
the position of selected image, and stores values in cache of the local machine. After
the annotator selects part of the image, stored values are used to find actual position
of the selection relative to these values. In such annotations, the framework uses
two stage selections. The first selection uses XPath selector which stored the xpath
value of the element. Next selection is the fragment of the image which is stored as

"xywh—=89,179,140,48".

4.5.2. Implementation of Annotation Body

SemAnn enables annotators to create four types of annotation bodies. Annota-
tors can create annotations by creating embedded content which is usually created by
the annotator, by linking visual representations such as images, audio, and/or video.

In addition to this, semantic annotations can also be created. The implementation

67

currently supports FOAF ontology. Lastly, source documents can be annotated by

using DBPedia resources.

4.5.2.1. Embedded Content Annotations. Semantic Annotation implementation en-

ables users to define embedded content which are then assigned to the body of an-
notations. Currently, the implementation allows users to create their own content; it

doesn’t allow usage of external content of other web resources.

In Figure 4.8, an example of embedded textual annotation is shown. On the left
the selected content is shown, and the selection will be assigned to the target of the
annotation. The content created by the user on the right, will be assigned to the body.

Annotations

Selected Element : //htmi[1)/body[1]/div(3)/div(3]/div[4]/p(1]
Content : Annotation Details :
The Semantic Weh i n extension of the Web through stendards by the World Wide Web Consort uim (W3C).12! The standards ® Text Annatation Semantic Annotation Visual Representation DBpeda
promote common data formats and exchange protocols on the Web, mos fundamertally the Resource Description
Eramework (RDF) Content as Text
Definition of the Semantic Web!

4

Apply || Cancel

Figure 4.8. Creation of textual body of an annotation

4.5.2.2. Visual Representations. Although most of the content on the Web is text

based, visual representations also play very important role. Taking this into consid-
eration, the implementation also enables users to annotate with visual content. For
example, the users can annotate with three types of representations which are im-
age, sound and moving image. When users choose these types, the implementation
uses DCMI(Dublin Core Metadata Initiative) Metadata Terms [22]. After defining the

type, the url of the resource should be defined.

Figure 4.9 shows an example of an annotation for which an image is assigned to

the body of the annotation.

4.5.2.3. Semantic Annotations. The prototype allows creation of semantic annota-

tions. Currently, it only supports FOAF Vocabulary Specification [23]. It is required

68

Annotation Details :

Text Annotation Semartic Annotation “®' Visual Representation DEpedia
Visual Representation Type | Image r
URL https://en wikipedia.org/wiki/t

Figure 4.9. Annotation body using visual representations.

for a user to define the type of entity where it corresponds to classes defined in the
specification. When a user selects an entity, it is allowed to define subjects and/or
objects. In addition defining instances, the users can also define relationships between

instances.

Figure 4.10 shows SPARQL query which is used to find all properties when an
entity is chosen by the user. In the Figure, $ONTOLOGY_CLASS shows the parameter

which is defined by the user through the user interface.

The query finds three sets of data and unions them. The first is a set of all prop-
erties which are defined as a subclass for the class which is defined by the parameter.
The second set is list of properties of the class. Lastly, the properties which are not

defined for a specific class - owl:Thing is the set of all individuals.

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf—schema#>

PREFIX rdf: <http://www.w3.o0rg/1999/02/22—rdf—syntax—ns#>

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

SELECT distinct ?property where

{

{ ?property a rdf:Property . ?property rdfs:domain ?class . <$ONTOLOGY CLASS> rdfs:
subClassOf ?class . }

UNION

{ ?property a rdf:Property . ?property rdfs:domain <SONTOLOGY CLASS> }

UNION

{ ?property a rdf:Property . ?property rdfs:domain owl:Thing }

}

Figure 4.10. SPARQL query to find all properties for a specific class

Figure 4.11 shows an example of defining an instance of foaf:Person. Within the

figure, two properties, foaf:firstName and foaf:lastName, are being used.

69

Text Annotation "®' Semantic Annotation Visual Representation DBpedia

Type of Entity: Person ¥

* Define Subjects and/or Objects Define Relations

firsthame ¥ | |[Fname1
lastMame * | Lname1

Figure 4.11. Defining an instance for foaf:Person class using foaf:firstName and

foaf:lastName data properties

This section assumes that there are two instances of foaf:Person class which
are defined in annotation collection in MongoDB. Users can define object proper-
ties(relations) between those instances. In Figure 4.12, the type of the entity is chosen
as foaf:Person, and "Define Relations" is selected. When defining relations, the im-
plementation queries the ontology(FOAF) using SPARQL to find object properties.
When the user chooses an object property, the implementation again uses SPARQL
to find types of objects allowed for the object property. For instance, in the figure,
foaf:knows is chosen as the object property. When this is selected, the type of the
object can only be an instance of foaf:Person class. After the user selects the type of
the object, the annotation collection is queried to find all instances that match the

following triple : "foaf:Person foaf:knows foaf:Person”.

Text Annotation '® Semarntic Annotation Visual Representation DBEpedia
TypeofEntity: | Person ¥
Define Subjectsand,/or Objects "®' Define Relations

Relationship:| knows r
Object ;| Person ¥

Instances

Fnamel ¥

Fnamez -

Figure 4.12. Defining foaf:knows object property between Fnamel and Fname2 which

are two instances of foaf:Person class

4.5.2.4. Annotations Using DBPedia Resources. DBPedia is a crowd-sourced commu-

nity effort to extract structured information from Wikipedia and make this information

70

available on the Web. DBPedia supports sophisticated queries against Wikipedia and
to link Web based data sets to Wikipedia data. [50].

The screenshot in Figure 4.13 shows an example of annotation which uses DB-
Pedia resources. The content selected is a textual content "Java (programming lan-
guage)". The screeshot shows the result of query of a resource for which object is a
Software (http://DBPedia.org/ontology/Software) and the value of the data prop-
erty used for the regular expression is "Java”. The result of the query is a list of
resources (triples) which satisfy the conditions. In the example, the resource whose

URI is, http://DBPedia.org/resource/Java_(programming_language), selected.

Content: Annotation Details :

Java [programming language) Text Annotation Semantic Annotation ' Visual Represertation ® DBpedia

Software v ||Java Query DBpedia
DEpedia Resource : | http://dbpedia org/resoure e/Java_{programming_language)

Figure 4.13. Defining semantic annotation using DBPedia resources to find list of

software via querying DBPedia SPARQL service using Java as keyword

SemAnn provides 5 categories to be searched through DBPedia SPARQL API.
These are listed in Table 4.1.

Table 4.1. Classes and Data Properties Used to Query DBPedia
URI of Property URI of Class

http://xmlns.com/foaf/0.1/name http://xmlns.com/foaf/0.1/Person

http://DBPedia.org/property/name | http://DBPedia.org/ontology/Place

http://DBPedia.org/property/name | http://DBPedia.org/ontology/Animal

http://DBPedia.org/property/name | http://DBPedia.org/ontology/Software

http://DBPedia.org/property/name | http://DBPedia.org/ontology/Food

Figure 4.14 shows the query used within the implemented prototype. Within the
query DATA PROPERTY is the predicate used. For Java programming example, it
is replaced with http://DBPedia.org/property/name (Line 14). OBJECT TYPE
(Line 15) is http://DBPedia.org/ontology/Software with the regular expression:
"Java" (Line 16).

© 0 N O Tt s W N

10
11
12
13
14
15
16
17

71

PREFIX owl: <http://www.w3.0rg/2002/07/owl#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#:>

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf—schema#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX : <http://dbpedia.org/resource/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX dbpedia2: <http://dbpedia.org/property/>

PREFIX dbpedia: <http://dbpedia.org/>

PREFIX skos: <http://www.w3.0rg/2004/02/skos/core#>
SELECT distinct 7s
WHERE

{
?7s <DATA PROPERTY> 7o

?s rdf:type <OBJECT TYPE>

FILTER (regex(?o0, \"REGEX\", \"i\"))
} ORDER BY 7s

Figure 4.14. Query template used for DBPedia SPARQL Service

4.6. Renarration Implementation

The implementation is named SemRen in the architecture. By using the renar-
ration implementation renarrators can renarrate web resources. The implementation
allows different types of renarration creation such as creating embedded content, re-

narrations which use visual representations (image, audio, video).

The implementation also allows users to use annotations. When an annotation is
created for a web resource, during renarration process, renarrator can see all annota-
tions. In addition to annotation data, reference data is extracted from DBPedia if an

annotation is created using DBPedia resources.

Figure 4.15 shows the system architecture of SemRen framework. The framework
uses an ontology created to model renarrations of web resources which is covered in
Chapter 3. Very similar to SemAnn, SemRen framework also uses Jsoup library in
order to cache the web resource. The framework uses annotation collections which
can help renarration of web resources. The contents renarrated by users are stored
in renarration collection in an MongoDB instance. When the users finish with the

renarration, another resource is created which can be accessed via a URIL

72

Jeoup Librany E
Caches Pefourc wih :
ni rary - Librany
3 Injectar
M“h——-ﬂ"
] AC
: —
i RC
- SemRen '
[Renarration Data Model]

Figure 4.15. System architecture of SemRen framework.

4.6.1. Renarration Actions

SemRen allows two types of renarration actions, remove and replace. These are

explained in the following sections.

4.6.1.1. Remove. When renarrating content in source documents, removing some con-
tent can be so useful. The reasons behind removing a content can be because of the
content is not suitable for the target audience for which the renarration is being done.
The SemRen framework allows renarrators to remove elements of web pages. For in-

stance, in Figure 4.16 a div element is choosen for renarration transform. The xpath of

73

the element is : //html|1]/body|1]/div|3]/div[3]/div|4]/div[l]. The renarrator decides
to remove the content of the chosen element. The action of the renarration transform

is chosen as 'Remove’.

Selected Element : //htmi[1)/body[1]/div[3)/div[3]/div4]/div[1]
Content : Renarration Details :

"Java language’ redects here. For the natural language from the Indonesizn island of Java, see Javansse Enzuaze Action:[Remove ¥ || Add Transform

| Apply Transform || Cancel |

Figure 4.16. Defining removal of selected content via user interface

When this transform is applied, the element is hidden from the user. It’s not
removed from the source document not to change xpaths of elements. Currently, the

prototype just updates the style of the element and sets its display to 'none’.

4.6.1.2. Replace. Another action that SemRen Framework allows on elements of source

documents is replace. Renarrators can choose to replace the content in source docu-
ments with text content, images, audios, and/or videos. In Figure 4.17, 'Replace’ is
chosen as the action of Renarration Transform. The renarrator can choose four types

content to be replaced with the source content.

Renarrations

Selected Element : //htmi[1)/body[1]/div[3)/div[3)/dn[2]/p[1]

Content : Renarration Details :

Java s 3 generakpurposs computer programming languseetha is concurrsrs, classbased, bisctoriened 22 and specifically Action:| Replace ¥ || Add Transform |
designed to have as few implementation dependancias 2z possible. It is intended to let 3ppication developers"wr te once run —

anywhere” (WORALE! meaning that compied Java code can run on all platfor ms that suppert Java without the need for Delete Transform
recompiation 22! java applications are typically compiled to bytecode that can run on any Java virtual machine (JVM) B
regardiess of computer architecture. As of 2015, Java isone of the most popular ing Ianguages in use[SILEIL7I1E]

particularly for client-server web applications, with a reported 9 million developers, S228on 12eded] 1,5y o or iginally Image

developed by James Gosing at Sun Microsystems (which has since been acouied by Oracle Corporation) and refeased in 1995 | Audio
asa core component of Sun M icrosystems' Javs piatform. The language derives much of is symtax from € and C++, bUt Thas | \fidep
fewer Jow-level faciities than either of them -

Figure 4.17. Defining replacement of selected content with a text via user interface

The SemRen framework, replaces source content with target content within the se-
lected element. In other words, it just creates necessary HTML tags within the selected
context. For instance, in Figure 4.17 all content defined by renarrator is to be replaced

with html content of element with xpath://html|[1]/body[1]/div|3]/div|3]/div|4]/p[1].

The replacement of source content can also be done by selection of content within
the selected element. Figure 4.18 shows, the replacement of text 2015’ with 2016’

within the selected element.

74

Renarrations

Selected Element : //htmi[1]/body{1]/div[3)/div[3]/div[2]/pl1]

Content : Renarration Details :

Java is 3 generahpurposs computer language that isconcurrent, class-based, object-oriented 22l and specifcally Action:| Replace ¥ || Add Transform
designed to have as few impementation dependencies as possible. it is intended to let spplcation developers i te once, rUn [Selectad Text

amywhere” (WORA)EEL meaning that compiled Java cole Can LN on &l PIETOrMS That SUPPOMt Java Without the need for 2015

recompilation. 2! Java spplications are typically compiled to bytecods that can run on any Java virual machine (VM) _
regardiess of computer architecture. As of 2015, Java isone o the mest popular programmine [aneuases n use SISllrel - [ClSr Selecrion
particularly for client-server web applications, with a reported @ million developers, (010660 needed] |,y 2c originally
developed by James Gosing st Sun Microsystems (which has since been acqur ed by Oracle Corporation) and relemsed in 195

a3 core component of Sun M crosystems’ Javaplatiorm. The language derives much of £s syntax from C and Ce+, but thas | 18xt ¥ || Delete Transform
fewer lov-level faciities than either of them 2016] —

Figure 4.18. Replacement of text '2015” with 2016 using nested selection

The prototype currently doesn’t allow replacement of elements from which xpath
can change. An example, to this could be replacing an image with a paragraph. All the
xpaths of elements after the insertion of new paragraph can change. The reason behind
this restriction is not to change the xpath of the elements while allowing renarration

of source documents, and being able to keep relationships between source documents

and renarrated content.
4.6.2. Renarration Transforms as Collections

When renarrating source documents, not always one to one relationship is used.
Often, it is very important for a user interface to allow renarration of an element by
using more than one transform. SemRen framework allows collections of transforms as

a renarration transform. Collections of renarration transforms are stored as ordered

instances of rdf:List class.

Renarrations

Selected Element : //htmi[1]/body[1]/div[3]/div[3]/diw[4] /div[15 }/pre[1]

Content : Renarration Details :
class HelloWorldapp { public static void main{String[] args) { System. out.printin{" Hello World!"); // Prints the string to the Action:| Replace v || Add Transform
console. }} | ———

Text v || Delete Transform
// HelloWorldApp.java
class Hellodorldipp { // should be the same with the name of the file
public static void main(String[] args) { // can be accessed(public)
System.out.println("Hello Wworld!"); // To print Hello World

v

Image ¥ || Delete Transform |
httpsf/encrypted-tbn2. gstatic

v

Figure 4.19. Defining a list of renarration transforms whose elements are textual

content and an image

Figure 4.19 shows an example of a list of Renarration Transforms. In the example,

75

the content which can be accessed via xpath : //html|1]/body[1]/div|3|/div|3]/div|4]/
div[15]/pre[1] is replaced with a text content and an image. The text content aims to
give some explanations for each line of code. The image [65] illustrates that a class file

is created from .java file and created class file can be executed in different platforms.

The target of the renarration in source document can be seen in Figure 4.20.

class HellowWorldApp {
public static void main(String[] args) {
System.out.println(“Hello World!"); // Prints the string to the console

Figure 4.20. An example java code to be renarrated

Figure 4.21 below shows the renarration of source content when it is replaced by

a text and an image.

/! HelloWorldApp.java
class HelloWorldApp { // should be the same with the name of the file
public static void main(String[] args) { // can be accessed(public)
System.out.println{"Hello World!"); // To print Hellc World

I

2

I
—— M

\

java Hella™™
javac Hello.java - —
B

Y
/

|

— e \\

* -~
Hello.class

Figure 4.21. Replacement of java code with comments added as well as an image

showing how it is compiled

4.6.3. Usage of Annotations in SemRen Framework

When doing renarrations, SemRen framework also allows renarrators using data
created in annotations created by annotators. When a user renarrates a web page
through the framework, first the annotations are queried for the resource. The renar-

rator may choose to use data from annotations.

The prototype also retrieves referenced data when it’s available. Currently,

when an annotation is created using DBPedia resources, data type property http:

76

//DBPedia.org/ontology/abstract is used to fetch abstract information related to

the annotation.

Renarrations
Selected Element : //htmi[1]/body[1]/div[3)/h1[1]
Content : Renarration Details :

Action:| Replace v || Add Transform

Barack Obama

Text ¥ || Delete Transform
Barack Obama is the 44th and current President of the United States, and the first
African American to hold the office

Apply Transform || Cancel

annoteted by Emrsh Guder at 2015-11-027T14:04:11.5412
= ttoz//xmins.comfoti0. 1/Person

Referenced Data from DBPedia
Barack Hussein Obama | (1b7%77k hu??se?n 77b7?m?/: bom August 4. 1881} s the 44th and current President of the United States, and the first African American to hold the office. Bom in Honolulu, Hawai, Obams is a graduste of Calumbia University and Harvard
Law School, where he served as president of the Harvard Law Review. He was a community organizer in Chicage before eaming his law degres. He worked as a cvil rights sttomey and tsught constitutional law at the University of Chicago Law School from 1882 to
2004. He seried three tarms representing the 13th District in the llinois Senate from 1387 to 2004, running unsuccassfuly for the United States House of Representatves in 2000.In 2004, Obama recevad nstional sttention during his campaign to represent liinais in
the United States Senate with his victory in the March Demoratic Party primary, his keynote address st the Democratic Netianal Convention in July, and his election to the Senate in November. He began his presidentisl campaign in 2007 and, after a close primary
campaign against Hilary Rodham Ciinton in 2008, he won sufficent delegetes in the Democrstic Parly primaries to receive the presidentisl nomination. He then defeated Republican nomines John McCain in the general election, and was insugurated as president on
Janusry 20,2008, Nine montns after nis slection, Obama was named the 2009 Nobel Peace Prize laureste.Dunng Nis frst two yars I offcs, Obama skned Nto 18w 2CONGMIC MUl BOISAton In r2sponse o the Great Recession i the form of the Amercan Recovery
and Reinvestment Act of 2009 snd the Tax Relief, Unemployment Insurance Resuthorization, and Job Creation Act of 2010. Gther major domestic initiatives in his first term included the Patient Protection and Affordable Care Act, often refered to as "Obamacarel"; the
Dodd?Frank Well Street Reform snd Consumer Protection Act: snd the Don't Ask, Don't Tell Repeal Act of 2010. In foreign palicy. Obama ended LS. military invalvement in the Iraq War. increased U.S. troap levels in Afghanistan. signed the New START arms contral
wreaty with Russia, ordered U.S. miltary involvement in Libys, and ordered the miitsry operation that resulted in the desth of Osama bin Laden. In Janusry 2011, the Republicans regained control of the House of Representatves as the Democratic Party lost 2 totsl of

3 seats; and, sfter a lengthy debste over federal spending snd whether or not o raise the nation's debt limit, Obama signad the Budget Control Act of 2011 and the American Tsxpayer Relief Act of 2012.0bsms was ra-slected president in November 2012, defesting
Republican nominee Mitt Romney, and was swom in for & second term an Janusry 20, 2013. During his second term, Gbama has promated domestic policies related to gun control in response ta the Sendy Hook Elementary School shoating, and has called for ful
equality for LGET Americans, while his dministration has filed briefs which urged the Supreme Court to strke down the Defense of Mamiage Act of 1898 and Caifomia’s Propositon 8 as unconsttutional. In foreign policy, Obama ordered U.S. miltary involvement in Irag
in response to gains mad by the Islamic State in Iraq afterthe 2011 withdrawsl from Irsq, continud the process of ending U.S. combat Operations in Afghanistan, and has sought to nomaize U.S. relstions with Cubs.@en

Figure 4.22. Renarration transform using reference data from an annotation.

In Figure 4.22, an annotation is already created by an annotator and the text
“Barack Obama” is annotated by using http://DBPedia. org/page/Barack_0bama DB-
Pedia resource. SemRen framework, uses DBPedia SPARQL service to query abstract
information for the resource used in the annotation. When renarrator chooses to use
some of the data from annotation itself or from referenced data, a link is created be-

tween the renarration transform and the annotation.

4.6.4. Target Audience and Deployment

Renarrations targeted for an audience can be defined by using SemRen framework.
The audience used within the framework is modeled in the Renarration Data Model
as a subclass of skos:Concept. The audience used within the framework is specifically
defined for use cases for the evaluation of the model and the implementation which are

all covered in the next chapter.

When a renarrator saves transform(s) of a renarration, the framework shows an
interface for defining a target audience and whether the page is desired to be saved
within the application server storage area. If a name for deployment is defined, the

content of the renarration is saved in HTML format.

7

Renarration Details
Flease define motivation(s) for renarration :

#| plternative
Correction
Simplification
Translation

Target Audience
Java Programmers ¥

If you would like us to save renarrated content please provide a name :
test _deployment

| Create Renarration || Cancel |

Figure 4.23. Defining target audience and deployment name for renarration of a web

resource.

78

5. EVALUATION

In this chapter, we are evaluating our model using some pages which are manually
prepared. The pages are created using HT'ML. Section 5.1 discusses the adequacy of the
Renarration Data Model using different types of renarrations. In Section 5.2, we have

experimented different types of renarrations using the prototype we have developed.
5.1. Evaluation of the Renarration Data Model
In order to evaluate the proposed data model, we’ve created a suite of test cases
to prove that different types of renarrations can be defined using the data model. Test
cases can be found in a repository created on GitHub [51]. The url of the repository for

test cases is : https://github.com/EmrahGuder/Renarration/tree/master/Test_Cases.

The following is a list of for the subset of selected test cases.

(i) Replacement of paragraph with paragraph

(ii) Replacement of paragraph with audio

)

)
(iii) Removal of content
(iv) Replacement using content from an annotation
)

(v) Insertion of new content between two elements

In addition to evaluation with above test cases, we’ve also evaluated the data
model by using a manually created web page about FIR (First Information Report)
[52] which is a document prepared by police organizations in Bangladesh, India and

Pakistan.
5.1.1. Evaluation of Proposed Data Model Using Test Cases

5.1.1.1. Replacement of paragraph with paragraph. The motivation behind this test

case is to demonstrate that replacement of text content can be defined using the pro-

79

posed data model. For this purpose, we assume that the following content "Text1" is

to be renarrated with "Text2".

<html>
<body>
<p>Textl</p>
</body>
</html>

Figure 5.1. HTML code of a web page consisting of a paragraph with textual content
"Text1"

Renarration of textual content "Text1" with "Text2" can be defined by the Re-
narration Data Model in JSON-LD format as in Figure 5.2. It shows that the model

can define text selections by using a text selector.

{
"transform": {
"@id": "20ca990d—b233—-4047—b40a—258a8278fada",
"@Qtype": "rn:RenarrationTransformation",
"sourceSelection": {
"@id": "fb60d831—-7c18—4e83—b8da—341e46482106",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/p[1])"},
"createdAt": "2015—-11-20T13:07:27.9677Z",
"action": "rn:Replace",
"narration": {
"@id": "554f2f73 -0d93—-4426—-851f —-56613d1194d1",
"Qtype": "cnt:ContentAsText",
"content": "Text2"
s
"targetSelection": {
"@id": "6322109a—e221—4c61—-9e51—-5d31287a4dc9",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html|[1]/body[1]/p[1])"
}
}
}

Figure 5.2. A renarration specification in JSON-LD of a web page for which "Text1"
is replaced with "Text2"

After applying transformations on source document, the target document can be

constructed as in Figure 5.3.

80

<html>
<body>
<p>Text2</p>
</body>
</html>

Figure 5.3. HTML code of a web page renarrated via replacing "Text2" with "Text1"

in original content

5.1.1.2. Replacement of paragraph with audio. The motivation behind this test case

is to demonstrate that an element in a Web page can be replaced with an element of
different type such as replacing a paragraph with an audio element. For this purpose,
we assume that the HTML code of original web page is the same as in Figure 5.1.
The aim of the renarration is to replace the paragraph with an audio with the url of

http://audiol.ogg.

Renarration of textual content "Text1" with audio can be defined by the Renar-
ration Data Model in JSON-LD format as in Figure 5.4. It shows that the model can
define replacement of different types of HTML elements. It also shows that selections
can be done using rn:XPathSelector. After transformation applied on source Web page,

the content of the renarrated page can be seen in Figure 5.5.

5.1.1.3. Removal of content. As we define renarration, the process of rewriting of web

resources, keeping relations between elements of resources becomes crucial when the
process changes xpath of elements. One of the renarration trasformation that changes
xpath of elements is removal of them. So, the motivation of this section is to prove
that the proposed model can handle removal of elements. Figure 5.6 shows the source
in HTML format. Originally, there are three paragraph elements in the source. The
renarration aims to remove second paragraph and to create an alternative for the third

paragraph with textual content "Text4’.

Figure 5.7 shows the removal process defined with the proposed ontology in JSON-
LD format.

81

{

"Qtype": "rn:Renarration",
"renarratedAt": "2015—11—20T13:08:00.650Z",

"source": {
"@id": "replacement of paragraph with audio original.html",
"@Qtype": ["foaf:Page", "rn:Document"]
b

"transform": {

"@id": "20ca990d—-b233—-4047—b40a—258a8278fada",

"@Qtype": "rn:RenarrationTransformation",
"sourceSelection": {

"@id": "6322109a—e221—4c61—9e51—-5d31287a4dc9",
"Qtype": "rn:XPathSelector",

"value": "#xpointer(//html[1]/body[1]/p[1])"
I

"createdAt": "2015—11-20T13:07:27.9677Z",
"action": "rn:Replace",

"narration": {

"@id": "http://audiol.ogg",

"Qtype": "dctypes:Sound",

"format": "audio/ogg"

b

targetSelection": {
"@id": "fb60d831—-7c18—-4e83—-b8da—341e46482106",

"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/audio[1])"}

b

"target ": {
"@id": "replacement of paragraph with audio renarrated.html",
"@Qtype": |"foaf:Page", "rn:Document"]

}

}

Figure 5.4. A renarration specification in JSON-LD of a web page for which "Text1"
is replaced with audio with url "http://audiol.ogg" in audio/ogg format

<html>

<body>

<audio controls>
<source src="http://audiol.ogg" type="audio/ogg">
Your browser does not support the audio tag.
</audio>

</body>

</html>

Figure 5.5. HTML code of a web page renarrated via replacing "Text2" with an audio

82

<html>
<body>
<p>Textl</p>
<p>Text2</p>
<p>Text3</p>
</body>
</html>

Figure 5.6. HTML code of a web page consisting of three paragraphs

Figure 5.8 shows that second paragraph whose xpath is //html[1]/body[1]/p|2]
is removed. Also third paragraph in original page with ’Text3’ textual content is

renarrated with "Text4’ where the renarrated content’s xpath is //html|1]/body][1]/p[2].

This test case shows that the proposed data model can express, removal of con-
tent, and transforms being done after removal of content. This evaluation also shows
that when a transform which can change xpath of elements is done, all transformations

after the one changing xpaths, must have targetSelection object property.

5.1.1.4. Replacement using content from an annotation. In this test case, we have

evaluated usage of annotation in a renarration. We have assumed that the annota-
tion is already created by an annotator. The annotation created assumed to be a text

annotation with textual content 'Annotation Text’.

For this test case we assume that original page is the same as in Figure 5.6, and
the annotation is assumed to be created on the second paragraph whose content is

"Text2’.

Annotation created can be seen in Figure 5.9 in JSON-LD format. Lines between
23 and 25 shows that the annotation is created for "Text2’, and the line 24 shows that

annotation is an embedded content type annotation with value of "Annotation Text’.

We assume that renarrator uses content from annotation and renarrates the sec-
ond paragraph. Line 27 in Figure 5.10 shows that ’Annotation Text’ is text. Lines

between 28 and 30 indicates that this content is accessed from annotation.

83

{

"@Qtype": "rn:Renarration",
"source": {
"@id": "transform after removal_ of content original.html",
"Qtype": ["foaf:Page", "rn:Document"]
b
"transformList ": {
"Qtype": "rn:List",
"nodes": |
{
"@id": "19¢a990d—b233 -4047—b40a—258a8278fada",
"@Qtype": "rn:RenarrationTransformation",
"sourceSelection": {
"@id": "6322109a—e221—4c61—-9e51—-5d31287a4dc9",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html|[1]|/body|[1]/p[2])"
I
"createdAt": "2015—-11—-20T13:07:27.9677Z",
"action": "rn:Remove"
{
"@id": "20ca990d—b233 -4047—b40a—258a8278fada",
"Qtype": "rn:RenarrationTransformation",
"sourceSelection": {
"@Qid": "6322109a—e221—-4c61—9e51—-5d31287a4dc9",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/p[3])"
I
"createdAt": "2015—-11-20T13:07:27.967Z",
"action": "rn:Replace",
"narration": {
"@id": "243b6a94—d16f—4c30—aff4 —7800be645415",
"Q@Qtype": "cnt:ContentAsText",
"content": "Text4"
b
"targetSelection": {
"@id": "fb60d831—-7c18—-4e83—-b8da—341e46482106",
"Q@Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/p[2])"
}
bl
}s
"target": {
"@id": "transform after removal of content renarrated.html",
"@Qtype": ["foaf:Page", "rn:Document"]
}
}

Figure 5.7. Renarration done on original page in JSON-LD format for

transformations on two paragraphs including remove and replace

© 0 N Y Ut W N

W W W NN N N N N N N NN = e e e e e e
N B O © 00 N & U = Ww N~ O © 0N Ut kew NN = O

84

<html>
<body>

<p>Textl</p>
<p>Text4</p>

</body>
</html>

Figure 5.8. HTML code of renarrated page when a paragraph is replaced after

removal of previous paragraph

{
"@id": "88b64849—fbdb—4157—-8393—-08bb509bcd80",
"@Qtype": "oa:Annotation",
"annotatedAt": "2015—11—20T11:46:48.747Z",
"serializedAt": "2015—11—20T11:46:48.7477Z",
"annotatedBy": {
"Qid": "749bf220—4e8b—481d—8bT7a—eb5e735e684f1",
"Qtype": "foaf:Person",
"name": "Annotator"
I
"bOdy": {
"@id": "d1f273¢6—3f93 —4e37—-b93¢—8b58d 01017ec",
"Qtype": "oa:EmbeddedContent",
"value": "Annotation Text",
"format" : "text/plain"
b
"target ": {
"@id": "c25cf552 —2bcf —40c8 —8424—f46b77287595",
"Q@Qtype": "oa:SpecificResource",
"selector": {
"@Qid": "7b0fa8bc—d7c4—4685—8le5—6a90al5d7241",
"Qtype": "oa:TextQuoteSelector",
"exact": "Text2",
"prefix": "Textl",
"suffix": "Text3"
I
"source": {
"@id": "transform after removal of content original.html",
"@Qtype": "foaf:page"
}
}
}

Figure 5.9. Annotation in JSON-LD created for Text2 using oa:TextQuoteSelector

© 0 N O Tt W N

B R R W W W W W W W W W w NN NN NN NN NN e e e e e
W NS O 0N Tt RWw NN O O 0N Ut RsWNN O Y oY s W N = O

85

}

"Qid": "fbae30fa —2687—499e—9a85—-1b12d75367d7",
"Qtype": "rn:Renarration",
"renarratedAt": "2015—-11—-20T13:08:00.650Z",
"renarrator": {
"@id": "e8f551f8 —33ea—429d—8932—-9f16bd8ef3b7",
"Qtype": "foaf:Person",
"name": "A Person"
s
"source": {
"@id": "using annotation content original.html",
"Qtype": ["foaf:Page", "rn:Document"]
b
"transform ": {
"@id": "20ca990d—b233 —-4047—b40a—258a8278fada",
"@Qtype": "rn:RenarrationTransformation",
"sourceSelection": {
"@id": "6322109a—e221—4c61—9e51—-5d31287a4dc9",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/p[2])"
I
"createdAt": "2015—11-20T13:07:27.9677Z",
"action": "rn:Replace",
"narration": {
"@id": "243b6a94—d16f—4c30—aff4 —7800be645415",
"@type": "cnt:ContentAsText",
"content": "Annotation Text'",
"accessedFrom": {
"@id": "88b64849—-fbdb —4157—-8393—-08bb509bcd80",
"Qtype": "oa:Annotation"
}
s
"targetSelection": {
"@id": "fb60d831—-7c18—-4e83—b8da—341e46482106",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/p[2])"
}
b
"target": {
"@id": "using annotation content renarrated.html",
"@Qtype": ["foaf:Page", "rn:Document"]
}

Figure 5.10. Renarration done on original page in JSON-LD format for replacing

second paragraph by using content from an annotation

86

Assuming that renarrations transforms applied on source page, and generated
page is deployed as 'using _annotation content renarrated.html’; renarrated page would

be as in Figure 5.11.

<html>
<body>
<p>Textl</p>
<p>Annotation Text</p>
<p>Text3</p>
</body>
</html>

Figure 5.11. Renarrated page for which second paragraph’s content is referenced from

an annotation

5.1.1.5. Insertion of new content between two elements. Insertion of new content can

be very useful during the process of renarration. Renarrators may choose to insert new
content at specified locations in web resources. In order to evaluate if the proposed
model can define such operations, we have assumed that renarrator inserts a new

paragraph between two paragraphs.

The source page for which a paragraph should be inserted between two paragraphs

can be seen in Figure 5.12.

<html>
<body>
<p>Textl</p>
<p>Text3</p>
</body>
</html>

Figure 5.12. HTML code of a web page consisting of two paragraphs

A renarration specification in JSON-LD of the web page describing insertion of
new paragraph can be seen in Figure 5.13. Lines between 7 and 42 in the figure shows

the insertion of new paragraph.

© 0 N O Tt s W N

B R R s B R A W W W W W W W W W W RN NN NN KN NN KN 2 e = e =
G A W R = O © g R RN O © 00 g0 A W N E O © 00 N U W N = O

87

}

"source": {
"@id": "insert between two _elements original.html",
"Qtype": ["foaf:Page", "rn:Document"]
b
"transform": {
"@id": "20ca990d—b233 —-4047—b40a—258a8278fada",
"@Qtype": "rn:RenarrationTransformation",
"sourceSelection": {
"@id": "6322109a—e221—4c61—-9e51—-5d31287a4dc9",
"Qtype": "rn:BetweenSelector",
"between": {
"@id": "243b6a65—-d16f—4c30—aff4 —7800be645415",
"Qtype": "rn:List",
"nodes": |
{
"@id": "7544109a—e221—4c61—9e51—-5d31287a6bh8" ,
"@Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/p[1])"
I
{
"@id": "7544109a—e221—4c61—9e51—-5d31287a6bh9",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/p[2])"
}
|
}
I
"createdAt": "2015—-11-20T13:07:27.9677Z",
"action": "rn:Insert",
"narration": {
"@id": "243b6a94—d16f—4c30—aff4 —7800be645415",
"Qtype": "cnt:ContentAsText",
"content": "Text2"
b
"targetSelection": {
"@id": "fb60d831—-7c18—-4e83—-b8da—341e46482106",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/p[2])"
}
b
"target": {
"@id": "insert between two elements renarrated.html",
"@Qtype": ["foaf:Page", "rn:Document"]
}

Figure 5.13. A renarration specification in JSON-LD of the web page describing

insertion of new paragraph

88

After applying transformations defined in Figure 5.13 on original page, renarrated

page can be constructed as in Figure 5.14.

<html>
<body>
<p>Textl</p>
<p>Text2</p>
<p>Text3</p>
</body>
</html>

Figure 5.14. HTML code of renarrated web page including inserted paragraph

5.1.2. Evaluation Using FIR Web Page

In order to demonstrate that the proposed model can also be used for renar-
ration of pages on the Web, we have manually created a web page using content on
Wikipedia [52|. The content is about FIR (First Information Report) which is a docu-
ment prepared by police organizations in Bangladesh, India, and Pakistan. The content
of the resource can be seen in the following figure. Even though the page is just com-
posed of text content, there are nested elements as there would be in real web pages.
During the evaluation of the model, we have assumed that HTML document is well

formed [12]. Figure 5.15 shows the content of the FIR page.

The purpose of the renarration is assumed to be that the page can be constructed

for low literate people so that the content can be easily consumable.

For the first transform, it is assumed that renarrator decides to renarrate a sen-
tence. The content to be renarrated is "It is generally a complaint lodged with the
police by the victim of a cognizable offense or by someone on his or her behalf, but
anyone can make such a report either orally or in writing to the police" [52]. Looking
at the structure of the sentence, it may be hard to understand for low literate. We
have assumed that this sentence is replaced with the following content: "If you have
been a victim, or a witness to a crime or someone who has information of a crime
and want to punish the criminal you can report to police." [53]. Figure 5.16 shows the

replacement of this sentence. The action also shows that nested selection is used. The

89

First Information Report

A First Information Report (FIR} is a written document prepared by police organizations in
Bangladesh, India, and Pakistan when they receive about the commission of a cognizable
offence. It is generally a complaint lodged with the police by the victim of a cognizable
offense or by someone on his or her behalf, but anyone can make such a report either orally
or in writing to the police.

For a non cognizable offense a Community Service Register is created & registered.

FIR is an important document because it sets the process of criminal justice in motion. It is
only after the FIR is registered in the police station that the police take up investigation of
the case. Anyone who knows about the commission of a cognizable offence, including police
officers, can file an FIR.

As described in law,

® Every information relating to the commission of a cognisable offence, if given orally to an
officer in charge of a police station, shall be reduced to writing by him or under his
direction, and be read over to the informant; and every such information, whether given in
writing or reduced to writing as aforesaid, shall be signed by the person giving it, and the
substance thereof shall be entered in a book to be kept by such officer in such form as the
State Government may prescribe in this behalf.

* A copyofthe information as recorded under sub-section shall be given forthwith, free of
cost, to the informant.

* Any person aggrieved by a refusal on the partof an officer in charge of a police station to
record the information referred to in sub-section may send the substance of such
information, in writing and by post, to the Superintendent of Police concerned who, if
satisfied that such information discloses the commission of a cognisable offence, shall either
investigate the case himself or direct an investigation to be made by any police officer
subordinate to him, in the manner provided by this Code, and such officer shall have all the
powers of an officer in charge of the police station in relation to that offence.

Figure 5.15. Web page created using content from Wikipedia about how to file first

information report

way that this is expressed is done by using first XPathSelector (Lines between 9 and
13) and then PrefixSuffixSelector (Lines between 14 and 20).

For the second transform, we have assumed that the renarrator decides the second
paragraph in original page does not help low literate to understand the content. So,
the renarrator decides to remove this paragraph. Lines between 30 and 40 in Figure

5.16 shows how this is expressed within the model specification.

90

For the next transform, we have assumed that an annotator created an annotation
for text content "cognizable offence" in original page. The annotation created assumed

to be a textual annotation with the following content :

"Generally, cognisable offence means a police officer has the authority to make
an arrest without a warrant. The police is also allowed to start an investigation with

or without the permission of a court" [54].

Lines between 5 and 22 in Figure 5.17 shows the selection after the third para-
graph. The meaning of these lines is that the content of the narration will be inserted
after the third paragraph (whose xpath is "//html/body/div[1]/p[3]") in the source.
Lines between 33 and 35 in the figure, shows that the inserted content is referenced

from an annotation.

Lastly, we have assumed that the renarrator decides that it can be easier to
understand if the content about how to file a first information report is replaced with an
interactive resources. For the interactive resource, we have used content from Prezi [53].
The content interactively guides user what to do in such a situation. Line 17 in the
Figure 5.18 shows that DCMI Metadata Term can be used to define an interactive

resource.

After all transforms applied on the source content, and assuming that the page

is saved, the renarrated page can be constructed as in Figure 5.19.
5.2. Evaluation Using Implemented Prototype
In previous section, we have evaluated the model if it is expressive enough to
define different types of renarrations. In this section, we have created two web pages

in text/html format, and used the implemented prototype.

The first use case, includes renarration of a web page which is about method

overriding in C++-, an object oriented programming language. The purpose of the

© 0 N O Tt W N

[T S S R
~N YO e W NN = O

18
19

20
21
22
23
24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40

91

"Qid": "3cc9bb2d —26db—4ccc —8450—0baec2435€99 ",
"Qtype": "rn:RenarrationTransformation",
"action": "rn:Replace",
"sourceSelectionList": {
"@id": "77d9f63f—a806—4e06 —8022—66ff4fc1ffdd",
"@Qtype": "rn:List",
"nodes": |
{
"@id": "e0c0956d —3914—462 1-bfl0e —76936d68f2fb",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html/body/div[1]/p[1])"
b

"@id": "2f305684—-d300—-4493—88ce —217cfb836d49",
"Qtype": "rn:PrefixSuffixSelector",
"prefix": "Pakistan when they receive about the commission of a cognizable offence

n
LI}

||suffixll: |l||7
"text": "It is generally a complaint lodged with the police by the victim of a
cognizable offense or by someone on his or her behalf, but anyone can make

such a report either orally or in writing to the police."

"narration": {

"Qid": "c41e9d39—-2d09—-442d—9eal —018986¢53801 ",

"Qtype": "cnt:ContentAsText",

"content": "If you have been a victim, or a witness to a crime or someone who has
information of a crime and want to punish the criminal you can report to police."

b

"createdAt": "2015—-11-05T13:48:00Z"

s

{

"Qid": "3cc9b52d —26db—4ccc —8450—0baec2435f99 ",
"Qtype": "rn:RenarrationTransformation",
"action": "rn:Remove",

"sourceSelection": {

"@id": "77d9f63f—a806—4e06 —8022—66ff4fclffed",
"@Qtype": "rn:XPathSelector",

"value": "#xpointer(//html/body/div[1]/p[2])"

}s
"createdAt": "2015—-11-05T13:50:002"

Figure 5.16. A renarration transform specification in JSON-LD of a web page

describing replacement and removal of two paragraphs

© 00 N O Ul s W N =

W W W NN NN NN NN NN e e e e
N H O © 0 1 O U = W N FEF O © 0N kew NN = O

33
34
35
36
37
38
39

92

"@id": "3c¢d9b52d —26db—4ccc —8450—0baec2455f99 ",
"Qtype": "rn:RenarrationTransformation",
"action": "rn:Insert",
"sourceSelectionList": {
"@id": "6322109a—e221—4c61—9e51—-5d31287a4dc9",
"Qtype": "rn:BetweenSelector",
"between": {
"@id": "243b6a65—d16f—4c30—aff4 —7800be645415",
"Qtype": "rn:List",
"nodes": |
{
"@id": "7544109a—e221—-4c61—9e51—-5d31287a6bh8",
"@Qtype": "rn:XPathSelector",
"value": "#xpointer(//html/body/div[1]/p[3])"

"@id": "7544109a—e221—4c61—9e51—-5d31287a6bh8",
"@Qtype": "rn:NoSelector"

]

}

b,

"targetSelection": {

"@Qid": "77d9f63f—a806—4e06 —8022—66ff4fc1ffed ",

"@Qtype": "rn:XPathSelector",

"value": "#xpointer(//html/body/div[1]/p[2])"

b

"narration": {

"@id": "c41e9d39—-2d09—442d—9eal —018986c¢53801 ",

"Qtype": "cnt:ContentAsText",

"content": "Generally, cognisable offence means a police officer has the authority
to make an arrest without a warrant. The police is also allowed to start an
investigation with or without the permission of a court.",

"accessedFrom": {

"@id": "f23ede35 —837b—4316—a6al —110c359e7002",

"Qtype": "oa:Annotation"

}

b

"createdAt": "2015—11—-05T15:50:00Z"

}

Figure 5.17. A renarration transform specification in JSON-LD of a web page

describing insertion of alternative content by using BetweenSelector.

© 0 N O Tt s W N

[e e el o
S © 0 NN Ut s W N = O

93

{

"@id": "3cd9b52d —89db—4ccc —8450—0baec2455f99 ",

"Qtype": "rn:RenarrationTransformation",

"action": "rn:Replace",

"sourceSelection": {
"@id": "77d9f63f—a806—-4e06 —8022—66ff4fclffed",
"Q@Qtype": "rn:XPathSelector",
"value": "#xpointer(//html/body/div[2])"

b

"targetSelection": {
"@id": "77d9f63f—a806—-4e06 —8022—66ff4fclffed",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html/body/embed[1])"

b

"narration": {
"@id": "https://prezi.com/embed/fxk9h96h0zyp /?bgcolor=ffffff ..."
"Qtype": "dctypes:InteractiveResource"

I

"createdAt": "2015—-11-05T16:05:00Z"

}

Figure 5.18. A renarration transform specification in JSON-LD of a web page

describing replacement of content with an interactive resource.

renarration is to renarrate the content so that Java programmers can consume the
page. Another use case includes renarration of a simple text. In this scenario, the
content in English, cannot be consumed by people who can’t understand the language.
The aim of the renarration is to renarrate the content so that it can be understood by

Turkish speakers.

5.3. Use Case 1

In this use case, we have created a Web page in text/html format. The page is
about method overriding in C++-, an object oriented language. Content used to create
pages and renarrations is originated in Wikipedia [55]. The purpose of this use case
is to check whether the model and the prototype is capable of renarrate the content.

The content of the page can be seen in Figure 5.20.

94

First Information Report

A First Information Report (FIR) is a written document prepared by police organizations in
Bangladesh, India, and Pakistan when they receive about the commission of a cognizable
offence. If you have been a victim, or a witness to a crime or someone who has information
of a crime and want to punish the criminal you can report to police.

FIR is an important document because it sets the process of criminal justice in motion. It is
only after the FIR is registered in the police station that the police take up investigation of
the case. Anyone who knows about the commission of a cognizable offence, including police
officers, can file an FIR. Generally, cognisable offence means a police officer has the
authority to make an arrest without a warrant. The police is also allowed to start an
investigation with or without the permission of a court.

First Information Report

by Kanan Dhru

tow to File a Police Complaint?

(First Info
- What is an FIR?

Figure 5.19. Web page renarrated by applying transformations on the FIR source

page
List of renarration transforms applied to the source are as follows :
(i) Textual content "Function" is replaced with "Method". This renarration trans-

forms aims to assert that "Method Overriding" is most suitable in Java Program-

ming Language. Renarrtion Transform can be seen in Figure 5.21.

95

Method owerriding, in object oriented programming, iz a language feature that allows 3 subclass or child class to provide a specific implemeantation of a method that is lready provided
by one of its superclasses or parent classes. The implementation in the subclass overrides (replaces) the implementation in the superclass by providing a method that has same name,
same parameters or signature, and same return type as the method in the parent class. The version of a method that is executed will be determinad by the object that iz used to invoke
it If an object of 3 parent class is used to invoke the method, then the version in the parent class will be executed, but if an object of the subclazsis used to invoke the method, then the
wersion in the child class will be executed. Some languages allow a programmer to prevent 2 method from being overridden.

In C++_the name of the parent or base class is used followsed by the scope resolution operator to override functions. For example, the following code presents two classes, the base
class TRectangle, and the derived class TBox. TBox overrides the TRectangle class's print[) method, so as also to print its height.

pinsluds TissEEeass

=lass Ractangls
i
publie:
Bectasgleddouble L, double wi : lengehill, widthiwd {}
wirtual veid princ() ecomst;

private:
double lengeh;
double width:
¥

void Rsctangle::printi) cones
i
std:icout €€ "lenght = * €€ this=3lengch €€ = widsh = = ££ this=dwidth:
]

class Box : public Rectangle

. heightin) ()
mice te remind iv te the develspes.

® 1, double w, double h) : Rectangle
1 is oprisaal kese, buw iv is & gead

virs void print() conss;
privata:
double height,

F e —— ——— ——
¢ prins() meshod of derived class
veid Box::peined) conse

44 Invoke parent print() method
Bastangle: :peist();
#%d:icout €4 i Height = " << this-Pheight;

The method printl} in class Box, by invoking the parent version of method print{], is also able to output the private variables length and width of the base class. Otherwise, these
variables are inaccessible to Box

Figure 5.20. Web Page about overriding feature in C++ Programming Language.

(ii) Content which can be accessed via xpath(//html/body/div/div|2]/div|[1]/p[2]) is
replaced with alternative content. The original paragraph is about overriding a
method in C++ programming language, and the paragraph explains subsequent
image. This paragraph is renarrated and the renarration mainly talks about
overriding methods of superclasses in Java programming language. Lines between
1 and 16 in Figure 5.22.

(iii) The image whose xpath is //html/body/div/div[2|/img, is replaced by alternative
one. The alternative image gives an example override in Java. Lines between 17

and 31 in Figure 5.22.

After using the prototype for the renarrations, generated json-ld can be seen in
Figure 5.21 and Figure 5.22. All renarration transforms are in the order they applied on

the source content. Also, please note that the renarration is done using an application

© 0 N Y Ut W N

NN RN N NN NN KN N e = e e 2 e
© 0 N o AR W N F O © 00 N O ULk W N = O

server on a local machine.

96

{
"@id": "095555b3—40f9 —4120—bb67—-2db9f4dc40b6 ",
"@Qtype": "rn:RenarrationTransformation",
"sourceSelectionList": {
"@Qid": "67d115be—ae56 —470f—b a59—dc4b4c0290c9 ",
"Qtype": "rn:List",
"nodes": |
{
"@id": "23b6e472—-3cbf—-421 ¢—8100—59be8d021556",
"Qtype": "rn:XPathSelector",
"value": "#xpointer (//html[1]/body[1]/div[1]/div[1l]/h1[1])"
b
"@id": "5d40b6da—888b—4c91—-8079—-1f016b887 2f9 ",
"Qtype": "rn:PrefixSuffixSelector",
"prefix": ""
"suffix": ""
"text": "Function"
}
|
I
"createdAt": "2015—-11-19T11:48:26.7197Z",
"action": "oa:Replace",
"narration": {
"@id": "6322109a—e221—4c61—9e51—-5d31287a4dc9",
"@type": "cnt:ContentAsText",
"content": "Method"
}
}

Figure 5.21. A renarration transform specification (in JSON-LD) of textual content

describing replacement of text for a web page about method overriding in C++ to

one for the Java Programming Language

5.4. Use Case 2

In this use case, we have created a Web page in text/html format in which only

a short message exists. The aim of this use case is also to show that the model can

be used for renarration of short messages which are very common in social networking

websites.

The short message in the Web resource is about a black guy, Jonathan Fleming,

© 0 N O Tt s W N

—_ e = e
AW N = o

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

97

"@id": "04 17e211—-2535—4168—8b53—b808f5fe1d89 ",
"@type": "rn:RenarrationTransformation",
"sourceSelection": {
"@id": "c02b505e—b6f2 —4c2a—b570—-4b81472ebcb4 ",
"Qtype": "rn:XPa thSelector",
"value": "#xpointer(//html[1]/body[1]/div[1]/div[2]/div[1]/p[2])"
b
"createdAt": "2015—-11-19T11:50:00.1547Z",
"action": "oa:Replace",
"narration ": {
"@id": "0f586d5a—ad05—4df7—a4c8—b8aa2980adba ",
"Qtype": "cnt:ContentAsText",

"content": "

In Java, when a subclass contains a method that overrides a method of
the superclass, it can also invoke the superclass method by using the k eyword
super. Example shows that Box class overrides the print () method of Rectangle

class. Additionally , it prints height information."

"@id": "366d2697—6550—4e39 —94fc —3d0c3b30da7b",
"@type": "rn:RenarrationTransformation",
"sourceSelection": {
"@Qid": "8el113cc8 —70b7—4a9b—9c3d —38d7dedde661 ",
"Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/div[1]/div[2]/img[1])"
s
"createdAt": "2015—11—-19T11:50:43.4727",
"action": "oa:Replace",
"narration": {
"@id": "http://localhost:8181/renarration/resources/java_override.png",
"Qtype": "dctypes:Image",
}
}

Figure 5.22. A renarration transform specification (in JSON-LD) describing
replacement of a paragraph and an image of a web page about method overriding in

C++ to create an alternative for the Java Programming Language

who spent 25 years in prison for murder he did not commit. Discovered evidence - a
phone receipt - provided that he was vacationing with his family at Disney World in

Bay Lake, Florida. [73] The text of the short message is as follows :

"Wrongly convicted black man has been freed after spending nearly 25 years

behind bars."

98

The message doesn’t say anything about the event; it does not even say who
the person is. It is very common to see such messages on the Web. The following
list of actions are assumed for the evaluation of the use case. The purpose of the
renarration is to make the short message more meaningful for Turkish speakers. The
text in the short message and the content in renarration transforms are referenced from

morallowground.com [56] and www.commondreams.org [57].

(i) An annotator who knows a little English creates an annotation and asks whether
someone to explain what the message is all about. Figure 5.26.
(ii) Another annotator creates an annotation for the textual content "black man"
and the content of the annotation is "Jonathan Fleming" as in Figure 5.25.
(iii) Renarrator sees all the annotations and decides to create a renarration of the
short message. The renarration includes one transformation which is an instance

of rn:List. Line number between 16 and 43 in Figure 5.27.

The HTML code of short message in Figure 5.23 can be seen in Figure 5.24.

Wrongly convicted black man has been freed after spending nearly 25 years behind bars.

Figure 5.23. Short message about a black guy who spent nearly 25 years in prison.

A semantic annotation for the text "black man" within the short message can be
seen in Figure 5.25. Another annotation questioning the event in Turkish can be seen

in Figure 5.26.

Renarrator renarrates the short message and first summarizes what happened
to Jonathan Fleming between lines 30 and 33 in Figure 5.27. After summarization,
renarrator talks about evidences that might prevent him being put in prison. Lines

between 34 and 38 in Figure 5.27.

As it can be seen in the renarration target, the page is deployed as jonathan fleming

99

<?xml version="1.0" encoding="utf—-8"7>
<html>
<head>
<title >Black man spent 25 years in prison</title >
</head>
<body>
<div align="center">

<div style="width:650px;border—radius: 10px;border:2px solid lightgray;padding: 10
px;height=30px;" align="center">
<div align="left">
<p align="left">
Wrongly convicted black man has been freed after spending nearly 25 years behind
bars.
</p>
</div>
</div>
</div>
</body>
</html>

Figure 5.24. HTML code of a short message about a wrongful conviction

_turkish.html. Deployed page can be used for people who know Turkish, and when
they visit the page in which the short message exists, they can be shown the renarrated

page instead. The renarrated page can be seen in Figure 5.28.

5.5. Results and Discussion

The amount of data on the Web is massive and continually growing. Because of
characteristics of the content, it is not accessible by huge amount of people due to a va-
riety of barriers. The barriers to accessibility range from limited Internet connectivity,
to physical impairment, linguistic differences, and also social, cultural and economic
factors [6]. In order to create accessibility to the content, it is very important to create

meaningful relations between Web elements and to provide accessibility.

Annotation is one of the methods to increase accessibility for Web content. The
way that annotation method uses is to attach data to some piece of data. However,
considering evaluations in this chapter in earlier sections, attaching some piece of data

may be inefficient. For instance, for the evaluation created for how to create an FIR,

100

{

"Qtype": "oa:Annotation",

"annotatedAt": "2015—11—-20T11:46:48.7477Z",
"serializedAt": "2015—11—20T11:46:48.7477Z",

"annotatedBy ": {
"@id": "749bf220—4e8b—481d—8b7a—eb5e735e684f1 ",

"Qtype": "foaf:Person",
"name": "Personl"
b
"motivation": "oa:commenting",
"body": {
"@id": "d1f273c6 —3f93 —4e37-b93c—8b58d 01017ec",
"Qtype": "foaf:Person",
"foaf:firstName": "Jonathan",
"foaf:lastName ": "Fleming"
s
"target": {
"@id": "c25cf552 —2bcf —40c8 —8424—f46b77287595" ,
"Qtype": "oa:SpecificResource",
"selector": {
"@Qid": "c2cca973—b418 —484b—be6e—5 8afd27ledfd",
"Qtype": "oa:List",
"members":
[
{
"@id": "5294370a—f13f —4596—a 687—2c0868a6c28e",
"Qtype": "rn:XPathSelector",
"xpath": "#xpointer(//html[1]/body[1]/div[1]/div[1l]/div[1l]/p[1])"
b
"@id": "7b0fa8bc—d7c4 —4685—-81e5—6a90a15d7241",
"Qtype": "oa:TextQuoteSelector",
"exact": "black man",
"prefix": ""
"suffix": ""
}
|
I
"source": {
"@id": "http://localhost:8181/renarration/resources/jonathan fleming.html",
"Qtype": "foaf:page"
}
}

}

Figure 5.25. Annotation in JSON-LD format created for textual content "black man"

101

{

}

" id": ObjectId ("564f08b413c11b5d787b3074") ,

"Qcontext":

[

"http://www.w3.o0rg/ ns/oa—context —20130208.json",

{"rn": "http://localhost:8181/renarration/ns/20151001.json"}

I,
"@id": "03b2f719 —341a—4db6—b6e0—-5700da0dd6ds" ,

"Qtype": "oa:Annotation",
"annotatedAt": "2015—-11-20T11:49:05.6207Z",
"serialized At": "2015—11—20T11:49:05.6207Z",
"annotatedBy": {
"@id": "e8f551f8 —33ea—429d—8932—-9f16bd8bd3b7",
"Qtype": "foaf:Person",
"name": "Person2"
s
"serializedBy ": {
"@id": "http://localhost:8181/renarration /",
"Qtype": "prov:SoftwareAgent",
"name": "Code v1.1",
"homepage": "http://localhost:8181/renarration /"
s
"motivation": "oa:questioning",
"body ": {
"@id": "b780c41lc—2edb—49db—abel —0630 62ef3689",
"Qtype": "oa:EmbeddedContent",
"value": "Tam olarak olayin nasil oldugunu anlatabilir misiniz?",
"format": "text/plain"
s
"target ": {
"@id": "19ca990d—b233 -4047—b40a—258a8278fada",
"Qtype": "oa:SpecificResource",
"selector": {
"@id": "02f5474c —90b9—48c6—8e19 —859347884945",
"Qtype": "rn:XPathSelector",
"xpath": "#xpointer (//html|[1]|/body[1]/div[1]/div[1])"
I
"source": {
"@id": "http://localhost:8181/renarration/resources/jonathan fleming.html",
"Qtype": "foaf:page"
}
}

Figure 5.26. Annotation questioning the meaning of short message in Turkish

© 0 N Y Ut s W N

W W W NN N N N N N N N N = = = = = e e
N H O © 00 N O U = W N HEF O © 0N O U kew NN = o

33
34
35
36
37

38

102

{

"transformList": {
"@id": "a8d33924—cd22—-42dc—b8aa—385bb728341c",

"@type": "rn:List",
"nodes": |
{
"@id": "el4c99ed —1d39—-43f1 —894c—25e¢162e4d749",
"@Qtype": "rn:RenarrationTransformation",
"sourceSelection": {
"@id": "fb60d831—-7c18—-4e83—-b8da—341e46482106",
"Q@Qtype": "rn:XPathSelector",
"value": "#xpointer(//html[1]/body[1]/div[1]/div[1]/div[1]/p[1])"
b
"createdAt": "2015—-11-20T13:07:27.967Z",
"action": "oa:Replace",
"narrationList ": {
"@id": "eba992f2—ach4 —424b—af2a—4da794635bd1",
"Qtype": "rn:List",
"nodes": |
{
"@Qid": "58438a86—-9c97 —43b7—b82e —37dbb8417a5d",
"@Qtype": "cnt:ContentAsText",
"content": "Jonathan Fleming ",
"accessedFrom": {

"@id": "88b64849—fbdb —4157—-8393—-08bb509bcd80" ,

"Qtype": "oa:Annotation"
}
{
"Qid": "7664abaf—3fe4 —471c—b7f1—a5040eb8428c",
"@Qtype": "cnt:ContentAsText",
"content": "1989 yilinda Broklyn'da uyusturucu saticisi Darryl Alston'i

oldurmek sucundan muebbet hapse mahkum edildi. Uzun bir zamandan sonra
saklanan kanitlar ortaya cikinca serbest birakildi. Fleming daima olayin

oldugu anda Florida 'da tatilde oldugu uzerinde israr ediyordu..."

s
"@id": "243b6a94—d16f—4c30—aff4 —7800be645415",
"Qtype": "cnt:ContentAsText",
"content": " Fleming'in cinayeti islemedigine dair en guclu kanit Orlanda

otelinde saat 21:27'ye ait odenmis bir telefon faturasinin bulunmasiydi.
Cinayet ise sonraki gun sabaha karsi 02:15'de islendiginden cinayeti
islemedigi acikca ortadaydi. Bu kanitin neden ilk durusmada ortaya

cikarilmadigi ise buyuk bir muamma..."}|

Figure 5.27. Renarration in json-ld format for creation of an alternative page in
Turkish for the short message about Jonathan Fleming who wongfully put in prison

for 25 years.

103

Jonathan Fleming

1989 yvilinda Broklyn'da uyusturucu saticisi Darryl Alston't éldGrmek sugundan muebbet hapse
mahkum edildi. Uzun bir zamandan sonra saklanan kanitlar ortaya gikinca serbest birakildi. Fleming
daima olayin oldugu anda Florida'da tatilde oldugu (zerinde 1srar ediyordu. Her ne kadar cinayet
gliniine ait fotograflar ve video'lar olmasina ragmen, savcilar onun 53 adet mevcut ugusu kullanarak
cinayeti isleyip geri dénebilecegini iddia ettiler.

Fleming'in cinayeti islemedigine dair en giicli kanit Orlanda otelinde saat 21:27"'ye ait ddenmis bir
telefon faturasinin bulunmasiydi. Cinayet ise sonraki giin sabaha karsi 02:15'de islendiginden
cinayeti islemedigi agikca ortadaydi. Bu karitin neden ilk durusmada ortaya gikaridlmadig ise blyik
bir muamma. isin daha ilginciise bu faturanin Fleming tutuklanirken cebinde olmasmyd.. Bir diger
kanit ise, Fleming ve ailesinin cinayet esnasinda tatilde oldugunu goren otel calisanlarimin olmasydi.
Ancak ilk durusma aninda sadece kendi ailesi bunu ileri stirlyordu. Fleming'in avukatlari bu
kanitlann ilk durusmada olmasi halinde hig hapse atilmayacagini ilettiler.

Figure 5.28. Deployed renarrated page of short message in HTML format.

attaching some data wouldn’t make the content consumable for low literate consumers.

Renarration approach focuses on content and the renarrated content while creat-
ing semantic relationships. For example, a low literate consumer visiting FIR page can
be redirected for the renarrated page which is targeted for low literate people. Alter-
natively, assuming there is a audio of the content for creating FIR report, a consumer

doesn’t know how to read might be directed to the audio instead.

Alipi prototype implements renarration as a service. Using the service, a user can
choose a web page for renarration and specify target groups and publish the renarration.
Any number of renarrations may be created for any given web page. The renarrator can
define translations, simplifications or provide alternative media to the target audience.
However, the approach doesn’t use a predefined vocabulory, an ontology, to define
relationships between content and the related content. Using proposed Renarration

Data Model, the relationships can be defined.

Even though the prototype implemented doesn’t cover some special transforma-
tions such as the ones that change xpath of elements, it shows that it can be used as

a basis for renarrations of documents. The prototype also doesn’t cover of removal of

104

elements which again may change the xpath hierarchy of documents. However, solution

to this can be implemented by simple algorithms as one can be found in Appendix.

Experiments show that the data model provides a standardized method for creat-
ing renarrations of content. The data model scales from very simple to more complex
use cases such as removal and replacement of web elements. The model also allows

usage of external resources such as annotations and content in another web pages.

105

6. FUTURE WORK AND CONCLUSIONS

This thesis presents a framework which enables renarrating contents to make it
available to a wider audience by creating semantic relations between URIs and contents

of web pages.

In order to address the accessibility problem, an ontology framework model and
prototype implementation which generates semantically processable data, have been
developed. Web Annotation Data Model was chosen as the framework model for defin-
ing annotations. The Web Annotation Data Model provides an extensible framework
for defining annotations so that they can easily be shared between platforms. The
proposed approach supports working with this data model as well as other knowledge

bases.

Evaluations show that our proposed model is capable of defining renarrations of
web pages while keeping semantic relations between elements. It is observed that even
though annotation is a very useful method for making contents more accessible and
consumable, renarration provides more comprehensive framework. The main reason
behind that the proposed data model keeps semantic relations between original content
and the renarrated content. However, it is also observed that annotation provides a

useful mechanism for linking external sources such as resources from DBpedia.

Proposed data model uses external ontologies for defining different types of con-
tent and narrations. The Dublin Core Schema is a small set of vocabulary terms which
can be used to define web resources including images, video, web pages, etc. However,
evaluations show that including links, tables in an ontology and using in renarration

framework would definitely improve expressiveness of renarrations.

The potential benefits of annotation are demonstrated by the design and imple-
mentation of SemAnn (Semantic Annotation) framework. SemAnn provides a user

interface for creating annotations of different types such as text, image, semantic tags,

106

etc. Advantages of annotations are demonstrated by the use of renarration implemen-

tation.

Semantic Renarration framework provides a user interface for creating renarra-
tions. FEvaluations on this framework shows that such user interfaces can easily be

developed for creating renarrations of web resources and linking individual contents.

The evaluations show that the designed model and the implemented prototype

would be a useful system to increase accessibility of content.

Throughout this study, we have learned a lot from the maturity of the Web
Annotation Data Model even though the model was still in draft version. It was also
a great opportunity to join weekly meetings for the data model. This showed us that
even a small amount of work is concluded after enormous amount of discussions and

meetings.

As future work, the proposed renarration approach could be improved in several

directions.

e Annotations can be created using a smart text editor to allow different types
of annotations. The current implementation doesn’t cover annotation of web
resources such as audio, video, pdf, etc. These types can be implemented by
integration of open source implementations.

e SemRen can be improved so that it may cover removal of elements. Currently the
framework just hides the element from the user. In addition to this, the imple-
mentation may support transformations that change xpath of elements between
source and target resources.

e A Social Network can be formed in SemRen and SemAnn frameworks. Users
can be represented based on their annotations and renarrations. Social network
analysis could be performed using the tool and users can be related with each
other.

e Renarration Data Model can be extended with a domain-specific ontology so that

107

it covers all necessary elements used in web pages.
e The proposed model can be extended so that it supports renarration of renarra-
tions. In addition to that, it could be improved so that it supports versioning of

renarrations.

10.

108

REFERENCES

. Web Annotation Data Model, http://wuw.w3.org/TR/

2014/WD-annotation-model-20141211, accessed at February 2015.

Google Search Engine, https://www.google.com.tr, accessed at September 2014.

Yahoo Search Engine, https://www.yahoo.com, accessed at September 2014.

. Semantic Web - W3C, http://www.w3.org/standards/semanticweb/, accessed

at September 2014.

"W3C Semantic Web Activity". World Wide Web Consortium (W3C)., http://
www.w3.0org/2001/sw/Activity, .

Dinesh, T., S. Uskudarli, S. Sastry, D. Aggarwal and V. Choppella, “Alipi: A
framework for re-narrating web pages”, Proceedings of the International Cross-

Disciplinary Conference on Web Accessibility, p. 22, ACM, 2012.

Oren, E., K. Mdéller, S. Scerri, S. Handschuh and M. Sintek, “What are semantic
annotations”, Relatorio técnico. DERI Galway, 2006.

Extensible Markup Language - XML, http://www.w3.org/XML/, accessed at
September 2014.

Sanderson, R., P. Ciccarese, H. Van de Sompel, S. Bradshaw, D. Brickley, L. J. G.
Castro, T. Clark, T. Cole, P. Desenne, A. Gerber et al., “Open annotation data
model”, W3C Community Draft, 2013.

Sanderson, R., P. Ciccarese and H. Van de Sompel, “Designing the W3C open anno-
tation data model”, Proceedings of the 5th Annual ACM Web Science Conference,
pp. 366-375, ACM, 2013.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

109

Antoniou, G. and F. Van Harmelen, A semantic web primer, MIT press, 2004.

Well-formed element - Wikipedia, the free encyclopedia, https://en.wikipedia.

org/wiki/Well-formed\textunderscoreelement, accessed at September 2014.

HTML 4 Document Type Definition, http://www.w3.org/TR/html4/sgml/dtd.

html, accessed at December 2014.

RDF - Semantic Web Standards, http://www.w3.org/RDF/, accessed at December
2014.

RDF Schema 1.1, http://www.w3.org/TR/rdf-schema/, accessed at December
2014.

OWL Web Ontology Language, http://www.w3.org/TR/owl-features/, accessed
at December 2014.

SPARQL Query Language for RDF, http://www.w3.org/TR/
rdf-sparql-query/, accessed at December 2014.

JSON-LD 1.0 Specification, http://www.w3.org/TR/json-1d-syntax/, accessed
at September 2014.

Schema.org Specification, http://schema.org/, accessed at September 2014.

Dublin Core Elements, http://purl.org/dc/elements/1.1/, accessed at Decem-
ber 2014.

Dublin Core Terms, http://purl.org/dc/terms/, accessed at December 2014.

DCMI Metadata Terms, http://purl.org/dc/dcmitype/, accessed at December
2014.

FOAF Vocabulary Specification, http://xmlns.com/foaf/spec/, accessed at De-

24.

25.

26.

27.

28.

29.

30.

31.

32.

110

cember 2014.

Provenance Ontology, http://www.w3.org/ns/prov\#, accessed at December

2014.

RDF 1.1 XML Syntax, http://www.w3.org/TR/rdf-syntax-grammar/, accessed
at December 2014.

SKOS Simple Knowledge Organization System Reference, http://wuw.w3.org/

TR/skos-reference/, accessed at December 2014.

Liakata, M., L. N. Soldatova et al., “Semantic annotation of papers: Interface
& enrichment tool (sapient)”, Proceedings of the Workshop on Current Trends in
Biomedical Natural Language Processing, pp. 193-200, Association for Computa-
tional Linguistics, 2009.

Michelson, M. and C. A. Knoblock, “Semantic annotation of unstructured and un-
grammatical text”, International Joint Conference on Artifical Intelligence, Vol. 19,

p. 1091, Lawrence Erlbaum Associates Ltd, 2005.

Ciccarese, P., M. Ocana, L. J. Garcia-Castro, S. Das and T. Clark, “An open
annotation ontology for science on web 3.0.”, J. Biomedical Semantics, Vol. 2, No.

S-2, p. $4, 2011.

Lausen, H. and J. Farrell, “Semantic annotations for WSDL and XML schema”,
W3C' recommendation, W3C', 2007.

Narr, S., E. W. De Luca and S. Albayrak, “Extracting semantic annotations from
twitter”, Proceedings of the fourth workshop on Ezploiting semantic annotations in

information retrieval, pp. 15-16, ACM, 2011.

Momeni, E., “Semi-automatic semantic moderation of web annotations”, Proceed-
ings of the 21st international conference companion on World Wide Web, pp. 167—
172, ACM, 2012.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

111

Bloehdorn, S., K. Petridis, C. Saathoff, N. Simou, V. Tzouvaras, Y. Avrithis,
S. Handschuh, Y. Kompatsiaris, S. Staab and M. G. Strintzis, “Semantic anno-
tation of images and videos for multimedia analysis”, The semantic web: research

and applications, pp. 592-607, Springer, 2005.

Django Girls website, https://djangogirls.org/, accessed at October 2015.

Accessibility W3C', http://www.w3.org/standards/webdesign/accessibility,

accessed at December 2014.

Turkiye Istatistik Kurumu, http://www.tuik.gov.tr/, accessed at December
2014.

Duolingo, https://www.duolingo.com/, accessed at September 2014.

Google Translate, https://translate.google.com, accessed at September 2014.

Annotator - Annotating The Web, http://annotatorjs.org/, accessed at Jan-
uary 2015.

Daniel Cebrian Robles, http://danielcebrian.com/?lang=en, accessed at Jan-

uary 2015.

Daring Fireball: Markdown, http://daringfireball.net/projects/

markdown/, accessed at January 2015.

XML Schema, http://www.w3.0rg/2001/XMLSchema#, accessed at December
2014.

Representing Content in RDF 1.0, http://www.w3.org/TR/Content-in-RDF/,

accessed at December 2014.

Spring Framework, https://spring.io/, accessed at December 2014.

45.

46.

47.

48.

49.

20.

ol.

o2.

93.

o4.

29.

96.

o7.

112

JavaScript Programming Language, https://developer.mozilla.org/en-US/

docs/Web/JavaScript, accessed at December 2014.

W3C XHTML, http://www.w3.org/MarkUp/, accessed at December 2014.

Jsoup Java HTML Parser, http://jsoup.org/, accessed at December 2014.

Jena Semantic Web Framework website, https://jena.apache.org/, accessed at

December 2014.

MongoDB website, https://www.mongodb.org/, accessed at December 2014.

DBPedia website, http://wiki.dbpedia.org/, accessed at December 2014.

GitHub website, https://github.com/, accessed at December 2014.

Furst Information Report, https://en.wikipedia.org/wiki/First

Information_Report, accessed at September 2015.

Prez website, https://prezi.com/fxk9h96h0zyp/

first-information-report/, accessed at September 2015.

Cognisable offence - Wikipedia, the free encyclopedia, https://en.wikipedia.

org/wiki/Cognisable_offence, accessed at September 2015.

Method overriding - Wikipedia, the free encyclopedia, https://en.wikipedia.

org/wiki/Method_overriding, accessed at September 2015.

Moral Low Ground website, http://morallowground.com/2014/04/10/, accessed
at September 2015.

After Nearly 25 Years Behind Bars, Wrongfully Convicted Man Free -
Common Dreams website, http://www.commondreams.org/news/2014/04/08/

after-nearly-25-years-behind-bars-wrongfully-convicted-man-free, ac-

113

cessed at September 2015.

114

APPENDIX A: JSON-LD Context And Implemented
JavaScript For Prototype

A.1. JSON-LD Context

This section provides recommended JSON-LD context recommended for the Re-
narration Data Model. The usage of the context is recommended because it prevents

developers to deal with complex json template as well as enrusing consistency.

Listing A.1 shows the JSON-LD context.

Listing A.1. JSON-LD context recommended for the Renarration Data Model

{

"@context": {

"rn": "https://github.com/EmrahGuder/Renarration /#",

"oa": "http://www.w3.org/ns/oa#",

"foaf": "http://xmlns.com/foaf/0.1/",

"rdf": "http://www.w3.0rg/1999/02/22—rdf —syntax—ns#",

"rdfs": "http://www.w3.0rg/2000/01/rdf—schema#",

"cnt": "http://www.w3.org/2011/content#",

"skos": "http://www.w3.0rg/2004/02/skos/core#",

"dc": "http://purl.org/dc/elements/1.1/",

"dctypes": "http://purl.org/dc/dcmitype/",

"owl": "http://www.w3.o0rg/2002/07/owl#",

"xsd": "http://www.w3.org /2001 /XMLSchema#",

"sourceSelection" : {"@type":"@id", "@id" : "rn:sourceSelection"},

"sourceSelectionList" : {"Qtype":"@id", "@id" : "rn:sourceSelection"," @Qcontainer"
"@list"},

"targetSelection" : {"@type":"@Qid", "@id" : "rn:targetSelection"},

"targetSelectionList" : {"Qtype":"@id", "@id" : "rn:targetSelection"," @Qcontainer"
"@list"},

"audience" : {"Qtype":"@id", "@Qid" : "rn:hasTargetAudience"},

"source" : {"@type":"@id", "@id" : "rn:onSourceDocument"},

"target" : {"@type":"@id", "@id" : "rn:onTargetDocument"},

"transformList" : {"Qtype":"@id", "@id" : "rn:hasRenarrationTransformation","
@container" : "@list"},

"transform" : {"@type":"@id", "@id" : "rn:hasRenarrationTransformation"},

"nodes" : {"@type":"@Qid", "@id" : "rn:nodes", "@container" : "@list"},

"action" : {"@type":"@id", "@id" : "rn:actionOnDocument"},

"between" : {"Qtype":"@id", "@id" : "rn:isBetween","@container" : "@list"},

"narration" : {"Qtype":"@id", "@id" : "rn:hasNarration"},

"narrationList" : {"Qtype":"@id", "@id" : "rn:hasNarration"," @Qcontainer" : "@list"},

115

"accessedFrom" : {"Qtype":"@id", "@id" : "rn:accessedFrom"},
"renarrator" : {"@type":"@id", "@id" : "rn:renarratedBy"},
"motivation" : {"@type":"@id", "@id" : "rn:hasMotivation"},
"content" : "cnt:content",

"renarratedAt" : "rn:renarratedAt",

"value" : "rdf:value",

"createdAt" : "rn:createdAt",

"prefix": "rn:prefix",

"language" : "dc:language",

"suffix": "rn:suffix",

"text": "rn:selectedText",

"name": "foaf:name",

"mbox" : "foaf:mbox",

"offset": { "Qtype": "xsd:nonNegativelnteger", "@id": "rn:offset" },

"byteNumber": { "@type": "xsd:nonNegativelnteger", "@Qid": "rn:byteNumber" }

A.2. Injected JavaScript Used For Prototype

This section provides JavaScript code which is used in the implemented prototype

for enabling web resources annotatable and renarratable. The script is injected into

the web resource, and defines three listeners for mouse events.

Listing A.2. Injected JavaScript for adding event listeners to web resources

// variables used
var mouseOverElement, mouseOverElementStyleBorderColor, mouseOverElementStyleBorder;
var mouseOutElement ;

var clickedElement ;

// Window Event Listeners

window.addEventListener (" mousedown", bodyMouseDown, false);
window.addEventListener ("mouseover", bodyMouseOver, false);
window.addEventListener (" mouseout", bodyMouseOut, false);

// Window Event Listeners

// Event Listener Functions
function bodyMouseOver(event){
mouseOverElement = event.target;
if (getPathTo(mouseOverElement).toLowerCase ()!="//html[1]/body[1]"){
mouseOverElementStyleBorderColor = mouseOverElement.style.borderColor;
mouseOverElementStyleBorder = mouseOverElement.style.border;

mouseOverElement . style.border ='2px dashed red';

}

116

window . parent . Parent mouseOverElement = mouseOverElement ;

window. parent . Parent mouseOverElement XPath = getPathTo(mouseOverElement).toLowerCase

OF

function bodyMouseOut(event){
mouseOutElement = event.target;
if (window.parent.type=="annotation"){

if (window.parent.findAnnotationUsingXPath (getPathTo(mouseOutElement) .toLowerCase())

>=0){
if (getPathTo(mouseOutElement).toLowerCase()!="//html[1]/body[1]"'){
mouseOutElement.style.borderColor = 'yellow ';
mouseOutElement.style.border ='2px solid yellow ';
}
}
else {
if (getPathTo (mouseOutElement).toLowerCase()!="//html[1]/body[1]"'){
mouseOutElement . style.borderColor = mouseOverElementStyleBorderColor;
mouseOutElement . style . border = mouseOverElementStyleBorder;
}
}
}
else{
if (getPathTo(mouseOutElement).toLowerCase ()!="'//html[1]/body[1]"'){
mouseOutElement.style.borderColor = mouseOverElementStyleBorderColor;
mouseOutElement.style.border = mouseOverElementStyleBorder;

}
}

//window . parent .hideAnnotationDivOnElement () ;
//alert (currentElement .innerHTML) ;

}

function bodyMouseDown(event){
clickedElement = event.target;
window . parent . Parent _mouseOverElement = clickedElement ;
var x = new Number() ;
var y = new Number() ;
if (event.x != undefined && event.y != undefined)
{
X = event.x;

y = event.y;
else // Firefox method to get the position
x = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;

y = event.clientY + document.body.scrollTop + document.documentElement.scrollTop ;

updateParentDiv () ;

}

117

// Event Listener Functions

// Library Functions
function updateElementContent(element){

element .innerHTML = 'This is a test ';

}

function getPathTo(element) {

if (element=—=document.body)

return '//html[1]/"' + element.tagName + '[1]';

var ix= 0;
var siblings= element.parentNode.childNodes;
for (var i= 0; i<siblings.length; i++) {

var sibling= siblings|[i];

if (sibling=—=element)

return getPathTo(element.parentNode)+'/'+element .tagName+'["+(ix+1)+"']";
if (sibling.nodeType===1 && sibling .tagName——=element .tagName)

ix++;

function getElementByXpath(path){
return document.evaluate (path, document, null, XPathResult.FIRST ORDERED NODE TYPE,
null) .singleNodeValue;

}

function updateParentDiv () {
var divElement = window.parent.document.getElementById ('ReNarrationDiv ') ;
divElement.style.display = 'block ';

// set parent element

window . parent . Parent selectedElement = clickedElement;

window. parent .Parent selectedElement XPath = getPathTo(clickedElement).toLowerCase() ;
window . parent .setContentInDiv () ;

}

function highlightElementsWithAnnotations (xpath){
elem = getElementByXpath(xpath);
elem.style.borderColor = 'yellow ';

elem.style.border ='2px solid yellow ';

}

A.3. Algorithm For Handling XPath Change

This section provides an algorithm for handling XPath changes for transforms

that can change the indices of HTML elements. Even though this is not implemented

118

in the prototype we have done some evaluation about how this can be achieved. Figure

A.3 shows a recommended algorithm.

let WR be a web resource to be renarrated
create a local copy of web resource WR’
for each HTML element in WR’ do
find XPath of current element
create a dummy attribute
set value of dummy attribute to XPath of current element
end for

return WR’

Figure A.1. Pseudo code for handling XPath changes of HTML elements

