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ABSTRACT 

 

 

THERMAL DIFFUSION TOMOGRAPHY FOR QUANTITATIVE NON-

DESTRUCTIVE CHARACTERIZATION OF ELECTRONIC PACKAGES 

 

 

Increasing number of transistors and reduction in product size leads to thermal 

management problems in electronic packages. Thermal interface materials (TIMs) are used as a 

passive means of thermal management and for high density interconnect packages, TIM helps 

heat dissipation by reducing thermal contact resistance between chip and integrated heat 

spreader (IHS). Therefore, TIM quality is critical for effective removal of heat generated by the 

chip from the package. Identification of defects within TIM is required during package 

assembly process development so that acceptable TIM quality can be achieved for a reliable 

thermal performance. While this is possible by qualitative techniques such as X-ray 

tomography or CSAM, quantitative non-destructive detection based on thermal tomography is 

proposed as an alternative. High density interconnect flip chip package that includes spreading 

effect due to different sized IHS and die that is used for CPU of desktop computers and servers 

is considered in this study. Defect size and location are detected analyzing the measured 

thermal response of electronic package by solving the resulting inverse problem. Levenberg-

Marquardt algorithm is used as an image reconstruction technique as inverse problems are ill-

posed in nature and regularization of the system is necessary. The study investigates the 

feasibility of the method through numerical experiments. Therefore, the experimental data is 

replaced with synthetic measurement data based on applying random measurement error to 

simulated measurement data. Results show that thermal tomography has a potential for 

identification of TIM defects, which cause a measurable effect regarding package 

specifications. 
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ÖZET 

 

 

ELEKTRONİK PAKETLERİN NİCELİKSEL TAHRİBATSIZ 

MUAYENESİ İÇİN ISIL DİFÜZYON GÖRÜNTÜLEME 

 

Artan transistor sayısı ve ürün boyutunun küçülmesi elektronik paketlerde ısıl yönetim 

sorunlarına sebep olmaktadır. Isıl arayüz malzemeleri, yüksek yoğunluklu bağlantılı paketlerde 

pasif ısıl yönetimini sağlamak amacıyla kullanılmaktadır. Isıl ara yüz malzemeleri, çip ile 

birleştirilmiş ısı dağıtıcı arasındaki ısıl temas direncini azaltarak ısı kaybına yardımcı olur. Bu 

nedenle, çip tarafından üretilen ısının paketten etkili bir şekilde uzaklaştırılması için ısıl arayüz 

malzemesinin kalitesi son derece önemlidir. Güvenilir bir ısıl performansı sağlayacak, kabul 

edilebilir kalitede bir ısıl arayüz malzemesi elde edebilmek için paket montaj süreci 

geliştirilmesinde ısıl arayüz malzemesindeki kusurların tespit edilmesi gerekir. Bu amaçla X-

ray görüntüleme veya bilgisayar destekli tarama ses mikroskobu gibi niteliksel yöntemler 

kullanılabildiği gibi, ısıl görüntüleme tabanlı niceliksel tahribatsız muayene de bir alternatif 

olarak sunulmaktadır. Bu çalışmada, masaüstü bilgisayarların ve sunucuların işlemcilerinde 

kullanılan ve birleştirilmiş ısı dağıtıcı ve çipin farklı boyutlarda olmasından kaynaklanan 

yayılma etkisini gösteren yüksek yoğunluklu bağlantılı ters yüz edilmiş çipler 

değerlendirilmiştir. Elektronik paketin ısıl tepkisinin ölçümü neticesinde oluşan ters problemi 

çözerek, kusur büyüklüğü ve yeri tespit edilmiştir. Ters problemler doğası gereği kötü 

konumlanmış olduğundan ve bu nedenle sistemin düzenlileştirilmesi gerektiğinden, görüntü 

yeniden yapılandırma tekniği olarak Levenberg-Marquardt algoritması kullanıldı. Bu çalışmada 

nümerik deneyler kullanılarak, önerilen metodun uygulanabilirliği incelenmiştir. Bu nedenle, 

deneysel veri, simüle edilmiş ölçüm verisine rassal ölçüm hatası ekleyerek elde edilen sentetik 

ölçüm verisiyle değiştirilmiştir. Sonuçlar, ısıl görüntüleme yönteminin, paket 

spesifikasyonlarına göre ölçülebilecek bir etkiye sebep olabilecek ısıl arayüz malzemesi 

kusurlarını tespit etme potansiyeli olduğunu göstermektedir. 
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1. INTRODUCTION 

 

1.1.  Problem Overview 

 

Moore foresaw that the number of transistors incorporated in a chip would 

approximately double every two years [1]. Commitment of industry to follow Moore’s law 

leads to incorporating more transistors in chips. Although more efficient chips are produced in 

terms of power per performance due to improved manufacturing processes, transistor 

architecture and chip design, combined with recent trends in mobility and shrinking sizes lead 

to high power densities that still concern the industry in terms of thermal management. 

Considering the holistic approach industry have been adapting, thermal management must be 

addressed in cooling system and package level besides solutions improving transistor 

architecture, manufacturing processes and chip design. 

 

Electronic package connects the die (chip) to the motherboard in order to achieve a 

reliable performance in terms of signal and power delivery, heat dissipation and mechanical 

protection. In order to overcome heat dissipation problem in the package, thermal interface 

layers (TIMs) are assembled between package layers to reduce thermal contact resistance 

between these layers. While TIM1 is placed between chip and integrated heat spreader (IHS), 

TIM2 is placed between the IHS of the package and heat sink. Thus, quality of TIM layers is 

crucial for desired cooling performance. Thermal greases, phase change materials and 

thermally conductive elastomers are commercially used thermal interface materials [2].Yet, 

none of them perform ideally as during assembly process, defects such as dendrite growth, 

interfacial delaminations, metal migration, voids and micro cracks can be observed in the TIMs 

due to curing speed or deposition technique or speed [3-4]. 

 

The objective of the assembly process development for a new product is to identify the 

optimal assembly process parameters that would lead to packages with high thermal, 

mechanical and electrical performance. Therefore, high number of prototype packages, often 

referred as “test vehicles”, are produced and tested to optimize process parameters during the 
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assembly process development. Thermal test is one of the tests applied to these test vehicles 

and it quantifies the thermal resistance of the package, which is defined from the highest 

temperature of the die, also known as junction temperature, to the temperature of top surface of 

the lid, also known as case temperature. If the measured test vehicle’s thermal resistance is 

beyond the targeted specification, this means the package has a defect and the defect must be 

identified so that the related process parameter must be improved.  

 

Defects leading to thermal failure such as voids and delamination have direct and 

similar impact on the system thermal performance and can be treated equally [5]. Identification 

of defects on TIM1 is more critical than that of TIM2 since same sized defect on TIM1 reduces 

thermal performance of the system approximately 25 times more than that of TIM2 [5]. In 

order to optimize assembly process, TIM defects, especially defects on TIM1, can be identified 

qualitatively using non-destructive imaging techniques such as computerized scanning acoustic 

microscopy (CSAM), X-ray imaging and liquid crystal thermography. Recently, infrared (IR) 

imaging has been proposed as a powerful technique for inspection of defects that produce 

thermal failure modes in TIM [3]. IR imaging measures temperature response of the system to 

the applied heat flux using an IR camera in order to observe defected region. All these non-

invasive testing techniques should be considered as complementary and qualitative. Although 

qualitative defect detection is a common inspection technique in industrial applications, 

quantitative defect detection has been a recent interest of researchers. 

 

Thermal tomography is a thermal imaging technique, which can enable both qualitative 

and quantitative inspection. Earlier research demonstrated the use of thermal tomography in 

medical [6-7] and materials science [8-9] applications. It was shown that thermal tomography is 

capable of rapid, full-field and low-cost defect detection [10]. Although thermal diffusion rate 

can limit defect characterization accuracy, research on quantitative defect detection using 

thermal tomography is still ongoing.  

 

In electronic packaging, thermal tomography can be performed adapting a similar 

approach to IR imaging. The specimen can be heated either by applying die power or using an 

external flash, and then taking temperature data from high speed IR cameras or sensor readings 

from the target surface. Unknown material properties are estimated by image reconstruction 

using temperature measurements. Defect is characterized by estimated material properties. 



3 

 

Estimation of material properties using thermal tomography is an ill-posed inverse 

problem. Inverse problems are prone to problems in regards to existence, uniqueness and 

stability of the solution. Therefore, thermal tomography problems can be solved using various 

image reconstruction techniques that are capable of regularizing the system to cope with these 

problems.  

 

The main difficulties for the application of thermal tomography for defect 

characterization in an electronic package which is subject to spreading effect due to different 

sized IHS and die are as follows: (i) As heat diffuses laterally, spreading effect leads to loss of 

thermal signal, which is used in the solution of resulting inverse problem. (ii) The ill-posed 

nature of the inverse problem necessitates optimization of system regularization and system 

specific test procedure.  

 

1.2. Literature Survey 

 

Electronic packaging connects circuit to the application environment in order to achieve a 

desirable function and protect the circuits. Different levels of electronic packages are illustrated 

in Figure 1.1. Gate to gate interconnections are made on the silicon die (chip). Then, first level 

interconnects connects the chip to the package substrate in order to protect the circuits and 

perform a desirable function. One or more such first level packages are connected to the printed 

circuit boards (PCBs) or printed wire boards (PWBs) by second level interconnects. Multiple 

PCBs or PWBs are connected to motherboard providing operation of the complete system 

including processing, graphics and sound management.  

 

Common chip to substrate connections are wire bonding, tape automated bonding 

(TAB) and flip chip (bump bonding) [11-12]. Among these, flip chip technology is more 

advantageous in terms of electrical performance speed, size, input/output connection flexibility, 

interconnection durability and increased productivity as higher number of bonds can be made at 

the same time [11, 13-14]. Flip chip technology is growing in today’s semiconductor industry 

due to its compactness. 
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Figure 1.1. Simplified schematic of electronic packaging represented in [15] 

 

Flip chip packaging technology has many application areas and its popularity is 

attributed to its compactness. Therefore, it is not only preferred for high performance products 

such as desktop and server central processing units, but also used for mobile devices such as 

cellular phones, laptops, digital cameras and some medical devices. There are mainly two 

architectures of flip chip packages. First type includes only one thermal interface material 

(TIM) placed in between die and a heat spreader or another active cooling system. Second 

architecture makes use of two TIMs, one placed in between die and integrated heat spreader 

(IHS) that is referred asTIM1 and the other is sandwiched in between IHS and heat sink that is 

referred as TIM2. The first architecture is primarily used in laptop applications due to lower 

rate of heat dissipation while the second one is mainly used for desktops and servers which 

require higher heat dissipation rates [16]. The first and second types of flip chip packages are 

schematically represented in Figure 1.2.a and Figure 1.2.b, respectively. 
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Figure 1.2. (a) Flip chip technology with one TIM for mobile applications  

(b) Flip chip technology with a second TIM for higher power applications (Adapted from [16])  

 

When two solid materials are brought in contact, a thermal resistance is observed at the 

interface leading to a temperature drop. Thermal interface materials are used to reduce thermal 

contact resistance between package layers to reduce the resulting thermal resistance in the heat 

transfer path. Although the interface between package layers might look perfect to human eye, 

microscopic irregularities exist between them in reality. Figure 1.3 is a magnified illustration of 

thermal interface material filling irregular gaps between the die and integrated heat spreader 

(IHS).  

 

Figure 1.3. Schematic representation of the origin of contact resistance and TIM use (not to 

scale) [17] 
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Defects such as voids and delaminations can be observed within thermal interface 

material that might cause thermal failure. Gektin [5] mentions that 5% of void within TIM1 

reduces thermal performance of the system by 70 to 130%, depending on the thermal interface 

material used. Therefore, identification of voids within TIM is crucial for a reliable thermal 

performance. Effect of voids and delamination on thermal performance is investigated in [5] 

using both numerical models and experimental approach. In the study, delamination is defined 

as defects having up to 1 µm thickness, whereas voids are the defects larger than 1 µm 

thickness. Although it can be intuitively considered that voids would be a more effective failure 

mode due to higher volume occupied, effects of both on thermal performance is investigated. 

The study reveals that the impact of both defects on thermal performance is almost identical. 

Therefore, delamination can be considered as void in the analysis or vice versa. 

 

A number of non-destructive testing (NDT) techniques are available for defect 

identification in electronic packages, such as time domain reflectometry (TDR), magnetic 

microscopy, atomic force microscope (AFM), optical microscope, C-mode scanning acoustic 

microscopy (CSAM), X-ray, liquid crystal thermography and IR thermometry [3, 18-20]. These 

techniques have different uses considering defect type, ranging from detection of input/output 

connectivity and power delivery related failures such as low impedance, high resistance or wire 

shorting, to mechanical and thermal defects, such as voids and delaminations. Among these, 

CSAM, X-ray, liquid crystal thermography and IR thermography are commonly used for 

identification of defects leading to thermal failure modes. 

 

Scanning acoustic microscope (SAM) is a high frequency ultrasonic imaging technique 

used to investigate defects within optically opaque samples. Ultrasound is a very high 

frequency sound wave, with wavelengths in the order of ms, that is beyond humans’ hearing 

limit. The underlying mechanism in defect detection using this technique is that ultrasound is 

not transmitted through air. Figure 1.4 illustrates a CSAM setup. A transducer converts 

electrical energy into acoustic waves and sends ultrasound to the test sample, which is scanned 

mechanically. The emitted acoustic waves are transmitted through the coupled liquid (distilled 

water or alcohol) to the test sample. Here, the coupled liquid enables efficient ultrasound 

propagation to the solid sample. As the transducer acts as both receiver and emitter, it receives 
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Figure 1.4. CSAM working principle [21] 

 

the reflected wave that is converted into electromagnetic pulses, and these electromagnetic 

pulses are displayed as pixels. As defects such as delaminations, voids and cracks comprise of 

air spaces, ultrasound does not pass through these and the defect is identified [21-22]. 

 

 X-rays are electromagnetic waves with wavelengths in 0.01-10 nm range. X-ray 

analysis consists of an X-ray source, image detector and a sample holder as represented in 

Figure 1.5 [23]. A filament in a vacuum tube (X-ray tube) is heated in order to emit electrons. 

These accelerated electrons pass through a magnetic lens that produces magnetic field, and sent 

to a tungsten layer. X-ray source is created when electrons suddenly decelerate after hitting the 

tungsten layer. The sample to be characterized is placed in between X-ray tube and the image 

detector and X-rays pass through the sample. As density of the sample changes, the energy of 

X-rays passing through also changes that is captured by image detector, and processes a 

grayscale image which is visible to human eye. The lower density regions are displayed 

brighter in the image created, meaning that voids are observed as brighter regions.  
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X-ray source

Image Detector

Sample

 

Figure 1.5. X-ray analysis schematic  

 

Liquid crystal thermography makes use of thermochromic liquid crystals (TLC) to 

observe temperature gradients across the material being inspected [24-25]. Molecular and 

optical properties of TLCs change with temperature. A stable white light source is used and 

reflected color of TLC is associated with different temperatures for calibration. The sample 

under inspection is first coated with a black paint, then after applying TLC, the material is 

heated. Transparent liquid crystals at low temperature turn into red, yellow, green, blue or 

violet colors at elevated temperatures as liquid crystals reflect visible light at different wave 

lengths with changing temperature [25]. Image of the sample is obtained using a digital camera. 

Figure 1.6 illustrates the schematic of liquid crystal thermography arrangement. As lower 

temperature areas are considered as regions with lower thermal conductivity, voids entrapped 

in interface material could be characterized as proposed in [24-25]. Besides, this technique 

could also be used to identify delaminations and voids entrapped in layers for composite 

structures [20].  

 

As mentioned earlier, CSAM and X-ray are widely used conventional qualitative 

nondestructive imaging techniques in electronic packaging [3, 5, 26-27]. While CSAM is 

superior to X-ray in delamination detection, lateral resolution of CSAM is insufficient to 

observe interconnect wires and wire breakages unlike X-ray imaging. Although detection of 

large voids is possible using X-ray, smaller ones are not visible in X-ray results. On the 

contrary, CSAM detects even small voids due to strong reflection of acoustic waves. Both  
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Figure 1.6. Schematic of Liquid Crystal Thermography arrangement [25] 

 

CSAM and X-ray can detect cracks, but only CSAM can give information about crack location 

and size [28]. As an alternative to these imaging techniques, liquid crystal thermography can be 

used for defect characterization, especially for characterization of voids and delaminations [24-

25]. Although this technique could provide accurate results with fine resolutions at a reasonable 

cost, it is not convenient when a large number of test vehicles are tested for assembly process 

development as specimen preparation, i.e. coating and application of liquid crystals, takes some 

time [24]. More recently, application of infrared (IR) imaging was introduced as qualitative 

means of defect detection [3, 26]. Radiosity from the test sample in IR wavelengths is collected 

by an imaging sensor in the camera and converted to electrical signal to be displayed on a 

screen as emissive power or equivalent temperature values [29]. Pacheco et al. [3] and Gupta et 

al. [26] use IR imaging to detect TIM defects qualitatively. They either power up the die or 

apply external power to monitor the temperature response at the top surface of IHS using an IR 

camera. The thermal signal disappears after some time due to lateral heat dissipation. In [3], 

TIM thickness variation is detected after die is powered up. 

  

 Gupta et al. [26] investigates IR imaging and compares it with CSAM. Using the 

CSAM and IR images of good, voided and micro-crack introduced units, it was observed that 

IR imaging was superior to CSAM in detection of micro-cracks while spatial resolution of 

CSAM was better on void detection. However, the advantage of IR imaging is its direct relation 

to thermal performance, ease of set up procedure and rapidity of application for large area 

inspection. Yet, defect image obtained using IR may not be completely visible due to lateral 

heat dissipation. Considering above-mentioned properties, all these non-invasive testing 

techniques are suggested as complementary and qualitative. 
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Thermal tomography provides both qualitative and quantitative inspection, being an 

alternative to above-mentioned imaging techniques. It was used as a rapid, full-field and low-

cost defect detection technique [10]. Unlike other tomography applications such as X-ray, 

optical, or magnetic resonance, thermal tomography relates system response to the thermal 

performance. There has been an ongoing research on thermal tomography due to its potential to 

gather quantitative information related to thermal performance. 

 

Thermal tomography relies on IR thermography data to quantify thermal properties of 

the material under inspection. In order to identify TIM defects, the test sample can be heated 

either by applying die power or using an external flash, and then temperature data from high 

speed IR cameras or sensor readings from the target surface are utilized. Temperature 

measurements are used in reconstruction of the interface image by estimating the unknown 

material property distribution so that defect could be characterized. 

 

Tomography problems can be classified as ill-posed inverse problems. In a direct or 

forward problem, the unknown effect of a known cause is identified. Considering the analysis 

of thermally conducting system, the temperature distribution is predicted for a given geometry, 

material properties, initial and boundary conditions through the solution of heat conduction 

equation. However, the unknown cause of an observed effect is sought after in an inverse 

problem. For a conducting system, considering the measured temperature response, the inverse 

problem is either comprised of identification of the unknown system under known boundary 

conditions, or identification of the unknown boundary conditions for a known system. Solving 

an inverse problem can be a challenging task as they are usually ill-posed. In 1902, a French 

mathematician Jacques Hadamard [30] defined well-posedness of a problem based on three 

criteria: 

 

1. A solution must exist. 

2. The solution must be unique. 

3. The solution must be stable.  

 

If the problem does not satisfy one or more of the above mentioned criteria, then it can 

be classified as ill-posed. As Soemers [31] and Colaço et al. [32] mention, physics of the event 

can give insight into fulfillment of 1
st
 criterion, which is the existence of a solution to an 
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inverse problem. In order to highlight the importance of understanding physical meaning of the 

problem, Au [33] considers the solution of an inverse problem where the final state is defined 

at “minimal entropy”. As entropy is continuously generated with time, the solution of such a 

problem does not exist because going backwards to a stage where entropy is smaller than 

“minimal entropy” is not possible. A similar approach can be adapted for specific inverse 

problems in order to decide on existence of a solution. In some cases, the solution to an inverse 

problem may not be unique, which is stated as 2
nd

 criterion by Hadamard. Considering an 

inverse heat conduction problem, initial condition estimation for a system that reached steady 

state might not be unique as the effect of initial condition disappears with time, i.e. different 

initial conditions might satisfy the same final state [33]. Hadamard’s 3
rd

 criterion implies that 

small changes in the input data lead to huge changes in the final solution if the problem is ill-

posed, which is frequently encountered in experimental studies. Mostly, the stability criterion 

constitutes a challenge for property estimation problems. In order to cope with problems that 

inverse problems are prone to in regards to existence, uniqueness and stability of the solution, 

various regularization or statistical methods are proposed.  

 

Inverse heat transfer problems can be categorized as inverse conduction problem, 

inverse convection problem, inverse radiation problem or a combination of these, considering 

the heat transfer mechanisms taking place. Depending on the estimation to be sought for, 

another classification for inverse heat transfer problems can be as follows: 

 

1. Inverse initial condition estimation problem 

2. Inverse boundary condition estimation problem 

3. Inverse source estimation problem 

4. Inverse geometry estimation problem 

5. Inverse property estimation problem 

 

For the extended review of classification of inverse heat transfer problems, interested 

reader is referred to [34-36]. In thermal tomography problem presented here, conduction takes 

place as the primary heat transfer mechanism. Therefore, in this study, resulting inverse heat 

conduction problem is considered in order to estimate material thermal properties. Thus, 

following discussion is mainly based on inverse conduction problems where material properties 

are estimated. 
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Various regularization or statistical methods are proposed for the solution of ill-posed 

inverse heat transfer problems. Özışık and Orlande [34] propose Levenberg-Marquardt method 

and conjugate gradient method for parameter estimation, and conjugate gradient method with 

adjoint problem for both parameter and function estimation for the solution of inverse heat 

conduction problems. All these methods are iterative techniques based on least squares 

minimization for solution of nonlinear least squares problem and they have different 

advantages and disadvantages depending on the application. While Levenberg-Marquardt 

method converges to Newton-Gauss method in the neighborhood of the ordinary least squares 

norm, it resembles steepest descent method when subjected to higher regularization. On the 

other hand, conjugate gradient method seeks the optimal solution iteratively, relying on 

conjugate directions of descent. The estimation of Jacobian that is comprised of sensitivity 

coefficients is required for both methods, which is usually computationally expensive. 

Conjugate gradient method with adjoint problem is proposed to eliminate calculation of 

Jacobian for the direction of decent. When number of unknown parameters is sufficiently 

small, Levenberg-Marquardt algorithm or conjugate gradient method appear to be 

advantageous considering computational cost and their simplicity. Sawaf and Özışık [37] 

applied Levenberg-Marquardt algorithm to estimate linearly temperature dependent thermal 

properties of an orthotropic solid using three sensors for temperature measurements where the 

problem is simplified as a single layer, rectangular geometry. The results show that increasing 

standard deviation for temperature measurement error leads to increase in estimation errors, as 

expected. Effect of sensor location on estimations is also investigated in [37]. It was concluded 

that sensor location does not have a significant effect on estimation accuracy for the problem 

defined. 

 

Jones et al. [38] solves a thermal tomography problem in order to obtain thermal 

conductivity map of a 2-D plate including a single void. The inverse problem is solved using 

both genetic algorithm and quasi-Newton’s method, with two regularization methods such as 

truncated singular value and Tikhonov regularization. Genetic algorithm is based on survival of 

the fittest principle and the most important factor using it is choosing the fitness function that is 

discussed in detail in [38]. After solving the inverse problem on a larger domain, “zooming” is 

applied in order to obtain more accurate estimations. They apply so-called “zooming method” 

by grouping finite elements into larger blocks and obtaining an initial estimate based on these 

large blocks. After initial estimation, number of blocks is increased at the regions where in-
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homogeneity is observed. The inverse problem is resolved by assuming initial conductivity 

distribution at the inhomogeneous region less than that of the bulk conductivity. It was shown 

that zooming method provides a higher resolution mapping. Results indicate that Tikhonov and 

truncated singular value regularizations provide similar solutions while truncated singular value 

regularization converges faster. However, genetic algorithm provides the most accurate 

estimations but it is very computationally intensive, necessitating 2000 iterations to solve a 2D 

problem. Moreover, fitness function selection is important to represent system behavior 

accurately. While the trade-offs between three methods are carefully investigated, random 

noise and multiple voided case are not considered in [38]. 

 

Conjugate gradient method (CGM) is used for temperature dependent or space and time 

dependent thermal property estimation in [39-40]. Huang et al. [39] solves a one dimensional 

(1-D) problem in order to estimate temperature dependent thermal properties using CGM. Time 

and space dependent thermal conductivity of a two dimensional (2-D) system is estimated 

using CGM in [40], where temperature measurements are obtained from an infrared scanner. 

The results show that CGM successfully estimates thermal properties of 1-D and 2-D problems.  

 

Modified Newton-Raphson method is used to estimate temperature dependent thermal 

conductivity and heat capacity of a slab concurrently using two sensors for temperature 

measurements at the boundaries, where thermal properties are assumed in functional forms in 

[41]. The results indicate that modified Newton-Raphson method is successful at estimating 

temperature dependent thermal properties using only two sensors placed at the boundaries, 

where heat flux is applied. However, the limitation in this study is that a function form is 

required to represent thermal properties. 

 

Iterative perturbation method, Levenberg-Marquardt and Regularized Newton-Gauss 

algorithms are compared for quantification of defects within TIM using thermal tomography in 

[4]. The study shows that all three algorithms can estimate thermal properties of TIM. It was 

concluded that if the number of measurement data is sufficiently large, prediction accuracy, 

convergence rate and computational effort are similar for all three algorithms. The study 

considers a relatively simpler geometry, where spreading effect is not taken into consideration. 

With spreading introduced, the problem is expected to become more challenging as spreading 

lead to loss of thermal signal that eventually will obscure property estimation.  
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Thermal resistance distribution of a die-attach material is estimated in [42]. The 

problem is formulated as a steady state inverse heat conduction problem. Temperature 

measurements at the bottom surface of the die are obtained using IR thermography and thermal 

resistance distribution in the interface is estimated solving the resulting inverse problem using 

conjugate gradient method. A sensitivity study is performed by comparing different 

configurations of heat source. The study concludes that streamer shape heat source is the most 

suitable configuration in order to estimate thermal resistance of interface material using 

conjugate gradient method. However, the approach adapted in this study is not physically 

practical as die bottom surface is also where heat is applied, making temperature measurements 

no possible there using IR thermometry. 

 

Beside deterministic methods, statistical frameworks for the solution of inverse heat 

conduction problems are also available in the literature. Bayesian framework stands out in the 

literature as a statistical approach for the solution of inverse heat transfer problems. A statistical 

approach is preferred rather than deterministic solution in [43], where a Bayesian framework is 

used to estimate spatially distributed thermal properties and heat transfer coefficient 

simultaneously using thermal tomography. The feasibility of the model developed is tested 

experimentally for a cylindrical prototype including a through hole, where temperature sensors 

are placed at the side area of the cylinder [44]. Results show that estimations demonstrate 

cavity location. While numerical case study results in more accurate estimations compared to 

experimental data, the study shows the feasibility of the method proposed in [43]. Wang and 

Zabaras [45] use Bayesian approach for inverse heat conduction problem in order to estimate 

boundary heat flux and measurement noise, considering a 1-D and a 2-D case. They show that 

Bayesian approach is satisfactory even when measurement data is small. Gnanasekeran and 

Balaji [46] estimated average surface heat transfer coefficient and thermal conductivity of a 

vertical flat fin using thermocouple readings in a steady state natural convection experiment. 

The problem is formulated as 1-D and thermal quantities to be estimated are assumed to be 

constant. Experimental data is used for the inverse problem solution. Optimum number of 

measurements for a desirable accuracy is also studied in [46]. Results show that even nine 

thermocouples can provide estimations with high accuracy. Yet, when the number of 

measurements is less than nine, standard deviation of estimations increases non-linearly. Kaipo 

and Fox [47] provide a review of applications of Bayesian approach for inverse heat transfer 

problems. As Kaipo and Fox [47] state, Bayesian framework aims at characterizing 
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uncertainties in estimations, which differentiates it from deterministic methods, meaning that 

Bayesian approach provides point estimates with reliability assessment and posterior 

uncertainty. Rather than adapting a Gaussian noise model as generally practiced in 

deterministic methods, Bayesian models measurement uncertainties considering system 

specific probability of the event as explained in detail in [47]. Literature review indicates that 

Bayesian provides probabilistic answers with higher accuracy compared to deterministic 

methods [44-48]. However, implementation of Bayesian framework is a tedious task. It is very 

computationally extensive, especially for multi-dimensional problems. Therefore, one needs to 

consider the level of accuracy needed when making a decision between deterministic and 

statistical approach. It can be inferred from the literature review that deterministic methods are 

more suitable when extremely fine visual image is not required. 

 

In this study, thermal tomography is applied to a high density interconnect flip chip 

package, where spreading is effective due to different sized IHS and die. The input signal is 

provided by the die and IR camera readings of temporal temperature distribution at the top 

surface of his is used as measured response. The objective is to characterize defects on thermal 

interface material quantitatively to detect defect location and size. Levenberg-Marquardt 

algorithm is used as an image reconstruction technique to solve the resulting inverse problem, 

considering its simplicity and efficiency in terms of computational time. 
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2. PROBLEM STATEMENT AND FORMULATION 

 

2.1. Problem Statement 

 

Microelectronic package with its standard cooling solution, an air cooled heat sink, is 

illustrated in Figure 2.1. During the assembly process development, many prototype packages 

are produced to understand the adequacy of different assembly process recipes. These packages 

are tested by following a standard test procedure using the system shown in Figure 2.1. If the 

measured junction to air thermal resistance in the standard thermal test (Test-1) exceeds the 

specified value, it means that the package thermal resistance is above the desired value due to 

existing defects within the package. In regular development procedure, the defect in the 

package is identified by the qualitative approaches mentioned earlier (CSAM or X-ray). As it is 

proposed to identify the defect via thermal tomography in this study, a second thermal test 

(Test-2) is performed on the package as shown in Figure 2.2.  

 

Test-2 is comprised of heating the package using a short pulse and capturing the 

transient thermal image over the IHS (Figure 2. 2) using an IR camera. In order to obtain IR 

images, heat sink used in the standard thermal test shown in Figure 2.1 is removed and 

constant, uniform die power of 120 W is applied for the duration of 100 ms following a 0.5 ms 

long ramp-up period. The captured thermal images of IHS top surface are then used to 

reproduce the image of the TIM1 layer through image reconstruction algorithms. The testing 

system consists of a heating source, IR camera, data acquisition and image processing system 

[26]. 

 

TIM2

Heat Sink

TIM1Die (Chip)

Substrate

IHS

 

Figure 2.1. Electronic package used in thermal performance test (Test-1) 
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TIM1Die (Chip)

Substrate

IR 

Camera

IHS

heff 

 

Figure 2.2. Electronic package used in thermal tomography (Test-2) 

 

The objective of the current study is to demonstrate the concept theoretically. Therefore, 

the study is carried out via numerical simulations. Hence, the geometries of both tests are 

simplified for thermal simulations as shown in Figure 2.3 and Figure 2.4. For the standard 

thermal test (Test-1), only the heat sink base is considered as shown in Figure 2.3, and an 

effective heat transfer coefficient (heff) of 1460 W/m
2
-K is used to represent a typical reference 

heat sink performance. Similar simplification is adapted for IHS for both tests. It is assumed 

that the heat transfer coefficient due to forced convection over exposed IHS is 200 W/m
2
-K. 

Uniform die power of ''q =120 W with 0.5 ms ramp-up time is applied until the system reaches 

steady state for Test-1, whereas same power is applied for 100 ms for Test-2. For both tests, the 

ambient is assumed to be 25
o
C. The heat transfer through the rest of the system is assumed to 

be negligible. The geometry and the material properties of the components of the package are 

presented in Table 2.1. The presented values are in agreement with the values proposed in [2, 

48]. Heat sink and IHS are made of copper. TIM1 and TIM2 materials are considered as G1 

and G9 as suggested in [48], respectively and die material is silicon. 

 

Test-2 is conducted by capturing thermal images of top surface of IHS with 10ms 

intervals during 100 ms of heating in order to detect defects both qualitatively and 

quantitatively. It was observed that for the package considered in this study, the signal smears 

after approximately 100 ms due to spreading effect. It was also observed that shorter 

experiment duration results in poorer estimations as insufficient measurement data does not 

fully reflect system response. Discrete temperature data obtained from the captured thermal 

images for 225 points across the IHS top surface is then used as measurement data. Described 
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measurement can be performed by a thermal camera with 320x256 pixel resolution and 240 Hz 

frequency. 

 

As the objective of the study is to identify the feasibility of the method for package fault 

detection, the study is carried out numerically replacing experimental data with numerical 

experiments. Experimental data is subject to some error due to measurement uncertainties. As 

tomography problems are ill-posed, any small perturbation in the input data may cause 

significant changes in the solution. In order to simulate experimental data, random 

measurement error is introduced to thermal simulations as suggested by [34]. The random error 

is introduced using pseudo-random numbers based on Gaussian distribution considering the 

standard deviation of the IR camera used. The measurement uncertainty limit for IR cameras is 

available in the literature such as [49]. In addition to measurement noise, other uncertainties 

such as uncertainty in the thermal properties of the materials, power applied and convective 

heat transfer coefficient are taken into account in the simulations. For the simulated problem, 

the uncertainties in the thermal properties of die, TIM, IHS as well as uncertainty in power 

applied and convective heat transfer are considered as 2%, 0.35%,3%,0.2% and 10%, 

respectively as suggested in [50, 48, 51-53], respectively. 

TIM1Die (Chip)

Heat Sink

q''

IHS

heff 

 

Figure 2.3. Simplified version of electronic package model used in thermal performance test 

simulations 
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q''
 

Figure 2.4. Simplified version of electronic package model used in thermal tomography 

simulation (dimensions not to scale) 
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Table 2.1. Component material properties 

 

 

2.2. Direct Problem Formulation 

 

Direct problem is solved in order to simulate temperature measurement data obtained 

from thermal tomography. Direct problem can be formulated by the heat conduction equation 

and for the system presented in Figure 2.4, it is given as: 
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where r= [x  y  z].  

 

Initial condition is defined as: 
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Boundary conditions are as follows: 
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Size k cp 

[mm
3
] [W/m-K] [J/kg-K] [kg/m

3
]

Heat Sink 80x80x7.5 400 390 8960

TIM2 30x30x1.5 2.87 767 2500

IHS 30x30x1.5 400 390 8960

TIM1 10x10x0.09 5 876 2500

Die 10x10x0.75 141.2 700 2330

Component
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Interface boundary conditions are defined as: 
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
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where (i, j) pair is either (die, TIM) or (TIM, IHS). Equations 2.10 and 2.11 are defined in the 

range: |x|  Lx,die/2, |y|  Ly,die/2. Lz,i

, Lz,i

+
 represents values obtained approaching Lz,i from +z 

and –z directions, respectively.  

 

All the properties are known in the system for the direct problem. For a given power 

map and convection boundary condition, temperature distribution in the system is obtained 

from the solution of direct problem. Various numerical solution methods can be used to solve 

the direct problem [54]. A commercial finite element software (COMSOL Multiphysics) is 

used as a solver in this study.  
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Defects due to contaminations are not considered in this study; therefore, void 

properties are considered to be identical to air properties. Considering this assumption, void 

fraction is defined in order to save computational time and estimate kTIM and CTIM 

simultaneously. The void fraction in a control volume is defined as: 

 

V

Vv                                                                 (2.12) 

 

where Vv is the volume of the void out of total volume V in a control volume, and void fraction 

is defined in [0,1] range. The length of void fraction vector, , is equal to number of unknown 

parameters to be estimated, Nu=121. The effective heat capacity for a voided volume of TIM 

material can be defined as: 

 

idealTIM,vTIM CCC )(1                                            (2.13) 

 

and similarly, effective thermal conductivity for a voided volume of TIM is defined by 

weighted arithmetic mean of conductivities as Sweat [55] proposes: 

 

idealTIM,vTIM kkk )(1                                             (2.14) 

 

Thermal conductivity model proposed by Sweat [55] is validated in [56] where a 3-D 

numerical model created using actual voids predicts similar results as the 3-D model using a 

volume-average- effective thermal conductivities of TIM.  

 

For given void fraction distribution, n=[1, 2,…, Nu]
T
, where n=[1,2,…, Nu], 

unknown property distributions, kTIM and CTIM can be defined from Equations 2.13 and 2.14. 

Measurement operator which represents temperature data obtained from IR camera can be 

defined as:  

 

   msm trφT ,T              (2.15) 
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Equation 2.15 represents temperature estimated by the solution of the direct problem at the 

sensor locations and at selected measurement times. Corresponding vectors rs, measurement 

location vector, and tm, measurement time vector, are defined as in Equation 2.16 and Equation 

2.17, respectively. 
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2.3. Inverse Problem Formulation 

 

Despite their conceptual differences, inverse and optimization problems have a lot in 

common. Therefore, inverse problems can be regarded as optimization problems. Unknown 

void fraction distribution in the TIM, , can be estimated by minimizing the objective function, 

which is the least squares norm of the difference between measured temperatures obtained from 

IR camera sensors, Y=Y(rs,tm) measured at location rs.i at time tm,j, where i=[1,2,.., Ns] and 

j=[1,2,…,Nt], and estimated temperatures, Tm()=T (rs,tm). Objective function is defined as 

least squares norm of the difference between measured and estimated temperatures: 

 

][][
2

1
( T

mm TYTY F                               (2.18) 

 

The minimum of the objective function is where the gradient with respect to unknown 

void fraction vector,, is equal to zero, which is represented in Equation 2.19: 
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Jacobian matrix indicates the effect of change in void fraction on temperature 

distribution of the system. In the Jacobian calculation, the effect of void fraction change for Nu 

unknown void fraction values on NsNt temperature measurements is considered. Jacobian 

matrix that contains sensitivity coefficients of the system can be defined as: 
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Jacobian calculation is performed using forward finite difference approximation as suggested in 

[34]: 

n
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Equation 2.19 can be re-written using the Jacobian matrix as: 

 

0)]([)( T   mTYJ                            (2.22) 

 

 

 

 

 



24 

 

2.4. Levenberg-Marquardt Algorithm (LMA) 

 

Different solution techniques for the solution of non-linear inverse problem defined in 

Equation 2.22 are summarized in Section 1.2 and explained in detail in [35, 58]. In this study 

Levenberg-Marquardt method is used due to its efficiency in terms of computation time and 

accuracy [4]. 

 

The Taylor series expansion of Tm(’) if  is in the neighborhood of ’, the exact 

solution of Equation 2.22, can be written as [4]: 

 












)(
)()()( m

mm

T
TT ''            (2.23) 

 

In order to calculate ’, Equation 2.23 can be rewritten by neglecting higher order 

terms, and representing the gradient term using the Jacobian: 

 

]' )(T[Y))(J( m                                    (2.24) 

 

considering Y=Tm(ˈ). 

 

Multiplying both sides of Equation 2.24 with T)(J  results in: 

 

)]([)()')(()( TT  mTYJJJ                         (2.25) 

 

Iterative solution of Equation 2.25 is known as Newton-Gauss method. If the problem is 

well-posed and the matrix J()
T
J() is non-singular, Newton-Gauss method converges. 

However, inverse problems are usually ill-posed, and J()
T
J() is singular and regularization 

of the system is required. Levenberg-Marquardt algorithm regularizes the system by modifying 

the singular matrix J()
T
J() by J()

T
J()+, which results in:  
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)]([)()']()()([ TT  mTYJΩJJ                            (2.26) 

 

The conditioning matrix is chosen as =diag[J()
T
J()], a diagonal matrix with 

diagonal elements of J()
T
J(). For large damping parameters, , Levenberg-Marquardt 

algorithm converges according to gradient decent method while it approaches to Newton-Gauss 

method when damping parameter small. Levenberg-Marquardt algorithm used in this study is 

presented in Figure 2.5. 

 

 

Figure 2.5. Levenberg-Marquardt algorithm (Adapted from [34]) 

 

As explained in Section 2.1, effect of other uncertainties such as uncertainty in thermal 

properties of die, thermal interface material, integrated heat spreader as well as power applied 

and convective heat transfer coefficient is considered when random measurement error based 

on Gaussian distribution is added to temperature measurements. These uncertainties are taken 

into account as follows [58]:  

i) Choose an initial guess0 for the solution of , set k=0.

ii) Solve direct problem for Tm(k ) in COMSOL (Equation 2.1-2.15).

iii) Calculate F(k ) (Equation 2.18).

iv) While  F(k )> 1,compute J(k ) (Equation 2.20-2.21) and

 (k )=diag (J(k )T
J(k )).

v)  Estimate k+1 solving:

k+1 
=k+[J(k )T

J(k )+k (k )]-1
J(k )T[Y-Tm(k )] .

vi) Calculate Tm(k+1 ) and F(k+1 )  using new estimate.

vii)  If F(k+1 )-F(k)>2,replacekby 10kand return to step (iii).

        Else, accept the new estimate. Replacekby 0.1kand k by k+1

 and return to step (iv).
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where p and p are the properties and boundary conditions mentioned above and related 

uncertainties, respectively. s represents the uncertainty due to properties and boundary 

conditions. 

  

In order to understand ill-posed nature of the problem singular value decomposition 

(SVD) is performed as suggested in [59]. SVD of a matrix A is defined as: 

 

T
USVA                                                               (2.28) 

 

where A is an M×N matrix, U and V are M×M and N×N orthogonal matrices and S is the 

diagonal matrix containing singular values of the matrix A. Condition number (CN) of A is 

defined as the ratio of its largest singular value to its smallest singular value, as in Equation 

2.26. 

  

)min(

)max(

S

S
NC                                                            (2.29)    

 

The larger the condition number, the more ill-posed the system [60]. In order to 

understand regularization effect on the system, condition numbers for the matrices J()
T
J() 

and [J()
T
J()+] are computed and compared. 

 

After identifying ill-posed nature of the system, a regularization parameter  must be 

selected in order to regularize the system while maintaining physics of the problem. Hansen 

[59] proposes the so-called “L-curve” as a useful graphical tool in order to decide on 

regularization parameter. L-curve illustrates the trade-off between the norm of the regularized 

solution and the norm of the residual, represented in Equation 2.30 and Equation 2.31, 

respectively. 
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In order to choose the optimum regularization parameter, L-curve is plotted for a range 

of regularization parameters. When plotted in log-log scale for discrete ill-posed problems, L-

curve has a distinct corner, which separates vertical and horizontal axes as shown in Figure 2.6. 

Increasing regularization parameter filters more singular values in the system, which in turn 

increases residual error while solution norm decreases. Hansen [60] proposes that optimum 

regularization parameter, which balances both solution and residual norm, corresponds to the 

corner of the L-curve. In practical cases where we do not observe a distinct corner, the damping 

coefficient, which keeps both solution and residual norm close to the corner, can be chosen as 

the optimal one. 

 

 

Figure 2.6. L-curve form for discrete inverse problems (Adapted from [59]) 

 

)]}([)({])()([)'( T1T  mTYJJJX                          (2.30) 

 

)]}([)({)')](()([ TT  mTYJJJR                                 (2.31) 
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2.5. Stopping Criteria 

 

If the measurement errors and other uncertainties are not introduced to simulated data, then 

the resulting solution is referred as so-called “inverse crime”. Stopping criteria for the solution 

of inverse crime case using Levenberg-Marquardt algorithm is defined as: 

 

i) F(
k
)≤ 1                                                             (2.32) 

ii) F(
k+1

)-F(
k
) ≤ 2                                                (2.33) 

 

where 1=2=10
-5

 in the algorithm implemented. The algorithm continues iterations until both 

Equation 2.32 and Equation 2.33 are satisfied. The criterion in Equation 2.32 is to check 

whether the least squares norm of the measured and calculated temperature is small enough, 

whereas Equation 2.33 checks the convergence of the algorithm. If Equation 2.33 is not 

satisfied, damping coefficient is modified and the algorithm continues.  

 

In reality, all measurements are subjected to measurement error. In this study, random 

measurement error based on Gaussian (normal) distribution is introduced. Figure 2.7 represents 

probability density function of the normal distribution, where f(x) represents frequency of 

occurring of the corresponding event x.  

 

The probability density function, f(x) is defined as:  

 

22/2)(

2
)( 


 μ-x-e

1
xf                                              (2.34) 

 

where x is defined in the interval [-∞ ∞] and, and  represents the mean and standard 

deviation, respectively [60]. Figure 2.7 is a normalized curve of Gaussian distribution with zero 

mean. Sum of squares of errors (SSE) of temperature measurements for our problem with zero 

mean (µ=0) is calculated as: 
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Figure 2.7. Probability density function of the normal distribution  

 


tNsN

i

ixSSE 2                                                      (2.35) 

 

where NsNt is the number of observations, i.e. number of temperature measurements in the 

problem presented, and xi is the i
th 

observation. Then, considering the frequency of occuring of 

the measurement, f(x), and total number of measurements, stopping criteria for error introduced 

case can be calculated as: 

 

dxNNxfxε ts

0

])([2




                                               (2.36) 

 

Substitution of Equation 2.34 into Equation 2.36 and carrying out the resulting integration 

results in Equation 2.37:  

 

20.5 σNNε ts                                                       (2.37) 
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where  represents the standard deviation of the error introduced to the measurements. 

Stopping criteria for error introduced measurements as represented in Equation 2.37 is also 

consistent with the stopping criteria proposed in [4, 34, 61]. 
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3. GRID INDEPENDENCY AND MODEL VERIFICATION 

 

As direct problem is solved using finite element method (FEM) using commercial 

software COMSOL Multiphysics, grid independency of the FEM model is checked first. Then, 

the verification of the direct (forward) problem is performed by comparing the results of FEM 

model with reference solution provided by Intel Corporation using ANSYS Icepak [62]. Grid 

independency tests are performed for both thermal performance test (Test-1) and thermal 

tomography (Test-2).  

  

3.1. Grid Independency Study 

 

The model of the electronic package used in thermal performance test (Test-1) shown in 

Figure 2.3 is checked for grid independency. The study is carried out using material properties 

represented in Table 2.1 and boundary conditions for Test-1 as specified in Section 2.1. The 

solution is carried out for ideal case where TIM is defect free. The study is performed for 

coarse, extra fine and extremely fine swept mesh using triangular elements. Details of mesh for 

all three cases are presented in Table 3.1. Figure 3.1 illustrates temperature distribution along x 

axis at die base surface (at z=0 mm) where y= 5 mm according to the coordinate system shown 

in Figure 2.4, for all three types of meshing. Maximum die temperatures Tj, referred as junction 

temperatures, for all cases are represented in Table 3.1. 

 

Table 3.1. Mesh details of COMSOL model created for thermal performance test  

Mesh Type 

Maximum 

Element Size 

[mm] 

Minimum 

Element Size 

[mm] 

Total 

Number of 

Nodes 
Tj [

o
C] 

Coarse 8 2.24 1280 82.05 

Extra Fine 2.8 0.12 6845 82.05 

Extremely Fine 1.6 0.016 19580 82.06 
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Figure 3.1. Temperature variation at die base surface (z=0 mm) along x axis, y=5 mm for 

thermal performance test (Test-1) 

 

Figure 3.1 illustrates that all three types of mesh distribution shows the same trend for 

temperature distribution in thermal performance test (Test-1). Junction temperatures for all 

three cases presented in Table 3.1 do not show a remarkable difference in regards to 

measurement accuracy. Therefore, the numerical model created for thermal performance test 

(Test-1) is grid independent. The numerical model for thermal tomography (Test-2) as shown 

in Figure 2.4 is also tested for grid independency with meshes presented in Table 3.2. The 

solution is performed following the test procedure explained in Section 2.1 and TIM is 

considered as ideal. This study is performed for coarse, fine and extra fine swept mesh using 

quadrilateral elements. Die base temperature is critical to make sure that chip is not damaged 

during thermal tomography test,where temperature measurements are obtained from IHS top 

surface. Therefore, resulting temperature distributions at t=100 ms at the die base surface (z=0) 

and top surface of IHS (z=2.34 mm) are checked for grid independency and corresponding 

results are illustrated in Figure 3.2 and Figure 3.3 along x-axis where y=5 mm and y=15 mm 

according to the coordinate system shown in Figure 2.5, respectively. 
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Table 3.2. Mesh details of COMSOL model created for thermal tomography test  

Mesh Type 
Maximum 

Element Size 

[mm] 

Minimum 

Element Size 

[mm] 

Total 

Number of 

Nodes 
Tj [

o
C] 

Coarse 4.5 0.84 432 61 

Fine 2.4 0.3 992 60.99 

Extra Fine 1.05 0.045 4892 60.99 

 

Figure 3.2. Temperature distribution at die bottom surface (z=0 mm) at t=100ms along x axis, 

y=5 mm for thermal tomography (Test-2) 
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Figure 3.3. Temperature distribution at IHS top surface (z=2.34 mm) at t=100 ms along x axis, 

y=15 mm for thermal tomography (Test-2) 

 

Figure 3.2 and Figure 3.3 illustrate that all three types of mesh distributions show the 

same trend for temperature distribution in thermal tomography (Test-2). As Table 3.2 shows, 

junction temperature differences do not constitute a significant effect for test data. Results 

indicate that the numerical model created for thermal tomography (Test-2) is grid independent. 

  

In this study, extra fine mesh with triangular elements and fine mesh with quadrilateral 

elements are used for thermal performance test (Test-1) and thermal tomography test (Test-2), 

respectively. 
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3.2. Verification Study 

 

The FEM model for thermal performance test with extra fine grids, details of which are 

presented in Table 3.1, is verified using commercial software ANSYS Icepak utilizing the 

validated models provided by the chip manufacturer Intel as reference solutions’ model [62]. 

Test conditions are identical with the thermal performance test explained in Section 2.1. 

Junction temperatures for the FEM and the reference solution models are obtained as 82.05 
o
C 

and 81.95 
o
C, respectively. Temperature distribution at the bottom surface of die for both 

COMSOL and Icepak model is illustrated in Figure 3.4.  

 

 

Figure 3.4. Temperature variation at die bottom surface (z=0 mm) along x axis, y=5 mm for 

Icepak [62] and COMSOL models for thermal performance test 
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4. RESULTS AND DISCUSSION 

 

After direct solution model is verified, thermal performance test (Test-1) is applied first 

for several cases that differ from each other in regards to void size and location in TIM1 so that 

impact of void size and location on temperature rise can be investigated. Each case includes a 

void with a different size and at a different location in TIM1. Considering results of Test-1, a 

sensitivity study is created in order to relate voids size and location effect to estimation 

accuracy. This is followed by applying thermal tomography (Test-2) to the sensitivity study 

created. First, simulations are performed for the “inverse crime” case that represents the 

solution where no error is introduced to the simulated measurement data so that validity of the 

algorithm is checked. This is followed by the case where random measurement error and 

uncertainty is introduced to the measurement data. System ill-posedness is illustrated 

afterwards. Having investigated system ill-posedness, resulting void fraction estimations for the 

sensitivity study is presented, which is obtained utilizing Levenberg-Marquardt algorithm 

presented in Figure 2.5. In an effort to improve estimations, “dimensional reduction” is applied 

modifying the method proposed by [38]. In addition to this, LMA is modified by applying ad-

hoc filtering at each iteration and reducing Jacobian size. Resulting estimations are discussed 

considering the effect of void size and location on estimation accuracy. 

 

4.1. Simulated Measurements 

 

In this study, experimental data obtained by real test equipment is simulated by solving 

direct heat conduction problem for the void fraction distribution created as a sensitivity study. 

The commercial finite element solver used in this study implements an implicit solution 

scheme. As a result of the grid independency study, Test-1 is performed with extra fine swept 

mesh with triangular elements and Test-2 is carried out with fine swept mesh with quadrilateral 

elements, details of which are presented in Table 3.1 and Table 3.2, respectively. Data is 

collected for Test-2 through transient solution for 100 ms duration with 10 ms time intervals.  

 

Standard thermal performance test (Test-1) is simulated first to investigate whether the 

defect has a measureable effect on package thermal behavior. The effect of void size on 
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temperature rise in Test-1 is investigated one at a time, considering voids with 0.0625, 0.5 and 

1 mm
2
 size. In order to illustrate effect of void location on thermal performance, each void at 

different size is simulated at the corner, at the edge and at the center of TIM1, one at a time. 

Results are presented in Figure 4.1. It is observed that relatively small voids such as voids 2, 3 

and 4 lead to smaller temperature rise in Test-1, indicating that their effect on thermal 

performance is less significant than that of voids 1 and 5. Apart from void size, void location is 

also an important factor affecting temperature signal in Thermal Performance Test (Test-1). For 

instance, void 5 at the corner causes larger temperature difference in the test compared to same 

sized void 1, which is located at the edge of the TIM1 surface. 

 

Considering Test-1 results shown in Figure 4.1, a sensitivity study is constructed. A 

package with defected TIM1 that has a void fraction distribution shown in Figure 4.2 is 

considered in order to evaluate the performance of the proposed method and show void size 

and location effect on estimation accuracy. Center coordinates and corresponding size of the 

voids are presented in Table 4.1. Void fraction is equal to 0.9 at the defined coordinates. 

 

 

Figure 4.1. Void size and location effect on thermal performance test (Test-1) 
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Figure 4.2. Void fraction of TIM1 used in thermal tomography test simulation 

Table 4.1. Center coordinates and sizes of void fractions presented in Figure 4.2 

 

 

Considering the measurable effect of the defect on thermal performance of the package, 

thermal tomography (Test-2) is performed on the electronic package. Uniform die power of 120 

W is applied until the system reaches steady state at 25
o
C ambient temperature. Results of 

simulations for Test-1 for the ideal TIM1 (no defects, void fraction is 0 everywhere) and the 

case shown in Figure 4.2 are presented in Figure 4.3. It was observed that maximum die 

temperature (junction temperature) for the package with defected TIM1 layer shown in Figure 

4.1 increases by 7
o
C with respect to that of a package with ideal TIM1 (no defects, void 

fraction is 0 everywhere).  

1 2

3 4

5

Void Number x [mm] y[mm] Area [mm
2
]

1 -3.5 0.5 1

2 0 0.5 0.5

3 -0.5 -4 0.5

4 3.5 -4 0.5

5 3.5 3.5 1
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Figure 4.3. Temperature distribution [K] at die bottom surface in thermal performance test 

(Test-1) for (a) ideal case, (b) case shown in Figure 4.2 

 

Considering the measurable effect of the defect on thermal performance of the package, 

thermal tomography (Test-2) is performed on the electronic package. For 25
o
C ambient 

temperature, 120 W uniform die power is applied for 100 ms duration. Heat transfer coefficient 

over IHS is considered to be 200 W/m
2
-K representing forced convection of air over top 

surface of IHS. Data is collected with 10 ms intervals for 100 ms duration. The estimated 

temperature distribution for die base and IHS is presented in Figure 4.4 and Figure 4.5, 

respectively. Here, Figure 4.4 represents the simulated measurement data used for thermal 

tomography.  

 

 

(a)
(b)
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Figure 4.4. Die base temperature distribution [K] from solution of direct problem 

 

A major characteristic of inverse problems is their unstable nature. Therefore, slight 

changes in input data can result in significant changes in the solution. Considering that all 

measurements are prone to measurement error and uncertainty, this constitutes a challenge as 

thermal tomography problems are inverse problems. In order to test the method synthetic 

measurement data that is presented in Figure 4.6 is generated by introducing random error 

based on measurement uncertainty to the simulated measurements presented in Figure 4.5. 

Here, the measurement uncertainty of 0.02
o
C as suggested by [49] is considered. As random 

error is introduced with a normal distribution, 99.7% of the synthetic measurements lie within 

±3 of the simulated measurements.  
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Figure 4.5. Simulated measurements, IHS temperature distribution [K] with no error estimation 

for the case in Figure 4.2 
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Figure 4.6. Synthetic measurement data by introducing random error  and uncertainty to 

simulated IHS temperature distribution [K] estimation for the case in Figure 4.2 

 

4.2. Void Fraction Estimations 

 

Temperature data shown in Figure 4.5 and Figure 4.6 is used to quantitatively identify 

defects shown in Figure 4.2 by predicting the void fraction within TIM1 using Levenberg-

Marquardt algorithm. The data considers test duration of 100 ms, with data collected at every 

10 ms equal time steps. Total test duration is decided to reasonably represent system response 

by maintaining thermal signal. Defect detection using simulated measurements (Figure 4.5) is 
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performed that is also referred as “inverse crime” to check the validity of the algorithm before 

considering the more realistic or challenging case with synthetic measurement data shown in 

Figure 4.6.  

 

Stopping criteria of Levenberg-Marquardt algorithm is defined as 10
-5

 for simulated 

measurement data (with no random measurement error introduced). Therefore, the algorithm 

continues iterations until both F()<10
-5 

and F(
k+1

)-F(
k
)<10

-5
 are satisfied. For the cases 

using synthetic measurements, stopping criteria is defined as 0.5NsNt
2
 as suggested in [4, 34, 

63];  representing the standard deviation of the measurement error introduced. Initial guess 

for void fraction distribution is chosen as ideal case.  

 

Selection of the regularization parameter is critical for solution of inverse problems as 

higher level of regularization will introduce significant change to the original physical behavior 

of the system, while with smaller regularizations the system will be prone to numerical errors 

due to the instability that manifests itself as phantom voids in the current problem. The 

regularization effect of using different damping parameters can be observed by analyzing the so 

called “L-curve” that presents the change in norm of the solution residual with the norm of the 

unknown. 

 

Ill-posedness of the system should be analyzed first in order to adjust regularization 

level as higher level of regularization is required to handle relatively more ill-posed systems. In 

order to understand nature of the problem that is represented as a linear system, singular value 

decomposition (SVD) can be used [59]. As explained in detail in Section 2.4, ratio of maximum 

to minimum singular values defines the condition number (CN), which can be used as a metric 

to understand the ill-condition of the system, CN=max(S)/min(S). Larger CN refers to highly ill-

conditioned systems. In order to understand regularization effect on our system, the singular 

values for matrices A=J()
T
J() and An= [J()

T
J()+n], where n=1,2,3, for the case 

illustrated in Figure 4.2 are calculated. Resulting singular values along with corresponding 

condition numbers are presented in Figure 4.7. The corresponding condition numbers for A and 

An, are CN  10
12

, CN,1 10
4
, CN,2 10

3
 and CN,3 30, respectively; indicating that the system is 

highly ill-conditioned unless it is regularized. However, using large damping coefficient yields 



44 

 

 

Figure 4.7. Singular value decomposition (SVD) for the case in Figure 4.2 

 

to small condition numbers of the modified system An that would introduce a larger 

regularization error as system characteristics is highly altered.  

 

Having observed the ill-posed nature of the problem, the effect of regularization on the 

system can be analyzed further with an L-curve. The L-curve for the first iteration is presented 

for 10
-4

<<50 range in Figure 4.8. The initial damping parameter selected is presented as 

20.1in Figure 4.11, and it keeps both solution norm and residual norm at reasonably small 

values [59]. In other words, the initial damping parameter chosen, 20.1,maintains a balance 

between the stabilizing the noise associated with random error introduced and the 

regularization error introduced.  

 

The inverse problem is formulated as estimation of void fraction distribution. The most 

computationally expensive step of LMA is the calculation of Jacobian matrix. Jacobian matrix  
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Figure 4.8. L-curve for the case represented in Figure 4.2 to decide on regularization parameter 

 

is calculated using forward finite difference approximation as suggested in [34]. Jacobian size 

increases with number of nodes used to define the void fraction over TIM1, resulting in higher 

computational times. In order to save computational time, the void fraction is defined based on  

a coarser node distribution and size of unknown void fraction vector is reduced to 1111 along 

x and y axis, respectively (total of 121 nodes). The coarser void fraction vector meets the 

requirements for sensitivity study as finer voids do not cause a remarkable change in Thermal 

Performance Test (Test-1) as shown in Figure 4.1. The Jacobian matrix calculation uses 

approximately 2000 seconds with Intel
®
 i5 processor with 2.50 GHz frequency.  

 

The estimated void fractions for the sensitivity case for simulated measurements (data 

with no error) and synthetic measurements (data with random error and uncertainty) are 

presented in Figures 4.9-4.11. Figure 4.10 represents the solution when the standard deviation 

of the random error introduced is  while random error is 2 for the solution shown in Figure 

4.11.  

 

In all cases, estimated void fraction values at several nodes are out of the range [0, 1] 

leading to unphysical solutions. In order to keep void fraction in physically possible limits, ad-  
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Figure 4.9. Ad-hoc filtered void fraction estimation for the case in Figure 4.2 for measurements 

with no random error 

 

hoc filtering is applied by rounding void fraction values greater than 1 and smaller than 0 to 1 

and 0, respectively. The average of absolute error in void fraction estimation for the case with 

simulated measurement is 0.052 while maximum absolute error is 0.38. The convergence 

criterion is satisfied after 8 iterations for simulated measurements with no error. Estimated void 

fractions in Figure 4.9 show that the location and value of the void fraction are both predicted 

accurately while void shapes are slightly different than those of the actual distribution 

presented in Figure 4.2. 

 

Void fraction estimations for synthetic measurements with uncertainty and random error 

and 2 are represented in Figures 4.10 and 4.11, respectively. For the cases with synthetic 

measurements with and 2including uncertainty, corresponding average absolute errors are 

0.17 and 0.20 while maximum absolute errors are 0.76 and 1, respectively. Void fraction is 

estimated after just 3 iterations for the cases relying on synthetic measurements due to more 

relaxed convergence criterion. However, estimation accuracy decreases compared to inverse 

crime case shown in Figure 4.9, due to error introduction to measurement data. It can be 

observed that the voided regions spread to areas in between two neighboring voids. Some small 

voided regions can be observed at the edges, as well. Figures 4.10 and 4.11 indicate that as 

measurement error increases, estimation accuracy decreases. Additional voids are more  
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Figure 4.10. Ad-hoc filtered void fraction estimation for the case in Figure 4.2 for 

measurements with uncertainty and random measurement error 

 

 

Figure 4.11. Ad-hoc filtered void fraction estimation for the case in Figure 4.2 for 

measurements with uncertainty and random measurement error 2

 

observable at the edges and voids spread over a larger area between two voids, i.e. voids 4 and 

5 as labeled in Figure 4.2, with the increase in random measurement error. 

 

For the simulations, results of which are presented so far, damping coefficient, , is 

altered by 0.1 at each iteration as shown in Figure 2.5. In an effort to improve estimation 

results, the effect of coefficient of alteration of damping coefficient at successive iterations is 

investigated. For this purpose, a parametric study is performed for the case shown in Figure 4.2  
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Figure 4.12. Void fraction estimation for parametric study for alteration coefficient for at 

each iteration in LMA for the case in Figure 4.2 with uncertainty and random measurement 

error 

 

by multiplying by a range of values between 1 and 0.05. In all cases, estimated void fraction 

values at several nodes are out of the range [0, 1] leading to unphysical solutions. In order to 

keep void fraction in physically possible limits, ad-hoc filtering is applied as for previously 

presented estimations. Estimation results are shown in Figure 4.12.It should be noted that as 

damping coefficient decreases, smearing of voids is more visible while estimations at voided 

locations are better. Considering Figure 4.12, it is concluded that [0.05-0.1] range is reasonable 

for alteration coefficient of at each iteration.  

 

Similarly, in order to demonstrate the limits of the proposed method, optimum 

temperature data collection duration and time step is investigated. For this purpose, effect of 

total test time on void fraction estimations is compared first for 50 ms, 100 ms and 200 ms 

duration with 5 ms-time-intervals. The results are illustrated in Figure 4.13. Test duration of 50 

ms results in smearing of voids as data time is not long enough to identify system behavior 

accurately. On the other hand, 200-ms-test does not converge and results do not represent 

system properties, which can be an expected outcome as thermal signal disappears for long  

(a)k+1=k*1 (b) k+1=k*0.5 (c)k+1=k*0.1

(d)k+1=k*0.075 (e)k+1=k*0.05
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Figure 4.13. Ad-hoc filtered void fraction estimations for the case in Figure 4.2 for 

measurements with uncertainty and random measurement error  to investigate optimum 

measurement duration  

 

experiment durations. Therefore, 100 ms is selected as the optimum test duration for our 

specific problem. 

 

For better void fraction estimations, optimum temperature data collection step is 

investigated as well. For this purpose, estimations are compared for the same duration (100 ms) 

with different time intervals ranging from 5 ms to 20 ms. Corresponding results can be seen in 

Figure 4.14. It is concluded that there is a trade-off between smearing of voids and estimation 

accuracy in regards to measurement interval. As time interval increases, voids are estimated 

with higher accuracy at the cost of smearing. Considering this, t=10 ms is chosen as optimum 

time interval for data collection for the test system studied here. 

 

In an effort to reduce smearing of voids, “dimensional reduction” is applied to the 

estimated void fractions. Jones et al. [38] zooms in non-homogenous regions by increasing 

number of finite elements blocks there after solving ordinary regularization problem. In this 

study, we adopt a similar approach by performing additional iterations after obtaining 

approximations as shown in Figure 4.10. We perform “dimensional reduction” by decreasing 

Jacobian size. A new Jacobian matrix is calculated modifying ad-hoc filtered void fractions  

 

(a) t=0:5:50 ms (b) t=0:5:100 ms (c) t=0:5:200 ms
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Figure 4.14. Ad-hoc filtered void fraction estimations for the case in Figure 4.2 for 

measurements with uncertainty and random measurement error to investigate optimum 

measurement time interval 

 

only at the voided regions shown in Figure 4.10 while keeping void fraction values elsewhere 

constant. In order to keep Jacobian size smaller, number of grids at the voided regions is held 

constant in this study. For the synthetic measurement data with uncertainty and random 

measurement error ,Jacobian size reduces to 2475×89. terations continue until previously 

defined stopping criteria 0.5NsNt
2
 is satisfied. The convergence is achieved just after 2 

iterations for this case. Resulting estimation is shown in Figure 4.15. Although there is not a 

remarkable change in maximum absolute errors, average absolute error decreases to 0.13 for 

synthetic measurements with and random error . Smaller average absolute error implies that 

the method reduces smearing of voids, which can be observed from Figure 4.15.  

 

In order to improve estimation accuracy, Levenberg-Marquardt algorithm presented in 

Figure 2.5 is modified so that after each iteration ad-hoc filtering is applied to the estimated 

void fractions and the points that reach physical bounds [0, 1] are removed from the Jacobian 

calculation, which is defined in Equation 2.20. This modification reduces Jacobian size at each 

iteration. Stopping criteria is also modified such that the algorithm continues iterations until the 

stopping criteria F(
k
)≤ 0.5NsNt

2
 or F(

k+1
)-F(

k
) ≤ 2 is satisfied. The algorithm stops when 

the difference between objective functions for successive iterations falls below 2=10
-5

, even if 

the value of objective function is larger than 0.5NsNt
2
. For the synthetic measurement data

 

(a) t=0:5:100 ms (b) t=0:10:100 ms
(c) t=0:20:100 ms
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Figure 4.15. Ad-hoc filtered void fraction estimation for the case in Figure 4.2 for 

measurements with uncertainty and random measurement error  using dimensional reduction 

 

with uncertainty and random measurement error ,Jacobian size at the final iteration reduces 

to 2475×44.The algorithm stops when F(
k+1

)-F(
k
) ≤ 2 is satisfied after 14 iterations for the 

case with synthetic measurement data with uncertainty and random measurement error . 

Estimated void fractions are presented in Figure 4.16. Average absolute error reduces to 0.11, 

implying that smearing reduces. Figure 4.16 shows that a phantom void is observed on top of 

void 1 as labeled in Figure 4.2. Despite the phantom void, this method provides better 

estimations with more accurate void fraction values at the voided regions, as illustrated in 

Figure 4.16.  

 

Figures 4.10-4.11 and Figures 4.15 - 4.16 show that voids causing larger temperature rise in 

thermal performance test (Test-1) are estimated with better accuracy. In order to quantify 

estimation accuracy, average absolute errors for the estimations shown in Figure 4.10 and 

Figures 4.15-4.16 are calculated at the void coordinates. Corresponding temperature rise in 

Test-1 is illustrated in Figure 4.17 for synthetic measurements considering uncertainty and 

random measurement error . It is observed that estimation accuracy depends on effect of 

defect in thermal performance test (Test-1). The void fraction estimation gets better for voids  
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

Figure 4.16. Ad-hoc filtered void fraction estimation for the case in Figure 4.2 for 

measurements with uncertainty and random measurement error , using ad-hoc filtering and 

dimensional reduction at each iteration 

 

that are more effective on temperature rise in Test-1. Figure 4.17 also compares estimation 

accuracy for LMA, dimensional reduction adapted LMA and the modified LMA where ad-hoc 

filtering and dimensional reduction is applied at each iteration. Although error trend is similar 

for LMA and dimensional reduction adapted LMA, improvement in estimation accuracy for the 

largest void, i.e. void 5 as labeled in Figure 4.2, is remarkable. The final modification in LMA, 

which is performed by applying ad-hoc filtering at each iteration and excluding estimated void 

fractions that exceed physical bounds [0, 1] in Jacobian calculation, provides significantly 

higher accuracy compared to other two methods. Similarly, estimation accuracy for the largest 

void, i.e. void 5, that causes highest temperature rise in thermal performance test is estimated 

with the highest accuracy for this algorithm. 

 


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Figure 4.17. Effect of thermal performance test (Test-1) temperature rise on estimation results 

for measurements with uncertainty and random measurement error 
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5. CONCLUSION AND FUTURE WORK 

 

The feasibility of thermal tomography as a quantitative means of defect detection in an 

electronic package, where spreading is effective due to different sized IHS and die, is 

investigated numerically. As defects within TIM1 layer have a prominent effect on thermal 

performance of the package, identification of defects within TIM1 is critical. Therefore, defects 

in TIM1 are considered in this study. Defects are modeled as voids, properties of which are 

considered to be identical to air properties. Use of thermal tomography for defect detection 

within TIM1 layer is demonstrated through simulated and synthetic measurements utilizing 

Levenberg-Marquardt algorithm (LMA) as image reconstruction technique.  

 

Thermal performance test is applied first in order to identify whether TIM1 layer is 

defective. If a measurable temperature rise is observed as a result of thermal performance test, 

then thermal tomography is applied to characterize the defect. In order to show void size and 

location effect on thermal performance of the package and void fraction estimations obtained 

utilizing thermal tomography experiment, thermal performance test is applied one at a time to 

sample cases, each of which includes a void with a different size and at a different location. 

The result of this study is utilized to construct a sensitivity study, which is aimed to relate void 

size and location to estimation accuracy of thermal tomography experiment that is carried out 

numerically.  

 

Measurement data for thermal tomography test is obtained solving the direct heat 

conduction equation using a FEM model created. This measurement data is utilized in resulting 

inverse tomography problem in order to estimate void fractions within TIM1 using LMA for 

simulated and synthetic measurement data. Before solving the inverse problem, ill-posed nature 

of the problem is identified using SVD. It was shown that the problem is highly ill-posed unless 

it is regularized. Afterwards, L-curve analysis is performed to make a decision about the initial 

regularization parameter. Optimum regularization parameter is chosen such that it keeps the 

balance between the solution and residual norm. 

 

 Estimation results indicate that estimation accuracy of void fractions decreases with the 

increase in measurement error. As measurement error increases, smearing of voids becomes 
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more observable. In an effort to improve estimations, optimum coefficient of multiplication for 

damping coefficient at each iteration is sought for. It was observed that as damping coefficient 

decreases, smearing of voids is more visible while estimations at voided locations are better. 

The range [0.05-0.1] is proposed as a reasonable range for alteration coefficient of at each 

iteration for 100 ms test duration. 

 

In order to identify effect of total test duration on estimation results, thermal 

tomography test is conducted numerically for 50 ms, 100 ms and 200 ms durations with 5 ms 

time intervals. It was observed that 50-ms-test time is not as satisfactory as 100-ms-test as 

system information gathered in 50 ms was not sufficient to fully represent system behavior. 

Results indicate that convergence could not be achieved for 200-ms-test as thermal signal 

disappears with time due to lateral heat diffusion. Therefore, optimum duration for our thermal 

tomography test is selected as 100 ms. This case study indicates that gathering thermal signal 

that provides sufficient information about the system plays an important role in achieving better 

estimations with higher accuracy. 

 

Effect of data collection time interval on estimation results is also studied by carrying 

out simulations for 100 ms test duration with 5 ms, 10 ms and 20 ms time intervals. Estimated 

void fractions show that there is a trade-off between smearing of voids and estimation accuracy 

considering measurement interval. As time interval increases, voids are estimated with higher 

accuracy at the cost of smearing. Therefore, t=10 ms is chosen as optimum time interval for 

data collection for the test system investigated. 

 

In order to reduce smearing and increase estimation accuracy, a method similar to 

“zooming method” proposed by [39] is implemented in LMA using previous estimation results. 

We applied “dimensional reduction” for Jacobian matrix calculation. It was shown that 

dimensional reduction can filter smearing effect. For voids which are more effective on thermal 

performance of the system considering their size and location, improvement for the void 

fraction estimation is more observable. This method can be developed as a future work, by 

increasing grid numbers at the regions that are estimated as non-homogenous in LMA. Yet, this 

would increase size of the Jacobian matrix, resulting in higher computational times. 
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In an effort to obtain estimations with higher accuracy, LMA is modified by applying 

ad-hoc filtering at each iteration and removing void fractions that are equal to 0 or 1 from the 

Jacobian calculation. Although a phantom void was generated, this modification improved 

estimated void fractions remarkably.  

 

In order to improve estimation accuracy, a statistical approach can be utilized to solve 

the inverse problem as suggested by [45-49]. This would come up with a longer computational 

time compared to deterministic methods. In order to overcome computational burden, a robust 

and efficient code for the direct problem of the solution, which provides measurement data, 

could be developed as a future work. 

 

In this study, defects within TIM1 are considered as regions where air is trapped. 

However, other defects such as cracks can also be present between package layers. This study 

can be extended further in order to investigate cracks formed within package layers by 

formulating material properties as anisotropic. This study considers a uniform power map for 

thermal tomography experiment. As a future work, the method proposed can be tested for 

different thermal power maps. The method is useful for identifying defects causing larger 

temperature differences in thermal performance test. The validity of the method can be 

investigated by using the experimental measurement data. 
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