
PERFORMANCE AND COST EFFICIENT RELIABILITY FRAMEWORK FOR

MULTICORE ARCHITECTURES

by

Sanem Arslan Yılmaz

B.S., Computer Engineering, Marmara University, 2009

M.S., Computer Engineering, Boğaziçi University, 2011

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2017



ii

PERFORMANCE AND COST EFFICIENT RELIABILITY FRAMEWORK FOR

MULTICORE ARCHITECTURES

APPROVED BY:

Prof. Can Özturan . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Prof. Haluk Rahmi Topcuoğlu . . . . . . . . . . . . . . . . . . .

(Thesis Co-supervisor)

Prof. Arda Yurdakul . . . . . . . . . . . . . . . . . . .

Assoc. Prof. Alper Şen . . . . . . . . . . . . . . . . . . .

Assoc. Prof. Deniz Turgay Altılar . . . . . . . . . . . . . . . . . . .

Assoc. Prof. Gürhan Küçük . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 15.05.2017



iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my thesis advisors Prof. Oğuz Tosun and

Prof. Haluk Topcuoğlu for their support, encouragement, and guidance throughout

my graduate study and completion of this thesis. I would like to thank my last-year

advisor, Prof. Can Özturan for his help and suggestions. I also want to thank Prof.

Mahmut Kandemir (from Pennsylvania State University) for his valuable feedback and

guidance during my dissertation. I would also thank to Prof. Arda Yurdakul, Assoc.

Prof. Alper Şen, Assoc. Prof. Deniz Turgay Altılar, and Assoc. Prof. Gürhan Küçük

for their participation in my thesis jury, their useful comments, and feedback.

I gratefully acknowledge the financial support of The Scientific and Technological

Research Council of Turkey (TUBITAK) BIDEB 2211. This work was also supported

by TUBITAK through a research grant (Project Number:113E530).

I would like to thank my colleagues from the Department of Computer Engineer-

ing at Marmara University for their support and friendship. In particular, I would like

to thank Betül Boz and Işıl Öz for their invaluable support and friendship throughout

the years.

I would like to offer my thanks to my father Hüseyin Arslan and my sister Azime

Evrim Arslan for their endless love and great support during my dissertation. I am

eternally grateful to my mother Mukaddes Arslan (now deceased, greatly missed) who

always believed in my ability to be successful in the academic arena. The biggest credit

goes to my dear husband, Tanju Yılmaz. I am grateful for his love, patience, sacrifices,

and understanding. This thesis (along with everything else I have in life) was made

possible thanks to your support.



iv

ABSTRACT

PERFORMANCE AND COST EFFICIENT RELIABILITY

FRAMEWORK FOR MULTICORE ARCHITECTURES

Modern architectures become more vulnerable to soft errors with technology

scaling. Enabling fault tolerance capabilities on all cache structures in a system is

inefficient in terms of performance and power consumption. In this study, we pro-

pose an enhanced protection mechanism for code segments, which are critical in terms

of reliability, by utilizing asymmetrically reliable cores under performance and power

constraints. Our proposed system contains at least one high-reliability core, which has

an ECC-protected L1 cache, and several low-reliability cores, which have no protec-

tion mechanisms. Our framework protects only reliability-based critical code regions

of each application, which are determined based on critical data usage, user annota-

tions, or static analysis. In our first attempt, the framework dynamically assigns the

software threads executing critical code fragments to the protected core(s) by using the

First Come First Served (FCFS) algorithm. Our experimental evaluation shows that

the proposed approach takes advantage of protecting only critical code regions and

presents comparable performance and reliability results with fully protected systems

having lower power consumption and cost values for a set of applications. However, the

FCFS-based scheduling algorithm may degrade the system performance and unfairly

slow down applications for some workloads. Therefore, a set of scheduling algorithms

is proposed to improve both the system performance and fairness perspectives. Various

static priority techniques that require preliminary information about the applications

and dynamic priority techniques that target to equalize the total time spent of appli-

cations on the protected core(s) are presented as part of this thesis. Extensive evalua-

tions using multi-application workloads validate significant improvements of proposed

scheduling techniques on system performance and fairness over the FCFS algorithm.



v

ÖZET

ÇOK ÇEKİRDEKLİ MİMARİLERE YÖNELİK

PERFORMANS VE MALİYET ETKİN GÜVENİLİRLİK

SİSTEMİ

Modern mimariler gelişen teknoloji ile geçici hatalara karşı daha savunmasız hale

gelmiştir. Bir sistemdeki tüm önbellek yapılarını seçici olmaksızın korumak, performans

ve enerji tüketimi açısından önemli bir ek yük getirir. Bu tez kapsamında performans ve

güç tüketimi kısıtları altında asimetrik olarak güvenilir önbelleklere sahip çok çekirdekli

bir sistem kullanılarak, yalnızca güvenilirlik açısından kritik olan kod parçalarını ko-

ruyan bir mekanizma önerilmiştir. Önerilen sistemimiz L1 önbellek yapılarında ECC

korumasına sahip en az bir yüksek güvenilirlikli çekirdek ve önbellek yapılarında ko-

ruma bulunmayan birden fazla düşük güvenilirlikli çekirdeklerden oluşmaktadır. Bu

tez kapsamında, güvenilirlik temelli kritik kod bölümleri, kritik veri kullanımı, kullanıcı

ek açıklamaları ve statik analiz temel alınarak farklı yöntemlerle belirlenmiştir. İlk

yaklaşımımızda, kritik kod bölümlerini çalıştıran uygulama iş parçacıkları First Come

First Served (FCFS) tabanlı bir çizelgeleme algoritması ile dinamik olarak korunan

çekirdeğe eşlenmiştir. Yapılan deneysel çalışma sonucunda, önerilen yaklaşımımız bir

dizi uygulama için tamamen güvenilir sisteme yakın güvenilirlik ve performans sonuçları

ile daha düşük güç tüketimi ve maliyet değerleri sunmuştur. Bununla birlikte FCFS

tabanlı çizelgeleme algoritması bazı iş yükleri için düşük sistem performansı ve eşitlik

sonuçlarına sahiptir. Bu tez kapsamında, sistem performansı ve eşitlik perspektiflerini

iyileştirmek için, uygulamalar hakkında ön bilgi gerektiren önceliğe dayalı çizelgeleme

teknikleri ve korunan çekirdek(ler) üzerindeki harcanan toplam süreyi eşitlemeyi hedef-

leyen dinamik çizelgeleme teknikleri sunulmuştur. Yapılan deneysel değerlendirme

sonucunda, önerilen çizelgeleme tekniklerinin FCFS algoritmasına kıyasla sistem per-

formansını ve eşitlik sonuçlarını önemli ölçüde iyileştirdiği gözlemlenmiştir.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xviii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. LITERATURE SURVEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1. Literature Survey on Reliability . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Literature Survey on Scheduling Techniques . . . . . . . . . . . . . . . 10

3. OUR RELIABILITY FRAMEWORK FOR MULTICORE ARCHITECTURES 14

4. ASYMMETRICALLY RELIABLE CACHES FOR CRITICAL DATA . . . . 17

4.1. System with Single Type of Protected Core . . . . . . . . . . . . . . . 17

4.1.1. Reliability-based Critical Data . . . . . . . . . . . . . . . . . . . 17

4.1.2. Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.3. Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.4. Cache Protection Scheme . . . . . . . . . . . . . . . . . . . . . 20

4.1.5. Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1.5.1. Simulation Platform . . . . . . . . . . . . . . . . . . . 22

4.1.5.2. Applications . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.5.3. Fault Injection Model . . . . . . . . . . . . . . . . . . 29

4.1.5.4. Performance and Energy Consumption . . . . . . . . . 30

4.1.5.5. Experimental Results . . . . . . . . . . . . . . . . . . 32

4.2. System with Two Types of Protected Cores . . . . . . . . . . . . . . . 37

4.2.1. Architecture and Execution Model . . . . . . . . . . . . . . . . 38

4.2.2. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



vii

4.2.3. Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.3.1. Experimental Results Using Single Type of Protected

Cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.3.2. Experimental Results Using Different Types of Pro-

tected Cores . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3.3. Analysis of Fault Injection Experiments . . . . . . . . 49

4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5. ASYMMETRICALLY RELIABLE CACHES FOR CRITICAL REGIONS . 54

5.1. Code Criticality Based on Annotations . . . . . . . . . . . . . . . . . . 54

5.1.1. Architecture Model . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.2. Execution Model . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.3. Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1.3.1. Experimental Setup . . . . . . . . . . . . . . . . . . . 57

5.1.3.2. Applications . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.3.3. Experimental Results . . . . . . . . . . . . . . . . . . 60

5.2. Code Criticality Based on Static Analysis . . . . . . . . . . . . . . . . 66

5.2.1. Determining Function Priorities . . . . . . . . . . . . . . . . . . 67

5.2.2. Experimental Study . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2.1. Applications . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.2.2. Experimental Results . . . . . . . . . . . . . . . . . . 73

5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6. SCHEDULING OPPORTUNITIES FOR OUR FRAMEWORK . . . . . . . 87

6.1. Shortcomings of FCFS Scheduling . . . . . . . . . . . . . . . . . . . . . 87

6.2. Determining Function Priorities . . . . . . . . . . . . . . . . . . . . . . 88

6.3. Different Scheduling Techniques . . . . . . . . . . . . . . . . . . . . . . 89

6.3.1. Priority-based Scheduling . . . . . . . . . . . . . . . . . . . . . 90

6.3.1.1. Priority-ldf . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3.1.2. Priority-missRate . . . . . . . . . . . . . . . . . . . . . 91

6.3.1.3. Priority-min-reqs . . . . . . . . . . . . . . . . . . . . . 91

6.3.1.4. Priority-max-reqs . . . . . . . . . . . . . . . . . . . . . 92

6.3.1.5. Priority-min-burst . . . . . . . . . . . . . . . . . . . . 92



viii

6.3.1.6. Priority-max-burst . . . . . . . . . . . . . . . . . . . . 92

6.3.2. Equal-time Scheduling . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.3. Equal-progress Scheduling . . . . . . . . . . . . . . . . . . . . . 94

6.3.4. Threshold-based Priority Scheduling . . . . . . . . . . . . . . . 95

6.4. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.1. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.2. Multi-threaded Workloads . . . . . . . . . . . . . . . . . . . . . 100

6.4.3. Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5.2. Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5.2.1. Comparison of Average Speedup Metric . . . . . . . . 103

6.5.2.2. Comparison of Harmonic Speedup Metric . . . . . . . 106

6.5.2.3. Comparison of Fairness Results . . . . . . . . . . . . . 107

6.5.2.4. Experiments with Different Numbers of Protected Cores 110

6.5.2.5. Detailed Analysis Based on 7-application Workload . . 113

6.5.2.6. Discussions . . . . . . . . . . . . . . . . . . . . . . . . 120

6.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 122

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126



ix

LIST OF FIGURES

Figure 3.1. Proposed framework. . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 4.1. An output of a fault injection experiment. . . . . . . . . . . . . . 18

Figure 4.2. Application thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 4.3. RCDS on a high reliability core. . . . . . . . . . . . . . . . . . . . . 21

Figure 4.4. Coding phase of the SECDED [70]. . . . . . . . . . . . . . . . . . 23

Figure 4.5. Decoding phase of the SECDED [70]. . . . . . . . . . . . . . . . . 24

Figure 4.6. The visualization of the simulated system [72]. . . . . . . . . . . . 26

Figure 4.7. Blocked Dense LU Factorization [75]. . . . . . . . . . . . . . . . . . . 28

Figure 4.8. Susan application with Lena image. . . . . . . . . . . . . . . . . . 29

Figure 4.9. Fault injection model in our framework where numbers on the ar-

rows represent order of operations for an experiment. . . . . . . . 30

Figure 4.10. Normalized values of failure rate, execution time and energy con-

sumption for the LU application. . . . . . . . . . . . . . . . . . . 34

Figure 4.11. Normalized values of failure rate, execution time and energy con-

sumption for the Susan smoothing application. . . . . . . . . . . . 36



x

Figure 4.12. Normalized values of failure rate, execution time and energy con-

sumption for the Susan corners application. . . . . . . . . . . . . . 37

Figure 4.13. Different types of partially safe configuration. . . . . . . . . . . . . 39

Figure 4.14. Critical data on the Lena image. . . . . . . . . . . . . . . . . . . . 41

Figure 4.15. Normalized values of failure rate, execution time and energy con-

sumptions for the LU application in an 8-core system. . . . . . . 43

Figure 4.16. Normalized values of failure rate, execution time and energy con-

sumption for the Susan smoothing application in an 8-core system.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 4.17. Normalized values of failure rate, execution time and energy con-

sumption for the Susan corners application in an 8-core system. . 45

Figure 4.18. Normalized values of failure rate, execution time and energy con-

sumptions for the LU application in a 9-core system. . . . . . . . . 46

Figure 4.19. Normalized values of failure rate, execution time and energy con-

sumptions for the Susan smoothing application in a 9-core system. 47

Figure 4.20. Normalized values of failure rate, execution time and energy con-

sumptions for the Susan corners application in a 9-core system. . . 49

Figure 4.21. Results of fault injection experiments for the Susan smoothing ap-

plication. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 4.22. Application behavior when injecting faults to different cores for the

Susan smoothing application in the unsafe configuration. . . . . . 52



xi

Figure 4.23. Correlation of fault injection timing with the Susan smoothing ap-

plication execution. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.1. Source code and its execution. . . . . . . . . . . . . . . . . . . . . 55

Figure 5.2. Application thread. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.3. Queue thread on a protected core. . . . . . . . . . . . . . . . . . . . 56

Figure 5.4. Execution flow of the simulation. . . . . . . . . . . . . . . . . . . . 58

Figure 5.5. Normalized values of execution time and power consumption for

the Bodytrack application. (x-8) configuration: x protected and 8

unprotected cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.6. Fault injection experiment results of the Bodytrack application. . 64

Figure 5.7. Normalized values of execution time, power and reliability results

for the Fluidanimate application. . . . . . . . . . . . . . . . . . . 65

Figure 5.8. Effect of queue waiting with ComputeForces function . . . . . . . 66

Figure 5.9. Normalized values of execution time and power consumption for

the Cholesky application. (x-8) configuration: x protected and 8

unprotected cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.10. Percentage of protected L1 accesses for the Cholesky application. . 75

Figure 5.11. Normalized values of execution time and power consumption for

the Raytrace application. . . . . . . . . . . . . . . . . . . . . . . . 76



xii

Figure 5.12. Percentage of protected L1 accesses for the Raytrace application. . 77

Figure 5.13. Normalized values of execution time and power consumption for

the Dijkstra application. . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.14. Normalized values of execution time and power consumption for

the Barnes application. . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.15. Percentage of protected L1 accesses for the Barnes application. . . 81

Figure 5.16. Normalized values of execution time and power consumption for

the Water-nsquared application. . . . . . . . . . . . . . . . . . . . 82

Figure 5.17. Percentage of protected L1 accesses for the Water-nsquared appli-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 5.18. Normalized values of execution time and power consumption for

the fmm application. . . . . . . . . . . . . . . . . . . . . . . . . . 84

Figure 5.19. Percentage of protected L1 accesses for the fmm application. . . . 85

Figure 6.1. Order of applications at the queue with the FCFS and SJF based

scheduling techniques. . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 6.2. Snapshot of the queue with the FCFS and priority-based scheduling

techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 6.3. Snapshot of the queue with the equal-time scheduling. . . . . . . . 94

Figure 6.4. Snapshot of the queue with the threshold-based priority scheduling. 97



xiii

Figure 6.5. Average speedup results. . . . . . . . . . . . . . . . . . . . . . . . 105

Figure 6.6. Harmonic speedup results. . . . . . . . . . . . . . . . . . . . . . . 107

Figure 6.7. Fairness results based on Jain’s fairness index. . . . . . . . . . . . 108

Figure 6.8. Fairness results based on maximum slowdown. . . . . . . . . . . . 109

Figure 6.9. Pareto plot of performance and fairness for the 7-application work-

load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Figure 6.10. Results of different workloads for the system with two protected

cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Figure 6.11. Results of different workloads for the system with four protected

cores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Figure 6.12. Execution time differences of applications against FCFS. . . . . . 114

Figure 6.13. Execution time distributions of the applications in 7-application

workload on the protected and unprotected cores with different

scheduling techniques. . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 6.14. Percentage of application requests served over time for the 7-application

workload under different scheduling techniques. . . . . . . . . . . . 118

Figure 6.15. Waiting time of the applications for the 7-application workload in

the queue with different scheduling techniques. . . . . . . . . . . . 119



xiv

LIST OF TABLES

Table 4.1. Gem5 simulator parameters. . . . . . . . . . . . . . . . . . . . . . 25

Table 4.2. Instruction counts and cache accesses of each data cache for the LU

application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 4.3. Average reliability, performance and energy consumption values for

different cache configurations of 800 fault injection tests for the LU

application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Table 4.4. Average reliability, performance and energy values for different cache

configurations of 800 fault injection tests for the Susan smoothing appli-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 4.5. Average reliability, performance and energy values for different cache

configurations of 800 fault injection tests for the Susan corners application. 36

Table 4.6. Instruction counts and cache accesses of each data cache for the LU

application in an 8-core system. . . . . . . . . . . . . . . . . . . . 42

Table 4.7. Total number of instruction counts and cache accesses for the Susan

smoothing application in a 9-core system. . . . . . . . . . . . . . . 48

Table 4.8. Total number of instruction counts and cache accesses for the Susan

corners application in a 9-core system. . . . . . . . . . . . . . . . . 50

Table 5.1. Gem5 simulator parameters. . . . . . . . . . . . . . . . . . . . . . 57

Table 5.2. Applications that could not be selected. . . . . . . . . . . . . . . . 59



xv

Table 5.3. Application functions, percentage of execution time, and total num-

ber of calls for each function. . . . . . . . . . . . . . . . . . . . . . 60

Table 5.4. Profiling results of six applications. . . . . . . . . . . . . . . . . . . 72

Table 6.1. Profiling results of seven applications. . . . . . . . . . . . . . . . . 99

Table 6.2. Number of requests of each application for the protected core(s). . 101



xvi

LIST OF SYMBOLS

AS Average speedup

criticalityi Criticality value of function i

Ebus Energy value for off-chip bus

Ecod ECC encoder energy

Edec ECC decoder energy

Emem Memory access energy

Eproc Processor energy

Eread Energy value of read access

EreadECCoff Energy values of the read accesses for the unprotected cache

EreadECCon Energy values of the read accesses for the protected cache

ETi Execution time of function i

Ewrite Energy value of write access

fixityi Fixity value of function i

HS Harmonic speedup

Mi Number of misses for cache i

Mprotected Number of misses for the protected cache

Nprotected Number of cache accesses for the protected cache

Nreadi Number of read accesses for cache i

Nunprotected Number of cache accesses for the unprotected cache

Nwritei Number of write accesses for cache i

OutDegreei Number of callee functions in function i

priorityi Priority value of function i

Rprotected Number of replacements for the protected cache

slacki Slack value of function i

Ti(alone) Execution time of the application i with no scheduler

Ti(approach) Execution time of the application i with the proposed schedul-

ing technique

Ti(baseline) Execution time of the application i with the FCFS technique

vulnerabilityi Vulnerability value of function i



xvii

Wprotected Number of write accesses for the protected cache

α Weight of the vulnerability metric on the criticality metric



xviii

LIST OF ACRONYMS/ABBREVIATIONS

AFCFS Adapted First Come First Served

CFS Completely Fair Scheduler

DFT Discrete Fourier Transform

DVFS Dynamic Voltage and Frequency Scaling

ECC Error Correcting Codes

EDC Error Detection Codes

EPET Earliest Possible Execution Time

EST Earliest Start Time

FCFS First Come First Served

FFM Fast Multipole Method

FFT Fast Fourier Transform

IPC Instruction per Cycle

LGFS Largest Gang First Served

LST Latest Start Time

LTF Largest Task First

RCS Reliability-based Critical Section

RCSS Reliability-based Critical Section Scheduler

SDR Silent Data Corruption

SECDED Single Error Correction and Double Error Detection

TMR Triple Modular Redundancy

TVF Thread Vulnerability Factor



1

1. INTRODUCTION

Modern architectures are progressively vulnerable to transient and permanent

errors because of persistent decrease on transistor sizes, high transistor density per chip,

and high operating frequencies [1,2]. The impact of such errors can be quite varied and

dramatic depending on the target application domain. For instance, in a safety-critical

application (e.g., a program that controls a nuclear plant or a missile), results of even a

single transient error can be catastrophic. On the other hand, in a molecular dynamics

application with self-correcting capability (e.g., one that uses iterative solvers), an

error can notably increase the running time of the program, in spite of the fact that

the program may still finish successfully. Based on above observations, reliability (fault

tolerance) should be considered as a fundamental and first-class metric in hardware and

software designs.

Previous studies explore the fault tolerance strategies in different layers of hard-

ware and software. A certain level of success is accomplished by those efforts in pre-

dicting and mitigating hardware faults. Hardware-only approaches for reliability im-

provement lacks of application-level information. As a result, all memory accesses must

be protected as they have the same criticality level (which is clearly not the case in

reality). Because of this conservative situation, the provided reliability has overheads

of cost, performance and power consumption. On the other hand, software-only ap-

proaches are not aware of the runtime information to enable making ideal protection

decisions, dynamically.

A temporary condition in a semiconductor device may alter the stored data in

memory, which results in a soft error [3]. This sort of error randomly occurs and may

modify the data or terminate the execution of a target program. Alpha particles, low

energy particles from the packaging material, and high energy particles from the cosmic

rays are the main causes of this type of error [2]. Having large area of the logic relative

to other parts of the chip [1, 4] and high transistor density [5] makes cache structures

more vulnerable to soft errors.



2

Utilizing Error Correction Codes (ECC) is a general method to ensure protected cache

memories. However, applying ECC protection in all cache structures may result in

significant overheads in terms of area, power, and cost [2].

The multicore architectures with the unprecedented levels of transistors will re-

quire more appropriate measures to be taken for the reliability problem. In the light

of the observations specified, we propose a performance and cost efficient reliability

framework aiming to maximize the reliability with using minimum reliability hardware

under the performance, power and cost constraints. In our proposed framework, in-

stead of protecting all data uniformly at the same level of reliability, we can determine

the Reliability-based Critical Sections (RCS) which specifies the portions of the pro-

gram that should be protected. Then, these portions are preserved more conservatively

than the remaining parts.

We consider an asymmetric chip multiprocessor (or heterogeneous chip multipro-

cessor) consisting of at least one reliability-aware core and a set of less reliable cores.

While the protected core(s) use most of the chip area by containing larger amount of

fault-tolerant logic and components, the unprotected cores do not provide any protec-

tion mechanisms. An efficient way to achieve higher hardware reliability is to utilize

protected core(s) for the Reliability-based Critical Sections and to map the less-critical

parts of the program on the remaining unprotected cores. By using asymmetrically

reliable cores we can provide maximum reliability enhancement using minimum relia-

bility hardware. In our framework, the protected core is not reserved for a particular

application or thread, and the application threads can visit the high reliability cores at

runtime according to their critical sections of code. Therefore, an efficient scheduling

method is required to dynamically map application threads to the protected cores.

We started with a primitive scheduling technique based on First Come First Served

(FCFS) policy. Then, alternative scheduling techniques with different characteristics

are implemented and evaluated in terms of system performance and fairness.



3

1.1. Thesis Contributions

This thesis proposes an enhanced protection mechanism for the Reliability-based

Critical Sections of the given program by utilizing an asymmetric chip multiprocessors

containing cores with different protection levels. The contributions of the thesis can

be listed in three categories:

Proposing Asymmetrically Reliable Caches for Critical Data [6, 7]:

• We propose two different heterogeneous chip multiprocessors in this part. In the

first approach, a chip multiprocessor which has one high reliability and a set of low

reliability cores is proposed. While ECC protection is applied on individual L1

cache structure of the high reliability core, there is no cache protection mechanism

for the less reliable cores. An application input is analyzed statically a priori,

and a portion of the input is determined as critical data specifically for the given

application. The code fragments that access critical data are determined as the

critical code fragments that need to be protected.

• In the second approach, we propose a chip multiprocessor which has one high

reliability, one middle-level reliability and a set of low reliability cores. While

ECC protection is applied on individual L1 cache structure of the high reliability

core, parity check is utilized for the middle-level reliability core. An application

input data is analyzed statically and classified as critical, semi-critical and non-

critical. The applications can utilize high, medium-level or low reliability cores

based on critical, semi-critical, and non-critical data.

• We present a framework which dynamically allocates application threads to asym-

metrically reliable cores based on critical data usage for both cases. We present

an FCFS-based scheduling method for the queue structure of the high reliability

core.

• A simulation-based fault injection framework is implemented to perform a de-

tailed experimental study on both proposed asymmetrically reliable caches and

traditional caches.



4

Experimental studies performed on applications with various characteristics val-

idate the proposed framework for asymmetrically reliable caches. The partially

safe cache configuration performs significantly better than the unsafe configura-

tion with respect to reliability, and the safe configuration with respect to perfor-

mance and energy consumption.

Proposing Asymmetrically Reliable Caches for Critical Code Regions [8, 9]:

• We propose two different approaches to determine the reliability-based critical

code regions of the applications. As a first approach, a programmer can annotate

the reliability-based critical code regions of the application. Selected applications

are profiled and the functions that cover 90% of total execution time (that might

be three or four functions) are assumed as critical regions for each application.

Then, each of these functions are protected using asymmetrically reliable caches.

• As a second approach, the critical code fragments are extracted by using static

analysis. Each application is profiled, and the execution time percentages and

the call graph of the functions are generated. Then, high-priority functions to

be protected are determined with vulnerability and criticality analysis on the

profiling results.

• For both cases, a comparative study is performed using different numbers of pro-

tected cores to show the efficiency of our framework by using a diverse set of

applications from benchmarks. Our experimental evaluation shows that the pro-

posed approach takes advantage of protecting only functions with higher priority

and presents comparable performance and reliability results with fully protected

systems, while providing lower power consumption and cost values for a set of

functions.

Proposing Different Scheduling Techniques for Our Framework [10]:

• We propose different scheduling techniques with various characteristics to map

application threads on the protected cores.



5

Six priority-based scheduling techniques are presented in which the applications

are prioritized based on their execution order, cache miss rates, number of re-

quests sent to the protected core(s), or total burst time spent on the protected

core(s). These static priority techniques require executing the applications in

advance to determine the priority-level of the applications.

• We propose two dynamic priority techniques: equal-time and equal-progress. The

former one targets to equalize the amount of time for each application on the

protected core(s) at every scheduling point whereas the latter one targets to

equalize the progress of requests for each application on the protected core(s).

Additionally, the priority-levels of the applications are updated dynamically at

runtime in these techniques.

• We propose the threshold-based priority technique, which uses a static priority

technique by considering last scheduled application.

• Evaluations with different workloads show that our priority-min-burst method

that prioritizes the applications with low total burst time on the protected core(s)

presents an average of 51.4% (up to 70.8%) better performance with respect to

average speedup metric and an average of 36.7% (up to 65.4%) better fairness

with respect to Jain’s fairness index on a 16-core system with one protected core.

On the other hand, our equal-time scheduling technique shows an average of

44.7% better performance with an average of 20.5% better fairness results relative

to the FCFS algorithm. Overall, these results validate the usage of scheduling

algorithms presented in this part for providing high performance and fairness

values, in place of the FCFS algorithm.

1.2. Outline of the Thesis

The remainder of this thesis is organized as follows. Chapter 2 presents a va-

riety of studies proposed in the literature. We describe our framework in general in

Chapter 3. Chapter 4 demonstrates the implementation and evaluation of the main

mechanics of our proposed approach with critical data. In Chapter 5, we present our

framework with asymmetrically reliable caches for critical code regions.



6

Chapter 6 demonstrates the scheduling opportunities of our framework by providing

nine different methods. We conclude the document by providing summary and direc-

tions for future work in Chapter 7.



7

2. LITERATURE SURVEY

We present a summary of related work in two subsections. Hardware-based,

software-based and hybrid approaches for the reliability problem are summarized in

the first subsection. It also includes a review on data and code criticality approaches.

In the second part, various scheduling methods that are frequently used in the literature

are explained.

2.1. Literature Survey on Reliability

Hardware-based and software-based reliability approaches have been extensively

studied in the literature. Physical duplication of hardware units is a common method in

hardware-based techniques [11]. Triple Modular Redundancy (TMR) is a well-known

method of three identical pieces of hardware components are used [12]. With the

evaluation of majority voting system, the majority of these results are considered as

accurate and the system is continued to the operation with this outcome. In such a

case, errors may occur in a part of the system without affecting the correct functioning

of it. While such techniques use fault masking methods, there are studies dealing with

error detection and error correction techniques. Error Correcting Codes (ECC) based

techniques are widely deployed technology in the industry that are designed in different

ways to protect on-chip memory and cache structures as well as communication links

of NoC. Variable Strength Error Correcting Codes (VS-ECC) change ECC strength

on different cache lines with online testing [13]. In another study, Hi-ECC provides

protection at a coarse granularity by reducing the cost of strong ECC [14]. Virtualized

ECC [15] provides adaptable memory protection by mapping ECC to areas that are

noticed by software in memory. Memory mapped ECC [16] stores the error protection

codes in main memory to decrease area overhead in last level caches.

Software-based techniques provide software-level solutions by putting additional

instructions to the original program. Information, data, and time redundancy methods

are widely used techniques in this level.



8

Adaptive redundancy is provided to increase data reliability in shared caches [17]. In

addition to full redundancy, partially protected cache is proposed, which ensures a few

sections of the cache against soft errors [18]. Applying only data-intensive multime-

dia applications or considering of single-processor architectures are the fundamental

limitations of those studies mentioned above. In various studies, operating system

data structures are protected by software-based fault tolerance [19] and checkpoint

recovery [20].

Cross-layer approaches that provide solutions at the architecture and application

level for the reliability problem are also presented in the literature [21]. The Relax

framework provides software level protection for hardware faults [22]. They extract

vulnerable code regions as the functions that can be ignored within a program. If

a hardware fault occurs while executing these regions, they are either re-executed or

the results produced by these regions are ignored. A programming model, EnerJ, is

presented by classifying application data as critical or approximate [23]. In this study,

approximate data calculations are performed in low-energy, low reliable mode, while

critical data calculations are performed in high-energy, high reliable mode.

A programming model, Rely, is presented in which the user can figure out reli-

ability requirements in application level [24]. In this method, probabilistic hardware

models are developed to meet the reliability requirements. The authors also proposed

a system, Chisel, in which reliable data and operations can be determined automat-

ically [25]. Additionally, a flexible architecture is presented using reliable processors

to control algorithmic flow and unreliable processors to run slave tasks [26]. While

this work requires rewriting the application source code, the overhead of using reliable

processor can be decreased by using many parallel threads. Rehman et al. [27] propose

a system using heterogeneous error recovery cores to select a task among various task

alternatives, where vulnerable tasks are bound to the reliable cores while robust tasks

are bound to the unreliable cores. They also provide a compiler-based solution that

reduces the vulnerability of critical instructions on unreliable hardware [28]. Yetim et

al. [29] propose a system that can convert the fatal errors in the inter-thread commu-

nication into application-level data errors.



9

A model-driven method is also proposed for fault-tolerant embedded systems [30]. In

this model, design space exploration methods are studied using application-level relia-

bility requirements and hardware platform information.

Researchers have also examined asymmetric multicore architectures in the litera-

ture. An asymmetric architecture is proposed in which a high-performance core (called

large core) is used to execute critical sections and low-performance cores (small cores)

are used to execute other instructions [31]. Thus, the execution of the critical sections,

which have to be executed in serial, is accelerated using a high-performance core and

the thread waiting times are decreased by this approach.

Asymmetric multicore architectures are also studied in terms of reliability in the

literature. A multicore system is proposed where different fault tolerant cores are used

for different applications [32]. In this work, critical applications are executed on high-

reliability cores, while non-critical applications are executed on low-reliability cores.

Application criticality is determined from the scratch and critical applications run on

high-reliability cores until the end of the execution. Heterogeneous-reliable memory

implementations are also proposed in the literature [33]. In this study, application

data are classified in two groups referred to as less vulnerable and more vulnerable

data. While more vulnerable data are stored in protected memory, less vulnerable

data are stored in unprotected memory. This study has been proposed to reduce the

memory cost of the servers.

There are various studies in the literature regarding the determination of critical

code regions in applications. Burtscher et al. [34] assume that the code regions that

have higher execution time percentages are more critical than the other parts. Sub-

otic et al. [35] claim that the code regions that could be improved with performance

optimizations and those that have maximum speed up in the case of optimizations

are selected as the most significant regions. Carbin et al. [36] extract critical and

non-critical code regions by utilizing flexible input fuzzing methods in which different

inputs are given to the program and critical regions are determined depending on the

program path.



10

Duque et al. [37] propose a system that can perform an application-specific criticality

measurement using static task graphs.

There are significant differences between the studies presented in this section

and the system we have proposed. In our proposed system, a high reliability core

is not reserved for a particular application or thread. Various threads can use high

reliability core(s) at runtime. Therefore, dynamic allocation of application threads

and a scheduling technique are required in our work. On the other hand, protection

techniques are applied to the individual cache structures of the cores, rather than

the external storage as in the studies above. Furthermore, critical code regions are

determined in several ways using real applications, rather than using ready task graphs.

2.2. Literature Survey on Scheduling Techniques

Scheduling is a very popular research area in the literature where a large number

of policies have been implemented based on various perspectives. Scheduling techniques

are studied as part of the reliability-based research in the literature [37–42]. Duque

et al. [37] propose a reliability-aware task scheduling that uses several metrics such as

core reliability, task vulnerability, and task criticality. In this study, time-correlated

fault behavior of the applications are modeled and different priorities are given to dif-

ferent tasks. The task vulnerability metric is defined as affecting the task outcome of a

possible error. A task criticality metric is defined as the effect of a possible error on the

execution time of the application. The task vulnerability and task criticality metrics

are calculated based on the task graph information. Using these metrics, the runtime

scheduler assigns more vulnerable and critical tasks to the more reliable cores, dynam-

ically. In this study, ready task graphs are used rather than real applications. The

authors propose a static reliability-aware scheduling technique in another study [38].

The aim of this work is again to assign more critical and vulnerable tasks to more

reliable cores. In the event of a possible error, it is assumed that the faulty task will

be re-executed. Then, the level of reliability is defined as the expected increase in

execution time in case of a possible error. In this study, List scheduling, which consists

of a task prioritization and a core assignment stages are used.



11

The task prioritization is based on Earliest Possible Execution Time (EPET). The

highest priority among the tasks is given by the lowest EPET value.

Chantem et al. [39] propose a reliability-aware task assignment and scheduling

algorithm that uses prior knowledge of the desirable thermal profile of a heterogeneous

system where it adopts the Largest-task first (LTF) algorithm. Tasks are sorted in

decreasing order according to their energy consumption and assigned to the core with

the lowest total energy consumption. Coskun et al. [40] propose a reliability-aware

job scheduling technique for chip multiprocessors by considering power management.

Thermal cycling - repeatedly heating and cooling the processor - causes errors in the

system. Several migration and Dynamic Voltage and Frequency Scaling (DVFS) tech-

niques are utilized in their reliability-aware scheduling algorithm to capture the effects

of thermal failures. Within the migration-based techniques, a thermal threshold is set

for the cores, and the core exceeding this value sends its task to the core with the lowest

heat. As another migration technique, the task with the highest Instruction per Cycle

(IPC) value is sent to the core with the lowest heat. Other than that, the task with

the highest IPC value is sent to the core with the lowest heat based on the location

(assumed that the cores on the corner have less heat, and the cores on the center have

higher heat).

There are several scheduling studies for heterogeneous multiprocessor platforms

and these have attracted significant research interests [43–50]. Li et al. [43,51] propose

a scheduling algorithm for frame-based tasks on heterogeneous multiprocessors, where

they use DVFS-enabled processors to decrease energy consumption. Tang et al. [44]

propose a reliability-aware scheduling algorithm for heterogeneous systems in which

they prioritize tasks based on reliability overheads. The overheads are caused by task

duplication in order to increase system reliability. In another study, they propose an

energy- and reliability-aware scheduling algorithm for parallel applications, where they

take the scheduling decisions based on energy consumption, schedule length, and reli-

ability [45].



12

Additionally, there are several fairness-aware scheduling techniques proposed in

the literature [52–54]. Wang et al. [52] propose a scheduling algorithm that bal-

ances contention and reservation. All the threads belonging to an application are

co-scheduled together. They also allow co-scheduling of multiple applications that can

co-exist effectively. They give weights to the applications and co-schedule them with

the weight values under the degree of contention threshold. Their method is better than

the Linux Completely Fair Scheduler (CFS) in terms of fairness and system throughput.

Craeynest et al. [53] propose a fairness-aware scheduling technique for heterogeneous

systems, considering barrier-synchronized multi-threaded workloads. In their methods,

they schedule threads such that they have equal time or equal progress on each core

type. Their techniques improve fairness and performance more than pinned scheduling.

There are various studies which utilize sophisticated methods in memory schedul-

ing [55–60]. Subramanian et al. [59] propose the Blacklisting Memory Scheduler in

which they group the applications with high number of successive requests and put

them to the blacklist. They prioritize the remaining applications over the black-

listed applications and clear the blacklist at certain time intervals. Usui et al. [60]

proposes deadline-aware high-performance memory scheduler to meet hardware ac-

celerators deadlines by presenting high performance. They give different ranks to

the memory-intensive/non-intensive CPU applications and hardware accelerators with

short and long deadline period in order to achieve high performance for heterogeneous

systems.

There are several studies based on gang scheduling [61–65], in which the tasks of a

parallel job are organized as a group, called as a gang, and executed simultaneously on

various processors [61]. Papazachos et al. [61] study the performance of gang scheduling

policies such as Adapted First Come First Served (AFCFS) and Largest Gang First

Served (LGFS). They also implement migration based extensions of the two techniques

for multicore clusters. Manickam et al. [62] propose a fair and efficient gang scheduling

algorithm that is the modified version of AFCFS. A variable, called bypass count, is

kept for each gang, which stores the number of gangs that have bypassed it for execution

in the queue.



13

When this value exceeds a certain threshold, the highest priority is given to this gang.

They guarantee that each gang can be scheduled in a predictable time period.

In addition to these studies, there are a set of scheduling algorithms that ex-

tends the Shortest Job First (SJF) algorithm. Mi et al. [66] propose a scheduling

algorithm that approximates SJF scheduling without requiring any knowledge of job

service times. They use a prediction mechanism to classify jobs as short or long based

on the correlation of the successive task service times, and they delay the large jobs by

moving them to the end of the queue. Casale et al. [67] propose a scheduling approach

for workloads with correlated task sizes. They estimate the size of forthcoming tasks

based on correlations in previous scheduling policies and prioritize the short-size tasks

based on this information.



14

3. OUR RELIABILITY FRAMEWORK FOR MULTICORE

ARCHITECTURES

In this section, we present the scope and limitations of our proposed framework

which provides only as much reliability as needed for the application. Our proposed

framework allows the application programmer to determine reliability-based critical

sections of a given code. These regions in our framework indicate the parts of the code

that are critical from reliability perspective and these have to be protected. As we

know, all the instructions and memory accesses do not have the same criticality. Some

instructions, data structures or functions may need more reliability requirements than

the others. These sections are called as Reliability-based Critical Sections (RCS). If a

transient fault occurs in these parts, it may cause the failure of a system whereas if

it occurs in non-critical parts, the system undergoes without any failure. If the criti-

cality of instructions is not known, the system needs to be conservative to all memory

accesses as having the same criticality (which is clearly not the case in reality). Being

conservative in turn increases both cost and performance overheads of the provided

reliability.

The proposed framework runs on homogeneous ISA, speed and performance but

asymmetrically reliable cores which have different fault tolerant hardware. Asymmet-

rically reliable cores consist of at least one high reliability core and several low relia-

bility cores. Fault tolerance mechanism on the high reliability core is based on Error

Correcting Codes (ECC) that is implemented on individual cache structures. In this

framework, the software threads that execute critical code fragments are dynamically

mapped to the protected core(s), and the software threads that execute non-critical

code fragments are mapped to the unprotected cores during the execution. There-

fore, sufficient reliability can be guaranteed using minimum additional hardware to

reduce reliability costs. This framework provides a protection mechanism only for the

reliability-based critical sections in a conservative way to provide the required reliabil-

ity.



15

Figure 3.1. Proposed framework.

Figure 3.1 presents the components of our framework. There are multiple applica-

tions annotated by the programmer with RCS keywords. An example system consisting

of one protected (Core 0) and seven unprotected cores (Cores 1-7) is presented in the

figure. The framework executes non-critical code fragments on the unprotected cores

(Cores 1-7) and the critical code fragments on the protected core (Core 0). Different

applications may have different criticality characteristics. In Figure 3.1, the applica-

tion 1 has several instructions in its critical code fragments, while the application 2

has more than one critical code fragment in its program code.

The protected core is not reserved for a particular application in the framework.

Various threads can use the protected core during the execution. In this way, we

have to assign application threads to the protected core dynamically, which requires

a scheduling technique in our system. Application threads start the execution on the

unprotected cores. When a thread accesses a critical code fragment, it presents a re-

quest to run on a protected core.



16

The usage of the protected core is handled by a scheduler called as Reliability-based

Critical Section Scheduler (RCSS), which collects requests issued by the application

threads. When the protected core is idle, the requesting thread is mapped to it and the

thread executes the critical code fragment. Then, it returns to the initially requested

core which is an unprotected one. As a first attempt, First Come First Served (FCFS)

based scheduling approach is considered for the application threads. Then, various

scheduling techniques with different characteristics are implemented and evaluated.

The reliability-based critical sections are determined based on critical data usage,

user annotations, or static analysis, each of which identifies critical code fragments

differently throughout this thesis. As the first attempt, an application input is analyzed

statically a priori, and a portion of the input is determined as critical data specifically

for an application. The code fragments that access critical data are determined as

the RCS that need to be protected. Secondly, the user can annotate the application

program manually to determine the RCS that need to be protected. In this work, the

application is profiled and the function names that cover 90% of total execution time

are determined. These functions are treated as the RCS that need to be protected. As

the third approach, the RCS are extracted by using static analysis. Each application

is profiled using the GNU profiler, gprof, and the function execution time percentages

and the call graph of the functions are generated. Then, the high-priority functions to

be protected are determined with vulnerability and criticality analysis on the profiling

results.



17

4. ASYMMETRICALLY RELIABLE CACHES FOR

CRITICAL DATA

In this chapter, we implement and evaluate the main mechanics of our proposed

framework with asymmetrically reliable caches. The input data of the application is

examined and reliability-based critical code regions are determined according to the

usage of the critical data. The proposed multicore architecture is investigated in two

sub-chapters: (i) the system with a single type of protected core and (ii) the system

with two types of protected cores where the former one provides only high reliability

core and the latter one provides a high and a middle-level reliability cores.

4.1. System with Single Type of Protected Core

In this part, we implement our proposed framework with asymmetrically reli-

able caches having one high reliability core and a set of low reliability cores. The

details about determining reliability-based critical sections based on critical data are

given in Section 4.1.1. We present the features of our asymmetrically reliable multi-

core system providing details of architecture and execution models in Sections 4.1.2

and 4.1.3, respectively. The details of cache protection mechanism with ECC are given

in Section 4.1.4. The experimental setup used in our evaluations and results from our

experimental analysis are given in Section 4.1.5.

4.1.1. Reliability-based Critical Data

An application’s memory accesses may have different reliability requirements. As

in the case of a human face in a face recognition program, some regions of an image

may be more critical to the user or programmer. A soft error occurrence in one of

the pixels on the face may cause the image to be misidentified; however, a fault in the

pixels outside the face may not be so critical and it may only cause quality degradation

on the image.



18

Figure 4.1. An output of a fault injection experiment.

As it will be explained in the Section 4.1.5, fault injection experiments are performed

on Susan smooting, an image recognition application from the ParMiBench benchmark

suite [68]. An example erroneous output of the application is shown in Figure 4.1. The

injected fault hits to the pixels on the face and causes this faulty output.

In our proposed framework, the reliability requirements (criticality) of all data

should be distinguished in advance. When one of the application threads accesses to a

piece of code that uses critical data, then the thread is moved to the high reliability core.

Threads running the code fragments that use non-critical data continue the execution

on the low reliability cores. Application threads may access these critical regions at

different frequencies throughout their lifetime, which shows the frequency of visits to

the high reliability core. In our system, the criticality of input data is determined by

the user.

If the criticality of the data used by the application is unknown, then all memory

accesses should be treated as having the same criticality level. In this sense, protecting

all data brings additional overheads in terms of performance, energy consumption and

cost. In our framework, the required reliability is ensured by preserving only the code

regions that utilizes the critical data.



19

4.1.2. Architecture Model

Our system consists of identical cores that have similar micro-architecture and

speed but they differ by the fault tolerance method used in their private L1 caches.

The fault tolerance mechanism utilized in the cache of high reliability core is based on

ECC which is a widely used technique in the industry and can detect double bit errors

while correcting single bit errors.

The architecture used to test the validity of the system is a 4-core system. While

there are individual L1 data and instruction caches for each core, there is a single shared

L2 cache in our hardware model. There are three different cache protection configu-

rations in our system: unsafe, safe, and partially safe. ECC protection is available for

each L1 data cache of the cores in the safe configuration, while no cache structure is

protected in the unsafe configuration. In the case of a partially safe configuration, only

the L1 data cache of the high reliability core has ECC protection. Here, we defined

criticality in terms of critical data; therefore, we provide protection on data caches.

4.1.3. Execution Model

Firstly, application threads start the execution on the low reliability cores. When

a thread accesses a piece of code that uses critical data, it sends a request to use the

high reliability core. Since multiple threads may send requests to execute on the high

reliability core, the thread management is handled by a scheduler. There is a queue

that collects requests sent by the threads running on the low reliability cores. If the

high reliability core is idle, the requesting thread is moved to that core and the code

fragment containing the critical data is executed. After finishing the code fragment,

the thread sends an acknowledgment message to the scheduler. Then, the scheduler

moves it back to the initial requesting core. If the high reliability core is not available,

then the requesting thread begins to wait in the request queue. Queue structure and

thread-to-core mapping are handled by a scheduler, referred to as Reliability-based

Critical Data Scheduler (RCDS).



20

Our system uses a First Come First Served (FCFS) based scheduling algorithm that

prioritizes older requests over newer requests in the queue at the first attempt.

Figures 4.2 and 4.3 show the execution scenario of application threads and the

RCDS thread, respectively. When an application thread encounters a code region

that uses critical data, it appends itself to the requestList for a high reliability core

and waits the response from the RCDS thread. In our system, there might be multiple

high reliability cores, each with a separate RCDS thread. When a request is added, the

RCDS thread receives it and informs the corresponding thread with the core number

of high reliability core. Then, the application thread maps itself to the high reliability

core. Once the thread finishes the respective code region, it binds itself to the initially

requested core and informs the corresponding RCDS thread about completion. After

receiving this notification, RCDS removes the corresponding request from the queue.

If the high reliability core is not available, the RCDS thread cannot receive a request

since it gets stuck at the tenth line of Figure 4.3. These algorithms are executed by

more than one thread at the same time, and all operations on shared variables are

maintained in a mutually exclusive way.

4.1.4. Cache Protection Scheme

Cache structures are more susceptible to soft errors due to the large area of the

logic compared to other parts [69]. ECC is a widely used method to protect cache

structures. As an example for ECC protection, Single Error Correction and Double

Error Detection (SECDED) can correct single bit errors and detect double bit errors.

Since the majority of soft errors occur as single bit errors, the SECDED approach is

implemented in our system.

The SECDED approach uses extra bits to encrypt the data, and these control

bits are stored with the data in memory. When the data is written to the memory,

control bits are also generated and recorded. When the data is read from the memory,

the control bits generated are compared with the control bits recorded. If the control

bits do not match, they are decoded and the wrong bit position in the data is detected.



21

Require requestList, Coreinit,mtx, queueSem, startSem, finishSem

bindThread(Coreinit);

if criticalData.isTrue then

pthread mutex lock(&mtx);

requestList.add(threadID);

pthread mutex unlock(&mtx);

sem post(&queueSem); // Notify the RCDS thread

sem wait(&startSem[threadID]); // Wait response from the RCDS thread

Coreprotected = whichCore[threadID];

bindThread(Coreprotected);

compute(criticalData);

bindThread(Coreinit);

sem post(&finishSem[threadID]); // Notify the RCDS thread

else

compute(non-criticalData);

end if

Figure 4.2. Application thread.

Require requestList, mtx, queueSem, startSem, finishSem

Coreprotected = sched getcpu();

while requestList.isNotEmpty do

sem wait(&queueSem) ;

pthread mutex lock(&mtx);

threadID = requestList.first();

pthread mutex unlock(&mtx);

whichCore[threadID] = Coreprotected;

sem post(&startSem[threadID]);

sem wait(&finishSem[threadID]);

requestList.delete(threadID);

end while

Figure 4.3. RCDS on a high reliability core.



22

The wrong bit is inverted and the program continues to execution with the corrected

data. The number of control bits may vary depending on the size of the data and the

strength of the protection. Each control bit is responsible for several bit positions in

the data whereas each bit position is controlled by at least two control bits. We utilize

seven control bits for 32-bit data in our implementations. Six of them are responsible

for several bit positions within the data, and the last one is the parity of both data

and control bits. Figures 4.4 and 4.5 show the algorithms used in the encoding and

decoding phases of the SECDED approach, respectively. This process is performed

for each 32 bit-data in each row of the cache. Thus, the storage cost of the ECC

implementation is 21.9% due to the use of additional control bits.

The protection of all cache structures with ECC introduces significant overheads

in terms of performance, energy consumption and area [71]. ECC encoding is applied

for each data written to the cache, ECC decoding is applied for every data read from

the cache. In addition, the correction phase of the ECC should be applied if there

is a bit flip in the data. The processing time of these phases has negative effect on

the performance. The protection of all cache structures with SECDED approach is

not a practical approach, especially for the performance-, energy-, and area-sensitive

systems. Therefore, SECDED approach is implemented only for the cache structures

of the high reliability cores in our work.

4.1.5. Experimental Study

4.1.5.1. Simulation Platform. To model our proposed architecture, we use gem5 sys-

tem simulator [72], which is a sophisticated simulator merging different aspects of M5

and GEMS simulators. The simulator provides different types of ISAs, CPU models

and coherence protocols to the instantiation of interconnection networks, devices and

multiple systems. It gives support different types of ISAs such as ARM, ALPHA,

MIPS, Power, SPARC, and x86. It supports four different CPU models including two

simple single CPI models, an out-of-order model, and an in-order pipelined model.

We can simulate different caches and interconnects due to the flexibility of memory

systems.



23

procedure setECC (input)
/*Computes the six parity check bits for the ”information” bits given in the 32-bit word input.

The check bits are c[5:0].

Bit Checks these bits of input

c[0] 0, 1, 3, 5, ..., 31 (0 and the odd positions).

c[1] 0, 2-3, 6-7, ..., 30-31 (0 and positions xxx1x).

c[2] 0, 4-7, 12-15, 20-23, 28-31 (0 and posns xx1xx).

c[3] 0, 8-15, 24-31 (0 and positions x1xxx).

c[4] 0, 16-31 (0 and positions 1xxxx).

c[5] 1-31 */

c0⇐ input⊕ (input >> 2) ;

c0⇐ c0⊕ (c0 >> 4) ;

c0⇐ c0⊕ (c0 >> 8) ;

c0⇐ c0⊕ (c0 >> 16) ; // c0 is in posn 1.

t1⇐ input⊕ (input >> 1) ;

c1⇐ t1⊕ (t1 >> 4) ;

c1⇐ c1⊕ (c1 >> 8) ;

c1⇐ c1⊕ (c1 >> 16) ; // c1 is in posn 2.

t2⇐ t1⊕ (t1 >> 2) ;

c2⇐ t2⊕ (t2 >> 8) ;

c2⇐ c2⊕ (c2 >> 16) ; // c2 is in posn 4.

t3⇐ t2⊕ (t2 >> 4) ;

c3⇐ t3⊕ (t3 >> 16) ; // c3 is in posn 8.

c4⇐ t3⊕ (t3 >> 8) ; // c4 is in posn 16.

c5⇐ c4⊕ (c4 >> 16) ; // c5 is in posn 0.

c⇐ ((p0 >> 1) ∧ 1) ∨ ((p1 >> 1) ∧ 2) ∨ ((p2 >> 2) ∧ 4) ∨ ((p3 >> 5) ∧ 8)∨

((p4 >> 12) ∧ 16) ∨ ((p5 ∧ 1) << 5);

ca⇐ getParity(c⊕ u) ;

ca⇐ ca << 6 ;

c⇐ c ∨ ca ;

c⇐ c⊕ (−(input ∧ 1) ∧ 0x3F) ; // Now account for input[0].

Figure 4.4. Coding phase of the SECDED [70].



24

procedure decodeECC (cr, input)

// This function looks at the received seven check bits and 32 information bits (cr and input),

// and it returns with 0, 1, or 2, meaning that no errors, one error, or two errors occurred. It

// corrects the information word received (input) if there was one error in it.

cr0⇐ getParity(cr⊕ input) ; // Compute overall parity of the received data.

c⇐ setECC(input) ; // Calculate check bits for the received info.

syn⇐ c⊕ (cr ∧ 0x3F) ;

syn⇐ syn ∧ 0x3F ;

if cr0 == 0 then

if syn == 0 then

return 0 ; // If no errors, return 0.

else

return 2 ; // Two errors, return 2.

end if

end if

if ((syn− 1) ∧ syn) == 0 then

// If syn has zero or one bits set, then the error is in the check bits or the overall parity bit

// (no correction required).

return 1 ;

end if

// One error, and syn bits [5:0] tell where it is in input.

b⇐ syn− 31− (syn >> 5) ;

// Correct input.

input⇐ input⊕ (1 << b) ;

Figure 4.5. Decoding phase of the SECDED [70].



25

It is primarily written in C++ and python and all the components are based on object-

oriented design.

We run the gem5 simulator in ALPHA full system mode with timing cpu model.

Our target architecture is a 4-core system, with individual L1 instruction and data

caches for each core and a shared L2 cache. The main parameters of the simulated

multicore system are given in Table 4.1. The gem5 simulator produces a configuration

file which shows the visualization of the simulated architecture. The details of the

simulated architecture can be found in Figure 4.6. To implement ECC protection in

different levels of cache structures, modifications are made to the classical memory

model of the gem5. The most difficult part of this section is not to implement ECC

protection, but to track each data packet between the CPU and cache structures to

perform ECC encoding/decoding phases. Otherwise, a consistent protection could not

be enabled for cache structures. We define a variable, called protectionType, in the

cache configuration file of the simulator. According to the value of this variable ECC

protection is activated for each data packet in the individual cache structures.

Table 4.1. Gem5 simulator parameters.

Processor

Number of cores 4

Processor type ALPHA

Processor frequency 2 GHz

Simulation mode Full System

Cache and Memory Hierarchy

L1 instruction cache
32 KB, 2-way, 64 byte blocks,

2 cycle latency

L1 data cache
8 KB, 2-way, 64 byte blocks,

2 cycle latency

L2 cache
2 MB unified, 8-way, 64 byte blocks,

20 cycle latency

Memory 512 MB, 30 ns latency



Figure 4.6. The visualization of the simulated system [72].



27

In addition to the gem5, we use the CACTI [73] which takes the cache parameters

and models delay/power/area of cache components. It is used for calculating energy

consumption in the cache structures. Energy consumption is calculated with the energy

values of per read and per write accesses taken from the CACTI. The details of the

energy consumption calculation will be explained in Section 4.1.5.4.

4.1.5.2. Applications. Applications selected to validate our system should contain code

fragments that use critical and non-critical data proportionally. If the majority of code

fragments use critical data, all of the application threads run on the high reliability

core which reduces the utilization of the low reliability cores. On the other hand, if a

few code fragments use a relatively small amount of critical data, few threads need to

run on the high reliability core, which decreases the utilization of that core. Thus, the

applications are selected by considering the utilization of all cores in our experimental

study.

Our first application, LU Decomposition, is selected from SPLASH-2 [74] which

is a benchmark suite for parallel computational applications. This application decom-

poses a dense matrix into a lower triangular matrix and a higher triangular matrix. In

this decomposition process, the matrix is divided into blocks in order to utilize the tem-

poral locality for the individual sub-matrix elements [75]. To reduce communication

between the threads, the blocks are assigned to the threads using 2-D scatter decom-

position. The pseudocode of Blocked Dense LU Factorization, expressed in blocks, is

shown in Figure 4.7. Firstly, the diagonal block is decomposed in the second line, then

all perimeter blocks are updated using the diagonal block in the third line. In the sixth

line, the matrix multiplication of two blocks is performed by the thread having the

target block.

In this application, the diagonal block is assumed to be more critical when com-

pared to the other blocks because the diagonal block is used for updating the perimeter

and inner blocks. A soft error occurrence on this data might easily spread to other

regions of the matrix by affecting the result of the computation.



28

For this reason, the operations on the diagonal block are performed in a more protected

manner using a high reliability core.

for k=0 to N-1 do

Factor diagonal block Akk

Compute values for all perimeter blocks in column k and row k using Akk

for j=k+1 to N-1 do

for i=k+1 to N-1 do

Aij = Aij - Aik * Akj

/* Update interior blocks using corresponding perimeter blocks */

end for

end for

end for

Figure 4.7. Blocked Dense LU Factorization [75].

Our second application is the Susan application from ParMiBench [68], consisting

of a set of parallel applications for embedded systems. It is an image recognition

application that can detect the edge and corner points in an MRI of the brain. It takes

a black-white image as input and performs regulations for brightness, smoothness and

spatial control on the image [68]. Application threads share the input image by a

row-wise block partitioning method and perform calculations on their own chunks.

For Susan, an image recognition application, the critical parts of the input image

can be easily detected by the user. A black-white Lena image is used as input and

it is assumed that the pixels on the face are more critical than the pixels not on the

face. The critical parts of the input data and the sharing between the threads are given

in Figure 4.8. In this example, sharing of critical data is not homogeneous for each

thread. Thread1 do not have critical data, Thread2 has a large fraction of the critical

data, and Thread3 has less critical data than Thread2.

In Susan application, each pixel needs neighboring pixels on the same line for

calculation, so the threads cannot run the entire critical part at once on the high

reliability core. On the other hand, migration of a corresponding thread for each pixel

on the face significantly increases the migration cost and the waiting time of the threads

at the request queue. Therefore, it is considered to migrate the corresponding thread

for each row in the critical data (see rectangular region in Figure 4.8(a)).



29

(a) Critical data. (b) Data sharing among the threads.

Figure 4.8. Susan application with Lena image.

4.1.5.3. Fault Injection Model. A random fault injection model is performed using

single bit flip model in the cache structures. In order to determine a fault point, five

random numbers are selected: a clock cycle number (among the clock cycles of running

application), a core number (out of 4 cores), a cache line (among the 128 cache lines), a

cache index within a line (among 64 bytes, the size of the cache line), and a bit position

(among 8 bits).

To enable fault injection experiments on the gem5 simulator, the event scheduling

mechanism of the gem5 is used. Firstly, uniformly distributed random fault injection

points are determined. After determining the fault injection point, the target bit of

the target cache is corrupted by inverting the bit at a predefined clock cycle. For each

experiment, a fault is definitely injected and the fault position and the incorrect output

are recorded on the host machine. A schematic view of our fault injection model is

shown in Figure 4.9.

There is a controller mechanism that monitors the status of the running program

and evaluates the result of the fault injection experiments. There are three possible

outcomes for a fault injection experiment: correct execution, Silent Data Corruption

(SDR), and program error. There is no error in the output of the program in case

of correct execution. In this case, the fault might hit to the data not used by the

application, or it might not affect the application output although it is used by the

application. In the SDR case, the program terminates with an incorrect output.



30

This means that the erroneous data is used by the application and the generated

output is affected by this fault. In the last case, the program cannot continue to

execute because of a fault such as a segmentation fault, or the program cannot be

terminated normally due to an unexpected situation such as an infinite loop. In order

to evaluate the result of a fault injection experiment, the controller checks the output of

the application with the golden output that is generated by the correct execution (with

the safe configuration). If there is no difference between the files, then the experiment

is assumed as correct execution. Otherwise, the execution is assumed as Silent Data

Corruption and the faulty data is logged in the host machine.

Figure 4.9. Fault injection model in our framework where numbers on the arrows

represent order of operations for an experiment.

4.1.5.4. Performance and Energy Consumption. Protecting cache structures with the

SECDED causes considerable performance, energy and area overheads [71]. However,

the gem5 simulator does not consider the time spent in SECDED encoding and decod-

ing phases. For this reason, the cache access latency values are increased for the caches

that use SECDED approach. The cache access latency value is set as two cycles for an

unprotected cache whereas this value is increased to three for a protected cache since

there is an extra one cycle penalty due to SECDED approach [71].

Another overhead that should be considered when using ECC protection is energy

consumption. In order to calculate energy consumption on cache structures, the energy

per access values are estimated for protected and unprotected caches using CACTI [73].



31

Energy consumption is calculated based on two different methods, cache energy and

system energy. In the first case, only the energy consumption of the cache structure

is modeled by considering only dynamic energy consumption [76]. Cache energy is

modeled as follows:

E =

#ofCPUs−1∑
i=0

[Eread ∗Nreadi + Ewrite ∗Nwritei] (4.1)

where Nreadi and Nwritei are the number of read and write accesses to the data

cache of core i, respectively. Eread and Ewrite are the energy values of read and

write accesses estimated by the CACTI, respectively. Nwritei value consists of both

write accesses and the number of cache line replacements due to the cache misses.

In the second method, not only the cache energy but also the energy consumption

of the entire system is modeled by considering the processor, memory, and off-chip

buses [71]. The similar energy consumption values are used for the processor, memory,

off-chip bus and ECC encoder/decoder [71]. The system energy is modeled as follows:

E =
n−1∑
i=1

(Nunprotectedi ∗ EreadECCoff )

+Nprotected ∗ (EreadECCon + Edec) + (Wprotected ∗ Ecod)

+
n−1∑
i=0

Mi ∗ (Ebus + Emem) + (Mprotected ∗ Ecod)

+ (Rprotected ∗ Edec) + Eproc ∗
n−1∑
i=0

Ni (4.2)

where N is the number of cache access, W is the number of write access, M is the num-

ber of misses, R is the number of replacements, and E is the energy value. Nunprotected

and Nprotected are the number of cache accesses for the unprotected and protected

caches, respectively. Wprotected is the number of write access, Mprotected is the number

of misses and Rprotected is the number of replacements for the protected caches, respec-

tively. EreadECCoff and EreadECCon are the energy values of the read accesses for the

unprotected and protected caches, respectively. Edec and Ecod are the ECC decoder

and encoder energies, respectively. Ebus is the energy value for off-chip bus.



32

Emem is the memory access energy and Eproc is the processor energy. The values used

for the experiments are; Edec = 0.39 nJ (per decoding), Ecod = 0.2 nJ (per coding),

Ebus = 10 nJ (per access), Emem = 32 nJ (per access) and Eproc =0.67 nJ [71]. We

consider estimated energy values for EreadECCoff and EreadECCon taken from CACTI.

4.1.5.5. Experimental Results. We conduct a set of experiments to compare our par-

tially safe configuration with the unsafe and safe configurations in terms of reliability,

performance and energy consumption by using selected applications. Thread-to-core

mapping is handled by our system in the partially safe configuration, while it is left

to the Linux scheduler for the unsafe and safe configurations. The hardware charac-

teristics of the proposed system is given in Table 4.1. The size of the L1 data cache is

set smaller than the instruction cache to increase the probability of hitting the fault to

the application’s data. There are four protected cores in the safe configuration, four

unprotected cores in the unsafe configuration, and a total of four cores in a partially

safe configuration, one of which is a high reliability core. The applications run with

a total of four threads where one of them is the main thread and the remaining ones

are the worker threads. Therefore, we utilize one-to-one mapping for our partially safe

configuration. A total of 800 fault injection experiments, 200 for each core, are per-

formed. Thread migration and queue waiting overheads are implicitly included in the

execution time.

For the LU application, a 512 x 512 dense matrix with 16 x 16 blocks is used as an

input. The result of the LU application based on the number of instructions executed

on each core, the number of read/write accesses, and the number of miss/replacement

counts for each data cache are listed in Table 4.2 for the safe, unsafe and partially safe

configurations. The total number of instructions is almost similar for each configura-

tion. This indicates that the additional overheads of queue management and thread

migration are not dominant for our partially safe configuration.



33

Table 4.2. Instruction counts and cache accesses of each data cache for the LU

application.

Cache

Configuration

Core

ID
# of Insts. Nread Nwrite Nmiss Nreplacements

Safe

0 440,888,188 198,684,451 39,387,672 7,023,559 6,828,389

1 5,701,266 1,223,544 663,705 112,147 106,057

2 2,145,693,556 454,405,771 181,625,409 12,482,373 12,142,590

3 475,839,465 214,654,934 42,163,220 7,577,934 7,200,661

Total 3,068,122,475 868,968,700 263,840,006 27,196,013 26,277,697

Unsafe

0 6,937,039 1,536,886 843,600 235,003 233,332

1 435,764,290 197,185,600 38,765,818 7,053,832 6,436,703

2 2,140,400,031 453,665,106 181,212,126 12,673,549 11,997,851

3 477,278,607 215,301,379 42,257,407 7,602,027 7,062,127

Total 3,060,379,967 867,688,971 263,078,951 27,564,411 25,730,013

Partially Safe

(Core0 - protected)

0 72,507,528 30,222,272 6,796,384 1,429,322 1,400,186

1 431,567,408 193,562,815 38,512,843 6,727,238 6,607,317

2 1,049,202,213 309,997,356 96,191,350 10,075,521 9,975,493

3 1,529,104,708 338,178,883 123,966,324 11,670,652 11,620,602

Total 3,082,381,857 871,961,326 265,466,901 29,902,733 29,603,598

Table 4.3. Average reliability, performance and energy consumption values for

different cache configurations of 800 fault injection tests for the LU application.

Unsafe

Configuration

Safe

Configuration

Partially Safe

Configuration

Failure Rate 0.157 0 0.137

Execution Time (sec.) 3.138 3.492 3.166

Cache Energy (mJ) 45.799 51.426 46.223

System Energy (mJ) 1,784.508 2,233.001 1,901.266



34

Figure 4.10. Normalized values of failure rate, execution time and energy

consumption for the LU application.

Table 4.3 shows the results of execution time, energy consumption, and fault in-

jection experiments for the safe, unsafe and partially safe configurations. Figure 4.10

shows the normalized failure rates, execution time, and energy consumption values

(based on the system energy model) of the three cache configurations relative to the

unsafe configuration. The partially safe configuration results in better performance and

energy consumption, but worse in terms of reliability, compared to the safe configura-

tion. However, it gives close performance and energy consumption results compared to

the unsafe configuration with less failure rates.

The safe configuration consumes 25% more energy compared to the unsafe con-

figuration, while our proposed partially safe configuration consumes 6% more energy

than the unsafe configuration. The partially safe configuration provides roughly 13%

better reliability with only 6% energy and 0.9% performance overheads relative to the

unsafe configuration based on the normalized results. On the other hand, the safe

configuration leads to better reliability behavior than the partially safe configuration,

with 17% more energy consumption and 10% performance loss relative to the partially

safe configuration.



35

Table 4.4. Average reliability, performance and energy values for different cache

configurations of 800 fault injection tests for the Susan smoothing application.

Unsafe

Configuration

Safe

Configuration

Partially Safe

Configuration

Failure Rate 0.304 0 0.240

Execution Time (sec.) 0.391 0.395 0.369

Cache Energy (mJ) 9.479 10.639 9.640

System Energy (mJ) 161.573 235.265 164.750

For our second application, two different algorithms of the Susan application [68],

Susan smoothing and Susan corners, are considered. In the first of these two different

algorithms, image smoothing is performed while in the second algorithm corners are

detected on an input image.

A 512 x 512 black-white Lena image is used for both applications.

Table 4.4 shows the results of execution time, energy consumption and failure

rates for the safe, unsafe and partially safe cache configurations for the Susan smooth-

ing application. Figure 4.11 shows the normalized results of failure rates, execution time

and energy consumption of the three cache configurations for the Susan smoothing ap-

plication, relative to the unsafe configuration. Our partially safe configuration provides

21% better reliability behavior with only 2% energy consumption overhead compared

to the unsafe configuration based on the normalized results. On the other hand, there is

no performance overhead compared to the unsafe configuration, although the partially

safe configuration has more instructions and high cache access latency value for the

high reliability core. Such a result may be due to the thread-to-core mapping strategy

of the proposed configuration. We perform one-to-one mapping in the partially safe

configuration, while the mapping is left to the Linux scheduler for the traditional safe

and unsafe configurations.

The results of execution time, energy consumption and failure rates for the Susan

corners application are shown in Table 4.5 and Figure 4.12.



36

Figure 4.11. Normalized values of failure rate, execution time and energy

consumption for the Susan smoothing application.

Table 4.5. Average reliability, performance and energy values for different cache

configurations of 800 fault injection tests for the Susan corners application.

Unsafe

Configuration

Safe

Configuration

Partially Safe

Configuration

Failure Rate 0.049 0 0.034

Execution Time (sec.) 0.070 0.078 0.066

Cache Energy (mJ) 1.067 1.197 1.086

System Energy (mJ) 57.475 69.750 62.774

In the case of Susan corners, the partially safe configuration has better performance

and lower energy consumption values compared to the safe configuration with higher

fault rates based on the normalized results. The proposed partially safe configuration

provides 30% better reliability behavior with an overhead of 9% energy consumption

compared to the unsafe configuration without performance loss.

When the average results of these three applications are considered, partially safe

configuration provides 21% better reliability behavior with an average of 6% energy

consumption overhead compared to the unsafe configuration.



37

Figure 4.12. Normalized values of failure rate, execution time and energy

consumption for the Susan corners application.

On the other hand, performance overhead is not dominant for the partially safe con-

figuration when the average values are considered. According to these results, the

proposed partially safe configuration is highly recommended for the applications where

the reliability is an important concern under the performance and energy constraints

and where the user can be able to define critical data for an input. It should be noted

that, the performance of our approach can be fairly influenced by the number of crit-

ical data accesses. The partially safe configuration is appropriate for the applications

where the number of critical and non-critical data accesses are balanced.

4.2. System with Two Types of Protected Cores

In this part of our study, we utilize a heterogeneous chip multiprocessor frame-

work which consists of three types of cores: (i) a high reliability core, (ii) a middle-level

reliability core, and (iii) a set of low reliability cores. While the ECC protection is pro-

vided for the L1 data cache of high reliability core, parity check is used for the L1 data

cache of middle-level reliability core. Input data is classified as critical, semi-critical

and non-critical where application threads are mapped to the different cores in terms

of reliability based on their data usage. We utilize the similar applications with the

previous section in our experimental study part.



38

The simulation-based fault injection framework is used to make an extensive exper-

imental study on both proposed asymmetrically reliable caches and the traditional

unsafe and safe caches.

4.2.1. Architecture and Execution Model

Error Detection Codes (EDC) and Error Correction Codes (ECC) are two com-

mon methods to protect cache structures. While parity protection, a type of EDC, can

detect single bit errors, SECDED can both correct single-bit errors and detect two bit

errors. These two methods provide different degrees of reliability-level and also they

differ in performance and power consumptions of the application. For ECC protection,

seven control bits are used for each 32 bit data in the cache and the additional storage

cost of using this protection is 21.9%. For the parity check, a single parity bit is stored

for each 32 bit data in the cache and the additional storage cost of this method is

3.125%. The cost of parity check is significantly less than the ECC protection; how-

ever, the strength of the protection provided by the ECC is higher than the parity

check. Therefore, the ECC protection is used for the high reliability cores and the

parity check is used for the middle-level reliability cores.

To test the effectiveness of our methodology, we consider two different architecture

models in experimental study. In the first one, we consider an 8-core system with

one protected core for the partially safe configuration (see Figure 4.13(a)). In the

second model, we use a 9-core system with two different partially safe configurations.

In the first configuration, we use a 9-core system including one high reliability core

and one middle-level reliability core. In this case, there are two types of protected

cores to be used for critical and semi-critical data accesses. Therefore, there are two

separate queues for two different types of data accesses (see Figure 4.13(b)). The

second configuration provides a 9-core system with two high reliability cores, which

has only one queue to collect critical data accesses for both high reliability cores (see

Figure 4.13(c)).



39

Core 0 Core 7Core 1 . . . 

(a) Partially safe configuration with 1 high reliability

core

Core 0 Core 8Core 2 . . . Core 1

(b) Partially safe configuration with 1 high and 1

middle-level reliability cores.

Core 0 Core 8Core 2 . . . Core 1

(c) Partially safe configuration with 2 high reliability

cores.

Figure 4.13. Different types of partially safe configuration.

The execution model used in the system with two types of protected cores is sim-

ilar to the system with single type of protected core, except that there are a separate

queue for the ECC protected core and a separate queue for the parity check (see Fig-

ure 4.13(b)). The queue in front of the core that uses the parity check (Figure 4.13(b)

- Core 1) consists of threads that send requests for the semi-critical data, while the

queue in front of the ECC protected core (Figure 4.13(b) - Core 0) consists of threads

that send requests for the critical data.



40

4.2.2. Applications

In this section, the similar applications presented in Section 4.1.5.2 are used. The

classification of input data is divided into three types: critical, semi-critical and non-

critical data. For the LU application, the diagonal blocks of the matrix are classified as

critical data since they are used in the update step of the other perimeter and internal

blocks in our first configuration of 8-core system. In our second configuration of 9-core

system (with one high, one middle-level and several low reliability cores), we classify

diagonal blocks as critical data and perimeter blocks as semi-critical data since the

perimeter blocks are used for updating the internal blocks. In the configuration of

9-core system (with two high reliability cores) both diagonal and perimeter blocks are

assumed as critical data. For all cases, the remaining parts of the matrix are left as

non-critical data.

For the Susan application, the image pixels on the face are selected as critical data

in our first configuration of 8-core system (Figure 4.14(a)). They are assumed more

critical than the ones not on the face which corresponds to 6.4% of input data. In our

second configuration of 9-core system (with one high, one middle-level and several low

reliability cores), we reduce the size of critical data. Some parts of the face including

eyes, nose, and mouth which corresponds to 3.6% of input data are selected as critical

data (Figure 4.14(b)) and the remaining parts of the face which correspond to 2.8% of

input data are selected as semi-critical. In the configuration of 9-core system with two

high reliability cores, the image pixels on the face are again selected as critical data.

For all cases, the pixels which are not part of the face are left as non-critical data.

4.2.3. Experimental Study

We conduct a set of experiments to compare reliability, energy and performance

results of our partially safe configuration with the unsafe and safe configurations by

using the set of applications given. The similar simulator environment (gem5) and the

similar performance and energy consumption methods are used in the system with two

types of protected cores.



41

(a) Critical data for Case 1. (b) Critical data for Case 2.

Figure 4.14. Critical data on the Lena image.

Thread-to-core mapping is left to Linux scheduler for the safe and unsafe configurations,

but it is controlled by our system for partially safe configurations. While the similar

fault injection model is used in this part, the number of fault injection tests is calculated

differently. Leveugle et al. [77] propose a statistical model to determine sample size

in fault injection experiments with different margin errors and confidence levels. The

number of fault injection tests is equal to 1064 for each application in our framework

with 95% confidence level and 3% error margin.

4.2.3.1. Experimental Results Using Single Type of Protected Cores. In the first set

of experiments, there are 8 cores, where one of them is selected as high reliability core

for the partially safe configuration. The LU and Susan applications are executed with

eight threads. Table 4.6 presents the number of instructions committed by each core,

the number of read/write accesses and the number of miss/replacement counts at each

data cache for execution of the LU application on the safe, unsafe and partially safe

cache configurations. Total number of committed instructions, read, write, miss and

replacement counts are almost similar for each configuration type. It demonstrates

that the impacts of migration and queue management overheads are not prevailing for

the partially safe configuration.



42

Table 4.6. Instruction counts and cache accesses of each data cache for the LU

application in an 8-core system.

Cache

Configuration

Core

ID
# of Insts. Nread Nwrite Nmiss Nreplacements

Safe

0 7,135,987 1,597,582 787,419 224,147 221,472

1 86,236,431 16,818,411 7,972,973 3,437,525 3,237,080

2 1,780,372,920 270,150,562 149,748,106 11,081,458 10,889,136

3 73,677,023 14,306,509 6,805,841 2,937,301 2,691,191

4 91,753,850 17,690,193 8,450,817 3,665,942 3,504,014

5 63,824,223 12,471,423 5,924,179 2,557,943 2,320,178

6 69,444,854 13,564,742 6,452,695 2,795,960 2,529,415

7 79,624,290 15,531,771 7,369,731 3,137,745 2,958,814

Total 2,252,069,578 362,131,193 193,511,761 29,838,021 28,351,300

Unsafe

0 6,626,228 1,417,569 733,336 194,494 192,264

1 76,419,160 14,903,690 7,061,768 3,196,799 2,841,788

2 1,774,775,414 270,406,529 149,665,763 11,647,478 11,277,490

3 80,226,204 15,640,574 7,423,588 3,300,431 3,075,060

4 74,788,110 14,327,206 6,802,979 3,055,794 2,622,561

5 72,735,329 14,208,913 6,766,453 2,995,107 2,628,901

6 69,146,913 13,494,665 6,414,730 2,959,574 2,495,431

7 74,697,341 14,571,615 6,912,537 3,128,540 2,648,017

Total 2,229,414,699 358,970,761 191,781,154 30,478,217 27,781,512

Partially Safe

(Core0 -

ECC protected)

0 39,174,044 7,692,981 3,850,275 1,391,878 1,324,989

1 74,361,957 14,199,107 6,889,662 2,857,762 2,797,319

2 80,138,130 15,240,721 7,540,872 3,094,469 3,030,371

3 81,125,964 15,487,988 7,515,767 3,130,614 3,064,780

4 84,020,844 16,035,825 7,769,701 3,242,751 3,183,447

5 65,092,603 12,456,704 6,037,397 2,495,487 2,443,942

6 68,269,967 13,061,189 6,341,244 2,607,961 2,548,636

7 1,776,789,667 269,216,693 149,437,085 7,195,478 7,148,747

Total 2,268,973,176 363,391,208 195,382,003 26,016,400 25,542,231

Figure 4.15 shows normalized values of the failure rate, execution time and en-

ergy consumption (based on both cache energy and system energy) for three cache

configurations with respect to the unsafe cache configuration. The safe configuration

has the largest execution time and energy consumption values with the best reliability

behavior.



43

0

0.2

0.4

0.6

0.8

1

1.2

Failure Rate Execution Time Cache Energy System Energy

Unsafe Safe Paritally Safe with 1 ECC protected core

Figure 4.15. Normalized values of failure rate, execution time and energy

consumptions for the LU application in an 8-core system.

On the other hand, the performance of partially safe configuration is better than both

safe and unsafe configurations in spite of migration and queuing overheads since it

maps threads to cores based on one-to-one mapping for unprotected cores. Moreover,

the cache energy results of the the partially safe configuration is very close to the unsafe

configuration while it is better than both safe and unsafe configurations in terms of sys-

tem energy. Since the partially safe configuration has less miss counts compared to the

safe and unsafe configurations, this has direct influence on the energy consumption of

memory and off-chip bus systems. Our proposed partially safe configuration consumes

1% more cache and 12% less system energy than the unsafe configuration, whereas

the safe configuration consumes 13% more cache energy and 13.7% more system en-

ergy than the unsafe configuration. In consequence, our partially safe configuration

presents 10% less failure rate with 4% better performance and 12% less system energy

compared to the unsafe configuration based on normalized results.

Figure 4.16 presents normalized values of failure rate, execution time and energy

consumption for three cache configurations with respect to the unsafe cache configura-

tion for the Susan smoothing application.



44

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Failure Rate Execution Time Cache Energy System Energy

Unsafe Safe Paritally Safe with 1 ECC protected core

Figure 4.16. Normalized values of failure rate, execution time and energy

consumption for the Susan smoothing application in an 8-core system.

The partially safe configuration has 72% less failure rate than the unsafe configura-

tion with better performance as a result of thread-to-core mapping strategy. When we

analyze the thread-to-core mapping of Linux scheduler for this application, it uses only

two out of eight cores actively in the unsafe and safe configurations. Therefore, the

partially safe configuration shows better performance since it uses all cores in the exe-

cution. Our partially safe configuration consumes 7.6% more cache energy and 23.5%

more system energy than the unsafe configuration, whereas the safe configuration con-

sumes 12.3% more cache energy and 37.8% more system energy compared to the unsafe

configuration. Therefore, our proposed partially safe configuration presents 72% less

failure rate and 47% better performance with 23.5% energy consumption overhead

(based on system energy).

Figure 4.17 displays normalized values, where the partially safe configuration

shows 11% better performance with 15% less failure rate and 9.9% more system energy

consumption compared to the unsafe configuration for the Susan corners application.

Although our partially safe configuration has lower energy per access values than the

safe configuration, the cache energy consumption of it is close to the safe configura-

tion. The high number of cache read/write accesses and miss/replacement counts of

the partially safe configuration is the main reason behind this result.



45

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Failure Rate Execution Time Cache Energy System Energy

Unsafe Safe Paritally Safe with 1 ECC protected core

Figure 4.17. Normalized values of failure rate, execution time and energy

consumption for the Susan corners application in an 8-core system.

On the other hand, the partially safe configuration consumes 9.9% more system energy

and the safe configuration consumes 16.3% more system energy than the unsafe config-

uration. In consequence, significant reliability gain is observed with marginal increase

in energy consumption and performance improvement using a single high reliability

core in this set of experiments.

4.2.3.2. Experimental Results Using Different Types of Protected Cores. In this set

of experiments, we use the following comparative configurations: (i) a 9-core system

with two high reliability and seven low reliability cores, (ii) a 9-core system with one

high reliability, one middle-level reliability and seven low reliability cores, (iii) a 9-

core system consisting of nine unprotected cores, and (iv) a 9-core system with fully

protected cores.

Figure 4.18 presents the normalized values of the failure rate, execution time,

cache and system energy consumption in a 9-core system with different configurations

relative to the unsafe configuration for the LU. The partially safe configuration with

two high reliability cores has 3% less execution time and 4% less system energy con-

sumption, while reducing the failure rate by 15% compared to the unsafe configuration.



46

0

0.2

0.4

0.6

0.8

1

1.2

Failure Rate Execution Time Cache Energy System Energy

Unsafe Safe PS with 2 ECC protected cores PS with 1 ecc, 1parity protected cores

Figure 4.18. Normalized values of failure rate, execution time and energy

consumptions for the LU application in a 9-core system.

On the other hand, the partially safe configuration with one high and one middle-level

reliability cores reduces the failure rate by 10% with close performance and 5% less

system energy consumption compared to the unsafe configuration. While the partially

safe configuration with two high reliability cores has fewer failure rates than the par-

tially safe configuration with one high and one middle-level reliability cores, both of

them have fairly close performance and energy consumption results. One of the reasons

is that there are two separate queue structures in the system with one high and one

middle-level reliability cores, resulting in a higher performance overhead relative to

the system with two high reliability cores. On the other hand, the safe configuration

has 7.9% more execution time and 14.8% more system energy consumption than the

unsafe configuration. As a result, both of the proposed partially safe configurations

have better reliability results than the unsafe configuration, while they show better

performance and energy consumption results than the safe configuration.

In Figure 4.19, the normalized values of failure rate, execution time, energy con-

sumption of the four configurations are presented relative to the unsafe configuration

for the Susan smoothing. The partially safe configuration with two high reliability

cores has 38% lower execution time and 29% higher system energy consumption, while

reducing the failure rate by 78% compared to the unsafe configuration.



47

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Failure Rate Execution Time Cache Energy System Energy

Unsafe Safe

PS with 2 ECC protected cores PS with 1 ecc, 1parity protected cores

Figure 4.19. Normalized values of failure rate, execution time and energy

consumptions for the Susan smoothing application in a 9-core system.

On the other hand, the partially safe configuration with one high and one middle-level

reliability cores has 36.5% less execution time and 32.9% more system energy consump-

tion, while reducing the failure rate by 65.5% compared to the unsafe configuration.

When the failure rates of the both partially safe configuration are considered, the Susan

smoothing application is a vulnerable application to the faults, and a significant reduc-

tion in the fault rates are observed by providing protection for only the critical data.

On the other hand, the performance results of the both partially safe configurations

are significantly better than the unsafe and safe configurations due to thread-to-core

mapping.

As another observation, the partially safe configuration with one high and one

middle-level reliability cores has more energy consumption (especially for the system

energy) than the partially safe configuration with two high reliability cores. The L1

cache access counts of the four different configurations for the Susan smoothing appli-

cation are shown in Table 4.7. While both of the partially safe configurations increase

L1 cache access counts obviously, the configuration with one high and one middle-level

reliability cores has the highest number of L1 cache accesses. This increase results

from the additional codes to separate critical, semi-critical, and non-critical data on

the input image and has a direct influence on the calculation of energy consumption.



48

Table 4.7. Total number of instruction counts and cache accesses for the Susan

smoothing application in a 9-core system.

Cache

Configuration
# of Insts. Nread Nwrite Nmiss Nreplacements

Safe 838,101,177 181,380,156 2,983,097 1,610,764 1,606,448

Unsafe 837,874,889 181,319,897 2,961,502 1,607,403 1,602,572

P.S. with 2 high

reliability cores
898,786,343 193,441,798 11,833,609 2,661,297 2,242,799

P.S. with 1 high

and 1 middle-level

reliability cores

911,248,932 196,456,133 12,696,926 2,831,397 2,298,901

As a result, the partially safe configurations with one high and one middle-level re-

liability cores has slightly higher energy consumption results than the partially safe

configuration with two high reliability cores.

Figure 4.20 shows the normalized results of the four configurations for the Susan

corners application. According to these results, the partially safe configuration with

two high reliability cores has a 16% reduction in failure rate compared to the unsafe

configuration with 7% less execution time and 11% more system energy consumption.

The partially safe configuration with one high and one middle-level reliability cores has

1% more execution time and 18.9% more system energy consumption while reducing

the failure rate by 12.5% compared to the unsafe configuration. On the other hand, the

safe configuration has 4.6% more execution time and 11% more energy consumption

than the unsafe configuration. According to these results, the partially safe configura-

tion with one high and one middle-level reliability cores consumes more energy than

the safe configuration. When the L1 cache access counts of the Susan corners appli-

cation shown in Table 4.8 are considered, this is an expected result. As in the Susan

smoothing application, the partially safe configuration with one high and one middle-

level reliability cores has the highest L1 cache access counts. However, in Susan corners

application, a more obvious increase (12.4%) in the access counts hides the advantage

of the this configuration in terms of energy consumption.



49

0

0.2

0.4

0.6

0.8

1

1.2

Failure Rate Execution Time Cache Energy System Energy

Unsafe Safe

PS with 2 ECC protected cores PS with 1 ecc, 1parity protected cores

Figure 4.20. Normalized values of failure rate, execution time and energy

consumptions for the Susan corners application in a 9-core system.

Apart from these metrics, the cost is another important metric shown in reliability

studies. The additional memory cost of preserving L1 caches with ECC method is

21.9%, while the cost of parity checking is 3.125%. According to the cost metric,

given in terms of the additional memory cost, both of the partially safe configurations

have less cost than the safe configuration. The user can prefer one of the proposed

partially safe configurations with a cost-sensitive approach regarding the reliability of

the system.

According to the test results taken in this part, different applications might show

different behavior on the results. A user can decide to use a configuration specifically

for an application based on the reliability needs of the system under the performance

and energy consumption constraints. Both of the proposed partially safe configurations

can be utilized for the applications where the criticality of the data can be identified.

4.2.3.3. Analysis of Fault Injection Experiments. In this section, the results of fault

injection experiments for a selected application, Susan smoothing, are analyzed in more

detail. Figure 4.21 displays the distributions of three cases in fault injection experi-

ments for four different configurations.



50

Table 4.8. Total number of instruction counts and cache accesses for the Susan

corners application in a 9-core system.

Cache

Configuration
# of Insts. Nread Nwrite Nmiss Nreplacements

Safe 87,370,933 22,864,512 13,294,260 1,886,250 1,887,905

Unsafe 87,330,324 22,858,048 13,284,244 1,882,738 1,884,171

P.S. with 2 high

reliability cores
92,283,705 25,588,770 14,071,122 2,071,833 2,049,350

P.S. with 1 high

and 1 middle-level

reliability cores

99,786,303 26,255,604 14,973,985 2,248,456 2,207,518

In the first case of correct execution, the fault does not hit to the application data

or the program does not produce an erroneous output even if it uses the faulty data.

In SDC (Silent Data Corruption) case, the injected fault is not recognized by the sys-

tem and the program may produce erroneous outputs. In the last case of program

error, the program cannot terminate in a certain time due to a fault on the system, or

the program cannot continue to the execution because of a fault such as a segmentation

fault.

According to the results shown in Figure 4.21, the unsafe configuration has 81.5%

correct execution rate, 6.6% SDC rate and 11.9% program error rate. On the other

hand, no erroneous output is observed for the safe configuration since the ECC protec-

tion is applied to the caches of all cores in that configuration. While the partially safe

configuration with two high reliability cores has 95.6% correct execution, 2.1% SDC

and 2.1% program error rates, the partially safe configuration with one high and one

middle-level reliability cores has 93.6% correct execution, 2.5% SDC and 3.9% program

error rates. According to these results, both of the partially safe configurations increase

the correct execution rate by reducing the SDC and program error rates relative to the

unsafe configuration. Furthermore, the partially safe configurations can reduce the

SDC rate, which is considered as the most dangerous fault type, by a factor of three

compared to the unsafe configuration.



51

70% 75% 80% 85% 90% 95% 100%

unsafe

safe

1ecc + 1 parity

2 ecc

Correct Execution SDC Crashed

Figure 4.21. Results of fault injection experiments for the Susan smoothing

application.

Figure 4.22 shows the behavior of Susan smoothing application when injecting

faults to different cores for the unsafe configuration. Here, equal number of fault

injection experiments are performed for each core and the fault injection points are

selected based normal distribution. According to these results, injected faults to the

Core0 and Core5 do not cause any SDC rate; however, they are resulted in roughly

10% of program error rates. So our understanding is that the system instructions are

mostly executed on these cores. On the other hand, the highest SDC rates are observed

in the Core6 and Core3 with 27.5% and 23.3% rates, respectively. It is clear that these

cores are extensively used by the program and the injected faults corrupt the program

output. The faults injected to the Core1 and Core7 are resulted in higher SDC rate

than the Core2, Core4 and Core8. It is clear that the program uses Core1 and Core7

at medium density and Core0 and Core5 rarely. These rates may show different results

for different runs of the unsafe configuration. Instead of such an unsafe configuration,

we can utilize one of the proposed partially safe configurations by determining the

criticality of input data and we can guarantee that the faults hit to the critical data

will be eliminated with this configuration.



52

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

cpu0 cpu1 cpu2 cpu3 cpu4 cpu5 cpu6 cpu7 cpu8

E
x
e

cu
ti

o
n

s 
(%

)

Correct Execution SDC Crashed

Figure 4.22. Application behavior when injecting faults to different cores for the

Susan smoothing application in the unsafe configuration.

Figure 4.23 displays the correlation of the fault injection timing with the appli-

cation behavior. The horizontal axis indicates the timing of the fault injection and the

vertical axis indicates the percentage of the tests resulted in correct execution, SDC

and program error. When the faults are injected toward the end of the execution, they

do not significantly affect the program output. However, the injected faults in the

middle of the execution increase the SDC rate. These results indicate that the Susan

smoothing application is more susceptible to errors at the beginning of the execution,

but the results converge to correct execution towards the end.

4.3. Summary

In the first subsection, the main mechanics of our proposed approach are imple-

mented and evaluated with selected applications. Reliability-based critical sections are

determined based on critical data usage. Experimental studies validates that the par-

tially safe cache configuration significantly outperforms the unsafe configuration with

respect to reliability (given in failure rate), and the safe configuration with respect

to performance (given in execution time) and energy (given in both cache energy and

overall system energy). Our system provides only as much reliability as needed for an

application, thereby reducing potential overheads of the reliability enhancement.



53

0.00

0.20

0.40

0.60

0.80

1.00

1.20

5

1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

5
5

6
0

6
5

7
0

7
5

8
0

8
5

9
0

9
5

1
0

0

E
x
e

cu
ti

o
n

s

Time (%)

Correct Execution SDC Crashed

Figure 4.23. Correlation of fault injection timing with the Susan smoothing

application execution.

In the second subsection, our proposed system with asymmetrically caches sup-

ports two types of protected cores (high reliability core and medium-level reliability

core). Application threads can use high, medium-level, or low reliability cores based on

the criticality of the application’s data (critical, semi-critical, and non-critical data).

Our detailed experimental work shows that both of the partially safe configurations

reduce the failure rate significantly compared to the unsafe configuration with much

better performance and energy consumption results than the safe configuration.



54

5. ASYMMETRICALLY RELIABLE CACHES FOR

CRITICAL REGIONS

In the previous chapter, we identified critical code sections based on the critical

data usage. In this chapter, reliability-based critical sections are extracted depending

on either user annotations or static analysis. The first part of the chapter presents how

user can annotate the application program manually to determine the code fragments

that need to be protected. In the second part, the critical code fragments are extracted

by using static analysis based on function call graphs and execution time percentages

according to the profiling results. After determining these regions, the applications

are executed on a hardware platform that contains different number of protected and

unprotected cores.

5.1. Code Criticality Based on Annotations

In this part of our study, a programmer can annotate the reliability-based crit-

ical code regions of the application and threads are mapped to the asymmetrically

reliable cores based on the annotated regions. Figure 5.1 shows the code annotations

and execution of the critical section. In the figure, funcA() is a critical function for

the user and it is annotated with RCS START and RCS END keywords. When an

application thread encounters with an RCS START keyword, it should send a request

for executing on the protected core. If it is idle, the scheduler migrates this thread

to the protected core and the thread continues to its execution on the protected core.

When an application thread encounters with an RCS END keyword, it should send an

acknowledgment message to the scheduler about the completion of its critical section,

and migrate back to the initial unprotected core. The application should include the

required files provided by our framework to call RCS START and RCS END functions.



55

Unprotected Core

A = compute();

RCS_START();

result = func(A);

RCS_END();

print result

(a)

Unprotected Core

A = compute();

RCS_START();

print result

Protected Core

result = func(A);

RCS_END();

Protected Core 

Request

Critical 

Region 

Completion

(b)

Figure 5.1. Source code and its execution.

5.1.1. Architecture Model

The hardware model used to test the validity of our approach is a 16-core architec-

ture where the individual L1 instruction and data caches of the high reliability core(s)

are protected. There are again three different cache protection methods in our system:

unsafe, safe, and partially safe In the unsafe configuration, 16 unprotected cores are

used, while the safe configuration uses 16 ECC-protected cores. In the partially safe

configuration, there are eight cores with no protection and at least one core (one to

eight cores) as the protected one(s). We assume that the cores are reconfigurable in

terms of ECC protection. We can use them as either unsafe, safe or partially safe

configuration according to our application needs. Our goal for a partially safe config-

uration is to provide performance and power values close to the unsafe configuration,

and fault rates (SDC rates) close to the safe configuration.

5.1.2. Execution Model

Figure 5.2 and Figure 5.3 simply show the working principle of the application

and the queue threads, respectively. When an application thread encounters a critical

section of code in terms of reliability (funcA()), it has to add itself to the requestList

and wait for a response from the queue thread running on a protected core. In our

system, each protected core has one queue thread, which is responsible for getting the

first request from the global queue.



56

Require requestList, unprotectedCoreID

bindThread(unprotectedCoreID);

A = compute() ;

requestList.add(threadID);

protectedCoreID = waitResponseFromQueueThread();

bindThread(protectedCoreID);

func(A); //Critical function

bindThread(initCoreID);

notifyQueueThread(threadID);

Figure 5.2. Application thread.

Require requestList

protectedCoreID = sched getcpu(); //learn cpu id

while requestList.isNotEmpty do

threadID = requestList.first();

notifyThread(threadID, protectedCoreID);

waitResponseFromThread(threadID);

requestList.delete(threadID);

end while

Figure 5.3. Queue thread on a protected core.

In this study, we continue with the First Come First Served (FCFS) approach to map

application threads to the protected cores. When a queue thread on a protected core

receives a request from the list, it sends a response containing the protected core ID

that the corresponding application thread will work with. The application thread that

receives this response maps itself to the protected core and runs the corresponding

critical code region. After the thread finishes this part, it returns back to the initial

requesting core and notifies the corresponding queue thread. Then, the queue thread

deletes the request from the global queue. If there are not any available protected

cores, the queue threads cannot be able to receive new requests from the list and it

will get stuck on the sixth line (waitResponseFromThread(threadID)) of Figure 5.3.



57

5.1.3. Experimental Study

5.1.3.1. Experimental Setup. The gem5 simulator [72] mentioned in previous chapters

is used to implement the proposed system. The parameters of the simulated system

are listed in Table 5.1. In addition to gem5, McPat [78] which models power, area

and timing of desired architecture is used to estimate power consumption in the whole

system. In McPat, the timing and area models derived from CACTI [73], and the

dynamic power model is similar to Wattch [79]. The gem5 produces statistics and

configuration files of the simulated architecture. These files are integrated and served as

inputs to McPat to estimate power consumption. A separate script is used to parse the

gem5 output and generate XML file for the McPat. Finally, the total power (including

dynamic and leakage) and area values of the simulated architecture are estimated. The

execution flow of the simulation is presented in Figure 5.4. In order to differentiate

power values of ECC-protected and unprotected cores for different cache configurations,

we update the McPat source code. It models each architectural component as a separate

CACTI block and a parameter is defined which identifies whether a cache structure

has an ECC protection or not.

Table 5.1. Gem5 simulator parameters.

Processor

Number of cores 16

Processor type ALPHA

Processor frequency 2 GHz

Simulation mode Full System

Cache and Memory Hierarchy

L1 instruction cache
32 KB, 2-way, 64 byte blocks,

2 cycle latency

L1 data cache
8 KB, 2-way, 64 byte blocks,

2 cycle latency

L2 cache
2 MB unified, 8-way, 64 byte blocks,

20 cycle latency

Memory 512 MB, 30 ns latency



58

GEM5
(Simulator)

config.ini

stats.txt

mcpat-input.xml MCPAT

Power models

Figure 5.4. Execution flow of the simulation.

5.1.3.2. Applications. Applications are selected from the PARSEC benchmark suite [80]

and profiled with the gprof, the GNU profiler. According to the profiling results, the

functions that cover 90% of the execution time are specified as the reliability-based

critical code regions for each application. Then, each of these functions (three or four

functions) are executed on a system with asymmetrically reliable cores. For our exper-

imental study, the criticality is defined in terms of application functions; however, it

can be a portion of a function depending on the annotations. It does not matter for

our system which parts of the code are annotated by the programmer. Any function

or code fragment can be specified as critical code regions.

There are several constraints and restrictions in order to select applications. First

of all, applications should contain multiple functions and the execution time percent-

ages should be balanced (i.e. the most of the execution time should not be passed

inside a single function). If the execution time of a critical function is too long, it

occupies the high reliability core for a long time which diminishes the usage of low

reliability cores. On the other hand, if the execution time of a critical function is too

small, it uses the high reliability core(s) for a small time which decreases the utilization

of the high reliability core(s). In this manner, applications in our experimental study

are chosen by considering the utilization of all cores.

Secondly, the application should produce a valid output to interpret the results of

fault injection tests and to compare the output with the golden one. If an application

produces only a single output, such as an integer value, it may reduce the probability

of having erroneous output.



59

Table 5.2. Applications that could not be selected.

Application Name Elimation Reason

Blackscholes 100% of execution time passes in one function!

LU 100% of execution time passes in one function!

Radix 100% of execution time passes in one function!

Streamcluster 100% of execution time passes in one function!

fmm Output may change!

Barnes No output produced!

Water No output produced!

Canneal No output produced!

Additionally, applications that generate different results based on approximations or

their stochastic nature may not be considered in our framework. In this case, we cannot

observe SDC in the output. Based on the restrictions stated, it is quite tedious work

to find appropriate applications for our framework. These constraints eliminate several

applications from known benchmarks showed in Table 5.2.

In consequence, experiments are performed on the Bodytrack and Fluidanimate

applications from the PARSEC benchmark suite. Bodytrack is a computer vision ap-

plication that monitors the human body with multiple cameras [80]. Fluidanimate is

a computer animation program that simulates real-time fluid motion [80]. Table 5.3

shows the profiling results of two applications. The first column in the table shows the

names of the applications, and the second column shows the functions of these applica-

tions. The third column contains the percentage of execution time that indicates how

much the protected core will be busy with this function. The fourth column shows the

number of calls for each function. These numbers have direct influence on the num-

ber of protected core requests and the queue overhead. The fifth column shows that

whether these functions run in parallel or in serial. The values in this column indicate

how many threads will compete for the protected cores.



60

Table 5.3. Application functions, percentage of execution time, and total number of

calls for each function.

Application

Name

Function

Name

Ex.

Time

Percentage

# of

Calls

Serial

or

Parallel

% of faults

hit to this

function

Bodytrack

Exec 50% 96 Parallel 18.80%

OutputBMP 21.43% 1 Serial 5.46%

InsideError 7.14% 13045 Parallel 1.03%

EdgeError 7.14% 13011 Parallel 1.11%

ImageProjections 7.14% 13040 Parallel 0.59%

LoadSet 7.14% 1 Serial 1.19%

Fluidanimate
ComputeForcesMT 45% 24 Parallel 14.74%

ComputeDensitiesMT 40% 24 Parallel 12.46%

The percentage of faults that hit to the functions as a result of fault injection ex-

periments performed in the unsafe configuration are shown in the last column. The

fault percentages shown in the last column will be completely removed from the system

when they are executed on the protected cores.

5.1.3.3. Experimental Results. Several experiments are conducted to compare relia-

bility, performance and power consumption results of our partially safe configuration

with the unsafe and safe configurations. The Bodytrack and Fluidanimate applications

are executed with eight threads using the simdev input set of the PARSEC benchmark

suite. The number of fault injection tests is set to 2400 with 95% confidence level and

2% error margin according to the study proposed by Leveugle et al. [77]. The SDC

rate is used primarily to compare the results of fault injection experiments. Since SDC

cases are not recognized by the application, such faults are the most critical type of

faults for the applications. On the other hand, the user can be aware of the program

error case since the program terminates abnormally.



61

The performance and power consumption results of the Bodytrack application

are given in Figure 5.5. While running this set of experiments, different numbers of

protected cores are used for each function in the application. Any “x-8” configuration

given in the figures are composed of x-protected and 8-unprotected cores.

Figure 5.6 compares the results of fault injection experiments for the unsafe and

partially safe configurations. Only a single function is preserved in each case of the

partially safe configuration. The unsafe configuration has the lowest execution time and

power consumption results, while it has the highest fault rates (in terms of both SDC

and program error). For this reason, other columns in the figure show the normalized

values relative to the unsafe configuration. The number of correct executions becomes

so high for the case of 2400 fault injection experiments. Therefore, the bars related

with the correct execution do not increase dramatically for each case in Figure 5.6. For

example, the numbers of correct execution, program error and SDC cases are 2120, 26,

and 254, respectively for the unsafe configuration. On the other hand, these values

change as 2153, 17 and 230 for protecting the LoadSet function. While the change

of 33 number of correct execution yields 1.55% increase in correct execution rate, the

change of nine faulty execution yields 35% change in SDC rate. In this study, our goal

is to decrease SDC rates as much as possible.

Figure 5.5(a) shows the results of the Exec function, which is determined as

the critical code region, on different numbers of protected cores. Exec is a thread

function that cannot be executed serially by a single thread at a time. When running

the Bodytrack application in 1-8 configuration, all threads running the critical regions

(i.e. Exec function) use only one protected core. The resource contention among

the threads leads to the worst performance result for this configuration. When we

add a new protected core in the system with every configuration, threads can run

critical code fragments in parallel, and the waiting times of the threads decrease in the

queue; hence, performance improvement is observed. Conversely, there is an increase in

power consumption as more ECC-protected cores consume more power. Providing five

protected cores for the Exec function seems appropriate in terms of power-performance

trade-off.



62

In this configuration (i.e. 5-8 configuration), execution time and power consumption

values fall between the values of safe and unsafe configurations. When we perform

fault injection experiments preserving the Exec function, a significant reduction in the

SDC rate is observed relative to the unsafe configuration. The reliability of the system

can be improved by 42% (in terms of SDC rate) with 24% performance loss and 2.2%

more power consumption relative to the unsafe configuration. On the other hand, the

safe configuration reduces the SDC rate to zero by correcting all single bit errors, with

45% performance loss and 7% more power consumption over the unsafe configuration.

Figures 5.5(b) and 5.5(f) display the results of execution time and power con-

sumption by preserving OutputBMP and LoadSet functions, respectively. These func-

tions are executed serially by the main thread. Therefore, only one protected core

is sufficient for the partially safe configuration. The OutputBMP function increases

reliability (in terms of SDC) by 46% with 20% performance loss and 0.14% additional

power consumption compared to the unsafe configuration. Similarly, the LoadSet func-

tion improves the SDC rate by 34% with 8% performance loss and 0.44% additional

power consumption compared to the unsafe configuration.

On the other hand, InsideError, EdgeError and ImageProjections are thread-

parallel functions that have very similar behavior in terms of reliability, performance

and power consumption results. Using only one protected core results in a significant

additional queue overhead (see Figures 5.5(c), 5.5(d) and 5.5(e)). This effect decreases

when new protected cores are added to the system. Considering power-performance

trade-off, two protected cores for the InsideError and EdgeError functions and three

protected cores for the ImageProjections function seem to be sufficient. By protecting

the InsideError, EdgeError and ImageProjections functions, it is possible to provide

SDC improvement of 65%, 57%, and 61% with 8%, 6%, and 10% performance loss and

0.9%, 0.9%, and 1.5% additional power consumption relative to the unsafe configura-

tion, respectively.



63

0.96

0.98

1

1.02

1.04

1.06

1.08

0

0.5

1

1.5

2

2.5

3

3.5

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

Exec

Execution Time Total Power

(a) Execution time and power consumption re-

sults with protecting Exec function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Safe Unsafe 1-8

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

OutputBMP

Execution Time Total Power

(b) Execution time and power consumption re-

sults with protecting OutputBMP function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0.0
0.2
0.4

0.6
0.8
1.0
1.2
1.4

1.6

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

InsideError

Execution Time Total Power

(c) Execution time and power consumption re-

sults with protecting InsideError function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0

0.5

1

1.5

2

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

ct
u

ti
o

n
 T

im
e

Configuration Type

EdgeError

Execution Time Total Power

(d) Execution time and power consumption re-

sults with protecting EdgeError function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0

0.5

1

1.5

2

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

ImageProjections

Execution Time Total Power

(e) Execution time and power consumption re-

sults with protecting ImageProjections function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Safe Unsafe 1-8

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

LoadSet

Execution Time Total Power

(f) Execution time and power consumption re-

sults with protecting LoadSet function.

Figure 5.5. Normalized values of execution time and power consumption for the

Bodytrack application. (x-8) configuration: x protected and 8 unprotected cores.



64

0

0.2

0.4

0.6

0.8

1

1.2

Correct Execution

SDC

Program Error

Figure 5.6. Fault injection experiment results of the Bodytrack application.

The results of performance, power consumption and the fault injection experi-

ments of Fluidanimate application are shown in Figure 5.7. ComputeForces and Com-

puteDensities functions are similar in terms of working principle; therefore, they show

similar behavior in the results. Both of them are thread-parallel functions, and they

have additional queuing overhead. The best performance among the partially safe

configurations belongs to the 8-8 configuration in which the numbers of protected and

unprotected cores are equal. In other words, the presence of a protected core for each

thread significantly reduces the waiting time of the threads in the queue.

Fault injection experiments are carried out in a partially safe configuration with

four protected cores. In this configuration (i.e. 4-8 configuration), the execution time

result falls between the values of the unsafe and safe configurations, and there is not as

much power consumption as the 8-8 configuration. Compared to the unsafe configura-

tion, 75% improvement in SDC rate is achieved with 32% performance loss and 1.5%

additional power consumption when we protect the ComputeForces function. Simi-

larly, 83% improvement in SDC rate is observed with 26% performance loss and 1.5%

additional power consumption in the ComputeDensities function when compared to

the unsafe configuration.

In order to measure the queuing overhead, an additional experiment is performed

using the ComputeForces function of the Fluidanimate application used in our previous

experiments.



65

0.96

0.98

1.00

1.02

1.04

1.06

1.08

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

ComputeForces

Execution Time Total Power

(a) Execution time and power consumption re-

sults with protecting ComputeForces function.

0.96

0.98

1.00

1.02

1.04

1.06

1.08

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

ComputeDensities

Execution Time Total Power

(b) Execution time and power consumption re-

sults with protecting ComputeDensities function.

0

0.2

0.4

0.6

0.8

1

1.2

UNSAFE ComputeDensities ComputeForces

Correct Execution

SDC

Program Error

(c) Fault injection experiment results of unsafe, protecting

ComputeDensities and ComputeForces functions.

Figure 5.7. Normalized values of execution time, power and reliability results for the

Fluidanimate application.

In this experiment, four protected cores are used in the partially safe configuration.

However, instead of waiting in the queue when protected cores are busy, the threads

can run the critical code fragments on the unprotected cores. The normalized values of

SDC rate, execution time and power consumption for the new configuration compared

to the previous configuration are shown in Figure 5.8. The performance is improved

by 21% in the new configuration since there is no waiting overhead in the queue. The

SDC rate is worsened by 75% in the new configuration, as only the half of the threads

are executing on the protected cores. Since equal numbers of protected cores are used

in both configurations, the resulting power consumption is very close to each other.



66

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

SDC Rate Execution Time Power

ComputeForces with queue overhead

ComputeForces without queue overhead

Figure 5.8. Effect of queue waiting with ComputeForces function

The user will be able to choose the appropriate version from these configurations based

on their priorities in terms of reliability, performance and power consumption.

In this set of experiments, we use different numbers of protected cores for each

function of the applications. According to the experiment results, it is confirmed that

the reliability of the applications can be improved when only the critical code fragments

are protected compared to the unsafe configuration. Similarly, the performance and

power consumption values of the partially safe configuration are better than the safe

configuration. A different number of protected cores can be used for each function in

the partially safe configuration. While the level of reliability of the system does not

change with each added protected core in the partially safe configurations, this leads

to changes in performance and power consumption. As another observation, there is

not an ideal number of protected cores for each application, but an ideal number of

protected cores for each function. In this sense, in a system with a limited number

of protected cores, the user can determine the number of protected cores used by

considering the reliability-based critical regions.

5.2. Code Criticality Based on Static Analysis

In previous sections, reliability-based critical code sections are determined either

by using the critical data or by providing the user annotations.



67

In this section, we determine the critical code sections of an application automatically

without user annotations. One way to determine these parts for an application is

to perform fault injection experiments and determine which parts of the program is

affected by errors, depending on the analysis of the program output. However, per-

forming fault injection experiments might be inefficient since it requires a lot tests

which take long execution time.

Apart from this, the application code can be examined statically (compile time)

to determine the critical code regions. In this work, each application is profiled using

the GNU profiler, gprof, and the function execution time percentages and the call

graph of the functions are generated. Then, high-priority functions to be protected are

determined with vulnerability and criticality analysis on the profiling results.

5.2.1. Determining Function Priorities

Duque et al. [37] propose a method to determine task priority based on task

criticality and task vulnerability metrics statically. A task vulnerability metric is de-

fined as the effect of a possible error on the task output. A task criticality metric is

defined as the effect of a possible error on the execution time of the application. The

task vulnerability and task criticality metrics are calculated based on the task graph

information of the application in advance.

In this part of the work, we adopt the task-based definitions proposed in the

literature [37] as function-based definitions. The proposed task criticality and task

vulnerability metrics are used to determine the high-priority functions for an appli-

cation. Each application is profiled with the gprof and the flat profile containing the

execution times of the functions and the call graph file showing the execution order

of the functions are generated. By examining these files, function vulnerability and

function criticality metrics are calculated and the function priorities are determined

accordingly.



68

The function vulnerability is defined similar to the task vulnerability, and the

functions with longer execution times assumed as more vulnerable. The vulnerability

of each function in an application is determined as follows:

vulnerabilityi =
ETi

Maxj∈Functions(ETj)
,∀i ∈ Functions (5.1)

where the ETi is the execution time of function i, and Max(ETj) is the execution time

of a function having the longest execution time. While the vulnerability values of the

functions vary between [0,1], the vulnerability value of the function with the longest

execution time is set to one.

The function criticality is defined as the effect of a possible error on the application

performance because of a resource unavailability. This metric is defined based on two

basic factors. In the first one, the slack times of functions are calculated and the

functions with small slack times have more effect in application performance. In the

second one, the number of functions invoked by the function is counted since they will

increase the delay effect.

Slack is defined as the measure of flexibility for a function call to be delayed with-

out lengthening application execution time. The slack time of a function is computed

as the gap between the Earliest Start Time (EST) and Latest Start Time (LST) of the

function by examining the function call graph. At that point, this value is normalized

to the maximum slack value and the fixity value is obtained in the range of [0,1]. The

fixity metric can be calculated by examining the call graph file as follows:

fixityi = 1− slacki
Maxj∈Functions(slackj)

,

∀i ∈ Functions and Maxj∈Functions(slackj) 6= 0

(5.2)

where fixityi shows the fixity value of functioni and slacki presents the slack value of

functioni [37]. Max(slackj) figures out the largest slack value among all the functions

in the call graph.



69

A high value of the fixityi indicates that the delay in the function i has a large effect

on the application performance. A fixity value of one belongs to the functions on the

critical path. However, the value of fixity may only change for the functions running

in parallel. Since the slack time of a function running in serial will be zero, the fixity

value will always be one based on Equation 5.2.

On the other hand, if there is a delay in a function, the functions invoked by it

will also be delayed. In this manner, a function with more dependents (i.e. the function

invokes a high number of other functions) are assumed to be more critical than the

others. The function criticality is calculated with the function’s own fixity value as

well as the fixity values of the functions invoked as follows:

criticalityi =

(
fixityi +

∑
k∈childreni

fixity

Maxj∈Functions(OutDegreej)

)
/2 (5.3)

where OutDegreej is the number of invoked functions by functioni, andMax(OutDe−

greej) is the largest number of out-degree (i.e. the maximum number of invoked

functions) in the function call graph. In this calculation, the first part shows the

effect of the delay of the function itself and the second part shows the effect of the

invoked functions. The function criticality is a value ranging between [0,1] by using

a normalization term of two. A low value of function criticality indicates that this

function has not a dominant effect on the application performance. On the other

hand, the criticality value of a serial function, which has a fixity value of one, changes

proportionally with the total number of functions called by this function.

In order to determine the high-priority functions for an application, the function

vulnerability and function criticality metrics are represented in a single metric in the

function priority as follows:

priorityi = α ∗ vulnerabilityi + (1− α) ∗ criticalityi (5.4)



70

Here, α is the relative importance of the vulnerability metric on the criticality metric.

Since both metrics are equally important in our system, the value of α is taken as

0.5 in our calculations. As a result, the high-priority functions are assumed to be

reliability-based critical sections that must be protected in our system.

All of the metrics presented in this subsection are adopted from the work proposed

by Duque et al. [37]. On the other hand, we assume that the tasks are functions in our

case and we use real applications rather than ready task graphs.

5.2.2. Experimental Study

In this section, the architectural, execution and cache protection models used in

Section 5.1 are utilized in a similar way. Since the fault injection experiments take

too long, the percentage of L1 cache accesses are provided in the protected cores for

the reliability assessment. Although taking fault injection experiments will give more

accurate results, the percentage of protected L1 cache accesses will also give a point of

view for the provided reliability. The following subsections presents the applications

that are used for our experiments and the results of performance, power consumption

and reliability of the configurations with different numbers of protected cores.

5.2.2.1. Applications. To show the performance, power consumption and reliability

results of our system, a total of six applications, five from the SPLASH-2 benchmark

suite [74] and one from the ParMiBench benchmark suite [68] are used. Since most of

the execution time passes inside a single function in the remaining applications, these

are not included the in our set. The main characteristics of the selected applications

are summarized as follows.

• Cholesky: An application decomposes a matrix into the product of a lower trian-

gular matrix and its transpose. Since the program works on sparse matrices, the

cost of communication is much more than the calculation. The tk29.O input is

used for this application.



71

• Raytace: An application renders a three-dimensional scene onto a two-dimensional

image plane by using ray tracing method. In this application, data access pat-

terns are irregular and not structured. For this application teapot.env input is

used.

• Barnes: An application simulates the interaction of a system of bodies by utilizing

the Barnes-Hut N-body method. Thread communication patterns highly depend

on particle distribution. The default input is used for this application.

• Water-nsquared: An application that computes the forces and potentials occur-

ring in a system of water molecules. The application consists of cell grids trying

to reach each other’s data, and the threads communicate intensively. The default

input is used for this application.

• fmm: An application solves the N-body problem with Fast Multipole Method.

In this application, the communication patterns are not structured. The largest

input for this application (input.16384) is used.

• Dijkstra: An application computes the single-source shortest path in a graph

represented by an adjacency matrix. The inputsmall.dat is used as an input for

this application.

We implement a program in python to identify the high-priority functions for the

applications by taking the flat profile and call graph files generated by the GNU profiler.

This program computes the function vulnerability, fixity, criticality and priority metrics

and returns the most prior functions in the application by examining these metrics.

The profiling results of the selected applications are shown in Table 5.4. In this table,

the first column shows the name of the applications, the second column shows the

function name according to the priority order, the third column shows the execution

time percentages of the functions alone, the fourth column contains the cumulative

execution time percentages including their descendants and the fifth column shows the

number of calls for these functions. While the fifth column shows the number of high

reliability core visits, the fourth column shows that how long the high reliability core

will be busy with this function.



72

Table 5.4. Profiling results of six applications.

Application

Name
Function Name

Ex. Time

Percentage

(alone)

Ex. Time

Percentage

(cumulative)

# of Calls

Cholesky

1. ModifyTwoBySuperNodeB 61.93% 61.93% 167,354

2. FactorLLDomain 0.09% 68.00% 28

3. CompleteSupernodeB 0.47% 18.70% 1,187

Raytrace

1. TriPeIntersect 23.20% 23.20% 736,266

2. IntersectHuniformPrimList 6.19% 25.20% 182,607

3. HuniformShadowIntersect 2.32% 17.40% 9,061

4. TraverseHierarchyUniform 0.99% 44.60% 26,100

Dijkstra
1. startWorking 3.92% 4.40% 1

2. dijkstra 4.40% 4.40% 1

Barnes

1. gravsub 40.81% 40.81% 15,459,166

2. walksub 25.49% 95.50% 65,536

3. subdivp 29.17% 29.17% 16,737,571

4. stepsystem 0.35% 99.20% 4

5. hackgrav 0.39% 95.90% 65,536

Water -

nsquared

1. CSHIFT 55.10% 55.10% 1,962,240

2. INTERF 26.06% 73.80% 4

3. MDMAIN 0.95% 91.30% 1

fmm

1. VListInteraction 61.19% 61.19% 122,174

2. ParallelExecute 0.01% 96.00% 1

3. ListIterate 0.20% 82.50% 15,561

In this table, some functions are omitted from the experiment set because the

total number of calls for these functions directly affects the total number of migra-

tions for the high reliability core. In this context, as the TriPeIntersect function of the

Raytrace application is called 736,266 times, there will be so many thread migrations

among the cores and this amount of migration cannot be realized due to the limitations

of the simulator environment. Similarly, since the gravsub and subdivp functions of

the Barnes application are called 15,459,166 and 16,737,571 times, respectively, these

functions are also removed from the experiment set.



73

On the other hand, since the RCS START and RCS END keywords indicating where

the critical region starts and ends are added to include the loop that calls the CSHIFT

function, the cost of migration is not dominant for this function, even though it is called

1,962,240 times in the Water-nsquared application. The data dependencies among the

functions are not examined and are assumed to be independent of each other.

5.2.2.2. Experimental Results. A set of experiments is performed to compare the per-

formance, power consumption and reliability results of the partially safe configuration

with the safe and unsafe configurations. The applications are executed with eight

threads in each case. There are 16 unprotected cores for the unsafe configuration and

there are 16 protected cores for the safe configuration in our experiments. As in the

previous section, each experiment is performed in a system with eight unprotected and

at least one (one to eight) protected cores for the partially safe configurations. To

make a fair comparison for power consumption, eight unprotected cores and a different

number of protected cores are used actively in a 16-core system for the partially safe

configurations.

Figure 5.9 shows the performance and power consumption results of the Cholesky

application. By examining all functions of the Cholesky application, a considerable per-

formance overhead is observed in the 1-8 configuration where only one protected core is

provided. As more protected cores are added to the system, performance improvements

are observed since the protected cores share the load in the queue; however, more pro-

tected cores consume more power. To protect the ModifyTwoBySuperNodeB function,

at least five protected cores should be used when performance and power constraints

are considered. For FactorLLDomain function, at least four protected cores must be

added to the system. On the other hand, to protect the CompleteSupernodeB func-

tion, use of only two protected cores seems to be sufficient by considering the power

constraint (since the performance values converge after two protected cores).



74

0.98

1

1.02

1.04

1.06

1.08

0

0.5

1

1.5

2

2.5

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e
Configuration 

ModifyTwoBySupernodeB

Execution Time Total Power

(a) Execution time and power consumption results with

protecting ModifyTwoBySuperNodeB function.

0.98

1

1.02

1.04

1.06

1.08

0

0.5

1

1.5

2

2.5

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration

FactorLLDomain

Execution Time Total Power

(b) Execution time and power consumption results with

protecting FactorLLDomain function.

0.98

1

1.02

1.04

1.06

1.08

0

0.3

0.6

0.9

1.2

1.5

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration

CompleteSupernodeB

Execution Time Total Power

(c) Execution time and power consumption results with

protecting CompleteSupernodeB function.

Figure 5.9. Normalized values of execution time and power consumption for the

Cholesky application. (x-8) configuration: x protected and 8 unprotected cores.



75

0

20

40

60

80

100

%
 o

f 
p

ro
te

ct
e

d
 L

1
 a

cc
e

ss
e

s

Protection Type

Figure 5.10. Percentage of protected L1 accesses for the Cholesky application.

In Figure 5.10, the percentage of protected L1 cache accesses is shown when the

functions specified for the Cholesky application are individually protected by compar-

ing with the safe configuration. For this experiment, different partially safe configu-

rations (such as 1-8, 2-8, ..., 8-8) are not utilized. Since the same level of protection

is provided for every partially safe configuration, this does not change the reliabil-

ity results substantially. When the ModifyTwoBySuperNodeB, FactorLLDomain, and

CompleteSupernodeB functions are specified as the critical code fragments, 44%, 39%,

and 34% of L1 cache accesses can be preserved, respectively. These percentages can

vary depending on the resource usage of the function whether it is a CPU-intensive or

memory-intensive function. For this reason, it is observed that there is no direct cor-

relation between the function duration and the L1 cache access counts while executing

that function. According to these test results, to protect the ModifyTwoBySuperN-

odeB, FactorLLDomain, and CompleteSupernodeB functions separately, using four,

five and two protected cores seems satisfactory considering the power and performance

constraints in the Cholesky application, respectively.

Figures 5.11 and 5.12 show the performance, power consumption and reliability

results of the Raytrace application. When the IntersectHuniformPrimlist function is

preserved, any of the partially safe configurations could not show better performance

results than the safe configuration.



76

0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08

0
1
2
3
4
5
6
7
8

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e
Configuration Type

IntersectHuniformPrimlist

Execution Time Total Power

(a) Execution time and power consumption results with

protecting IntersectHuniformPrimlist function.

0.98

1.01

1.03

1.06

1.08

0

1

2

3

4

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

HuniformShadowIntersect

Execution Time Total Power

(b) Execution time and power consumption results with

protecting HuniformShadowIntersect function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0

1

2

3

4

5

6

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

TraverseHierarchyUniform

Execution Time Total Power

(c) Execution time and power consumption results with

protecting TraverseHierarchyUniform function.

Figure 5.11. Normalized values of execution time and power consumption for the

Raytrace application.



77

0

20

40

60

80

100

%
 o

f 
p

ro
te

ct
e

d
 L

1
 a

cc
e

ss
e

s

Protection Type

Figure 5.12. Percentage of protected L1 accesses for the Raytrace application.

Even in the 8-8 configuration, which has a separate protected core for each thread,

the performance results do not seem close to the safe configuration. It is observed that

the cost of thread waiting in the queue is considerably high and the amount of migra-

tion (i.e. 182,607) is adversely affecting the performance for this function. On the other

hand, each partially safe configuration offers better power consumption result than the

safe configuration. As another observation, the 1-8 configuration may consume less

power than the unsafe configuration for the functions of Raytrace application. This

case is observed for some of the other applications. To make a fair comparison, there

are one protected and 15 unprotected cores for the 1-8 configuration; although, we used

one protected core and eight unprotected cores actively in the system. So the total

number of cores is same for each experiment and there are several idle cores for the

partially safe configurations except the case of 8-8 configuration.

When the HuniformShadowIntersect function is protected, the performance val-

ues converge after five protected cores are added. This result shows that the 5-8

configuration has the same performance as the safe configuration, with having lower

power consumption. When the TraverseHierarchyUniform function is preserved, the 8-

8 partially safe configuration results in better performance and less power consumption

than the safe configuration. When IntersectHuniformPrimlist, HuniformShadowInter-

sect, and TraverseHierarchyUniform functions are preserved, 48%, 40% and 92% of L1

cache accesses can be protected, respectively.



78

0.98

1

1.02

1.04

1.06

1.08

0

0.3

0.6

0.9

1.2

1.5

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e
Configuration Type

startWorking

Execution Time Total Power

(a) Execution time and power consumption results with

protecting startWorking function.

0.98

1

1.02

1.04

1.06

1.08

0

0.3

0.6

0.9

1.2

1.5

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

Dijkstra

Execution Time Total Power

(b) Execution time and power consumption results with

protecting Dijkstra function.

0

20

40

60

80

100

Safe startWorking Dijkstra

%
 o

f 
p

ro
te

ct
e

d
 L

1
 a

cc
e

ss
e

s

Protection Type

(c) Percentage of protected L1 accesses.

Figure 5.13. Normalized values of execution time and power consumption for the

Dijkstra application.



79

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

0

2

4

6

8

10

12

14

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

walksub

Execution Time Total Power

(a) Execution time and power consumption results with

protecting walksub function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0

2

4

6

8

10

12

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

stepsystem

Execution Time Total Power

(b) Execution time and power consumption results with

protecting stepsytem function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0

3

6

9

12

15

18

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

hackgrav

Execution Time Total Power

(c) Execution time and power consumption results with

protecting hackgrav function.

Figure 5.14. Normalized values of execution time and power consumption for the

Barnes application.



80

Therefore, we can provide reliability results close to the safe configuration with better

performance and lower power consumption values when we protect the TraverseHier-

archyUniform function.

Figure 5.13 shows the performance, power consumption and reliability results

of the Dijkstra application. For this application, both functions are invoked once by

each thread; therefore, they show similar trends on the results. Since the startWorking

function spends only a small portion of the execution time on the high reliability

core(s), the performance values of the partially safe configurations are close to each

other, and have near values with the safe configuration. When the Dijkstra function

is preserved, it is observed that the performance of the partially safe configuration is

slightly better than the safe configuration after the six protected cores are added. The

thread migration and queue waiting overheads are not dominant for both functions

of the Dijkstra application. On the other hand, it is observed that 72% and 76% of

the L1 cache accesses can be preserved when startWorking and Dijkstra functions are

protected, respectively.

Figures 5.14 and 5.15 show the performance, power consumption and reliability

results of the Barnes application. Since the walksub and hackgrav functions require

a high number of migrations, the performance of any partially safe configuration does

not seem better than the safe configuration. If there is a high number of function

calls, which implies a high number of thread migrations, our proposed partially safe

configuration may not have satisfactory performance. On the other hand, when the

stepsytem function is protected, the 8-8 configuration, which has a protected core for

each thread, has better performance than the safe configuration with lower power con-

sumption. Furthermore, 95% of the total L1 cache accesses can be preserved when the

stepsytem function is protected, and 65% of the total L1 cache accesses can be pro-

tected when the walksub and hackgrav functions are preserved. Most of the execution

time passes inside the stepsytem function (including its descendants) and the partially

safe configuration with 8-8 configuration presents a similar reliability behavior with the

safe configuration, showing considerable performance and power consumption gains.



81

0

10

20

30

40

50

60

70

80

90

100

Safe walksub stepsystem hackgrav

%
 o

f 
p

ro
te

ct
e

d
 L

1
 a

cc
e

ss
e

s

Protection Type

Figure 5.15. Percentage of protected L1 accesses for the Barnes application.

Figures 5.16 and 5.17 show the results of the Water-nsquared application. In all

three functions of this application, the partially safe configuration with 8-8 configura-

tion shows close performance results to the safe configuration. Specifically, when the

CSHIFT function is protected, 96% of the total L1 cache accesses are preserved, show-

ing close performance and less power consumption results than the safe configuration.

The MDMAIN function is called once by each thread, and 97% of L1 cache accesses

can be preserved when this function is protected. When the INTERF function is pro-

tected, 79% of the L1 cache accesses can be preserved. From these results it can be

seen that the partially safe configuration with 8-8 configuration has close performance

and reliability results showing less power consumption than the safe configuration.

Figures 5.18 and 5.19 show the performance, power consumption and reliability

results of the fmm application. The ParallelExecute function has the 96% of the total

execution time. Hence, the performance of the partially safe configuration with the 1-8

configuration seems considerably poor relative to the safe configuration for this func-

tion. The number of function call and the total number of migrations are not dominant

for this function. However, the waiting cost of threads in the queue seems to be high.

When we provide an equal number of high reliability and low reliability cores (i.e. the

8-8 configuration), the performance results are improved and they become close to the

safe configuration.



82

0.96

0.98

1

1.02

1.04

1.06

1.08

0

1.5

3

4.5

6

7.5

9

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e
Configuration Type

CSHIFT

Execution Time Total Power

(a) Execution time and power consumption results

with protecting CSHIFT function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0

1.5

3

4.5

6

7.5

9

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

INTERF

Execution Time Total Power

(b) Execution time and power consumption results

with protecting INTERF function.

0.96

0.98

1

1.02

1.04

1.06

1.08

0

1.5

3

4.5

6

7.5

9

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

MDMAIN

Execution Time Total Power

(c) Execution time and power consumption results

with protecting MDMAIN function.

Figure 5.16. Normalized values of execution time and power consumption for the

Water-nsquared application.



83

0

10

20

30

40

50

60

70

80

90

100

Safe CSHIFT INTERF MDMAIN

%
 o

f 
p

ro
te

ct
e

d
 L

1
 a

cc
e

ss
e

s

Protection Type

Figure 5.17. Percentage of protected L1 accesses for the Water-nsquared application.

The partially safe configurations with 8-8 configuration protecting the VListInteraction

and ListIterate functions show similar behavior in the results. When VListInteraction,

ParallelExecute and ListIterate functions are individually protected, 61%, 98% and

81% of total L1 cache accesses can be preserved, respectively. According to these re-

sults, the partially safe configuration with 8-8 configuration might be preferred to the

safe configuration especially for the protection of ParallelExecute function under the

performance and power constraints.

In this section, the experimental set includes the results of the partially safe

configuration with different numbers of protected cores for each of the three high-

priority functions of each application. While similar protection is provided in every

partially safe configuration, different configurations vary in terms of performance and

power consumption results. The 8-8 partially safe configuration, where we provide an

equal number of protected and unprotected cores, presents close reliability with lower

power consumption results than the safe configuration. On the other hand, there are

several factors that affect the performance of our partially safe configuration negatively,

such as thread migration and queue waiting overheads, while there are no such factors

in the safe and unsafe configurations.

Apart from these, a false serialization effect is observed in the partially safe con-

figuration since a protected core can be used by only one thread at the same time.



84

0.94
0.96
0.98
1
1.02
1.04
1.06
1.08

0
1
2
3
4
5
6
7

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e
Configuration Type

VListInteraction

Execution Time Total Power

(a) Execution time and power consumption results with pro-

tecting VListInteraction function.

0.96
0.98
1
1.02
1.04
1.06
1.08

0
3
6
9

12
15
18

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

ParallelExecute

Execution Time Total Power

(b) Execution time and power consumption results with pro-

tecting ParallelExecute function.

0.96
0.98
1
1.02
1.04
1.06
1.08

0
1.5

3
4.5

6
7.5

9

N
o

rm
a

li
ze

d
 T

o
ta

l 
P

o
w

e
r

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 T
im

e

Configuration Type

ListIterate

Execution Time Total Power

(c) Execution time and power consumption results with pro-

tecting ListIterate function.

Figure 5.18. Normalized values of execution time and power consumption for the

fmm application.



85

0

10

20

30

40

50

60

70

80

90

100

Safe VlistInteraction ParallelExecute ListIterate

%
 o

f 
p

ro
te

ct
e

d
 L

1
 a

cc
e

ss
se

s

Protection Type

Figure 5.19. Percentage of protected L1 accesses for the fmm application.

When the power consumption results are examined, the proposed partially safe configu-

ration offers lower results than the safe configuration. As another observation, the cost

metric should also be evaluated, even if it is not mentioned in the results. Providing

ECC protection in L1 caches of all cores has a significant additional memory (21.9% for

each core) and hardware costs. The proposed partially safe configuration is superior

to the safe configuration in terms of power consumption and cost, and offers similar

performance and close reliability results. Our proposed adaptive approach seems to

be suitable for the systems where reliability is the main factor under the performance,

power and cost constraints.

5.3. Summary

In the first part of this section, we determine reliability-based critical code regions

based on user annotations. We profiled the selected applications and the functions that

cover 90% of total execution time are used as the critical code regions. The reliability-

based critical code regions of the applications are executed using different numbers of

protected cores. Experimental studies with different function characteristics validate

that our partially safe configuration takes the advantage of protecting only reliability-

based critical code regions of the applications and offers significant performance and

power savings compared to the safe configuration and lower failure rates compared to

the unsafe configuration.



86

In the second subsection, we provide an enhanced protection mechanism for the

reliability-based critical code regions determined as high-priority functions of each ap-

plication. The high-priority functions are identified by calculating the function vulner-

ability and criticality metrics based on the function execution times and call graphs,

statically. The high-priority functions are protected more conservatively than the other

functions by utilizing different partially safe configurations. The experimental results

with a diverse set of applications confirm that our partially safe configuration offers

close performance and reliability results to the safe configuration with lower power

consumption and cost.



87

6. SCHEDULING OPPORTUNITIES FOR OUR

FRAMEWORK

Our framework with asymmetrically reliable caches achieves a certain level of suc-

cess in protecting critical code fragments in terms of reliability with marginal increase

in execution time and power consumption compared with a fully unprotected system.

On the other hand, when compared with a fully protected system, it has comparable

reliability results at a lower cost. The queue structure and the assignment of threads

to high reliability cores are provided by an FCFS-based scheduling method, in our

framework. In this section, different scheduling methods are used besides FCFS and

these methods are evaluated in terms of system performance and fairness.

Scheduling in general is a crucial research field for high performance computing

especially for the heterogeneous systems. Wrong scheduling decisions may lead to

suboptimal performance as well as low fairness among the applications. Our framework

utilizes a heterogeneous system in terms of reliability, where the FCFS-based scheduling

technique is used for assigning application threads to the protected core(s). When

multi-application workloads are considered in our framework, FCFS-based policy may

lead to suboptimal performance and low fairness for some workloads. In this study, to

improve performance and fairness of our proposed system, we implement and evaluate

different types of schedulers with various characteristics for the protected core(s).

6.1. Shortcomings of FCFS Scheduling

The FCFS-based approach prioritizes older requests over newer requests in the

queue. However, this approach may unfairly prioritizes an application with a high

number of requests over an application with a low number of requests. On the other

hand, a request with short burst time may have long waiting time in the queue if there

is an older request with long burst time. Suppose that we have a workload with three

applications, A, B, C.



88

 

0 35 40 45 

(a) Case I - FCFS approach.

 

0 5 10 45 

(b) Case II - SJF approach.

Figure 6.1. Order of applications at the queue with the FCFS and SJF based

scheduling techniques.

Assume that the first request is sent by application A with a burst time of 35 seconds.

Then, application B and application C send their requests with burst times of five

seconds, respectively at the beginning of the execution. When we apply the FCFS-

based scheduling policy, the applications are served according to their arrival order

as seen in Figure 6.1(a). In this case, the waiting times of the applications B and C

are 35 and 40 seconds, respectively. This may increase the execution time of these

applications. However, if we reorder the requests in the queue by prioritizing the

requests with shorter burst time over the requests with longer burst time (which is

known as Shortest Job First (SJF) scheduling), in this case application A can be

served with a 10-second delay, application C can be served with only a 5-second delay

and application B can be served without any delay (Figure 6.1(b)). Therefore, we can

decrease the waiting times of the applications by reordering the requests in the queue.

6.2. Determining Function Priorities

The reliability-based critical regions of applications are extracted by using static

analysis as in Section 5.2.1. The vulnerability metric is used in similar way such that

the functions with longer execution time are assumed to be more vulnerable.



89

The definition of function criticality metric is simplified in this section. When a func-

tion is delayed due to a fault or resource unavailability, it affects the application per-

formance. A function that calls a large number of other functions may increase this

delay effect. Therefore, we analyze the call graph file generated by gprof and calculate

the number of callee functions of each function (i.e. out-degree value). The func-

tion criticality metric is measured by accumulating the number of out-degree value by

considering the propagation effect.

criticalityi =
OutDegreei

Maxj∈Functions(OutDegreej)
(6.1)

Here, OutDegreei is the number of callee functions in functioni, andMax(OutDegreej)

is the largest number of out-degree in the function call graph. In order to calculate

the out-degree value of a function, we count the number of callee functions in one-level

depth. A higher value of criticalityi represents that the function delay has a dominant

effect on overall application execution time.

To select the order of functions to be protected, we calculate the vulnerability

and criticality metrics for each function. We select the functions that maximize the

criticality value under the fixed value of vulnerability criteria, which are presented in

more detail in Section 6.4.1.

6.3. Different Scheduling Techniques

There are two main goals in modern scheduling techniques: high system perfor-

mance and high fairness. Our goal, in this work, is to achieve high system performance

and high fairness by applying different scheduling techniques rather than the FCFS.

In this section, we present the details of different scheduling methods that are uti-

lized in our computational experiments. There are a total of nine methods considered,

where six of them are priority-based ones. Additionally, equal-time scheduling, equal-

progress scheduling, and threshold-based priority scheduling are the other alternatives

presented.



90

6.3.1. Priority-based Scheduling

Priority-based scheduling technique is one of the frequently used scheduling meth-

ods in operating systems. In this technique, each process is given a priority value in

advance, and the process with the highest priority is assigned first. Prioritization can

be based on memory or any other resource usage in the system. We generate multi-

ple multi-threaded workloads to test the effectiveness of different scheduling methods;

therefore, the priority order of the applications can be determined in advance.

Suppose that there are three applications, A, B, C, each of which has three

threads. Figure 6.2(a) shows the request order of all threads at a time. Here, a thread

of application A is at the front of the queue and followed by a thread of application

B. It should be noted that the length of the queue may change dynamically during

the execution based on the requests sent by the applications to the protected core(s).

Here, we suppose that there are nine threads in the queue at that time. The details

such as thread-id of each thread or the burst time of each request are not shown in

the figures; however, we assume that the requests of the same application are sent

by different threads of it and each request may have different burst time. Threads

can be assigned to the protected core(s) according to their arrival order in the FCFS

scheduling method (see Figure 6.2(a)). On the other hand, suppose that applications

are given a priority order statically, with the highest priority belonging to application

A, medium-level priority belonging to application B, and the lowest priority belonging

to application C. In this case, the order of the application threads is changed, and the

updated queue is seen in Figure 6.2(b). Threads of each application are put together

in the queue and take their place according to the priority level of the application.

We propose a set of priority-based scheduling techniques in which the applications

are prioritized based on their execution order, cache miss rates, number of requests

sent to the protected core(s), or total burst time spent on the protected core(s). These

static priority techniques require executing the applications in advance to determine

the priority-level of the applications.



91

 

(a) Case I - FCFS approach.

 

(b) Case II - Priority-based approach.

Figure 6.2. Snapshot of the queue with the FCFS and priority-based scheduling

techniques.

6.3.1.1. Priority-ldf. Prioritization of the applications is similar to the latest deadline

first scheduling technique. Total execution time of a workload is highly dependent

on the application that finishes last. Since our aim is to improve performance of

our framework, we give the highest priority to the application that finishes last in a

workload. The application that has the longest execution time, has a larger impact

on the overall schedule length if it is delayed. The lowest priority is given to the

application that finishes first. Therefore, when we delay the requests of the first finished

application, it may not affect the overall execution time of the workload significantly.

6.3.1.2. Priority-missRate. The priority order is determined according to the cache

usage of the applications. Priority of applications with high cache hit ratio is higher

than the applications with high miss ratio.

6.3.1.3. Priority-min-reqs. The priority order is determined based on the number of

requests sent by the applications to the protected core(s). The priority of the appli-

cations with a small number of requests is higher than those with a large number of

requests. Since the applications with a large number of requests are frequently assigned

to the protected core(s), the delay caused by executing them on the protected core(s)

is already high.



92

On the other hand, the applications with a small number of requests are able to return

to their original unprotected cores immediately and continue with the remaining tasks,

if they are assigned to the protected core(s) in the first place.

6.3.1.4. Priority-max-reqs. In contrast to the previous method, the applications with

a large number of requests are given higher priority over those with a small number of

requests.

6.3.1.5. Priority-min-burst. The priority order is based on the total burst time of

the applications on the protected core(s), not on the number of requests sent by the

applications as in the priority-min-reqs method. The application with the highest

number of requests may not be the one with the longest burst time on the protected

core(s). Therefore, the priority of applications with shorter total burst time of requests

is higher than those with longer burst time of requests.

6.3.1.6. Priority-max-burst. Unlike the previous method, the applications with longer

total burst time of requests are set as high-priority applications compared to those with

shorter total burst time of requests.

Priority-based methods presented in this section require preliminary information

about the applications, which need to be executed once in advance. On the other hand,

priority-based methods assign application threads by grouping them, which provides a

high cache hit ratio on the protected core(s); in contrast, they may lead to unfairness

for low priority applications.



93

6.3.2. Equal-time Scheduling

The main goal of the priority-based methods is to improve system performance

by grouping the threads belonging to the same application according to a predefined

criteria. In our system, the applications should use the protected core as much as

possible while the protected core should be fair to all applications. In the priority-

based methods, the applications with low priority may unfairly slow down when they

are located at the end of the queue. A scheduling method should take into account the

fairness as well as the system performance.

For equal-time scheduling, all of the applications start the execution with the

highest priority value. Priority level of an application is reduced as directly proportional

to the total burst time of the application spent on the protected core(s), dynamically

during the execution. If there is an application that sends a request with a burst time

of one second, the priority level of this application is decreased by one unit. On the

other hand, if there is another application that sends a request with a burst time of 10

seconds, in this case the priority level is decreased by 10 units. Thus, fairness among

the applications can be satisfied, while ensuring each application has equal time on the

protected core.

To give an illustrative example, assume that three separate applications, A, B,

C, work together with three threads for each one in a workload. All of the applications

are started the execution with the highest priority level. The request order of the

applications for a particular time is shown in Figure 6.2(a). Assume that a request for

each application has an equal burst time, which is one second. In this case, the priority

level of the application A is reduced by one unit after being assigned to the protected

core(s) firstly. In the same way, application B is assigned to the protected core(s)

secondly and the priority level is reduced by one unit. As shown in Figure 6.2(a),

the next request in the queue belongs to application A according to the arrival order;

however, there is a request of application C with the priority level of one. Therefore, the

thread of application C can be assigned next and the priority level of this application

is decreased by one unit.



94

 

Figure 6.3. Snapshot of the queue with the equal-time scheduling.

In this way, all of the application threads can get their new positions according to

the new priority order dynamically. The updated queue, according to the equal-time

scheduling, is shown in Figure 6.3. A different application may have a chance to be

scheduled at each turn if the burst time of each application request is equal to each

other.

The equal-time scheduling updates the queue by taking into account the fairness.

The method tries to equalize the total burst time of each application on the protected

core(s) at each turn. The major advantage of this method is the lack of prior infor-

mation about applications. Priority levels of the applications are updated dynamically

at runtime after the assignment of each request to the protected core(s). Therefore,

we have to keep the information of the total burst time spent on the protected core

for each application at each scheduling point. The main disadvantage of this method

might be the case that a thread from a different application is assigned to the protected

core at each scheduling point. This may cause performance degradation by increasing

cache miss rates of the applications on the protected core(s).

6.3.3. Equal-progress Scheduling

Each application may send a different number of requests with different burst

times. When we try to equalize the amount of time spent on the protected core(s) for

each application as in the equal-time scheduling, some of the applications can complete

half of the total requests while some of them can complete only a small part of them

during the same time. Therefore, we used equal-progress scheduling in this section,

which prioritizes applications based on the percentage of requests executed on the

protected core(s).



95

In this scheduling technique, each application starts the execution with the highest

priority-level. When an application is mapped to the protected core(s), its priority

level is decreased by the progress of its requests. The progress of an application is the

ratio of time spent on the protected core(s) until now, over the total burst time of all

requests for the same application. The total burst time of the applications spent on the

protected core(s) should be known in advance. This technique monitors the progress of

each application’s requests and dynamically updates the priority levels of them. The

application with the minimum progress can be scheduled to the protected core(s) for

the next turn.

6.3.4. Threshold-based Priority Scheduling

In priority-based techniques, applications with low priority-levels may unfairly

slow down since they are located at the end of the queue. In this scheduling algo-

rithm, we adapt priority-based scheduling by taking into account the last scheduled

application. All applications are given priority values based on a predefined criteria

as described in Section 6.3.1. The priority levels of the applications are not changed

dynamically at runtime. Additionally, this algorithm needs to record the Application

ID of the last scheduled request and the number of waiting requests belonging to each

application in the queue. At each scheduling point, the scheduler compares the Appli-

cation ID of the request at the head of the queue with the the Application ID of last

scheduled request.

• If the Application IDs of both requests are not the same, then it searches a waiting

request belonging to the last scheduled application in the queue.

• If the scheduler finds such a request in the queue, then it compares the difference

of the priority levels of the last scheduled application and the application located

at the head of the queue.

• If the difference between their priority levels is less than the Locality Threshold

value, then the scheduler takes the waiting request of the last scheduled applica-

tion to the head of the queue, and schedules it for the next turn.



96

The Locality Threshold value determines whether the last scheduled application

with low priority level has a chance to be scheduled for the next turn. If the difference

between the priority levels of the applications is too large, then the application with

low priority level is not taken, even if it is scheduled last. In this case, the scheduler

selects the request with the highest priority level.

Here, we consider the previous illustrative example in order to clarify this algo-

rithm (see Figure 6.2(a)). Applications are given the following priorities, A(1), B(2),

C(3), where lower numbers correspond to higher priorities. Therefore, the highest

priority belongs to application A. We assume that the last scheduled request belongs

to B at the beginning of that scheduling point, and the Locality Threshold value is

set as two a priori. In this case, although the application A has the highest priority

level, application B is scheduled next since it is the last scheduled application and the

difference between the priority levels of applications A and B is less than the Locality

Threshold. When we perform this scheduling technique to the queue presented in Fig-

ure 6.2(a), the resultant queue is shown in Figure 6.4. This technique simply prioritizes

the last scheduled application even if it has a lower priority level than the application

located at the head of the queue. It should be noted that if application C was the last

scheduled application, the requests of this application would not be placed at the head

of the queue, since the difference between the priority levels of applications A and C is

not less than two. Therefore, we prioritize the last scheduled application up to a point

determined by the Locality Threshold.

When the proposed nine techniques presented in this part are compared with the

FCFS, it has the smallest computation overhead since it does not require any types of

additional arrangements in the queue. On the other hand, there are static priorities in

priority-based scheduling algorithms and the queue is reordered based on the priority

levels of applications. The priorities are dynamically changing during the execution of

equal-time and equal-progress scheduling techniques while the latter one requires prior

knowledge. The queue is reordered based on static priorities by considering the last

scheduled application in the threshold-based priority technique.



97

 

Figure 6.4. Snapshot of the queue with the threshold-based priority scheduling.

6.4. Methodology

6.4.1. Applications

A set of parallel applications are chosen to test the performance of different

scheduling algorithms. A total of seven applications are considered, where one applica-

tion is selected from the ParMiBench suite [68] and five applications are selected from

the SPLASH-2 benchmark suite [74]. These applications ( Cholesky, Raytrace, Barnes,

Water-nsquared, fmm, Dijkstra) are similar with the ones presented in Section 5.2.2.1.

Additionally, we use parallel implementation of FFT application with transpose algo-

rithm [81]. Fast Fourier Transform (FFT) is an algorithm to compute Discrete Fourier

Transform (DFT) which is a mathematical transform requiring complex number cal-

culations and used in various applications including time series, partial differential

equations, and digital signal processing [82]. The transpose algorithm, which involves

a matrix transposition operation, requires smaller amount of communication among

cores. The remaining applications from the given benchmark suites cannot be selected

for the comparison study, since the most of the execution time is spent inside a single

function.

We profile the applications with GNU profiler and implement a python code that

examines flat profile and call graph files to compute function vulnerability and criti-

cality values. Table 6.1 presents the profiling results of the applications. Application

names and functions according to their execution time order are listed in the first two

columns, respectively. Execution time percentage spent in the functions as alone and

cumulative (including their children) are shown in the fourth and fifth columns, re-

spectively.



98

The fifth column shows the percentage of time that the protected core is occupied

by these functions. The total number of function calls is shown in the sixth column,

which displays the quantity of thread migrations for the protected core(s) as well as

the queue load. Finally, the last two columns show the vulnerability and criticality

values of the functions.

For limiting selected functions for protection, a vulnerability and criticality based

criteria is need to be considered. The vulnerability metric is related to the execution

time of a function, which shows that the protected core is busy with the function

during this time period. Since we assume that only a single thread can be executed

on the protected core at one time, we come across performance degradation while

protecting the function. Consequently, we limit performance degradation up to 30% in

order to execute the functions on the protected core(s). Then, we select the functions

that maximize the criticality under the fixed value of vulnerability criteria for each

application. The functions that maximize the criticality value with vulnerability values

less than 0.3 are selected for each application with the following formulation:

maximize
n∑

i=1

(criticalityi ∗ xi)

subject to
n∑

i=1

(vulnerabilityi ∗ xi) < 0.3,

xi ∈ {0, 1}, ∀i ∈ Functions

(6.2)

Therefore, we select the functions with the asterisk sign (*) in the corresponding

rows of Table 6.1. It should be noted that only a single function or several ones might

be selected for an application according to the constraints mentioned above and we

ignore the functions with vulnerability values less than 0.01.



99

Table 6.1. Profiling results of seven applications.

Application

Name

Function

Name

Ex. Time

Percentage

(alone)

Ex. Time

Percentage

(cumulative)

# of Calls vulnerability criticality

Cholesky

1. ModifyTwoBySupernodeB 61.90% 61.90% 167,354 0.6368 0.0000

2. TriBSolve 4.31% 4.31% 1 0.0448 0.0000

3. FillIn 4.14% 4.31% 13,992 0.0404 0.0080 *

4. ScatterSuperUpdate 3.24% 3.24% 3,530 0.0314 0.0000

5. ComputeNZ 2.26% 2.26% 1 0.0224 0.0000

6. FindDomStructure 2.18% 2.20% 1,187 0.0224 0.0000

Raytrace

1. TripeIntersect 23.20% 23.20% 736,266 0.2530 0.0000

2. lookup hashtable 6.30% 6.30% 349,572 0.0723 0.0000

3. IntersectHuniformPrimlist 6.19% 25.20% 182,607 0.0602 0.0148 *

4. push down grid 6.08% 6.08% 105,807 0.0602 0.0074 *

5. PolypeIntersect 4.42% 4.42% 125,438 0.0482 0.0000

6. step grid 3.31% 3.31% 292,127 0.0361 0.0000

7. Shade 2.65% 21.00% 9,801 0.0241 0.0370 *

8. next nonempty leaf 2.32% 22.60% 268,496 0.0241 0.0296 *

9. HuniformShadowIntersect 2.32% 17.40% 9,601 0.0241 0.0370 *

Barnes

1. gravsub 40.81% 40.81% 15,459,166 0.4089 0.0000

2. subdivp 29.17% 29.17% 16,737,571 0.2911 0.0000

3. walksub 25.49% 95.50% 65,536 0.2556 0.0682 *

4. loadtree 0.91% 1.80% 65,536 0.0089 0.0909 *

Water -

nsquared

1. CSHIFT 55.10% 55.10% 1,962,240 0.5591 0.0000

2. INTERF 26.06% 73.80% 4 0.2688 0.1333 *

3. POTENG 5.25% 16.03% 1 0.0538 0.0667 *

4. UPDATE FORCES 3.71% 3.71% 40,231 0.0430 0.0000

fmm

1. VListInteraction 61.19% 61.19% 122,174 0.6265 0.0000

2. UListInteraction 13.19% 13.19% 35,938 0.1355 0.0000

3. XListInteraction 4.58% 4.58% 8,184 0.0482 0.0000

4. WListInteraction 3.31% 3.31% 8,184 0.0331 0.0000

5. ComputeSelfIteration 2.10% 2.10% 4,697 0.0211 0.0000

6. ComputeMPExp 1.90% 1.90% 4,697 0.0181 0.0000

7. ShiftLocalExp 1.87% 1.87% 6,262 0.0181 0.0000

8. EvaluateLocalExp 1.81% 1.90% 4,697 0.0181 0.0120 *

Dijkstra

1. dijkstra 3.92% 4.40% 1 0.0391 0.0909 *

2. main 1.10% 1.80% 1 0.0175 0.1818 *

3. enqueue 0.50% 0.50% 2,456 0.0050 0.0000

FFT

1. binary2decimal 13.09% 13.09% 319,410 0.1298 0.0000

2. iterative FFT 7.57% 30.00% 1 0.0769 0.6250 *

3. copyArray 3.65% 3.65% 212,940 0.0385 0.0000

4. initializeArray 2.85% 2.85% 212,940 0.0288 0.0000

5. decimal2binary 2.85% 4.30% 106,470 0.0288 0.1250 *



100

6.4.2. Multi-threaded Workloads

In our experiments, we create several workloads containing multiple multi-threaded

parallel applications. While selecting applications for the workloads, we consider the

number of requests sent by each application to the protected core(s) presented in Ta-

ble 6.2. These numbers show the quantity of thread migrations for each application.

We cluster the applications based on their total number of requests as small-, medium-,

and large-size applications. The Cholesky, Water-nsquared, Dijkstra, and FFT appli-

cations are determined as small-size applications. The fmm and Raytrace applications

are assigned as medium-size applications, and the Barnes application is identified as a

large-size application. In the experimental study, the letters ‘C’, ‘R’, ‘B’, ‘W’, ‘Fm’,

‘D’, and ‘F’ stand for the applications Cholesky, Raytrace, Barnes, Water-nsquared,

fmm, Dijkstra, and FFT, respectively.

We construct four different workloads, which are CWF, RFFm, RBFm, and 7app,

for the experiments. A small-size workload ‘CWF’ is constructed that does not stress

the protected core(s). A medium-size workload ‘RFFm’ is created in which two appli-

cations are selected from the medium-size applications and one application is selected

from the small-size applications. Our third workload ‘RBFm’, a large-size workload,

sends a relatively larger number of requests to the protected core(s) than the medium-

size and small-size workloads. Our last workload, ‘7app’, is a 7-application workload

that contains all of the applications presented here. This workload is a representative

workload that contains applications with different characteristics.

6.4.3. Evaluation Metrics

Our comparison study validates the effectiveness of scheduling algorithms with

respect to both system performance and fairness perspectives. For the system perfor-

mance perspective, we utilize average speedup and harmonic speedup metrics.



101

Table 6.2. Number of requests of each application for the protected core(s).

Application Name # of requests

Cholesky 1

Raytrace 35,901

Barnes 131,072

Water-nsquared 80

fmm 4,697

Dijkstra 8

FFT 120

The average speedup of a workload using a scheduling algorithm is defined as the

average of per application speedups (in terms of execution time) with respect to the

baseline scheduler, the FCFS. The average speedup is calculated as follows [83]:

AS =
1

n

n∑
i=1

Ti(baseline)

Ti(approach)
(6.3)

where n is the number of applications in a workload, Ti(baseline) is the execution time

of the application i with the FCFS technique, and Ti(approach) is the execution time

of the application i with the proposed scheduling technique.

The average speedup is a commonly used metric to measure the system perfor-

mance. However, it can be misleading by unfairly favoring a single application with

disproportionate improvement. Therefore, we use also a harmonic speedup metric [52]

that is derived from the fair speedup metric [84]. The relative speedup of a work-

load using a scheduling algorithm is defined as the harmonic mean of per application

speedups (in terms of execution time) with respect to the FCFS. The harmonic speedup

is calculated as follows [52]:

HS =
n

n∑
i=1

Ti(approach)

Ti(baseline)
(6.4)



102

This metric takes into consideration fairness as well as system performance, since the

harmonic mean of a vector is maximized when the vector elements are equal.

On the other hand, the fairness perspective is an important design goal in sched-

uler implementations for concurrently running applications [52]. Each application

should be provided with proportional resource usage according to its demand under a

fair operation. The fairness among n concurrently running applications is calculated

as the Jain’s fairness index [85] applied to the relative slowdown. The fairness metric

is calculated by considering the relative slowdown of each application as follows [52]:

Fairness =

(
n∑

i=1

Ti(approach)

Ti(alone)

)2

n×
n∑

i=1

(
Ti(approach)

Ti(alone)

)2
(6.5)

where n is the number of applications in the workload, Ti(approach) is the execution

time of the application i in the workload with the proposed scheduling technique, and

Ti(alone) is the execution time of the application i in the workload in which there is

no scheduler and the workload is executed as is. In a fair operation, each application

should be equally slowed down with the proposed scheduling technique. The value of

the fairness varies between zero and one, and the higher value is the better.

Maximum slowdown, which is the maximum value of slowdowns among the ap-

plications in the workload, is considered as a fairness metric in several studies [55–60].

This metric implies the slowdown of applications in the workload due to resource shar-

ing. According to this metric, the scheduling method that has the lowest maximum

slowdown provides the maximum fairness; hence lower values are better.



103

6.5. Evaluation

6.5.1. Experimental Setup

In this study, we use three 3-application workloads and a single 7-application

workload in which each application is executed with eight threads for both cases. A

16-core system is simulated where 12 of the cores are left unprotected and four of them

are protected for the 3-application workloads. In this case, there are four unprotected

cores per application and two threads per core for the 3-application workloads. On the

other hand, 14 unprotected and two protected cores are utilized for the 7-application

workload. In this case, there are two unprotected cores per application and four threads

per core. Firstly, we perform the experiments by providing only one protected core to

compare different scheduling techniques relative to the FCFS in terms of performance

and fairness. Then, we increase the number of protected cores to two for all workloads

and increase it to four for only the 3-application workloads due to hardware limitations.

Based on the results of a set of pre-experiments, the value of Locality Threshold is set

to two for the threshold-based priority technique.

6.5.2. Experimental Results

6.5.2.1. Comparison of Average Speedup Metric. Figure 6.5 plots the normalized av-

erage speedup metric of all scheduling algorithms for various workloads with respect

to the FCFS technique. We observe that, in all cases, there is a scheduler approach

performing better than the FCFS technique for all workloads. The best scheduling

approach may vary for each workload according to the number and the timing of the

requests sent by the applications. The techniques, which prioritize the applications

according to the minimum number of requests or minimum burst time on the pro-

tected core(s), perform well for the CWF, RBFm, and the 7-application workloads.

On the other hand, the equal-time scheduling technique has the best performance for

the RFFm workload.



104

We obtain 42% better performance results with priority-min-burst technique rel-

ative to the FCFS for the CWF workload. The priority order of the applications is the

same for the priority-min-burst and priority-min-reqs techniques; hence, both of them

show similar results. For the same workload, equal-time scheduling and threshold-based

priority techniques show 32% and 24.5% better performance results than the FCFS

technique, respectively. For the RFFm workload, we observe 94% performance im-

provement with the equal-time scheduling relative to the FCFS approach. In the same

way, 70% performance improvement is obtained with priority-min-burst and priority-

max-reqs techniques relative to the FCFS, where the priority order of the applications

is similar in both cases. Under the threshold-based priority method, the same work-

load achieves 60.5% better performance than the FCFS. On the other hand, we achieve

60%, 46%, 38.7%, and 25.8% better performance results with the priority-min-burst,

threshold-based priority, equal-time, and priority-min-reqs scheduling techniques for

the 7-application workload, respectively.

In the priority-min-burst method, which performs better than the FCFS for all

workloads, applications with low total burst time on the protected core(s) are able to

finish their work as soon as possible and continue the remaining work by running on

the unprotected cores. This positively affects the overall performance results for all

workloads. Similarly, priority-min-reqs method, which has better performance than

the FCFS for the majority of the workloads, may be preferred in cases where the total

burst times of the applications spent on the protected core(s) are unknown, but the

total number of requests to send is known. In the same way, the threshold-based pri-

ority method starts with the priority order of the priority-min-burst method, and it

also considers the last scheduled application. Therefore, this method shows close per-

formance results with the priority-min-burst method. The equal-time scheduling tech-

nique, which tries to equalize the burst time of applications on the protected core(s),

shows good performance results relative to the FCFS.

On the other hand, the techniques that prioritize the applications based on the

maximum number of requests or maximum burst time on the protected core(s) show

poor performance relative to the FCFS, with the exception of the RFFm workload.



105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

CWF RFFm RBFm 7app

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e
 S

p
e

e
d

u
p

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

Figure 6.5. Average speedup results.

In the RFFm workload, with only three applications, the priority order of the appli-

cations might be similar for various priority-based scheduling techniques and they are

the same for priority-min-burst and priority-max-reqs methods. This clearly shows

that the applications with a large number of requests might be the applications with

minimum total burst time on the protected core(s). In the priority-max-reqs or priority-

max-burst methods, the applications that have a small number of requests or low total

burst time on the protected core(s) are unfairly placed at the end of the queue and they

are affected negatively by this delay. This situation causes performance degradation

for the majority of the workloads.

Similarly, the techniques that prioritize applications based on the latest dead-

line in the workload or L1 cache miss rates do not present better performance results

than the FCFS for the majority of the workloads, except for the RFFm. While the

priority-missRates method shows similar performance results as the FCFS, the priority-

ldf achieves 22.5% better performance results than the FCFS for the RFFm workload.

Prioritization of the last finished application over the remaining applications might

unfairly delay the applications with low execution time in the priority-ldf method.

However, for the RFFm workload, prioritizing the applications with high execution

time does not delay the applications with low execution time; therefore, performance

improvement can be observed for only this workload. For the priority-missRate tech-

nique, the hit rates of the applications are so close to each other and they are generally

around 99%.



106

Therefore, the prioritization technique based on cache miss rates does not perform well

for these applications.

6.5.2.2. Comparison of Harmonic Speedup Metric. Figure 6.6 presents the normalized

harmonic speedup metric for various workloads with respect to the FCFS technique.

We observe similar improvement trends for each scheduling technique with the aver-

age speedup metric, but with different magnitudes of improvement. The harmonic

speedup metric takes into consideration the fairness metric as well as the performance

metric in multi-application workloads. The magnitudes of improvement are fewer in

the harmonic speedup metric than the average speedup metric, since the aggressive

performance improvement in a single application may dominate the overall speedup

results in the average speedup metric.

We obtain 24% better performance results with the priority-min-burst and the

priority-min-reqs methods than the FCFS for the CWF workload. Under the equal-

time and threshold-based priority methods, the same workload achieves 22.5% and

19% better performance results than the FCFS. For the RFFm workload, 28.9% per-

formance improvement is obtained with the equal-time scheduling relative to the FCFS

as in average speedup metric with smaller magnitude of improvement. For the same

workload, 14.6% better performance results for the priority-min-burst and the priority-

max-reqs methods and 13.6% performance improvement for the priority-ldf method are

obtained relative to the FCFS.

We observe 23.7% and 11.9% performance improvements with the priority-min-

reqs and equal-time methods relative to the FCFS for the RBFm workload. An im-

portant observation about this workload is that while the priority-min-burst method

performs better than the FCFS with respect to the average speedup metric, the same

method shows worse performance in terms of harmonic speedup metric. This clearly

indicates that an aggressive performance improvement on a single application domi-

nates the overall performance in average speedup calculation for this workload.



107

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CWF RFFm RBFm 7app

N
o

rm
a

li
ze

d
 H

a
rm

o
n

ic
 S

p
e

e
d

u
p

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

Figure 6.6. Harmonic speedup results.

On the other hand, for the 7-application workload, we obtain 21.4%, 20.5%, and 17%

performance improvements with the priority-min-burst, threshold-based priority, and

the priority-min-reqs methods, respectively.

An important observation about the performance results presented here is that

the equal-progress scheduling, which tries to equalize the progress of the requests for

each application, shows poorer performance than the FCFS for all workloads. Better

performance results with different scheduling techniques can be obtained by reordering

the requests in the queue. However, if the amount of the reordering is too large, then

there is a performance degradation due to the high cache miss rates on the protected

core. This is the case of the poor performance results for the equal-progress scheduling.

6.5.2.3. Comparison of Fairness Results. We compare different scheduling techniques

for various workloads in terms of fairness. While the fairness results based on Jain’s

fairness index (a higher-is-better-metric) are presented in Figure 6.7, the fairness re-

sults based on maximum slowdown (a lower-is-better-metric) are shown in Figure 6.8.

Our first observation is that the priority-min-burst, equal-time, and threshold-based

priority methods achieve better fairness results than the FCFS for all workloads in

terms of both fairness metrics.



108

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CWF RFFm RBFm 7app

F
a

ir
n

e
ss

b
a

se
d

 o
n

 J
a

in
's

 F
a

ir
n

e
ss

 I
n

d
e

x

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

Figure 6.7. Fairness results based on Jain’s fairness index.

Our second observation is that while the performance results of the equal-progress

scheduling technique are poor for the RFFm and 7-application workloads, the fairness

results based on Jain’s fairness index of the same scheduling are 8.4% and 16.3% better

for these workloads, respectively.

Based on Jain’s fairness index, we obtain 22.5%, 65.4%, 10.4%, and 48.4% bet-

ter fairness results than the FCFS with the priority-min-burst method for the CWF,

RFFm, RBFm, and 7-application workloads, respectively. The equal-time method

achieves 18.2%, 20.4%, and 41.9% better fairness results for the CWF, RFFm, and

7-application workloads, respectively. Lastly, the threshold-based priority method has

15%, 66%, 13.2%, and 38.1% better fairness results relative to the FCFS for the CWF,

RFFm, RBFm, and 7-application workloads, respectively.

When we analyze the maximum slowdown among the individual slowdown rates

of the applications, priority-min-burst, equal-time, and threshold-based priority tech-

niques show better results than the FCFS for all workloads. Since the maximum

slowdown metric can be quite affected by an aggressive performance degradation of a

single application, the Jain’s fairness index is mainly used as the fairness metric, and

the maximum slowdown metric is presented for comparative purposes.



109

0

0.5

1

1.5

2

2.5

3

CWF RFFm RBFm 7appF
a

ir
n

e
ss

 b
a

se
d

 o
n

 M
a

x
im

u
m

 S
lo

w
d

o
w

n

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

Figure 6.8. Fairness results based on maximum slowdown.

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.6 0.8 1 1.2 1.4 1.6 1.8

Fa
ir

n
e

ss
 

(b
a

se
d

 o
n

 J
a

in
's

 F
a

ir
n

e
ss

 I
n

d
e

x)

Performance (average speedup)

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

Figure 6.9. Pareto plot of performance and fairness for the 7-application workload.

The 7-application workload with all of the applications presented here is a repre-

sentative workload to make efficient inferences about different scheduling techniques.

Therefore, the pareto plot of the performance (in terms of average speedup) and the

fairness (based on Jain’s fairness index) for the 7-application workload is presented

in Figure 6.9. We observe that the priority-min-burst is the most optimal scheduling

method in terms of both performance and fairness for the 7-application workload. Fur-

thermore, the priority-min-reqs, equal-time, and threshold-based priority techniques

are much better than the FCFS technique for the 7-application workload.



110

6.5.2.4. Experiments with Different Numbers of Protected Cores. In the previous sec-

tions, we report the experimental results by providing only one protected core for each

workload. When we increase the number of protected cores, performance improvement

is observed in each scheduling technique since multiple protected cores can take the

requests in parallel. There is a single global queue for multiple protected cores and

they can take the requests from the queue in a mutually exclusive way.

The performance and fairness results based on all metrics for each workload on the

system, with two protected cores, are presented in Figure 6.10. Performance results

of each workload show similar trends with providing one protected core; however,

the magnitude of improvement is less in the system with two protected cores. For

the CWF workload, the performance results of the priority-min-burst, priority-min-

reqs, and threshold-based priority techniques are close to each other, where they show

approximately 10% better performance than the FCFS technique on both harmonic

and average speedup metrics. On the other hand, fairness results of these scheduling

techniques are slightly better based on Jain’s fairness index and roughly 20% better

based on maximum slowdown. For the RFFm workload, the performance results of

the priority-min-burst method are 54.3% better in terms of average speedup, and the

fairness results of the same technique are 62.4% better in terms of Jain’s fairness index.

On the other hand, for the RBFm workload, the priority-min-reqs method has a 35.6%

better average speedup and 5.5% better fairness value in terms of Jain’s fairness index.

For the 7-application workload, the results are similar to the system with one

protected core, where the priority-min-burst technique has 33% better performance

and 42.3% better fairness values. In short, there is a similar behavior between the

systems with one or two protected cores for the majority of the workloads based on all

metrics.

When we provide four protected cores, the performance and fairness results of

different scheduling techniques become closer to each other (see Figure 6.11). Further-

more, the difference among the scheduling techniques disappears for the CWF workload

with a small number of total requests.



111

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

CWF RFFm RBFm 7app

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e
 S

p
e

e
d

u
p # of reliable cores = 2

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

(a) Average speedup results.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CWF RFFm RBFm 7app

N
o

rm
a

li
ze

d
 H

a
rm

o
n

ic
 S

p
e

e
d

u
p

# of reliable cores = 2

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

(b) Harmonic speedup results.

0

0.2

0.4

0.6

0.8

1

CWF RFFm RBFm 7app

Fa
ir

n
e

ss
b

a
se

d
 o

n
 J

a
in

's
 F

a
ir

n
e

ss
 I

n
d

e
x

# of reliable cores = 2

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

(c) Fairness results based on Jain’s fairness index.

0

0.5

1

1.5

2

2.5

3

CWF RFFm RBFm 7app

F
a

ir
n

e
ss

 b
a

se
d

 o
n

 M
a

x
im

u
m

 S
lo

w
d

o
w

n # of reliable cores = 2

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

(d) Fairness results based on maximum slowdown.

Figure 6.10. Results of different workloads for the system with two protected cores.



112

0

0.2

0.4

0.6

0.8

1

1.2

1.4

CWF RFFm RBFm

N
o

rm
a

li
ze

d
 A

v
e

ra
g

e
 S

p
e

e
d

u
p

# of reliable cores = 4

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

(a) Average speedup results.

0

0.2

0.4

0.6

0.8

1

1.2

CWF RFFm RBFm

N
o

rm
a

li
ze

d
 H

a
rm

o
n

ic
 S

p
e

e
d

u
p

# of reliable cores = 4

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

(b) Harmonic speedup results.

0

0.2

0.4

0.6

0.8

1

CWF RFFm RBFm

F
a

ir
n

e
ss

b
a

se
d

 o
n

 J
a

in
's

 F
a

ir
n

e
ss

 I
n

d
e

x # of reliable cores = 4

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

(c) Fairness results based on Jain’s fairness index.

0

0.5

1

1.5

2

2.5

CWF RFFm RBFmFa
ir

n
e

ss
 b

a
se

d
 o

n
 M

a
xi

m
u

m
 S

lo
w

d
o

w
n # of reliable cores = 4

FCFS Priority-ldf Priority-missRate Priority-min-reqs Priority-max-reqs

Priority-min-burst Priority-max-burst Equal-time Equal-progress Threshold-based priority

(d) Fairness results based on maximum slowdown.

Figure 6.11. Results of different workloads for the system with four protected cores.



113

For this workload, the most optimal scheduling technique becomes as equal-time method,

which has 5% better performance with close fairness results. Similar results with slight

differences are observed for the RFFm with medium size workload. However, when

we analyze the RBFm workload with relatively large number of requests, different

scheduling techniques have different results based on all metrics. The priority-min-

burst, priority-min-reqs, and equal-time methods seem to be optimal scheduling algo-

rithms in terms of all performance and fairness metrics among the scheduling methods

for this workload.

6.5.2.5. Detailed Analysis Based on 7-application Workload. In this section, we ob-

serve the behavior of the applications with different scheduling techniques for the 7-

application workload with the case of one protected core. Figure 6.12 shows the dif-

ferences in the improvement or worsening for execution time of the applications under

each scheduling method relative to the FCFS. The priority-min-burst method has good

performance values where four of the seven applications in the workload have smaller

execution times, two of them have approximately the same execution time, and only

one application has worse performance. While no application has worse performance

in the priority-min-reqs method, the improvement in the execution times of the appli-

cations is not as much as the priority-min-burst method. When the priority-max-reqs

method is analyzed, the application with only one request, the Cholesky application,

is unfairly sent to the end of the queue, and the performance is aggressively affected

by this delay.

The execution time distributions of the applications spent on the protected and

the unprotected cores are shown in Figure 6.13 with three representative scheduling

methods. Indeed, the total time spent on the protected core for each application with

different scheduling technique is approximately equal; however, the total execution time

of the applications may vary according to the scheduling method. Accordingly, the

proportion of the execution time spent on the protected core may vary. Figure 6.13(a)

shows the execution time distributions of the applications on the protected and the

unprotected cores with the FCFS method.



0

1

2

3

4

5

6

7

E
xe

cu
ti

o
n

 t
im

e
 a

g
a

in
st

 F
C

F
S

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

Figure 6.12. Execution time differences of applications against FCFS.



115

In this figure, the FFT application spends approximately half of the execution time on

the protected core, while the same application passes 17.6% of its execution time on

the protected core with the equal-progress method shown in Figure 6.13(c). Here, the

numerator part in the execution time ratio is kept unchanged where the denominator

part is increased for this method. On the other hand, in the priority-min-burst method,

which has the best performance, it is seen that the percentage of the execution times

of the applications on the protected core is increased (see Figure 6.13(b)).

Figure 6.14 shows the percentage of application requests served over time under

a set of selected scheduling methods based on their execution behavior. Since the

total number of the requests for each application might be different, the results are

presented by the proportion of the requests served over time. According to the results

of the FCFS method shown in Figure 6.14(a), when 10% of the time is completed,

all requests of the applications, such as FFT, Water-nsquared, and Cholesky, can be

served. On the other hand, when 50% of the time is completed, all requests of six

applications out of seven can be served except the Barnes application. For the case of

the priority-min-burst method, when 30% of the time is completed, all of the requests

belonging to five of the seven applications can be served (see Figure 6.14(b)). When

40% of the time is passed, only the requests of the Barnes application, which has the

highest burst time on the protected core, remain in the system.

On the other hand, the results of the priority-max-burst method show a different

behavior than the other methods (see Figure 6.14(c)). In this method, Barnes and

FFT applications with the highest burst time on the protected core are prioritized over

the remaining applications. When 50% of the time is passed, only these two applica-

tions could benefit from the protected core. When 90% of the time is completed, all

requests of these applications can be served; however, the requests of the remaining ap-

plications can be served completely in the last interval (between 90% and 100% of the

time). According to the results of the equal-progress method shown in Figure 6.14(d),

the Cholesky application, which sends only one request throughout its lifetime, can be

served in the first 10% time interval.



116

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FFT Water fmm Barnes Raytrace Cholesky Dijkstra

%
 o

f 
e

xe
cu

ti
o

n

protected core unprotected cores

(a) Execution time distributions of the applications with FCFS tech-

nique.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FFT Water fmm Barnes Raytrace Cholesky Dijkstra

%
 o

f 
e

xe
cu

ti
o

n

protected core unprotected cores

(b) Execution time distributions of the applications with priority-

min-burst technique.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FFT Water fmm Barnes Raytrace Cholesky Dijkstra

%
 o

f 
e

xe
cu

ti
o

n

protected core unprotected cores

(c) Execution time distributions of the applications with equal-

progress technique.

Figure 6.13. Execution time distributions of the applications in 7-application

workload on the protected and unprotected cores with different scheduling techniques.



117

In this method, the goal is to enable equal progress of each application; hence, the

requests of the applications can be served with approximately similar rates in each

time interval.

Figure 6.15 shows the cumulative waiting times of the applications in the queue

over time for the selected scheduling methods. For the FCFS method, the Barnes

application has the largest values (see Figure 6.15(a)). The waiting times of the three

applications become fixed when 20% of the time is passed, since their requests are

served within this time interval. For the priority-min-burst method, when 30% of the

time is completed, the waiting times of the five applications do not change. Only the

waiting time of the Barnes application with the highest burst time keeps increasing

since it is placed at the end of the queue.

The priority-max-burst shows a different behavior than the others (see 6.15(c)).

In this case, the application with the largest waiting time is not the Barnes applica-

tion; it has less waiting time than the three applications instead, which are Raytrace,

Water-nsquared, and fmm. Furthermore, the waiting time of the Barnes application

has the lowest value compared with the other methods. On the other hand, the ap-

plications such as Cholesky and Dijkstra have noticeably higher waiting times under

this scheduling method. According to the results of the equal-progress method shown

in Figure 6.15(d), the waiting times for the majority of the applications show similar

tendencies except for the Cholesky and Dijkstra applications, which have a smaller

number of requests. This is an expected result according to the working principle

of this scheduling method. It should be noted that the figures presented in this sec-

tion contain only the subset of scheduling methods, which shows different execution

behavior than the others.



118

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f 
re

q
u

e
st

s 
se

rv
e

d

Time (%)

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

(a) FCFS technique.

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f 
re

q
u

e
st

s 
se

rv
e

d

Time (%)

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

(b) Priority-min-burst technique.

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f 
re

q
u

e
st

s 
se

rv
e

d

Time (%)

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

(c) Priority-max-burst technique.

0

10

20

30

40

50

60

70

80

90

100

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

%
 o

f 
re

q
u

e
st

s 
se

rv
e

d

Time (%)

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

(d) Equal-progress technique.

Figure 6.14. Percentage of application requests served over time for the 7-application

workload under different scheduling techniques.



119

0

50

100

150

200

250

300

350

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W
a

it
in

g
 T

im
e

 (
x
 1

0
^

6
 s

e
c.

)

Time (%)

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

(a) FCFS technique.

0

50

100

150

200

250

300

350

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W
a

it
in

g
 T

im
e

 (
x
 1

0
^

6
 s

e
c.

)

Time (%)

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

(b) Priority-min-burst technique.

0

50

100

150

200

250

300

350

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W
a

it
in

g
 T

im
e

 (
x
 1

0
^

6
 s

e
c.

)

Time (%)

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

(c) Priority-max-burst technique.

0

50

100

150

200

250

300

350

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

W
a

it
in

g
 T

im
e

(x
 1

0
^

6
 s

e
c.

)

Time (%)

FFT

Water

fmm

Barnes

Raytrace

Cholesky

Dijkstra

(d) Equal-progress technique.

Figure 6.15. Waiting time of the applications for the 7-application workload in the

queue with different scheduling techniques.



120

6.5.2.6. Discussions. The computational experiments presented in this section pro-

vides us the following key insights for various scheduling techniques implemented in

our asymmetrically reliable caches:

• The priority-min-burst method, which prioritizes the applications with low to-

tal burst time on the protected core(s), offers the best results in terms of both

performance and fairness for three of the four workloads.

• Likewise, the priority-min-reqs method, which presents better performance and

fairness results for three of the four workloads, appears to be preferable when only

the number of requests, not the total burst time, of the applications is known.

• The equal-time method presents better performance for three of the four work-

loads and it has better fairness results for all workloads. This scheduling method

can be preferable when there is no prior knowledge on the applications or when

the execution of the applications takes too long to obtain such prior knowledge.

• The results of the threshold-based priority are very close to the priority-min-burst

method since it starts with the priority values offered in the priority-min-burst

method by considering the last scheduled application.

• When we increase the number of protected cores, the differences among the

scheduling methods disappear for the workloads with a small number of requests.

Since multiple protected cores can take the requests in parallel, there are no wait-

ing requests in the queue; hence, reordering the requests does not improve the

performance of the system for the small-size workloads. On the other hand, for

the workloads with a high number of requests, we still observe differences among

the scheduling techniques.

It should be noted that the performance and fairness results of the scheduling

methods applied in this work may vary according to the number of the applications

used in the workload, the total resource usage of the applications, and the sending time

of the requests at runtime.



121

6.6. Summary

In this section of our work, we provide a set of different scheduling algorithms with

various characteristics for asymmetrically reliable caches. Managing queue structure

and assigning application threads to the protected core(s) might be handled by the

FCFS-based scheduling policy as the first attempt. We observe that the FCFS-based

technique leads to low performance and low fairness in some workloads. Based on this

observation, we utilize different types of scheduling techniques and evaluate them in

terms of system performance and fairness relative to the FCFS algorithm, the baseline

approach for the experimental comparisons. Six different priority-based techniques (

priority-ldf, priority-missRate, priority-min-reqs, priority-max-reqs, priority-min-burst,

and priority-max-burst) are provided where they differ in prioritization of applications

with respect to execution order, cache usage, number of requests, or total burst time

on the protected core(s). Additionally, equal-time scheduling technique is proposed

which targets to equalize the amount of time spent on the protected core(s) for each

application. Moreover, we propose equal-progress scheduling technique for equalizing

the progress of the requests for each application, and threshold-based priority method

for utilizing a priority-based technique by considering the last scheduled application.

In order to validate the proposed scheduling techniques, we utilize a set of multi-

threaded multi-application workloads. Our evaluations with various workloads demon-

strate that the priority-min-burst method provides better performance and fairness

results than the FCFS algorithm for the majority of the workloads with the highest

magnitude of improvement. The equal-time method presents better fairness results for

all workloads and better performance results for most of the workloads. When we have

preliminary information about the applications, the priority-min-burst method is the

best alternative. However, in case of lack of priori information, the equal-time method

might be preferred for its high fairness results.



122

7. CONCLUSIONS AND FUTURE WORK

The main focus of this thesis is to provide enhanced protection mechanism for

reliability-based critical regions of applications using asymmetrically reliable cores.

The cores have homogeneous speed and performance, but they differ in fault tolerance

capabilities. There are at least one high reliability core which has ECC-protected L1

cache, and several low reliability cores having no protection. The software threads that

execute critical regions are mapped to the high reliability core(s) dynamically during

the execution. Therefore, sufficient reliability can be guaranteed using minimal fault

tolerant hardware considering performance, power consumption and cost constraints.

In the first part, the main mechanics of our proposed approach are implemented

and evaluated with selected applications. Reliability-based critical sections are deter-

mined based on critical data usage. An application input is analyzed statically a priori,

and a portion of the input is determined as critical data specifically for an application.

The code fragments that access critical data are determined as the critical regions that

need to be protected. A hardware platform with one high reliability and three low

reliability cores is utilized. Experimental studies validates that the partially safe cache

configuration significantly outperforms the unsafe configuration with respect to relia-

bility (given in failure rate), and the safe configuration with respect to performance

(given in execution time) and energy (given in both cache energy and overall system

energy) [6].

In the following part, we enlarge our proposed system with asymmetrically caches

by utilizing two types of protected cores (high reliability core and medium-level reliabil-

ity core). While the high reliability core has ECC-protected L1 cache, the middle-level

reliability core has parity check on its L1 cache. Reliability-based critical sections are

determined based on critical data usage having three classes: critical, semi-critical, and

non-critical data. Application threads can use high, medium-level, or low reliability

cores based on the criticality of the application’s data.



123

Our detailed experimental work shows that both of the partially safe configurations

(the system with high reliability and low reliability cores, and the system with high,

middle-level, and low reliability cores) reduce the failure rate significantly compared

to the unsafe configuration with much better performance and energy consumption

results than the safe configuration [7].

In the second part, reliability-based critical code regions are determined based on

user annotations. Selected applications are profiled and the functions that cover 90% of

total execution time are used as the critical code regions. The applications are executed

on the proposed system with asymmetrically reliable caches using different numbers

of protected cores. Experimental studies with different function characteristics show

that there is not an ideal number of protected cores for each application, but an ideal

number of protected cores for each function. In this sense, in a system with a limited

number of protected cores, the user can determine the number of protected cores used

by considering the reliability-based critical regions. Further, our partially safe config-

uration takes the advantage of protecting only reliability-based critical code regions of

the applications and offers significant performance and power savings compared to the

safe configuration and lower failure rates compared to the unsafe configuration [8].

In the following part, the reliability-based critical code regions determined as

high-priority functions of each application. The high-priority functions are identified

by calculating the function vulnerability and criticality metrics based on the function

execution times and call graphs, statically. The high-priority functions are protected

more conservatively than the other functions by utilizing different partially safe config-

urations. The experimental results with a diverse set of applications confirm that our

partially safe configuration offers close performance and reliability results to the safe

configuration with lower power consumption and cost [9].

As part of this thesis, a set of different scheduling algorithms with various charac-

teristics are proposed for asymmetrically reliable caches. In previous sections, assigning

application threads to the protected core(s) is handled by the FCFS-based scheduling

policy.



124

However, the FCFS-based technique may lead to low performance and low fairness in

some workloads. Based on this observation, different types of scheduling techniques

are implemented and evaluated in terms of system performance and fairness relative

to the FCFS algorithm, the baseline approach for the experimental comparisons. A

total of nine different techniques which contain six static priority-based techniques (

priority-ldf, priority-missRate, priority-min-reqs, priority-max-reqs, priority-min-burst,

and priority-max-burst), an equal-time scheduling, an equal-progress scheduling, and

a threshold-based priority techniques are provided where they differ in prioritization

of the applications. The priority-min-burst method provides better performance and

fairness results than the FCFS algorithm for the majority of workloads with the high-

est improvement level. The equal-time method provides better fairness results for all

workloads and better performance results for most of the workloads. When we have

prior information about the applications, the priority-min-burst method is the best al-

ternative. However, equal-time may be preferred for lack of prior knowledge and high

fairness results [10].

As a future work, we can determine reliability-based critical sections dynamically

based on thread data dependencies. By using a metric such as Thread Vulnerabil-

ity Factor (TVF) [86, 87], we can isolate reliability-based critical code regions within

the application, dynamically. TVF metric measures the vulnerability of a thread in

multi-threaded applications to the possible transient faults by considering thread de-

pendencies caused from data sharing. We can combine our approach with TVF and

schedule the code regions that have the highest TVF values to the high reliability

core(s). In such a case, the workload should be executed twice. In the first run, thread

data dependencies will be analyzed and critical code regions will be determined dy-

namically for applications. In the second run, these critical sections will be protected

from the possible soft errors by using asymmetrically reliable cores.

Another direction for future work is to provide fault tolerance methods in soft-

ware level using redundancy methods rather than cache-oriented hardware approaches.

The reliability-based critical code regions can be duplicated and executed on different

processors as an example of space redundancy [88] to decrease thread migration costs.



125

In this case, the inputs of two threads should be copied on different cores, and the

outputs generated by two cores are compared to detect error occurrence. On the other

hand, we can execute critical code regions at two different times to provide time redun-

dancy [89]. In this case, we perform the same operation at different times and compares

the results to detect the error. These methods does not require any additional hardware

addition or modification; hence, their costs will be low.

Another possible future research may be developing more sophisticated scheduling

techniques. In this sense, we may focus on rate-based scheduling techniques [90] in

which we can give priority to requesting threads and high reliability cores based on

their service rates. We can analyze how well the applications use the high reliability

cores and give priority to the applications, accordingly. On the other hand, we can give

function call graph file to the scheduler to make more appropriate scheduling decisions

by observing the next candidate functions for the high reliability core. As another

approach, we can propose a scheduling method which takes into consideration thread

waiting times in the queue; therefore, it may give priority to the applications based on

their waiting times to decrease queuing cost of our approach.



126

REFERENCES

1. Asadi, G. H., V. S. Mehdi, B. Tahoori and D. Kaeli, “Balancing Performance

and Reliability in the Memory Hierarchy”, Performance Analysis of Systems and

Software, 2005. ISPASS 2005. IEEE International Symposium on, pp. 269–279,

March 2005.

2. Rehman, S., M. Shafique and J. Henkel, Reliable Software for Unreliable Hardware:

A Cross Layer Perspective, Springer Publishing Company, Incorporated, 1st edn.,

2016.

3. Shivakumar, P., M. Kistler, S. Keckler, D. Burger and L. Alvisi, “Modeling the

effect of technology trends on the soft error rate of combinational logic”, Dependable

Systems and Networks, 2002. DSN 2002. Proceedings. International Conference on,

pp. 389–398, 2002.

4. Ebrahimi, M., A. Evans, M. B. Tahoori, E. Costenaro, D. Alexandrescu, V. Chan-

dra and R. Seyyedi, “Comprehensive Analysis of Sequential and Combinational

Soft Errors in an Embedded Processor”, IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems , Vol. 34, No. 10, pp. 1586–1599, October

2015.

5. Naseer, R., Y. Boulghassoul, J. Draper, S. DasGupta and A. Witulski, “Critical

Charge Characterization for Soft Error Rate Modeling in 90nm SRAM”, Circuits

and Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp. 1879–

1882, May 2007.

6. Arslan, S., H. Topcuoglu, M. Kandemir and O. Tosun, “Performance and Energy

Efficient Asymmetrically Reliable Caches for Multicore Architectures”, Parallel

and Distributed Processing Symposium Workshop (IPDPSW), 2015 IEEE Inter-

national , pp. 1025–1032, May 2015.



127

7. Arslan, S., H. R. Topcuoglu, M. T. Kandemir and O. Tosun, “Asymmetrically

Reliable Caches for Multicore Architectures Under Performance and Energy Con-

straints”, Cluster Computing , Vol. 19, No. 4, pp. 1819–1833, 2016.

8. Arslan, S., H. R. Topcuoglu, M. T. Kandemir and O. Tosun, Protecting Code

Regions on Asymmetrically Reliable Caches , pp. 375–387, Springer International

Publishing, Cham, 2016.

9. Arslan, S., H. R. Topcuoglu, M. T. Kandemir and O. Tosun, “A selective protection

scheme of applications using asymmetrically reliable caches”, Journal of Systems

Architecture, Vol. 75, pp. 133 – 144, 2017.

10. Arslan, S., H. R. Topcuoglu, M. T. Kandemir and O. Tosun, “Scheduling Oppor-

tunities for Asymmetrically Reliable Caches”, In preparation.

11. Meaney, P., L. Lastras-Montano, V. Papazova, E. Stephens, J. Johnson, L. Alves,

J. O’Connor and W. Clarke, “IBM zEnterprise redundant array of independent

memory subsystem”, IBM Journal of Research and Development , Vol. 56, No. 1.2,

pp. 4:1–4:11, January 2012.

12. Koren, I. and S. Y. H. Su, “Reliability Analysis of N-Modular Redundancy Systems

with Intermittent and Permanent Faults”, IEEE Transactions on Computers , Vol.

C-28, No. 7, pp. 514–520, July 1979.

13. Alameldeen, A. R., I. Wagner, Z. Chishti, W. Wu, C. Wilkerson and S.-L. Lu,

“Energy-efficient Cache Design Using Variable-strength Error-correcting Codes”,

Proceedings of the 38th Annual International Symposium on Computer Architec-

ture, ISCA ’11, ACM, New York, NY, USA, 2011.

14. Wilkerson, C., A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar and S.-l. Lu,

“Reducing Cache Power with Low-cost, Multi-bit Error-correcting Codes”, Pro-

ceedings of the 37th Annual International Symposium on Computer Architecture,

ISCA ’10, pp. 83–93, ACM, New York, NY, USA, 2010.



128

15. Yoon, D. H. and M. Erez, “Virtualized ECC: Flexible Reliability in Main Memory”,

Micro, IEEE , Vol. 31, No. 1, pp. 11–19, January 2011.

16. Yoon, D. H. and M. Erez, “Memory Mapped ECC: Low-cost Error Protection for

Last Level Caches”, Proceedings of the 36th Annual International Symposium on

Computer Architecture, ISCA ’09, pp. 116–127, ACM, New York, NY, USA, 2009.

17. Zhao, H., A. Sharifi, S. Srikantaiah and M. Kandemir, “Feedback control based

cache reliability enhancement for emerging multicores”, Computer-Aided Design

(ICCAD), 2011 IEEE/ACM International Conference on, pp. 56–62, November

2011.

18. Lee, K., A. Shrivastava, I. Issenin, N. Dutt and N. Venkatasubramanian, “Par-

tially Protected Caches to Reduce Failures Due to Soft Errors in Multimedia Ap-

plications”, Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

Vol. 17, No. 9, pp. 1343–1347, September 2009.

19. Borchert, C., H. Schirmeier and O. Spinczyk, “Generative software-based memory

error detection and correction for operating system data structures”, Dependable

Systems and Networks (DSN), 2013 43rd Annual IEEE/IFIP International Con-

ference on, pp. 1–12, June 2013.

20. Xu, X. and M.-L. Li, “Understanding Soft Error Propagation Using Effi-

cient Vulnerability-driven Fault Injection”, Proceedings of the 2012 42Nd An-

nual IEEE/IFIP International Conference on Dependable Systems and Networks

(DSN), DSN ’12, pp. 1–12, IEEE Computer Society, Washington, DC, USA, 2012.

21. Eltawil, A. A., M. Engel, B. Geuskens, A. K. Djahromi, F. J. Kurdahi, P. Marwedel,

S. Niar and M. A. Saghir, “A Survey of Cross-layer Power-reliability Tradeoffs in

Multi and Many Core Systems-on-chip”, Microprocess. Microsyst., Vol. 37, No. 8,

pp. 760–771, 2013.

22. de Kruijf, M., S. Nomura and K. Sankaralingam, “Relax: An Architectural Frame-



129

work for Software Recovery of Hardware Faults”, Proceedings of the 37th Annual

International Symposium on Computer Architecture, ISCA ’10, pp. 497–508, ACM,

New York, NY, USA, 2010.

23. Sampson, A., W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze and D. Grossman,

“EnerJ: Approximate Data Types for Safe and General Low-power Computation”,

SIGPLAN Not., Vol. 46, No. 6, pp. 164–174, June 2011.

24. Carbin, M., S. Misailovic and M. C. Rinard, “Verifying Quantitative Reliability

for Programs That Execute on Unreliable Hardware”, SIGPLAN Not., Vol. 48,

No. 10, pp. 33–52, October 2013.

25. Misailovic, S., M. Carbin, S. Achour, Z. Qi and M. C. Rinard, “Chisel: Reliability-

and Accuracy-aware Optimization of Approximate Computational Kernels”, SIG-

PLAN Not., Vol. 49, No. 10, pp. 309–328, October 2014.

26. Leem, L., H. Cho, J. Bau, Q. Jacobson and S. Mitra, “ERSA: Error Resilient

System Architecture for probabilistic applications”, Design, Automation Test in

Europe Conference Exhibition (DATE), 2010 , pp. 1560–1565, March 2010.

27. Rehman, S., F. Kriebel, M. Shafique and J. Henkel, “Compiler-driven dynamic

reliability management for on-chip systems under variabilities”, Design, Automa-

tion and Test in Europe Conference and Exhibition (DATE), 2014 , pp. 1–4, March

2014.

28. Rehman, S., F. Kriebel, M. Shafique and J. Henkel, “Reliability-Driven Software

Transformations for Unreliable Hardware”, Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, Vol. 33, No. 11, pp. 1597–1610,

November 2014.

29. Yetim, Y., S. Malik and M. Martonosi, “CommGuard: Mitigating Communica-

tion Errors in Error-Prone Parallel Execution”, SIGARCH Comput. Archit. News ,

Vol. 43, No. 1, pp. 311–323, March 2015.



130

30. Huang, J., S. Barner, A. Raabe, C. Buckl and A. Knoll, “A Framework for

Reliability-aware Embedded System Design on Multiprocessor Platforms”, Micro-

process. Microsyst., Vol. 38, No. 6, pp. 539–551, August 2014.

31. Suleman, M. A., O. Mutlu, M. K. Qureshi and Y. N. Patt, “Accelerating Critical

Section Execution with Asymmetric Multi-core Architectures”, SIGARCH Com-

put. Archit. News , Vol. 37, No. 1, pp. 253–264, March 2009.

32. Ungsunan, P., C. Lin, Y. Gai and X. Kong, “Improving Multi-Core System Depend-

ability with Asymmetrically Reliable Cores”, Complex, Intelligent and Software

Intensive Systems, 2009. CISIS ’09. International Conference on, pp. 1252–1257,

March 2009.

33. Luo, Y., S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu,

B. Khessib, K. Vaid and O. Mutlu, “Characterizing Application Memory Error

Vulnerability to Optimize Datacenter Cost via Heterogeneous-Reliability Mem-

ory”, Dependable Systems and Networks (DSN), 2014 44th Annual IEEE/IFIP

International Conference on, pp. 467–478, June 2014.

34. Burtscher, M., B.-D. Kim, J. Diamond, J. McCalpin, L. Koesterke and J. Browne,

“PerfExpert: An Easy-to-Use Performance Diagnosis Tool for HPC Applications”,

Proceedings of the 2010 ACM/IEEE International Conference for High Perfor-

mance Computing, Networking, Storage and Analysis , SC, pp. 1–11, IEEE Com-

puter Society, Washington, DC, USA, 2010.

35. Subotic, V., J. C. Sancho, J. Labarta and M. Valero, “Identifying Critical Code

Sections in Dataflow Programming Models”, 2013 21st Euromicro International

Conference on Parallel, Distributed, and Network-Based Processing , pp. 29–37,

February 2013.

36. Carbin, M. and M. C. Rinard, “Automatically Identifying Critical Input Regions

and Code in Applications”, Proceedings of the 19th International Symposium on

Software Testing and Analysis , ISSTA, pp. 37–48, ACM, New York, NY, USA,



131

2010.

37. Duque, L. A. R., J. M. M. Diaz and C. Yang, “Improving MPSoC Reliability

Through Adapting Runtime Task Schedule Based on Time-correlated Fault Be-

havior”, Proceedings of the 2015 Design, Automation & Test in Europe Conference

& Exhibition, DATE ’15, pp. 818–823, EDA Consortium, San Jose, CA, USA,

2015.

38. Duque, L. A. R. and C. Yang, “Guiding fault-driven adaption in multicore systems

through a reliability-aware static task schedule”, The 20th Asia and South Pacific

Design Automation Conference, pp. 612–617, January 2015.

39. Chantem, T., Y. Xiang, X. S. Hu and R. P. Dick, “Enhancing multicore relia-

bility through wear compensation in online assignment and scheduling”, Design,

Automation Test in Europe Conference Exhibition (DATE), 2013 , pp. 1373–1378,

March 2013.

40. Coskun, A. K., R. Strong, D. M. Tullsen and T. Simunic Rosing, “Evaluating the

Impact of Job Scheduling and Power Management on Processor Lifetime for Chip

Multiprocessors”, SIGMETRICS Perform. Eval. Rev., Vol. 37, No. 1, pp. 169–180,

June 2009.

41. Wang, Y., A. Nicolau, R. Cammarota and A. V. Veidenbaum, “A fault tolerant self-

scheduling scheme for parallel loops on shared memory systems”, High Performance

Computing (HiPC), 2012 19th International Conference on, pp. 1–10, December

2012.

42. Lin, S. and G. Manimaran, “A Feedback-based Adaptive Algorithm for Combined

Scheduling with Fault-tolerance in Real-time Systems”, Proceedings of the 11th

International Conference on High Performance Computing , HiPC’04, pp. 101–110,

Springer-Verlag, Berlin, Heidelberg, 2004.

43. Li, D. and J. Wu, “Minimizing Energy Consumption for Frame-Based Tasks on



132

Heterogeneous Multiprocessor Platforms”, IEEE Transactions on Parallel and Dis-

tributed Systems , Vol. 26, No. 3, pp. 810–823, March 2015.

44. Tang, X., K. Li, R. Li and B. Veeravalli, “Reliability-aware Scheduling Strategy

for Heterogeneous Distributed Computing Systems”, J. Parallel Distrib. Comput.,

Vol. 70, No. 9, pp. 941–952, September 2010.

45. Tang, X. and W. Tan, “Energy-Efficient Reliability-Aware Scheduling Algorithm

on Heterogeneous Systems”, Sci. Program., Vol. 2016, pp. 14–, March 2016.

46. Tang, X., K. Li and G. Liao, “An effective reliability-driven technique of allocating

tasks on heterogeneous cluster systems”, Cluster Computing , Vol. 17, No. 4, pp.

1413–1425, 2014.

47. Xiaoyong, T., K. Li, Z. Zeng and B. Veeravalli, “A Novel Security-Driven Schedul-

ing Algorithm for Precedence-Constrained Tasks in Heterogeneous Distributed Sys-

tems”, IEEE Transactions on Computers , Vol. 60, No. 7, pp. 1017–1029, July 2011.

48. Wang, Y., K. Li, H. Chen, L. He and K. Li, “Energy-Aware Data Allocation

and Task Scheduling on Heterogeneous Multiprocessor Systems With Time Con-

straints”, IEEE Transactions on Emerging Topics in Computing , Vol. 2, No. 2, pp.

134–148, June 2014.

49. Mei, J., K. Li and K. Li, “Energy-aware Task Scheduling in Heterogeneous Com-

puting Environments”, Cluster Computing , Vol. 17, No. 2, pp. 537–550, June 2014.

50. Topcuouglu, H., S. Hariri and M. Y. Wu, “Performance-Effective and Low-

Complexity Task Scheduling for Heterogeneous Computing”, IEEE Trans. Parallel

Distrib. Syst., Vol. 13, No. 3, pp. 260–274, March 2002.

51. Li, D. and J. Wu, “Energy-Aware Scheduling for Frame-Based Tasks on Heteroge-

neous Multiprocessor Platforms”, 2012 41st International Conference on Parallel

Processing , pp. 430–439, September 2012.



133

52. Wang, J., N. Abu-Ghazaleh and D. Ponomarev, “Controlled Contention: Balanc-

ing Contention and Reservation in Multicore Application Scheduling”, 2015 IEEE

International Parallel and Distributed Processing Symposium, pp. 946–955, May

2015.

53. Craeynest, K. V., S. Akram, W. Heirman, A. Jaleel and L. Eeckhout, “Fairness-

aware scheduling on single-ISA heterogeneous multi-cores”, Proceedings of the 22nd

International Conference on Parallel Architectures and Compilation Techniques ,

pp. 177–187, September 2013.

54. Huh, S., J. Yoo, M. Kim and S. Hong, “Providing Fair Share Scheduling on Mul-

ticore Cloud Servers via Virtual Runtime-based Task Migration Algorithm”, Pro-

ceedings of the 2012 IEEE 32Nd International Conference on Distributed Comput-

ing Systems , ICDCS ’12, pp. 606–614, IEEE Computer Society, Washington, DC,

USA, 2012.

55. Kim, Y., D. Han, O. Mutlu and M. Harchol-Balter, “ATLAS: A scalable and high-

performance scheduling algorithm for multiple memory controllers”, The Sixteenth

International Symposium on High-Performance Computer Architecture, pp. 1–12,

January 2010.

56. Vandierendonck, H. and A. Seznec, “Fairness Metrics for Multi-Threaded Proces-

sors”, IEEE Computer Architecture Letters , Vol. 10, No. 1, pp. 4–7, January 2011.

57. Das, R., O. Mutlu, T. Moscibroda and C. R. Das, “Application-aware prioritization

mechanisms for on-chip networks”, 2009 42nd Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), pp. 280–291, December 2009.

58. Subramanian, L., D. Lee, V. Seshadri, H. Rastogi and O. Mutlu, “The Black-

listing Memory Scheduler: Achieving high performance and fairness at low cost”,

2014 IEEE 32nd International Conference on Computer Design (ICCD), pp. 8–15,

October 2014.



134

59. Subramanian, L., D. Lee, V. Seshadri, H. Rastogi and O. Mutlu, “BLISS: Balanc-

ing Performance, Fairness and Complexity in Memory Access Scheduling”, IEEE

Transactions on Parallel and Distributed Systems , Vol. 27, No. 10, pp. 3071–3087,

October 2016.

60. Usui, H., L. Subramanian, K. K.-W. Chang and O. Mutlu, “DASH: Deadline-

Aware High-Performance Memory Scheduler for Heterogeneous Systems with Hard-

ware Accelerators”, ACM Trans. Archit. Code Optim., Vol. 12, No. 4, pp. 65:1–

65:28, January 2016.

61. Papazachos, Z. C. and H. D. Karatza, “Gang Scheduling in Multi-core Clusters

Implementing Migrations”, Future Gener. Comput. Syst., Vol. 27, No. 8, pp. 1153–

1165, October 2011.

62. Manickam, V. and A. Aravind, “A Fair and Efficient Gang Scheduling Algorithm

for Multicore Processors”, K. R. Venugopal and L. M. Patnaik (Editors), Wireless

Networks and Computational Intelligence: 6th International Conference on Infor-

mation Processing, ICIP 2012 , pp. 467–476, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012.

63. Stavrinides, G. L. and H. D. Karatza, “Fault-tolerant Gang Scheduling in Dis-

tributed Real-time Systems Utilizing Imprecise Computations”, SIMULATION ,

Vol. 85, No. 8, pp. 525–536, 2009.

64. Wiseman, Y. and D. G. Feitelson, “Paired Gang Scheduling”, IEEE Trans. Parallel

Distrib. Syst., Vol. 14, No. 6, pp. 581–592, June 2003.

65. Zhang, Y., H. Franke, J. Moreira and A. Sivasubramaniam, “An Integrated Ap-

proach to Parallel Scheduling Using Gang-Scheduling, Backfilling, and Migration”,

IEEE Trans. Parallel Distrib. Syst., Vol. 14, No. 3, pp. 236–247, March 2003.

66. Mi, N., G. Casale and E. Smirni, “Scheduling for performance and availability in

systems with temporal dependent workloads”, 2008 IEEE International Conference



135

on Dependable Systems and Networks With FTCS and DCC (DSN), pp. 336–345,

June 2008.

67. Casale, G., N. Mi and E. Smirni, “CWS: A Model-driven Scheduling Policy for

Correlated Workloads”, SIGMETRICS Perform. Eval. Rev., Vol. 38, No. 1, pp.

251–262, June 2010.

68. Iqbal, S., Y. Liang and H. Grahn, “ParMiBench - An Open-Source Benchmark for

Embedded Multiprocessor Systems”, Computer Architecture Letters , Vol. 9, No. 2,

pp. 45–48, February 2010.

69. González, A., C. Aliagas and M. Valero, “A Data Cache with Multiple Caching

Strategies Tuned to Different Types of Locality”, Proceedings of the 9th Interna-

tional Conference on Supercomputing , ICS ’95, pp. 338–347, ACM, New York, NY,

USA, 1995.

70. Warren, H. S., Hacker’s Delight , Addison-Wesley Professional, 2nd edn., 2012.

71. Lee, K., A. Shrivastava, I. Issenin, N. Dutt and N. Venkatasubramanian, “Mitigat-

ing Soft Error Failures for Multimedia Applications by Selective Data Protection”,

Proceedings of the 2006 International Conference on Compilers, Architecture and

Synthesis for Embedded Systems , CASES ’06, pp. 411–420, ACM, New York, NY,

USA, 2006.

72. Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-

ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. Hill and D. A. Wood, “The Gem5 Simulator”, SIGARCH Comput. Archit.

News , Vol. 39, No. 2, pp. 1–7, 2011.

73. Muralimanohar, N., R. Balasubramonian and N. P. Jouppi, “Architecting Efficient

Interconnects for Large Caches with CACTI 6.0”, IEEE Micro, Vol. 28, No. 1, pp.

69–79, January 2008.



136

74. Woo, S., M. Ohara, E. Torrie, J. Singh and A. Gupta, “The SPLASH-2 pro-

grams: characterization and methodological considerations”, Computer Architec-

ture, 1995. Proceedings., 22nd Annual International Symposium on, pp. 24–36,

June 1995.

75. Woo, S. C., J. P. Singh and J. L. Hennessy, “The Performance Advantages of Inte-

grating Block Data Transfer in Cache-coherent Multiprocessors”, SIGOPS Oper.

Syst. Rev., Vol. 28, No. 5, pp. 219–229, 1994.

76. Cai, Y., M. Schmitz, A. Ejlali, B. Al-Hashimi and S. Reddy, “Cache size selec-

tion for performance, energy and reliability of time-constrained systems”, Design

Automation, 2006. Asia and South Pacific Conference on, pp. 6 pp.–, January

2006.

77. Leveugle, R., A. Calvez, P. Maistri and P. Vanhauwaert, “Statistical fault injection:

Quantified error and confidence”, Design, Automation Test in Europe Conference

Exhibition, 2009. DATE ’09., pp. 502–506, April 2009.

78. Li, S., J. Ahn, R.D.Strong, J. Brockman, D. Tullsen and N. Jouppi, “McPAT: An

integrated power, area, and timing modeling framework for multicore and many-

core architectures”, Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM

International Symposium on, pp. 469–480, 2009.

79. Brooks, D., V. Tiwari and M. Martonosi, “Wattch: A Framework for Architectural-

level Power Analysis and Optimizations”, Proceedings of the 27th Annual Interna-

tional Symposium on Computer Architecture, ISCA ’00, pp. 83–94, ACM, New

York, NY, USA, 2000.

80. Bienia, C., S. Kumar, J. P. Singh and K. Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications”, Proceedings of the 17th Inter-

national Conference on Parallel Architectures and Compilation Techniques , PACT

’08, pp. 72–81, ACM, New York, NY, USA, 2008.



137

81. Gupta, A. and V. Kumar, “The Scalability of FFT on Parallel Computers”, IEEE

Transactions on Parallel and Distributed Systems , Vol. 4, pp. 922–932, 1993.

82. Good, I. J., Introduction to Cooley and Tukey (1965) An Algorithm for the Machine

Calculation of Complex Fourier Series , pp. 201–216, Springer New York, New York,

NY, 1997.

83. Nemirovsky, M. and D. M. Tullsen, Multithreading Architecture, Morgan & Clay-

pool Publishers, 1st edn., 2013.

84. Chang, J. and G. S. Sohi, “Cooperative Cache Partitioning for Chip Multiproces-

sors”, Proceedings of the 21st Annual International Conference on Supercomputing ,

ICS ’07, pp. 242–252, ACM, New York, NY, USA, 2007.

85. Jain, R., D. Chiu and W. Hawe, A quantitative measure of fairness and discrim-

ination for resource allocation in shared systems , Tech. rep., Digital Equipment

Corporation, DEC-TR-301, 1984.

86. Oz, I., H. Topcuoglu, M. Kandemir and O. Tosun, “Quantifying Thread Vulnerabil-

ity for Multicore Architectures”, Euromicro International Conference on Parallel,

Distributed and Network-Based Processing (PDP), 2011.

87. Oz, I., H. Topcuoglu, M. Kandemir and O. Tosun, “Thread Vulnerability in Parallel

Applications”, Journal of Parallel and Distributed Computing (JPDC), Vol. 72, pp.

1171–1185, 2012.

88. Reinhardt, S. K. and S. S. Mukherjee, “Transient Fault Detection via Simultaneous

Multithreading”, SIGARCH Computer Architecture News , Vol. 28, No. 2, pp. 25–

36, May 2000.

89. Goloubeva, O., M. Rebaudengo, M. S. Reorda and M. Violante, Software-

Implemented Hardware Fault Tolerance, Springer-Verlag New York, Inc., Secaucus,

NJ, USA, 2006.



138

90. Mello, A. and N. Calazans, “Rate-based scheduling policy for QoS flows in networks

on chip”, 2007 IFIP International Conference on Very Large Scale Integration, pp.

140–145, October 2007.


