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Anlaş for his continuous support and very important critiques of this work. I am

grateful to his encouragement that always motivated me throughout my master study.

I would also like to thank my committee members Assoc. Prof. C. Can Aydıner and

Assist. Prof. Alpay Oral for their encouragement and valuable comments.

I am grateful to my colleagues Fatma Mutlu and Onur Yüksel for supporting
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ABSTRACT

EVALUATION OF CRACK TIP SINGULAR FIELDS IN

SHAPE MEMORY ALLOYS

In this thesis crack tip singular fields of an edge cracked shape memory alloy

(SMA) plate under plane stress & Mode I are studied using similarities between loading

paths of a pseudoelastic SMA and a strain hardening material. The HRR (Hutchinson-

Rise-Rosengren) formulation derived for the crack tip stress field of a strain hardening

material is used for the SMAs. The transformation plateau in the stress-strain relation

of a pseudoelastic SMA is formulated by Ramberg-Osgood relation which represents the

stress-strain relation of a strain hardening material. Crack tip fields of a NiTi compact

tension (CT) fracture specimen are evaluated using asymptotic equations of HRR, and

they are compared to the results obtained from asymptotic equations of Williams. It

is found that the HRR formulation represents better the crack tip conditions in the

case of SMAs. In addition, transformation region around the crack tip is evaluated

using a phenomenological transformation function of an SMA model together with

asymptotic stress equations. The transformation function provided reasonable results

for the transformation region size; with the size of the full martensitic region which

is better evaluated when HRR method is used. The HRR method is also tested with

a CT specimen modeled in ABAQUS using a UMAT that includes thermomechanical

coupling. Crack tip fields and transformation region size are compared to the results

obtained computationally. It is observed that the crack tip fields in the transformation

region of pseudoelastic SMAs can be evaluated reasonably using HRR method. In

addition, energy dissipation and the contour dependence of J-integral are studied and

the distribution of energy is discussed to complement the study.
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ÖZET

ŞEKİL HAFIZALI ALAŞIMLARDA ÇATLAK UCU TEKİL

ALANLARIN HESAPLANMASI

Bu tezde gerinim sertleşmesi gösteren malzemeler ile şekil hafızalı alaşımlar

(ŞHA) arasındaki benzerliklerden faydalanılarak kenar çatlaklı ŞHA’ların düzlem ger-

ilmesi ve Mod I yükleme altında çatlak ucu tekillik dağılımları incelenmiştir. Gerinim

sertliği gösteren malzemelerin çatlak ucu gerilme dağılımını yaklaşık veren HRR yönte-

mi ŞHA’lar için kullanılmış ve süper elastik özellik gösteren ŞHA’ların gerilim-gerinme

grafiğindeki transformasyon platosu gerinim sertleşmesi gösteren malzemeler için kul-

lanılan Ramberg-Osgood denklemi ile gösteril-miştir. NiTi CT (Compact Tension)

çatlaklı nümunesinin çatlak ucu alan dağılımları HRR asimtotik denklemleri ile ince-

lenmiş ve sonuçlar Williams’ın asimtotik denklemleri kullanılarak elde edilen sonuçlarla

kıyaslanmıştır. ŞHA’larda çatlak ucu dağılımlarının HRR yaklaşımı ile daha doğru

yansıtıldığı görülmüştür. Ek olarak, çatlak ucu etrafındaki transformasyon bölgesi

ŞHA’larda transformasyonu tanımlayan termodinamik kuvvet denklemi ve asimtotik

gerilim denklemleri birlikte kullanılarak çizilmiştir. Transformasyon denklemleri trans-

formasyon bölgesi miktarı için makul sonuçlar vermiş, tam martenzitik bölgenin mik-

tarı ise HRR metod ile daha doğru değerlendirilmiştir. HRR metodun ŞHA’larda

kullanılması ayrıca ABAQUS sonlu elemanlar modelinde bir CT çatlaklı numune mod-

ellenerek de test edilmiştir. ABAQUS’te ŞHA’ların davranışını modellemek için termo-

mekanik etkileşim içeren bir altprogram (UMAT) kullanılmıştır. Sonlu elemanlar mod-

elinin çatlak ucu alanları ve transformasyon bölgesi için verdiği sonuçlar da asimtotik

denklemden elde edilen sonuçlarla kıyaslanmış ve süper elastik ŞHA’larda transfor-

masyon bölgesi içinde çatlak ucu dağılımlarının HRR yöntemi kullanılarak değerlendiri-

lebileceği sonucuna varılmıştır. Konuyu tamamlamak için enerji kaybı ve J integralinin

alana bağlı davranışı çalışılmış ve enerjinin paylaşımı tartışılmıştır.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Shape Memory Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. Pseudoelastic Behavior . . . . . . . . . . . . . . . . . . . . . . . 4

1.2. Nitinol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3. Fracture Studies on SMAs . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1. Crack Tip Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2. CRACK TIP SINGULARITY . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Williams’ Eigenfunction Solution . . . . . . . . . . . . . . . . . . . . . 14

2.2.1. Stress Intensity Factor, KI . . . . . . . . . . . . . . . . . . . . . 17

2.3. HRR Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1. Ramberg-Osgood Model . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2. Application of Ramberg-Osgood Model to Transformation in SMAs 24

2.3.3. Stress Function Formulation of Hutchinson using Ramberg-Osgood 24

2.3.4. Amplitude of Stress Function . . . . . . . . . . . . . . . . . . . 28

3. EVALUATION OF CRACK TIP FIELDS IN SMAs USING HRR . . . . . . 32

3.1. Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2. Evaluation of Mechanical Constants, α and n, of Ramberg-Osgood Equa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3. Fracture Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4. Crack Tip Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



vii

3.5. Applicability of HRR Formulation . . . . . . . . . . . . . . . . . . . . . 46

4. EVALUATION OF THE TRANSFORMATION REGION AROUND CRACK

TIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1. The Transformation Function Governing the Forward Phase Transfor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2. Calculation of the Transformation Region . . . . . . . . . . . . . . . . 53

4.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5. COMPUTATIONAL EVALUATION OF CRACK TIP FIELDS AND TRANS-

FORMATION REGION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1. Computational Modeling of Tensile Tests Specimen . . . . . . . . . . . 61

5.2. Computational Modeling of The Edge Cracked Specimen . . . . . . . . 64

5.2.1. Evaluation of Fracture Parameters . . . . . . . . . . . . . . . . 65

5.2.2. Evaluation of Crack Tip Fields . . . . . . . . . . . . . . . . . . 65

5.2.3. Evaluation of Transformation Regions . . . . . . . . . . . . . . 70

5.2.3.1. The Effect of Thermomechanical Coupling on Transfor-

mation Region . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.4. Sensitivity of Transformation Region Estimation on Mechanical

Constant n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6. ON J-INTEGRAL AND ENERGY DISSIPATION IN SUPERELASTIC SHAPE

MEMORY ALLOYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1. Path Independent J Integral . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2. Energy Dissipation in SMAs . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3. Calculation of Energy Dissipation in a Loading-Unloading Cycle . . . . 85

6.4. J-Integral and Energy Release Rate . . . . . . . . . . . . . . . . . . . . 87

7. SUMMARY AND CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . 93

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

APPENDIX A: STRESS FUNCTION FORMULATION . . . . . . . . . . . . 103



viii

LIST OF FIGURES

Figure 1.1. Austenite (A) and martensite (M) crystal structure in a Ni-Ti SMA:

cubic A on the left and monoclinic M martensite on the right (Only

Ti atoms are shown) [1] . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 1.2. Different variants of martensite in tetragonal lattice [1] . . . . . . 2

Figure 1.3. Stress-temperature diagram of SMAs [2] . . . . . . . . . . . . . . . 3

Figure 1.4. Stress-strain-temperature diagram of an SMA describing shape mem-

ory effect [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.5. Pseudoelastic stress-strain diagram [2]. . . . . . . . . . . . . . . . 5

Figure 1.6. Modified stress field as a result of martensitic transformation [3] . 8

Figure 2.1. Notched infinite 2D domain [4] . . . . . . . . . . . . . . . . . . . . 14

Figure 2.2. Edge cracked plate under tensile loading [5] . . . . . . . . . . . . . 18

Figure 2.3. J-integral vs contour number for a nonlinearly elastic material and

an SMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.4. Opening stress distribution of an SMA ahead of crack tip, θ = 0 . 20

Figure 2.5. Irwin’s correction to predict the stress distribution in the austenitic

region [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



ix

Figure 2.6. Stress-strain relations of non-linearly elastic and elastic-plastic ma-

terials [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.7. Ramberg-Osgood type stress-strain relation [7] . . . . . . . . . . . 23

Figure 2.8. Distribution of the θ dependent parts of stresses for n = 5 . . . . . 27

Figure 2.9. Distribution of the θ dependent parts of stresses for n = 15 . . . . 27

Figure 2.10. Distribution of the θ dependent parts of the stresses in LEFM . . 28

Figure 2.11. Contour of J around a crack [5] . . . . . . . . . . . . . . . . . . . 29

Figure 2.12. In vs n [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.1. Geometry of edge cracked specimen . . . . . . . . . . . . . . . . . 32

Figure 3.2. Stress-strain relation of NiTi [8] . . . . . . . . . . . . . . . . . . . 33

Figure 3.3. Stress vs plastic strain in log-log scale . . . . . . . . . . . . . . . . 34

Figure 3.4. Stress-strain relation showing the yield offset [9] . . . . . . . . . . 35

Figure 3.5. Ramberg-Osgood equation fit to loading path . . . . . . . . . . . . 36

Figure 3.6. Distribution of θ dependent part of stresses for n = 28 . . . . . . . 37

Figure 3.7. σrr (MPa) distribution around crack tip using HRR, x is measured

from crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



x

Figure 3.8. σθθ (MPa) distribution around crack tip using HRR, x is measured

from crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.9. σrθ (MPa) distribution around crack tip using HRR, x is measured

from crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 3.10. σeqv (MPa) distribution around crack tip using HRR, x is measured

from crack tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.11. Comparison of σrr (MPa) distribution (HRR vs Williams), x is

measured from crack tip . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 3.12. Comparison of σrr (MPa) distribution near the crack tip (HRR vs

Williams), x is measured from crack tip . . . . . . . . . . . . . . . 42

Figure 3.13. Comparison of σθθ (MPa) distribution (HRR vs Williams), x is

measured from crack tip . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 3.14. Comparison of σθθ (MPa) distribution near the crack tip (HRR vs

Williams), x is measured from crack tip . . . . . . . . . . . . . . . 43

Figure 3.15. Comparison of σrθ (MPa) distribution (HRR vs Williams), x is

measured from crack tip . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.16. Comparison of σrθ (MPa) distribution near the crack tip (HRR vs

Williams), x is measured from crack tip . . . . . . . . . . . . . . . 44

Figure 3.17. Comparison of σeqv (MPa) distribution (HRR vs Williams), x is

measured from crack tip . . . . . . . . . . . . . . . . . . . . . . . 44



xi

Figure 3.18. Comparison of σeqv (MPa) distribution near the crack tip (HRR vs

Williams), x is measured from crack tip . . . . . . . . . . . . . . . 45

Figure 3.19. Comparison of opening stress distribution ahead of the crack tip . 45

Figure 3.20. σrr
σθθ

distribution near crack tip according to HRR . . . . . . . . . . 47

Figure 3.21. εplrr
εelrr

near crack tip, x is measured from crack tip . . . . . . . . . . . 48

Figure 3.22.
εplθθ
εelθθ

near crack tip, x is measured from crack tip . . . . . . . . . . . 49

Figure 3.23.
εplrθ
εelrθ

near crack tip, x is measured from crack tip . . . . . . . . . . . 49

Figure 4.1. Transformation stresses σMS, σMF , σAS and σAF . . . . . . . . . . 54

Figure 4.2. En of transformation zone (z = 0) and size of martensitic region

(z = 1) estimations using FHRR
z (red points) and FLEFM

z (blue

points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 4.3. Volume fraction contours calculated using FHRR
z . . . . . . . . . . 56

Figure 4.4. DIC measured contour plot of εeqv [8] . . . . . . . . . . . . . . . . 57

Figure 4.5. εeqv distribution around crack tip (HRR vs Williams) . . . . . . . 57

Figure 5.1. Dimension (mm) of the dog-bone specimen . . . . . . . . . . . . . 61

Figure 5.2. Stress-strain diagram of the 1st material . . . . . . . . . . . . . . . 62

Figure 5.3. Stress-strain diagram of the 2nd material . . . . . . . . . . . . . . 62



xii

Figure 5.4. Stress-strain diagram of the 3rd material . . . . . . . . . . . . . . 63

Figure 5.5. Geometry of the finite element model for fracture tests . . . . . . 64

Figure 5.6. Mesh on CT specimen . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 5.7. Comparison of equivalent stress distribution around the crack tip

of the 1st model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.8. Comparison of equivalent stress distribution around the crack tip

of the 2nd model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.9. Comparison of equivalent stress distribution around the crack tip

of the 3rd model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 5.10. Comparison of opening stress distribution ahead of the crack tip,

1st model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.11. Comparison of opening stress distribution ahead of the crack tip,

2nd model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.12. Comparison of opening stress distribution ahead of the crack tip,

3rd model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.13. Crack tip dominant zones in an elastic-plastic material [5] . . . . . 70

Figure 5.14. Crack tip dominant zones in an SMA . . . . . . . . . . . . . . . . 70

Figure 5.15. Comparison of the transformation and martensitic regions around

the crack tip, 1st model (green lines indicate finite element results) 71



xiii

Figure 5.16. Comparison of the transformation and martensitic regions around

the crack tip, 2nd model (green lines indicate finite element results) 72

Figure 5.17. Comparison of the transformation and martensitic regions around

the crack tip, 3rd model (green lines indicate finite element results) 72

Figure 5.18. Heat flux (mW/mm2) around the crack tip with h = 0.05 W/m2K 73

Figure 5.19. Heat flux (mW/mm2) around the crack tip with h = 100 W/m2K 73

Figure 5.20. Ramberg-Osgood curve fit (solid lines) to stress-strain curve of the

second model (dashed line) with different n’s . . . . . . . . . . . . 76

Figure 6.1. Closed J-integral contour around a crack tip [5] . . . . . . . . . . 78

Figure 6.2. Mesh distribution on edge cracked specimen . . . . . . . . . . . . 79

Figure 6.3. J-integral vs contour number in a linearly elastic material . . . . . 79

Figure 6.4. J-integral vs contour number in a nonlinearly elastic material . . . 80

Figure 6.5. J-integral vs contour number in an SMA modeled with thermome-

chanically coupled ZM and uncoupled Auricchio models . . . . . . 81

Figure 6.6. J-integral vs contour number in an elastic-plastic material . . . . 82

Figure 6.7. Geometry of NiTi rod modeled in ABAQUS . . . . . . . . . . . . 85

Figure 6.8. Stress-strain diagram of NiTi bar . . . . . . . . . . . . . . . . . . 86

Figure 6.9. Temperature vs time . . . . . . . . . . . . . . . . . . . . . . . . . 87



xiv

Figure 6.10. Strain energy per unit thickness vs crack length [10] . . . . . . . . 89

Figure 6.11. Geometry of the edge cracked specimen . . . . . . . . . . . . . . . 90

Figure 6.12. Free energy vs crack length . . . . . . . . . . . . . . . . . . . . . . 91



xv

LIST OF TABLES

Table 4.1. Transformation and martensitic region estimations (mm) according

to εeqv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 5.1. Mechanical properties of Nitinol used . . . . . . . . . . . . . . . . 59

Table 5.2. Material properties used in the ZM model for the 1st material . . . 60

Table 5.3. Material properties used in the ZM model for the 2nd material . . . 60

Table 5.4. Material properties used in the ZM model for the 3rd material . . . 60

Table 5.5. Fracture parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 5.6. Effect of thermomechanical coupling on transformation region size 74

Table 5.7. Transformation and martensitic region sizes calculated with differ-

ent n values for the first model (n = 20 was used) . . . . . . . . . 75

Table 5.8. Transformation and martensitic region sizes calculated with differ-

ent n values for the second model (n = 8 was used) . . . . . . . . . 75

Table 6.1. Material properties used in the ZM model for the NiTi rod . . . . 85

Table 6.2. Energy calculations on the edge cracked specimen with different

crack lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92



xvi

LIST OF SYMBOLS

a Crack Length

ae Effective Crack Length

A Austenite

A1, u0y Rigid Body Parameters

Af Austenite Finish Temperature

A0
f Austenite Finish Temperature at Zero Stress

As Austenite Start Temperature

B Specimen Thickness

Cp Specific Heat Capacity

D Dissipation

D1 Intrinsic Dissipation

D2 Thermal Dissipation

E Young’s Modulus

EA Young’s Modulus of Austenite

EM Young’s Modulus of Martensite

F External Work

Fz Transformation Function

FHRR
z Transformation Function with Equations of Hutchinson

FLEFM
z Transformation Function with Equations of Williams

G Energy Release Rate

h Convection Coefficient

In Integration Constant in HRR Solution

J J-Integral

J tip J-Integral at Crack Tip

J∞ Far-Field J-Integral

K Stress Intensity Factor

K Elastic Moduli Tensor

KA Elastic Moduli Tensor of Austenite



xvii

KM Elastic Moduli Tensor of Martensite

KI Mode-I Stress Intensity Factor

M Martensite

Mf Martensite Finish Temperature

Ms Martensite Start Temperature

n Hardening Coefficient

P Applied Load

q Heat Flux

r Radial Polar Coordinate or Heat Genetation

rm Full Martensitic Region Size

rtr Phase Transformation Region Size

s Constant Determining Singularity or Entropy Density

S Deviatoric Stress

T Temperature

T0 Reference Temperature

T−stress Stress Component Parallel to Crack Plane

u Displacement

ux, uy Displacement Field Components

U Stored (Strain) Energy

V0 Initial Volume

W Specimen Width

x, y Rectangular Coordinates

z Martensite Volume Fraction

α Constant Determining Yield-Offset

Γ J−Integral Contour

δ Kronecker Delta

εA Deformation Tensor of Austenite

εel Elastic Strain

εeqv Equivalent Strain

εM Deformation Tensor of Martensite

εMF Martensite Transformation Finish Strain



xviii

εMS Martensite Transformation Start Strain

εpl Plastic Strain

εtr Orientation Tensor of Martensite

εxx, εyy, εxy Strain Field Components in Rectangular Coordinates

εy Yield Strain

εrr, εθθ, εrθ Strain Field Components in Polar Coordinates

θ Angular Polar Coordinate

κ Amplitude of Stress Function

λ Eigenvalue

µ Shear Modulus

ν Poisson’s Ratio

π Pi Number

Π Potential Energy

ρ Density

σA Stress in Austenite Region

σAF Austenite Transformation Finish Stress

σAS Austenite Transformation Start Stress

σM Stress in Martensite Region

σMF Martensite Transformation Finish Stress

σMS Martensite Transformation Start Stress

σRF Orientation Finish Stress

σRS Orientation Start Stress

σtr Transformation Stress

σy Yield Stress

σxx, σyy, σzz Stress Field Components in Rectangular Coordinates

σrr, σθθ, σrθ Stress Field Components in Polar Coordinates

τxy, τxz, τyz Shear Stresses

σ∞ Far-Field Stress

φ Stress Function

ψ Helmholtz Free Energy



xix

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

ASTM American Society for Testing and Material

CT Compact Tension

C-D Clausius Duhem

DIC Digital Image Correlation

FE Finite Elements

HRR Hutchinson-Rise-Rosengren

LEFM Linear Elastic Fracture Mechanics

NiTi Nickel Titanium

SMA Shape Memory Alloy

SME Shape Memory Effect
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1. INTRODUCTION

1.1. Shape Memory Alloys

Shape memory alloys (SMAs) are a special group of materials that recover back

to their original shapes when subjected to certain loading and temperature. They

are mainly present at two different solid phases, namely austenite (A) and martensite

(M). These phases differ from each other by their crystal structure which gives them

different mechanical properties. Austenite, referred to as the parent phase, is the high

temperature phase typically present in a cubic structure; while martensite, the low

temperature phase, is in tetragonal, orthorhombic or monoclinic structure as shown in

Figure 1.1 [2].

Figure 1.1. Austenite (A) and martensite (M) crystal structure in a Ni-Ti SMA: cubic

A on the left and monoclinic M martensite on the right (Only Ti atoms are shown) [1]

In the case of an SMA, the mechanism behind the ability of sustaining large defor-

mation and shape recovery is the solid-to-solid phase transformation called ”marten-

sitic phase transformation”. The martensitic transformation occurs as a result of a

movement of many atoms in the alloy [2, 11]. Each martensitic crystal formed can be

oriented in a different direction; called a variant [1, 2].
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Figure 1.2. Different variants of martensite in tetragonal lattice [1]

Figure 1.2 shows the possible variants of a martensite as a result of transformation

from cubic austenite to tetragonal martensite [1]. The martensite that consists of

different variants in the lattice is called twinned martensite.

In the absence of loading, martensitic transformation occurs as a result of tem-

perature change. There are four important temperature points in the process which are

characteristics of the alloy. The forward transformation, from austenite to martensite,

starts with the martensite start temperature (Ms) and completes at the mastensite

finish temperature (Mf ). Similarly, the reverse transformation, from martensite to

austenite, initiates at the austenite start temperature (As) and finishes at austenite

finish temperature (Af ) [2]. In the case of a martensitic transformation under mechan-

ical loading, transformation stresses are determined by the characteristic temperatures

Ms, Mf , As and Af as shown in Figure 1.3.
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Figure 1.3. Stress-temperature diagram of SMAs [2]

Decreasing temperature below the forward transformation temperatures (Ms and

Mf ) without loading results in a transformation from austenite to twinned martensite

as shown in Figure 1.4. If a mechanical load is applied to the twinned martensite, it

is possible to obtain detwinned martensite in which the atoms are oriented in a single

direction. If the mechanical loading is released, the detwinned martensite is unloaded

elastically. A reverse phase transformation, from martensite to asutenite, is initiated

by reincreasing the temperature. The phenomenon described above is called the shape

memory effect which enables a complete recovery of the shape.
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Figure 1.4. Stress-strain-temperature diagram of an SMA describing shape memory

effect [2]

The phase transformation under mechanical loading is named pseudoelasticity [2].

In addition to shape recovery, the pseudoelastic behavior enables the sustaining of large

amount of deformation. The pseoduelastic loading path of an SMA is explained in the

next section.

1.1.1. Pseudoelastic Behavior

Pseudoelasticity is a very interesting behavior of an SMA which makes it desirable

in many technological applications. Pseudoelastic SMAs can resist large amount of

deformations upon loading. When the load is released, the deformation is recovered

and the material goes back to its original shape [2].
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Figure 1.5. Pseudoelastic stress-strain diagram [2].

The pseudoelastic behavior is observed under stress induced transformation of

austenite into martensite given that temperature of the material is higher than the

austenite finish temperature (Af ). Above Af , austenite phase starts to be deformed

elastically upto a certain stress value after which the phase transformation starts and

continues until the full martensite phase is obtained. The stresses indicating the start

and the end of the transformation are martensite start (σMS) and finish (σMF ) stresses.

Between these stress levels, the material resists high strain values compared to other

engineering materials even though the stress does not increase much. In this region, the

slope of the stress-strain curve is very low under quasi-static loading conditions. After

σMF , the material that is in full martensite phase continues to be deformed elastically;

further increase in the loading results in plastic deformation of martensite. During the

unloading process, the martensite phase initially follows a linear path until austenite

start stress (σAS) is reached; at that point, the reverse transformation initiates, the

transformation is completed at a certain stress value which is called the austenite

finish stress (σAF ). After σAF , the austenite phase follows the same path with loading

until zero stress is obtained. Although total deformation is recovered, the loading and

unloading paths differ from each other as shown in Figure 1.5. For that reason, this

behavior is named pseudoelastic, not elastic. In addition, the hysteresis loop indicates

that there is some energy dissipation as a result of phase transformation [2].
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There is a strong temperature dependence in the mechanical behavior of an SMA.

The reason for that is explained by the formation of the transformation strains and the

associated work spent for it [2]. Theoretically, a linear relation is shown between the

transformation stresses and the temperature with the Clausius-Clapeyron relation [2].

Figure 1.3 shows the relation between stress and temperature relation schematically [2].

1.2. Nitinol

Shape memory alloys are present in Nickel-Titanium, Copper, Iron, Silver and

Gold based forms. Among various compositions, Nickel-Titanium (NiTi) based shape

memory alloys are widespread [2,12,13]. Shape memory effect (SME) in an equiatomic

NiTi alloy is discovered in early 1960s by Buehler and his coworkers [2]. Athough it

was expensive, it was highly used due to its strong SME behavior.

Nickel rich Nitinol exhibits pseudoelastic behavior over a wide range of temper-

ature. It is observed that a pseudoelastic NiTi can sustain and recover approximately

8% strain [13]. Important characteristics of NiTi such as SME and pseudoelastic-

ity make it an attractive material in many technological applications. They have a

wide range of applications in the aerospace and bio-medical applications. Due to its

bio-compatibility and high resistance to corrosion, NiTi is especially preferred in bio-

medical applications. NiTi is used predominantly in cardiovascular and orthodontic

applications such as dental braces and cardiovascular stents. Because of its important

characteristics, the SMA studied in this thesis is also chosen to be a pseudoelastic NiTi.

1.3. Fracture Studies on SMAs

Martensitic phase transformation in SMAs has considerable effects on its fracture

behavior. Since the phase transformation starts immediately around the crack tip due

to high stresses, the crack tip fields cannot be evaluated using classical methods. In

the literature, the number of studies directly on crack tip fields are limited. In most of

the studies, transformation region size around the crack tip and its effects on fracture

parameters are studied by experimental, numerical or analytical methods but results
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still require further discussion and improvement. In the following section, a summary

of these studies performed by previous researchers are given.

1.3.1. Crack Tip Fields

Maletta and Furgiuele [6] investigated the extent of the transformation region

and the stress distribution around the crack tip analytically neglecting plastic yielding

of the martensite phase. They calculated the stress distribution using a piecewise

formulation and analyzed the martensitic and austenitic regions separately. In the

austenitic region where the material is linearly elastic, the asymptotic stress equation

of Williams [14] with Irwin’s correction was used:

σA(r) =
KIe√

2π(r −∆r)
(1.1)

KIe is the stress intensity factor calculated as KIe = σ∞
√
πae and ae is the effective

crack length calculated with Irwin’s correction, ae = a + ∆r. A constant stress is

assumed in the transformation region and this limitation is overcome in a later work

[15]. Stress distribution in the martensitic region is calculated by using the modified

constitutive relations for bilinear materials:

σM =
1

2(1− ν) + (α−1 − 1)

[
2(1− ν)

KIe√
2πr

+ (α−1 − 1)σtr − εlEA
]

(1.2)

where α = EM
EA

, ν is the Poisson’s ratio, EA and EM are the elastic modules of austen-

ite and martensite and εl is the transformation strain. To use Equations 1.1 and 1.2,

transformation region size should be calculated as well. In a later work, Maletta and

Furgiuele [16] proposed two different stress intensity factors, KIA and KIM , calculated

with stress distributions in the austenitic and martensiteic regions. They compared

the values of KIA and KIM normalized by K∞I (stress intensity factor calculated with

the far field stress, K∞I = σ∞
√
πa) and observed that the ratio of KIA

KI∞
is always

greater than unity while the ratio of KIM
KI∞

is smaller. Because fracture always occurs

in the martensitic region, they considered KIM as a more suitable fracture control
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parameter. A toughening effect of phase transformation is observed by Maletta and

Furgiuele. It was previously noted by Birman [17] that the effect of martensitic phase

transformation on stress intensity factor was relatively small. According to his studies,

mechanical properties of the austenite is adequate to obtain the stress intensity fac-

tor approximately, however stress redistribution due to phase transformation was not

included in his study.

Figure 1.6. Modified stress field as a result of martensitic transformation [3]

Fracture toughening is one of the most important effects of the martensitic phase

transformation that is observed by some other researchers as well. this is discussed

earlier by McMeeking and Evans [3]. They noted that stress induced martensitic trans-

formation increased the toughness as a result of a residual strain field that restricts

crack opening. They showed this effect calculating the change in the stress intensity

factor as a result of martensitic transformation using Eshelby’s technique, see Figure

1.6. Yi and Gao [18] analytically analyzed the the effect of martensitic transformation

on stress intensity of the crack tip. They first observed the shape and the size of the

transformation region using Williams’ asymptotic stress equations and the constitutive

model of Sun and Hwang. Next, they calculated the change in stress intensity factor

using Eshelby’s inclusion and weight function method. They observed a reduction

in the crack tip stress intensity as a result of martensitic transformation around the
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crack tip and an increase in toughness. The same effect is also studied by Freed and

Banks-Sills [19] numerically. who reported that the energy dissipation results in trans-

formation toughening in SMAs. They calculated the transformation region in a way

similar to Yi and Gao using the constitutive model of Panoskaltsis et al. and modeled

the crack propagation using a cohesive zone model.

Fracture toughening was also observed by Haghgouyan et al. [8] in their experi-

mental and computational investigation on fracture behavior of an edge cracked NiTi

plate. They compared the critical stress intensity factor calculated for the edge cracked

specimen to that of a transformation suppressed NiTi tested at 100◦C. Their results

clearly showed the toughening occurred as a result of martensitic transformation.

Baxevanis and Lagoudas [20] studied a center cracked infinite SMA plate under

Mode I in which they included phase transformation and plasticity. In their analysis,

constant stress and temperature was assumed during phase transformation. Dugdale-

Barenblatt model developed for non-hardening elastic-plastic materials was used in a

strip like region assumed for the transformation and plastic zones extending along the

line of crack. Effective crack length was calculated adding transformed and plastically

deformed regions to the physical length of the crack. In Dugdale-Barenblatt model,

it is assumed that the crack surfaces are loaded by the remote stress σ∞ and also

by a normal cohesive traction. These two loadings create the same amount of stress

intensity factor of opposite signs. As a result, there is no singularity observed at the

crack tip which means stresses are bounded everywhere in the strip-like region.

There are some numerical works on crack tip fields in shape memory alloys:

Wang [21] used finite elements to study the evolution of stress-strain and martensitic

transformation in front of a notch in a NiTi plate using a phenomenological model

developed by Auricchio et al. They concluded that the transformation increases the

required stress for the plastic deformation in front of the crack tip.
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Baxevanis et al. [22] worked on crack tip fields for a plane strain problem of a

pseudoelastic SMA using phenomenological model of Lagoudas et al. in finite elements.

The problem was formulated with the boundary layer approach introduced by Rice

[23]. A displacement boundary condition was implied on the outer boundary with the

displacement field equations associated with the stress intensity factor. They included

plastic yielding of the martensite phase near the crack tip; the stress distribution in

plastically deformed martensitic region is observed using formulation of Hutchinson

for strain hardening materials. In their study, transformation and plastically deformed

region boundaries were observed. According to their numerical results, plastic zone size

decreases substantially as a result of the phase transformation. They also observed

the path-dependence of the J-integral. However, they claimed that the difference

between J-integrals calculated on different contours were very small compared to the

elastic-plastic materials. Additionally, they observed the effect of the elastic modulus,

transformation strain and the temperature on mechanical fields around the crack tip.

Falvo et al. [24] also studied the evolution of the martensitic phase transformation

near the crack tip in a NiTi alloy. They used the classical LEFM stress intensity factor

calculation and the modified version based on Irwin’s correction. They concluded that

the calculations done with Irwin’s correction yielded closer results to the ones they

obtained from finite elements.

Hazar et al. [25] calculated the transformation region around the crack tip of an

SMA plate using asymptotic stress equations of Williams and the transformation func-

tion proposed by Zaki and Moumni [26]. They compared the results to experimental,

analytical and numerical predictions in the literature for plane stress and plane strain

conditions. They stated that, their analytical result gives a reasonable estimate for

the shape and the size of the transformation region once the stress intensity factor is

calculated properly.

There are some experimental investigations on fracture of pseudoelastic NiTi as

well: Wang et al. [27] analyzed the fracture behavior experimentally and computation-

ally and calculated the transformation toughness following the procedure described by
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ASTM standard E399 [28], and conducted fracture tests using a compact tension (CT)

specimen.

Daly et al. [29] used digital image correlation (DIC) to observe the strain distribu-

tion in an edge cracked thin NiTi under Mode I. They calculated the fracture toughness

using an analytic approach based on LEFM and obtained an empirical relation between

the stress intensity factor and the transformation region.

Robertson et al. [30] used X-ray diffraction to obtain the strain field around the

crack tip of an edge cracked thin NiTi under Mode I and observed the crystallography

of the transformation zone. In their results, they concluded that stress redistribution

as a result of the phase transformation reduces the crack tip stresses and increases the

fracture resistance.

Gollerthan et al. [31] also performed fracture experiments on a NiTi CT spec-

imen. They calculated the fracture toughness using empirical relation in the form

K = P
B
√
W
f( a

W
) where B, W and f( a

W
) are calculated according to the ASTM stan-

dard [28]. The transformation zone estimation was performed using the calculated

stress intensity factor and Irwin’s correction.

Mutlu [32] did fracture tests on thin NiTi plates under different loading rates

and Mode I. She [32] obtained the displacement field around the crack tip using DIC

and used the displacement field in the calculation of the critical stress intensity factor.

Transformation region was also evaluated using equivalent strain distribution around

the crack tip. Her results showed that thermomechanical coupling observed in the NiTi

affects the displacement distribution and the size of the transformation region around

the crack tip.

1.4. Objectives

It is clear that crack tip fields need be analyzed in more detail to understand frac-

ture behavior of SMAs. Studies in the literature show that martensitic transformation
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in the vicinity of a crack tip has significant effects on the fracture parameters. There

has been a number of attempts to evaluate crack tip fields in SMAs using analytical,

computational or experimental methods. However, most of them are not capable in

representing the exact behavior. In most of the studies, the classical stress intensity

factor, K, is used to characterize the crack tip stress field. Although it works properly

for linearly elastic materials, it is only possible to characterize a very small region with

the stress intensity factor in case of SMAs. Therefore, there is still a need for further

analyze on crack tip fields in SMAs.

The aim of this thesis is to investigate the crack tip singular fields of a thin edge

cracked SMA plate under Mode I using an analytical model originally developed for

elastic-plastic materials. Ramberg-Osgood stress-strain relation for strain hardening

materials is used to represent the stress plateau during the martensitic transformation

in pseudoelastic SMAs which cannot be represented using linear stress-strain relation.

The crack tip fields are analyzed using asymptotic equations of HRR which are de-

rived from the Ramberg-Osgood model. HRR equations are also used to estimate the

transformation region around the crack tip. In addition, energy dissipation and path

dependence of J-integral are studied to understand the physical interpretation of the

J-integral in the SMAs.

The outline of the thesis is as follows: In Chapter 2, the eigenfunction solution of

Williams and HRR solution for crack tip singular fields are summarized. For the HRR

formulation, first Ramberg-Osgood constitutive relation is presented. In Chapter 3,

crack tip fields in a thin edge cracked Nitinol plate under Mode I loading are evaluated

by using both asymptotic equations of Williams and HRR. The geometry is chosen to

be the same as the one studied experimentally by Haghgouyan et al. [8]. A comprehen-

sive comparison of the asymptotic equations are done together with the experimental

results, and the application of HRR to SMAs are discussed. In Chapter 4, transforma-

tion and full martensitic regions around the crack tip are estimated analytically. The

asymptotic stress equations are used together with the phenomenological model pro-

posed by Zaki and Moumni [26]. Additionally, transformation region is evaluated using

the equivalent strain and the results are compared to the experimental ones. Chapter
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5 is devoted to the computational analysis of the crack tip fields and the phase trans-

formation region using finite elements. Three set of NiTi specimens obtained from

Mutlu [32] and Gou [33] are used. Uniaxial tensile and fracture tests are simulated in

ABAQUS using a separate UMAT sobroutine written to account for thermomechanical

coupling. Computational results are compared to the analytical evaluations obtained

in this work. In Chapter 6, path-dependence of J-integral in the SMAs and energy

dissipation during the martensitic phase transformation are studied. A computational

analysis is performed on an edge cracked SMA plate using thermomechanically coupled

ZM model [26] to understand the physical meaning of the J-integral in the SMAs.
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2. CRACK TIP SINGULARITY

2.1. Introduction

Stress-strain relations in shape memory alloys are mostly formulated with some

phenomenological constitutive models which are then implemented into finite element

programs as UMATs. In the study of fracture mechanics, crack tip fields are the focus,

and the phase transformation that occurs in the vicinity of the crack that affects the

field of interest becomes an important issue as well. In the literature, mostly asymptotic

equations of LEFM are used in the evaluation of the crack tip fields [6, 8, 20,25].

Asymptotic equations of LEFM are developed by Williams [14] as a set of equa-

tions to observe the stress distribution around the crack tip of an elastic body. Although

it is derived for only linearly elastic materials, Williams’ solution constructs a solid base

in the analysis of fracture of other types of materials such as non-linearly elastic or

elastic-plastic. Using a similar method, Hutchinson [7] analyzed the crack tip fields of

elastic-plastic materials. In the following sections, both solutions are presented.

2.2. Williams’ Eigenfunction Solution

Figure 2.1. Notched infinite 2D domain [4]
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Williams [34] analyzed the stress singularity in a notched infinite 2D domain as

shown in Figure 2.1, and used an eigenfunction formulation. The cracked medium is a

special form of this geometry when α = ±π. To analyze the stress field near the crack

tip, he proposed a stress function which satisfies the following biharmonic equation:

54φ = 0 (2.1)

where φ is the Airy stress function which is related to the stresses in polar coordinates

as follows:

σrr =
1

r2

∂2φ

∂θ2
+

1

r

∂φ

∂r

σθθ =
∂2φ

∂θ2
(2.2)

σrθ =− 1

r

∂2φ

∂r∂θ
+

1

r2

∂φ

∂θ

Williams assumed a stress function of the following form:

φ = rλ+2f(θ, λ) (2.3)

= rλ+2[Aλcosλθ + Cλsinλθ +Bλcos(λ+ 2)θ +Dλsin(λ+ 2)θ]

where Aλ, Bλ, Cλ and Dλ are constants to be determined and λ’s are the eigenvalues

of the stress function. Williams’ stress function is in a separable form in terms of r

and θ. Stress components σrr, σθθ and σrθ are derived from the stress function using

Equation 2.2, and using the symmetry in the geometry following stresses are obtained:

σθθ = (λ+ 1)(λ+ 2)rλ(Aλcosλθ +Bλcos(λ+ 2)θ)

σrr = rλ[Aλ(λ+ 2)− λ2]cosλθ + rλ[Bλ(λ+ 2)(1− (λ+ 2))]cos(λ+ 2)θ (2.4)

σrθ = (λ+ 1)rλ[Aλλsinλθ +Bλ(λ+ 2)sin(λ+ 2)θ]
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It is obvious from Equations 2.4 that λ should be smaller than zero in order to

have a stress singularity as r goes to zero. On the other hand, strain energy should be

bounded which requires that λ > −1 should be satisfied as well [4, 5].

In order to find the eigenvalues (λs) of the stress function, boundary conditions

are used:

σθθ = σrθ = 0 ; θ = ±π (2.5)

The boundary conditions are only satisfied when:

λ = 0,±1

2
,±1, ... (2.6)

Therefore, as r goes to zero, the leading term is λ = −1
2

which yields the famous square

root singularity for the stress field near the crack tip. Using the second boundary

condition, σrθ(π) = 0, the relation A = 3B is obtained, and the stresses took the

following form as r goes to zero:

σθθ =
A

r
1
2

[
3

4
cos

θ

2
+

1

4
cos

3θ

2
]

σrθ =
A

r
1
2

[
1

4
sin

θ

2
+

1

4
sin

3θ

2
] (2.7)

σrr =
A

r
1
2

[
5

4
cos

θ

2
− 1

4
cos

3θ

2
]

From Equations 2.7, it is observed that all stress components near the crack tip are

proportional to a constant, A, which is to be determined.



17

2.2.1. Stress Intensity Factor, KI

The constant A in Equations 2.7 is replaced with the stress intensity factor for

Mode I, KI , as follows:

A =
KI√
2π

(2.8)

The stress intensity factor determines the amplitude of the crack tip singular stresses

which means stress and strain components near the crack tip increase in proportion

to KI . Replacing A with KI , asymptotic stress equations of Williams are written as

follows:

σrr =
KI√
2πr

[5
4
cos(

θ

2
)− 1

4
cos(

3θ

2
)
]

σθθ =
KI√
2πr

[3
4
cos(

θ

2
) +

1

4
cos(

3θ

2
)
]

(2.9)

τrθ =
KI√
2πr

[1
4
sin(

θ

2
) +

1

4
sin(

3θ

2
)
]

To evaluate crack tip fields, KI should be determined. In a very large edge cracked

plate under tensile loading as shown in Figure 2.2, the relation between KI , remote

loading and the geometry is as follows [5]:

KI = σ∞
√
πa (2.10)

where a is the half-crack length, W is the width of the cracked plate and σ∞ is the

remote stress.
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Figure 2.2. Edge cracked plate under tensile loading [5]

All stress intensity factors cannot be evaluated using Equation 2.10. For complex

geometries other ways should be found. Irwin has shown that for an elastic material,

there is a relation between KI and the energy release rate, G, as shown below [5]:

G =
K2
I

E ′
(2.11)

E ′ =E (for plane− stress)

E ′ =
E

1− ν2
(for plane− strain)

Once G is found KI can be calculated from J . For a homogeneous elastic material G

is equal to Rice’s path-independent J-integral [5]:

∫
Γ

(Wdy − σijnjui,xds) (2.12)

where Γ represents the contour of the integral, W is the strain energy density, σij are

the components of the stress tensor, nj is the unit normal of the contour line and

ui represents the displacement vector components. J-integral is path independent for

a homogeneous elastic material. It is shown in Figure 2.3 that J-integral reaches a

constant value after a few contours from the crack tip in a nonlinearly elastic material
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as well. Therefore, for an elastic body, KI can be determined from the J-integral

calculated on any contour around the crack tip using the following relation:

J = G =
K2
I

E ′
(2.13)
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Figure 2.3. J-integral vs contour number for a nonlinearly elastic material and an

SMA

In most studies, asymptotic equations of Williams have been used for crack tip

fields of pseudoelastic SMAs. However, application of Equation 2.13 is problematic in

the case an SMA. In Figure 2.3, it is seen that J-integral is not contour independent

where the phase transformation takes place. Therefore, it is not clear which value of J

should be used in the case of an SMA. In some studies, the use of far-field J-integral

(J∞) together with the elastic modulus of austenite is proposed to calculate KI . Figure

2.4 shows the opening stress distribution ahead of the crack tip in an edge cracked SMA

plate and corresponding stress distribution calculated using the equations of Williams.

It is observed that the phase transformation in SMAs results in a redistribution of

stresses in the vicinity of the crack tip and consequently actual stress distribution

in the transformation zone is different than the predictions obtained using Williams’

solution.
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Figure 2.4. Opening stress distribution of an SMA ahead of crack tip, θ = 0

Although the singular solution of Williams does not characterize crack tip fields

of an SMA completely, it is still used to estimate the transformation region size, rtr.

On θ = 0, along crack line, rtr is estimated as follows [5]:

rtr =
1

2π

(KI

σtr

)2
(2.14)

where σtr is the transformation stress.

There are also some studies on crack tip fields in SMAs that use the solution

of Williams with modifications. For example, Maletta and Furgiuele [6] used Irwins’s

correction that is normally used for plastic zone effect near crack tip. Irwin accounted

for the constant stress distribution in the plastic zone by defining an effective crack

length which is larger than the physical length of the crack [5]. The stress intensity

factor is calculated using the effective crack length, ae which is shown in Figure 2.5.

The stress distribution in the austenitic region is calculated then as follows:

σA =
KIe√

2π(r −4r)
(2.15)
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where

KIe = σ∞
√
πae (2.16)

Figure 2.5. Irwin’s correction to predict the stress distribution in the austenitic

region [6]

There is also an approach developed by Hazar et al. [25] to determine the trans-

formation zone using the asymptotic equations of Williams in a phenomenological SMA

model. They inserted the asymptotic equations into the thermodynamic driving force

for the martensitic transformation. Their results were in a good agreement with the

results of experimental studies.

Although linear elastic fracture mechanics is a reasonable approach to start with,

it is inadequate to evaluate fracture properties of SMAs. In order to characterize

the crack tip fields in an SMA plate, it may be good idea to start with equations of

elastic-plastic behavior. In case of an elastic-plastic material, the crack tip fields are

more complex than these in linearly elastic materials since there is a more compli-

cated relation between stress and strain. Figure 2.6 shows the stress-strain relation of
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non-linearly elastic and elastic-plastic materials. As shown in the figure, there is no

difference between the loading paths of both materials. Therefore, as long as unload-

ing is not included, deformation of an elastic-plastic material can be analyzed with

deformation theory of plasticity using nonlinear elasticity [5, 35].

Figure 2.6. Stress-strain relations of non-linearly elastic and elastic-plastic

materials [5]

2.3. HRR Formulation

Hutchinson, Rice and Rosengren have independently analyzed crack tip condi-

tions using the constitutive relation of Ramberg and Osgood and formulated the be-

havior at the crack tip [7,36]. The formulation is named as HRR in honor of them. In

order to understand the HRR formulation, firstly Rmaberg-Osgood model should be

investigated.
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2.3.1. Ramberg-Osgood Model

Ramberg-Osgood [5] equation defines the stress-strain relation for hardening ma-

terials with no clear yield point as shown below:

ε

εy
=

σ

σy
+ α(

σ

σy
)n (2.17)

where σy is the yield strength, εy is the strain value at the yield point, α and n are the

material constants which are obtained from the uni-axial tension test of the material.

The first term on the right hand side represents the elastic part while the second

term stands for the plastic one. In this study, the following non-dimensionalization is

used [7]:

σ̄ =
σ

σy
, ε̄ =

ε

εy
and l̄ =

l

a
(2.18)

Figure 2.7. Ramberg-Osgood type stress-strain relation [7]
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It is seen in Figure 2.7 that n increases as the level of hardening in the material

decreases. Additionally, α determines the yield off-set.The three dimensional stress-

strain relation based on the Ramberg-Osgood equation is as follows:

ε̄ij = (1 + ν)S̄ij +
1− 2ν

3
σ̄ppδij +

3

2
ασ̄n−1

eqv S̄ij (2.19)

where S is the deviatoric stress tensor and σeqv is the von Mises equivalent stress. In

plane stress, the non-zero strain components are calculated as [7]:

ε̄r = σ̄r − νσ̄θ + ασ̄n−1
eqv (σ̄r −

1

2
σ̄θ)

ε̄θ = σ̄θ − νσ̄r + ασ̄n−1
eqv (σ̄θ −

1

2
σ̄r) (2.20)

ε̄rθ = (1 + ν)σ̄rθ +
3

2
ασ̄n−1

eqv σ̄rθ

2.3.2. Application of Ramberg-Osgood Model to Transformation in SMAs

In hardening materials, stress is proportional to strain until yielding. After yield-

ing, there is a non-linear relation and nearly constant stress is observed with a sub-

stantial increase in strain. In that sense, the martensitic phase transformation of a

pseudo-elastic SMA resembles to the plastic deformation in elastic-plastic materials;

up to the end of transformation, a pseudoelastic SMA follows a similar loading path.

Using this similarity, the transformation plateau in the stress-strain diagram of a pseu-

doelastic SMA is represented by the Ramberg-Osgood relation. The term yielding will

indicate the start of phase transformation in the case of an SMA.

2.3.3. Stress Function Formulation of Hutchinson using Ramberg-Osgood

As in the case of eigenfunction solution of Williams, stresses are derived from a

stress function using Equation 2.2 [7]. The strain field should be compatible with a

kinematically admissible displacement field in order to satisfy the equilibrium under ap-

plied loading [35]; therefore, Ramberg-Osgood relation will be used in the compatibility
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equation together with Equation 2.2. As a result, the following equation governing the

stress function is obtained [7]:

∇4φ+
α

2
{r−1 ∂

2

∂r2
[σn−1
e (2r

∂2φ

∂r2
− ∂φ

∂r
− r−1∂

2φ

∂θ2
)] + 6r−2 ∂2

∂r∂θ
[σn−1
e r

∂

∂r
(r−1∂φ

∂θ
)]

+r−1 ∂

∂r
[σn−1
e (−2r−1∂φ

∂r
− 2r−2∂

2φ

∂θ2
+
∂2φ

∂r2
)]

+r−2 ∂
2

∂θ2
[σn−1
e (−∂

2φ

∂r2
+ 2r−1∂φ

∂r
+ 2r−2∂

2φ

∂θ2
)]} = 0

(2.21)

In the case of a linearly elastic, isotropic and homogeneous medium, the equation that

governs the stress function is only the first term of Equation 2.21 [5].

To obtain the stress field around the crack tip, the solution to the stress function

is assumed to be in the following form [7],

φ(r, θ) = κrsφ̃(θ) (2.22)

where κ is the amplitude of the stress function, s is a constant determining the sin-

gularity and φ̃(θ) is the θ dependent part of the stress function which are all to be

determined. Using Equation 2.2, asymptotic stresses are derived from the stress func-

tion as follows [7]:

σrr =κrs−2(sφ̃+
d2φ̃

dθ2
) = κrs−2σ̃r(θ) (2.23)

σθθ =κrs−2s(s− 1)φ̃ = κrs−2σ̃θ(θ)

σrθ =κrs−2(1− s)dφ̃
dθ

= κrs−2σ̃rθ(θ)

σeqv =κrs−2(σ̃2
r + σ̃2

θ − σ̃rσ̃θ + 3σ̃2
rθ)

1
2 = κrs−2σ̃eqv(θ)

For the sake of simplicity, bar icons will not be used in the remaining parts of

this thesis without forgetting however that field functions are all non-dimensionalized

as previously explained. In order to obtain φ̃(θ), Equation 2.21 must be solved with the
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traction free boundary conditions on the crack faces, σθθ(±π) = σrθ(±π) = 0, which

are satisfied with,

φ̃(±π) =
∂φ̃

∂θ
(±π) = 0 (2.24)

The solution of the governing equation with given boundary conditions is obtained

numerically; a fourth order Runge-Kutta method is applied to obtain the solution, the

boundary value problem is converted into an initial value problem. Using the symmetry

of the crack, the boundary conditions can be also represented as follows [7]:

∂3φ̃

∂θ3
(0) =

∂φ̃

∂θ
(0) = 0 (2.25)

As it is stated by Hutchinson [7], φ̃(0) is set to be one and the remaining initial value,

∂2φ̃
∂θ2

(0), is found by using shooting method (different values are tried to find the correct

initial value which satisfies the constraints in Equation 2.24). s is calculated from the

following relation [7],

s =
2n+ 1

n+ 1
(2.26)

which will be explained at a later point. The problem is solved in MATLAB for different

n values. It is important that theta dependent parts of stresses are normalized with

the maximum value of σ̃eqv because maximum of σ̃eqv should be one as stated by

Hutchinson [7]. Distributions of the θ dependent parts of the asymptotic stresses are

plotted below for n = 5 and n = 15.
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Figure 2.8. Distribution of the θ dependent parts of stresses for n = 5
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Figure 2.9. Distribution of the θ dependent parts of stresses for n = 15

From the figures above it is seen that the values of σ̃rr, σ̃tt, σ̃rt and σ̃eqv change

with n. It should be also noted that the numerical method gives precise results up to

around n = 20. With increasing n, the error in the numerical solution increases which
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is also observed by Hutchinson [7].

Because the governing equations are totally different, φ̃(θ) part of HRR solution

is different than that of the stress function of Williams. Under the same loading,

distribution of the asymptotic stresses around the crack tip vary with the material

property in the case of HRR. While it is always the same for the linearly elastic case

as shown in Figure 2.10. It is also interesting that, the stress singularity depends on

n, in other words, on the mechanical behavior of the material while the square root

singularity is constant in the formulation of Williams.
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0
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1.2

Figure 2.10. Distribution of the θ dependent parts of the stresses in LEFM

2.3.4. Amplitude of Stress Function

In order to identify the amplitude of the stress function, κ, Hutchinson has used

Rice’s J-integral [23]:

∫
Γ

(Wdy − σijnjui,xds) (2.27)
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where Γ represents the contour of the integral as shown in Figure 2.11, W is the strain

energy density written below:

W =

∫ εij

0

σijdεij (2.28)

ui represents the displacement vector components.

Figure 2.11. Contour of J around a crack [5]

Hutchinson has calculated the J-integral using the asymptotic stress equations

in Equation 2.23 and finally obtained the non-dimensional J-integral as follows [7]:

J = ακn+1r(n+1)(s−2)+1In (2.29)

where In is an integration constant which is calculated as follows:

In =

∫ +π

−π
{ n

n+ 1
σ̃n+1
eqv cosθ − [sinθ{σ̃rr(ũθ − ũ.r)− σ̃rθ(ũr + ũ.θ)}

+cosθ(n(s− 2) + 1)(σ̃rrũr + σ̃θθũθ)]}dθ
(2.30)

Rice previously showed that, for linearly or non-linearly elastic materials, J-

integral is path-independent in a homogeneous body [23]. Using the path-independence

of the J-integral, Hutchinson has equated Equation 2.29 to the J-integral calculated
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in the elastic region and obtained the following relation [7]:

ακn+1r(n+1)(s−2)+1In = π(σ∞)2 (2.31)

The right hand side of the equation comes from the well known relation between the

J-integral and the stress intensity factor for the elastic materials, namely [5]:

J =
K2
I

E
(2.32)

In order to satisfy the path-independence of the J-integral, r should be removed from

Equation 2.31 which is only satisfied by the relation in Equation 2.26. Finally, the

amplitude of the stress function, κ, is obtained as [7]:

κ = (
1

α
)

1
1+n (

π

In
)

1
n+1 (σ∞)

2
n+1 (2.33)

or in terms of the J-integral,

κ =
( J

αIn

) 1
1+n (2.34)

As a result, stresses (normalized by yield stress) can be calculated using the equation

below:

σij(r, θ) =
( J

αInr

) 1
1+n σ̃ij(θ) (2.35)

where the values of In are evaluated by Hutchinson [7] as shown in Figure 2.12.
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Figure 2.12. In vs n [7]
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3. EVALUATION OF CRACK TIP FIELDS IN SMAs

USING HRR

3.1. Problem Statement

In this chapter, crack tip fields in an edge cracked NiTi plate are evaluated using

both Williams’ [14] and HRR solutions. A compact tension specimen (CT), made of

NiTi as the one in the experimental study of Haghgouyan et al. [8], is modeled (fracture

tests at room temperature were performed on fatigue pre-cracked CT specimens). Ge-

ometry of the plate is as shown in Figure 3.1. Dimensions of the specimen are W = 26

mm, h = 15.6 mm and the thickness (B) is 1 mm. In fracture tests, the displacements

ux and uy were found using digital image correlation (DIC) and using numerical dif-

ferentiation with central difference formulas strains which were used to evaluate the

transformation region around the crack tip were calculated.

Figure 3.1. Geometry of edge cracked specimen

A comprehensive discussion on approaches of Williams and Hutchinson will be

presented and their results will be compared to the experimental ones. A closed form

formulation of the transformation region will be given in Chapter 4.
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3.2. Evaluation of Mechanical Constants, α and n, of Ramberg-Osgood

Equation

In order to evaluate the crack tip fields using HRR method, one has to determine

the material constants of the Ramberg-Osgood equation, namely α and n which are

obtained using the stress-strain diagram of the material. In this section, mechanical

properties of the NiTi experimentally obtained by Haghgouyan et al. [8] are used. 1

mm thick NiTi dog-bone samples (Ni: 55.99 wt.%) with A0
f = 16.1◦C were tested

by Haghgouyan et al. [8] at room temperature. Stress-strain diagram was obtained

as shown in Figure 3.2. Elastic modulus of austenite and martensite were reported

as EA = 47.8 GPa and EM = 32 GPa. Transformation start and finish strains were

determined to be around 1% and 5.8% and marked as A and B on the stress-strain

diagram.

Figure 3.2. Stress-strain relation of NiTi [8]
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Figure 3.3. Stress vs plastic strain in log-log scale

Mechanical constants in the Ramberg-Osgood equation for this specific material

are determined following the procedure described by Dowling [9]. Because the main

focus is on the inelastic part of the strain, the elastic deformation is neglected, resulting

in a power-hardening relation:

σ = Hεpl
1
n (3.1)

where H is the value of σ at εpl = 1 and 1
n

is the slope in the log-log plot of the stress

vs plastic strain as shown in Figure 3.3. In Ramberg-Osgood stress-strain relation, the

yield strength may be defined according to the offset strain as shown in Figure 3.4.

The most widely used offset strain for common engineering materials is 0.002 [9]. As

a result

σy = H0.002
1
n (3.2)

is used and the yield strength is found to be σy = 380 MPa .
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Figure 3.4. Stress-strain relation showing the yield offset [9]

At the yield point:

ε =
σ

E
+ αεy (3.3)

Therefore αεy determines the yield offset and α is calculated from the following equa-

tion:

α =
0.002

εy
(3.4)

As a result, n = 28 and α = 0.2 are calculated fitting a curve to the Ramberg-Osgood

equation as shown in Figure 3.5.
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Figure 3.5. Ramberg-Osgood equation fit to loading path

As shown in Figure 3.5, the loading path of the NiTi plate could be successfully

represented with the Ramberg-Osgood equation until the end of the transformation,

when n = 28, In = 2.68 is used [7]. Distribution of the θ dependent parts of the

stresses are obtained as explained in section 2.3.3 and plotted in Figure 3.6. As a

result, all material parameters to be used in the asymptotic equations of Hutchinson

are obtained. To calculate the crack tip fields, one has also to determine the amplitude

of the stress function κ which depends on α and n.
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Figure 3.6. Distribution of θ dependent part of stresses for n = 28

3.3. Fracture Parameters

To use both asymptotic equations, KI and κ should be determined. Haghgouyan

et al. [8] calculated the stress intensity factor, KI , using two different approaches. First,

the asymptotic near-tip opening displacement equation is fit to the y-component of the

displacement field (uy) obtained from DIC using a least-square fit as done by Oral et

al. [37]:

uy =
KI

2µ

( r

2π

) 1
2
sin

θ

2

(
3− νtip
1 + ν

− cosθ
)
− Tνtip

2µ(1 + νtip)
rsinθ︸ ︷︷ ︸

Mode I loading

+
KII

4µ

( r

2π

) 1
2

(
5ν − 3

1 + ν
cos

θ

2
− cos3θ

2

)
︸ ︷︷ ︸

Mode II loading

+A1rcosθ + u0y︸ ︷︷ ︸
R.B.

(3.5)

In the equation above, T is the stress component parallel to the crack plane, A1 and

u0y are the rigid body rotation and translation, ν is the Poisson’s ratio and µ is the

shear modulus. From DIC, the data which essentially encompass elastically deformed

region, were used. Therefore, austenite shear modulus and ν = 0.33 were inserted into

the equation. As a result, KI was calculated as KI = 35.5 MPa
√
m [8].
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Another approach to obtain KI is to use the equation given by ASTM E399

standard [28]:

KI =
P

B
√
W
f(

a

W
) (3.6)

where

f
( a
W

)
=

(
2 + a

W

) [
0.886 + 4.64

(
a
W

)
− 13.32

(
a
W

)2
+ 14.72

(
a
W

)3 − 5.6
(
a
W

)4
]

(
1− a

W

) 3
2

(3.7)

and P is the applied load, B is the thickness and W is the width. Using Equation

3.6, KI was calculated to be 31.9 MPa
√
m for P = 387 N, a

W
= 0.6, B = 1 mm and

W = 26 mm [8].

In order to calculate κ for the equations of Hutchinson, Equations 2.32 and 2.34

are used with KI = 31.9 MPa
√
m and κ is found to be 0.985.

3.4. Crack Tip Fields

Stress distribution around the crack tip is calculated using the asymptotic equa-

tions of Williams and HRR. Fracture parameters, KI and κ, specified in the previous

section are used in the calculations. In Figures 3.7-3.10, stresses which are evaluated

using HRR are plotted. In the following figures, HRR results are compared to the re-

sults obtained using Williams’s equations. Crack tip is located at the origin and crack

faces lie on the negative x-axis. Because the transformation region size is evaluated to

be around 1 mm by Haghgouyan et al. [8], contours up to 1− 2 mm are investigated.
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crack tip

It is observed that there is a significant difference in the shapes and values of the

stress contours especially very near the crack tip. Stresses calculated using asymptotic

equations of Williams increase abruptly through the crack tip which are 2-3 times the

values calculated using HRR. In SMAs, martensitic transformation limits the increase

in the stress which cannot be represented with linear elastic stress-strain relation. It

is clearly shown especially in Figures 3.17 and 3.18 that equivalent stresses calculated

using HRR increase slowly as expected. Additionally, the opening stresses ahead of the

crack tip calculated using asymptotic equations are plotted in Figure 3.19. It is again

observed that HRR stresses increase very slowly around the crack tip which is not the

case for values calculated using asymptotic equation of Williams.
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Williams), x is measured from crack tip
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Figure 3.19 clearly shows that the increase in stress calculated using the asymp-

totic equation of Williams is not feasible due to the effect of phase transformation in

SMAs. On the other hand, almost constant stress is calculated using the HRR method.

HRR method seems to be more suitable to evaluate the crack tip fields of SMAs. It

should be noted that HRR method cannot represent higher stresses very near the crack

tip as a result of the elastic deformation of martensite; however, the martensitic region

is very small as it is reported by many researchers [8, 32]. Although HRR does not

represent the SMA behavior completely, it will be shown in the following chapters that

HRR method will be very successful in evaluation of the transformation, even for the

fully martensite region sizes.

3.5. Applicability of HRR Formulation

Application of the Ramberg-Osgood formula to fracture problems is restricted to

some conditions since it is based on the deformation theory of plasticity. Deformation

theory of plasticity assumes that plastic strains are functions of the current state of

stress. On the other hand, in the incremental plasticity theory it is believed that

plastic strains depend on the history of loading. For plasticity, incremental theory

is more realistic, however, at the same time it’s application is very complex. For

uniaxial loading, both theories coincide unless there is no unloading. Although it is

not simple for multiaxial loading, deformation theory of plasticity is quite a reasonable

approximation in some special cases [35]. For multiaxial loading, deformation theory of

plasticity and the incremental theory coincide when the deviatoric stress components

are proportional to the effective stress such that,

Sij = wijσe (3.8)

where w is a constant tensor. Proportional loading physically means that all stress

components increase in proportion to each other [38]. When plane-stress or plane-strain

problems are considered, it is shown that the requirement of proportional deviatoric

stress is approximately satisfied [5].
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On the other hand, validity of deformation theory of plasticity does not guarantee

the single parameter representation of the crack tip fields, like KI or J . Single param-

eter assumption enables the evaluation of the structural behavior from small-scale

laboratory tests, in other words, it means that fracture toughness in independent of

specimen size. For single-parameter fracture mechanics, total stress components should

be proportional near the crack tip [5]. In both solutions of Williams and Hutchinson,

stresses near the crack tip are derived from a stress function such as in Equation 2.22.

Equation 2.22 implies that at a certain point near the crack tip, all stress components

are proportional to a constant and proportional to one another which guarantees a

single parameter representation of the crack tip fields [5]. In Figure 3.20, it is seen that

at a certain angle around the crack tip, there is a constant ratio between σrr and σθθ

according to the stress function of Hutchinson (only where π
2
> θ > 0 is shown due to

overlapping of data in other regions).
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Figure 3.20. σrr
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distribution near crack tip according to HRR

There is another important restriction on the application of the J-integral: in

order to use the path-independent behavior of the J-integral, small scale yielding con-

dition around the crack tip should be satisfied in an elastic-plastic material [5,7,23,39].
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In other words, plastically deformed region where finite strains occur should be very

small compared to geometric dimensions such as notch geometry and unnotched spec-

imen width [23]. In the literature, strain values up to 0.1 (10%) are accepted in the

limits of small scale yielding [5]. For the edge cracked problem in this study, 0.1 strain

values are observed only in the full martensite region which is very small in size.

In derivation of HRR equations, it is assumed that the elastic strains are very

small compared to plastic strains near the crack tip:
εpl
εel

ratio is calculated for com-

ponents of the strain tensor and plotted in Figures 3.21, 3.22, 3.23. It is observed

that the ratio is much greater than 1 in the domain of interest except for εrr. Even

for εrr, there is a substantial amount of region in which the ratio is greater than 1.

Therefore it is concluded that, the assumption of small elastic strains is valid for this

problem. Consequently, it is observed that characterization of the crack tip fields in

SMAs by HRR singularity is a reasonable approach if the martensitic region is kept

small compared to the transformation region.
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Figure 3.22.
εplθθ
εelθθ

near crack tip, x is measured from crack tip
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4. EVALUATION OF THE TRANSFORMATION REGION

AROUND CRACK TIP

Martensitic transformation has a significant effect on crack tip fields, and the

evaluation of the transformation region is important in studying the fracture behavior

of SMAs. In this chapter, an analytical estimation of the transformation region will

be performed following the method used by Hazar et al. [25]. Asymptotic equations of

Williams and HRR will be used together in a phenomenological model developed by

Z. Moumni and W. Zaki [26]. Transformation region obtained in section 3.4 will be

reevaluated using this method and the results will be compared to the experimental

ones.

4.1. The Transformation Function Governing the Forward Phase

Transformation

The phenomenological model for SMAs developed by W. Zaki and Z. Mounmi

[26] considers two phases, namely austenite (elastic) and single variant martensite

(inelastic). The free energy density of the material can be written as follows:

ψ(T, εA, εM , z, εtr) = (1− z)
(1

2
εA : KA : εA

)
+ z
[1
2

(εM − εtr
)

: KM : (εM − εtr
)

+C(T )
]

+G
z2

2
+
z

2
[αz + β(1− z)]

(2

3
εtr : εtr

)
(4.1)

where εA and εM are the local deformation tensors of austenite and martensite, εtr

is the orientation strain tensor of martensite, z is the volume fraction of martensite,

C(T ) is the latent heat density as a result of phase transformation, KA and KM are

elastic moduli tensors of austenite and martensite. α, β and G are determined from

the orientation and superelastic experiments of the material [26].
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The constraints of the model are:

(1− z)εA + zεM − ε = 0

z ≥ 0 and (1− z) ≥ 0 (4.2)

ε0 −
√

2

3
εtr : εtr ≥ 0

where ε0 is a material limit for the equivalent inelastic strain. State equations are ob-

tained using the Lagrange multipliers method. Using the Lagrange multipliers method

with the constraints above, following Lagrangian is established:

L = (1− z)
(1

2
εA : KA : εA

)
+ z
[1
2

(εM − εtr
)

: KM : (εM − εtr
)

+C(T )
]

+G
z2

2
+
z

2
[αz + β(1− z)]

(2

3
εtr : εtr

)
− λ :

[
(1− z)εA + zεM − ε

]
−µ
(
ε0 −

√
2

3
εtr : εtr

)
− ν1z − ν2(1− z)

(4.3)

where λ, µ, ν1 and ν2 are Lagrange multipliers. Taking the derivative of the Lagrangian

with respect to strain, stress-strain relation is obtained as follows:

σ = K : (ε− zεtr) (4.4)

where

K =
[
(1− z)KA

−1 + zKM
−1]−1 (4.5)

Evolution of martensitic region is evaluated by using a transformation function derived

using the state equations and a pseudo-potential of dissipation. In an isotropic, pseu-

doelastic SMA, the transformation function, in other words the thermodynamic force

driving the forward phase transformation is given by Zaki and Moumni [26] as shown
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below:

Fz = {E ′
σ2
eqv

3
+

1

2
(
1

3
E
′
+ ν

′
)σ2

ii − C(T )}+ σijε
ori
ij − (Γ + b)z − a(1− z)

−[(α− β)z +
β

2
](

2

3
εoriεori)

(4.6)

where

E
′
=

(1 + ν)(EA − EM)

EAEM
, ν

′
=
ν(EM − EA)

EAEM
(4.7)

εoriij =
3

2
ε0
σdij
σeqv

(4.8)

where σdij is the deviatoic part of the stress tensor, and

a =
1

2

[( 1

EM
− 1

EA

)(σMS)2 − (σAF )2

2
+ (σMS − σAF )ε0

]
(4.9)

b =
1

2

[( 1

EM
− 1

EA

)(σMF )2 − (σAS)2

2
+ (σMF − σAS)ε0

]
α, β, Γ, ζ, and C(T ) are calculated as follows:

α =
σRF − σRS

ε0
(4.10)

β =
σRF

ε0
(4.11)

Γ =
1

2

[( 1

EM
− 1

EA

)(σMF )2 − (σMS)2 + (σAS)2 − (σAF )2

2

+(σMF − σMS + σAS − σAF )ε0 − 2(α− β)ε20
] (4.12)

C(T ) = ζ(T − A0
f ) + κ (4.13)
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σRS and σRF are start and finish stresses for the orientation of the martensite

phase, and

κ = α− β ε
2
0

2
(4.14)

ζ = C(T0)−κ
T0−A0

f
(4.15)

with

C(T0) =
1

2

[( 1

EM
− 1

EA

)(σMS)2 + (σAF )2

2
+ (σMS + σAF )ε0 − βε20

]
(4.16)

4.2. Calculation of the Transformation Region

Hazar et al. [25] used the transformation function in Equation 4.6 together with

the asymptotic stress equations of Williams to estimate the extent of the transformation

region. The function used by Hazar et al. is given below [25]:

FLEFM
z = E

′ K2
I

12πr
[1 + cos(θ) +

3

2
sin2(θ)] +

1

2
(
1

3
E
′
+ ν

′
)
K2
I

πr
(1 + cos(θ))− C(T )

+ε0
KI

2
√
πr

√
[1 + cosθ +

3

2
sin2(θ)]− (Γ + b)z − a(1− z)− ((α− β)z +

β

2
)ε20 = 0

(4.17)

Although the equations of Williams have problems in representing the stress distribu-

tion in a transformed region, the proposed method provided a relatively good approx-

imation to the transformation region size. Because HRR solution seems to be more

suitable to characterize the crack tip fields in an SMA, a similar approach is followed

using the asymptotic equations of HRR. Also, using HRR, a more successful evaluation

of the full martensitic region is expected.
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Stresses in Equation 2.23 are inserted into Equation 4.6 and the following trans-

formation function, Fz is obtained:

FHRR
z = K2σ2

y(r
s−2)2[

E
′
σ̃2
eqv

3
+

1

2
(
1

3
E
′
+ ν

′
)(σ̃rr + σ̃tt)

2]− C(T )

+Kσy
3

2

ε0
σ̃ eqv

[σ̃2
rr + 2σ̃2

rt + σ̃2
tt −

1

3
(σ̃rr + σ̃tt)

2]− (Γ + b)z − a(1− z)

−[(α− β)z +
β

2
]
3

2

ε20
σ̃2
eqv

[σ̃2
rr + 2σ̃2

rt + σ̃2
tt −

1

3
(σ̃rr + σ̃tt)

2] = 0

(4.18)

During the phase transformation, Fz = 0; to evaluate the boundaries of marten-

sitic transformation, Equations 4.17 and 4.18 will be solved for r using MATLAB:

z = 0 is used to calculate the radius of transformation region (rtr) and z = 1 is used

for the radius of full martensite region (rm).

Transformation stresses σMS, σMF , σAS and σAF are determined following the

method proposed by Maletta and Furgiuele [40] as shown in Figure 4.1. As a result,

σMS = 412 MPa, σMF = 424 MPa, σAS = 185 MPa and σAF = 135 MPa are obtained.

Additionally, ε0 = 4% is calculated.
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It is shown in some numerical and experimental studies in the literature [41, 42]

that the ratio of axial and transverse strains approaches 0.5 during the martensitic

transformation similar to volume preserving plastic deformation. Because the inelastic

strains are dominant in the transformation zone, ν = 0.5 is used in FHRR
z . On the other

hand, ν = 0.33 is used in FLEFM
z because it is based on the linear portion of the stress-

strain relation where Poisson’s ratio is observed to be around 0.33 in general [41,42].

4.3. Results and Discussion

Transformation region estimations obtained using FHRR
z and FLEFM

z are plotted

in Figure 4.2 and Figure 4.3. Transformation region size on the x-axis is estimated

to be around 1 mm from both approaches. The result overlaps with the experimen-

tal observation of Haghgouyan et al. [8]. On the other hand, estimations of the full

martensite region using FHRR
z and FLEFM

z are quite different. It is observed that the

full martensite region estimated by using FLEFM
z is extremely large. It is almost equal

to the transformation region size. Although it could not be measured exactly, it is

observed by Haghgouyan et al. [8] that full martensite region is very small compared

to the trasnformation region.
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z

In order to investigate the transformation region, Haghgouyan et al. [8] used the

equivalent strain around the crack tip obtained as follows:

εeqv =

√
2

3
e : e (4.19)

where e is the deviatoric strain tensor calculated using the displacement field obtained

from DIC. Using Equation 4.19, Haghgouyan et al. obtained the equivalent strain

contour plots as shown in Figure 4.4. Maximum measurable strain was around 4%

due to the resolution of the measurement devices while 5.8% strain was required to

estimate the fully transformed region size. They reported 0.18 mm full martensite

region suggested by complementary FE analysis performed using Auricchio’s built-in

model in ABAQUS.
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Figure 4.4. DIC measured contour plot of εeqv [8]

Similar to Haghgouyan et al. [8], transformation region size is also estimated from

equivalent strain using the asymptotic equations of Williams and HRR. Strains are cal-

culated from stresses according to the constitutive relations: Hooke’s law for Williams

and Ramberg-Osgood relation for HRR. Equivalent strain contours are plotted in Fig-

ure 4.5.
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According to the asymptotic equations of Williams, transformation region is esti-

mated to be around 0.7 mm, on the other hand, no fully transformed region is detected

since strain values do not reach 5.8%. This indicates that the asymptotic equations of

Williams are not suitable to evaluate the strain distribution inside the transformation

region. According to HRR, a larger transformation region is estimated which is around

1.9 mm. Additionally, around 0.3 mm full martensite region is estimated.

Transformation region estimations obtained using the transformation functions

and εeqv are listed in Table 4.1. In general, the estimation of full martensitic region

using HRR equations gives more reasonable results than those of Williams. On the

other hand, asymptotic equations of Williams provide closer results to the experimental

ones for the transformation region.

Table 4.1. Transformation and martensitic region estimations (mm) according to εeqv

rtr (mm) rm (mm)

Fz
HRR 0.9 0.4

Williams 1 0.9

εeqv
HRR 1.9 0.3

Williams 0.7 -
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5. COMPUTATIONAL EVALUATION OF CRACK TIP

FIELDS AND TRANSFORMATION REGION

In this chapter, the edge cracked problem is studied using finite elements. Crack

tip singularity fields and the transformation region are obtained using the built-in Au-

ricchio model and a separate UMAT written to implement the ZM model in ABAQUS.

The stress distribution, the size of the transformation and martensitic regions around

the crack tip are obtained from finite elements and the results are compared to the

results obtained from asymptotic equations. Three different Nitinol properties, each

having different transformation stresses as shown in Table 5.1 are modeled. The ma-

terial properties are taken from experimental works of Mutlu [32] and Gou [33].

Table 5.1. Mechanical properties of Nitinol used

EA (GPa) EM (GPa) σMS (MPa) σMF (MPa)

Material 1 62 45 501 549

Material 2 62 45 523 684

Material 3 30.34 18 411 663

ZM Model requires additional properties; corresponding material properties used

in the ZM model are listed in Tables 5.2, 5.3 and 5.4. First, the uni-axial tensile

tests are simulated in ABAQUS to check the model, the fracture tests are simulated

afterwards.
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Table 5.2. Material properties used in the ZM model for the 1st material

Parameter Value Parameter Value

EA 62000 MPa a 11.2129 MPa

EM 45000 MPa b 11.3576 MPa

ν 0.33 ε0 0.06

Y 110 MPa G 9.4889 MPa

α 1833.3 MPa β 3666.7 MPa

ζ 4.1994 MPa K−1 κ 4.6129 MPa

A0
f 297.15 K T0 299.15 K

Table 5.3. Material properties used in the ZM model for the 2nd material

Parameter Value Parameter Value

EA 62000 MPa a 14.8138 MPa

EM 45000 MPa b 16.5156 MPa

ν 0.33 ε0 0.06

Y 110 MPa G 15.1503 MPa

α 1833.3 MPa β 3666.7 MPa

ζ 1.2928 MPa K−1 κ 8.2138 MPa

A0
f 297.15 K T0 299.15 K

Table 5.4. Material properties used in the ZM model for the 3rd material

Parameter Value Parameter Value

EA 30340 MPa a 5.16 MPa

EM 18000 MPa b 6.36 MPa

ν 0.33 ε0 0.04

Y 30 MPa G 13.17 MPa

α 500 MPa β 1250 MPa

ζ 0.20 MPa K−1 κ 4.16 MPa

A0
f 300 K T0 340 K
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5.1. Computational Modeling of Tensile Tests Specimen

The dog-bone tensile test specimen of Nitinol is modeled using a UMAT sub-

routine written for the ZM model to account for thermomechanical coupling. The

geometry and the dimensions of the specimen are shown in Figure 5.1. The specimen

is fixed from one side, and around 5 mm displacement is applied quasi-statically to

the other side. The analyses are performed with eight-node thermally coupled brick,

tri-linear elements. Since the asymptotic equations do not include the effect of tem-

perature, an exagerated convection coefficient (h = 100 W/m2K) is used in order to

transfer the latent heat from the material immediately. In this way, the temperature

of the material is kept constant.

Figure 5.1. Dimension (mm) of the dog-bone specimen

Stress-strain diagrams are plotted using the data obtained from nodes in the fully

transformed region of the model. Because temperature is kept constant, a sharp trans-

formation point is observed in stress-strain diagrams; in other words, there is no yield

off-set. For that reason, the mechanical constants, α and n, in the Ramberg-Osgood

equation are obtained by trying to find the best curve fit. Stress-strain diagrams of the

materials and the curves fitted are shown in Figures 5.2, 5.3 and 5.4. n = 20, n = 8

and n = 4 are used in the Ramberg-Osgood equation.
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Figure 5.2. Stress-strain diagram of the 1st material
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Figure 5.4. Stress-strain diagram of the 3rd material

The transformation plateaus have different slopes as a result of different mechan-

ical properties. The figures shpw that n decreases with increasing slope similar to the

effect of the level of hardening on elastic-plastic materials. It is also observed that

the representation of the stress-strain relation of an SMA with the Ramberg-Osgood

equation is better accomplished for larger ns; in other words, for SMAs with smaller

slopes in the transformation plateau. For smaller ns, however, the deviation from the

real curve is larger around the transformation start stress (σMS).



64

5.2. Computational Modeling of The Edge Cracked Specimen

Figure 5.5. Geometry of the finite element model for fracture tests

The SMA plate given in Section 3.4 is modeled using ABAQUS and the UMAT

written for the ZM model. Only top-half plate is considered using the symmetry in the

model. Material properties in Tables 5.2, 5.3 and 5.4 are used for each CT specimen.

P1 = 420 N, P2 = 514 N and P3 = 300 N are applied in the y-direction to the pin hole

as shown. Analyses are performed with eight-node thermally coupled brick tri-linear

elements. The mesh density increases near the crack tip as shown in Figure 5.6 because

pseudoelastic phase transformation occurs in this region. Again, the temperature is

kept constant using a very large convection coefficient.

Figure 5.6. Mesh on CT specimen
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5.2.1. Evaluation of Fracture Parameters

J-integrals are calculated on different contours around the crack tip using finite

elements. Although J is path-independent for nonlinearly elastic materials, J-integral

is observed to be path-dependent in the case of Nitinol. The value of it decreases as the

distance from the crack tip increases, in other words, as the elastic region dominates.

For that reason, averages of the J-integral at the tip (J tip) and far field value (J∞) are

used in calculations. The stress intensity factor, KI , and the amplitude of the stress

function in HRR singularity, κ, are calculated using Equations 2.32 and 2.33. As a

result, fracture parameters used in asymptotic stress equations are shown in the table

below.

Table 5.5. Fracture parameters

(Jtip+J∞)
2

(N/m) KI (MPa
√
m) κ

Model 1 20 35.92 0.90

Model 2 25 39.37 0.80

Model 3 17.5 23.04 0.65

5.2.2. Evaluation of Crack Tip Fields

Full-field stress distributions are obtained from ABAQUS using both Auricchio

and ZM models. As expected, in each model, highest stress values are observed around

the crack tip. The equivalent stress distributions around the crack tip obtained from

finite elements are compared to the results calculated from asymptotic equations of

Williams and HRR.

In Figures 5.7, 5.8 and 5.9 the equivalent stress contours around the crack tip

are plotted using the finite element results and the results from asymptotic equations.

Crack tip is located at the origin and the crack faces lie on the negative x-axis. The re-

sults show that in the transformation zone, the equivalent stress contours obtained from

HRR show a good agreement with the results obtained from finite elements. Towards

the crack tip, the equivalent stress values calculated using the equations of Williams
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increase abruptly. In reality, the phase transformation in SMAs limits the increase

in stress around the tip which is also seen in the finite element results. Stresses can

raise substantially only in the full martensite region where almost a finite deformation

exists.
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Figure 5.7. Comparison of equivalent stress distribution around the crack tip of the

1st model
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Figure 5.9. Comparison of equivalent stress distribution around the crack tip of the

3rd model

In Figures 5.10, 5.11 and 5.12 opening stress vs distance from the crack tip are

plotted; stresses are normalized by the transformation start stresses (σMS) of each

material. It is observed that the results of HRR match with finite element results in

the transformation region except for the third model. As noted before, curve fitting

of the Ramberg-Osgood equation to stress-strain relation of the third model was less

successful than the others. It is also seen that, outside the transformation zone where

the material is linearly elastic, finite element results approach the LEFM results. These

results are consistent with the ones reported in the literature in case of small scale

transformation.
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From the results it is possible to note a few remarks on the dominance of asymp-

totic equations. Figure 5.13 shows the effect of plasticity level on crack tip fields in

elastic-plastic materials. Around the crack tip of an SMA, a similar distribution is ob-

served as a result of martensitic transformation as shown in Figure 5.14. In the present

study, large strains may generate in the fully transformed region, and asymptotic equa-

tions do not work in this region. In the transformation region, it is observed that HRR

solution has a strong dominance, therefore this region can be named as the J-dominant

region. In addition, K-dominance is observed in the region where the material is in

fully austenite (elastic) phase.
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Figure 5.13. Crack tip dominant zones in an elastic-plastic material [5]

Figure 5.14. Crack tip dominant zones in an SMA

5.2.3. Evaluation of Transformation Regions

Results of transformation and martensitic regions obtained from ABAQUS are

compared to the results obtained by using Equations 4.17 and 4.18 (FLEFM
z and

FHRR
z ). Results of comparison are plotted in Figures 5.15, 5.16 and 5.17. It is ob-
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served that the calculation of the transformation region with the implementation of

the asymptotic equations of Williams and HRR into the transformation function of

ZM model gives reasonable results in the case of the first and the second models.

However, there are significant differences when the full martensite region is evaluated

using asymptotic equations. As it is seen from the figures, full martensite region sizes

obtained from finite elements are very small. Estimation of the full martensite re-

gion using FHRR
z gives closer results to the computational ones. Results from FLEFM

z

give large martensitic region size compared to the computational results. At the same

time, there is a very small difference between the transformation region and the full

martensite region sizes when they are calculated with FLEFM
z .

From Figure 5.17, it is observed that the estimation of the transformation region

of the third model using FLEFM
z gives a better result than that of FHRR

z . Also, it is

seen that the difference between the transformation and the martensite region sizes

calculated with FLEFM
z increases from model 1 to model 3. The reason behind that is

the increase in the slope of the transformation plateau, in other words, decrease in the

value of n. The material behavior converges to the linear-elastic response as n goes

to zero. Therefore, HRR performes better for SMAs having smaller slopes during the

transformation.
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Figure 5.15. Comparison of the transformation and martensitic regions around the

crack tip, 1st model (green lines indicate finite element results)
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crack tip, 2nd model (green lines indicate finite element results)
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Figure 5.17. Comparison of the transformation and martensitic regions around the

crack tip, 3rd model (green lines indicate finite element results)

5.2.3.1. The Effect of Thermomechanical Coupling on Transformation Region. Finite

element analyses of the first and the second models are repeated in order to see the ef-

fect of thermomechanical coupling on the transformation region size. The edge cracked

specimen is loaded following the experimentally applied loading rates provided by
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Mutlu [32], and h = 0.05 W/m2K is used for the convection coefficient. Figures

5.18 and 5.19 show the heat fluxes in the direction perpendicular to the plate surfaces

obtained from ABAQUS. It is observed that there is a substantial difference between

heat fluxes around the crack tip when h = 0.05 W/m2K and h = 100 W/m2K are

used.

Figure 5.18. Heat flux (mW/mm2) around the crack tip with h = 0.05 W/m2K

Figure 5.19. Heat flux (mW/mm2) around the crack tip with h = 100 W/m2K

When h = 0.05 W/m2K is used, the temperature around the crack tip increases.

Because an increase in temperature results in an increase in the transformation stresses,
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transformation region around the crack tip decreases. Transformation region sizes ob-

tained from the coupled and uncoupled models are listed in Table 5.6. Transformation

region decreases with the inclusion of coupling as it is expected. It is observed that the

effect of thermomechanical coupling is greater in model 2 because the loading rate in

the second model (2 mm/min) is four times the loading rate (0.5 mm/min) in the first

model (the effect of thermomechanical coupling is stronger in higher loading rates [32]).

Table 5.6. Effect of thermomechanical coupling on transformation region size

rtr (Uncoupled) rtr (Coupled) Difference

Model 1 1.17 mm 1.12 mm 4.3 %

Model 2 1.61 mm 0.93 mm 42.2 %

The results indicate that equations of HRR can be used in SMAs under quasi-

static loading conditions where the change in temperature is small relatively. In higher

strain rates, thermomechanical coupling of SMAs has a significant effect on the crack

tip fields.

5.2.4. Sensitivity of Transformation Region Estimation on Mechanical Con-

stant n

In computational analysis, mechanical constants, α and n, of the Ramberg-

Osgood equation are determined by trying to find the best fit to the stress-strain curve

obtained from finite elements and the value of n which better represents the slope in

the transformation plateau is chosen; once n is determined α is arranged accordingly.

To study the sensitivity of the transformation region calculations on the mechanical

constant n, the first and the second models are reconsidered. For the first model, the

value of n was found to be 20, on the other hand, it was 8 for the second model. To

see the effect of the hardening coefficient, n, on the results, values of n between 15-25

are used for the first model and the resulting transformation and martensitic region

sizes are tabulated in Table 5.7. The same is repeated for the second model, for n s

between 5 and 11 and the results are presented in Table 5.8.
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Table 5.7. Transformation and martensitic region sizes calculated with different n

values for the first model (n = 20 was used)

n rtr (mm) rm (mm) % change in rtr % change in rm

15 1.397 0.323 3.25 52.36

17 1.416 0.273 1.94 28.77

19 1.437 0.231 0.48 8.96

20 1.444 0.212 - -

21 1.452 0.194 0.55 8.49

23 1.461 0.163 1.18 23.11

25 1.466 0.136 1.52 35.85

Table 5.8. Transformation and martensitic region sizes calculated with different n

values for the second model (n = 8 was used)

n rtr (mm) rm (mm) % change in rtr % change in rm

5 0.964 0.195 11.88 95

7 1.057 0.125 3.38 25

8 1.094 0.1 - -

9 1.126 0.079 2.93 21

11 1.193 0.049 9.05 51

It is observed that the estimation of full martensitic region is more sensitive to

the constant n when compared to the estimation of transformation region because the

change in n results in a more significant change in stress at the end of the transformation

plateau. Figure 5.20 shows the stress-strain curves obtained when n = 7, n = 8 and

n = 9 are used in the Ramberg-Osgood equation for the second model. It is also

observed that the effect is more crucial for smaller n’s; there is no such difference

between the stress-strain curves of the first model when n = 19, n = 20 and n = 21

are used. As a result, estimation of the full martensitic region is considerably sensitive

to the constant n especially for smaller n’s, in other words, for the SMAs having larger

slopes in the transformation plateau.
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6. ON J-INTEGRAL AND ENERGY DISSIPATION IN

SUPERELASTIC SHAPE MEMORY ALLOYS

6.1. Path Independent J Integral

As discussed in Chapter 2, as long as stresses increase monotonically, loading

path of an elastic-plastic material is similar to that of a non-linearly elastic material.

Therefore, if the deformation of an elastic-plastic material vs loading is considered to

evolve like that of a nonlinearly elastic one, the J-integral can be used to characterize

the crack tip fields in an elastic-plastic materials assuming that there is small scale

deformation around the crack tip. Rice [5, 23] used the J contour integral to evaluate

the crack tip fields in nonlinearly elastic materials.

Rice proved that for any homogeneous, elastic or elastic-plastic material treated

with deformation theory of plasticity (non-linearly elastic behavior), the J-integral is

path-independent [10,23]. To prove the path-independence of the J-integral, consider a

closed curve Γ∗ enclosing an area A∗ as shown in Figure 6.1. Using divergence theorem,

the line integral can be written as a surface integral as follows [5]:

∫
Γ∗

(Wdy − σijnjui,xds) =

∫
A∗

[∂W
∂x
− ∂

∂xi
(σij

∂ui
∂x

)
]
dxdy (6.1)

Differentiating the strain energy density W with respect to x, the following relations

are obtained:

∂W

∂x
=
∂W

∂εij

∂εij
∂x

= σij
∂εij
∂x

(6.2)

=
1

2
σij
[ ∂
∂x

(
∂ui
∂xj

) +
∂

∂x
(
∂uj
∂xi

)
]

=σij
∂

∂xj

(∂ui
∂x

)
(Since σij = σji)

=
∂

∂xj

(
σij
∂ui
∂x

)
(Since σij,j=0)
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It is seen from the equation above that the J-integral vanishes for any closed curve Γ∗,

in other words J = 0 when evaluated on a closed path.

Figure 6.1. Closed J-integral contour around a crack tip [5]

If the J-integral is evaluated on a closed contour as shown in Figure 6.1, it can

be written as the sum of each contribution, namely, Γ1, Γ2, Γ3 and Γ4, and the sum is

equal to zero:

J = J1 + J2 + J3 + J4 = 0 (6.3)

Since σij = dy = 0 on crack surfaces, J2 = J4 = 0; as a result, J1 = −J3, and the path

independence is shown.

It is shown in section 2.2.1 that J-integral is not path-independent in the case

of an SMA as a result of dissipation and nonhomogeneity. To better understand the

domain dependence of the J-integral, an edge cracked plate under tensile loading is

modeled using finite elements (ABAQUS). Four different material types are considered:

linearly elastic, nonlinearly elastic, plastic and SMA (NiTi). The geometry and the

dimensions of the edge cracked specimen are shown in Figure 6.2. A very fine mesh

is used around the crack tip as shown in the figure. Figure 6.3 shows the values of

the J-integral calculated on different contours around the crack tip in a linearly elastic

material. As expected, the J-integral reaches a constant value after a few contours from

the crack tip (first 1-2 contours should be ignored due to some numerical problems [43]).
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Next, a nonlinearly elastic material is studied using the deformation plasticity model

of ABAQUS; J-integral results are shown in Figure 6.4. It is seen that J-integral is

path-independent for nonlinearly elastic materials as well.

Figure 6.2. Mesh distribution on edge cracked specimen
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Figure 6.3. J-integral vs contour number in a linearly elastic material
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Figure 6.4. J-integral vs contour number in a nonlinearly elastic material

In the case of an SMA, J-integral is path-dependent due to energy dissipation

and non-homogeneity resulting from martensitic transformation [44]. Figure 6.5 shows

J-integral values around the crack tip in a pseudoelastic NiTi plate obtained using

ZM and Auricchio models. It is shown that almost a path-independent J-integral is

observed when Auricchio’s model is used. It is an expected result because Auricchio

model does not include thermomechanical coupling in the SMAs and there is no energy

dissipation in the form of heat; free energy density is defined as the elastic strain energy

density [45], and stress is derived from the strain energy density as shown by Equation

6.2. Therefore, loading of an SMA using Auricchio’s model resembles to the loading of

a nonlinearly elastic material. On the other hand, when the ZM model is used there is a

fluctuation in the J-integral, especially in the transformation zone. In ZM model, free

energy is not equal to strain energy, and stress is not derived from the strain energy

density as in the case of an elastic material, in fact, stress is derived from the free

energy of the material which is a function of strain, temperature and volume fraction

of martensite [26]:

σ =
∂ψ(ε, T, z, )

∂ε
(6.4)
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Figure 6.5. J-integral vs contour number in an SMA modeled with

thermomechanically coupled ZM and uncoupled Auricchio models

It is shown that the path-dependence of J-integral in SMAs is observed when a

thermomechanically coupled model is used. The effect of thermomechanical coupling

on the J-integral can also be observed in elastic-plastic materials when an energy dissi-

pation occurs in the form of heat. In order to observe this, an elastic-plastic material is

modeled in ABAQUS. ABAQUS allows the user to introduce a heat generation by plas-

tic work which is included by specifying the fraction of the rate of inelastic dissipation

that appears as a heat flux per volume. In the material module of ABAQUS, stress-

strain relation of the elastic-plastic material is defined using a temperature dependent

data. When creating the temperature dependent data, the experimental results of

Mutlu [32] in stress-strain relation of NiTi are used to approximate the thermome-

chanical coupling in the fictitious elastic-plastic material. In Figure 6.6, J-integral vs

contour number in the elastic-plastic material is shown. Because plastic work occurs

in the vicinity of crack tip, there is a fluctuation in the J-integral of the elastic-plastic

material near the crack tip.
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Figure 6.6. J-integral vs contour number in an elastic-plastic material

6.2. Energy Dissipation in SMAs

The first and the second laws of thermodynamics are combined to formulate the

energy dissipation. The first law of thermodynamics, the energy balance, is given as

follows:

ė = σ : ε̇− divq + r (6.5)

where e is internal energy per unit volume, q is heat flux and r is heat generation per

unit volume. The second law is written as shown below:

ṡ+ div(
q

T
)− r

T
≥ 0 (6.6)

where s is entropy per unit volume and T is temperature. Combining the first and the

second laws of thermodynamics, the Clausius-Duhem (C-D) inequality that should be
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satisfied by any process is obtained:

σ : ε̇+ T ṡ− ė− q
T
OT ≥ 0 (6.7)

The Helmholtz free energy density which is defined as follows is used as the thermo-

dynamic potential :

ψ = e− sT (6.8)

The first law is then rewritten using the free energy, as follows:

T ṡ = σ : ε̇− ψ̇ − sṪ − divq + r (6.9)

and the Clausius-Duhem inequality takes the following form:

(
σ : ε̇− ψ̇ − sṪ

)
− q
T
OT ≥ 0 (6.10)

The left hand side of Equation 6.10 is the total dissipation with,

D1 =
(
σ : ε̇− ψ̇ − sṪ

)
(6.11)

D2 =− q
T
.OT (6.12)

where D1 is the intrinsic dissipation and D2 is the thermal dissipation; both dissipation

terms are assumed to be positive [46]. Using Equation 6.11, the first law can be written

as:

T ṡ = D1 − divq + r (6.13)

and D will be used for the sake of simplicity instead of D1, in the remaining parts of

the chapter.
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In the case of an SMA, state variables can be chosen as the elastic part of the strain

tensor, εe, the temperature, T , and the volumetric fraction of martensite, z [47, 48].

The C-D inequality, under any loading and temperature, is satisfied with the following

relations between the free energy and the state variables [49]:

∂ψ

∂εe
= σ and

∂ψ

∂T
= −s (6.14)

and using the chain rule, time derivative of s can be written as:

ṡ =
∂s

∂εe
∂εe

∂t
+
∂s

∂T

∂T

∂t
+
∂s

∂z

∂z

∂t
(6.15)

Using Equation 6.15, Equation 6.13 is written as follows:

−TψTT Ṫ − TψTεe ε̇e − TψTz ż =D − divq + r (6.16)

In the equation above, TψTεe ε̇
e is the heating due to thermoelastic effects (will be

neglected), −TψTT = λ is the specific heat capacity per unit volume, and TψTz ż is the

heating due to phase transformation and martensite orientation [47,50]. Because phase

transformation is the only source of heat generation, r is removed from the equation.

As a result, Equation 6.16 is written as:

λṪ = D + TψTz ż − divq (6.17)

or the dissipation is calculated from the following equation:

D = λṪ − TψTz ż + divq (6.18)
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6.3. Calculation of Energy Dissipation in a Loading-Unloading Cycle

To quantify the energy dissipation in a pseudoelastic loading-unloading cycle, a

NiTi bar is modeled in ABAQUS using thermomechanically coupled ZM model. The

geometry of the bar is shown in Figure 6.7; the bar is fixed from one side and 5 mm

displacement is applied from the other side quasi-statically. The material properties

of NiTi are shown in Table 6.1. The analysis is performed with eight-node thermally

coupled brick, tri-linear elements and a uniform mesh is applied on the rod. To be able

to do a lumped heat transfer analysis, conduction is removed from the model, and the

convection coefficient is 0.05 W/Kmm2 [48].

Figure 6.7. Geometry of NiTi rod modeled in ABAQUS

Table 6.1. Material properties used in the ZM model for the NiTi rod

Parameter Value Parameter Value

EA 62000 MPa a 6.6154 MPa

EM 45000 MPa b 7.1745 MPa

ν 0.33 ε0 0.05

Y 110 MPa G 6.2644 MPa

α 2200 MPa β 4400 MPa

ζ 1.1053 MPa K−1 κ 1.1154 MPa

A0
f 289.25 K T0 299.15 K
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Figure 6.8. Stress-strain diagram of NiTi bar

Stress-strain diagram of the NiTi obtained from ABAQUS is shown in Figure

6.8. Total energy dissipation in a loading-unloading cycle is evaluated by integrating

Equation 6.18 over time and volume. It is assumed that the amount of latent heat

released during forward transformation is equal to the one absorbed during reverse

transformation, therefore the integral of the latent heat term is zero. As a result, the

dissipation is calculated using the following equation:

Dcycle = V0

∫
t

λ
∂T

∂t
dt+ Asurfh

∫ tf

0

(
T (t)− T∞

)
dt (6.19)

where V0 is constant volume, T∞ is ambient temperature and Asurf is area through

which convection occurs. The first term in the right hand side of Equation 6.19 can be

written as follows:

V0

∫
t

λ
∂T

∂t
dt = mCp4T (6.20)

where m is mass and Cp is specific heat capacity per mass.
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Figure 6.9. Temperature vs time

The temperature vs time plot in Figure 6.9 shows that there is no change in the

temperature of the rod at the end of the cycle; the first term in Equation 6.19 is zero.

Finally, using the stress, strain and temperature data obtained from ABAQUS, the

total dissipation is calculated to be 960 mJ when a 2394 mJ external work is applied to

the rod during loading (calculated from the area under the load-displacement curve).

It is seen that there is a significant amount of dissipation in NiTi bar as a result of the

pseudoelastic loading.

6.4. J-Integral and Energy Release Rate

For an elastic material, J-integral has the same meaning with the energy release

rate, G, which is the change in potential energy with an incremental increase in crack

area [5]:

J = G = −dΠ

dA
(6.21)
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A is the area of crack surfaces and Π is the potential energy of the cracked body. In

an elastic medium, the potential energy is defined as [5]:

Π = U − F (6.22)

where U is strain energy stored and F is external work. In the case of an elastic-

plastic material, J-integral has a different interpretation because much of the strain

energy stored inside the material is not released with an extension in the crack length

due to plastic deformation. For an elastic-plastic material, Equation 6.21 indicates

the difference in the energy absorbed between two specimens having neighboring crack

sizes [5, 10,51].

Landes and Begley [10] evaluated the J-integral experimentally: they did dis-

placement controlled tests on same configuration of fracture specimens having different

crack lengths. Under displacement controlled loading, Π = U , and U is equal to the

area under a load-displacement curve. They applied the same amount of displacement

on the specimens and calculated the strain energy stored by each specimen from the

areas under the load-displacement curves. Strain energy per thickness (U/B) vs crack

length (a) was plotted as shown in Figure 6.10. For a specific specimen, J-integral is

calculated from the negative slope of the curve at the corresponding crack length.
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Figure 6.10. Strain energy per unit thickness vs crack length [10]

In the case of a shape memory alloy, strain energy is not the only energy which

is stored inside the body. The stored (free) energy density in ZM model [26] was given

in Equation 4.1. Although Equation 4.1 has temperature as a state variable, it does

not represent the thermomechanical coupling correctly since the temperature was kept

constant [48]. In a later work, the free energy is reformulated by Morin et al. [48] with

the addition of a heat capacity as given below:

ψc(T, εA, εM , z, εtr) = (1− z)
(1

2
εA : KA : εA

)
+ z
[1
2

(εM − εtr
)

: KM : (εM − εtr
)

+C(T )
]

+G
z2

2
+
z

2
[αz + β(1− z)]

(2

3
εtr : εtr

)
+ ρCp

(
T − T0 − T ln

( T
T0

))
(6.23)

where Cp is the specific heat capacity which is assumed constant for austenite and

martensite, T0 is a reference temperature and ρ is density.

Following an approach simi oflar to that Landes and Begley [10], the evaluation of

J-integral is tried using the free energy density. An edge cracked SMA plate is modeled

in ABAQUS using the UMAT written for the thermomechanically coupled ZM model.

The geometry of the plate is shown in Figure 6.11 where W = 100 mm, h = 100 mm
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and the thickness (B) is 1 mm with different crack lengths a1 = 30 mm, a2 = 35 mm,

a3 = 40 mm. The plate is loaded with 0.3 mm displacement from the top edge, and

the analysis is performed with eight-node thermally coupled brick tri-linear elements

with the material properties given in Table 5.4.

Figure 6.11. Geometry of the edge cracked specimen

All stress components (σij), temperature, martensitic volume fraction and vol-

ume of each element are obtained from ABAQUS. The total free energy is calculated

summing the free energies of each element using the following form for the free energy

density: [48]:

ψc = (1− z)
(1

2
(ElAσ : σ + PA(trσ)2

)
+ z
(1

2
(ElMσ : σ + PM(trσ)2 + CT

)
+G

z2

2
+
z

2
[αz + β(1− z)]

(2

3
εtr : εtr

)
+ ρCp

(
T − T0 − T ln

( T
T0

)) (6.24)
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where

ElA =
1 + ν

EA
(6.25)

ElM =
1 + ν

EM

PA =
−ν
EA

PM =
−ν
EM

Total free energy vs crack length is plotted in Figure 6.12, and a second order polyno-

mial is fitted to the data. Derivative of the free energy with respect to crack surface is

calculated using from the second order polynomial.
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Figure 6.12. Free energy vs crack length

Table 6.2 shows the energy calculation for the edge cracked plate. The results

show that transformation region along the crack tip increases with increasing crack

length, and the amount of total free energy decreases. Strain energy is also calculated,

and it is seen that the ratio of the strain energy to the total free energy decreases with

increasing crack length. The reason behind that is the increased effect of the phase

transformation.
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The results of the derivative of the free energy with respect to crack area, which

may be called the free energy release rate, are tabulated in Table 6.2. It is observed

that the derivative, dψc

dA
, gives an estimation about the far-field J-integral obtained

from ABAQUS. It is seen that the J-integral in SMAs has an interpretation similar

to the J-integral in elastic-plastic materials, however, there is still a need for further

discussion on the J-integral evaluated very close to the crack tip.

Table 6.2. Energy calculations on the edge cracked specimen with different crack

lengths

a rtr ψc U U
ψc

−dψc

dA
−dU
dA

J∞

unit mm mm mJ mJ - N/mm N/mm N/mm

a1 30 0.89 2857.3 2513.9 0.88 20.60 28.25 22.75

a2 35 0.94 2746.5 2368.6 0.86 23.72 29.87 24.40

a3 40 1 2620.1 2215.2 0.85 26.84 31.49 25.31
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7. SUMMARY AND CONCLUSION

The aim of this thesis was to investigate the crack tip fields of pseudoelastic shape

memory alloys under Mode I using similarities between martensitic transformation and

plastic deformation of strain hardening materials and the martensitic transformation.

Hutchinson, Rise and Rosengren independently analyzed crack tip fields of elastic-

plastic materials using Ramberg-Osgood model for stress-strain relation. They derived

the HRR solution based on total deformation theory of plasticity in which Rice’s J-

integral is used as a stress amplitude similar to stress intensity factor in LEFM. In

Chapter 2, the derivation of the asymptotic stress equations of Williams (in LEFM)

and HRR were summarized.

In Chapter 3, crack tip fields of an edge cracked NiTi plate under tensile loading

were evaluated using the asymptotic equations of Williams and HRR. First, mechanical

constants, α and n, in the Ramberg-Osgood equation were determined using the stress

strain diagram. Then, distribution of each stress component around the crack tip was

calculated with both asymptotic equations. Results obtained by using the asymptotic

equations of Williams and HRR were compared in detail. It was observed that distribu-

tion of the asymptotic stresses around the crack tip depended on mechanical properties

when HRR was used whereas there is a unique solution proposed by the asymptotic

equations of Williams for a specific geometry and loading. Additionally, stresses cal-

culated using HRR increase slowly through the crack tip while there is a substantial

increase in the stress values when the equations of Williams are used. In reality, the

phase transformation in SMAs limits the increase in stresses near the crack tip. From

the stress analysis, it was concluded that HRR solution gives more reasonable results

when compared to those of Williams.

In Chapter 4, transformation and martensitic region sizes around the crack tip

were calculated analytically. For this purpose, the transformation function (Fz) devel-

oped by Zaki and Moumni [26] was used together with the asymptotic stress equations

of Williams and HRR; FLEFM
z and FHRR

z were obtained. Both transformation function



94

estimations agreed with around 1 mm transformation region size on the x-axis which is

experimentally observed by Haghgoyan et al. [8] as well. On the other hand, there was

a significant difference in the estimations of full martensite region. The transformation

function modified with the equations of Williams estimated almost the same size for

the transformation and the full martensitic regions. A fully martensitic region was

observed to be around 0.18 mm from finite elements by Haghgouyan et al. [8] although

they could not detect it experimentally. 0.4 mm estimation obtained from HRR seems

like a more reasonable result. Additionally, the size of the transformation region was

also estimated using the equivalent strain distribution around the crack tip. This time,

the transformation region was estimated to be around 1.9mm when HRR was used,

and 0.7 mm from Williams. Also, the martensitic region was estimated to be around

0.3 mm using HRR and it could not be observed using the equations of Williams

because strains do not change much for this type of material in the linear range.

In Chapter 5, a computational analysis was performed in ABAQUS using a UMAT

subroutine written for the ZM Model. Both tensile test and fracture test simulations

were performed for three types of NiTi alloys having different transformation stresses.

Material properties were obtained from Mutlu [32] and Gou [33]. In order to obtain a

constant temperature distribution, an excessive amount of convection coefficient was

used in each model. Stress-strain diagrams were obtained from simulations of the

tensile tests in ABAQUS, and corresponding mechanical constants needed for Ramberg-

Osgood equation were determined by fitting a curve to stress-strain data; n = 20, n = 8

and n = 4 were obtained to represent the stress-strain relations of the models 1, 2, and

3 respectively. It was observed that representation of the stress-strain relation using

Ramberg-Osggod relation is a better choice performed for SMAs with smaller slopes

in transformation plateau, in other words, for larger n values.

For simulation of fracture tests, a compact tension (CT) specimen was modeled in

ABAQUS using ZM model. The specimen was loaded in the y-direction at different load

levels for each model. Crack tip fields were evaluated computationally and compared to

the results obtained using the equations of Williams and HRR. Finite element results

of J-integrals were found to be path-dependent; as a result an average value calculated
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using the far field J-integral and the J-integral at the crack tip was used. Required

stress intensity factors were calculated using J =
K2
I

EA
. The amplitude of the stress

function, κ in HRR, was determined as explained in section 2.3.4. Equivalent stress

distribution of each model around the crack tip was plotted using the finite element

results and results obtained from asymptotic equations.

It was observed that results obtained using HRR were in good agreement with

the finite element results in the transformation region. Equivalent stresses calculated

using the asymptotic equations of Williams increased abruptly through the crack tip.

In reality, increase in the stress is limited by the transformation mechanism in SMAs.

Opening stress values ahead of crack tip were evaluated and it was seen that HRR

solution matched with the finite element results in the transformation region except for

the third model (Ramberg-Osgood representation of stress-strain relation of the third

model was less successful than the others). Around the crack tip there is a small region

of fully martensite and the asymptotic equations do not work there. Following the

martensitic region, there is a transformation region in which the equations of HRR are

dominant. The stress distribution obtained using the equations of Williams matched

with the finite element results in the austenitic region. After transformation region,

the material is in full austenitic phase and there KI dominance is observed.

In addition to stress analysis, computational transformation region estimations

were also compared to the closed form calculations obtained using transformation func-

tions. The estimation of the transformation region from both asymptotic equations give

reasonable results when compared to the finite element ones. There is a small difference

between the transformation and martensitic regions when FLEFM
z was used, however,

the full martensitic region was better estimated when FHRR
z was used.

The computational analyses of the first and the second models performed using

the material properties provided by Mutlu [32] were repeated using a reasonable amount

of convection coefficient to see the effect of thermomechanical coupling. The specimens

were loaded according to the loading rates specified by Mutlu [32]. Because increasing

temperature resulted in an increase in the transformation stresses, the transformation
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region size of each model decreased. The change in the transformation region was

found to be more significant in the second model subjected to a higher loading rate.

The result was found as expected because the effect of themomechanical coupling is

stronger in higher loading rates as it was observed by Mutlu [32].

In Chapter 6, J-integral and energy dissipation in the SMAs were studied. To

understand the domain dependence of the J-integral, an edge cracked plate was loaded

in ABAQUS using different material types. As expected, it was shown that J-integral

around the crack tip of an elastic material is path-independent. On the other hand,

J-integral was found to be path-dependent in the SMAs as a result of nonhomogeneity

and the energy dissipation. It was shown that there is a significant amount of energy

dissipation in a loading-unloading cycle of a pseudoelastic SMA.

The J-integral was also tried to be evaluated following the approach proposed

by Landes and Begley [51] for elastic-plastic materials. Landes and Begley [51] calcu-

lated the strain energy stored inside the edge cracked specimens having neighboring

crack sizes when they are subjected to the same amount of displacement loading; the

slope on the strain energy vs crack length curve is equal to the J-integral. Similarly,

edge cracked SMA plates with different crack lengths were modeled in ABAQUS using

thermomechanically coupled ZM Model [26], they were loaded with the same amount

of displacement and the energy stored inside each specimen was calculated using the

free energy density of the SMAs in the ZM Model. It was observed that the slope on

the free energy vs crack length curve gives an estimation about the far-field J-integral

obtained from ABAQUS.
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APPENDIX A: STRESS FUNCTION FORMULATION

In the absence of body forces, equilibrium equations in Cartesian coordinates are

as follows:

∂σxx
∂x

+
∂τxy
∂y

= 0 (A.1)

∂τyx
∂x

+
∂σyy
∂y

= 0

which are identically satisfied by the stress function related to stresses as follows:

σxx =
∂2φ

∂y2

σyy =
∂2φ

∂x2
(A.2)

σxy = − ∂2φ

∂x∂y

φ(x, y) is the Airy stress function introduced by G. B. Airy. It is a scalar function

which enables the solution of two dimensional problems in elasticity [52].

For 2D problems, compatibility equation is:

∂2εxx
∂y2

+
∂2εyy
∂x2

=
∂2γxy
∂x∂y

(A.3)

and the constitutive relations for plane stress are given as follws:

εxx = εxx(x, y) =
1

E
[σxx − νσyy]

εyy = εyy(x, y) =
1

E
[σyy − νσxx] (A.4)

γxy = γxy(x, y) =
1

µ
σxy

εzz = − ν
E

(σxx + σyy)
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If the constitutive equations for plane stress are submitted into the compatibility equa-

tion, the following equation is obtained:

µ

E
(
∂2σxx
∂y2

+
∂2σyy
∂x2

)− µν

E
(
∂2σyy
∂y2

+
∂2σxx
∂x2

) =
∂2σxy
∂x∂y

(A.5)

Differentiating equilibrium equations with respect to x and y respectively gives:

∂2σxx
∂x2

+
∂2σxy
∂x∂y

= 0 (A.6)

∂2σxy
∂x∂y

+
∂2σyy
∂y2

= 0 (A.7)

and summing the two equations above:

2
∂2σxy
∂x∂y

= −∂
2σxx
∂x2

− ∂2σyy
∂y2

(A.8)

is obtained. Submitting Equation A.8 into the right hand side of Enq. A.5 and sim-

plifying:

∇2 (σxx + σyy) = 0 (A.9)

is obtained. Now, stresses are written in terms of stress function and it gives:

∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+
∂4φ

∂y4
= 0 (A.10)

or

∇4φ = 0 (A.11)
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According to Equation A.11, stress function satisfies the biharmonic equation. In

polar coordinates it is written as:

∇4φ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)(
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2

)
= 0 (A.12)


