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ABSTRACT 

 

DEVELOPMENT OF A DATA COLLECTION AND ANALYSIS TOOL 

FOR PROTEIN – LIGAND INTERACTIONS 

 

 

         Analysis of protein – ligand interactions guides the development of new drugs. 

For protein - ligand interaction studies, first step is the construction of an accurate 

dataset. This data collection process can be completed either by manual search in 

databases or by using computer-assisted data collection methods. Manual data 

collection is difficult, time consuming and prone to errors. In this work, we present a 

novel tool to collect protein-ligand interaction data. We first introduce a protein – 

ligand interaction data collection tool using UniProt, ChEMBL, PubChem, PDB and 

BindingDB as its source databases. In the second part, we use this tool to analyze 

protein – ligand interactions of sphingolipid and insulin metabolisms. First, the 

datasets of both metabolisms were constructed, then their ligand centric network 

models were built for ligand analysis.  Based on these networks, first the interactions 

within sphingolipid metabolism proteins, then their interactions with insulin proteins 

were analyzed. According to the ligand analysis, specific interactions and significant 

drugs were highlighted. Besides promiscuous drugs interacting with too many 

proteins, Tamoxifen and Altretamine cancer drugs interacted with key sphingolipid 

proteins, namely GLCM, ARSA and AGAL. Ceritinib, used for the treatment of non-

small cell lung cancer, interacted with Kit and Lyn kinases. This ligand based 

interaction network analysis highlighted the synergy between these two networks. 
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ÖZET 

 

 

PROTEİN - LİGAND ETKİLEŞİMLERİ İÇİN BİR VERİ 

TOPLAYICI VE ANALİZ ARACI GELİŞTİRME 

 

        

         Protein - ligand etkileşimlerinin analizi, yeni ilaçların gelişimine dönük 

çalışmaları yönlendirmektedir. Protein - ligand etkileşimi ile alakalı çalışmalar için, 

ilk adım doğru bir veri kümesinin oluşturulmasıdır. Bu veri toplama işlemi ya 

veritabanlarında manuel arama ya da bilgisayar destekli veri toplama yöntemleri 

kullanılarak tamamlanabilir. Manuel veri toplama, zaman alıcı ve hatalara açık olması 

nedeniyle zordur. Bu çalışmada, protein-ligand etkileşim verileri toplamak için yeni 

bir araç sunulmuştur. İlk olarak UniProt, ChEMBL, PubChem, PDB ve BindingDB'yi 

kaynak veritabanları olarak kullanan bir protein - ligand etkileşimi veri toplama aracı 

tanıtılmıştır. İkinci bölümde, sfingolipid ve insülin metabolizmalarının protein - ligand 

etkileşimlerini analiz etmek için bu araç kullanılmıştır. İlk olarak, her iki 

metabolizmanın veri setleri oluşturulup, ardından ligand merkezli ağ modelleri ligand 

analizi için inşa edilmiştir. Bu ağlara dayanarak, önce sfingolipid metabolizma 

proteinleri içindeki etkileşimleri, daha sonra insülin proteinleri ile olan etkileşimleri 

analiz edilmiştir. Ligand analizine göre spesifik etkileşimler ve önemli ilaçlar 

vurgulanmıştır. Bir çok sayıda proteinle etkileşime giren ilaçların yanı sıra, 

Tamoksifen ve Altretamin kanseri ilaçları, önemli Sfingolipit proteinleri, yani GLCM, 

ARSA ve AGAL ile etkileşime girmiştir. Küçük hücreli olmayan akciğer kanserinin 

tedavisinde kullanılan Ceritinib, Kit ve Lyn kinazlarıyla etkileşime girmiştir. Bu 

ligand tabanlı etkileşim ağı analizi, bu iki ağ arasındaki sinerjiyi vurgulamıştır. 

 



 

vi 

TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS………………………………………………………..  iii 

ABSTRACT…………………………………………………………………..........  iv 

ÖZET……………………………………………………………………………….   v 

LIST OF TABLES………………………………………………………………..    ix 

LIST OF ACRONYMS / ABBREVIATIONS…………………………………...    xv 

1.  INTRODUCTION………………………………………………………...…….   1 

2.  THEORY…………………………………………………………………...…...   4 

2.1.  Sphingolipid and Insulin Metabolisms……………………………………   4 

2.2.  Protein-Ligand Interaction (PLI) Data…………………………………….  5 

2.2.1.  Databases……………………………………………………...…...   5 

2.2.1.1.  UniProt………………………………………………....….   6 

2.2.1.2.  PDB………………………………………………………..   6 

2.2.1.3.  ChEMBL…………………………………………………..   6 

2.2.1.4.  Other Protein-Ligand Databases…………………………..   7 

2.2.2.  Programmatic Access to Databases………………………………..   7 

2.2.2.1.  BioServices……………………………………………......   8 

2.2.2.2.  ChEMBL Webresource Client…………………………….   9 

2.3.  Protein-Protein Interaction (PPI) Networks…………………………….....   9 

2.3.1.  Ligand Centric Network Model (LCNM)…………………............  10 

2.3.1.1.  Identity Network Model…………………………………..  11 

2.3.2.  Clustering Analysis………………………………………………..  12 

2.3.2.1.  MCL Algorithm…………………………………………..  12 

2.4.  Ligand Analysis…………………………………………………………..  13 

2.4.1.  MatPlotLib………………………………………………………...  14 

2.4.2.  Protein – Ligand Docking……………………………....................  14 

2.4.3.  Molecular Symmetry and Chemical Features……………………..  16 



 

vii 

3.  METHODS………………………………………………………...…………...  19 

3.1.  Data Collection………………………………………………..………….  19 

3.2.  Database Based Protein-Ligand Interaction Data Collectors…..………...  21 

3.2.1.  ChEMBL………………………………………………………….  21 

3.2.2.  PDB………………………………………………………...……..  28 

3.2.3.  BindingDB………………………………………………………...  29 

3.2.4.  KEGG……………………………………………………………..  31 

3.2.5.  PubChem………………………………………………………….  32 

4.  RESULTS………………………………………………………………............  35 

4.1.  Sphingolipid and Insulin Data Summary………………………………....  35 

4.2.  Sphingolipid and Insulin Ligand Centric Networks……………………...  36 

4.2.1.  Construction of SL-WIN Network……………………………......  36 

4.2.1.1.  Interactor Analysis of Sphingolipid Network……………  38 

4.2.1.2.  Scaffold Analysis and ZINC Database Search…………..   49 

4.2.1.3.  Protein – Ligand Docking of SL-WIN…………………..   58 

4.2.2.  Construction of Combined Network of Sphingolipids and 

Insulins…........................................................................................   61 

4.2.2.1.  Interactor Analysis of Combined Sphingolipid and            

Insulin Network………………………………………….   63 

4.2.2.2.  Protein-Ligand Docking of Key Sphingolipid-Insulin      

Interactions……………………………..………………..   71 

4.3.  Comparison Between Sphingolipids and Inflammation Enzymes………   75 

4.3.1.  Sphingolipid and Inflammation Data Summary……….................   75 

4.3.2.  Construction of Inflammation Network…………………………..   77 

4.3.3.  Interactor Analysis for Intersection of Sphingolipids and     

Inflammation Proteins……………………………………….…….   79 

5.  CONCLUSION………………………………………………………………...   81 

5.1.  Conclusions……………………………………………………………....   81 

5.2.  Further Studies…………………………………………………………...   83 



 

viii 

REFERENCES……………………………………………………………………   84 

 

  



 

ix 

LIST OF TABLES 

 

Table 2.1.  The list of symmetry operations. ............................................................  17 

 

Table 2.2. The list of used symmetry groups and their operations. Here, n is an 

ordinal number. ......................................................................................  17 

 

Table 3.1.  The number of ligands each database includes. ......................................  20 

 

Table 4.1. The number of protein IDs and ligands extracted for sphingolipid and 

insulin  metabolism from UniProt and ChEMBL. .................................  35 

 

Table 4.2. For sphingolipid clusters, number of proteins, number of ligands and 

ligand pairwise similarity values are listed. ...........................................  41 

 

Table 4.3. The drugs of C1of SL-WIN. ....................................................................  42 

 

Table 4.4. The observed know drugs and the protein interactions from cluster 1       

of the SL-WIN network are listed. .........................................................  46 

 

Table 4.5. The drugs of the cluster 2 are listed with their names, ChEMBL IDs      

and related diseases ................................................................................  47 

 

Table 4.6. The specific interactions of the SL-WIN cluster 2 with their rarely       

seen drugs. ..............................................................................................  49 

 



 

x 

Table 4.7. The scaffolds of sphingolipid clusters are listed by their ChemSpider          

names and their figures. .........................................................................  51 

 

Table 4.8. The number of scaffolds and the number of detected ligands are          

listed. .......................................................................................................  58 

 

Table 4.9. For SL-WIN, the ligands docked into more than one protein with    

docking scores below -6 are listed. ........................................................  59 

 

Table 4.10. For SPHINS clusters, number of proteins, number of ligands and     

ligand pairwise similarity values are listed. ...........................................  66 

 

Table 4.11. 23 anticancer drugs were observed in C1-SPHINS. ..............................  67 

 

Table 4.12. The drugs interacting less than 7 proteins pairs in C1 of SPHINS          

are listed with the interacted protein pairs. ............................................  68 

 

Table 4.13. These three drugs and their protein interactions from C2 of the     

SPHINS network are listed. ...................................................................  70 

 

Table 4.14. The list of clusters 2’s proteins, ligands and their XP Gscores. ............  71 

 

Table 4.15. Protein numbers of both sphingolipids and inflammations. ..................  76 

 

Table 4.16. The list of the proteins observed at the intersection between both  

protein families………………………………………………………..  73 



 

xi 

Table 4.17.  19 commercial drugs were observed in sphingolipid-inflammation  

intersection network………………………..………………………… 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

LIST OF FIGURES 

 

Figure 3.1. Pseudo code of ChEMBL data collection script .....................................  23 

 

Figure 3.2. The flowchart of protein-ligand interaction process ...............................  25 

 

Figure 3.3. Pseudo code of ChEMBL data collection script based on threshold  

criteria .....................................................................................................  26 

 

Figure 3.4. The options for threshold selection.........................................................  27 

 

Figure 3.5. Pseudo code of PDB data collection script .............................................  29 

 

Figure 3.6. Pseudo code of BindingDB data collection script ..................................  30 

 

Figure 3.7. Pseudo code of KEGG data collection script .........................................  32 

 

Figure 3.8. Pseudo code of PubChem data collection script .....................................  34 

 

Figure 4.1. The WIN of sphingolipid metabolism ....................................................  37 

 

Figure 4.2. The clusters of the SL-WIN ....................................................................  37 

 

Figure 4.3. Number of shared ligands higher than 50. ..............................................  38 



 

xiii 

Figure 4.4. PLS distribution of SL-WIN clusters. ....................................................  39 

 

Figure 4.5. Scaffolds identified by scaffold decomposition. ....................................  50 

 

Figure 4.6. Number of shared ligands higher than 50 ...............................................  61 

 

Figure 4.7. (A) SPHINS-WIN, where insulins and sphingolipids are shaped as  

ellipse and rectangles, respectively. (B) The clusters of SPHINS- 

WIN .........................................................................................................  62 

 

Figure 4.8. The similarity distribution of the weighted identity SPHINS clusters.  

X index is for the similarity values and Y is for the frequency of these 

 similarity values. ....................................................................................  64 

 

Figure 4.9. The second cluster of weighted identity SPHINS network. Green  

hexagonal nodes represent the first sphingolipid neighbours of the  

insulins coloured with light blue and shaped as ellipse. .........................  71 

 

Figure 4.10. The third cluster of weighted identity SPHINS-WIN. Green  

hexagonal nodes represent the target proteins bridging both  

metabolisms. In the graphic, sphingolipid and insulin proteins are 

shaped as rectangular and ellipse, respectively. ......................................  74 

 

Figure 4.11. WIN of inflammation. ..........................................................................  78 

 



 

xiv 

Figure 4.12. The intersection of both networks is illustrated. ...................................  78 

 

Figure 4.13. The frequency distribution of PLS values for Inflammation  

ligand set. ................................................................................................  79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xv 

LIST OF ACRONYMS / ABBREVIATIONS 

 

2D   Two Dimensional 

3D   Three Dimensional 

AC   Activity Concentration 

ACER1  Alkaline ceramidase 1 

ACER2  Alkaline ceramidase 1 

AGAL   Alpha-galactosidase A 

AKT1   RAC-alpha serine/threonine-protein kinase 

AKT2   RAC-beta serine/threonine-protein kinase 

API   Application programming interface 

ARSA   Arylsulfatase A 

ARSB   Arylsulfatase B 

ASAH1  Acid ceramidase 

ASAH2  Neutral ceramidase 

ASM   Sphingomyelin phosphodiesterase 

BGAL   Beta-galactosidase 

BindingDB  Binding Database 

CEGT   Ceramide glucosyltransferase 

ChEMBL  Chemical database of European Molecular Biology Laboratory 

ChemSpider  Chemical Structure Database 

CID   Compound Identification 

CSK   Tyrosine-protein kinase CSK 

DHB12  Very-long-chain 3-oxoacyl-CoA reductase 

DrugBank  Drug Database 



 

xvi 

EC50   Half maximal effective concentration  

ELOV   Elongation of very long chain fatty acids protein 

ENPP7   Ectonucleotide pyrophosphatase/phosphodiesterase   

   family member 7 

FOXO1  Forkhead box protein O1 

FYN   Tyrosine-protein kinase Fyn 

GBA2   Non-lysosomal glucosylceramidase 

GBA3   Cytosolic beta-glucosidase 

GLCM   Glucosylceramidase 

GO   Gene Ontology 

GSK3A  Glycogen synthase kinase-3 alpha 

HTML   HyperText Markup Language 

IC50   The half maximal inhibitory concentration 

ID   Identification 

IDE   Insulin-degrading enzyme 

IGF1R   Insulin-like growth factor 1 receptor 

INSR1   Insulin receptor 

Jar   JAVA Archive 

Jmol   JAVA Molecule Viewer 

KEGG   Kyoto Encylopedia of Genes and Genomes 

Ki   Binding affinity of the inhibitor 

KIT   Mast/stem cell growth factor receptor Kit 

KPCD   Protein kinase C delta type 

KPCD1  Serine/threonine-protein kinase D1 

LCNM   Ligand Centric Network Model 



 

xvii 

LPPI   Ligand Centric Protein-Protein Interaction   

LYAM3  P-selectin 

LYN   Tyrosine-protein kinase Lyn 

MCL   Markov Clustering Algorithm 

MS   Multiple sclerosis 

NCBI   National Center for Biotechnology Information 

NEUR1  Sialidase-1 

NEUR2  Sialidase-2 

NEUR3  Sialidase-3 

NEUR4  Sialidase-4 

nM   Nanometer 

NPC1   Niemann-Pick C1 protein 

OTAVA  OTAVA Chemical Libraries 

P2RX7   P2X purinoceptor 7 

PDB   Protein Data Bank    

pH   potential of hydrogen 

PLI   Protein-Ligand Interaction 

PLS   Pairwise Ligand Similarity 

PP2AA  Serine/threonine-protein phosphatase 2A catalytic   

   subunit alpha isoform 

PPI   Protein-Protein Interaction 

PTN1   Tyrosine-protein phosphatase non-receptor type 1 

PTN2   Tyrosine-protein phosphatase non-receptor type 2 

PTPRA  Receptor-type tyrosine-protein phosphatase alpha 



 

xviii 

PubChem  Database of chemical molecules and their activities against  

   biological assays 

SDF   Structure Data Format 

SL   Sphingolipid 

SL-WIN  Weighted Identity Network of Sphingolipid Metabolism 

SMILES  Simplified Molecular Input Entry Specification 

SPHINS  Sphingolipid and Insulin 

SPHK1  Sphingosine kinase 1 

SPHK2  Sphingosine kinase 2 

STS   Steryl-sulfatase 

TC   Tanimoto Coefficient 

TY3H   Tyrosine 3-monooxygenase 

UniProt  Universal Protein Knowledgebase 

URL   Uniform Resource Locator 

WIN   Weighted Identity Network 

XML   Extendable Markup Language   

ZINC   Database of commercially available compounds 

 

 

 

 

 

 

 

 



 

1 

1. INTRODUCTION 

 

 

         In the field of drug development, protein-ligand interaction based studies are the 

fundamental approaches to the field. Understanding the protein-ligand interactions of 

a metabolism highlights the important proteins and their interactors. These proteins or 

interactors are the good candidates for experimental studies. For a metabolic pathway 

or a group of proteins, working on the whole metabolism including its proteins and 

ligands takes too long time for experimental approaches. Thus, computational analysis 

is the first step to detect target molecules and proteins of metabolisms. Reliance of 

these computational analyses depends on how well and accurately its data set is 

prepared.  

 

         In this study, we proposed a data collection tool for protein-ligand interactions. 

Instead of manually collecting data, the programmatic way is more accurate to avoid 

miss of any data. By this tool, any protein family and their ligands can be extracted 

from different databases such as PDB [1], BindingDB [2], ChEMBL [3] and UniProt 

[4]. The output of this tool is also useful for ligand centric network models developed 

by our lab member, Hakime Ozturk. Thus, this data collection is a complementary of 

this network construction method. As the second step, the ligands of this protein-ligand 

interactions data are also analysed to specify which ligands are the key players of these 

interactions. 

 

         The aim of our first task is to construct a useful data collection tool for protein-

ligand interactions. For this tool, web services of different databases, such as UniProt, 

ChEMBL and PDB, are analysed to understand how these services can be used to 

collect protein-ligand interaction data. For that, Python language is preferred because 

of its common usage in the solvation of biological problems. In addition, there are 

many Python packages developed to access biological databases. Based on these 
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services and usefulness of Python, the language is learned via trying to apply these 

methods. Then, Python scripts are written for different databases to collect protein-

ligand interaction data. Each database has its own specific data types; therefore, new 

methods are learned to clearly understand the data format of each databases. For 

instance, PDB database stores its data in XML format which is a commonly used 

hierarchical tree based representation of data [5]. Therefore, first the data format is 

learned, then a Python package is applied to extract protein and ligand information 

from these XML data files. Thus, each database and their data collection scripts are 

considered separately. For this study, two metabolisms; which are sphingolipids and 

insulins, are preferred as the case studies. Protein-ligand interaction data of both 

metabolisms are extracted via these data collection scripts. These metabolisms are 

preferred due to their dense biological relations. Sphingolipids and insulins are 

commonly observed at the drug discovery studies because of their impacts on cancer, 

diabetes and neurodegenerative disorders [6]. Analyses of both metabolisms based on 

their protein ligand interactions are crucial to highlight key molecules and enzymes 

which can be crucial to analyse treatments of these diseases. A ligand binding to main 

proteins of these metabolisms can be the key inhibitor of many enzymes whose 

deficiency triggers many illnesses. Being able to detect such target enzymes of 

molecules is the main need of many theoretical and experimental researchers.  

 

         As the second task of this study, ligand centric networks of both metabolisms are 

constructed. important ligand centric networks are analysed together to detect 

commonly observed interactors of both metabolisms. Analyses of both metabolisms 

based on their interactors are crucial to highlight key molecules and enzymes of these 

metabolisms. First, sphingolipid ligand centric networks, then both metabolisms’ data 

are gathered to build ligand centric networks of these metabolisms together. Analysing 

both metabolisms together eases the finding of shared ligands among both 

metabolisms as well as the key interactions between sphingolipids and insulins. 

Inhibitors acting on both metabolisms’ enzymes are detected which can be used for 

development of new inhibitors to treat sphingolipids and insulins related diseases. 

These ligand centric networks are analysed via CytoScape [7] network visualisation 
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tool, and CANVAS; a cheminformatic platform, is also preferred for pairwise ligand 

similarity analysis [8]. According to these analyses, pairwise ligand similarity 

distributions of ligand sets are obtained.  

 

         The following sections of this study include detailed information about the 

biological and theoretical background of the research, the proposed data collection 

method, analysis of the results and conclusion. Background information about 

sphingolipids and insulin metabolisms, protein-ligand interaction networks, protein-

ligand databases and their data preparation process are explained in the following 

sections of the thesis. 

  



 

4 

2. THEORY 

 

 

2.1. Sphingolipid and Insulin Metabolisms 

 

         Sphingolipid metabolism, which includes many known proteins whose 

deficiency trigger  various diseases such as obesity, depression, insulin resistance, 

cancer and more [9-12], is one of the important metabolic pathways for the discovery 

of drug targets. Sphingolipids are the fatty acid derivatives of sphingosine [13] and 

abundant in the nervous system.  They play important roles in membrane 

reorganization and lipid-protein interaction within cellular membrane. In addition, the 

metabolic pathway includes many bioactive metabolites regulating the cell functions 

[13]. Therefore, the analysis of the sphingolipid metabolic pathway is crucial to 

highlight the targetable proteins for therapeutic approaches. The changes in 

sphingolipids such as ceramides and glycosphingolipids cause neurodegenerative 

diseases [14]. Brain aging is an important example to such cases. During the span of 

human life, structural changes in brain occur in specific regions of brain or in 

membrane microdomains [14]. These changes only comprise lipids such as 

sphingomyelin, ceramides and glycosphingolipids. For example, aberrant conversion 

from sphingomyelin to ceramide triggers Alzheimer’s disease and Parkinson’s disease 

[14]. Another type of disease caused by the deficiency of sphingolipids  is cancer 

which occurs when the balance between mitosis and apoptosis is disrupted [15]. The 

ratio of  ceramide/sphingosine-1-phosphate level affects cancer treatments since they  

mediate antimitogenic responses such as cell differentiation and apoptosis [6]. Thus, 

understanding the interactions among the sphingolipid proteins and which ligands 

induce these interactions might provide valuable insights for the development    of new 

strategies for these diseases.  

         Sphingolipids are also one of the main factors in insulin resistance and diabetes 

[6,13,15,16]. For insulin signaling pathways, lipid rafts enriched by lipids and 

cholesterols, are required [17]. Thus, sphingolipids are the key players of the insulin 
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signaling pathways and affect insulin resistance, since they are located at cell 

membranes. Thus, the decline or incline in the amount of ceramide has the parallel 

impacts on insulin resistance [13,16,17]. It was also found that obese patients have 

increased concentration of ceramide [17]. We can conclude that the number of 

sphingolipids such as ceramide and sphingomyelin influences the insulin resistance, 

diabetes and obesities.  

 

2.2. Protein-Ligand Interaction (PLI) Data 

 

         Proteins generally have many ligands binding to them. For example, ligands of 

an enzyme might be its inhibitors, putative drugs or known drugs. For a group of 

proteins, their protein-ligand interactions are defined based on the ligands binding to 

the proteins. There can be a variety of protein-ligand interaction types. For instance, 

PLI data can be prepared depending on the docking site of ligand to the proteins or the 

types of ligands such as inhibitors, known drugs and so on. In this study, we have 

extracted proteins and their ligands without having any specification. Thus, this PLI 

data can be the basis for broad range of studies. By using our data collection tool, 

proteins and their ligands are collected.  

 

2.2.1.  Databases 

 

         There are many databases such as PDB, UniProt, BindingDB and ChEMBL for 

proteins and ligands. Some of these databases are constructed for general purposes 

such as UniProt which is a universal protein knowledgebase. However, there are also 

particularly developed databases such as PDB which is the only source comprising 

structural data of macromolecules [1]. For PLI data collection, UniProt, PDB, 

ChEMBL, BindingDB, KEGG and PubChem are preferable. Each of these databases 

and their data types are explained in the coming subsection to clarify readers mind 
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about specificities of these databases, why they are required and what types of data are 

needed to be parsed to extract specific protein-ligand information from them.  

 

2.2.1.1.  UniProt.  UniProt is a universal protein knowledgebase which is the main data 

source for protein based studies [4]. The database consists of almost all the worldwide 

protein data with detailed information. For each protein, the database provides 

biological process, molecular functionality, enzyme & pathway databases, gene 

information, organism, access to protein-protein interaction databases, sequential 

information.  

 

2.2.1.2.  PDB.  UniProt comprises worldwide protein knowledge without having any 

specificity; however, PDB only includes structurally validated data of macromolecules 

[1]. Therefore, protein structure based studies usually prefer to work on PDB data. 

Proteins and their active sites on their structures are also given in PDB. These active 

sites are the docking sites for ligands. With the active site information, the structural 

ligand data are also provided with the residues they interact with. However, PDB only 

includes ligands whose structure is well-defined in 3D form. Therefore, these ligand 

information is limited to structural ligand data which is not enough for comprehensive 

protein-ligand interaction studies. For our study, we have worked on general protein 

information instead of structure based approaches. Moreover, ChEMBL database is 

preferred as the source database for ligands rather than PDB. 

 

2.2.1.3.  ChEMBL.  ChEMBL is the globally preferred bioactivity database developed 

by European Bioinformatics Institute same as UniProt [3]. Therefore, this database is 

on the ligand side of EBI’s bioinformatics studies. Bioactivity information of ligands 

with their experimentally validated data is accessible from ChEMBL database. In this 

database, proteins are defined as targets and ligands are named as compounds. 

ChEMBL lists compounds with their activity concentration (AC) which shows the 

binding affinity of these ligands onto the proteins such as enzymes. Calculated potency 

measurements of these activity concentrations are IC50, EC50 and Ki and so on.  
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Without being stacked into variety of these measurements, all ligands with different 

binding affinity measurements are extracted to work on. For further specific analysis 

of small number of ligands, these measurements can be analysed deeply to decide 

which measurement is preferable to inhibit an enzyme. Another globally preferred 

bioactivity database is PubChem; however, ChEMBL comprises also all the PubChem 

data of active ligands with their activity concentration information. Thus, ChEMBL 

database is the most adequate database to work on protein-ligand interactions and 

ligand activities. 

 

2.2.1.4.  Other Protein-Ligand Databases.  KEGG, BindingDB and PubChem are also 

well-known protein and ligand databases; however, these databases are constructed 

for specific purposes such as gene database like KEGG [18] or universal compound 

database like PubChem including bioactivity data [19]. Binding DB also provides 

binding affinity data for protein-ligand complexes. These data are collected from 

articles and experimental studies[2]; however, the size of the datasets Binding DB and 

KEGG have are smaller than the number of ligands ChEMBL database consists. 

Moreover, ChEMBL database comprises all the PubChem data having activity 

concentration information. Thus, considering only ChEMBL database is enough for 

ligand activity based studies. 

 

2.2.2.   Programmatic Access to Databases 

 

         Rather than manually searching in databases, programmatic access to the 

databases is more accurate. For that, web services are developed to access a database 

via web [20]. These services are developed to use via any artificial languages such as 

Python, Java or Perl. Web services based searching requires specific URLs, web 

addresses, to directly access the webpage of these databases.  URL pathways are 

generally divided into two or more locations in which user can add input, operation 

type, data format specification, data domain and output type.  After filling the 

subdivisions of URL paths, data can be parsed from the specified URL pathway. For 
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this URL based accession to databases, there are many packages like requests, written 

in Python language. Thus, first users need to import requests package into their scripts 

to be able to call functions of these package. However, packages should be installed 

into your computers. All the Python packages can be install via command prompt by 

just typing pip install ‘package name’. After installing packages, their functions can 

be imported and applied into the working environments such as scripts.  The simple 

function of requests package is called “get” by which data can be called via the 

provided URLs. The response of the function is returned in XML format which is a 

commonly preferred file format for data storage and HTML based studies [5]. XML is 

an extensible markup language in which all data are listed in a tree format starting by 

a root and having many sub children. As an example, BindingDB and PDB databases 

return data in XML format for each of their entries. Protein information is the root of 

the XML file, then its sub children include protein’s ligand name, ligand ID, 

molecule’s binding affinity, its full name and its SMILES which is a string 

representation of molecules. In brief, this XML file consists of all the information of 

the protein and its ligand information. However, only required protein-ligand 

information should be parsed from these files. Python has a package called xml.etree 

to parse a XML file. Thus, by using the functions of the package, protein ID, ligand 

ID, and ligand SMILES are parsed by iterating over all the children of the XML file. 

This methodology is applied for data collection process from many databases such as 

PDB and BindingDB. 

 

2.2.2.1.  BioServices.  BioServices is a Python package developed for programmatic 

accession to biological databases via their web services. Each database has its own 

web services; however, their data type or the storing way of data might be different. 

For that, functions of this package allow users to search directly in biological databases 

such as UniProt and PDB without worrying about the data types. For each database, 

there are sub classes of this python package. Therefore, users can import any provided 

databases’ function class into their scripts; then the functions of BioServices can be 

performed to search in the databases. BioServices is developed by a research group 

from European Bioinformatics Institute (EBI) and the package does not include all of 
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bioinformatics databases. The list of protein and ligand based databases, for which the 

EBI group developed BioServices, are UniProt, PDB, ChEMBL, KEEG. Except 

KEGG, all the databases are developed by EBI research groups. That is why 

BioServices is also specifically a product of EBI. However, some errors have received 

while trying to apply ChEMBL and KEGG functions of the package. The functions 

did not extract any data from these databases. Then, these errors were reported to the 

research group as the issues of their package. As our B plan, these databases were 

accessed via their own clients and web services rather than BioServices.  

 

2.2.2.2.  ChEMBL Webresource Client.  Client is a software accessing services made 

available by servers. For ChEMBL web services, a python package called ChEMBL 

web resource client is designed by ChEMBL group to provide a programmatic as well 

as an easy way to users.  While working on a set of compounds in a script, functions 

of ChEMBL client can be called to search for these compounds in ChEMBL. For this 

study, SMILES, activity concentration, and molecule ChEMBL IDs are collected from 

ChEMBL via functions of the client. There are many sub classes of these client for 

each group of specific data set of ChEMBL. The database stores data in dictionaries. 

Unlike strings indexing its entries by numbers, dictionaries label each entry by 

keywords which are called when users need to get any specific data from the 

dictionary. To illustrate, a variable called resource object of the database should be 

first defined such as target, compound or assay, then via this object in the script, the 

data can be accessed. For instance, if compound data is searched, then compound 

variable called compound() should be indicated in the Python script. 

 

2.3. Protein-Protein Interaction (PPI) Networks 

 

         Network models provide a practical environment for the analysis of protein 

interactions, thus leading to emergence of protein-protein interaction (PPI) networks. 

Among the many benefits of network representation, identification of the central nodes 

(e.g., proteins) and clusters constitute important steps into the better understanding of 



 

10 

the interactions. For instance, insulin like peptides are the regulators of insulin 

signaling pathway[21], which is known by its regulatory function in diverse 

physiological processes in humans. An insulin-based PPI network might provide an 

information about the significance of peptides as regulators in the insulin metabolism. 

In a simple way, protein-protein interaction networks can be built with respect to the 

data worked on. For instance, Durek and Walther constructed  [22] metabolic 

interaction networks (MIN) which can be analyzed by constructing the PPI network of 

metabolisms in order to understand the changes in the information flow among all the 

proteins. According to their study, analogy between these PPI networks and metabolic 

pathways are observed. 

 

         PPI networks are not only useful to understand metabolic interactions but also 

for analyses of different biological problems. For instance, PPI networks can be 

modelled based on gene neighborhood, protein structure or domain-domain 

interactions of the proteins and more [23]. The important genes for diseases can be 

also detected via the analysis of these gene based networks (GBN). For instance,  

Fenger and Jeppensen [24] used gene-based networks to analyze the importance of 

sphingolipid metabolism on hypertension. GBNs were constructed to clarify which 

gene interactions are significant for the regulation of blood pressure.  

 

2.3.1. Ligand Centric Network Model (LCNM) 

  

         In this study, Ligand-centric PPI (LPPI) networks are constructed to investigate 

the interactions between the proteins in terms of the ligands binding to the proteins. In 

this model, proteins are connected via their shared ligands. Moreover, the edge weights 

of these networks are set based on the number of shared ligands. There are two main 

and three sub network types provided by LCNM. These networks are called identity 

and similarity network models; and their sub types are explained step by step. 
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2.3.1.1.  Identity Network Model.  Construction of this network depends on the number 

of shared identical or chemically ligands between proteins. For that, there are two main 

network types called identity and similarity. For this study, we preferred to apply 

identity networks since construction of similarity networks takes too long time for big 

protein-ligand data sets. Edge weights of identity networks are set in three different 

types; namely, unweighted, weighted and normalized weighted. Based on to which 

type of network is required, user can decide for edge weight sets of networks. The 

definition of these network types is listed below.  

 

         Unweighted Identity Network Model: In this model, two proteins are connected 

by an edge if they share at least an identical ligand. Whether the number of shared 

ligands is 1 or more than 1, all the edge weights are set to 1. This way of setting briefly 

indicates which proteins share ligands or not. 

 

         Weighted Identity Network Model: Different than unweighted network model, 

edges of weighted networks are set by the number of shared identical ligands. The 

edge weight of the network is the number of shared ligands between proteins. In 

addition to the number, the IDs od these ligands also provided on the network. This 

information allows us to search for specific protein interactions and their interactors.  

 

         Normalized Weighted Identity Model: For normalized weighted identity 

network, edge weights of weighted identity network are normalized by the total 

number of ligands binding to proteins. As an example, it is assumed that there are two 

proteins, A and B, in a weighted identity network; moreover, number of ligands 

binding to A and B are 14 and 16 respectively. In addition, the number of shared 

ligands between these proteins is assumed to be 4. Then, the normalization of the edge 

weight is 4/ (14 + 16 – 4) which equals 0.15. This is how the edge weights of the 

normalized weighted identity network are set. 

 



 

12 

         For this study, we focus on weighted identity networks since the precise number 

of shared ligands and their IDs are required. Finding the most dominant interactors of 

a metabolism is the first step to build new molecules for the disease caused by the 

metabolic disorders. The interactors of the main enzymes in a metabolism are the 

target molecules to estimate the inhibition level of enzymes. Inhibition level of the 

main enzymes are the triggers of metabolic disorders and related illnesses. Therefore, 

each network and their clusters are considered to detect these interactors for further 

studies such as molecule generation.  

 

2.3.2.  Clustering Analysis 

 

         For both sphingolipid and insulin metabolisms, their protein interaction networks 

are constructed as ligand centric network. First, sphingolipid network, then both 

metabolisms’ data are gathered to construct sphingolipid & insulin PPI network. These 

networks are visualized and analysed in CytoScape which is a well-known network 

visualization and analysis platform[7]. This software includes many plugins via which 

network parameters and their clusters can be calculated.  

 

2.3.2.1.  MCL Algorithm.  For our protein interaction networks, MCL algorithm; 

provided via ClusterMaker plugin, is applied to find clusters of these networks. There 

are not many options for the analysis of weighted networks, therefore, well-known 

MCL algorithm is preferred. MCL is a network clustering algorithm which works on 

flows of the network [25]. In other words, edge weights of a network are considered 

for clustering process. In this algorithm, the flows also called edge weights of the input 

network are considered to build flow matrix of the network. The algorithm is 

implemented for given number of iterations. For each iteration, first, the matrix is 

expanded by algebraic matrix multiplication to itself. Then, each non-zero elements of 

the new matrix are raised to a power which is an input of the algorithm called 

granularity inflation. Increasing the inflation value causes the emerging of new clusters 

of the network. Therefore, user can try different inflation values to understand which 
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approach is more appropriate for its dataset. For the metabolic data sets, 2.5 is chosen 

as the granularity inflation value. Then the clusters of these metabolic networks are 

calculated.  

 

2.4. Ligand Analysis 

 

         For each clusters of these PPI networks, their ligands are collected from 

CytoScape. First, each clusters of the networks are extracted to create subnetworks of 

these networks. For each cluster, then the edge attributes are collected and saved as 

sdf files. For each cluster, its ligand sets are prepared to analyse. These analyses are 

performed in CANVAS which is a computational cheminformatics platform [8]. 

CANVAS requires sdf or mol file formats to import data into the software. Each ligand 

sets are imported into CANVAS, then their similarity matrices are calculated. For this 

calculation, the binary fingerprints of these SMILES are required since these matrices 

are constructed based on the fingerprints[8]. Binary fingerprints are binary string 

representation of substructures belonging to the analysed molecule. All possible 

chemical substructures are defined in this CANVAS fingerprint algorithm; moreover, 

presence and absence of these substructures in the given molecule are indicated with 

1s and 0s in its fingerprint. For a list of molecules, first their fingerprints are computed, 

then pairwise similarity comparisons are performed to construct fingerprints based 

similarity matrices. The similarity measurement is chosen as Tanimoto coefficient 

which is calculated by dividing intersection of two vectors to their union or summation 

[26]. 

  

         For each cluster and their ligand sets, this process is implemented and their 

similarity matrices are obtained via CANVAS. These similarity matrices are exported 

as csv files then these matrices are plotted as similarity distribution via a Python script. 

This script easily takes the upper diagonal side of any matrix by reading each row of 

the matrices, then plot the distribution of the entries taken from the upper part of the 

matrix. These similarity matrices are symmetric matrices since the entries include 
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pairwise Tanimoto similarity values of each ligands belonging to a ligand set. That is 

why only the upper part of the matrices are considered. In addition, these matrices are 

generally too big to analyse directly by looking at them. For instance, the size of the 

similarity matrix calculated for 5000 ligands is 5000*5000. Therefore, plotting these 

similarity distributions is the simple but effective way to analyse big data matrices.  

 

2.4.1. MatPlotLib 

 

         Commonly used Python library for plotting variables; such as arrays, matrices, 

is MatPlotLib. This library is a 2D graphics package and used for image generation 

for Python scripts [27]. A function of this package called “plt” is used for visualization 

of variables in a script. For this study, upper triangular similarity matrices are 

considered; moreover, entries of these upper triangular matrices are stored in arrays. 

These arrays are plotted by using the plt function of MatPlotLib. This function also 

has many features by which user can select what type of plot model is needed or even 

the titles and labels of these plots can be added by using the features. For instance, 

histogram model is preferred for the similarity matrices and this preference is denoted 

by “plt.hist” in the script. For naming the x and y axes of these plots, “xlabel” and 

“ylabel” features of plt function are added to the plt function as “plt.xlabel” and 

“plt.ylabel”.   

 

2.4.2. Protein – Ligand Docking 

 

         After analysing protein-ligand interaction networks, some of the specific 

interactions and interactors are detected. These proteins and ligands are evaluated to 

find the molecules having impacts on more than one protein. This sort of molecules 

might inhibit many enzymes in the metabolic network. After detecting the molecules, 

new drug candidates can be designed.  
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         For a group of detected proteins and ligands, these ligands should be docked into 

proteins if they can. These docking scores help us to demonstrate which ligands are 

the efficient candidates to work on. After having such computational cheminformatics 

approaches, these candidate drugs or well-docked ligands might be considered for 

further experimental approaches instead of trying to dock the whole list of ligands.  

 

         Schrödinger Maestro [28] is commonly preferred cheminformatics platform for 

protein-ligand interactions. First, proteins are prepared, then their ligands are also 

prepared to dock them into the proteins. For a group of proteins, the docking process 

is separately completed. Maestro provides Protein Preparation Wizard for protein 

preparation, and Lig-Prep for ligand set preparation [29]. First, the protein’s crystal 

structure is imported into the environment by entering its PDB ID in Protein 

Preparation Wizard. PDB consists multiple structures of proteins, thus first the well-

designed form of a protein should be decided. The mostly preferred structures are 

ligand bonds ones since the proteins’ active sides are already provided. The docked 

sides of the ligands are the possible docking sides to which new ligands are tried to 

dock. Missing side chains and missing loops are also added to the structures, then they 

are optimized as well as minimized for pH 7 for natural pH of cytoplasm and pH 5 for 

natural pH of lysosome. Furthermore, water molecules in the crystal structure were 

also removed since it eases the complicatedness of docking process. Proteins usually 

comprise more than one chains in the structures; however, sometimes these chains 

might be identical. For that, working on only one of them is preferred for preventing 

waste of time. If the protein working on has identical chains, one of the chains can be 

erased via Protein Preparation Wizard. 

 

         For ligands, their sdf file is imported into Maestro, then these ligands are 

prepared to dock via Lig-Prep. First, imported ligand set is selected from the entry list 

of the Maestro project. Then, the possible states of ligands are generated in pH 7 for 

cytoplasmic and pH 5 for lysosomal proteins. The subcellular locations of the proteins 

are searched in UniProt. During this process, specified chiral centres of the molecules 
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are retained. After preparing the ligands, receptor grid generation of GLIDE is 

performed to detect active sites to which ligands are docked [30]. For that, docking 

sites of the ligands, provided by protein structures in PDB, are selected to which the 

list of prepared ligands is docked. From the docking types, XP (Extra Precision) 

docking is preferred since it offers more extensive ligand-receptor shape based 

docking process. According to the outputs of docking process, top 5 ligands are 

considered based on their XP Gscores. Lowest XP Gscores are the best docking scores 

since well-docked ligands require lower energies. 

 

2.4.3. Molecular Symmetry and Chemical Features 

 

         Geometric properties of molecules determine the molecules’ chemical features 

such as chirality and polarity. Non-superimposable molecules; whose mirror image 

cannot be superimposed to itself, are defined as chiral molecules. Mirror images of the 

molecules, also called stereoisomers, may react differently in chemical processes 

[31].Thus, chiral molecules are generally analysed by their two isomers to evaluate 

which isomer of the ligand plays role in the chemical reaction. Moreover, natural 

products are commonly chiral. That is why drug developer and synthesisers prefer 

chiral molecules since synthesizing isomers of chiral molecules is less expensive [31]. 

For the detection of  geometric features of ligands, group theory is commonly preferred 

by computational chemist to detect molecular symmetries using symmetry groups 

[32].  

 

         In mathematics, group is an algebraic structure with a non-empty set. The 

elements of this set are equipped with an operation which combines any two elements 

to form a third element. In addition, the set and the operation satisfies the four axioms 

of group theory: closure, associativity, identity and invertibility. For symmetry groups, 

we have symmetry operations; such as identity, reflection and rotation, as the elements 

of the set.  Moreover, any two symmetry operations are combined to obtain a third 

symmetry operation. For instance, rotation-reflection symmetry is obtained by 
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combining both rotation and reflection symmetries. These symmetries are comprised 

by symmetry group. For objects such as molecules, these symmetries map the objects 

to themselves by rearranging their vertices. In addition, all possible symmetry groups 

are well-defined in group theory. The list of symmetry operations is given in Table 2.1 

[33]. The list of used symmetry groups and their operations are also given in Table 

2.2. 

 

Table 2.1. The list of symmetry operations. 

Symbol Operation 

E Identity operation (do nothing) 

Σ reflection through a mirror plane 

Cn rotation around n-fold axis 

I inversion through a centre of symmetry 

Sn rotation around n-fold axis + reflection in a plane perpendicular to axis 

of rotation 

 

Table 2.2. The list of used symmetry groups and their operations. Here, n is an 

ordinal number. 

Symbol Symmetry Operation 

C1 E 

Cn E, Cn 

Cs E, σ 

Dn E, Cn, n*C2 
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         Symmetry groups are also classified based on chemical features. For example, 

C1, Cn, and Dn symmetry groups are called chiral groups. Thus, if symmetry group of a 

molecule is one of these groups, then the molecule is considered as chiral [33]. Similar 

to chiral groups, polar groups are also determined: C1, Cn and Cs. Polar molecules are 

water soluble and non-polar molecules are fat soluble molecules. This information is 

important at the synthesis of the molecules.  

 

         In molecular symmetry, symmetries of molecules are calculated to define the 

molecular symmetry with respect to symmetry groups. The Java tool called Jmol 

allows users to calculate the molecular symmetry based on SMILES [34]. First, Jmol 

jar file is installed from its webpage. For symmetry group calculation, java scripts are 

written in which the list of SMILES are read and their symmetry groups are calculated 

via functions of Jmol. Then, these java scripts and Jmol jar file are called via command 

prompt. This command prompt based usage of Jmol and the scripts are given as the 

supplementary files.  
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3. METHODS 

 

 

3.1. Data Collection 

 

         The binding sites of ligands and their pharmacological effects are important for 

protein activity [35]. According to the impacts, the possible pharmaceutical drug 

compounds can be found. However, the first and the fundamental step is to build or 

collect accurate data to work on. For that, there are web services to collect data from 

databases such as APIs and clients written in languages such as Python, Java and R. 

These web services are developed for data collection from these databases; however, 

the important need is to collect specific data belonging to a protein family from a 

variety of databases at a single time. For that, there are some tools such as PLI [36] 

and LigDig [37] which are both designed for different aims. PLI detects the binding 

pockets of a protein for a ligand extracted from PDB. Different than PLI, LigDig 

analyze the protein-ligand interaction from different points such as searching for 

inhibitors of a protein, finding 3D structures of protein-ligand interactions. The former 

works only on PDB data and the latter analyze a protein or a list of proteins. In this 

study, the main proposed method is the protein-ligand interaction data collector which 

collect protein-ligand interaction data from public databases ChEMBL [3], UniProt 

[4], PDB [1] and BindingDB [2]. Manual collection of protein-ligand interaction data 

from several different databases is an inefficient and unpractical task due to the 

possible redundancy/miss cases and continuous updates. Therefore, with this data 

collector, we provide obtaining protein-ligand interaction (PLI) data which is 

accelerated and simplified with the promise of an up-to-date data. The data collector 

is written in Python.  

 

         For proteins, UniProt database is preferred since it comprises all the universal 

protein knowledge as can be understood from its name “Universal Protein 
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Knowledgebase”. PDB is also another option but it only includes the proteins having 

available 3D shape and structural knowledge. Thus, UniProt is preferred as the source 

database for protein information. 

 

         ChEMBL, PDB, PubChem and BindingDB are commonly used source databases 

for ligand data. First, all the databases are compared to detect the most dominant 

database for ligands. The numbers of ligands these databases comprise are listed below 

in the Table 3.1. 

 

Table 3.1.  The number of ligands each database includes. 

Database Number of Ligands 

PDB 22.876 

ChEMBL 2.036.512 

BindingDB 520.000 

 

         As a case study, different protein families, such as sphingolipids, and their 

ligands are searched in these databases. Then, the results are compared depending on 

the intersection of these databases. For instance, all the sphingolipids’ ligands 

extracted from PDB and BindingDB are also consisted in ChEMBL database.  

 

         Another disadvantage of BindingDB is the ID mapping from BindingDB ID to 

other databases. BindingDB IDs and their equivalent PubChem IDs are listed as a 

supplementary file of this database which can be obtained by following the way in its 

webpage: Download – All Compounds and Data – Lists and Identifier Mappings – 

BindingDB_CID. CID is the ID type used for compounds in PubChem. However, this 

file; we call monomer file, is not frequently updated. The updating the BindingDB ID 

editing for new molecules takes 2 weeks; then adding its equivalent PubChem ID into 
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the monomer file takes also 2 weeks more; since the updating process is completed 

each month for total number of new entries. Thus, BindingDB is not a recommendable 

source database for ligand studies to build up to date ligand datasets. The main 

importance of such data collection tools is to easily obtain updated data sets from 

databases.  

 

         For this ligand centric study, protein data are collected from UniProt, then 

ligands are collected from ChEMBL for each UniProt IDs as illustrated in Figure 3.2. 

However, the scripts prepared for the other databases BindingDB and PDB are also 

proposed. Studies may require ligand data which are specifically collected from 

BindingDB and PDB databases. The data collection scripts of these databases are 

demonstrated in the following section.  

 

3.2. Database Based Protein-Ligand Interaction Data Collectors 

 

         In this section, the scripts, which are developed to extract ligand data from 

different databases, are clearly demonstrated. The main difference for these scripts is 

the ligand database. For these scripts, UniProt database is preferred as the source 

protein database. The searched ligand databases are ChEMBL, PDB and BindingDB. 

For each database, separate scripts are written; therefore, the flowchart of each script 

is clearly described in the following subsections.  

 

3.2.1. ChEMBL 

    

         First, some python packages; namely BioServices and chembl-webresource-

client, are imported into the script. Then the resource objects are described via which 

the data are searched in both UniProt and ChEMBL. On other words, resource objects 

are just variables of a script. The resource objects of ChEMBL script are 

TargetResource() and UniProt(). TargetResource() is implemented to search for target 
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data; called also protein data, in ChEMBL. On the other hand, UniProt () is used for 

searching the keywords defined for the searched protein data. These keywords are 

searched UniProt via the UniProt () resource object to collect list of related proteins 

and their IDs.  

 

         First, the keywords are searched in UniProt to collect related protein IDs, then 

these IDs are input to search for their ligands in ChEMBL. For the UniProt search, 

data type and some information should be specified first. More than just searching the 

keywords, organism id, data format and its columns should be selected. Each entry of 

UniProt includes many information; however, relevant data should be only parsed 

from the database. For this study, human organism is searched by its taxonomy ID 

9606, the data format is chosen as “tab” format, and the selected data columns are “id, 

entry name, database(chembl)”. Thus, UniProt ID, short name, and their equivalent 

ChEMBL IDs are parsed. ChEMBL target IDs are required for checking whether 

proteins have compound data in ChEMBL or not. All target data do not have to have 

compound information. For some of target data, there is no available compound data 

since the compound data depend on experimental studies.  

 

         After collecting UniProt ID, protein short name and their ChEMBL target ID, 

these data are appended into separated arrays from which the required information can 

be used. During these classification process, ChEMBL target IDs are searched in 

ChEMBL to check whether there are compound data or not. Via the TargetResource() 

object, each target ID is checked; then if a target ID has any compound data,  its 

equivalent UniProt ID is stored in an array called “input”. This array is the input of 

ligand data collection from ChEMBL.   

 

         For each entry of the array, first their target data are obtained from ChEMBL via 

TargetResource() object and the filter functions of the ChEMBL client. There are two 

functions called “target.filter” and “activity.filter”. The former filters search UniProt 

ID; and the latter filters activity data of these targets. Both filters are performed in 
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ChEMBL database. The returns of this activity filtering are in dictionary format. Thus, 

instead of considering number as the index of the array type, each activity information 

such as standard unit type, activity concentration and their SMILES, are stored by their 

short names in this array. Thus, each specific data can be called via their short names 

by indicating the name into the index brackets of the array. To illustrate, it is assumed 

that there are activity arrays from which ligand CHEMBL IDs and ligands’ SMILES 

are required to be parsed. Thus, printing activity[‘smiles’] and 

activity[‘molecule_chembl_id’] elements of these arrays returns us the ChEMBL ID 

of the molecule and its SMILES. For our study, we parsed ChEMBL IDs and their 

SMILES from the activity dictionaries.  The data collection process is summarized by 

the flowchart given in Figure 3.2. In addition, its pseudo code is also given in Figure 

3.1. 

 

 

INPUT: Protein’s keywords and organism ID 

OUTPUT: Proteins, their ligands with ChEMBL IDs, and ligands’ SMILES 

/* First UniProt IDs and ChEMBL IDs are extracted via BioServices by searching the given 

keywords. Then these UniProt IDs and ChEMBL IDs are stored in arrays called uni and chem. 

Another array is also created in which the UniProt IDs having compound data in ChEMBL are 

stored. */ 

for list of proteins in chem array do: 

 if ChEMBL ID has compound data in ChEMBL: 

  append its UniProt ID into the input array 

for UniProt IDs in input array do: 

 search the UniProt ID’s activity in ChEMBL 

 parse the ChEMBL ID and SMILES of the protein’s ligands 

  print UniProt ID, ChEMBL ID belonging to ligands, SMILES 

  

 

  

 

Figure 3.1. Pseudo code of ChEMBL data collection script 
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         There is also a tricky approach to extract significant ligands from ChEMBL. The 

database provides activity concentration of ligands since it is a bioactivity dataset. 

Thus, defining a threshold for these ligand collection process reduces the size of ligand 

data set. This reduction allows us to work on more effective ligand data set to detect 

best ligands of the proteins. Regarding to the leader of ChEMBL research group who 

is Anne Hersey, 1000 nM can be selected as the cut-off value for the activity 

concentrations; however, considering the concentration distribution for each ligand 

sets is more reliable since the activity information can be varied for different protein 

families and organisms. For that, two options are offered to the users. First, 

concentration values of search ligands can be stored to calculate their median, then this 

median can be used as the threshold for the ligand collection process. However, if 

users would like to see the frequency distribution of these values, it is offered a Python 

script collecting the concentration data of the ligands to plot their distribution. Thus, 

after this analysis of the distribution, user can decide for the threshold value by plotting 

the frequency distribution of the standard values. These three options for threshold 

defining are summarized in Figure 3.4. If users would like to collect ligand data with 

respect to a threshold of the data, they can apply threshold based modified ChEMBL 

script whose pseudo code is given in Figure 3.3. This script is more preferable since 

threshold data are more reliable. Users can also modify the script based on their needs. 

The threshold can be chosen as 1000 nM or the median of activity concentration 

values.  For calculating median of a set, numpy package of Python and its functions 

are used. User can choose threshold from the script. If they would like to plot the 

activity concentration values as the frequency distribution of these values, it is also 

proposed another script for that purpose.  For all the threshold based client, the output 

of the script is the same. The output includes protein ID (UniProt ID), ligand ID 

(ChEMBL ID) and its SMILES. This format is also the input format of ligand centric 

network model. Thus, this output can be also used for ligand centric network 

construction of these interactions. After selecting the script, they prefer, the ligand 

centric networks can be built. 
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Protein 

Family 

 

Eg. 

Sphingolip

ids 

UniProt 

ChEMBL 

PLI Data 

User should enter the search protein ID, or protein 

family name such as sphingolipids into the search 

box of our tool.  

The keyword is searched in UniProt to collect all 

the related proteins from the database. The list of 

the protein IDs are used as the inputs of ChEMBL 

to collect these proteins’ ligands. 

The list of the protein IDs are searched in 

ChEMBL to collect each proteins’ ligands from 

ChEMBL. In this step, no threshold is defined. 

This process is just simply collecting protein-

ligand data from the databases. 

Protein IDs, their ligands’ ChEMBL IDs and also 

their SMILES are listed as the output of the 

protein-ligand interaction data collection. 

Figure 3.2. The flowchart of protein-ligand interaction process 
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INPUT: Protein’s keywords and organism ID 

OUTPUT: Proteins, their ligands with ChEMBL IDs, and ligands’ SMILES 

/* First UniProt IDs and ChEMBL IDs are extracted via BioServices by searching the 

given keywords. Then these UniProt IDs and ChEMBL IDs are stored in arrays called 

uni and chem. Another array is also created in which the UniProt IDs having compound 

data in ChEMBL are stored. */ 

for list of proteins in chem array do: 

 if ChEMBL ID has compound data in ChEMBL: 

  append its UniProt ID into the input array 

/* Array called active is defined to store activity concentration values of ligands. Then, 

according to the preferred threshold*/ 

for UniProt IDs in input array do: 

 search the UniProt ID’s activity in ChEMBL 

 parse & append activity concentration of ligands into active array 

/* The median of the active array values is calculated, then the median is signed as the 

threshold. Users may use median or default value (1000nM) as the threshold of the 

ligands. */ 

for UniProt IDs in input array do: 

 search the UniProt ID’s activity in ChEMBL 

 parse activity concentration of ligands  

 if the activity value <= threshold: 

  parse the ChEMBL ID and SMILES of the protein’s ligands 

   print UniProt ID, ChEMBL ID belonging to ligands, SMILES 

  

 

  

 

Figure 3.3. Pseudo code of ChEMBL data collection script based on threshold 

criteria 
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Figure 3.4. The options for threshold selection. 

 

Defining the Threshold 

1000 nM is chosen as the
default threshold

First, activity concentration
values are stored, then the
median of them is used as the
threshold

After collecting activity
concentration values, their
distribution is plotted to detect
best threshold
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3.2.2. PDB 

 

         Same as the ChEMBL script, first of all the Python packages; which are 

bioservices and xml.etree, are imported to the script. Then, PDB based data collector 

first searches protein keywords in UniProt like ChEMBL script. The difference 

between these scripts is the data columns of the protein data. For these script, only 

PDB IDs of the proteins are collected from UniProt as indicated by the column 

“database(pdb)”. In addition to the UniProt () resource object, PDB() object is also 

added. The latter is required for the data search in PDB database. In this script, the 

keywords are searched in UniProt, then if there is any protein data for them, the 

proteins’ PDB IDs are only collected from the database. These PDB IDs are stored in 

an array called input to use them as the input of ligand data search in PDB. For each 

entry of the input array, their ligands are searched in PDB. For that, xml.etree package 

is imported to the environment since PDB returns data in XML format. For each entry 

of the input data, their ligands are searched by get_ligands function of BioServices. 

This function returns XML file of the protein data. Each XML file includes all the 

related information about the search proteins. This information also consists proteins’ 

ligand information including ligands’ chemical names, their formulas and SMILES. 

For this study, ligand IDs and their SMILES are parsed from the XML files of proteins; 

then protein IDs, ligand IDs and SMILES are returned. Different than ChEMBL, PDB 

data does not provide activity concentration value of the ligands. Thus, thresholds are 

not considered for the data collection process. This is also another reason why PDB is 

not preferable for bioactivity data analysis of ligands. The script for this database is 

easier than ChEMBL script since this database does not include any bioactivity data. 

The scripts’ pseudocode is given in Figure 3.5 and each step of the data collection is 

explained step by step. This script is the simplest one for the protein-ligand data 

collection and also return less amount of data than the other databases since the amount 

of data PDB has is lower than the others. 
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3.2.3. BindingDB 

 

         BindingDB provides binding affinity data of protein-ligand complexes; which 

are used as the  bases of drug development studies.[2] . As mentioned in the earlier 

sections, this database has smaller sized data sets when compared with ChEMBL and 

PubChem. Moreover, it is not frequently updated. Thus, this updating problem cause 

mapping error when the molecules are collected from Binding DB. Each molecule 

should have a commonly used ID type to which all the data can be mapped to as the 

unique ID type of the data set. The Binding DB script is also provided; which may be 

required by some researchers specifically.  For this script, first identifier mapping list 

should be obtained from Binding DB webpage. Then this list is read line by line to 

append BindingDB IDs and their equivalent PubChem IDs into two arrays called 

monomer and CID. First, Python packages which are xml.etree and requests are 

imported into the script, then the BindingDB IDs called monomer IDs and their 

equivalent are stored in two separate arrays. These arrays are used for the ID mapping 

in the script. Like ChEMBL and PDB scripts, first the related protein IDs are collected 

from UniProt by searching the protein families’ keywords. Then, ligand data are 

INPUT: Protein’s keywords and organism ID 

OUTPUT: Proteins, their ligands with PDB IDs, and ligands’ SMILES 

/* First PDB IDs are extracted from UniProt via BioServices by searching the given keywords. 

Then these PDB IDs are stored in the array called input. */ 

for list of proteins in input array do: 

 search the PDB ID in PDB to collect their protein data 

  parse the ligands’ PDB IDs and their SMILES  

   print UniProt ID, ChEMBL ID belonging to ligands, SMILES 

  

 

  

 

Figure 3.5. Pseudo code of PDB data collection script. 
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collected from BindingDB for these protein IDs. For that, URL based web services are 

preferred. Via using the requests package, data are collected from the defined URLs. 

For BindingDB, its URL format and the information are given at its webpage under 

the Web Services section of its webpage. The web service called 

getLigandsByUniprots is used to collect ligand data from BindingDB by searching the 

UniProt IDs in the database. For each protein ID, the URL format is deformed by 

changing the protein ID entry of the URL. Then, the ligand ID of the protein is obtained 

via the protein’s URL and the data are returned as XML files. Via the functions of 

xml.etree package, the specific ligand information, ligand’s monomer ID and its 

SMILES, are parsed. For each monomer ID, its index in monomer array is found, then 

its equivalent CID is called by using the index number for CID array. Each monomer 

ID and their equivalent CIDs are appended into separate arrays but their index numbers 

are equal. That is how the monomer IDs of ligands are mapped to CIDs. Then, the 

UniProt ID, CID, and SMILES are printed. The script’s pseudocode is given in Figure 

3.6.  

 

INPUT: Protein’s keywords and organism ID 

OUTPUT: Proteins, their ligands with PubChem IDs (CID), and ligands’ SMILES 

/* First UniProt IDs are extracted via BioServices by searching the given keywords. These 

UniProt IDs are stored in input array. Then, each of these IDs is searched in BindingDB via its 

URL based web services. */ 

for list of proteins in input array do: 

 search the UniProt ID in BindingDB to collect their ligand data 

  parse the ligands’ monomer ID and their SMILES  

   map the monomer ID to CID 

   print UniProt ID, ligands’ CID, SMILES 

  

 

  

 

Figure 3.6. Pseudo code of BindingDB data collection script 
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3.2.4. KEGG  

 

         KEGG is the knowledge base for gene functions, genomic interactions and 

linking genomic information with higher order functional information like pathways, 

compounds and ligands information [18]. KEGG database is preferable especially for 

metabolic pathway analysis. One can obtain the specific enzymes and compounds of 

a pathway via KEGG database. However, the number of compounds KEGG provides 

is lesser than the amount of ChEMBL data. For specific purposes, KEGG database can 

be required as the source database. Thus, KEGG data collector script is also coded. 

Similar to BindingDB script, first the python packages called xml.etree and requests 

are imported. Then, the URL based web service of KEGG is added to the script. KEGG 

provides a variety of URL formats to search specific data types. KEGG has many sub 

datasets such as GENES, LIGAND, and PATHWAY. In this script, first, keywords 

are searched via the pathway based URL to collect related pathway information. The 

data are collected via requests package’s functions. As the return of this pathway 

search, the related pathways’ names and their IDs are listed. These pathway IDs are 

parsed, then these pathway IDs are searched in KEGG COMPOUND dataset by using 

the COMPOUND based URL format. For each pathway ID, its compounds are 

collected by requesting the data via the defined URL. These compound data include 

compound name, its pathway, its formula, its molecular weight, related diseases, and 

its equivalent IDs in databases such as ChEBI and PubChem. For this study, PubChem 

IDs of the compounds are parsed, then these PubChem IDs called CIDs are searched 

in PubChem database to obtain their SMILES. Similar to KEGG URL formats, 

PubChem also has URL based web services. For that, PubChem’s URL format is 

defined, then the PubChem compound IDs are searched in compound dataset of 

PubChem to collect the compounds’ SMILES information. The return of this script is 

the pathway IDs, its compounds’ IDs and SMILES. Thus, different than the previous 

scripts, this script returns pathway IDs rather than protein IDs.  The script is 

summarized in Figure 3.7. 
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3.2.5. PubChem  

 

         ChEMBL consist only activity data of an assay which is a data type for 

experimental studies different then PubChem’s assay data types. PubChem includes 

inactive, active, unspecified or inconclusive data of an assay. ChEMBL also comprises 

PubChem’s active data rather than the inactive and inconclusive data of PubChem. 

The mentioned activity information dedicates the binding activity of ligands. Thus, 

ChEMBL is appropriate data source for protein-ligand interactions; however, users 

may require all the data of an experimental study without having any restrictions based 

on ligand activities. For that, PubChem data collector script is coded. This script also 

includes requests package to access the database via its URLs. Like KEGG and 

INPUT: Pathway keywords 

OUTPUT: Pathway IDs, their ligands with PubChem IDs (CID), and ligands’ 

SMILES 

/* First Pathway IDs are extracted via KEGG’s URL web service by searching the 

given keywords. Then, these Pathway IDs are searched in KEGG COMPOUND data 

set via its URL based web services */ 

for list of pathway IDs collected from KEGG PATHWAY do: 

    search and collect the PATHWAY ID in KEGG COMPOUND to collect their 

ligand IDs 

         for each ligand ID do: 

 get compound data to parse its PubChem IDs   

         for each PubChem ID do: 

 get ligand’s SMILES from PubChem 

     print Pathway ID, ligands’ CID, SMILES 

  

 

  

 

Figure 3.7. Pseudo code of KEGG data collection script 
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BindingDB, PubChem also has URL based web services [38]. By using the web 

services, gene information, assay data, and compounds’ SMILES are collected from 

PubChem database. First, Python packages called entrez, requests, and xml.etree are 

imported into the environment. Entrez package provides codes to access National 

Center for Biotechnology Information (NCBI) which consists many databases [39].  

For this study, PubChem Bioassay, called pcassay, database is preferred to collect 

assay IDs by searching protein keywords in the database. This database short name, 

protein keyword and organism ID are indicated in the search function of entrez. After 

obtaining the list of assay IDs via entrez’s search function, these IDs are used as the 

inputs to obtain each assays’ detailed information such as target protein name, 

compound IDs, gene IDs, activity concentration values and so on.  For that, 

PubChem’s URL based we service is used. Its URL path is modified specifically for 

assay ID searching in PubChem. From these data, target protein names, and compound 

IDs are parsed. However, PubChem sometimes does not provide the target protein of 

molecules. Thus, target protein name is parsed if it is provided. After that, the SMILES 

of these compounds are collected again via URL based web service of PubChem. 

Moreover, URL path of PubChem is particularly modified for SMILES data 

extraction. By collecting only active data for ligands, ChEMBL data are collected from 

PubChem as explained earlier. However, without specifying the activity data type, all 

the compounds are extracted from PubChem. The output of this script includes target 

protein name, compounds’ CID, and SMILES. These target protein names are general 

names of proteins without given any further detailed information about the protein 

types. For instance, Arylsulfatase types like arylsulfatase A and B are only named as 

Arylsulfatase under the target protein name. Thus, PubChem provides general 

information about the proteins. Instead of this general protein information, specific 

enzyme names and their detailed information are required for the protein interactions. 

Thus, PubChem data are not preferable for protein interactions and their network 

construction. The brief explanation of PubChem script is given in Figure 3.8. 
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INPUT: Protein keywords and organism ID 

OUTPUT: Target protein ID, their ligands with PubChem IDs (CID), and 

ligands’ SMILES 

/* First keywords and organism ID are searched in PubChem Bioassay via 

entrez package. Then, the related assay IDs are obtained.  */ 

for list of assay IDs do: 

    search the detailed information about the assays 

      if target protein ID is given do: 

       parse target protein IDs and compound IDs 

         for each compound ID do: 

 get SMILES of the compound   

               print target protein ID, compound ID, and SMILES 

 

  

 

  

 

Figure 3.8. Pseudo code of PubChem data collection script 
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4. RESULTS 

 

 

4.1. Sphingolipid and Insulin Data Summary 

 

         As the case studies of our data collection tool, sphingolipid and insulin 

metabolisms’ data were collected (December/ 2016). For sphingolipid, “sphingolipid”, 

“sphingomyelin”, “glycosphingolipid” and sphingolipid metabolic process (GO ID 

:0006665) were searched for only humans with organism number 9606. For insulin, 

only two GO IDs were searched which were insulin metabolic process (GO: 1901142) 

and insulin receptor signalling pathway (GO: 0008286) were searched for only humans 

with organism number 9606. The number of proteins and ligands extracted for both 

metabolisms are given in the Table 4.1.  However, not all the proteins have ligand data 

in ChEMBL. As explained in methods section, first, the proteins were collected from 

UniProt via functions of BioServices. However, the UniProt IDs having compound 

data in ChEMBL were detected to collect their ligand information from ChEMBL. The 

numbers of the proteins having compound data in ChEMBL are also given in the Table 

4.1.  

 

Table 4.1. The number of protein IDs and ligands extracted for sphingolipid and 

insulin metabolism from UniProt and ChEMBL. 

Protein Family Number of 

Proteins 

Number of Proteins 

Having ChEMBL 

Compound Data 

Number of 

Ligands  

Sphingolipid 294 51 84397 

Insulin 101 20 44419 

Sphingolipid & Insulin 395 71 128816 



 

36 

4.2. Sphingolipid and Insulin Ligand Centric Networks 

 

4.2.1. Construction of SL-WIN Network 

 

         The ligand centric networks of sphingolipids were constructed by using the data 

obtained from ChEMBL data collection script. For that, jar file of ligand centric 

network models was used via command prompt. For this, the input of the network jar 

file was the sphingolipid data file. The network model provides three types of 

networks; namely unweighted, weighted and normalized weighted. Weighted identity 

network (WIN) was chosen to construct sphingolipids networks to be able to get ligand 

information of protein pairs. The same process was applied to combined sphingolipid 

& insulin data. This SPHINS network was prepared by gathering sphingolipid and 

insulin data collected via ChEMBL data collector. Same as sphingolipids, both 

metabolisms’ weighted identity networks were constructed. The aim of gathering both 

metabolisms was to understand their interactions as well as their interactors. The 

networks’ visualization and analysis were completed in CytoScape version 3.4.0 [7]. 

 

         First, the sphingolipids’ weighted identity network was built as illustrated in 

Figure 4.1. The number of shared ligand between protein pairs was set as edge weight. 

The clusters of the network were calculated by MCL algorithm and biologically 

evaluated to highlight the crucial interactors (Figure 4.2). For MCL algorithm, the 

inflation value was chosen as 2.5; after an optimization process. Different inflation 

values were tried ranged from 1.5 to 4. The results of each inflation values were 

considered based on the biological meaning of these clusters. After this optimization 

process, the output of 2.5 inflation value returned biologically more relevant 

sphingolipid clusters.  
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Figure 4.1. The WIN of sphingolipid metabolism 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. The clusters of the SL-WIN 
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4.2.1.1.  Interactor Analysis of Sphingolipid Network.  For each cluster of 

sphingolipids, the shared ligands of proteins given as the edge attributes were collected 

from CytoScape. For these interactors, their ChEMBL IDs were only given. For the 

list of ChEMBL IDs, their SMILES were collected from ChEMBL by using its 

webresource client. This process was iterated for each cluster to obtain their ligands’ 

ChEMBL IDs and SMILES.  These ligand sets of clusters were saved as sdf files which 

is a suitable file format to import sets into CANVAS. For each ligand set, fingerprint 

calculations of molecules and their similarities were analysed in CANVAS.   

 

         First, the binary fingerprints of these ligands were calculated, then their 

Tanimoto coefficient based similarities were also calculated. Their similarities were 

output as similarity matrices. These similarity matrices were plotted as the similarity 

distributions. These similarity plots of the clusters are given in Figure 4.4. The 

frequency distribution of proteins having number of shared ligands equal or higher 

than 50 is also given in Figure 4.3. 

 

 

Figure 4.3. Number of shared ligands higher than 50. 
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Figure 4.4. PLS distribution of SL-WIN clusters. 
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         Sphingolipid weighted identity network (SL-WIN) has five clusters, that are 

dominated by some protein groups namely glycosidases, kinases, ELOV proteins, 

ceramidases and sialidases (Figure 4.2). The first cluster of SL-WIN (14 proteins) 

consists of glycosidases, namely alpha galactosidase (AGAL), beta galactosidase 

(BGAL), non-lysosomal glucosylceramidase (GBA2) and sphingomyelin 

phosphodiesterase (ASM) [40]. The second cluster of SL-WIN (11 proteins) includes 

all the kinases of the metabolic pathway: sphingosine kinases, protein kinases and 

tyrosine kinases as well as tyrosine 3-hydroxylase (TY3H).  These clusters include 

4526 and 2037 ligands; respectively with average pairwise ligand similarity (PLS) 

score around 0.035. In the first cluster, the ligand pairs with similarity above 0.7 

includes drugs namely Miglustat, Prazosin, Amiloride and Terazosin. Each drug was 

paired with their derivatives and targeted the same proteins in the cluster. Miglustat 

and its derivates (CHEMBL408500, CHEMBL1086997, CHEMBL1076754) targets 

CEGT, GBA2 and GLCM. The other drugs and their derivates (CHEMBL1558 for 

Prazosin, CHEMBL540851 and CHEMBL1398126 for Amiloride, and 

CHEMBL1256665, CHEMBL1554413, and CHEMBL1201091 for Terazosin) 

interacted with GLCM, ARSA, ASM and AGAL. In the second cluster, the ligand 

pairs with similarity above 0.7 includes Sunitinib and Lapatinib cancer drugs. These 

drugs were paired with their derivates (CHEMBL13485 and CHEMBL1721885 for 

Sunitinib, CHEMBL212250 and CHEMBL215814 for Lapatinib) and targeted almost 

all the proteins in the cluster, except TY3H and CERK1. The remaining clusters (C3- 

4 proteins, C4- 4 proteins, and C5- 5 proteins) include specific groups of proteins 

namely elongation of very long chain fatty acids proteins (ELOV), ceramidases 

(ACER1, ACER2, ASAH1, ASAH2) and sialidases (NEUR1, NEUR2, NEUR3, 

NEUR4) respectively. These clusters comprise 11,9, and 18 ligands and their average 

pairwise ligand similarities (APLSs) are 0.31389, 0.22181 and 0.38108. Only sialidase 

cluster includes a drug called Zanamiwir used for treatment of influenza [41]. The 

ligand pairs with similarity above 0.7 includes Zanamiwir and its derivate 

CHEMBL96712. Zanamiwir target only NEUR2 and NEUR3; however, its derivate 

targets also NEUR4. The pairwise ligand similarity distribution of the SL-WIN 

clusters are also illustrated in Figure 4.4. 
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         Based on the results, the ligand sets of the first two clusters are less similar than 

the other clusters’ sets. Since the last three clusters belonged to specific group of 

proteins from the same families such as ceramidases, sialidases, and ELOV proteins, 

it was expected to obtain higher similarity score for these three clusters. The number 

of ligands and their APLSs are listed for each cluster in Table 4.2. The percentage of 

the ligand pairs having PLS above 0.7 is also given in the Table 4.2. 

 

Table 4.2. For SL clusters, protein and ligand numbers, and PLSs. 

Cluster 

No 

Number of 

Proteins 

Number of 

Ligands 

The Average 

Pairwise 

Ligand 

Similarity 

Number of 

Unique PLS 

Values 

Percentage 

(%) and the 

Number of 

PLS Above 0.7 

1 14 4526 0.0350 10.262.715 3.105 / 0.03 

2 11 2037 0.0379 2.778.903 2.530 / 0.09 

3 4 9 0.3139 36 6 / 17 

4 4 18 0.2218 153 14 / 9 

5 5 11 0.3811 55 22 / 40 

  

         As the next step, the drugs connecting these proteins were considered. For each 

cluster, their ligands were searched in ChEMBL using its web services to find known 

drugs. For each cluster, drugs and the diseases the drugs cure were searched in 

DrugBank database [42]. For cluster 1 of SL-WIN, the full name of the drugs, their 

ChEMBL IDs, and diseases are also listed in Table 4.3. In addition, the list of the 

proteins and their interactors, drugs, is also given in Table 4.4. 
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Table 4.3. The drugs of C1of SL-WIN. 

Drug Name ChEMBL ID Diseases 

Estrone CHEMBL1405 Estrogen Metabolic 

Disorders 

Niclosamide CHEMBL1448 Tapeworm Infection 

Riluzole CHEMBL744 Amyotrophic 

Lateral Sclerosis 

Leflunomide CHEMBL960 Immune Disease 

Hydralazine CHEMBL276832 Cardiovascular 

Disease 

Methotrexate CHEMBL34259 Crohn’ Disease 

Folic Acid CHEMBL1622 (It is just a vitamin 

B) 

Prazosin Hydrochloride CHEMBL1558 Cardiovascular 

Disease 

Terazosin CHEMBL611 Cardiovascular 

Disease 

Amiloride CHEMBL945 Chronic Kidney 

Disease 

Doxazosin Mesylate CHEMBL1200561 Hypertension 

Terfenadine CHEMBL17157 Allergic Skin 

Disorders 

Carbetapentane CHEMBL173234 Cough Suppressant 

Bepridil CHEMBL1008 Hypertension 
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Table 4.3. The drugs of C1of SL-WIN (cont.). 

Drug Name ChEMBL ID Diseases 

Haloperidol CHEMBL54 Schizophrenia 

Oxymetazoline CHEMBL762 Nasal Congestion 

Astemizole CHEMBL296419 Allergy Symptoms  

Thonzonium Bromide CHEMBL1200883 Otic Disease 

Miglustat CHEMBL1029 Gaucher Disease 

Amitriptyline CHEMBL629 Emotional 

Expression Disorder 

Tetracaine CHEMBL698 Haemorrhoids 

Loratadine CHEMBL998 Allergic Rhinitis 

Mibefradil CHEMBL45816 High Blood Pressure 

Pimozide CHEMBL1423 Tourette’s Disorder 

Promazine CHEMBL564 Disturbed 

Behaviours 

Ketotifen CHEMBL534 Asthma, Skin 

Allergies 

Thioridazine CHEMBL479 Schizophrenia 

Amlexanox CHEMBL1096 Ulcers 

Digoxin CHEMBL1751 Cardiac 

Insufficiency 

Lansoprazole CHEMBL480 Acid Reflux 

Disorders 
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Table 4.3. The drugs of C1of SL-WIN (cont.). 

Drug Name ChEMBL ID Diseases 

Dithiazanine Iodide CHEMBL421701 Heartworms and 

Threadworms 

Triamterene  CHEMBL585 Congestive Heart 

Failure 

Nordihydroguaiaretic Acid CHEMBL52 Actinic Keratoses 

Tolazamide CHEMBL817 Type 2 Diabetes 

Clotrimazole CHEMBL104 Vaginal Yeast 

Infections 

Cimetidine CHEMBL30 Acid-Reflux 

Disorders 

Altretamine CHEMBL1455 Ovarian Cancer 

Nabumetone CHEMBL1070 Osteoarthritis and 

Rheumatoid 

Arthritis 

Prazosin CHEMBL2 Hypertension 

Methysergide Maleate CHEMBL1200938 Vascular Headache 

Phenoxybenzamine 

Hydrochloride 

CHEMBL1200787 Hypertension 

Amiloride Hydrochloride CHEMBL1398126 Congestive Heart 

Failure, 

Hypertension 
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Table 4.3. The drugs of C1of SL-WIN (cont.). 

Drug Name ChEMBL ID Diseases 

Terazosin Hydrochloride 

Hydrate 

CHEMBL1201091 Benign Prostatic 

Hyperplasia 

Acrisorcin CHEMBL1201038 Fungal Infection 

Alfuzosin CHEMBL709 Benign Prostatic 

Hyperplasia 

Fluphenazine CHEMBL726 Psychoses 

Dantrolene CHEMBL1201288 Malignant 

Hyperthermia 

Tamoxifen CHEMBL83 Breast Cancer 

 

         The proteins listed in Table 4.4 play role in crucial diseases such as immune 

system disease, cardiovascular disease, and cancer. Leflunomide drug used for the 

treatment of immune disease is an interactor of NPC1-ARSA protein pairs [43]. The 

same enzymes are also connected by Hydralazine drug used for the treatment of 

cardiovascular disease [44]. Thus, more than just immune system therapies, 

cardiovascular diseases are also effected by the deficiencies of the protein pair, NPC1-

ARSA. Terazosin drug is also used for cardiovascular disease; moreover, observed in 

many protein interactions of C1 of SL-WIN [45]. The protein pairs interacted by 

Terazosin are ASM-AGAL, ASM-ARSA, ASM-GLCM, AGAL-GLCM, AGAL-

ARSA and GLCM-ARSA. The same protein pairs are also important for chronic 

kidney disease since Amiloride drug is one of the interactors of the pairs [46]. 

Haloperidol, interacting with ASM, GLCM and ARSA enzymes, is used for the 

treatment of schizophrenia [47]. For ASM-ARSA pair, Amitriptyline and Thioridazine 

are observed as the interactor of the pair. The former is used for emotional expression 

disorder and the latter cures schizophrenia [48,49]. 
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Table 4.4. Known drugs and their interactions in C1. 

Interactions ChEMBL IDs 

ARSA- DHB12 CHEMBL1405 

NPC1-ARSA CHEMBL1448, CHEMBL744, CHEMBL 960, CHEMBL276832 

ASM-AGAL CHEMBL34259, CHEMBL611, CHEMBL945 

ASM-GLCM CHEMBL611, CHEMBL945, CHEMBL17157, CHEMBL73234, 

CHEMBL1008, CHEMBL54, CHEMBL762, CHEMBL296419 

CEGT-GBA2 CHEMBL1029 

ASM-ARSA CHEMBL611, CHEMBL945, CHEMBL17157, CHEMBL1008, 

CHEMBL54, CHEMBL629, CHEMBL698, CHEMBL998, 

CHEMBL45816, CHEMBL1423, CHEMBL564, CHEMBL534, 

CHEMBL479 

AGAL-NPC1 CHEMBL1096, CHEMBL1751, CHEMBL480 

AGAL-ARSA CHEMBL611, CHEMBL945, CHEMBL585, CHEMBL817, 

CHEMBL104, CHEMBL30, CHEMBL1455 

GLCM-CEGT CHEMBL1029 

GLCM-GBA2 CHEMBL1029 

GLCM-NPC1 CHEMBL1096, CHEMBL1070 

GLCM-AGAL CHEMBL611, CHEMBL945, CHEMBL1096, CHEMBL585, 

CHEMBL2, CHEMBL1201038, CHEMBL709 

GLCM-ARSA CHEMBL611, CHEMBL945, CHEMBL17157, CHEMBL1008, 

CHEMBL54, CHEMBL585, CHEMBL726, CHEMBL1201288, 

CHEMBL83 
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         Miglustat drug used for treatment of Gaucher disease is rarely seen as the 

interactors of the protein pairs [50]. CEGT- GBA2 and GLCM proteins are interacted 

by this drug in the cluster 1. Another important disease is ulcers cured by Amlexanox 

drug [51]. This drug interacts AGAL, NPC1, and GLCM enzymes in the cluster 1.   

 

         Among the drugs belonging to the cluster 1, there are only two drugs, Tamoxifen 

and Altretamine, used for the treatment of cancers such as ovarian and breast cancers 

[52,53]. These drugs are the interactors of the proteins: AGAL, GLCM, and ARSA. 

Same as the first cluster of SL-WIN, the second cluster’s drugs and their diseases are 

also listed in Table 4.5. 

 

Table 4.5. For C2, drug names, ChEMBL IDs and diseases. 

Drug name ChEMBL ID Diseases 

Sunitinib CHEMBL535 Cell cancer, neuroendocrine 

cancer 

Imatinib CHEMBL941 Leukaemia and stomach 

cancer 

Sorafenib CHEMBL1336 Thyroid cancer, cell cancer 

Nilotinib CHEMBL255863 Leukaemia 

Vandetanib CHEMBL24828 Thyroid cancer 

Pazopanib CHEMBL477772 Kidney cancer 

Dasatinib CHEMBL1421 Leukemia cancer 

Tofacitinib CHEMBL221959 Infection 

Erlotinib CHEMBL553 Pancreatic cancer and lung 

cancer 



 

48 

Table 4.5. For C2, drug names, ChEMBL IDs and diseases (cont.). 

Drug name ChEMBL ID Diseases 

Gefitinib CHEMBL939 Lung cancer 

Lapatinib CHEMBL554 Breast cancer 

Bosutinib CHEMBL288441 Leukaemia 

Afatinib CHEMBL1173655 Blocking cancer cell growth 

Ruxolitinib CHEMBL1789941 Infection 

Axitinib CHEMBL1289926 Renal cell carcinoma 

Crizotinib CHEMBL601719 Small cell lung cancer 

Nintedanib CHEMBL502835 Idiopathic Pulmonary 

Fibrosis 

Sirolimus CHEMBL413 Lymphoma and skin cancer 

Niclosamide CHEMBL1448 Worm infection (KIT-LYN) 

Ceritinib CHEMBL2403108 Non-small cell lung cancer 

(KIT-LYN) 

Fingolimod CHEMBL314854 MS (SPHK1-SPHK2) 

 

         Different than the first cluster, the drugs of the second cluster are frequently 

observed in the cluster 2 of SL-WIN as the interactors. Except the drugs, Niclosamide, 

Ceritinib, and Fingolimod, all the drugs are interacted at least 21 enzyme pairs in the 

cluster 2. However, these three drugs; namely, Niclosamide, Ceritinib, and 

Fingolimod, are only connectors of specific protein pairs. Niclosamide is used for 

worm infection [54], Ceritinib is used  for non-small lung cancer [55] and Fingolimod 
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is used for the treatment of MS [56].These protein pairs and their drugs are listed in 

Table 4.6. 

 

Table 4.6.  For C2, the drugs interacting with less than two protein pair. 

Interactions Drug Names 

KIT-LYN Niclosamide, Ceritinib 

SPHK1-SPHK2 Fingolimod 

 

         In brief, the second cluster of SL-WIN comprises almost all the sphingolipids 

which are crucial for cancer treatments. Comparison between the first and the second 

clusters of SL-WIN also proves that the cancer related sphingolipids belong to the 

second cluster. The second cluster comprises all the kinases of sphingolipid 

metabolism. Sphingolipid metabolism and its kinases are the target enzymes for cancer 

treatment strategies [57]. Sphingolipids particularly kinases cell cycle progression, 

oncogenesis, and drug resistance in cancer biology.  

 

         The other clusters C3 and C5 of SL-WIN does not include any drug as an 

interactor. Only C4 includes a drug as its interactor. In this cluster, Zanamivir 

(CHEMBL222813) interacts NEUR2 and NEUR3. This drug is used for treatment of 

influenza A and B [41].  

 

4.2.1.2.  Scaffold Analysis and ZINC Database Search.   After the similarity analysis, 

the scaffold decompositions of each ligand sets were also obtained in CANVAS. First, 

the binary fingerprints of these ligand sets were calculated, then the scaffold 

decompositions were constructed. The decomposition lists all the scaffolds in order to 

the number of their rings. Among all the scaffolds, the most complex as well as 

commonly observed scaffolds were selected. A scaffold can be directly a ligand; 
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therefore, the scaffolds frequently seen in more than one ligand were preferred. The 

list of scaffolds is provided as the supplementary files of the thesis. In the scaffold 

decomposition, the observation frequency of each scaffold is illustrated by the number 

of vertical bar, below the scaffold figure. Therefore, frequently shared scaffolds are 

collected as the basis for ZINC database search. ZINC is a commonly used drug like 

compound database in which selected substructures are search for the ligands 

consisting them [58]. From the decomposition, the more complex and frequently 

observed scaffolds with low binding affinities are selected. For each scaffold, the 

vertical bars are variously distanced with respect to the average binding affinity shown 

by the triangles. The binding affinities of the vertical bars belong to the ligands 

consisting the scaffolds as their substructures. The lower binding affinities are 

preferred since the ligands with low binding affinities can easily interact with proteins. 

For the vertical bars, blue and orange areas mean the lowest and the highest binding 

affinities; respectively. To illustrate, scaffolds identified by scaffold decomposition 

belonging to the fourth cluster is given in Figure 4.5. The selected scaffold of the 

cluster is signed by * in the figure.  

 

 

Figure 4.5. Scaffolds identified by scaffold decomposition. 

 

         For each sphingolipid cluster, the scaffolds are searched in ChemSpider [59]. For 

each sphingolipid cluster, the scaffolds found in ChemSpider are listed in the Table 

4.7. 
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Table 4.7. The scaffolds of sphingolipid clusters are listed by their ChemSpider 

names and their figures. 

Cluster 

No 

ChemSpider Name Figure 

1 3,6-

Diphenylpyrazolo[1,5-

a]pyrimidine 

 

1 2,5-Diphenylpyrazolo[1,5-

a]pyrimidine 

 

1 1,3,4-Triphenyl-4,5-dihydro-

1H-pyrazole 

 

1 1,3,5-triphenyl-2-pyrazoline 
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Table 4.7. The scaffolds of sphingolipid clusters are listed by their ChemSpider 

names and their figures (cont.). 

Cluster 

No 

ChemSpider Name Figure 

1 N-(1,3-Benzothiazol-2-

yl)[1,3]dioxolo[4,5-

f][1,3]benzothiazol-6-amine 

 

2 5-(1-Benzyl-1H-1,2,3-

triazol-4-yl)-1H-indazole 

 

2 N-Phenyl-4-(pyrazolo[1,5-

b]pyridazin-3-yl)-2-

pyrimidinamine 

 

2 7,12-Dihydroindolo[3,2-

d][1]benzazepin-6(5H)-one 
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Table 4.7. The scaffolds of sphingolipid clusters are listed by their ChemSpider 

names and their figures (cont.). 

Cluster 

No 

ChemSpider Name Figure 

2 4-(4-Phenyl-1H-imidazol-5-

yl)pyridine 

 

2 N,5-Diphenyl-1H-pyrazol-3-

amine 

 

2 N,5-Diphenyl-1,3-oxazol-2-

amine 

 

2 N,N'-Diphenyl-2,4-

pyrimidinediamine 

 

 



 

54 

Table 4.7. The scaffolds of sphingolipid clusters are listed by their ChemSpider 

names and their figures (cont.). 

Cluster 

No 

ChemSpider Name Figure 

2 3-(Benzylamino)-4-(4-

pyridinylamino)-3-

cyclobutene-1,2-dione 

 

2 N-Benzyl-4-(4-

pyridinyl)benzamide 

 

2 5-(1H-1,2,3-Triazol-4-yl)-

1H-indazole 

 

2 3-Phenyl-1H-pyrrolo[2,3-

b]pyridine 
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Table 4.7. The scaffolds of sphingolipid clusters are listed by their ChemSpider 

names and their figures (cont.). 

Cluster 

No 

ChemSpider Name Figure 

2 4-Phenyl-1H-indazole 

 

2 2-Phenylimidazo[1,2-

a]pyrazine 

 

2 (3E)-3-(1H-Pyrrol-2-

ylmethylene)-1,3-dihydro-

2H-indol-2-one 

 

2 4-(phenylamino)-7H-

pyrrolo(2,3-d)pyrimidine 
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Table 4.7. The scaffolds of sphingolipid clusters are listed by their ChemSpider 

names and their figures (cont.). 

Cluster 

No 

ChemSpider Name Figure 

2 N-Phenylthieno[3,2-

d]pyrimidin-4-amine 

 

2 N-Phenylthieno[2,3-

d]pyrimidin-4-amine 

 

2 (3E)-3-(Anilinomethylene)-

1,3-dihydro-2H-indol-2-one 

 

 

2 3-(2-Phenylhydrazino)-2H-

indol-2-one 
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Table 4.7. The scaffolds of sphingolipid clusters are listed by their ChemSpider 

names and their figures (cont.). 

Cluster 

No 

ChemSpider Name Figure 

3 Benzofurazan 

 

3 5H-Benzo[a]phenoxazin-5-

one 

 

4 3,4-Bis(benzyloxy)furan 

 

5 1-Phenyl-3,5,6,7-tetrahydro-

1H-indole-2,4-dione 
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         The dominant substructures of these scaffolds are pyrazole, purine, and 

pyrimidine with electronegative atoms, N, O and S, having the tendency to attract a 

bonding pair of electrons. The inhibition of cellular replication is the main tactic for 

anticancer agents killing cancer cells by inhibiting their DNA synthesis [60]. For the 

synthesis of deoxyribonucleotides used for DNA synthesis, pyrimidines and purines 

can be salvaged in the human cells. These nucleotides and their analogues are 

important class of anticancer agents. Pyrazoles are also crucial for cancer treatment 

since it is an anti-angiogenesis [61]. Angiogenesis is the production of new blood 

vessels whose increase in the tumor cells encourage the tumor growth. Thus, pyrazoles 

are commonly used for cancer treatment to block tumor growth.  

 

         For each sphingolipid ligand set, these selected scaffolds were searched in ZINC 

database [58]. The scaffolds were searched in the database to detect the ligands 

including these scaffolds as their substructures. The number of scaffolds and the 

number of related ligands including the scaffolds as substructures are listed in the 

Table 4.8. For the second cluster, there is no matches in ZINC database. 

 

Table 4.4. The number of scaffolds and the number of detected ligands. 

Cluster Number of Selected 

Scaffolds 

Number of Ligands 

Extracted from ZINC 

Cluster 1 9 2965 

Cluster 3 2 4055 

Cluster 4 3 9 

Cluster 5 5 215 

 

4.2.1.3.      Protein – Ligand Docking of SL-WIN.  These ZINC ligand sets and 

OTAVA library were used for sphingolipid protein-ligand docking studies. For each 
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cluster, their ligand sets were docked to their proteins. The docking process was 

performed in Maestro. The proteins having PDB structures were used. For each cluster, 

their ligand sets collected from ZINC were docked to the clusters’ proteins. For the 

ligand set of C2, OTAVA dataset was used since there was no compounds in ZINC 

database, comprising the scaffolds of C2 [62]. The ligands, well-docked into more than 

1 protein with docking scores below -6 kcal/mole are listed in the Table 4.9. These 

results can guide experimental approaches to sphingolipid protein-ligand interactions.  

 

Table 4.5. For SL-WIN, the ligands docked into more than one protein with docking 

scores below -6 are listed. 

LIGAND ID TARGET 

PROTEINS 

DOCKING SCORES 

ZINC72267284 ASM, BGAL, 

AGAL 

-6.231, -8.496, -7.807 

ZINC72267285 ASM, BGAL, 

AGAL 

-6.230, -8.496, -7.807 

ZINC22058728 (NPC) ASM, BGAL, 

AGAL 

-6.215, -8.925, -6.583 

ZINC01625746 ASM, AGAL -6.884, -6,564 

ZINC13000556 ASM, AGAL -6.884, -6.564 

ZINC03826691 (Belotecan) AGAL, BGAL -6.128, -7.949 

ZINC05924106 BGAL, GLCM -6.828, -6.395  

ZINC13832891 BGAL, GLCM -6.828, -6.395 
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Table 4.9. For SL-WIN, the ligands docked into more than one protein with docking 

scores below -6 are listed (cont.). 

LIGAND ID TARGET 

PROTEINS 

DOCKING SCORES 

OTAVA_Drug-

Like_Green_Collection.118826 

FYN, GBA3 -6.007, -8.586 

OTAVA_PrimScreen1.394 FYN, GBA3 -6.157, -7.471 

OTAVA_Drug-

Like_Green_Collection.22943 

FYN, GBA3 -6.628, -7.14 

ZINC01611274 (Topotecan) ASM, AGAL -6.150, -6.204 

ZINC09427866 GLCM, AGAL -6.773, -6.029 

ZINC04833656 GLCM, BGAL -6.961, -7.005 

ZINC04980573 GLCM, BGAL -7.080, -6.244 

ZINC05105116 GLCM, BGAL -6.347, -6.178 

ZINC05580265 AGAL, BGAL -6.792, -6.142 

ZINC15772765 ASM, AGAL -6.631, -8.038 

 

         The listed ligands are simply the inhibitors of the enzymes listed as short protein 

names; however, there are also three drugs: ZINC01611274 (Topotecan), 

ZINC03826691 (Belotecan), and ZINC22058728 (NPC). Topotecan and Belotecan 

are used for the treatment of small cell lung cancer [63,64]. NPC is used for the 

treatment of nasopharynx cancer [65].  These three drugs were docked into AGAL. 
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         Molecular Symmetry Based Chirality and Polarity Detection:  For the listed 

ligands (Table 4.9), their symmetry groups were calculated using Jmol. The symmetry 

group of almost all the ligands is C1. Thus, almost all the ligands are chiral and polar 

molecules except OTAVA_PrimScreen1.394 having symmetry group Cs. Therefore, 

this ligand is polar meaning also water soluble. 

 

4.2.2. Construction of Combined Network of Sphingolipids and Insulins 

 

         Same as sphingolipid networks, combined sphingolipid and insulin weighted 

identity network was also constructed. This network is illustrated in Figure 4.7 (A). 

First, the clustering algorithm MCL was performed in CytoScape. Inflation value was 

selected as 2.5 for MCL algorithm. Similar to SL-WIN network, number of inflation 

values ranged from 1.5 to 4 were tried, and their output clusters were biologically 

considered to decide more relevant inflation value for the network. The output of MCL 

algorithm, i.e. cluster, is given in Figure 4.7 (B). The frequency distribution of proteins 

having number of shared ligands equal or higher than 50 is also given in Figure 4.6. 

 

 

Figure 4.6. Number of shared ligands higher than 50 
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Figure 4.7. (A) SPHINS-WIN, where insulins and sphingolipids are shaped as ellipse 

and rectangles, respectively. (B) The clusters of SPHINS-WIN 
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4.2.2.1.  Interactor Analysis of Combined Sphingolipid & Insulin Network.  In these 

clusters, insulins are distributed into the sphingolipids different than sphingolipid 

clusters. First three clusters of sphingolipid & insulin (SPHINS) network include 

sphingolipids and insulins together. The other clusters of SPHINS network are 

identical to the sphingolipid clusters. Thus, first three clusters are analysed to 

demonstrate the interactions between both metabolisms. For these clusters, their 

shared ligands are obtained from CytoScape file, then SMILES of ligands are collected 

from ChEMBL via its webresource client. These ligand IDs and their SMILES are 

listed and saved as sdf file. These ligand sets of these clusters are analysed in 

CANVAS, and their similarity distributions are obtained similar to the process 

completed for sphingolipid clusters. The similarity distribution of SPHINS ligands are 

given in Figure 4.8. 

 

         The first cluster (C1) of the weighted identity SPHINS network includes all the 

kinases of sphingolipid and insulin metabolisms together. Additional to the kinases, 

there are also two insulin receptor proteins, namely IGF1R and INSR. The number of 

shared ligands the cluster has is 5010 with the average pairwise ligand similarity, 

0.0365. The ligand pairs having similarity above 0.7 includes two drugs Palbociclib 

and Sunitinib. These drugs were paired with similar ligands (CHEMBL365847 for 

Palbociclib and CHEMBL1721885 for Sunitinib). Sunitinib and CHEMBL1721885 

interacted with almost all the proteins except P85A, P85B and TY3H. Palbociclib 

targeted GSK3A, FYN and IGF1R; however, CHEMBL365847 interacted with 

AKT1, AKT2, KPCD, KPCD1, and KPCZ. The similarity distribution of the first 

cluster is given in Figure 4.8.  

 

         C1 of the SL-WIN appears as the second cluster (C2) of the weighted identity 

SPHINS network. Additional to the sphingolipid cluster, the second cluster of SPHINS 

network consists two insulin proteins; FOXO1 and IDE. This cluster comprises 

glycosidases and these insulin enzymes. One of molecular functions of IDE is 

glycoprotein binding [66]. Thus, it is biologically relevant to have this enzyme with 
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GLCM and GBA2 in the same cluster. FOXO1 is a transcription factor which is a 

significant target of insulin signaling as well as a regulator of metabolic homeostasis 

[67]. 

 

Figure 4.8. The similarity distribution of the weighted identity SPHINS clusters. X 

index is for the similarity values and Y is for the frequency of these similarity values. 
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         For SPHINS network, the pairwise ligand similarity values of the second cluster 

are lower than the first cluster. The cluster has 2257 ligands. Furthermore, it does not 

include many insulin proteins. The sphingolipid members of this cluster are GLCM 

related proteins. To compare the pairwise ligand similarity of both sphingolipid 

networks and SPHINS, the average PLS of the first cluster belonging to the weighted 

identity sphingolipid network was 0.0350; on the other hand, the average similarity of 

the second cluster belonging to the weighted identity SPHINS was 0.0349. In the 

cluster, the ligand pairs with similarity above 0.7 includes drugs namely Miglustat, 

Prazosin, Amiloride and Terazosin. Each drug was paired with their derivatives and 

targeted the same proteins in the cluster. Miglustat and its derivates 

(CHEMBL408500, CHEMBL1086997, CHEMBL1076754) targets CEGT, GBA2 

and GLCM. The other drugs and their derivates (CHEMBL1558 for Prazosin, 

CHEMBL540851 and CHEMBL1398126 for Amiloride, and CHEMBL1256665, 

CHEMBL1554413, and CHEMBL1201091 for Terazosin) interacted with GLCM, 

ARSA, ASM and AGAL. The similarity distributions of both clusters are almost same 

since the only difference was these two insulins. To illustrate the similarity results 

obtained from the similarity matrix, similarity distribution of this second cluster 

belonging to the weighted identity SPHINS is given in Figure 4.8. 

 

         The third cluster (C3) of the SPHINS network has phosphatases namely ENPP7, 

PTN1, PTPRA, PTN2 and PP2AA as well as two sulfatases, STS and ARSB. Having 

phosphatases and sulfatases together in a cluster is an expected outcome since the 

inhibition of phosphatases causes the decrease in the sulfatase activity [68]. The cluster 

does not have a dominant metabolism since there are three insulins and four 

sphingolipids. The ligand set of this cluster has 661 compounds; moreover, the average 

PLS of them is 0.500 which is the highest average PLS value obtained for both 

sphingolipid and insulin data. It was expected to obtain the result since the compounds 

playing role at the inhibition of phosphatases affect also the sulfatase activities [68]. 

For this cluster, the plot of the pairwise ligand similarity matrix is given in Figure 4.8. 

The remaining clusters of SPHINS network, C4, C5 and C6 are the same as the clusters 

of sphingolipid metabolism; namely, ELOV proteins, sialidases and ceramidases. 
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         In brief, the first and the second clusters of the weighted identity SPHINS have 

almost the same similarity distributions when they are compared with the sphingolipid 

clusters. The only difference is specifically obtained for the third cluster. The results 

of these pairwise ligand similarity matrices are summarized in Table 4.10. The 

percentage of the ligands having PLS above 0.7 is also given in the Table 4.10. 

 

Table 4.10. For SPHINS clusters, number of proteins, number of ligands and ligand 

pairwise similarity values are listed. 

Cluster 

No 

Number of 

Proteins 

Number of 

Ligands 

The Average 

Pairwise 

Ligand 

Similarity 

Number of 

Unique PLS 

Values 

Percentage 

(%) and the 

Number of 

PLS Above 

0.7 

1 24 5010 0.0365 12.547.545 16.871 / 

0.135 

2 15 2257 0.0350 10.605.315 3.072 / 0.038 

3 6 661 0.5000 218.130 1.614 / 0.746 

 

         Similar to SL clusters, these clusters were analyzed. First cluster of the SPHINS 

network comprises kinases. The cluster includes 23 drugs; 18 out of which are used 

for the treatment of cancer There are also 3 drugs curing infections, one for MS 

(multiple sclerosis) and one for idiopathic pulmonary fibrosis. These drugs, listed in 

Table 4.11 were frequently observed for these sphingolipid-insulin interactions. 

Almost all the drugs have at least 20 interactions with protein pairs. Besides these 

promiscuous drugs, 4 of them interacted with less than 7 proteins pairs. These 4 drugs 

and the protein interactions in which they were observed are listed in Table 4.12. 
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Table 4.11. 23 anticancer drugs were observed in C1-SPHINS. 

Drug Name ChEMBL ID Diseases 

Tofacitinib CHEMBL221959 Infection 

Lapatinib CHEMBL554 Breast cancer 

Sorafenib CHEMBL1336 Thyroid cancer, cell cancer 

Sunitinib CHEMBL535 Cell cancer, neuroendocrine 

cancer 

Vandetanib CHEMBL24828 Thyroid cancer 

Dasatinib CHEMBL1421 Leukemia cancer 

Erlotinib CHEMBL553 Pancreatic cancer and lung 

cancer 

Gefitinib CHEMBL939 Lung cancer 

Pazopanib CHEMBL477772 Kidney cancer 

Imatinib CHEMBL941 Leukaemia and stomach cancer 

Bosutinib CHEMBL288441 Leukaemia 

Ruxolitinib CHEMBL1789941 Infection 

Nilotinib CHEMBL255863 Leukaemia 

Afatinib CHEMBL1173655 Blocking cancer cell growth 

Crizotinib CHEMBL601719 Small cell lung cancer 

Axitinib CHEMBL1289926 Renal cell carcinoma 

Sirolimus CHEMBL413 Lymphoma and skin cancer 
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Table 4.11. 23 anticancer drugs were observed in C1-SPHINS (cont.). 

Drug Name ChEMBL ID Diseases 

Niclosamide CHEMBL1448 Worm infection 

Mitoxantrone CHEMBL58 Prostate cancer and leukaemia 

Ceritinib CHEMBL2403108 Non-small cell lung cancer 

Palbociclib CHEMBL189963 Breast cancer 

Fingolimod CHEMBL314854 MS 

Nintedanib CHEMBL502835 Idiopathic Pulmonary Fibrosis 

 

Table 4.12. The drugs interacting less than 7 proteins pairs in C1 of SPHINS. 

ChEMBL ID  Interactions 

CHEMBL1448 (Niclosamide) KIT-LYN, AKT1-LYN, AKT1-KIT 

CHEMBL2403108 (Ceritinib) KIT-LYN, 1GF1R-LYN, 1GF1R-KIT, INSR-

LYN, INSR-KIT, INSR-IG1FR 

CHEMBL189963 (Palbociclib) 1GF1R-GSK3A, IGF1R-FYN, GSK3A-FYN 

CHEMBL314854 (Fingolimod) SPHK1-SPHK2 

 

         These interactions and drugs highlight important enzymes for the diseases cured 

by the drugs. KIT (stem cell growth factor receptor Kit), LYN (Tyrosine-protein 

kinase Lyn), and AKT1 (alpha serine/threonine-protein kinase) enzymes are interacted 

with Niclosamide used for worm infection [54]. However, KIT and LYN are interacted 

also by Ceritinib curing non-small lung cancer [55]. It was assumed to have a tyrosine 

protein kinase as the targets of the drug since the drug is a tyrosine protein kinase 
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inhibitor. Tyrosine kinases catalyse the cell growth and proliferation which also 

increases cancer cell growth [69]. Moreover, tyrosine kinases inhibitors block 

oncogenic activations in cancer cells.  In addition to the proteins, IGF1R (insulin-like 

growth factor 1 receptor) and INSR (insulin receptor) are also interacted via this cancer 

drug. Activation and cell growth of cancer cells are also stemmed from the activity of 

insulin receptors IGF1R and INSR; moreover controlling these receptors does not only 

prevent cancer cell growth, cancer progression and resistance to cancer treatment but 

also controlling insulin resistance [70]. Cancer treatments target also insulin resistance 

and insulin signaling pathway disorders. Another drug called Pablociclib is used for 

breast cancer treatment [71]. This drug interacts with IGF1R, GSK3A (Glycogen 

synthase kinase-3 alpha) and FYN (Tyrosine-protein kinase Fyn). Similar to Ceritinib 

drug, Palbociclib interacts with a tyrosine-protein kinase and insulin proteins, IGF1R 

and GSK3A. Fingolimod used for treatment of MS illness [56]; moreover, this drug 

interacts with SPHK1 (Sphingosine kinase 1) and SPHK2 (Sphingosine kinase 2). 

Thus, these kinases are obviously preferable for enzyme therapies of MS patients. 

Fingolimod is phosphorylated by sphingosine kinases and then interacts with 

sphingosine 1-phosphatase, sphingosine 3-phosphatase and sphingosine 5-

phosphatase receptors [72]. Fingolimod is a sphingosine 1-phosphatase receptor 

modulator, moreover, it reduces the relapse rates of MS patients [56].  

 

         On the other hand, in the second and the third clusters of this network, there are 

a few insulins interacting with sphingolipids. These insulins and their shared ligands 

were chosen as the target molecules to highlight the significance of these specific 

interactions. In the second cluster given in Figure 4.9, there are only two insulins 

interacting directly with five sphingolipids which are glycosidases. For these seven 

proteins and their interactions, there are 85 unique ligands interacting them. These 

ligands were docked into the proteins to range the ligands based on their docking 

scores. According to the docking scores, the well-docked ligands were detected. 

Before docking them, these ligands were searched in ChEMBL via its client to classify 

putative and known drugs. 3 of these 85 ligands were known drugs. These ligands are 

CHEMBL1563 (Daunoxome), CHEMBL1200883 (Tonzonium Bromide), and 
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CHEMBL1607 (Hycamptin). These drugs were observed in 4 protein-protein 

interactions in the cluster. These interactions and the observed drugs are listed in Table 

4.13. 

 

Table 4.13. Three drugs and their protein interactions from C2 of SPHINS. 

Interaction Drug(s) 

ASM -IDE CHEMBL1200883, CHEMBL1607 

NPC1 – IDE CHEMBL1607, CHEMBL1200883 

GLCM – IDE CHEMBL1200883, CHEMBL1607 

FOXO1 – NPC1 CHEMBL1563 

 

         CHEMBL1607 (Hycamptin) is an anticancer drug used for the treatment of 

ovarian cancer and lung cancer [73]. The drug diminishes cancer cells. CHEMBL1563 

(Daunoxome) is also an antitumor antibiotic having cytotoxic impacts on cancer cells 

to prevent cancer cell growth [74]. 

 

         Different than the previous drugs, CHEMBL1200883 (Tonzonium Bromide) is 

an antibiotic curing infections [75]. From Table 4.13, it is proved that these cancer 

drugs are targeting both insulin and sphingolipid protein in the treatment of cancers. 

The frequently interacted insulin enzyme is called insulin degrading enzyme (IDE). 

This enzyme interacts with sphingolipid phosphodiesterase (ASM), 

glucosylceramidase (GLCM), and Niemann Pick protein 1 (NPC1). NPC1 is a 

cholesterol transporter which acts also on insulin signaling pathway because of the 

interaction between insulin and cholesterol metabolisms [76]. Thus, NPC1 protein also 

affects both insulin based disorders and cancers as a sphingolipid protein. These listed 

anticancer drugs inhibit both insulin degrading enzyme and also sphingolipid proteins 

to prevent cancer cell growth in human body.  
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4.2.2.2.  Protein-Ligand Docking of Key Sphingolipid-Insulin Interactions.  For 

docking process, first, these 7 proteins were prepared in Maestro from Protein 

Preparation Wizard, then the ligand set comprising these 85 ligands were imported 

into the environment. According to that, these ligands were prepared for docking via 

Lig-Prep. Then, these ligands were docked into the generated grid receptor area. The 

top 5 XP Gscores are listed for each protein in Table 4.14. 

 

 

Figure 4.9. The second cluster of weighted identity SPHINS network. Green 

hexagonal nodes represent the first sphingolipid neighbours of the insulins coloured 

with light blue and shaped as ellipse. 

 

Table 4.14. The docking results of the C2-SPHINS proteins. 

Protein Name Protein- PDB ID Ligand- ChEMBL ID XP Gscore 

IDE 4PES CHEMBL1418096 -8.165 

IDE 4PES CHEMBL250711 -7.836 
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Table 4.14. The docking results of the C2-SPHINS proteins (cont.). 

Protein Name Protein- PDB ID Ligand- ChEMBL ID XP Gscore 

IDE 4PES CHEMBL1504972 -7.695 

IDE 4PES CHEMBL1367989 -7.61 

IDE 4PES CHEMBL1563 -7.581 

AGAL 4NXS CHEMBL1491847 -8.942 

AGAL 4NXS CHEMBL1514790 -8.852 

AGAL 4NXS CHEMBL1491847 -8.485 

AGAL 4NXS CHEMBL1563 -8.045 

AGAL 4NXS CHEMBL86464 -7.6539 

GLCM 2XWD CHEMBL1553406 -8.6715 

GLCM 2XWD CHEMBL1514790 -7.8364 

GLCM 2XWD CHEMBL1591898 -7.3637 

GLCM 2XWD CHEMBL2000525 -7.2902 

GLCM 2XWD CHEMBL1389865 -7.1456 

ASM 5I81 CHEMBL1563 -8.2484 

ASM 5I81 CHEMBL1966241 -7.7208 
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Table 4.14. The docking results of the C2-SPHINS proteins (cont.). 

Protein Name Protein- PDB ID Ligand- ChEMBL ID XP Gscore 

ASM 5I81 CHEMBL1514790 -7.330 

ASM 5I81 CHEMBL1572827 -7.2156 

ASM 5I81 CHEMBL1991601 -7.1011 

ARSA 2AIK CHEMBL2000525 -5.632 

ARSA 2AIK CHEMBL1563 -3.678 

ARSA 2AIK CHEMBL3189447 -3.47 

ARSA 2AIK CHEMBL1553406 -3.454 

ARSA 2AIK CHEMBL1966241 -3.285 

 

         Based on the results, not all the ligands were docked to the proteins. For instance, 

none of the ligands were docked to NPC1. In Table 4.14, some ligands are well-docked 

more than one protein. These ligands are CHEMBL589694, CHEMBL1367989, 

CHEMBL250711, CHEMBL1563, and CHEMBL1360013. Among these ligands, 

CHEMBL250711 (N-Oleoyldopamine) and CHEMBL1563 (Daunoxome) are known 

drugs. N-Oleoyldopamine is a lipid producing hyperalgesia meaning the increased 

sensitivity to pain [77]. It is a lipid found in bovine brain. Daunoxome is used for the 

treatment of leukemias [74]. Daunoxome is well-docked into two proteins; namely 

AGAL and IDE. N-Oleoyldopamine is well-docked into IDE and ARSA. 

 

         In the third cluster given in Figure 4.10, there are three sphingolipids and three 

insulins respectively. Form these nodes, the key interactions, bridging both 
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metabolisms, belonged to PTN1, STS and ENPP7 proteins. PTN1 is called tyrosine-

protein phosphatase non-receptor type 1 belonging to insulin metabolism. On the other 

hand, STS is a sulfatase and ENPP7 is a phosphodiesterase belonging to sphingolipid 

metabolism. The shared ligand connecting SST and ENPP7 with PTN1 is a dye called 

evans blue (CHEMBL1200712).  

 

 

Figure 4.10. The third cluster of weighted identity SPHINS-WIN. Green hexagonal 

nodes represent the target proteins bridging both metabolisms. In the graphic, 

sphingolipid and insulin proteins are shaped as rectangular and ellipse, respectively. 

 

         Molecular Symmetry Based Chirality and Polarity Detection:  The chirality and 

polarity of the molecules were also calculated via Jmol tool. Among these 85 ligands, 

the symmetry group of CHEMBL1369972, CHEMBL1349451 and 

CHEMBL1730051 ligands is Cs having identity symmetry operation and mirror plan 

reflection. Thus, these molecules are polar meaning also water soluble according to 

the chemistry based classification of symmetry groups. The other molecules’ 

symmetry groups are identical; which is C1 comprising only identity symmetry 
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operation. C1 is a polar and chiral symmetry group, therefore, these molecules are also 

water soluble and chiral. 

 

4.3. Comparison Between Sphingolipids and Inflammation Enzymes 

 

         For the study of our lab member, Begum Yagci, the data of both sphingolipids 

and inflammation enzymes were collected; then the ligand centric network models of 

both metabolic pathways were constructed same as previous metabolic networks. 

Sphingolipids, insulins and inflammation are all related to each other since obesity 

increases secretion of inflammatory cytokines whose role is in the communication 

between cells via cell signaling [78]. This increase of the cytokines causes also chronic 

inflammation in patients’ bodies. My task was to intersect both metabolic networks, 

sphingolipids and inflammations, to highlight commonly shared proteins between both 

networks.  

 

4.3.1. Sphingolipid and Inflammation Data Summary 

 

         First, proteins and ligands were extracted for both sphingolipids and 

inflammation keywords. The data extraction processes were completed separately. 

The keywords used for sphingolipids were sphingolipid, glycosphingolipid and 

sphingomyelin; on the other hand, inflammation was just preferred for inflammation 

proteins.  In addition to the keywords, GO IDs were also search with these keywords. 

For sphingolipids, GO:0006665-sphingolipid metabolic process, and for 

inflammation, GO:0006954-inflammatory response, were preferred since these IDs 

are the basic metabolic processes of both protein families. The total number of proteins 

and the number of proteins having ChEMBL compound information are given in the 

Table 4.15. Data of both protein families were intersected. First, there were 9 proteins 

3 of which did not have any ChEMBL compound information. These proteins are 

ASM3B, D3DWC4 (unreviewed), A0A024RDA0 (unreviewed). The other proteins 
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were 6 proteins; namely, LYAM3, P2RX7, LYN, SPHK1, KPCD1, and KIT. These 

proteins are well known enzymes in their enzyme families. LYN and KIT are from the 

second cluster of SL-WIN network.  In addition, KPCD1 is a protein kinase D1 and 

SPHK1 is a sphingosine kinase 1. These kinases were commonly observed in both 

sphingolipid and insulin data sets. Different than the kinases, P2RX7 is a purinoceptor 

protein from sphingolipid metabolism.  The full description of these proteins is also 

listed in Table 4.16. 

 

Table 4.15. Protein numbers of both sphingolipids and inflammations. 

Family Number of 

total proteins 

Number of proteins 

having ChEMBL IDs 

Number of 

Ligands 

Sphingolipids 327 75 51383 

Inflammation 1059 270 250576 

 

Table 4.16. The list of the proteins observed at the intersection between both protein 

families. 

ENTRY 

NAMES 

PROTEIN NAMES 

LYAM3 P-selectin (CD62 antigen-like family member P) 

P2RX7 P2X purinoceptor 7 

LYN Tyrosine-protein kinase Lyn (EC 2.7.10.2) 

SPHK1 Sphingosine kinase 1 (SK 1) (SPK 1) (EC 2.7.1.91) 

KPCD1 Serine/threonine-protein kinase D1 (EC 2.7.11.13) (Protein kinase 

C mu type) 
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Table 4.16. The list of the proteins observed at the intersection between both protein 

families (cont.). 

ENTRY 

NAMES 

PROTEIN NAMES 

ASM3B Acid sphingomyelinase-like phosphodiesterase 3b (ASM-like 

phosphodiesterase 3b) (EC 3.1.4.-) 

D3DWC4 Phosphatidylcholine:ceramide cholinephosphotransferase 1 

(Transmembrane protein 23, isoform CRA_a) 

A0A024RDA0 V-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog, 

isoform CRA_a 

KIT Mast/stem cell growth factor receptor Kit (SCFR) (EC 2.7.10.1) 

 

4.3.2. Construction of Inflammation Network 

 

         First, the ligand centric network models of inflammation proteins were 

constructed. Then, the weighted identity network was considered for the ligand based 

analysis. The weighted identity inflammation network is given in Figure 4.11. The 

name of the proteins cannot be seen since inflammation network has intense protein 

interactions and high number of interactors. After constructing the inflammation 

network, its intersection with sphingolipid weighted identity network was also 

obtained from CytoScape providing a tool to merge or intersect networks. The 

intersection of both metabolisms is also illustrated in Figure 4.12. 
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Figure 4.11. WIN of inflammation.  

  

 

Figure 4.12. The intersection of both networks is illustrated. 
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4.3.3. Interactor Analysis for Intersection of Sphingolipids and Inflammation 

Proteins 

 

         The ligand set of the intersection network was analysed to understand pairwise 

ligand similarity (PLS). The total number of unique ligands are 685, 18 of which are 

commercial drugs searched in DrugBank to detect their diseases (Table 4.17). All the 

drugs were interacted with only KIT, LYN and KPCD1 proteins. Almost all of them 

are used for the treatment of cancers; however, there are only 2 drugs curing infection, 

namely Ruxolitinib and Tafocitinib. KIT, LYN and KPCD1 interacted with these 

infectious drugs. First, these ligands were imported into CANVAS to analyze their 

pairwise ligand similarity (PLS). Based on the similarity matrix, %0.18 of these ligand 

pairs have PLS above 0.7. Among these ligand pairs, there are only two drugs; namely 

Lapatinib and Pazopanib. These drugs are used for the treatment of breast cancer and 

kidney cancer, respectively [79,80]. These drugs were interacted with KIT, LYN and 

KPCD1 proteins. The PLS distribution of them is also illustrated and given in Figure 

4.13.  

 

 

Figure 4.13. The frequency distribution of PLS values for Inflammation ligand set. 
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Table 4.17.  19 commercial drugs were observed in sphingolipid-inflammation 

intersection network. 

Drug Name ChEMBL ID  Diseases 

Afatinib CHEMBL1173655 Blocking cancer cell growth 

Axitinib CHEMBL1289926 Renal cell carcinoma 

Bosutinib CHEMBL288441 Leukemia 

Crizotinib CHEMBL601719 Small cell lung cancer 

Dasatinib CHEMBL1421 Leukemia  

Erlotinib CHEMBL553 Pancreatic cancer and lung 

cancer 

Gefitinib CHEMBL939 Lung cancer 

Imatinib CHEMBL941 Leukemia 

Lapatinib CHEMBL554 Breast cancer 

Nilotinib CHEMBL255863 Leukaemia 

Nintedanib CHEMBL502835 Idiopathic Pulmonary 

Fibrosis 

Pazopanib CHEMBL477772 Kidney cancer 

Ruxolitinib CHEMBL1789941 Infection 

Sirolimus CHEMBL413 Lymphoma and skin cancer 

Sorafenib CHEMBL1336 Thyroid cancer, cell cancer 

Sunitinib CHEMBL535 Cell cancer 

Tofacitinib CHEMBL221959 Infection 

Vandetanib CHEMBL24828 Thyroid cancer 



 

81 

5. CONCLUSION 

 

 

5.1. Conclusions 

 

           With this study, protein-ligand interaction data collection tool has been 

developed. For five major ligand databases, namely BindingDB, PDB, PubChem, 

KEGG, and ChEMBL scripts were coded. For all the scripts, UniProt database was 

used as protein database. First, the keywords or identifiers of a selected protein family 

are searched; then their ligands are collected. The output includes protein ID, ligand 

ID and SMILES which are used as the basis for cheminformatic studies such as 

chemical similarity analysis. The output can be used with the ligand centric network 

model, developed previously in our group. By only searching the selected keywords 

or identifiers of a protein family, dataset and its network models can be constructed.  

  

         Among these five ligand databases; BindingDB, PDB, PubChem, KEGG, and 

ChEMBL, ChEMBL database is the most preferable database for protein – ligand 

interactions. PDB only consists of ligands with crystal structures and all entries of PDB 

are also stored in ChEMBL and PubChem databases. ChEMBL collects data from 

medicinal chemistry journals and BindingDB collects binding data from chemical 

biology journals. BindingDB shares its data with ChEMBL and has less amount of 

data than ChEMBL has. KEGG is a genomics knowledgebase. It provides gene, 

protein and ligand information of biological pathways with less amount of data then 

ChEMBL and PubChem consists. PubChem stores four types of ligands based on their 

binding affinity kinds such as unspecified, insufficient, inactive and active. For protein 

– ligand interactions are evaluated via their biologically active ligands and their 

binding affinities. ChEMBL provides all the active ligand data PubChem has. 

ChEMBL also consists of ligand data from both commercial and academic studies. 



 

82 

Thus, selecting ChEMBL as the source database for the protein-ligand interaction 

studies is reasonable.  

 

         As a case study, sphingolipid and insulin metabolism proteins were collected and 

examined with this tool. Sphingolipids are crucial for membrane structure and they are 

implicated in the treatment of cancer and neurodegenerative disorders. The 

deficiencies in sphingolipid proteins cause diseases such as Alzheimer’s, Parkinson’s 

and MS diseases. Sphingolipid proteins also interact with insulin proteins. Insulin 

signaling pathway plays a role in insulin resistance, diabetes, and cancer. Lipid rafts 

enriched by lipids and cholesterols, are required for the cell signaling of insulin 

proteins. Thus, the deficiencies in sphingolipid proteins cause neurodegenerative 

disorders and these disorders affects insulin signaling pathway. In this study, first the 

sphingolipid protein interactions and then the sphingolipid – insulin protein 

interactions were analyzed to highlight bridging interactions between both 

metabolisms.  

 

         First, the protein – ligand interactions of sphingolipid and insulin metabolisms 

were collected from ChEMBL. Then, the ligand centric weighted identity networks 

were constructed for the sphingolipid network, then the combined sphingolipid and 

insulin network. Based on these networks, key interactions and interactor drugs of 

sphingolipid protein pairs and sphingolipid – insulin protein pairs were detected. For 

all the interactions, proteins, drugs and related diseases were listed. Besides the 

promiscuous drugs in sphingolipid network, Tamoxifen and Altretamine cancer drugs 

interacted with GLCM, ARSA and AGAL. Fingolimod, used for the treatment of MS, 

interacted with SPHK1 and SPHK2. Ceritinib, used for the treatment of non-small cell 

lung cancer, and Niclosamide, curing worm infection were interacted with KIT and 

LYN.  In sphingolipid – insulin interactions, Ceritinib interacted also with IGF1R and 

INSR proteins. 
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5.2. Further Studies 

 

         We collected and analyzed sphingolipid and insulin metabolisms to highlight 

important interactions. Based on the detected specific protein pairs and their 

interactors, more than just listing interactions and their drugs, the role of specific 

protein pairs in diseases aimed to be biologically analyzed. Molecular dynamics 

analysis and experimental confirmations.  
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