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ABSTRACT

TIME-FREQUENCY AND TIME-SCALE ANALYSIS,

DECOMPOSITION AND CLASSIFICATION OF

ADVENTITIOUS PULMONARY SOUNDS

Pulmonary diseases affect the quality of life and disturb the patients throughout

their life. Due to some disadvantages of auscultation with a traditional stethoscope,

computerized lung sound analysis has become a necessity. In this thesis, novel non-

dyadic overcomplete wavelet based methods are proposed to decompose, detect and

classify primary indicators (crackle and wheeze) of pulmonary diseases using various

machine learning algorithms. Crackle (explosive and discontinuous), wheeze (musical

and continuous) and normal lung sounds are classified using Rational Dilation Wavelet

Transform based extracted features and compared with related works. It is shown

that the proposed method is more successful and faster than its competitors. More-

over, in an ensemble learning scheme it is shown that the optimal representations of

signal of interest can be achieved employing the proposed method. Resonance based

decomposition using Tunable Q-factor Wavelet Transform and Morphological Compo-

nent Analysis techniques are proposed to decompose adventitious lung sounds and to

localize crackles successfully. The proposed method is compared with related works

on adventitious lung sound decomposition and is shown to perform better than other

methods in terms of root mean square error, crackle localization accuracy and visual

validation. Within class problem in wheeze type classification is explored using non-

dyadic wavelet based features and adaptive peak energy ratio metric. It is shown that

either using fixed parameter settings in wavelet transform or fixed time-frequency (TF)

based features, the optimum representation and high performance can not be achieved.

After repetitive experiments, it is shown that by using the proposed novel wavelet based

methods, optimum and better TF and time-scale representation can be achieved.
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ÖZET

SOLUNUM EKSESLERİNİN ZAMAN-SIKLIK VE

ZAMAN-ÖLÇEK ANALİZİ, AYRIŞTIRILMASI VE

SINIFLANDIRILMASI

Akciğer hastalıkları, yaşam kalitesini etkiler ve hastaları yaşamları boyunca ra-

hatsız eder. Geleneksel stetoskobun bazı dezavantajlarından dolayı bilgisayarlı sol-

unum sesi analizi ihtiyaç haline gelmiştir. Bu tezde, akciğer hastalıklarının birincil

göstergelerini (çıtırtı ve üfürüm) çeşitli makina öğrenme algoritmaları ile ayrıştırmak,

saptamak ve sınıflandırmak için, yeni diyadik olmayan tamamlanmış dalgacık dönüşü-

mü tabanlı yöntemler önerilmiştir. Çıtırtı (patlayıcı ve kesikli), üfürüm (müzikal

ve sürekli) ve normal akciğer sesleri, Kesirli Genişleyen Dalgacık Dönüşümü tabanlı

öznitelikler kullanılarak sınıflandırılmış ve literatürde ilgili çalışmalarla karşılaştırılmış-

tır. Önerilen yöntemin rakiplerinden daha başarılı ve hızlı olduğu gösterilmiştir. Da-

hası, bir topluluk öğrenme şemasında, ilgili sinyalin eniyilenmiş gösterimlerinin önerilen

yöntemi kullanarak gerçekleştirilebileceği gösterilmiştir. Uyarlanabilir Q-faktörlü Dal-

gacık Dönüşümü ve Morfolojik Bileşen Analizi teknikleri kullanılarak rezonansa dayalı

ayrıştırma, akciğer ekseslerinin ayrıştırılması ve çıtırtıların başarıyla lokalize edilmesi

için önerilmiştir. Önerilen yöntem, akciğer ekses ayrıştırma üzerine ilgili çalışmalarla

karşılaştırılmış ve kök ortalama karesi hatası, çıtırtı lokalizasyon doğruluğu ve görsel

doğrulama açısından diğer yöntemlerden daha iyi performans göstermiştir. Üfürüm tipi

sınıflandırmadaki sınıfiçi problem, diyadik olmayan dalgacık tabanlı özellikler ve uyarla-

malı tepe enerji oranı metriği kullanılarak araştırılmıştır. Dalgacık dönüşümünde sabit

parametreli kurulum veya sabit zaman-frekans (ZF) tabanlı özniteliklerin kullanılması

durumunda, eniyilenmiş gösterim ve yüksek performans elde edilemediği gösterilmiştir.

Yapılan yoğun deneyler sonucunda, önerilen yeni dalgacık tabanlı yöntemler kullanıla-

rak, eniyilenmiş ve daha iyi ZF ve zaman ölçekli gösterim elde edilebileceği gösterildi.
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1. INTRODUCTION

1.1. Aim, Background and Motivation

Asthma, bronchiectasis, fibrosing alveolitis, pneumonia, chronic obstructive pul-

monary disease (COPD) and interstitial fibrosis are some of the pulmonary diseases

that degrade the quality of life. COPD, which is one of the most critical pulmonary

diseases, was ranked as the sixth mortality cause in 1990 and will become the third in

2020 [1]. Moreover, according to [2], asthma or COPD affect 1 in 12 people around

the world and these two lung diseases may overlap on 15 % of the obstructive lung

disease population. In literature normal respiratory sounds are named as vesicular

sounds. On the other hand, adventitious sounds, which are the primary indicators

of lung dysfunctions, are superimposed on vesicular sounds. The adventitious sounds

are divided into two types, namely as continuous (wheeze) and discontinuous (crackle)

pulmonary sounds. The number of crackles per breath is related to the severity of

the disease, and the timing, duration and types of crackles (fine or coarse) in a breath

cycle may be different in various lung diseases. For example, coarse crackles exist in

bronchiectasis whereas fine crackles are common symptoms of interstitial fibrosis and

pneumonia. The presence of wheezes usually indicates a pulmonary disorder such as

asthma and COPD. Wheeze characteristics such as pitch frequency and duration are

related to the degree of airway obstruction. In low and middle income countries access

to modern health services is limited and expensive. Moreover, lack of medical experts

is another issue in these regions and because of these issues cost effective computerized

lung acoustics systems are needed. Therefore, in this thesis the first aim is to pro-

pose novel and faster wavelet based methods which may be employed in real-time cost

effective computerized lung acoustics systems. As discussed above, in order to auto-

matically analyse pulmonary diseases using computerized systems, proper detection of

crackles and wheezes is very important. Therefore, as a second aim, in this thesis novel

wavelet based methods are used to extract discriminative features and classify them

with high accuracy as compared with related studies. Proper detection of crackles and

wheezes can be seen as focusing on the lung sound data at a micro level. The features
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(hidden atomic information in lung sound) extracted from micro level may be added to

model based features extracted at macro level for improving the accuracy of the diag-

nostic classification systems. Stemmed from time-varying characteristics of lung tissue

and chest wall, most lung sound signals are non-stationary in character, independent

from time scale and time frequency analysis domain. This is valid for adventitious

lung sound types, especially crackles. Most of the time, adventitious lung sounds have

high-frequency components very tight in time domain, low-frequency components very

tight in frequency domain which are superimposed on low frequency vesicular sounds.

Hence a suitable analysis method for detecting them should supply information about

good frequency resolution along with good time resolution, the first to localize the low

frequency entities, and the second to resolve the high frequency entities. Therefore

classical Fourier transform (FT), which assumes that the analysed signal is stationary

and does not contain any time information, is not appropriate to analyse most of the

biomedical signals. Short Time FT (or windowed FT) partially overcomes the draw-

back of FT by considering an analysis window that has fixed time-frequency resolution.

However, presenting a time-scale description of signals, wavelet transform (WT) has

finer frequency resolution at low frequencies, but also has finer time resolution at high

frequencies. Moreover, in all previous discrete wavelet transform (DWT) based meth-

ods, constant low Q-factor wavelets, which have limited frequency resolution, have been

used. These types of low Q-factor wavelets are adequate in the analysis of piecewise

smooth signals but for more oscillatory signals like wheeze signals, a DWT with better

frequency resolution is needed. Therefore in this thesis, unlike the previous studies,

novel non-dyadic overcomplete wavelet transform in which the Q-factor of the analysis

and synthesis filters can be adjusted according to the properties of signal of interest,

is proposed as the feature extractor.

Previous works focus on stationary-nonstationary separation of lung sounds.

However, wheezes and vesicular sounds are both stationary compared to crackles.

DWT with low Q-factor has limited frequency resolution and is incapable of mod-

eling wheezes. Wheezes are oscillatory (high Q-factor), crackles are transient (low

Q-factor) waveforms and both crackles and wheezes may co-exist in the same lung

sound data. The importance of detection and separation of adventitious lung sounds
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in the discrimination of healthy and pathological subjects, is the motivation behind the

study presented in this thesis since there is also an overlap of frequency ranges of vesic-

ular (normal) and adventitious lung sound types. Therefore, unlike linear or frequency

based filtering, resonance based nonlinear decomposition is proposed to separate adven-

titious lung sounds. Moreover, previous works suffer from being unable to decompose

low and high frequency components of the same lung sound type into the same channel

and deforming the waveform of the crackles whose time domain parameters are vital

in computerized diagnostic classification systems.

In Chapter 2, unlike the previous studies which are based on FT or dyadic DWT

and have limited TF resolution, a non-dyadic overcomplete WT, in which the Q-factor

of the analysis and synthesis filters can be adjusted according to the properties of signal

of interest, is proposed as the feature extractor.

In Chapter 3, resonance based decomposition of lung sounds that aims to separate

wheeze, crackle and vesicular sounds into three individual channels while automatically

localizing crackles for both synthetic and real data is proposed.

In Chapter 4, unlike previous studies which use fixed TF resolution based on

Fourier transform, we propose an optimal (better TF resolution) and adaptive (au-

tomatic and tunable) wavelet based technique to discriminate monophonic (MP) and

polyphonic (PP) wheezes (primary indicators of lung diseases) in a more robust and

objective manner.

Moreover, the proposed non-dyadic overcomplete WT, being a rational (based on

non-dyadic dilations), fully discrete, near shift-invariant and invertible transform with

acceptable redundancy and higher accuracy may be a robust candidate to be employed

in real-time diagnostic classification systems.

1.2. Outcomes and Organization of the Thesis

Outcomes of the studies have been published in [3–10].
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In Chapter 1, motivation, aim and structure of the thesis are presented. Outcomes

and objectives of the research are also introduced.

In Chapter 2, an overcomplete non-dyadic wavelet based method is proposed to

discriminate pulmonary sounds using various machine learning techniques. Crackle,

wheeze and normal lung sound discrimination is vital in diagnosing pulmonary dis-

eases. Previous works suffer from limited frequency resolution and lack of ability to

deal with oscillatory signals (wheezes). The main objective of this chapter is to propose

a novel wavelet based lung sound classification system that is capable of adaptively rep-

resenting crackle, wheeze and normal lung sound signal time-frequency properties. A

method which is based on Rational Dilation Wavelet Transform (RADWT) is proposed

to classify lung sounds into three main categories, namely, normal, wheeze and crackle.

Six different feature extraction methods are used with five different classifiers all of

which are compared with the proposed method on 600 lung sound episodes in a cross

validation scheme. Six statistical subset features are extracted from raw features and

fed into classifiers. After comparative evaluation of the proposed method, an ensem-

ble learning scheme is built to increase the performance of the proposed method. It

is shown that performance of the proposed method is superior to previous methods

in terms of accuracy. Moreover, its computational time is far less than its nearest

competitor (S transform). It is shown that the proposed method is able to cope with

oscillatory type signals as well as transient sounds performing 95.17 % average accuracy

for energy subset and 97.38 % ensemble average accuracy showing a promising time-

frequency tool for biological signals. The proposed method performs better even using

only one subset of extracted features. It provides better time-frequency resolution for

all types of signals of interest and is less redundant than continuous wavelet transform

(CWT) and significantly faster than its nearest competitor.

In Chapter 3, resonance based decomposition of lung sounds that aims to separate

wheeze, crackle and vesicular sounds into three individual channels while automatically

localizing crackles for both synthetic and real data is presented. Previous works focus

on stationary-non stationary discrimination to separate crackles and vesicular sounds

disregarding wheezes which are stationary compared to crackles. However, wheeze
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sounds include important cues about the underlying pathology. Using two different

threshold methods and synthetic sound generation scenarios in the presence of wheezes,

resonance based decomposition performs 89.5 % crackle localization recall rate for

white Gaussian noise and 98.6 % crackle localization recall rate for healthy vesicular

sound treated as noise at low signal-to-noise ratios. Besides, an adaptive threshold

determination, which is independent from the channel at which it is applied, is used and

is found to be robust to noise. The proposed method is compared with Independent

Component Analysis (ICA) and Empirical Mode Decomposition (EMD) methods in

terms of normalized Root Mean Square Error (RMSE), crackle localization accuracy

and visual validation performance and found to be successful on all of the metrics

using synthetic and real patients’ data including overlapping wheezes and crackles. The

proposed method is also experimented on merely wheeze, merely crackle and merely

vesicular sounds containing cases to represent the decomposition ability of the proposed

method. Moreover, an energy based classification metric is proposed using candidate

decomposed channel energies to estimate the label of the experimented case.

In Chapter 4, adaptive non-dyadic wavelet and peak energy ratio based auto-

matic method is proposed to discriminate wheeze types. The previous works mainly

focused on using fixed time-frequency resolution based on Fourier Transform in clas-

sifying wheeze types. The main objective of this chapter is to discriminate wheeze

types in an adaptive and optimal way by showing effectiveness of the proposed system

over fixed parameter valued settings. An adaptive and automatic Rational Dilation

Wavelet Transform (RADWT) based peak energy ratio (PER) parameter selection

method is proposed as feature extractor. Distribution of PER values and accuracies

of different classifier kernels are provided for validation. It is shown that wheeze types

can not be represented in time-frequency domain optimally by using fixed scale and

shifting wavelet parameters. Extracted best representing PER values obtained from

decomposed energy sub-bands fed into support vector machine classifier and proposed

adaptive wavelet based method outperformed fixed parameter sets achieving 86 % ac-

curacy. It is concluded that, without using proposed adaptive wavelet based method,

best time-frequency representation of wheezes can not be achieved using a specific

(fixed) parameter set.
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In Chapter 5, a summary of the proposed contributions and conclusions of the

thesis is represented. Future directions of the proposed contributions are also intro-

duced in this chapter of the thesis.
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2. RESPIRATORY SOUND CLASSIFICATION

2.1. Introduction

Stethoscope is a traditional tool in diagnosing respiratory dysfunctions and disor-

ders. However, it is regarded to have low diagnostic value due to its limited frequency

response which attenuates frequencies greater than 120 Hz and due to the subjectiv-

ity [11] involved in the evaluation of the auscultated sounds. Moreover, the traditional

stethoscope offers no option to record pulmonary data for further analysis. Interdisci-

plinary efforts in medicine and engineering as summarized in [12], which aim to make

auscultation a more valuable diagnosis tool, use advanced machine learning and signal

processing algorithms to be utilized in treatment follow-ups and remote diagnosis.

Lung sounds (LS) are believed to be produced by the turbulent flow in the lung

airways, and are essentially classified as adventitious (abnormal) sounds and vesicular

(normal) sounds [11, 13]. The normal breath sounds heard over the chest wall, which

are synchronous with air flow in the airways, are defined as vesicular sounds. The

frequency spectrum of vesicular sounds in healthy people has 200-600 Hz dominant

frequency range. Adventitious lung sounds (ALS), which are specific markers of various

respiratory diseases, are superimposed on vesicular sounds. Discontinuous adventitious

lung sounds (DALS) and continuous adventitious lung sounds (CALS) are the two main

categories of ALS. In literature, crackles and wheezes can be exemplified as the most

studied components of the CALS and DALS, respectively [14,15].

Crackles are non-musical instantaneous bursts, explosive in nature and divided

as coarse (lower pitch) or fine (higher pitch). Crackles are believed to be generated

by abnormally closed airway openings [16]. The frequency spectrum of crackles varies

between 200 and 2000 Hz range while their duration is usually less than 20 ms. In

most of the pulmonary diseases, the severity of the disease has a strong correlation

with the number of crackles per breath. Moreover, different lung diseases can be

diagnosed by using the occurrence times, durations and types of crackles within a
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breath cycle [16]. For example, in bronchopneumonia and bronchiectasis coarse crackles

exist typically whereas the common symptoms of pneumonia and interstitial fibrosis

are fine crackles [17]. Crackles in chronic obstructive pulmonary disease are coarse and

occur in early to mid inspiration whereas crackles in fibrosing alveolitis are fine and

occur in late inspiration [16]. Due to their transient waveform and scattered energy

content over frequencies (200-2000 Hz), crackles have barely noticeable impact on the

total power spectrum [17]. The frequency and time domain characteristics of vesicular

and crackle sounds overlap in both domains.

Wheezes are oscillatory waveforms, which last more than 80-250 ms, and represent

narrow-horizontal lines in the time-frequency domain (> 100 Hz). Time-frequency

representation of two samples of crackles and wheezes is illustrated in Figure 2.1.

Various pulmonary diseases such as asthma and chronic obstructive pulmonary disease,

can be diagnosed by using the presence of wheezes. As given in [18] and [19], the degree

of airway obstruction may be related to wheeze properties such as duration and pitch

frequency.

Figure 2.1: Time domain (left) and time-frequency domain (right) representations of

crackle (upper) and wheeze (lower) sounds. Red arrow indicates crackle location.

The motivation of the proposed LS, CALS and DALS discrimination system is to

overcome the subjectivity and low-performance drawbacks of traditional non-automatic

systems while increasing the performance of automated systems by enhancing the fre-

quency selectivity of wavelet filters resulting in a better separation of overlapped com-



9

ponents of these three lung sounds in time-frequency domain.

In previous studies, crackle/non-crackle and wheeze/non-wheeze episode discrim-

ination has been extensively examined and a summary can be found in [14,20]. In ad-

dition to binary discrimination approaches, there were also a few three class (crackle,

wheeze and normal classes) discrimination studies such as [21–26]. In [21], Discrete

Wavelet Transform (DWT) coefficients and Artificial Neural Networks (ANN) based

classification system were used to solve a six-class (squawk, stridor and rhonchus in

addition to crackle, normal and wheeze classes) problem on 265 episodes using mean

and standard deviation based statistical features. 100 % and 94.02 % accuracies were

achieved for the training and validation sets, respectively. However, when the episode

number was increased from 422 to 5786, the general accuracy decreased to 59.15 % on

the validation set. In [22], the power spectral density (PSD) features, obtained from

three lung sound types, were fed into Genetic Algorithm for feature selection. The

selected features were forwarded to Multilayer Perceptron neural network and 91.7 %

average accuracy was achieved when 96 subjects were used. In [23], the data was mod-

elled with maximum-likelihood approach and, Hidden Markov Model (HMM) based

classification was employed resulting in an average classification rate of 83 % on 1544

episodes. In [24], using Multilayer Perceptron neural network on 20 test epochs, con-

fidence levels of 90 %, 87 % and 89 % were obtained for normal, wheeze and crackle

classes, respectively. In [25], a combination of Mel Frequency Cepstral Coefficients

(MFCC) and Gaussian Mixture Model (GMM) were used for classification resulting

in 98.75 % and 52.5 % accuracies for the reference (50 epochs) and cross-validation

(24 epochs) set, respectively. Using 225 samples and S-transform (which is a phase

corrected version of continuous wavelet transform (CWT) with a scalable Gaussian

window) based statistical features (mean and standard deviation), the study in [26]

reached overall classification accuracy of 94.99 % with k Nearest Neighbor (k -NN),

96.85 % with support vector machine (SVM) and 98.52 % with extreme learning ma-

chines (ELM) classifiers. A summary of the related works in literature is shown in

Table 2.1.



Table 2.1: An overview of the methods related with three groups of lung sound classification problem

Approach Features extracted Dataset Validation Model Classifier Accuracy (%)
Kandaswamy et. al., 2004 [21] statistical 265 segments 5-fold CV DWT coefficients ANN 94.02
Güler et. al., 2005 [22] GA based PSD 48 training, 48 testing 2-fold CV Welch spectrum MLP-NN 91.70
Matsunaga et. al., 2009 [23] MFCC 1544 segments leave-one-out HMM ML 83
Abbas et. al., 2010 [24] PSD 279 training, 60 testing Unseen Fourier Transform MLP-NN 88.67
Mayorga et. al., 2010 [25] MFCC 50 training, 24 testing 4-fold CV GMM Bayes rule 52.50
Palaniappan et. al., 2015 [26] statistical 225 segments, 48 subjects 60 % train, 40 % test S-transform knn, svm, elm 98.52
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Feature extraction in a classifier is one of the most critical steps since the features’

discrimination ability is more important than their number. The works [22] and [24]

used Fourier Transform (FT) based power spectral density features for classification.

Moreover, the study in [22] used an extra feature selection step based on Genetic Algo-

rithm. These methods, however, lacked localizing waveform features in time domain.

In [23,25] MFCC features were extracted where these features were designed to repre-

sent human auditory perception and used frequently in speech recognition. However,

as depicted in Table 2.1 the lowest accuracies were obtained using MFCC features,

the reason being that lung sound characteristics need not be person specific as human

voice [27]. The works of [21] and [26] used wavelet transform based features where

wavelet based features had better time-frequency resolution than the others. However,

the wavelets employed in [21] had low Q-factors and this resulted in poor frequency

selectivity, which was a dramatic drawback in the modelling of wheeze signals. In [21]

a shrinkage denoising technique was additionally used with the performance decreas-

ing severely with increasing number of episodes. In [26], best results were reported in

literature; however, database was relatively small and all the episodes had the same,

fixed length while crackle and wheeze sounds had different durations in real cases.

In literature, wavelet transform based methods have been successfully employed

for feature-extraction and/or de-noising in the pulmonary sounds [17, 21, 28]. The

meaning of the Q-factor in wavelet terminology is the ratio of bandpass filter’s center

frequency to its bandwidth. In the previous DWT based systems, mostly, constant low

Q-factor wavelets having poor frequency-resolution were employed and satisfactory re-

sults were obtained in the analysis of piecewise smooth signals. On the other hand, a

DWT having better and controllable frequency resolution must be utilized in the analy-

sis of oscillatory signals like wheezes to achieve optimum time-frequency representation

of signal of interest. Hence in this thesis, unlike previous pulmonary signal process-

ing systems, Rational Dilation Wavelet Transform (RADWT) [29], whose analysis and

synthesis filters’ Q-factors can be tuned with respect to the signal of interest, was

proposed for feature extraction. Shannon entropy, standard deviation, energy, max-

imum/minimum, mean and skewness/kurtosis values of each decomposed sub-band



12

were calculated as statistical feature-subsets. Later, these statistical feature-subsets

were given into Decision Tree (DT), Naive Bayes (NB), k -NN, SVM, and ELM models

with the final aim of classifying wheeze, crackle and normal lung sounds. Experimental

results showed that with the high Q-factor analysis (proposed method hereafter) that

was implemented as leaving one lung sound sample out for each training and testing

phase (also called as leave-one-out cross validation - LOOCV), higher average accu-

racy, normal signal, wheeze and crackle classification accuracies were obtained when

compared with the low Q-factor wavelet analysis and the other previously suggested

methods in literature.

In this chapter, all indicated previous approaches were experimented on our data

set and compared extensively with our proposed method. The flowchart for all the

experimented feature extraction and classification methods is given in Figure 2.2.

Figure 2.2: The flowchart of the comparative evaluation of the proposed method with

literature.

This chapter is organized as follows; Section 2.2 introduces data acquisition sys-

tem. Feature extraction methods, methodology and classification methods are given in

Sections 2.3-2.6. Section 2.7 and 2.8 introduce ensemble learning and detailed analysis

of proposed system. Section 2.9 represents the results and finally, Section 2.10 presents

discussion and summary.
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2.2. Data Acquisition System and Dataset

The lung sounds used in this thesis were recorded with a 14-channel data acqui-

sition device which was designed in Boğaziçi University Lung Acoustics Laboratory

(BU-LAL) and a comprehensive description of the device may be found in [30]. The

data acquisition device was comprised of 14 air-coupled electret microphones (SONY

ECM-44 BPT) that were located on the posterior chest wall. Microphone locations [30]

were determined by a pulmonary physician by mirroring around spine line, with seven

microphones covering each lung area. A pre-amplifier filter unit with a passband of

80-4000 Hz was employed for attenuating heart sounds and friction noise. A laptop

computer was used to store and visualize the data with a 12-bit data acquisition card

(NI DAQCard-6024E). A pneumotachograph (Validyne CD379) was used to measure

airflow to synchronize with respiratory cycle. The sampling rate was 9600 Hz and each

recording period lasted for 15 seconds. All subjects gave an informed consent before

recording. The Istanbul Yedikule Teaching and Research Hospital, Chest Diseases and

Thoracic Surgery Department was the collaborating partner and the CALS and DALS

were taken from patients who were under treatment in the hospital. The data acquisi-

tion procedure had the approval of the second Ethical Committee on Clinical Research

of Istanbul (in compliance with the Declaration of Helsinki).

An expert labelled the crackle and wheeze segments both by visual inspection

of the time expanded waveforms and by auditory verification. A total of 200 crackle

segments, consisting of a wide spectrum of crackle frequencies from fine to coarse, were

used in the dataset. A total of 200 wheeze segments, of which 110 being monophonic

and the rest being polyphonic, were used in the dataset. The remaining 200 normal

segments were recorded from healthy subjects forming a total dataset of 600 segments.

The dataset used in this chapter of thesis was obtained from 19 male and 11 female

subjects. Healthy subjects had no pulmonary dysfunction history, were at the age of

27 ± 7 and were non-smokers. Wheeze segments were taken from four asthma and

three chronic obstructive pulmonary disease patients (two of them have Chronic Heart

Failure) who were at the age of 50± 17 complaining about shortness of breath and/or

cough. Crackle segments were taken from eight Bronchiectasis and five Interstitial
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Lung Disease patients who were at the age of 65 ± 9 complaining about pain in the

lungs and cough or shortness of breath.

2.3. Feature Extraction Methods

2.3.1. Proposed Rational Dilation Wavelet Transform (RADWT)

Wavelet transform (WT) is a signal analysis/synthesis method, which converts a

time-domain signal into a time-scale representation consisting of wavelet coefficients.

In the continuous wavelet transform (CWT), due to the effect of scaling and shifting

operations, a continuous two-dimensional (time-scale) representation of the signal of

interest is achieved instead of the classical one-dimensional frequency domain represen-

tations, such as the Fourier Transform. Non-stationary biomedical signals (for example

wheeze lung sounds [31]) may be successfully processed with continuous WT due to its

two dimensional time-scale representation advantage which provides time information.

However, performing the CWT on a signal leads to redundant information because of

the continuous change of scale and shifting parameters. This redundancy results in

high computational complexity, which makes the real-time applications very difficult,

and decreases the performance of feature extraction and machine learning phases of

biomedical systems. Discrete scale and shifting parameters may be employed in order

to achieve the computational efficiency and easy invertibility. Mostly dyadic discrete

wavelet transform (DWT), which utilizes dyadic (powers of two) scaling and shifting

parameters, is used to avoid sacrificing information contained in the signal. DWT

which is used in [21] on lung sound classification problem, is a low-Q factor method

and therefore has some drawbacks. At each DWT decomposition level, the output

of filters are down-sampled in order to avoid redundancy. However, down-sampling

operation causes aliasing and shift-variance which causes undesirable sensitivity to the

phase-shifts occurring in the input signal. Additionally, dyadic nature of the DWT

limits the frequency resolution at higher frequencies resulting in limited performance

for processing oscillatory signals like wheezes. In order to highlight the non-oscillatory

(crackles) and oscillatory (wheezes) properties of lung signals, a discrete overcomplete

wavelet transform, in which the frequency selectivity of the sub-bands can be set with
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respect to the characteristics of signal of interest, is needed. Therefore in this thesis,

the RADWT ( [29, 32]), which has finer and adjustable frequency resolution with ac-

ceptable redundancy, was proposed as a suitable feature extractor for processing lung

sounds.

In literature, many overcomplete WTs such as the double-density WT and the

dual-tree complex WT (CWT), are used in signal processing applications [33–35].

These WTs reach overcompleteness by increasing only the number of samples taken in

time for some or all frequency bands, and the sampling rate stays the same resulting

in insufficient frequency resolution. Additionally, in these WTs, the redundancy factor

is fixed and in some applications this rate of over-completeness would be unnecessary.

However, the RADWT can attain over-completeness by increasing sampling in both

time and frequency which enables obtaining the optimum time-scale representation

with controllable redundancy factors. Unlike most discrete WTs that use FIR-based

orthonormal wavelet bases [36], the RADWT is based on a frequency-domain (FFT

based) design which does not employ rational transfer functions and offers greater de-

sign flexibility. Moreover, the RADWT is a rational (based on non-dyadic dilations),

fully discrete, near shift-invariant and invertible transform. The non-dyadic (rational)

behaviour of the RADWT yields a range of Q-factors and redundancy factors.

By using the RADWT, which is also performed through an iterated two-channel

filter-bank structure like the DWT, desired dilation rates can be achieved with con-

trollable redundancies. In the RADWT, the Q-factor of wavelets is built upon three

positive integers p, q and s satisfying 1 ≤ p < q and p/q + 1/s ≥ 1, where p and q are

co-prime. In RADWT, the a (scale) and b (shifting) parameter set {a, b} are allowed

to take values from {qj/pj, spn/q}j,n∈Z, which are controlled by p, q and s [32].

In RADWT, the relation between the scaling(φ(t))/wavelet(ψ(t)) functions and

the low(h0(n))/high(g0(n)) pass filters are given as,

φ(t) = (q/p)1/2
∑
n∈Z

h0(n)φ

(
q

p
t− n

)
(2.1)
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and

ψ(t) = (q/p)1/2
∑
n∈Z

g0(n)φ

(
q

p
t− n

)
(2.2)

where h0(n) and g0(n) denote the low-pass and high-pass filters, respectively.

Mathematically, the frequency responses of h0(n) (H0(ω)) and g0(n) (G0(ω)) are

given as,

H0(ω) =



√
pq ω ∈ [0, (1− 1

s
)π
q
]

√
pqθ(ω−a

b
) ω ∈ [(1− 1

s
)π
q
, π
q
]

0 ω ∈ [π
q
, π]

(2.3)

and

G0(ω) =


0 ω ∈ [0, (1− 1

s
)π]

√
sθc(

ω−pa
pb

) ω ∈ [(1− 1
s
)π
q
, p
q
π]

√
s ω ∈ [p

q
π, π]

(2.4)

where

a =

(
1− 1

s

)
π

p
, b =

1

q
−
(

1− 1

s

)
1

p
(2.5)

the transition function θ(ω) is,

θ(ω) =
1

2
(1 + cos(ω))

√
2− cos(ω) for ω ∈ [0, π] (2.6)
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and θc(ω) is

θc(ω) :=
√

1− θ2(ω) (2.7)

The transition function, θ(ω), which is used to construct the transition bands of G0(ω)

and H0(ω), originates from Daubechies’ orthonormal wavelet filters with two vanishing

moments. The reason behind using wavelet filters having small number of vanishing

moments is to obtain a transform with good time-frequency localization properties.

FFT based circular convolution for low-pass and high-pass filtering are used in

the implementation of the RADWT. The RADWT provides perfect reconstruction for

discrete signals of any length when the length of the signal at each level is a multiple

of the least common multiple of q and s (denoted as lcm(q, s)). Otherwise, circular

convolution filtering operation does not support the perfect reconstruction property. In

case the signal length does not satisfy this property, zero-padding operation is applied

to the input signal in order to obtain the next multiple of lcm(q, s).

The redundancy of the RADWT is found as follows when the iterated filter-bank

(number of levels go to infinity) is considered,

Red(p, q, s) = lim
j→∞

Redj(p, q, s) =
1

s

1

1− p/q
(2.8)

2.4. Related Feature Extraction Methods in Literature

In this section, relevant approaches in literature which were experimented on our

dataset and compared extensively with the proposed method using the reported best

parameters in related works, will be summarized.
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2.4.1. Non-parametric Power Spectral Density (PSD)

The work of [22] and [24] used PSD based features for lung sound classification

problem and in this thesis the reported best parameters (which are detailed in the last

paragraph) were used to make a comparison with the proposed method. x(k) being

data samples in a time segment, PSD, namely periodogram (Ppsd(f)), is computed as

follows;

Ppsd(f) =
1

K

∣∣∣∣∣
K−1∑
k=0

x(k)e−j2πfk

∣∣∣∣∣
2

=
1

K
|X(f)|2 (2.9)

where Fourier transform (FT) of x(k) is denoted by X(f) and K is the number of

samples in a time segment. Welch method is used as a non-parametric power spec-

trum estimation method which allows data segment overlapping and windowing prior

to computation of periodogram and is based on the idea of averaging modified peri-

odograms [37].

Respiratory sounds were windowed with length 256 of Hanning window and

50% overlapping ratio was applied as stated in [22]. 256 point FFT was employed

in Welch method and then logarithm of the 129 point-spectrum was fed into clas-

sifiers either directly or by calculating Shannon entropy, standard deviation, energy,

minimum/maximum and skewness/kurtosis values of each log-spectrum.

2.4.2. Perceptual Linear Prediction (PLP)

The PLP method was first introduced to be used in speaker-independent auto-

matic speech recognition [38]. We proposed to use this method in lung sound acous-

tics to exploit person independent discriminatory spectral characteristics of the dis-

eases [10]. The method warps the spectra to minimize personal differences while hold-

ing the key features [39]. The feature set was extracted as follows: Input signal (x[n])
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was transformed into frequency domain using 256 point FFT;

X(w) =
N−1∑
n=0

x[n]w[n]e−j2π
k
N
n (2.10)

where k = 0, 1, · · · , N − 1 and x[n] is the lung sound segment. Lung sounds were

processed with 256 point Hamming window (w[n]) with 50% overlap. Since the sam-

pling frequency was 9600 Hz, 50% overlap guaranteed 10 ms shift to encode sudden

adventitious sound changes (i.e crackles). Frequency spectrum in Hz was transformed

into Bark scale by combining FFT bins into Bark bins, thus critical frequency grouping

was performed. After inverse FFT was computed, autoregressive parameters were esti-

mated by nth order all pole model solving Yule-Walker equations. In a recent work [40],

PLP method was used with the order of 13 while in our experiments the orders of 3 to

13 were tested.

2.4.3. Mel Frequency Cepstral Coefficients (MFCC)

MFCC was proposed in [41] and used for automatic speech and speaker recogni-

tion in literature. The idea behind the MFCC was to mimic human auditory system

using non-linear frequency scale called mel scale. Input lung sound (x[n]) was trans-

formed into frequency domain using the same formula given in Equation 2.10. The

power spectrum of each segment (P (w)) was calculated using P (w) = |X(w)|2. Mel

filter-bank is composed of M triangular filters (mel windows) which are converted from

Hz to mel scale using fmel(f) = 1125ln (1 + f/700). Mel filters are placed denser in low

frequency regions than high frequency regions. The logarithm of the energy in each mel

filter is computed by applying mel filter-bank to the power spectrum P (w). Finally,

discrete cosine transform is applied to M filter outputs to compute MFCC [41]. MFCC

does not provide temporal information since it is based on FT. The related works in

literature with MFCC method are [23, 25, 40] which used the orders of 5, 13 and 20

for MFCC coefficients, respectively. In this thesis, the orders of 3 to 13 and 20 were

experimented for MFCC to compare this method with the proposed method.
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2.4.4. Stockwell Transform (S Transform)

S transform was proposed in [42] which aimed to exploit the advantages of the

continuous wavelet transform (CWT) by combining FT features. In S transform, by

dilating and translating a scalable Gaussian window, finer time and frequency reso-

lution is achieved. S transform is a phase corrected version of CWT by multiplying

mother wavelet with a phase factor and gives Fourier spectrum by averaging over time.

S transform was proposed in [26] to classify lung sounds achieving favourable results.

Given x(t) lung sound episode, continuous version of S transform is written as

S(τ, f) =

∫ +∞

−∞
x(t)

|f |√
2π
e−

(τ−t)2f2
2 e−2πfitdt (2.11)

where the terms other than x(t) in the integral form the mother wavelet. The output

of the S transform in discrete form is a complex matrix and needs to be handled by

taking the absolute value. The drawback of this algorithm in our experiments was that

since the lung sounds may have variable duration, the extracted statistical features

(min., max., etc.) from output matrix also resulted in variable length features. This

condition violated the classifier input formation and forced us to do experiments for

fixed length (1024 points for each crackle, wheeze and normal samples) lung sounds to

compare with other methods. For wheeze and normal classes 1024-point-segments were

extracted randomly, for crackle class 1024-point-segments were extracted by centering

the crackle location without removing successive crackles as in the original data.

2.5. Calculation of Statistical Features

In order to feed into classifiers, Shannon entropy, standard deviation, energy,

maximum/minimum, mean and skewness/kurtosis values of each vector or matrix ob-

tained from feature extraction methods were calculated as follows;
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Mean(µ) =
1

N

N∑
1

xi (2.12)

Standard deviation(σ) =

(
1

N − 1

N∑
1

(xi − µ)2

) 1
2

(2.13)

Skewness(s) =
E(xi − µ)3

σ3
(2.14)

Kurtosis(k) =
E(xi − µ)4

σ4
(2.15)

Shannon entropy(Se) = −
∑
i

x2i log(x2i ) (2.16)

Energy(e) =
1

N

N∑
i

|xi|2 (2.17)

Max. (maximum) and min. (minimum) of outputs of each feature extraction

method were also used as additional features. Although eight features were calculated,

best six subset features are given in 2.9 Results section.
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2.6. Classification Methods

2.6.1. K Nearest Neighbour (k-NN)

k -NN is a non-parametric approach when the distribution of the data is unknown

[43]. It is based on the idea that given the training samples (y1···N) and their class

labels (i1···M) find the class label of the test sample (ix) among the k nearest data

points where M is the number of classes, N is the number of samples with N ≥ M .

Majority voting is employed to determine the most probable class label (ix);

ix = argmax
c

∑
(yi,i)

I(c == i) (2.18)

where c is one of the class labels, i is the label of the ith nearest samples in the

neighbourhood of test sample [44]. In practical cases, k is chosen an odd number to

overcome a tie condition. If k is chosen a small value it is much affected by noise,

however if k is chosen a big value the accuracy decreases since the samples far away

from the local region are taken into account. In the experiments, k values from 1 to

10 were employed with Euclidean and city block distance metrics.

2.6.2. Naive Bayes (NB)

Bayes’ rule is designed to estimate the class of the test sample (c) given the test

sample x using

p(c|x) =
p(c)p(x|c)
p(x)

(2.19)

If it is assumed that the input features are independent of each other given the

class label cj will result in Equation 2.20.
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p(x|c) = p(x1···N |cj) =
N∏
i=1

p(xi|cj) (2.20)

where N is the number of input features xi. This simplification decreases the compu-

tational load and diminishes the curse of dimensionality problem as the dimensionality

of features increase [45]. In conclusion, the Bayes’ rule aims to estimate the class label

(cj) by maximizing the p(cj)
∏N

i=1 p(xi|cj) posterior probability.

2.6.3. Decision Trees (DT)

DT is a non-parametric approach which is composed of nodes, branches and leafs.

Once the tree is trained using the training data, the same model and learned parameters

are used in the testing. Starting from the root (base of the tree) at each node a test

function is employed and after splitting, a branch is followed by test samples depending

on the result of testing. This procedure is finalized at the leafs and label of the test

sample is assigned by the trained leaf. The split for branching is based on the impurity

score of the node. At the root node starting with N samples, for node i, Ni is the

number of samples that reach node i. N c
i is the number of samples that reach node

i from class c and obtained using
∑

cN
c
i = Ni. Majority of the samples of the same

class determines the label of the samples at the leafs by choosing maximum of pci =
Nc
i

Ni

which is called probability of belonging to class c [43]. If all the samples belong to

same class at the leaf node pci is 1 and it can be stated that the leaf node is 100 %

pure. Impurity (I) can be measured either by entropy or Gini index

I(N) = −
K∑
c=1

pci log2p
c
i (2.21)
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or

I(N) =
1

2

(
1−

K∑
c=1

(pci)
2

)
(2.22)

where K is the number of classes [46]. Evaluation of the DT algorithm in the experi-

ments was done using various number of minimum leaf sample sizes and various type

node splitting algorithms, without pruning and restricting the tree growth.

2.6.4. Support Vector Machine (SVM)

SVM is a maximum margin and a kernelized classifier that aims to find optimal

separating hyperplane among training samples. If the problem is linearly separable,

f(x) being linear separating function passing through midpoint of the classes, testing

is done by looking at the sign of the function such that f(xtest) > 0 belongs to the class

i, or class j otherwise. When the problem is non-linear rather than fitting a non-linear

model, the problem is mapped to another space where linear separation is possible using

this kernel trick. The optimal separating hyperplane ensures the maximum accuracy

with better generalization choosing the maximum margin between closest members of

the classes to the hyperplane. SVM, not only provides best classification performance

on the training samples, but also maximizes the margin aims to leave as much space

as possible for better classification of testing data [44]. Once the maximum margin

hyperplane is determined, the SVM classifier aims to minimize [47] Equation 2.23 with

Lp =
1

2
‖~w‖ −

K∑
m=1

amym (~w ~xm + b) +
K∑
m=1

am (2.23)

respect to ~w (normal vector) and b and maximize with respect to am ≥ 0, where K is

the number of training samples, and am, m = 1, . . . , K, are Lagrange coefficients, ym

is the class label and ~xm is the data vector. Taking the derivative of Lp with respect

to am as zero, Lp is named as Lagrangian. The optimal hyperplane is constructed by
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the vectors w and the fixed term b.

For training and testing the classifier, LIBSVM [48] implementation was used with

radial basis and linear function kernels. Best kernel width (g) and cost (C) parameters

were determined using a grid search with various values.

2.6.5. Extreme Learning Machine (ELM)

Feed-forward neural networks have been used in literature extensively because

this algorithm is capable of non-linear mappings from direct inputs and provide robust

models for the data which is difficult to analyze using parametric methods [49]. How-

ever, this method suffers from slow training/learning speed and is prone to get stuck

in local minima due to gradient descent based learning algorithms. Back propagation

(BP) learning algorithm (used previously in the works [21], [22] and [24]) has some

disadvantages when employing gradient based learning: when learning rate is small

convergence is too slow and convergence to a local minimum and over-learning intro-

duce poor generalization performance. In order to alleviate these disadvantages a new

classification method called extreme learning machines (ELM) was proposed [49]. ELM

(used previously in [26]) is based on random assignment of input weights and hidden

node biases without the need for differentiable activation function and setting up the

output layer weights analytically through basic inverse matrix operations. ELM has

advantages such as having extremely fast learning, better generalization capability than

BP and straightforward convergence as compared to classical BP learning algorithms.

ELM is modelled using single layer feed forward neural networks with N hidden nodes

and an activation function (g(x));

N∑
i=1

βigi(xj) =
N∑
i=1

βigi(wixj + bi) = oj (2.24)

where j = 1, . . . , N , wi is the weight that links the ith hidden node with input nodes,

βi is the weight that links the ith hidden node with output nodes (oj), and bi is the ith
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hidden node threshold. In this thesis, sigmoid activation function (fsig = 1
1+e−x

) was

used and number of hidden neurons were chosen by trying a range of values among 1

to 500.

2.7. Ensemble Learning

Ensemble learning is the process which combines the opinions of multiple simpler

learning models for solving a particular problem with improved performance. It is seen

that various ensemble methods were successfully employed in literature with different

names such as ensemble of neural networks [50], mixture of experts [51], combination

of multiple classifiers [52], classifier fusion [53], classifier ensembles [54], etc. The main

reason behind using the ensemble learning is its ability to increase the generalization

performance of machine learning systems. It is known that the test set performance

of individual classifiers having similar training performances may change due to the

deficiencies in their generalization ability. In such instances, combining the predictions

of individual classifiers by majority voting method may minimize the risk of an unfor-

tunate choice of a weak performing model. Weighted majority voting can be chosen to

prevent a tie situation such as when classifier outputs result in 2-2-1 prediction (ie. two

of the classifiers predict wheeze/normal and one of the classifiers predicts crackle given

the test sample) for three classes in five individual classifier scenarios like in this thesis.

Therefore, in this thesis to increase the classification accuracy of proposed method,

weighted majority voting method was applied to a fused dataset consisting of the five

feature subsets (energy, entropy, standard deviation, kurtosis and minimum) having

highest individual average accuracy rates mentioned in 2.8 Results section. Therefore,

prior to weighted majority voting stage, a new dataset was created by concatenating

these individual feature subsets resulting in a fused dataset. In weighted majority vot-

ing, if an evidence exists that some individual classifiers are more eligible than others,

weighting the decisions of those eligible classifiers and then applying majority voting

may increase the overall accuracy of the ensemble system.

Assume that the decision of classifier ht on class wj is represented as dt,j, such

that dt,j is 1, if ht chooses wj and 0, otherwise. Additionally, suppose that the gen-
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eral classification accuracy of each classifier is known and weight wt to classifier ht in

proportion to its classification accuracy is set. By using this notation, the classifiers

whose predictions are combined through weighted majority voting [55] will select wJ

(class J), if

T∑
t=1

ωtdt,J =
C

max
j=1

T∑
t=1

ωtdt,j (2.25)

that is, if the total weighted vote collected by wj is greater than the total vote collected

by any other class. In this thesis the normalized weights (their sum is 1) were calculated

by using the following equation,

ωt =
at
T∑
t=1

at

(2.26)

where at is the general classification accuracy of classifier ht and T is the number of

individual classifiers.

2.8. Detailed Analysis of Proposed System

600 lung sound signal episodes consisting of 200 wheezes, 200 crackles and 200

normal sounds with variable duration (the duration of sample episodes varied between

80 and 200 ms assuring that each included at least one crackle or wheeze) were analysed

using high Q-factor RADWT to extract informative features. In doing so, we aimed

to use the distinctive spectral properties of normal signals, wheezes and crackles for

classification. As reported in literature, crackle signals having transient behaviour

and short duration, may show themselves in a wide frequency range (200-2000 Hz) in

spectrum [14,16]. Conversely, wheeze signals having oscillatory time domain behaviour,

show themselves in a narrower frequency range (100-1000 Hz) [13,15]. Additionally, the

wheeze, crackle and normal signals have opposite shape energy distributions; energy
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atoms of crackle signals spread over a wide frequency spectrum while wheeze signal

energy atoms exist in local and narrow frequency ranges. In the case of normal signals,

energy atoms exist over a wide frequency range like the crackles but at lower frequency

values (200-600 Hz). In our classification system, high Q-factor decomposition was

performed on all 600 lung sound episodes. p, q, and s values were set to 6, 7 and 5

respectively. The dilation factor was obtained as 1.17 and the redundancy was 1.40.

Various p, q, and s parameters were tested and the optimum combination was chosen

empirically after exhaustive trials. 30 levels of wavelet decomposition resulted in one

group of approximation and 30 groups of detail coefficients. Besides, the low Q-factor

analysis was also employed with the aim of emphasizing the difference between high and

low Q-factor analysis. p, q, and s values were set to 2, 3 and 2 respectively. The dilation

factor was obtained as 1.5 with a redundancy value of 1.5. These parameters resulted in

wavelet filters having low Q-factor and poor frequency selectivity. The decomposition

was employed for 8 levels resulting in one group of approximation and 8 groups of detail

coefficients. As seen in Figure 2.3, the typical frequency characteristics of pulmonary

signals (normal, wheeze and crackle) could not be differentiated sufficiently (parts

a, c and e) with the conventional low Q-factor analysis. By contrast, distinguishing

spectral properties of lung sounds could be emphasized clearly (parts b, d and f) when

the pulmonary sounds were decomposed with high Q-factor filters, as a result of the

better frequency selectivity property of high Q-factor wavelet bases. After employing

high Q-factor analysis, as discussed in the next section, energy, entropy, standard

deviation, kurtosis and minimum feature subsets were extracted from each sub-band.

These extracted features were fused at the feature level resulting in a row feature

vector for each sample. Then, all the fused features were trained and tested using

individual classifiers which could be listed as k -NN, NB, DT, SVM and ELM. In order

to exploit the discrimination ability of the proposed model, ensemble learning method

was applied to the outputs of individual classifiers. The individual classifier predictions

were combined using weighted majority voting in order to assign the final labels of

samples. Ensemble accuracies were computed and the testing was finalized in a leave-

one-out cross validation (LOOCV) scheme. The pictorial representation of the complete

proposed system can be viewed in Figure 2.4.
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Figure 2.3: Distribution of signal energy over sub-bands for low (a, c and e) and high

(b, d and f) Q-factor analysis for three classes.
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Figure 2.4: The design of the detailed proposed system with ensemble learning.

2.9. Results

The experiments were performed on a lung sound database with the aim of finding

optimal classifier and feature subset extraction method configuration. Consequently,

experiments using five different classifiers and six different feature extraction methods

were performed. Additionally, six different statistical feature subsets were calculated

from each feature extraction method such as energy, entropy, minimum, maximum,

standard deviation and kurtosis of raw features. The classification methods were used

in a LOOCV scheme and the results were shown in Tables 2.2 to 2.7. At each table the

individual crackle, wheeze, normal lung sound classification accuracies and the average

of overall accuracies were presented in percentage for different feature extraction meth-

ods. As illustrated in Table 2.7, the best average classification accuracy was obtained

using the proposed feature extraction method (High Q-factor) with 95.17 % when the



31

SVM was used as classifier and energy of each subband as feature subset. As seen in

Tables 2.5 and 2.7 the best individual classification performance for wheeze sound was

achieved by the proposed feature extraction method resulting in 98.00 % accuracy. On

the other hand, best crackle and normal sound classification accuracies were achieved

by the S transform as 96.00 % and 96.50 %, respectively. When the performance of

feature subsets, energy, entropy, minimum, maximum, standard deviation and kurtosis,

were considered, it is seen in Tables 2.2 to 2.7 that the best average accuracy values

were obtained with the energy feature subset in four of six feature extraction methods.

When the energy of each subband obtained from high Q-factor analysis was employed

as feature subset, the highest average accuracy was achieved. Conversely, the worst

average accuracy was achieved when the entropy subset features were obtained from

PSD. As seen in Tables 2.2 to 2.7, wavelet based methods performed better general ac-

curacy performances (95.00 % for S transform, 95.17 % for the proposed method) than

the Fourier Transform based algorithms highlighting their finer time-frequency resolu-

tion property. In Figure 2.5, best average accuracy of all feature extraction methods

were depicted. As shown in the left part of Figure 2.5a S transform and the proposed

feature extraction method present break even performances while PSD presenting the

worst performance. In the right part of Figure 2.5a, classification errors of all feature

subsets related with feature extraction methods are averaged and represented. It is

clear that the proposed high Q-factor method achieved the lowest error rate among all

feature extraction methods. In Figure 2.5b, average computation time for each feature

extraction method is presented. The experiments were carried out 100 times and the

average computation time of 100 trials was given.

As illustrated in Figure 2.5b, proposed high Q-factor feature extraction method

was superior to S transform in terms of computation time by alleviating redundant in-

formation of S transform and in terms of slightly better classification performance. Ad-

ditionally, high Q-factor approach showed better classification performance than low-

Q method solving the poor frequency resolution problem of traditional dyadic DWT.

Even though MFCC and PLP had lower computation times than the proposed method,

these methods showed poor classification performances as compared to high Q-factor

method. In each column-group of Figure 2.6, minimum (in this sense minimum means
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Table 2.2: Power spectral density (PSD) features correct classification rates (in %) for

five different classifiers using six different feature subsets.

XXXXXXXXXXXXType
Feature Energy Entropy Std

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 86.00 90.50 90.00 83.50 90.50 48.50 51.50 43.50 46.50 48.00 60.00 72.50 68.00 60.00 73.00
Wheeze 46.50 76.00 74.00 53.00 71.50 39.00 48.50 52.00 46.50 47.50 49.00 67.00 68.50 53.00 57.00
Normal 45.00 19.50 19.50 49.50 27.50 54.00 51.50 60.00 52.00 56.50 39.50 21.00 17.50 39.00 18.00
Average 59.17 62.00 61.17 62.00 63.17 47.17 50.50 51.83 48.33 50.67 49.50 53.50 51.33 50.67 49.33

XXXXXXXXXXXXType
Feature Min Max Kurtosis

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 68.50 76.00 75.50 65.50 77.50 81.00 82.00 84.00 82.00 84.00 67.50 71.00 76.50 61.00 71.00
Wheeze 42.00 39.50 56.50 41.50 49.00 61.00 73.00 77.00 56.50 67.50 63.50 47.00 50.50 67.00 48.50
Normal 43.00 56.00 40.50 46.00 44.50 48.00 62.00 48.00 53.50 64.50 45.50 70.50 61.00 44.00 70.00
Average 51.17 57.17 57.50 51.00 57.00 63.33 72.33 69.67 64.00 72.00 58.83 62.83 62.67 57.33 63.17

Table 2.3: Mel Frequency Cepstral Coefficient (MFCC) features correct classification

rates (in %) for five different classifiers using six different feature subsets.

XXXXXXXXXXXXType
Feature Energy Entropy Std

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 55.00 79.50 76.00 74.00 63.50 54.50 74.00 47.00 52.00 46.50 85.50 88.50 94.00 92.00 63.00
Wheeze 86.50 95.00 85.50 92.00 93.50 82.50 84.00 80.50 84.00 85.50 91.00 44.50 52.00 67.00 77.00
Normal 81.50 92.50 89.00 80.00 85.50 54.00 47.00 71.00 52.50 29.50 40.50 87.50 79.50 71.00 70.00
Average 74.33 89.00 83.50 82.00 80.83 63.67 68.33 66.17 62.83 53.83 72.33 73.50 75.17 76.67 70.00

XXXXXXXXXXXXType
Feature Min Max Kurtosis

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 88.00 89.50 92.00 81.50 91.00 75.00 75.00 80.50 78.00 77.50 32.50 42.50 32.00 48.00 36.00
Wheeze 93.50 87.00 78.50 85.00 83.00 87.00 77.50 78.50 78.00 78.50 76.00 78.00 71.50 62.50 74.00
Normal 92.50 92.50 93.00 83.50 93.50 87.00 87.50 89.00 84.50 91.50 57.50 68.50 69.50 47.00 41.50
Average 91.33 89.67 87.83 83.33 89.17 83.00 80.00 82.67 80.17 82.50 55.33 63.00 57.67 52.50 50.50

Table 2.4: Perceptual linear prediction (PLP) features correct classification rates (in

%) for five different classifiers using six different feature subsets.

XXXXXXXXXXXXType
Feature Energy Entropy Std

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 90.50 94.00 90.00 89.50 81.00 50.50 53.50 49.00 48.50 50.00 84.50 89.50 89.50 86.50 85.50
Wheeze 90.00 79.00 87.50 91.00 69.50 46.50 41.00 57.00 52.00 41.00 95.50 72.00 78.00 74.50 83.50
Normal 92.00 95.50 90.50 90.00 68.50 86.50 94.50 81.50 90.50 78.50 40.00 76.00 90.50 76.00 80.50
Average 90.83 89.50 89.33 90.17 73.00 61.17 63.00 62.50 63.67 56.50 73.33 79.17 86.00 79.00 83.17

XXXXXXXXXXXXType
Feature Min Max Kurtosis

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 75.50 92.50 90.00 87.00 89.00 71.50 87.00 89.50 75.00 82.00 53.00 59.50 54.00 42.00 47.00
Wheeze 92.00 86.00 86.00 83.50 90.50 91.00 87.50 85.50 78.00 84.50 79.00 81.00 57.00 79.50 68.50
Normal 74.00 89.50 94.00 91.00 90.00 77.00 89.00 94.00 84.50 84.00 36.50 47.50 83.00 40.50 41.00
Average 80.50 89.33 90.00 87.17 89.83 79.83 87.83 89.67 79.17 83.50 56.17 62.67 64.67 54.00 52.17
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Table 2.5: S-transform features correct classification rates (in %) for five different

classifiers using six different feature subsets.

XXXXXXXXXXXXType
Feature Energy Entropy Std

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 94.00 94.00 92.50 88.50 94.50 80.50 81.00 83.50 78.00 79.50 77.00 82.50 78.50 84.00 73.50
Wheeze 95.00 96.50 94.50 91.50 96.50 76.50 73.00 76.50 73.00 74.00 83.50 88.00 84.50 82.00 86.50
Normal 91.50 94.50 89.00 89.50 92.50 71.50 72.00 72.00 67.00 80.50 79.50 83.50 81.00 77.50 64.00
Average 93.50 95.00 92.00 89.83 94.50 76.17 75.33 77.33 72.67 78.00 80.00 84.67 81.33 81.17 74.67

XXXXXXXXXXXXType
Feature Min Max Kurtosis

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 96.00 89.50 75.00 81.00 72.50 87.00 81.00 58.00 80.00 72.50 76.50 79.00 78.50 74.50 78.50
Wheeze 91.00 95.00 89.50 82.00 95.00 83.00 88.50 75.00 86.50 89.50 77.00 78.50 77.00 76.50 79.50
Normal 92.00 96.50 73.50 80.50 65.00 86.50 90.00 74.00 88.00 74.00 73.50 72.50 71.50 76.50 74.00
Average 93.00 93.67 79.33 81.17 77.50 85.50 86.50 69.00 84.83 78.67 75.67 76.67 75.67 75.83 77.33

Table 2.6: Low Q-factor features correct classification rates (in %) for five different

classifiers using six different feature subsets.

XXXXXXXXXXXXType
Feature Energy Entropy Std

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 92.00 89.50 91.50 92.00 91.50 88.00 90.00 89.00 87.50 88.50 80.50 83.00 64.00 87.00 79.50
Wheeze 86.00 86.50 74.50 87.50 84.50 83.00 85.00 75.00 84.00 83.00 87.50 85.00 96.50 80.50 89.00
Normal 85.50 90.50 94.50 86.50 90.00 87.00 88.00 93.00 89.50 90.50 90.50 93.50 83.00 89.50 92.50
Average 87.83 88.83 86.83 88.67 88.67 86.00 87.67 85.67 87.00 87.33 86.17 87.17 81.17 85.67 87.00

XXXXXXXXXXXXType
Feature Min Max Kurtosis

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 85.00 84.50 70.00 79.50 83.00 72.00 75.50 62.50 73.00 76.00 73.50 86.00 80.00 82.50 81.00
Wheeze 73.50 81.00 79.00 74.50 82.50 82.50 87.00 86.00 77.00 83.00 60.50 61.00 43.50 64.00 58.50
Normal 76.00 83.50 75.50 75.00 81.00 72.50 79.50 71.00 65.50 78.50 76.00 74.00 91.00 72.00 79.50
Average 78.17 83.00 74.83 76.33 82.17 75.67 80.67 73.17 71.83 79.17 70.00 73.67 71.50 72.83 73.00

Table 2.7: High Q-factor features correct classification rates (in %) for five different

classifiers using six different feature subsets.

XXXXXXXXXXXXType
Feature Energy Entropy Std

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 92.50 95.00 82.50 84.50 89.50 91.00 92.00 90.00 82.50 90.00 92.00 91.50 82.50 85.50 93.00
Wheeze 96.50 97.00 97.00 93.50 94.00 95.00 98.00 97.00 88.00 95.50 96.00 96.50 98.00 91.00 66.00
Normal 91.50 93.50 96.00 89.50 82.50 89.00 89.50 91.50 82.50 85.50 93.00 95.00 89.00 83.00 85.50
Average 93.50 95.17 91.83 89.17 88.67 91.67 93.17 92.83 84.33 90.33 93.67 94.33 89.83 86.50 81.50

XXXXXXXXXXXXType
Feature Min Max Kurtosis

k-NN SVM NB DT ELM k-NN SVM NB DT ELM k-NN SVM NB DT ELM
Crackle 90.00 92.00 75.00 87.00 93.00 80.00 78.50 73.50 82.50 80.50 72.00 86.50 85.00 86.50 79.50
Wheeze 95.50 96.50 96.00 90.00 94.00 93.00 92.50 94.50 90.50 84.50 78.00 82.50 67.00 80.50 77.50
Normal 93.00 91.50 87.50 91.50 89.50 84.00 88.50 86.50 79.50 76.50 93.00 91.00 92.50 83.00 89.00
Average 92.83 93.33 86.17 89.50 92.17 85.67 86.50 84.83 84.17 80.50 81.00 86.67 81.50 83.33 82.00
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Figure 2.5: Best average accuracy (a-left), subset error (a-right) and computation

time (b) for the six different feature extraction methods.

the best individual general accuracies that are obtained for various classifiers, which

are used in error rate calculation) error rates achieved with the feature subsets are de-

picted. In each column-group, the performances of all experimented feature extraction

methods are also given. The rightmost yellow-bar in each column-group refers to the

mean of the average error rates obtained with the tested feature extraction methods

and indicates the average performance of relevant statistical feature subset. Addition-

ally, in the rightmost column-group of the figure (labelled as average of methods in

the x-axis), the mean average error rates of statistical feature subsets are shown and

this presents the average performance of feature extraction methods. As illustrated in

the yellow-bars of each feature subset column-group, the minimum average error rates

were obtained with minimum, maximum and energy feature-subsets while the highest

average error rates were obtained with kurtosis and entropy, respectively. As summa-

rized in the rightmost column-group of Figure 2.6, mean of average error rates for each

feature extraction method was minimum when the proposed high Q-factor method was

applied, and the S transform and the low Q-factor (dyadic wavelet) methods followed

the proposed method supporting the idea that wavelet based methods had finer time-

frequency resolution than Fourier transform based methods. PSD had highest error

rate for almost all feature subsets showing the poorest performance as seen in rightmost

column-group of the Figure 2.6. In Figures 2.7 to 2.9, classifier performances related
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to feature extraction methods for crackle, wheeze and normal lung sounds are given.

For all lung sound types, the minimum (in this sense minimum means the individual

crackle, wheeze or normal lung sound classification accuracies that are obtained for

various feature sub-sets and the highest of these sub-set related accuracies are used

in error rate calculation) error rates are given in the first five column-groups. For all

lung sound types, each one of these first five column-groups represents a classifier per-

formance. In the first five column-groups, the rightmost yellow bar presents the mean

value of error rates obtained with various feature extraction methods and this displays

the performance of the related classifier. Additionally, in the rightmost (sixth) column-

group of Figures 2.7 to 2.9 (labelled as Average of Methods in the x-axis), the mean

minimum error rates of feature extraction methods obtained with various classifiers are

given, and this illustrates the performance of feature extraction method for each lung

sound type. As depicted in Figures 2.7 to 2.9, when the average performance of each

classifier is considered, the best performances were achieved with SVM classifier while

the worst performances were achieved with DT classifier for the crackle, wheeze and

normal sound cases, respectively. As illustrated in rightmost column-group of Figure

2.7, when the mean of minimum error rates are considered, best performances were ob-

tained with the S transform, proposed high Q-factor method and low-Q method while

the worst performances were obtained with the PSD for crackles, respectively. As
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Figure 2.6: Minimum average error rate for six individual feature subsets of the six

different feature extraction methods.
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summarized in the rightmost column-group of Figure 2.8, when the mean of minimum

error rates are considered for wheezes, the best performances were obtained with the

proposed high Q-factor method, S transform and MFCC method while the worst per-

formances were obtained with the PSD, respectively. This shows the weakness of low-Q

method in localizing frequency characteristics of oscillatory waveforms (i.e wheezes).

As marked in the rightmost column-group of Figure 2.9, mean of error rates for normal

sounds were minimum for the proposed method and PLP method while the maximum

for PSD method, respectively. As depicted in the average of methods part of the clas-

sifiers axis in Figure 2.9, all the feature extraction methods except PSD were able to

model normal lung sounds with similar error rates. As shown in Figures 2.7 to 2.9,

SVM was the best classifier in terms of average error rates for all feature extraction

methods with ELM as the second best. To sum up, as depicted in Figures 2.5 and 2.7

to 2.9, proposed high Q-factor method had lower error rates and was able to track the

time-frequency behaviour of transient (crackle) and oscillatory (wheeze) waveforms.

Moreover, its computational load was less than the S transform (nearest competitor of

the proposed method) and approximately same with others.
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Figure 2.7: Minimum average crackle error rate for five individual classifiers of the six

feature extraction methods.
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Figure 2.8: Minimum average wheeze error rate for five individual classifiers of the six

feature extraction methods.

As depicted in Table 2.8, the complete algorithm of Figure 2.4 was run ten times to

produce generalizable results and 2.21 % improvement in accuracy showed the success

of the proposed system with ensemble learning. Moreover, best results were achieved

with least standard deviation for wheezes achieving an average accuracy of 99.05 %.

This shows the ability of the proposed system for localizing wheezes and highlighting

the difference between the spectral characteristics of normal lung sounds and crackles.
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Figure 2.9: Minimum average normal error rate for five individual classifiers of the six

different feature extraction methods.
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Table 2.8: Ensemble accuracy results (in %) for the proposed method

XXXXXXXXXXXXType
Iteration

1 2 3 4 5 6 7 8 9 10 Average Std

Crackle 95.50 95.50 95.50 96.00 94.50 96.00 95.50 95.00 96.00 95.50 95.50 0.45
Wheeze 99.50 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.00 99.05 0.15
Normal 97.00 97.50 98.00 98.00 97.50 97.50 97.50 97.50 97.50 98.00 97.60 0.30
Average 97.33 97.33 97.50 97.67 97.00 97.50 97.33 97.17 97.50 97.50 97.38 0.18

2.10. Discussion and Summary

A comprehensive experimental study was conducted using six feature extraction

methods and five classifiers. Six subset features were extracted from the raw features

and fed into the classifiers in order to compare the performances of feature extrac-

tion methods and classifiers. The proposed high Q-factor wavelet transform based

method performed well both in terms of classification accuracy and computational

time as compared to other methods. The proposed method was able localize the time-

frequency characteristics of both oscillatory and transient signals of interest however

low-Q method had limited frequency resolution especially in modelling oscillatory sig-

nals. S transform was the second powerful method in terms of accuracy, however,

it had some structural disadvantages such as having the highest computational load.

Additionally, S transform must be applied to fixed length signals (1024 point in our

case) to obtain the same number of features that will be used in classifiers while the

proposed method can be applied to variable length signals. PSD had the lowest accu-

racies for almost all of the cases as seen in Figures 2.5 and 2.7 to 2.9. PSD is a Fourier

based method and therefore, its output is not a matrix but a vector having no time

information. Therefore, using the subset features (minimum, maximum, etc.) in clas-

sification decreases its performance. As a solution raw features were fed into classifiers

to observe the performance. The raw feature classification results (classification accu-

racy for crackle was 88.5 %, for normal was 92 %, for wheeze was 82.5 % and average

accuracy was 87.67 %) were better than its subset form but still poorer as compared

to other methods. One can argue that, classical Fourier transform (FT), since it does

not contain time information, is not adequate to cope with this problem. MFCC and
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PLP are windowed Fourier based methods that are able to alleviate the drawback of

FT. However, these methods have fixed time-frequency resolution that results in an

improved accuracy up to a certain extent as compared to wavelet based methods. On

the other hand, the proposed method has the ability to tune its wavelet bases aiming

at localizing TF (time frequency) characteristics of wheeze, crackle and normal lung

sounds and as a result shows finer time-frequency resolution and higher accuracy per-

formance than the Fourier based methods. Moreover, the proposed method is 18 times

faster than its nearest competitor (S transform) in terms of computational load.

As a robust classifier, SVM has also served as a powerful classifier in this thesis

with ELM. However, ELM has an important disadvantage: it needs to be randomly

initialized at each new trial and this randomness results in non-robust predictions when

compared with robust predictions of SVM. NB and k -NN classifiers, which have shown

even better performances in some cases, are less robust than SVM and ELM in the

overall performance.

Detection of crackle and wheeze sounds within a breath cycle significantly plays

a vital role in differential diagnosis [16, 18, 56]. When a localized wheeze is missed,

this results in misdiagnosis of asthma and accompanied by mistreatment and dense

hospital visits [15]. Moreover, asbestosis and idiopathic pulmonary fibrosis can be

detected earlier than when radiological findings become apparent using computerized

analysis of pulmonary sounds. The beginning of pneumonia, crackles are observed in

mid inspiration phase; however, in the recovery period crackles appear at end inspi-

ration phase of the breath cycle [15]. The proposed system is a robust candidate to

discriminate abnormalities within a breath cycle, in order to be employed in differ-

ential pulmonary disease diagnosis systems, more successfully and faster than related

methods in literature.
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3. RESPIRATORY SOUND DECOMPOSITION AND

DETECTION

3.1. Introduction

Although stethoscope is a vital instrument in the medical diagnosis, it does not

transmit the whole frequency content to the expert since it attenuates frequencies above

120 Hz [11]. To minimize disadvantages of the subjective auscultation via stethoscope,

computerized analysis of lung sounds (LSs) has become an emerging area in the in-

terdisciplinary cooperation between engineering and medicine. LS are believed to be

produced by the turbulent flow in the lung airways, despite the fact that the explicit

setup of lung sound production is unidentified [57]. Lung sounds (LS) can be catego-

rized into two classes, vesicular (normal) sounds and adventitious (abnormal) sounds.

Vesicular sounds can be defined as the normal breath noise heard over the chest wall

and synchronous with air flow in the airways. In healthy people, the frequency range of

normal lung sounds is 200-600 Hz. Adventitious lung sounds (ALS) are superimposed

on vesicular sounds and are typical indicators of various pulmonary diseases. ALS are

divided into two main categories such as continuous adventitious lung sounds (CALS)

and discontinuous adventitious lung sounds (DALS). The most studied components

of the CALS are the wheezes and of the DALS are the crackles in literature. Crack-

les are non-musical sudden bursts and are explosive in nature. Crackles are classified

as coarse (lower pitch) or fine (higher pitch). Crackles are believed to be generated

by abnormally closed airway openings [16]. The time span of crackles is usually less

than 20 ms and their spectrum has 200 to 2000 Hz frequency range. The number of

crackles per breath is related to the severity of the disorder, and the timing, duration

and types of crackles in a breath cycle may be different in various lung disorders [16].

For example, coarse crackles exist in bronchopneumonia and bronchiectasis whereas

fine crackles are common symptoms of interstitial fibrosis and pneumonia [17]. On

the other hand, wheezes are musical waveforms with duration of more than 80-250 ms

and they exhibit distinct peaks in the frequency domain (> 100 Hz). The presence of
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wheezes usually indicates a pulmonary disorder such as asthma (AS) and chronic ob-

structive pulmonary disease (COPD). According to [18] and [19] wheeze characteristics

such as pitch frequency and duration are related to the degree of airway obstruction.

Stemmed from time-varying characteristics of lung tissue and chest wall, most lung

sound signals are non-stationary in character, independent from time scale and time

frequency analysis domain. This is valid for adventitious lung sound types, especially

crackles. Most of the time, adventitious lung sounds have high-frequency components

very tight in time domain, low-frequency components very tight in frequency domain

which are superimposed on low frequency vesicular sounds. Hence a suitable analysis

method for detecting them should supply information about good frequency resolution

along with good time resolution, the first to localize the low frequency entities, and

the second to resolve the high frequency entities. Therefore classical Fourier transform

(FT), which assumes that the analyzed signal is stationary and does not contain any

time information, is not appropriate to analyze most of the biomedical signals. Short

Time FT (or windowed FT) partially overcomes the drawback of FT by considering

an analysis window that has fixed time-frequency resolution. However, presenting a

time-scale description of signals wavelet transform has finer frequency resolution at low

frequencies, but also has finer time resolution at high frequencies [58].

In order to automatically analyze pulmonary diseases using computerized sys-

tems, proper detection of crackles and wheezes is very important. Wheezes and crackles

are superimposed on normal lung sounds, either during inspiration or expiration, and

they represent varying duration, intensity and frequency content as stated above. To

isolate fine crackles from vesicular sounds, stationary-nonstationary separating filter

(ST-NST) is proposed in [59]. In [60], so as to isolate crackles from vesicular sounds,

a modified version of ST-NST filter is used. In [17], using DWT, the crackle detec-

tion performance outperforms ST-NST filter based detectors. For crackle detection

case, an Empirical Mode Decomposition (EMD) based method is used to highlight

crackle information within vesicular sounds in [61] but it is limited due to mere vi-

sual validation. In another study in [62], EMD is employed to denoise explosive lung

sounds (i.e. crackles). In the study of [63], various Independent Component Analysis

(ICA) algorithms are compared with the aim of isolating discontinuous adventitious



42

lung sounds from vesicular lung sounds. Due to their non-stationary characteristics for

both crackle and wheeze signals, wavelet transform based signal processing methods

were also used in [17, 31, 64–67]. For crackle detection the wavelet transform based

stationary-nonstationary filter (WTST-NST) is proposed in [64] and gives better per-

formance than ST-NST based filters with a computational burden. In [65], a wavelet

based crackle detection system is realized in digital signal processor to quantify crackles

in pulmonary sounds. In [66], wavelet packet transform based filter (WPST-NST) is

proposed to separate crackles in a more accurate and faster way than previous WTST-

NST based filters. In [67], continuous wavelet transform (CWT) is proposed to separate

wheezes from background lung sound using scalogram. A more robust and improved

wheeze type classification system is proposed in [31] and proposed wavelet based bico-

herence features showed statistically significant results in different lung disorders such

as asthma and COPD. As noticed, ST-NST ( [59, 60]), WTST-NST [64] and WPST-

NST [66] based crackle separation systems are incapable of separating wheezes from

background sound since both of the sounds are stationary as compared to crackles. On

the other hand, CWT [67], and bicoherence based wavelet system [31] just deal with

wheeze sounds disregarding crackles whereas the two phenomenon may exist succes-

sively [68]. To construct automatic systems for crackle and wheeze signals detection

which are significant indicators of pulmonary diseases, limited extent discrete wavelet

based methods were proposed separately in literature. In all of these methods, the

wavelet transforms with constant low Q-factor filters, which have limited frequency

resolution, have been used. However, when we look at the morphological properties

of wheezes and crackles, we see that they show opposite time behaviors. Crackles are

sudden bursts and explosive in nature and can be classified as low Q-factor signals; on

the other hand wheezes are sinusoidal like waveforms which can be classified as high Q-

factor signals. Therefore, by using Morphological Component Analysis (MCA) based

resonance signal decomposition and tunable Q-factor wavelet transform (TQWT) [69],

we planned to decompose lung sound into low Q-factor signals (crackles), high Q-factor

signals (wheezes) and residual (vesicular) signals simultaneously. In our method, by

employing wavelets with properly tuned Q-factors, optimum representations for signal

of interest are obtained resulting in denoised versions of crackle and wheeze candidate
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channel signals.

3.2. Data Acquisition System and Dataset

The dataset used in this thesis is recorded by the 14-channel data acquisition

system designed in Boğaziçi University Lung Acoustics Laboratory (BU-LAL). For

detailed information about the system, please refer to [30]. The data acquisition system

is made up of 14 air-coupled electret microphones (SONY ECM-44 BPT) attached on

the posterior chest wall, an analog amplifier filter unit with a pass band of 80 to 4000

Hz and a gain of 100, a Fleisch type pneumotachograph (Validyne CD379) to measure

the flow rate simultaneously for synchronization. The sampling rate is 9600 samples

per second and each data acquisition session lasts 15 seconds. An informed consent is

taken from all the subjects before recording. The data acquisition procedure of this

thesis has been approved by the Second Ethical Committee on Clinical Research of

Istanbul (which is in compliance with the Declaration of Helsinki).

To evaluate the proposed method the CALSs and DALSs which are found in

COPD and Asthma patients are used. By visually inspecting the time expanded wave-

forms together with auditory verification, an expert labelled the wheeze and crackle

locations.

3.3. Generation of Simulated Adventitious Sounds

In order to test the performance of the proposed method several synthetic wheezes

and crackles are generated. Synthetic crackles are generated using the mathematical

equation proposed in [70] as follows

y(t) = sin(4πtα) where α =
log(0.25)

log(t0)
(3.1)

and y(t) possessing two cycles and its first positive t-intercept at t0. A modulating

function, m(t), is applied to shift the power of y(t) to the beginning of the waveform
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as follows

m(t) = 0.5
{

1 + cos
[
2π(t0.5 − 0.5)

]}
(3.2)

multiplying m(t) and y(t). Synthetic wheezes are generated using the mathematical

equation proposed in [71] as follows

c1,k(t) = sin [2πfc(k)t+ 0.6sin(2π15t)] (3.3)

c2,k(t) = sin
[
2πfc(k)t+ 2πµ(k)t2

]
(3.4)

where c1,k(t) is a monophonic wheeze which slightly varies in a frequency range and

c2,k(t) is a monophonic wheeze with frequency sweeping linear frequency modulated

signal, fc is the center frequency, µ(k) is the slope and t is the duration of the signal.

3.4. Decomposition Methods

3.4.1. Proposed Resonance Based Decomposition

Tunable Q-factor Wavelet Transform (TQWT) method depends on two param-

eters: Q-factor and r (over-sampling rate) [69]. The parameter r is a measure of

overlapping degree between successive band-pass filters [72]. Increasing r enough, will

yield approximately fully-discrete version of CWT. After the determination of the op-

timal Q-factor, resonance based decomposition of given lung sound data into candidate

crackle waveform, candidate wheeze waveform and candidate residual waveform (back-

ground sound) is explored using MCA based TQWT method.

Oscillatory components (wheezes) and transient components (crackles) may con-

tain both low and high frequencies such that linear time invariant (LTI) filters are not

able to handle this problem since the decomposition is not frequency based. Addi-
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tionally unlike linear filtering (frequency based decomposition), neither low nor high

resonance components obey the superposition rule turning the decomposition problem

into non-linear case which is exactly supported by MCA. Assume y = x1 + x2 + n,

where y is the observed lung sound component, x1 is the oscillatory waveform, x2 is

the transient waveform and n is the background vesicular (residual) sound. By using

both low and high Q-factor TQWT and MCA it is expected to decompose y signal into

three sub-bands by exploiting the tunable wavelets and resonance based non-linear de-

composition, respectively. Sparse representation of x1 and x2 can be found in Ψ1 and

Ψ2 transformation matrices. Given y, at first sparse w1 and w2 coefficient vectors must

be found which meet the requirement y = Ψ∗1w1 +Ψ∗2w2. Using basis pursuit approach,

the sparse w1 and w2 coefficient vectors can be determined by l1 norm minimization.

The problem can be defined as minimization of an objective function U ;

U(w1, w2) = ‖y −Ψ∗1w1 −Ψ∗2w2‖2 + λ1 ‖w1‖1 + λ2 ‖w2‖1 (3.5)

with respect to coefficient vectors w1 and w2. ‖y −Ψ∗1w1 −Ψ∗2w2‖2 term is the energy

of the residual (vesicular) sound. Estimation of the x1 and x2 is as follows x̂1 = Ψ∗1w1

and x̂2 = Ψ∗2w2, respectively. λi is the weighting parameter which sets the energy of the

resonance terms. The optimization problem can be solved using the Split Augmented

Lagrangian Shrinkage Algorithm (SALSA) [73]. Once the decomposition is employed,

the critical step is the selection of the suitable threshold level to localize or at the worst

case detect candidate abnormality waveforms. It is important to determine a threshold

independent from the band on which it will be applied. We propose to use adaptive

threshold determination by using decomposed vesicular channel n̂ = y − x̂1 − x̂2.

Median absolute deviation (MAD) [74] measures the residual standard deviation (σres)

in wavelet coefficients and/or residual channel samples by ensuring the independency

of the threshold from the crackle (transient) channel using σres = median(|n̂| /0.6745).

As a second choice, Teager energy operator T ;

T (x̂2) = x̂2(k)2 − x̂2(k + 1)× x̂2(k − 1) (3.6)
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is used to determine crackle locations [17] from transient channel (x̂2) by amplifying

the signal components having sharp changes while suppressing background activity.

3.4.2. Empirical Mode Decomposition (EMD)

EMD is an adaptive, complete and orthogonal technique that is able to decompose

nonlinear and nonstationary components directly using the data itself [75]. Intrinsic

mode functions (IMFs), which are oscillating waveforms obtained after a sifting process,

constitute the data using local time scale characteristics [75].

Two requirements must be satisfied when IMFs are employed [75]: Firstly, in the

entire dataset, the number of zero crossings must be equal (at most by one difference)

to the number of extrema. Secondly, mean of the envelopes derived from local maxima

and minima is zero at any part of the data.

After the sifting process, original data x(t) is presented using linear combinations

of IMFs as below [75]:

x(t) =
N∑
i=1

IMFi + n(t) (3.7)

where N is the number of overall IMFs and n(t) is the residual constant data.

EMD is an iterative method that original data can be recovered/denoised by sum-

ming the related IMF components. The first IMF is the highest oscillatory component

extracted from data, namely, IMFs are computed by decreasing frequencies [75].

EMD in lung sound literature is employed to decompose crackle sounds from the

background vesicular sounds [61, 62]. This method has two drawbacks, namely, end

effect and mode mixing effect. End effect generates distortions at the boundaries of

the IMFs leading to false oscillations. Mode mixing effect is stemmed from the fact
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that each IMF has its own frequency, however crackles and wheezes may have both low

and high frequency components. The mode mixing effect causes to decompose some of

the components of the crackles and wheezes to another IMF channels which resulted

in poor decomposition ability.

3.4.3. Independent Component Analysis (ICA)

Assume,

y1 = a11x1 + a12x2 + a13x3 (3.8)

y2 = a21x1 + a22x2 + a23x3 (3.9)

y3 = a31x1 + a32x2 + a33x3 (3.10)

where y is the observed lung sound component, x1 is the oscillatory waveform, x2 is

the transient waveform, x3 is the background vesicular (residual) sound and aij is the

random mixing coefficients.

The above mentioned ICA model can be rewritten as follows;

y = Ax (3.11)

where x is the random vector of statistically independent, unknown sources that have

non-Gaussian distribution, A is the unknown random mixing matrix and y is the ob-

served random vector.

The aim of ICA model is to estimate unknown sources x using their linearly mixed

measurements y. After the estimation of unknown A, its inverse, W is estimated by

x = Wy resulting in estimates of independent components (ICs), unknown sources

x [76].
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Centering and whitening are the two necessary preprocessing steps in ICA algo-

rithms. Centering means subtracting the mean of the observed data and whitening

aims to decorrelate the components of the observed data and to make their variances

equal unity.

In this thesis, employed ICA model is linear. According to related work [63],

source numbers are assumed to be equal to sensor numbers and mixing is assumed to

be linear. Fast ICA estimates independent sources by maximizing negentropy contrast

function employing fixed point iterative algorithm [76,77]. Extended Infomax ICA es-

timates super- and sub-Gaussian sources by maximizing the entropy and using natural

gradient optimization algorithm [78]. ICA has two drawbacks, sign or polarity of the

waveform and order of the estimated components may change.

3.5. Experimental Setup

Experiments are conducted in three scenarios. At first, using Equations 3.1−3.4,

synthetic adventitious sounds are generated, and then additive white Gaussian noise

(AWGN) is injected as vesicular sound for various (8 − 14) dB levels. This scenario

is called Method 1 in Tables 3.1, 3.2, 3.3, 3.4. In the second scenario, the generated

synthetic sounds are added onto inspiratory vesicular sounds which are obtained from

healthy subjects for various (0 − 6) dB levels which are compatible with [61]. This

scenario is called Method 2 in Tables 3.1, 3.2, 3.3, 3.4. The variety of the synthetic

adventitious sounds is provided by using different frequencies and amplitudes for combi-

nation of wheezes and different types (coarse or fine) and amplitudes for combination

of crackles. It is ensured that mono or polyphonic and coarse and/or fine types of

synthetic signals are included in the generated database. More than one synthetic

monophonic wheezes with different amplitudes are added together to generate poly-

phonic wheezes. In order to prevent suppression of crackles by generated wheezes, only

crackles are considered as signal and inspiratory vesicular sound as noise to set signal-

to-noise ratio (SNR). In total 88 wheezes and 352 crackles are generated and used

in the experiments. After that, by using the generated crackle locations as ground

truth, two threshold based algorithms which are MAD and Teager energy operator are
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compared with each other automatically, respectively. In the third scenario, proposed

system is experimented on the real data from asthma and COPD patients to see its

viability. Crackles are sharp bursts and explosive in nature and can be seen as low

Q-factor signals; on the other hand wheezes are sinusoidal like waveforms which can

be seen as high Q-factor signals. In decomposition, for the candidate crackle contain-

ing channel, Q-factor, r and decomposition level are chosen as 1, 3 and 10 while for

candidate wheeze containing channel they are chosen as 4, 3, and 30, respectively after

various trials.

The threshold is determined in an adaptive manner using the residual channel

information which is independent from the transient (crackle) channel. In an automated

way, the candidate crackle locations in transient channel are determined by comparing

peaks which exceed threshold level using the generated signal locations as ground truth.

In the ICA part, the same above mentioned workflow is followed. The only

modification is, to decompose a given lung sound segment into three channels, three

measurements are needed. More clearly, unlike TQWT and MCA based decomposi-

tion, three linearly mixed measurements are given to the ICA algorithms. Fast ICA

( [76, 77]) and extended Infomax ICA ( [78, 79]) algorithms are employed to decom-

pose measurements into estimated sources. The measurements are preprocessed using

centering and whitening approaches before estimating independent components (ICs).

Fast ICA algorithm needs the number of ICs to be estimated as an input parameter

and uses symmetric decorrelation approach and non-quadratic function G(u) = u3 [63].

Extended Infomax ICA assumes sub- and super-Gaussian distributions to model mixed

measurements [78] and converges using gradient based algorithms. As compared to Fast

ICA, extended Infomax ICA has input parameters to tune for decomposition problem

such as learning rate, block size, number of iterations and step size. As a result,

extended Infomax ICA is more parametric and complicated than fast ICA needing

optimization of parameters.

In the EMD part, original EMD algorithm ( [75]) is employed. Each decomposi-

tion is validated visually. In order to alleviate drawbacks of the EMD, end-effect-seen
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parts are discarded from the IMFs and successive IMFs are averaged to reduce mode

mixing effect. Individual and averaged successive IMFs are both experimented to rep-

resent the decomposition ability of the EMD with and without end-effect-seen parts.

Best experimental results are reported in 3.6 Results section.

3.6. Results

The experiments using MAD and Teager threshold methods are represented in

Tables 3.1, 3.2, 3.3, 3.4 for proposed TQWT-MCA, fast ICA, extended Infomax ICA

and EMD based decompositions, respectively. FN is the term for false negative, namely

miss rate, FP is the term for false positive namely false alarm. As shown in Tables

3.1, 3.2, 3.3, 3.4, in Method 1 (Adding AWGN as noise), MAD significantly performs

better than Teager operator for both rates. Moreover, 8 dB true positive (TP) rate for

MAD is 89.5 % while for Teager 75.6 % besides resulting in more false alarms as can

be seen in Method 1 in Table 3.1. MAD in Method 2 (Healthy vesicular as noise) also

shows similar performance resulting in lower false alarm and miss rates than Teager as

represented in Tables 3.1, 3.2, 3.3, 3.4.

Table 3.1: Localization results of synthetic crackles using MAD and Teager methods

for various SNR dB values of AWGN (Method 1) and healthy vesicular (Method 2)

sounds as noise using proposed TQWT-MCA method.

Method 1 Method 2

Threshold
PPPPPPPPPRate

dB
8 10 12 14 0 2 4 6

MAD
FN 37 28 8 3 5 2 1 0
FP 8 3 1 0 11 7 4 3

Teager
FN 86 61 29 32 26 14 5 1
FP 114 45 27 13 48 25 14 16

As represented in Tables 3.1, 3.2, 3.3, 3.4, proposed system has superior crackle

(transient adventitious sounds) localization performance than fast ICA, extended In-

fomax ICA and EMD methods in the presence of wheezes (continuous adventitious

sounds). Besides, 8 dB true positive (TP) rate for MAD is 89.5 % using Method 1 and

98.6 % using Method 2 in Table 3.1 while its (proposed method) nearest competitor
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EMD method has 87.8 % TP rate for MAD using Method 1 and 94.0 % TP rate for

MAD using Method 2 resulting in more false positives as represented in Table 3.4.

Extended Infomax ICA and Fast ICA performed 86.1 and 83.8 % TP rate for MAD

using Method 1 and 92.1 and 90.1 % TP rate for MAD using Method 2 resulting in

more false positives as represented in Tables 3.2, 3.3, respectively.

Table 3.2: Localization results of synthetic crackles using MAD and Teager methods

for various dB values of AWGN (Method 1) and healthy vesicular (Method 2) sounds

as noise using fast ICA method.

Method 1 Method 2

Threshold
PPPPPPPPPRate

dB
8 10 12 14 0 2 4 6

MAD
FN 57 37 26 20 35 23 14 8
FP 69 45 33 28 63 35 22 12

Teager
FN 93 67 41 37 57 42 27 14
FP 127 78 51 42 120 75 43 38

Table 3.3: Localization results of synthetic crackles using MAD and Teager methods

for various SNR dB values of AWGN (Method 1) and healthy vesicular (Method 2)

sounds as noise using Infomax ICA method.

Method 1 Method 2

Threshold
PPPPPPPPPRate

dB
8 10 12 14 0 2 4 6

MAD
FN 49 31 16 11 28 17 9 5
FP 62 35 19 10 51 29 16 11

Teager
FN 84 59 36 34 49 39 23 13
FP 119 56 43 27 111 71 38 27

Sensitivity and precision rates are calculated to compare the performance of the

proposed method with related methods in literature. Sensitivity, namely recall rate

is defined as follows; Sensitivity = TP/(TP + FN). Additionally, precision rate is

defined as follows; Precision = TP/(TP + FP ).

Since MAD performs better than Teager method in all cases, in order to represent

precision and sensitivity rates clearly, only MAD results are depicted in Figures 3.1,
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Table 3.4: Localization results of synthetic crackles using MAD and Teager methods

for various SNR dB values of AWGN (Method 1) and healthy vesicular (Method 2)

sounds as noise using EMD method.

Method 1 Method 2

Threshold
PPPPPPPPPRate

dB
8 10 12 14 0 2 4 6

MAD
FN 43 29 12 7 21 11 7 3
FP 51 30 17 9 37 23 13 8

Teager
FN 87 62 27 28 35 24 14 9
FP 118 49 36 29 67 43 31 23

3.2, 3.3 and 3.4. In Figures 3.1 and 3.2, the sensitivity rates of four decomposition

methods vs. various SNR dB levels are depicted. As can be seen in Figures 3.1 and

3.2, proposed system performs better crackle localization performance then the ICA

and EMD methods with increasing noise (at low SNRs) where EMD performs the

second best sensitivity rate in the presence of wheezes. As depicted in Figure 3.2,

sensitivity rate of the proposed system is more stable than other methods showing the

robustness to high noise. The same stability can not be seen in Figure 3.1, because

AWGN distorts the waveform of the lung sounds randomly at every frequency value

where the power of the healthy vesicular generally concentrate on 200-600 Hz. low

frequency range.
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Figure 3.1: Sensitivity rates of four decomposition methods for Method 1
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Figure 3.2: Sensitivity rates of four decomposition methods for Method 2
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Figure 3.3: Precision rates of four decomposition methods for Method 1

In Figures 3.3 and 3.4, the precision rates of four decomposition methods vs.

various SNR dB levels are represented. As can be seen in Figures 3.3 and 3.4, proposed

system performs better precision rate performance then the ICA and EMD methods

with increasing noise (at low SNRs). Moreover, in Figures 3.3 and 3.4, it is represented

that the range of precision rate difference between the proposed method and the other

methods is increasing with decreasing SNR dB level (high noise) showing less false
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positive (FP) generation ability of the proposed method.
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Figure 3.4: Precision rates of four decomposition methods for Method 2

Figure 3.5: Generated sounds added onto vesicular sound of healthy subject at -1.6

dB SNR, lower two sub-figures represent the localization of crackles for Teager and

MAD methods using extended Infomax ICA method, respectively.
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These results are probably stemmed from the fact that proposed resonance based

system introduces neither linear nor frequency based filtering. Unlike ICA which as-

sumes linear mixtures, chest wall and lungs generate convolved nonlinear mixtures

whose solution is provided by proposed nonlinear resonance based decomposition tech-

nique. When the pictorial representation of extended Infomax ICA decomposition

results are inspected in Figure 3.5, it is seen that since either crackles or wheezes

have both low and high frequency components, estimated Infomax ICA components

could not be able to decompose low frequency components of crackles and wheezes

into different channels which is achieved by proposed technique. In Figure 3.6, EMD

decomposition result on synthetic adventitious sounds added onto vesicular sounds is

depicted. When one compare the same results of Infomax ICA in Figure 3.5, it can be

concluded that EMD distorts the crackle waveforms more than Infomax ICA and this

produces higher RMS error.

Figure 3.6: Generated sounds added onto vesicular sound of healthy subject at -2.4

dB SNR, lower two sub-figures represent the localization of crackles for Teager and

MAD methods using EMD method, respectively.
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In Figure 3.7, the performances of MAD and Teager for a low SNR (−2.4 dB) are

depicted using proposed method. One can conclude that the lower amplitude middle

crackle in Figure 3.7, vanishes and using only time expanded waveform analysis it

would be difficult to analyse crackles under low SNR.

Figure 3.7: Generated sounds added onto vesicular sound of healthy subject at -2.4

dB SNR, lower two sub-figures represent the localization of crackles for Teager and

MAD methods using proposed method, respectively.

It can be concluded that the proposed method is able to localize crackles without

generating false positives as extended Infomax ICA and without distorting the crackle

waveform as EMD methods.

In Figure 3.8, the problem is harder since wheeze and crackle data overlap and

the data is collected from a real COPD patient. By looking at Figure 3.8, it can be

concluded that resonance based signal decomposition method performs successfully in

the real scenario case. However, in Figure 3.9 the decomposition result of ICA method

performed poorly, as noticed there are false alarms for crackles and the algorithm misses

the crackles at the end of the segment (between 0.3 and 0.35 s) and just before 0.25 s.
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Figure 3.8: Proposed resonance based decomposition result for real patient data with

crackles overlapped with wheeze. Crackle locations are determined using MAD

method and validated visually.

Figure 3.9: Infomax ICA based decomposition result for real patient data with

crackles overlapped with wheeze. Crackle locations are determined using MAD

method and validated visually.

In Figure 3.10, EMD decomposition result for real COPD patient is depicted. It

can be concluded by looking at Figure 3.8 that EMD missed the crackles around 0.05

and 0.25 s and produced one false alarm around 0.3 s which shows the drawback of
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the algorithm stemmed from frequency based filtering. It can be seen in Figure 3.11

that since EMD is a frequency based filtering method, its IMFs are varied from high to

low frequency oscillating waveforms. In order to recover candidate crackle and wheeze

channels, several IMFs are averaged together (as seen in Figure 3.10) or employed

separately (as seen in Figure 3.11) and best representing waveform is selected after

various experimental crackle localization trials.
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Figure 3.10: EMD based decomposition result for real patient data with crackles

overlapped with wheeze. Crackle locations are determined using MAD method and

validated visually.

It is seen that by averaging IMFs, candidate crackles and wheezes are better re-

covered than separate IMFs. Moreover, even when several IMFs are averaged together,

the waveform of the crackle is distorted in case EMD is employed. Several crackle pa-

rameters (2 CD, LDW) are extracted from time domain crackle waveform which is a

very critical step in diagnostic classification may severely be affected by this distortion.
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Figure 3.11: Full decomposition result of data from patient using EMD

Root Mean Square Error (RMSE) for proposed TQWT-MCA, ICA and EMD

methods is computed to represent the decomposition ability of the methods and to

represent the amount of distortion as an objective metric. Ground truth crackle chan-

nels are subtracted from estimated crackle channels to represent decomposition ability

of the methods when computing RMSE. In Figure 3.12, total RMS errors for decom-

position methods are depicted for various noise levels (Method 1 - AWGN). As seen,

proposed method achieved the minimum total RMS error under AWGN. In Figure

3.13, total RMS errors for decomposition methods is depicted for various noise lev-

els (Method 2 - Healthy vesicular as noise). As seen, proposed method achieved the

minimum total RMS error for Method 2. In Figures 3.12, 3.13 it can be pointed out

that RMS error of proposed method is lower when Method 2 is used, because when

Method 1 is used, noise is injected randomly at every frequency range unlike low fre-

quency vesicular sound addition in Method 1. Thus, proposed algorithm has difficulty

in decomposing AWGN as compared to vesicular sound. As represented in Figure 3.12
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while both EMD and Infomax ICA methods showed break even performance under

AWGN, in Figure 3.13 Infomax ICA showed better performance than EMD in terms

of total RMS error.
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Figure 3.12: Total RMS errors of four decomposition methods for Method 1

As represented in Figures 3.1, 3.2, 3.3 and 3.4, EMD has better sensitivity and

precision rates than ICA based methods, however, as shown in Figures 3.12 and 3.13,

EMD has poorer RMSE performance as compared to Infomax ICA. One reason for

this is since EMD is a frequency based decomposition method some of the frequency

components of the crackles are decomposed into another channels and the waveform of

the crackle is severely distorted resulting in higher RMS error as compared to Infomax

ICA method. Since wheeze and crackle sounds have both high and low frequency

components and the mixture is non-linear, neither Infomax ICA nor Fast ICA may

be able to decompose low and high frequency components of the lung sound into the

targeted candidate wheeze or crackle channel. Moreover, as represented in Figures

3.12, 3.13 Fast ICA algorithm showed the worst performance.

In Table 3.5, crackle localization performances of the EMD, Fast ICA, Infomax

ICA and proposed method are represented in terms of sensitivity and specificity rates

on 135 lung sound segments obtained from real patients. It is seen that proposed

method is more successful than related works in both metrics. During the experiments
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it is seen that when the crackles are superimposed onto wheezes it is hard to decompose

crackles because of the waveform deformation even when the proposed method is used.

Moreover, on real life recordings, there may be crackle like noises which degrades the

performance of the system by generating false alarm.
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Figure 3.13: Total RMS errors of four decomposition methods for Method 2

Table 3.5: Performance comparison of proposed method with related methods on

crackle and wheeze containing real patient data using MAD threshold. Sensitivity

and precision rates are given as %.

XXXXXXXXXXXXMethod
Rate

Sensitivity Precision

EMD 81.5 75.3
Fast ICA 77.8 70
Infomax ICA 79.3 72.3
Proposed 85.9 80.6

Crackles and wheezes in a breath cycle may exist successively or overlapped

[11, 68], or only one of them may appear which is more likely. The robustness of the

proposed algorithm on overlapped or successive cases is represented by visual valida-

tion, RMSE calculation and in terms of crackle localization accuracy. The proposed

algorithm is also tested on separate cases (only crackle or only wheeze containing cases).

In Figures 3.14, 3.15 the decomposition ability of the algorithm on only crackle cases

is depicted.
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Figure 3.14: Decomposition result of only crackle data from patient using proposed

method

Figure 3.15: Decomposition result of only crackle data from patient using proposed

method

As seen at the top of each figures ground truth location of the crackle is marked.

The energy of each candidate channel is also computed and shown that when the lung
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sound only contains crackle component, the energy of the candidate crackle channel is

higher (66 % and 60 % of the energy in Figures 3.14, 3.15, respectively).

In Figures 3.16, 3.17 the decomposition ability of the proposed algorithm on

only wheeze cases is depicted. It is represented that since wheezes have high energy

and oscillating waveform most of the energy (83 % of the energy in both figures) is

concentrated on candidate wheeze channel.

Figure 3.16: Decomposition result of only wheeze data from patient using proposed

method

Figure 3.17: Decomposition result of only wheeze data from patient using proposed

method
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The performance of the proposed algorithm is also tested on the healthy vesicular

(background) sound and the decomposition result is depicted on Figure 3.18. Although

most of the energy is concentrated on vesicular channel, it is hard to say that the

proposed algorithm is also successful in decomposing vesicular only data.

Figure 3.18: Decomposition result of only vesicular data from healthy subject using

proposed method

In Tables 3.6, 3.7, the decomposition ability of the proposed method on patient

lung sound segments containing only crackle and only wheeze adventitious sounds is

explored in terms of energy of the decomposed candidate channels, respectively.

In Table 3.6, mean and standard deviation (std) of energy of the candidate chan-

nels and energy distribution based classification accuracy of proposed method on 330

lung sound segments is represented. As seen mean of the energy distribution of the

candidate crackle channels is 65.9 % of the total energy when the segment contains only

crackle. When maximum of the energies of decomposed channels is used to estimate

the label of the given segment, 88.2 % accuracy is reached on only crackle containing

segments.
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Table 3.6: Energy distribution (in %) of each candidate channel and energy based

classification accuracy (in %) of proposed method on only crackle containing

segments.

Crackle Only
XXXXXXXXXXXXRate

Channel
Crackle Vesicular Wheeze

Mean 65.9 20.7 13.4
Std 17.4 17.9 9.9
Accuracy 88.2 11.2 0.6

In Table 3.7, mean and standard deviation values of the energies of each de-

composed channel are represented. As represented, 76.7 % of the mean energy is

concentrated on decomposed wheeze channel showing the effectiveness of the proposed

method on 231 wheeze segments. Moreover, when maximum of the energy of the de-

composed channels is selected to estimate the label of the given only wheeze containing

segment, 93.1 % accuracy is reached.

Table 3.7: Energy distribution (in %) of each candidate channel and energy based

classification accuracy (in %) of proposed method on only wheeze containing

segments.

Wheeze Only
XXXXXXXXXXXXRate

Channel
Crackle Vesicular Wheeze

Mean 11.8 11.5 76.7
Std 12.9 15.6 18.5
Accuracy 2.1 4.8 93.1

3.7. Discussion and Summary

In this chapter, respiratory sounds are decomposed into candidate crackle, vesic-

ular (background) and wheeze channels simultaneously without any prior information

about respiratory sound types. The proposed resonance based TQWT-MCA algorithm

represents better performance than related methods in respiratory sound decomposi-

tion (EMD ( [61,62]), Fast ICA ( [63]) and Infomax ICA ( [63])) on both synthetic and
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real patient data. Performance of the methods is compared using RMS error, crackle

localization accuracy (specificity and sensitivity) and visual validation metrics. Two

thresholding methods are employed and MAD outperforms Teager operator method.

Morphological properties of the crackles and wheezes represent adverse time do-

main behaviors. The proposed method is able to decompose continuous (wheeze) and

discontinuous (crackle) respiratory sounds by tuning the wavelet bases to highlight sig-

nal of interest. Then MCA is able to decompose low and high frequency components

of the signal of interest into the same candidate channel by exploiting the morpho-

logical differences obtained using TQWT method. Since the adventitious lung sound

generation mechanism is affected by lung tissue and chest wall, linear or frequency

based filtering methods are less successful in modeling the underlying pulmonary sound

types with linearity assumption. The experimental results showed that extended In-

fomax ICA performed better than Fast ICA method coherent with the study in [63].

ICA based methods have some drawbacks that decrease the performance of the model.

When the sign (polarity) and the order of ICs are changed this will result in higher

RMS errors and possible false detection generation. Crackle polarity and time domain

parameters are helpful and important in diagnosing pulmonary diseases [80, 81].

EMD has also some drawbacks that degrade the overall system performance.

Mode mixing and end-effect generate false detections and result in higher RMS errors.

Although mode mixing effect is tried to be removed using ensemble IMFs and end-effect

parts removed in the experiments, EMD generates higher RMS error by deforming the

waveform of the crackle than extended Infomax ICA and proposed method.

In order to be employed in a diagnostic pulmonary disease classification system,

a method should provide automatic and simultaneous decomposition ability, less RMS

error and higher accuracy. As concluded in [61], EMD based method was not automatic.

According to [62], the proposed EMD based filter dealt with explosive (transient)

lung sounds disregarding the cases that wheezes may be present in the lung sound

data. When the lung sound recording includes wheeze and crackle types successively

or overlapped on the lung sound data, this will change the order and number of the
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IMFs that are used to recover the adventitious lung sound only. Moreover, when the

included wheeze is mono or polyphonic, this condition will also change the EMD model

formation to recover signal of interest. The same problem is valid for the ICA based

algorithms because the order of the estimated ICs may be changed depending on the

lung sound types. Blind and automatic decomposition is exactly supported by the

proposed method being independent from whether the lung sound component includes

wheeze only, crackle only and both wheeze and crackle containing cases without using

any prior information. Therefore, the proposed method is a robust and successful

candidate to be employed in a diagnostic pulmonary disease classification system as a

preprocessing and detection unit when compared with related methods in literature.
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4. ADAPTIVE WHEEZE TYPE CLASSIFICATION

4.1. Introduction

Auscultation with a traditional stethoscope is a convenient tool with low diag-

nostic value since it has limited frequency response, attenuating frequencies above 120

Hz [11], is subjective in nature, depending on the physician’s expertise, and is unable

to record sounds for further analysis. The need for a patient specific clinical decision

support system has become vital during recent years in the diagnosis of lung disorders

and for diminishing healthcare expenses [82].

Lung sounds may be categorized into two basic groups: vesicular and adventitious

sounds. Adventitious sounds which are usually indicators of various lung diseases are

either discontinuous , i.e. crackles, or continuous, i.e. wheezes. Unlike crackles, wheezes

are musical and continuous in nature and have narrow representations in frequency

domain.

A lung sound segment is accepted as wheeze according to American Thoracic

Society (ATS) and Computerized Respiratory Sound Analysis (CORSA) if its main

frequency is higher than 400 and 100 Hz and its duration is longer than 250 and 100

ms, respectively [83,84]. On the other hand, in the studies of [12,85], reported minimum

duration is 80 ms.

Wheezes are closely related with diseases such as asthma and chronic obstructive

pulmonary disease (COPD) [19]. The severity of the disease may be related to the

duration, number and main frequency of wheezes within a respiration cycle [18, 19].

Monophonic (MP) wheezes comprised of either single pitch frequency or multiple pitch

frequencies starting and ending at different times stem from single bronchial narrowing

and may related with asthma [31, 86]. Polyphonic (PP) wheezes composed of har-

monically unrelated multiple pitch frequencies starting and/or ending simultaneously

originate from multiple central bronchial compression and are commonly related with
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COPD [31, 86]. A MP and a PP wheeze sample time-frequency (TF) domain may be

depicted in Figure 4.1. Despite advances made in the analysis of lung sounds, discrimi-

nation of multiple MP and PP wheezes is still an open problem [87] since both of them

are sinusoidal.

Figure 4.1: Time-frequency domain representation of MP (top) and PP (lower)

wheezes (Best viewed in color).

In [31], it is reported that there are statistically significant differences between MP

and PP wheezes of the same pathology (asthma or COPD) using wavelet based features,

paving the way for classification studies. In literature very few studies can be found

in MP-PP wheeze classification. In [88], nine monophonic-polyphonic wheezes are

detected using spectrogram based peak continuity resulting in 89 % accuracy. In [89], 92

% F1 score is reached using dominance spectrogram based on instantaneous frequency

on normal, monophonic, polyphonic and stridor classes whereas 72 % using the classical

spectrogram on 155-70 wheezes. A recent work [90] using time domain based higher

order statistics reached 91 % classification accuracy using 102 wheezing sounds.
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Our previous study [8] on this classification problem has led us to explore robust

and discriminative features for PP wheezes. In this thesis, unlike previous studies which

use fixed TF resolution based on Fourier transform, we propose to determine an optimal

(better TF resolution) and adaptive (automatic and tunable) wavelet based technique

to discriminate MP and PP wheezes in a more robust and objective manner. Properties

of the database are described in Section 4.2, while Section 4.3.1 gives details of the

wavelet based method and Section 4.3.2 introduces the proposed method, respectively.

Section 4.4 and Section 4.5 contain experimental results and discussion, respectively.

4.2. Data Acquisition and Database

The 14-channel data acquisition system [30] designed at Boğaziçi University Lung

Acoustics Laboratory (BU-LAL) was utilized to record wheeze sounds. Sampling rate

was 9600 Hz and each data recording session lasted 15 seconds. Each subject had a

nose clip and a flow-meter was employed to measure airflow. An informed consent

was taken from all subjects before data acquisition. The data acquisition procedure

had the consent of the second Ethical Committee on Clinical Research of Istanbul (in

accordance with the Declaration of Helsinki). Wheeze sound was collected from asthma

and COPD patients who were under treatment at the Istanbul Yedikule Teaching

Hospital for Chest Diseases and Thoracic Surgery. Database was comprised of seven

male and four female subjects at the age of 52∓19. Wheeze sounds were labeled by

visual verification of time expanded waveforms and auditory inspection by an expert.

The database consisted of 147 MP and 153 PP wheezes, where the duration of each

segment is at least 80 ms being consistent with literature.

4.3. Proposed Adaptive Techniques

4.3.1. Rational Dilation Wavelet Transform (RADWT)

According to the definition, wheezes that occur with a single peak or with the

harmonics of a single basal peak are called MP wheezes, while those with variable peaks

that differ in harmonics are called PP wheezes [87]. Due to the similarities between MP
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and PP wheezes, discriminating multiple MP wheezes from PP wheezes is still an open

and important task. In MP wheezes when the severity of pathology is very strong,

a fundamental (basal peak with high energy) signal can occur with accompanying

harmonics (peaks with lower energy). This MP pattern may be confused with PP

wheezes in which various peaks with relatively close energies show up. In order to

discriminate the MP and PP wheezes in time-scale domain, a wavelet transform, in

which the frequency selectivity of the sub-bands can be adjusted, is needed. Therefore

in this thesis, the RADWT [29], which has finer and adjustable frequency resolution

with acceptable redundancy, is proposed as a suitable feature extractor for processing

wheeze sounds.

The RADWT [29] is a frequency-domain (FFT based) design transform which

does not employ rational transfer functions and offers greater design flexibility. More-

over, the RADWT is a rational (based on non-dyadic dilations), fully discrete, ap-

proximately shift-invariant and easily invertible transform. The non-dyadic (rational)

behaviour of the RADWT yields to attain a range of Q-factors and redundancy factors.

In the RADWT, the Q-factor of wavelets, which controls the frequency resolution of

transform, is built upon three positive integers p, q and s satisfying 1 ≤ p < q and

p/q + 1/s ≥ 1, where p and q are co-prime.

In RADWT, the relation between the scaling (φ(t))/wavelet (ψ(t)) functions and

the low (h0(n))/high (g0(n)) pass filters can be given as,

φ(t) = (q/p)1/2
∑
n∈Z

h0(n)φ

(
q

p
t− n

)
(4.1)

ψ(t) = (q/p)1/2
∑
n∈Z

g0(n)φ

(
q

p
t− n

)
(4.2)
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Mathematically, the frequency responses of h0(n) (H0(ω)) and g0(n) (G0(ω)) are

given as,

H0(ω) =



√
pq ω ∈ [0, (1− 1

s
)π
q
]

√
pqθ(ω−a

b
) ω ∈ [(1− 1

s
)π
q
, π
q
]

0 ω ∈ [π
q
, π]

(4.3)

and

G0(ω) =


0 ω ∈ [0, (1− 1

s
)π]

√
sθc(

ω−pa
pb

) ω ∈ [(1− 1
s
)π
q
, p
q
π]

√
s ω ∈ [p

q
π, π]

(4.4)

where

a =

(
1− 1

s

)
π

p
, b =

1

q
−
(

1− 1

s

)
1

p
(4.5)

the transition function θ(ω) is,

θ(ω) =
1

2
(1 + cos(ω))

√
2− cos(ω) for ω ∈ [0, π] (4.6)

and θc(ω) is

θc(ω) :=
√

1− θ2(ω) (4.7)
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The transition function, θ(ω), which is used to construct the transition bands of

G0(ω) and H0(ω), originates from Daubechies’ orthonormal wavelet filters with two

vanishing moments. As it can be seen from above equations, the bandwidth, center

frequency and transition bands of high-pass and low-pass filters are determined by using

p, q and s values. As the q/p ratio approaches one, higher number of decomposition

levels are needed. Therefore, the number of subbands (J ) must also be considered as

an important parameter in analysis.

4.3.2. Adaptive Peak-Energy-Ratio Parameter Selection Method

A single peak and at least two peaks must be obtained when the time-scale

representations of MP and PP wheezes are investigated respectively. However, the

location, amplitude and bandwidth of these peaks differ for each sample due to the

physiological properties of the lung and the mechanism of the pathology. This results

in a need for an adaptive and automatic algorithm that can locate peaks in TF domain

for processing MP and PP wheezes. In the proposed algorithm, the RADWT is applied

to MP and PP wheezes by using a set of various p, q, s and J values, which are given

in Table 4.1 with an aim to achieve an optimum representation. In this sense optimum

representation is defined as two distinct and non-consecutive peaks, where one belongs

to basal peak in MP wheezes or first peak in PP wheezes and the other belongs to

weak harmonics in MP wheezes or second peak in PP wheezes. Then a metric named

as the peak-energy-ratio (PER) is defined as,

PER =
Energy of first peak

Energy of second peak
(4.8)

In Figure 4.2, energy distribution of wheezes given in Figure 4.1 across sub-bands and

peaks are represented. The RADWT is applied to a wheeze with one of 22 various p,

q, s and J combinations as given in Table 4.1. For each set, two distinct and non-

consecutive peaks are found and the PER is calculated. As a result, for one signal, 22

different PER values are obtained. The minimum PER value is selected as the indicator
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of best representation because it means that two peaks are correctly located while

preserving maximum amount of their energies. In order to quantify the performance

of the proposed method, the chosen minimum PER metrics are employed as features

for discriminating MP and PP wheezes. Support Vector Machines (SVM) [48] is used

as the classification method with leave one out cross validation scheme in a grid search

for parameter (C, γ) optimization.

4.4. Results

In Figure 4.2, for the same MP and PP wheezes given in Figure 4.1, the two

distinct peaks and corresponding p, q, s and J values are presented. It is seen that

for MP wheezes high PER values are obtained. In contrast, for PP wheezes, relatively

small PER values are obtained. In Figure 4.3, whisker plot of PER values with respect

to wheeze types is depicted. As represented, the median values of PER metrics for

monophonic and polyphonic wheezes are 22.01 and 2.41, respectively.
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Figure 4.2: Energy distribution of MP and PP wheezes

During the experiments with the proposed algorithm the distribution of p, q, s and

J values (parameter set) related with selected minimum PER metric is investigated.

It is seen that, in order to achieve the best TF representation, which is obtained with

the algorithm given in Section 4.3.2, a specific parameter set can not be obtained.
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Figure 4.3: Comparison of PER values with respect to wheeze types when the

optimum parameters employed.

In Figure 4.4, the percentages (number of samples for a specific parameter set/

number of total samples) for the distribution of total, MP and PP wheezes changing

with various p, q, s and J values are given. The order of p, q, s and J values used in

Figure 4.4 is the same with the order of Table 4.1. For example the first set number in

Figure 4.4 corresponds to the first column in Table 4.1 (p = 2, q = 3, s = 2, J = 8). It is

seen that, for almost all parameter sets, except the first set (low Q-factor, low frequency

resolution), optimum TF representation for a wheeze sample is achieved. Namely, the

percentages (number of samples for a specific parameter set/number of total samples)

are spread over all 22 parameter sets given in Table 4.1 when the proposed method is

used as depicted in Figure 4.4.

In Table 4.2, classification accuracy of fixed p, q, s and J parameter set (the

same order as in Table 4.1) on the whole dataset is given without optimal choices. For

example, fixed set of p, q, s and J values (p = 2, q = 3, s = 2, J = 8) are experimented

on the whole dataset. It is shown that best classification accuracy (81.7 %) is obtained

with 19. parameter set in Table 4.1 using SVM radial basis function (RBF) kernel.

This is because in Table 4.1 on the left-side the relatively low Q-factor combinations

and on the right side relatively higher Q-factor combinations are represented which

means frequency resolution increases from left to right.



Table 4.1: Various p, q, s and J values used in analysis.

Set # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
p 2 3 4 5 5 5 6 6 7 7 7 8 8 8 8 8 9 10 10 10 11 11
q 3 4 5 6 6 6 7 7 8 8 8 9 9 9 9 9 10 11 11 11 12 12
s 2 2 3 4 5 5 5 6 5 6 7 3 4 5 6 7 5 6 7 8 7 8
J 8 10 15 20 25 30 30 35 35 35 40 35 35 35 35 40 35 40 45 50 45 50

Table 4.2: Classification results (in %) of fixed p, q, s and J parameters using support vector machines with different kernels.

Kernel Type 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Linear 56 50.7 57 54.3 50.7 56.3 54.3 50.3 52.7 51.3 74.7 60.7 63 61.7 54 54.3 56 76.7 76.3 76 57 56
RBF 56 54.3 62 72.3 76.3 77.3 75 79 77.3 76.3 79.3 75.3 79.3 76.3 79.3 77.7 75.7 80.3 81.7 80 76.3 75
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Figure 4.4: Distribution of total, MP and PP wheezes with respect to various p, q, s

and J values

In Figure 4.5, frequency responses and wavelet time domain representations at

several scales for low-Q (limited frequency resolution) and high-Q (higher frequency

resolution) is depicted. It is represented that in the right lower part of the Figure

4.5, the waveform of the wavelet is more oscillatory than in the left lower part of the

figure. As noticed, when high Q-factor filters are used, oscillatory wavelets similar to

wheeze signals in the time domain and better frequency resolution for low and middle

frequency bands in frequency domain can be achieved. Therefore, it is concluded

that an adaptive and automatic system is needed for optimum localization of different

peaks due to subject specific TF properties of wheezes. Additionally, the accuracy

of SVM classifier is obtained with the proposed method as 82.6 % and 86 % when

the linear and RBF kernels are employed, respectively. This shows that PER metric

can be used as an indicator for discriminating MP and PP wheezes and better TF

representation can be achieved with the proposed method when compared to fixed

parameter setting. Our previous study [8] on MP-PP classification problem had reached

75.8 % overall accuracy when time domain and Fourier transform based features were

combined. When compared with these findings it is clear that proposed adaptive

wavelet based method outperforms Fourier transform based method which has fixed

TF resolution.
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Figure 4.5: The wavelets at several scales and corresponding frequency responses used

in low Q-factor (left) and high Q-factor (right) analysis.

4.5. Discussion and Summary

Wheeze type classification is an important problem in diagnostic lung disease

classification since it may be related with Asthma or COPD. It is reported that Asthma

or COPD affects 1 in 12 people around the world and these two lung diseases may

overlap on 15 % of the obstructive lung disease population [2].

Wheeze/non-wheeze classification problem is extensively studied in literature as

summarized in [8]. Unlike wheeze/non-wheeze classification, MP-PP wheeze classifi-

cation is a within class problem since both of the classes are oscillatory and periodic.

From this point of view, it is clear that time-frequency resolution must be high enough

to exploit the discriminative characteristics of the wheeze types. For example, zero
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crossing based time domain techniques could not be able to capture the discriminative

features because of the periodicity of the wheeze types.

As detailed in the introduction part, the database used in this thesis is at least

twice extensive as in related works in literature. Although it is not possible to compare

related works with the proposed method due to issues on data privacy and publicly

unavailable implementations, it can be argued that proposed method achieved better

TF resolution than Fourier and time-domain based methods compared to our previ-

ous results [8]. Moreover, our method performed better than approaches where fixed

parameters are employed in wavelet analysis. For example, dyadic discrete wavelet

transform which is a low-Q factor transform is not suitable for this type of problem

because of the limited frequency resolution. When the fixed parameter setting is em-

ployed the best obtained accuracy is 4 % lower than the proposed adaptive method.

Classification accuracy of confusion matrix on MP and PP wheezes is 81.6 % and 90.9

% respectively demonstrating the effectiveness of the proposed method in optimal TF

representation of PP wheezes. Our previous study based on time domain and Fourier

transform suggested the exploration of stronger features to better represent distinctive

characteristics of polyphonic type of wheezes.

RBF kernel gives better results than linear kernel, it was suggested to use non-

linear kernel when the number of features (one PER value) is small [48]. It is seen

that, when the linear kernel is employed computation load is at least ten times higher

than RBF kernel.

In this thesis, non-dyadic wavelet based automatic and adaptive method is pro-

posed to deal with MP-PP wheeze classification problem providing better TF resolution

as compared to fixed parameter setting. Moreover, it is shown that proposed adaptive

non-dyadic wavelet based method is successful than dyadic wavelet transform.
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5. CONCLUSION AND FUTURE PERSPECTIVES

Lung sounds provide important clues about the underlying lung dysfunction.

The classical stethoscope has some limitation such as attenuating frequencies above

120 Hz, being unable to record lung sounds for remote analysis and depending on the

medical physician’s expertise and experience. The need for an automatic and cheap

analysis tool has become vital during recent years in the diagnosis of lung diseases

especially in low and middle income countries. The cooperation between engineering

and medicine produced electronic stethoscope products which benefit medical doctors

by providing objective measurements however, there is a lot of research to be done.

Electronic stethoscopes are not cheap for personal use and need to be smart including

advanced algorithmic solutions. Faster and smart solutions can be obtained by imple-

menting novel proposed wavelet based algorithms on field programmable gate arrays

or chips. The proposed algorithms can also be implemented in differential diagnosis

systems that are employed in medical decision support systems. Detection of crackle

and wheeze sounds or abnormalities within a breath cycle significantly plays a vital

role in differential diagnosis. For example, when a localized wheeze is missed, this re-

sults in misdiagnosis of asthma and accompanied by mistreatment and dense hospital

visits wasting resources. The proposed novel algorithms are robust candidates to dis-

criminate abnormalities within a breath cycle, in order to be employed in differential

pulmonary disease diagnosis systems, more successfully and faster than related meth-

ods in literature. Lung abnormalities such as crackle and wheeze sounds may overlap

and be successively within a breath cycle. Localization of these types of stationary

and non-stationary waveforms is hard to achieve using Fourier based methods because

of fixed time-frequency resolution property. On the other hand, the proposed algo-

rithms have the ability to tune their wavelet bases aiming at localizing time-frequency

characteristics of normal and abnormal lung sounds and as a result show finer time-

frequency resolution and higher accuracy performance than the Fourier based methods.

Moreover, the proposed algorithms are faster than their competitors being the suitable

candidate for real-time applications. Traditional approach on differential diagnosis is

to fit a model on the lung sound recording and then to use the extracted features for
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predicting the lung diseases. However, the performance of the system may be lim-

ited when the low level information is not incorporated into the system. At macro

level, fitting a model and extracting general features may limit the performance of the

system. However, in micro level the atomic parts of the abnormalities (location in a

breath cycle, type, duration and frequency of the abnormality) may help to exploit the

discriminative characteristics of the lung diseases. Moreover, these micro level features

can be combined with general model features to improve the diagnostic classification

accuracy of the decision support systems.

In Chapter 2, a comprehensive experimental study was conducted using six fea-

ture extraction methods (including the proposed method) and five classifiers. Six subset

features were extracted from the raw features and fed into the classifiers in order to

compare the performances of feature extraction methods and classifiers. Contrary to

previous studies which use constant low Q-factor wavelets and Fourier based methods

that have limited frequency resolution and are unable to handle oscillatory behaviour

of wheezes, adjustable Q-factor wavelets are proposed that can accommodate the signal

of interest. Results show that by using high Q-factor wavelets, higher average accu-

racy, crackle, wheeze and normal signal classification rates than the related works in

literature are achieved in a LOOCV scheme. The proposed method has shown bet-

ter performance even using only one subset of extracted features. It provides better

time-frequency resolution for all types of signals of interest and is less redundant than

continuous wavelet transform and significantly faster than its nearest competitor (S

Transform). DT, NB and k-NN classifiers, which have shown even better performances

in some cases, are less robust than SVM and ELM in the overall performance.

In Chapter 3, both synthetic and real crackles are localized in the presence of

both low SNR noise and wheezes. Previous methods focused on crackle separation

from the point of stationary-non stationary discrimination. However, both crackles

and wheezes have low and high frequency components and may exist successively. By

using two threshold methods it is shown that both synthetic and real crackles are de-

composed and localized with high accuracy using the proposed method. An adaptive

threshold is determined independently from the channel on which it will be applied
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providing robustness to noise variations. MAD threshold method has performed better

than Teager energy operator method. Proposed method is compared with ICA and

EMD methods in lung sound literature and shows higher sensitivity and precision rates

for various SNR dB levels than ICA and EMD based methods. Moreover, decompo-

sition ability of the methods is determined using normalized root mean square error

(RMSE) metric for various dB levels and it is shown that minimum total RMS error

is achieved with the proposed method. It can be concluded that the proposed method

is able to localize crackles without generating false positives as extended Infomax ICA

and without distorting the crackle waveform as EMD methods. The robustness of the

proposed algorithm on overlapped or successive cases is represented by visual valida-

tion, RMSE calculation and in terms of crackle localization accuracy. The proposed

algorithm is also tested on real data containing merely wheezes or crackles and is shown

to be successful without any prior information.

In Chapter 4, non-dyadic wavelet based automatic and adaptive method is pro-

posed to deal with MP-PP wheeze classification problem providing better TF resolution

as compared to fixed parameter methods. Fixed parameter setting is defined as same

p, q, s and J values are applied to the whole dataset. It is shown that by selecting

proposed minimum peak-energy-ratio metric, higher classification accuracy than fixed

parameter setting is achieved. It is also shown that by using time domain and/or

Fourier based methods the classification accuracy is lower than the proposed method.

MP-PP wheeze classification is more complicated than wheeze/non-wheeze classifica-

tion (highly studied in literature) because the former is a within class problem (both

types of wheezes are periodic). Moreover, it is shown that proposed adaptive non-

dyadic wavelet based method is more successful than dyadic wavelet transform whose

time-frequency resolution is limited.

5.1. Future Perspectives

As a future work in Chapter 2, the superimposed crackle and wheeze samples,

which decrease the performance of the proposed system, need to be explored in more

detail. Algorithms that can separate the crackle and wheeze containing signal com-
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ponents will increase the accuracy of the classification system. Particle swarm opti-

mization, independent vector analysis and non-negative matrix factorization techniques

can be used to solve optimization problems, decompose multivariate data and separate

spectral components of lung sounds. Additionally, it will be a challenge to implement

the proposed system in real-time on a field programmable gate array as a lung sound

classification system which can be employed in the diagnosis of lung diseases such as

interstitial fibrosis, pneumonia, and chronic obstructive pulmonary disease.

As a future work in Chapter 3, sparse representations of decomposed lung sound

channels can be obtained and sparse representations may be used to encode the sensor

data. As an another future work, novel de-noising methods can be used as a preprocess-

ing step in the exploration of diseases related with lung dysfunctions. Deep learning

can also be employed to better understand and model the lung sound data in a super-

vised scheme. However, since the training process needs a very high number of patient

data, this process may take a longer time to collect data. Lung sound spectrograms

can be thought as images and auto-encoders may be employed to estimate the class

labels or predict the abnormalities related with diseases using small set of training data

in an unsupervised concept.

As a future work in Chapter 4, once the wheeze types are accurately determined

at micro level, these findings can be associated with lung diseases such as asthma

and COPD at macro level [91]. Again, deep learning concept may be employed to

highlight wheeze regions on the spectrogram images of lung sounds. Moreover, the

effect of preprocessing steps, such as de-noising, and ensemble learning methods at the

classifier and feature extraction level (with additional TF features) may be explored.
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