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ABSTRACT 

 
 

DATA MINING FOR CARBON DIOXIDE ADSORPTION OVER 

AMINE MODIFIED ADSORBENTS FROM PUBLICATIONS IN 

LITERATURE 
 

 
The aim of this thesis is to extract knowledge for carbon dioxide adsorption over 

amine modified adsorbents using two data mining techniques that are decision trees (DT) 

and artificial neural networks (ANN). The experimental data were collected from 30 

papers published between 2002 and 2016. The data set consisted of 1356 data points with 

26 attributes; the adsorption capacity (mmol CO2/g adsorbent) and amino efficiency 

(CO2/N ratio) were chosen as performance (output) variables. In DT analysis, the 

adsorption capacity and amino efficiency were classified in four groups, and the conditions 

leading to high adsorption capacity and amino efficiency were identified. Training and 

testing accuracies for adsorption capacity were 83.4% and 82%, respectively; while these 

values were 80.8 % and 77.3 % for the amino efficiency; from which the analysis for both 

output variables could be considered as successful. ANN analysis was also used to model 

the same data to develop predictive models; tansig function was used as the activation 

function and trainlm and trainbr were used as the training algorithms for training and 

testing, respectively. The optimal network topology was determined as 26-10-1 (10 

neurons in one hidden layer) for adsorption capacity and 26-9-1 (nine neurons in hidden 

layer) for amino efficiency. The R2 and RMSE values for adsorption capacity were 

respectively found to be 0.97 and 0.118 for training, and 0.90 and 0.250 for testing. Similar 

results were obtained for the amino efficiency. The R2 and RMSE were 0.97 and 0.0230 

respectively for training while R2 was 0.83 and RMSE was 0.053 for testing. These results 

indicate that ANN models were also successful. The relative significances of input 

variables were also calculated by using the optimal neural network topology and change of 

mean square error method. Operational variables had greater significance on both amino 

efficiency and adsorption capacity relative to the adsorbent properties.  
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ÖZET 

 

 

LİTERATÜRDE YAYINLANMIŞ MAKALELERDEN AMİNLE 

MODİFİYE EDİLMİŞ ADSORBANLAR ÜZERİNDE 

KARBONDİOKSİT TUTULUMU İÇİN VERİ MADENCİLİĞİ 
 

 

 Bu tezin amacı, karar ağaçları ve yapay sinir ağları gibi veri madenciliği 

tekniklerini kullanarak aminle modifiye edilmiş adsorbanların karbondioksit adsorpsiyonu 

için bilgi çıkarmaktır. 2002 ve 2016 yılları arasında yayınlanmış 30 makaleden deneysel 

veriler toplanmış, 26 değişken ve 1356 veri noktasından oluşan bir veri seti 

oluşturulmuştur. Adsorpsiyon kapasitesi (mmol CO2/g adsorbent) ve amin verimi (CO2/N 

oranı)  ise performans (çıktı) değişkenleri olarak seçilmiştir. Karar ağaçları kullanarak 

analiz yapılırken hem adsorpsiyon kapasitesi hem de amin verimi için dörder sınıf 

tanımlanmış, her iki değişken için de en yüksek değerleri veren koşullar saptanmıştır. 

Karar ağaçlarının eğitim ve test için doğruluk oranları adsorpsiyon kapasitesi için sırasıyla 

83.4% ve 82%, amin verimliliği için ise 80.8 %ve 77.3% bulunmuştur ki; bu değerler karar 

ağaçlarıyla yapılan analizin başarılı olduğunu göstermektedir. Tahmin edebilme gücü olan 

modeller geliştirmek için ise aynı set yapay sinir ağları kullanılarak modellenmiş, bunun 

için aktivasyon fonksiyonu olarak tansig, eğitim ve test algoritmaları olarak sırasıyla 

trainlm ve trainbr kullanılmıştır. Tahmin edebilme gücü en uygun sinir ağ yapısı 

adsorpsiyon kapasitesi için 26-10-1 (bir gizli katmanda 10 nöron), amin etkinliği için ise 

26-9-1 (bir gizli katmanda dokuz nöron) olarak bulunmuştur. Adsorpsiyon kapasitesi için 

yapılan modelde R2 ve RMSE değerleri eğitim için sırasıyla 0.97 ve 0.118, test için ise 

0.90 ve 0.250 olarak hesaplanmıştır. Amin etkinliği için ise R2 ve RMSE değerlerinin 

eğitim için sırasıyla 0.97 ve 0.023, test için ise 0.83 ve 0.053 olduğu görülmüştür. Bu 

sonuçlar yapay sinir ağlarıyla geliştirilen modellerin de başarılı olduğunu göstermektedir. 

Bu modeller ayrıca RMSE değişimi yöntemiyle birlikte değişkenlerin göreceli önem 

analizleri için de kullanılmıştır. Operasyon değişkenlerinin her iki analiz için de 

adsorpsiyon özelliklerinden daha yüksek öneme sahip oldukları belirlenmiştir. 
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1. INTRODUCTION 

 

 
Climate change and global warming, led by emission of greenhouse gases such as 

carbon dioxide, ozone, methane and nitrous oxide into the atmosphere, are the growing 

concerns of this century; hence the research efforts to improve the techniques for the 

diminution of greenhouse gases especially carbon dioxide emissions to the environment 

have continuously increased in recent years. One of these research areas is CO2 capture 

from diversity of sources mainly fossil fuel-fired power plants by using some effective 

sorbents. 

 

In spite of the fact that fossil fuel power plants have significant detrimental effect on 

environment, it is accepted that fossil fuel leads the resource of energy for years to come. 

Hence, development of effective methods for the sequestration and capture of CO2 is 

crucial. There are three approaches being investigated on this matter: pre-combustion, 

post-combustion and oxy-fuel combustion processes. In pre-combustion capture, fuel is 

partially oxidized in steam and air and the resulting syngas subsequently undergoes the 

water-gas shift reaction converting CO and water to hydrogen and CO2. CO2 is then 

separated from the hydrogen stream and stored. In oxy-fuel combustion, oxygen is used for 

the combustion. In this way, the resulting flue gas mainly constitutes of CO2 and water, 

making the separation of CO2 easy. Finally, in the post-combustion capture, CO2 is 

separated from the flue gas that is obtained through the combustion of fuel with air stream. 

Although separation of CO2 is much easier due to the higher concentrations in the pre- and 

oxy-combustion methods, post-combustion approach is the most widely used technology 

due to the high investment costs of gasification and air/oxygen separation involved in the 

former methods (Benson and Orr, 2008). 

 

Amine-based regenerative chemical absorption process using aqueous 

monoethanolamine (MEA) solutions is the most conventional and mature technology that 

is employed for the capture of CO2 in the post-combustion approach. However, despite of 

the high reactivity and kinetics, aqueous MEA systems are still far from being used in 

large-scale capture processes due to the high regeneration costs, and finding a cost-
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effective process for CO2 capture from the flue gas is still one of the main interests in the 

field. 

 

Adsorption of CO2 is one of the most frequently considered alternatives to wet 

systems. Compared to other applications, the adsorption process using novel solid sorbents 

has versatile advantages, such as lower energy requirement, convenient handling 

conditions, high selectivity and capacity, etc. Using dry solid sorbent instead of aqueous 

amine-based processes significantly reduce the regeneration energy requirement for CO2 

capture due to the absence of large amounts of water. Moreover, solid sorbent heat 

capacity is lower than that of aqueous amine solvent. The other factors that favor the dry 

solid sorbents are adsorption and desorption kinetics and high CO2 selectivity (Yang, 2003; 

Kohl and Nielsen, 1997). 

 

The major challenge for CO2 capture is to achieve it at the high volumetric flow rates 

of flue gas at atmospheric pressure with extensive amount of CO2 at low pressure and 100-

150 °C range of temperature (Choi et al., 2011). 

 

In the literature, development of new solid sorbents for CO2 capture from flue gas 

with the most efficient performance and desired economics have been investigated by 

numerous groups of researchers. Flue gas includes impurities inside such as oxides of 

nitrogen and sulfur, and these impurities reduce the sorbent performance, therefore it is 

important to understand the behavior and characterization of different sorbent materials 

(Lee et al., 2008). However, it is quite difficult to analyze the works in the literature, to 

observe and understand the relation between sorbent types and operating variables with the 

naked eyes because of the complexity and size of the data accumulated over the years. 

Therefore, data mining tools, which have been developed to extract knowledge from 

complex of datasets, can be also applied for this subject. This gives opportunity to discover 

meaningful correlations, trends and patterns by using statistical and mathematical methods 

(Romero and Ventura, 2007; Larose, 2005). 

 

 There are various data mining tools that can be used to perform various tasks such as 

clustering (like k-mean clustering), classification (like decision tree) and prediction (like 

artificial neural networks). Selection of the most appropriate data mining tool is critical for 
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the extraction of the desired knowledge successfully. An effective approach would be to 

use various tools together to maximize the benefit for the specific problem in hand. 

 

In this work, a comprehensive database of CO2 capture from flue gas was 

constructed by using the experimental data published in various papers in last decade. Then 

this database is analyzed using decision trees to deduce heuristics for best performance and 

artificial neural networks to develop predictive models for future works. The thesis 

consists of five chapters. In the Thesis Background (Chapter 2), published articles on 

carbon dioxide adsorption of amine modified sorbents are reviewed, and the data mining 

techniques used in this thesis are summarized. The database construction process and the 

computational details on data mining tools are explained in Computational Works (Chapter 

3). In Results and Discussion (Chapter 4), the results of decision trees and neural network 

analysis are presented and discussed. In Conclusion and Recommendations (Chapter 5) the 

major conclusions and recommendations are summarized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

2. THESIS BACKGROUND 

 

 
2.1. Carbon Dioxide Adsorption on Amine-Supported Adsorbent 

 

CO2 adsorption is the most effective way in order to capture carbon dioxide from flue 

gas. Amines are widely used as the functionalized adsorbents for carbon dioxide 

adsorption. The chemical reactions involved in carbon dioxide capture on amine-

functionalized sorbent are indicated as follows: 

 

Formation of zwitterion and carbamate: 

 

RR NH+ CO ⟷ RR NH COO 	(Zwitterion)	                                                    (2.1) 

 

RR NH COO + RR NH	 ⟷ 	RR NCOO 	(Carbamate) 	+ RR NH                    (2.2) 

 

The overall reaction is 

 

2RR NH + CO 	⟷ 	RR NCOO 	+ RR NH                                                          (2.3) 

 

In the presence of water: 

 

RR NH+ CO 	+	H O	 ⟷ 		RR NH + HCO                                                         (2.4) 

 

 R 	refers to hydrogen for the primary amine in the above equations. 

 

The reaction of primary and secondary amine with CO2 is to form zwitterion first and 

then to form carbamate. On the other hand, the reaction of tertiary and sterically hindered 

amines with carbon dioxide is to form bicarbonate but not carbamate. The carbon dioxide 

capture technology is an energy intensive process and the overall cost is high. The major 

concerns of selection of adsorbent are cost, adsorption rate, carbon dioxide adsorption 

capacity and thermal stability of adsorbents. Thus the process is usually maintained at 
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viable conditions in order to achieve desirable and high adsorption capacity (Yu et al., 

2012). 

 

2.2. Influencing Factors on CO2 Adsorption over Amine-Supported Adsorbent 

 

 2.2.1. Adsorbent Type and Adsorbent Properties 

 

In order to increase carbon dioxide adsorption capacity and achieve high selectivity, 

surface of the porous materials is modified by incorporating basic sites that are capable of 

chemically interacting with CO2. The common modifying functional substances are 

various amine groups and since these groups constitute the active sites of the adsorbent, the 

amount of these functional groups is quite determining on adsorbents’ performance 

(Samanta et al., 2012). On the other hand, although support materials do not usually 

interact with CO2 at the conditions of interest, their pore size and structure are closely 

related to the amount of amine loaded onto the support, so they may still affect the 

adsorption capacities.CO2 adsorption of different amine-supported mesoporous silicas, 

which were SBA-15 and MCM-41, were compared. Polyethylenimine (PEI) was 

impregnated on these silica sorbents. According to their study, adsorbent pore properties 

were determined for both MCM-41 and SBA-15. Pore size was 6.1 nm for 50 wt % PEI-

SBA-15 and 0 nm for 50 wt % PEI-MCM-41. Surface area was found to be higher for 50 

wt % PEI-SBA-15. It was obvious that SBA-15 silica had larger pore and surface area. 

CO2 adsorption experiment was carried out in two stage process and CO2 removal was 

achieved at first stage at 75 °C. It was reported that the CO2 adsorption capacity was 140 

mg/g sorbent for 50 wt % PEI-SBA-15 and 89.2 mg/g sorbent for 50 wt % PEI-MCM-41. 

It was concluded that under same experimental conditions, when the same amount of 

amine was impregnated on the sorbent surface, SBA-15 sorbent exhibited better adsorption 

capacity due its larger pores (Ma et al., 2009). 

 

Adsorption capacity of a series of mesoporous silica materials were investigated. 

MCM-41, MCM-48, SBA-15, SBA-16 and KIT-6 sorbents were modified by 50 wt %  of 

PEI by impregnation method. The properties of these materials were measured by nitrogen 

adsorption isotherms and it was found out that pore size varies in decreasing order KIT-6 > 

SBA-15 > SBA-16 > MCM-48 >MCM-41. Accordingly, adsorption capacities were found 
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as 135 mg/g adsorbent, 129 mg/g adsorbent, 127 mg/g adsorbent, 119 mg/g adsorbent, 111 

mg/g adsorbent for 50 wt % containing KIT-6, SBA-16, SBA-15, MCM-48, MCM-41 

respectively. KIT-6 and SBA-16 sorbents showed the highest adsorption capacities due to 

their high pore sizes (Son et al., 2008). 

 

Adsorption kinetics affects primarily the adsorption performance in several 

processes. An adequate adsorbent should have high adsorption rate and equilibrium 

adsorbent capacity. As mentioned above, pore structure and size are closely related to the 

amount of amine loaded onto the mesoporous silica, so these two properties are quite 

determining on the adsorption capacity. On the other hand, diffusion of CO2 within the 

pores of the adsorbent is closely related to the rate of adsorption, so adsorbent properties 

like pore structure and size as well as surface area may influence the adsorption capacity 

through the kinetics of adsorption. Correspondingly, larger pores resulted in a considerable 

increase in the adsorbent’s CO2 capture performance (Son et al., 2008). 

 

 Conventional MCM-41 and pore expanded MCM-41 silicas’ CO2 adsorption 

performances were investigated in order to determine best performance. These supports 

were modified with (3-trimethoxysilylpropyl)diethylenetriamine (TRI) by grafting method. 

The experimental results showed that under the same grafting conditions, pore expanded 

PE- MCM-41 silica was grafted with larger amount of amine than MCM-41 silica. As a 

result, in terms of CO2 adsorption performance, PE-MCM-41 had a significantly higher 

equilibrium capacity and adsorption rate. These results were mainly due to the larger pore 

diameter and volume of PE-MCM-41 (9.4 nm and 0.87 cm3/g, respectively), compared to 

MCM-41 silica (Harlick and Sayari, 2006). 

 

In addition to the mentioned physical properties of the adsorbent, calcination 

conditions such as calcination temperature and time were also reported to influence the 

adsorption capacity through the concentration of hydroxyl concentration (Yue et al., 2008). 

 

Wei et al. (2008) reported the adsorption performance of SBA-16 functionalized 

with N-(2-aminoethyl)-3aminopropyltrimethoxysilane (AEAPS). The adsorption 

performance was improved by the hydrolysis of the calcined SBA-16. The adsorbents, 

which had fine particle size, demonstrated good accessibility and high surface area. It was 
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found that maximum CO2 adsorption capacity was 0.727 mmol/g at 333 K with a particle 

size range of 0.124-0.15 mm. 

 

CO2 adsorption performance of amine containing SBA-15 silica was investigated. 

Mesoporous material was prepared in two ways. Firstly, part of solid was recovered, 

washed with distilled water, then air dried and denoted as SP. The remaining part of the 

solid was calcined at 550 °C for 6 h and denoted as SC. Different amount of amines and 

mix of TEPA and diethanolamine (DEA) were impregnated on both sorbents in order to 

understand the effect of hydroxyl group concentration on adsorption capacity. DEA 

contains two hydroxyl groups. More hydroxyl group on the sorbent could result in a 

change in the mechanism of amine reacting with CO2 and an increase in the capacity. An  

adsorbent which contained 30% of TEPA, 20% DEA and 50% SP, had 3.9 m2/ g surface 

area and its adsorption capacity was found as 163 mg/g. CO2 adsorption capacity of DEA 

modified SP and SC was 20.8 mg/g and 9.2 mg/g respectively.  CO2 capacity of DEA 

modified SP was larger than DEA modified SC due to the difference in the distribution of 

DEA in two sorbents (Yue et al., 2008). 

 

2.2.2. Amine Type 

 

Amine supported materials exhibit high adsorption capacity and fast carbon dioxide 

adsorption rate. Several microporous/mesoporous materials loaded with basic nitrogen 

functionality or organic amine functionality are frequently employed in order to remove 

CO2 from flue gas efficiently. Adsorption of CO2 using amine-functionalized sorbents 

involves chemical reaction and therefore it is necessary to know how the nature of amine 

influences the capacity and kinetics.  

 

Primary and secondary amines do react directly with CO2, while tertiary amines do 

not directly react with CO2. The zwitterion reaction mechanism of CO2 adsorption for 

primary and secondary amines involves two steps; formation of zwitterion and 

deprotonation of zwitterion. The reaction between sterically hindered primary and 

secondary amine produces bicarbonate therefore CO2 loading can increase to 1 mol/mol 

amine while CO2 capacity for primary and secondary amine is 0.5 mol/mol amine. Amine 

type (primary, secondary, tertiary), nitrogen content, molecular weight, steric hindrance, 
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and the linearity of amine are the crucial factors on carbon dioxide adsorption process 

(Samanta et al., 2012). 

 

Sayari et al. (2012) investigated the adsorption capacities of PE-MCM-41 modified 

by grafting primary 3-aminopropyltrimethoxysilane (pMONO-silane) secondary N-

methylaminoproyltrimethoxysilane (s-MONO-silane) and tertiary N,N-

dimethylaminopropyltrimethoxysilane (tMONO-silane) amines. Amine content was 4.6, 

3.67 and 3.25 mmol/g for pMONO-silane, sMONO-silane, tMONO-silane respectively. 

The equilibrium molar CO2/N ratio (amino efficiency) was calculated under a reacting 

environment of %5 CO2 in balance N2 at 25 °C and 1 atm. It is found out that primary 

amine showed the highest CO2/N molar ratio (0.5) compared to secondary and tertiary 

amines. Thus primary amine containing PE-MCM-41 silica exhibited the highest 

adsorption capacity. Secondary amine had weaker interaction with CO2 than primary amine 

therefore secondary amine containing silica showed lower CO2 capacity. Tertiary amine 

containing silica hardly captures CO2. Primary and secondary amines show high reactivity. 

 

CO2 adsorption performance of pore-expanded mesostructured SBA-15 silica was 

examined by Sanz et al. (2013). pMONO-silane and TRI were grafted on the support 

surface, while PEI and tetraethylenepentamine (TEPA) were impregnated on PE-SBA-15 

surface. In addition to this, pMONO-silane and TRI modified PE-SBA-15 materials were 

additionally impregnated with PEI and TEPA. Three different types of modification 

method were applied. They measured the amine-modified adsorbent properties and 

nitrogen content was different for all materials. Nitrogen content was 4.4 % and 6.8 % for 

pMONO-silane and TRI grafted PE-SBA-15, respectively. Adsorption experiments were 

carried out at 45 °C and 1 bar. Adsorption capacities were found as 65.7 and 71.4 mg CO2 

per g for pMONO-silane and TRI -grafted PE-SBA-15, respectively. Adsorption capacity 

of 50%-TEPA-impregnated PE-SBA-15 was 164 mg CO2 per g at 45 °C and 1 bar and its 

nitrogen content was 14.1 %, while that of 50% PEI-impregnated PE-SBA-15 was 138 mg 

CO2 per g under the same conditions and its nitrogen content was 13.2 %. PEI and TEPA 

impregnated sorbents showed higher adsorption capacities over grafted materials. In 

addition, these adsorbent’s pore diameters were 12.8 and 10.6 for PEI-PE-SBA-15 and 

TEPA-PE-SBA-15, respectively. Amino efficiency (C/N) was found to be 0.33 and 0.37 

for PEI-PE-SBA-15 and TEPA-PE-SBA-15, respectively. Since TEPA impregnated PE-
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SBA-15 had higher nitrogen content, higher efficiency (ratio of captured carbon dioxide 

(mol) /nitrogen content (mol) ) and it was exhibited higher adsorption capacity, at the end 

of this study it was concluded that nitrogen content of modified amine and pore diameter 

were the essential factors which had dominating effect on the adsorbent performance (Sanz 

et al., 2013). 

 

Adsorption performance of SBA-15 was investigated. SBA-15 was grafted with 

pMONO-silane and TRI while PEI and TEPA were impregnated on SBA-15 silica. CO2 

adsorption experiments were conducted under pure stream, diluted stream (15% CO2) and 

in humid stream (5% water). All prepared adsorbents were characterized and it was found 

that chain length was increased for grafted samples, while organic content was increased 

for impregnated samples. In addition to this, it was observed that nitrogen content was 

increased for longer grafted organosilane chains and higher impregnated organic amounts. 

pMONO-silane containing SBA-15 and TRI containing SBA-15 adsorbents contain 3.7% 

and 5.3% nitrogen, had 286  m2/g and 227 m2/g surface area and 7.1 nm and 6.8 nm pore 

diameter, respectively. PEI and TEPA impregnated SBA-15 had higher nitrogen content 

compared to grafted ones. Adsorption capacities of these adsorbents were experimented at 

25 °C. At the end of these experiments, CO2 uptake was found as 1.74 mmol/g and 1.4 

mmol/g for pMONO-silane containing SBA-15 and TRI containing SBA-15; respectively, 

which showed nitrogen dependence. 50% PEI impregnated SBA-15 and 50% TEPA 

impregnated SBA-15 had 2.22 mmol/g and 1.72 mmol/g CO2 uptake. 50% PEI 

impregnated SBA-15 contains 8.53% nitrogen but it has similar adsorption capacity with 

grafted materials due to lower efficiency in CO2 capture of the amino groups contained. 

This was a clue for viscous nature of PEI hindering CO2 diffusion, as a result of which 

amino groups cannot react with CO2 in the deep pores (Sanz Perez et al., 2013). 

 

A sterically hindered amine can be explained as the primary amine in which the 

amino group is attached to tertiary carbon atom. If the amine is secondary or tertiary in 

which the amino group attached to a secondary or tertiary carbon. In addition to this, it was 

showed that steric hindrance controls the carbon dioxide and amine reaction. The study 

showed that especially, in aqueous amino alcohols, steric hindrance has an effect on 

adsorption rate at high CO2 loadings (Sartori and Savage, 1983). 
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2.2.3. Amine modification method 

 

Type of interactions between amine groups and the support is significant for 

capturing CO2 from flue gas streams and to determine the amount of amine loading on the 

adsorbent structures. In this project, amine attachment methods were collected under two 

titles, such as impregnation and grafting. Carbon dioxide adsorption capacity depends on 

the amine density and total nitrogen content. Thus, modified nitrogen content is restricted 

by the concentration of the hydroxyl groups on the sorbent surface, if grafting method is 

applied. On the other hand, impregnation method offers many advantages to overcome 

these amine-loading limitations. More amine loadings can be achieved during 

impregnation method by physical incorporation into the porous structure. Accordingly, 

nitrogen content and CO2 uptake are generally higher for impregnated samples than grafted 

materials. However CO2 capture efficiencies are lower in impregnated materials than 

grafted materials due to diffusion limitations. Impregnated materials show lower amine 

distribution (Sanz et al., 2013). 

 

On the other hand, organic functional groups are covalently bonded on sorbent 

surface through a chemical reaction between aminosilane molecules and sorbent surface 

silanol groups during grafting, as a result of which grafted materials exhibit high thermal 

stability. CO2 adsorption of functionalized SBA-15 silica was experimented using two 

different amine modification methods, namely grafting with APTES and impregnating 

with PEI. CO2 adsorption experiments were conducted at 25 °C for APTES-grafted and 

PEI-impregnated samples. It was reported that CO2 uptake was 1.74 mmol CO2/ g for the 

impregnated conventional sample, while it was 2.12 mmol CO2/g for grafted material. On 

the other hand, nitrogen content was 8.53% and 4.97 % for PEI-impregnated and APTES-

grafted SBA-15, respectively. Although PEI impregnated material had higher nitrogen 

content, it showed lower CO2 uptake compared to APTES-grafted materials due to the 

diffusion limitation (Garcia et al., 2015). 

 

Adsorption characteristics of PEI impregnated SBA-15 was investigated. Materials 

were prepared with different PEI loadings on the mesoporous silica (10, 30, 50, and 70 wt 

%). CO2 adsorption strongly depends on PEI content and pure CO2 adsorption isotherms 
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showed that 50 wt % PEI had the highest capacity (89.8 mg CO2 per g sample) at 75 °C 

and 1 bar (Sanz et al., 2010). 

 

2.2.4. Flue Gas Stream Composition (Selectivity of CO2) 

 

The selectivity can be described as the ratio of the CO2 capacity to that of the other 

component at a given flue gas composition and has a direct impact on the purity of CO2 

captured. Flue gas streams from fossil fuel fired power plants contain 10-15% CO2, 70-

75% N2, 8-10 % H2O, 3-4% O2, and trace amounts of SOx and NOx. Adequate sorbent for 

CO2 separation should exhibit high CO2 selectivity over these components of the gas 

(Samanta et al., 2012). 

 

CO2 adsorption performance of APTES-grafted SBA-15 is significantly affected by 

CO2 partial pressure and temperature. APTES-modified SBA-15 molecules had great 

advantages in terms of chemical interaction at low partial pressures. However, CO2 capture 

capacity of the adsorbent decreased when the partial pressure decreased from 0.1 MPa to 

0.005 MPa. But still adsorbent was stable at low partial pressure (Wang et al., 2007). 

 

TRI-grafted pore-expanded MCM-41 (PE-MCM-41) was studied. It was figured out 

that selectivity for CO2 over N2 and O2 was high. Two different feed compositions were 

studied, namely pure CO2 and a stream with CO2:N2 = 10:90 and it was observed that 

adsorption capacities under CO2:N2 = 10:90 mixture was 40% lower than pure CO2 at 75 

°C (Serna-Guerrero et al., 2010). 

 

2.2.5. Temperature and Pressure 

 

Adsorption of carbon dioxide is an exothermic process. Therefore, adsorption 

capacity should decrease with increasing temperature due to mechanism of 

thermodynamically controlled process. Adsorption capacity of PEI modified mesoporous 

sorbent of MCM-41 was experimented. According to their study, PEI modified MCM-41’s 

adsorption capacity was tested with changing temperature. In spite of the fact that 

adsorption is an exothermic reaction high adsorption rate was detected at higher 

temperatures. At 50 °C, adsorption capacity was 44 mg/g-adsorbent for MCM-41-PEI-50, 



12 
 

while 112 mg/g-adsorbent was captured when the temperature was increased to 75 °C, 

originating from the fact that adsorption was diffusion-controlled. At lower temperatures, 

some of the amine sites within the silica pore channels were not accessible but as the 

temperature increased these sites also reacted with CO2 and adsorption capacity increased 

(Xu et al., 2002). 

 

Adsorption temperature and pressure significantly affect adsorbent stability and CO2 

capture capacity of adsorbent through adsorbent-adsorbate interactions. Optimum 

interactions between adsorbent-adsorbate should neither be too weak or too strong. For 

more comprehensive account on CO2 adsorbents in general, the temperature should be in 

between 25 and 75 °C and as for total pressure, it should be between 1-2 bar (Choi et al., 

2009).  

 

Amine grafted pore expanded mesoporous silica’s CO2 capture performance were 

investigated from very low pressure to 1 bar at 298, 308, 318, 328 K. TRI was grafted on 

PE-MCM-41 sorbent. Amine content was found as 7.9 mmol amine/g sorbent. Column 

breakthrough measurements were used to determine adsorption capacity and it was found 

that CO2 adsorption capacity decreased when the temperature rose from 298 to 328 K and 

the pressure from 0.01 to 0.05 bar. The CO2 adsorption capacity was the highest at 298 K 

(Belmabkhout et al., 2010). 

 

CO2 capture performance of mesoporous SBA-15 modified by TEPA with different 

amounts was investigated. The adsorption measurements were performed at different 

temperatures. Adsorption capacity was increased with increasing temperature from 35 °C 

to 75 °C (Yue et al., 2006). 

 

Sanz Perez et al. (2013) investigated the adsorption performances of pMONO-silane 

and TRI as well as PEI and TEPA-impregnated SBA-15 at 25 °C and 110 °C. Since 

adsorption is an exothermic process, both physical and chemical adsorption decreases 

when temperature increases. pMONO-silane adsorption capacity was 1.4 and 0.46 mmol/g 

at 25 °C and 110 °C respectively. On the other hand, TRI grafted sample’s adsorption 

capacity was 1.74 and 0.58 mmol/g at 25 °C and 110 °C respectively. Both adsorbent 

adsorption capacities drastically decreased when the temperature increased. Adsorption is 
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completely physical for SBA-15 sorbent which did not contain any amine. Adsorption 

capacity of 50% PEI impregnated SBA-15 were highly affected by temperature change. 

50% PEI impregnated SBA-15 adsorbent had high amino content (8.3%), which 

contributed to chemisorption and its surface area was low demonstrating that the physically 

adsorbed CO2 was low. Adsorption capacity of this sorbent was 1.72 and 1.15 mmol/g at 

25 °C and 110 °C, respectively. It was observed that chemical and physical adsorption 

were both exothermic for both materials. However, interaction between amine group and 

carbon dioxide increases with temperature increase due to CO2 diffusion into pores. 50% 

TEPA-impregnated SBA-15, on the other hand, showed the highest adsorption capacity 

due to its highest nitrogen content (15.4%). This adsorbent showed the maximum CO2 

adsorption capacity at 80 °C therefore it can be concluded that positive effects of 

temperature increase such as higher mobility, CO2 diffusion was higher than negative 

effect of temperature increase (Sanz Perez et al., 2013).  

 

2.2.6. Presence of Water 

 

Carbon dioxide stoichiometry is affected by water presence if water is included in the 

carbon dioxide capture reaction, the maximum amount of carbon dioxide captured per 

mole of amine can reach to 1 mole. On the other hand, this number can at most reach to 0.5 

moles; if water is not involved in carbon dioxide capture reaction. Since flue gas also 

contains water vapor, it is critical to understand the influence of water on the capture 

characteristics of the adsorbents. Moisture is known to adversely affect CO2 adsorption 

capacity in several physical adsorbents (Samanta et al., 2012), but the effect of water on 

the capacity of chemisorbents could not still be clarified despite of the theoretical basis 

mentioned above.  

 

CO2 working performance was investigated with and without moisture by using PEI 

modified molecular sieve MCM-41. The PEI loading resulted in improvement of CO2 

adsorption capacity and CO2 separation selectivity. Simulated flue gas contained CO2, O2, 

N2 and the moisture was added into flue gas to make the humid flue gas. Therefore, flue 

gas contained 8-20% moisture (water vapor) and the experiments were run at 75 °C under 

ambient pressure. It was concluded that under a reacting environment containing 5% CO2, 

the adsorption capacity was 20% lower than that for moist flue gas which included 6 % 
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moisture.  CO2 adsorption capacity increased with increasing moisture concentration (Xu et 

al., 2005). 

 

APTES and TRI grafted SBA-15 materials were tested and it was suggested that CO2 

adsorption increased with increasing surface density of amine. Aminosilane modified 

SBA-15 was placed in a tube and heated to 150°C and the adsorbent was saturated with 

water vapor. APTES and TRI grafted adsorbents’ pore areas and volumes were found as 

616 m2/g, 0.76 cm3/g and 183 m2/g, 0.29 cm3/g, respectively. The adsorption experiments 

were conducted under dry and humid conditions at 333 K. It was found that adsorption 

capacity of APTES grafted material was 0.1 mmol/g under humid condition and 0.15 

mmol/g without water. On the other hand, TRI grafted material showed an adsorption 

capacity of 0.35 mmol/g under humid condition and 0.39 mmol/g without water (Hiyoshi 

et al., 2005). 

 

The tolerance of pore expanded MCM-41 silica loaded by TRI to moisture in the 

feed. The measurements were performed under both equilibrium and dynamic conditions. 

The experiments showed that the moisture presence enhances the CO2 uptake at 

equilibrium. The CO2 adsorption capacity was detected as 2.05, 2.19 and 2.51 mmol/g for 

0%, 27% and 74% relative humidity, respectively. Improvement of CO2 adsorption 

capacity in wet streams could be explained by reaction mechanism of CO2 and amines. 

Under dry conditions, carbamate is produced with the ratio of 0.5 CO2/N while bicarbonate 

is produced (CO2/N=1) in the presence of moisture (Serna-Guerro et al., 2010). 

 

2.3. Data Mining Methods for Knowledge Extraction 

 

Data mining is the science of finding new and useful correlations, patterns and trends 

hidden within the large amount of data by using various statistical and mathematical 

techniques. Exploratory data analysis of large data sets presents suitable ways to find 

hidden complex relationships by utilizing graphical and numerical tools. The results were 

found by data mining techniques should be clear and suitable for interpretation and 

explanation, hence the techniques that will be employed should be selected accordingly 

(Larose and Larose, 2014). 
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For example, the decision tree method is simple, user friendly and provides intuitive 

results and explanation. On the other hand, neural networks are comparatively complex; it 

can be used for prediction but not easy for interpretation of the results. Description, 

estimation, prediction, classification, clustering are the main tasks of data mining tasks to 

accomplish (Larose and Larose, 2014). 

 

Data mining is based on developing algorithms that can indicate understandable 

relationships in complex data sets. Exploring knowledge process by evaluating selected 

applications, constructing data sets and cleaning data by removing outliers and missing 

values, implementing data mining methods and analyzing patterns to reach desirable 

outcomes are the basic data mining steps. The given data set is split into training and test 

sets; the training set includes the class feature and it is used to structure a model and test 

set is used to calculate the accuracy of the model. Regression method is used for prediction 

of a value by using linear or nonlinear models (Baydogan, 2015).  

 

On the other hand, clustering is used to group the data according to similarity or 

dissimilarity of instances. Features can be grouped as a discrete and continuous and values 

of feature properties should be examined accurately to achieve desirable model (Baydogan, 

2015). 

 

Data mining is the part of knowledge detection work to obtain unknown patterns. 

Data analysis should include all available collected variables. The large amount of data can 

be automatically analyzed by using data mining tools. There are two different types of data 

mining methodologies such as verification-oriented and discovery-oriented. Discovery-

oriented techniques include prediction and description methods that identify pattern in data 

automatically (Rokach and Maimon, 2008).  

 

In order to obtain prediction for new and unknown data, prediction-oriented methods 

are widely used; these techniques are used to construct the model by using training data, 

then the model is used for prediction. In addition to prediction-oriented methods, 

verification oriented techniques are based on the testing and deciding a hypothesis 

proposed by the users on the other hand. Different kind of data mining techniques 
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(verification, discovery, prediction, description, classification, regression) can be seen from 

Figure 2.1 (Rokach and Maimon, 2008). 

 

 
Figure 2.1. Data mining methods (Rokach and Maimon, 2008). 

 

2.3.1. Prediction by Artificial Neural Network 

 

Artificial neural network was developed based on the working principles of 

biological neural networks; it is formed by certain number of neurons that interact with 

each other. The model depends on three basic operations, which are multiplication, 

summation and activation.  

 

Once artificial neural network model is constructed, it should be capable of 

predicting the outcome of the untested input conditions within certain ranges. Artificial 

neural network has great advantage with its high capacity of learning. They can be used to 

make classification, clustering, data processing and decision making. 

 

In each neuron, the input value is multiplied with individual weight first; then all 

weighted inputs and bias are summed before following through a transfer function at the 
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exit of artificial neuron. The whole process can be seen from the Figure 2.2 (Krenker et al., 

2011) on working principle of artificial neuron. 

 

 
Figure 2.2. Working principle of artificial neuron (Krenker et al., 2011). 

 

For each artificial neuron, input, which brings information, is multiplied by its 

weight. The multiplied inputs and bias pass through the artificial neuron structure and 

process information with output efficiency formulation as indicated below (Krenker et al., 

2011): 

 

y (k) = 퐹	(∑ 푤 		 (푘). 푥 	(푘) + 	푏)                                                                      (2.5) 

 

Where: 

 

xi (k) = input value in discrete time 

 

wi (k) = weight value in discrete time  

 

b = bias 

 

F = transfer function 
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yi (k) = output value in discrete time 

 

Artificial neural network is combination of two or more artificial neurons. Artificial 

neurons can connect to each other. This kind of interconnection can be observed in two 

class of neuron structure: feed-forward and recurrent. In feed-forward structure, inputs and 

outputs carry the information in one way. While in recurrent networks, information can 

progress both in opposite and direct way (Krenker et al., 2011). 

 

Feed- forward artificial neural network can result in complicated and long results. On 

the other hand, backward transfer type of recurrent artificial neural network creates 

impressive networks. In recurrent artificial neural network, there is connection in every 

way between the artificial neurons. Network memorizing capability is significantly better 

in recurrent artificial neural network type. This memory ability depends on input 

significance; recurrent artificial neural network can measure whether the inputs are worth 

to remember or not (Krenker et al., 2011).  

 

Neural Network workflow contains following primary steps: collecting data, creating 

the network, configuring the network, initializing the weights and biases, training the 

network, validating the network, and using the network. The data collection is the main 

step and it should be performed outside of the neural network (Baela et al., 2016).  

 

After collecting the data set by extracting knowledge from the literature, 

preprocessing may be required in order to obtain final form of data. It should be noted that 

the data set must cover the range of inputs since the network does not have capability to 

predict out of this range. After preprocessing step, the data set needs to be divided into 

training and testing subsets. Than the network, weights and biases need to be configured. 

In this way, optimal network can be obtained (Baela et al., 2016). 

 

During application of training process, a neural network can obtain different 

solutions. It means that, even the same neural network model used, each time, different 

output values will be obtained for same inputs. In order to prevent any defects during this 

process, each network topology is trained certain number of times to ensure the 

compensation on the effects of random initialization of the neural network weights and the 
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best performance is recorded. The early-stopping technique is applied in order to avoid 

over learning of the neural network (Günay and Yildirim, 2011). 

 

2.3.2. Classification by Decision Tree 

 

Decision tree is one of the main classification methods in data mining process. 

Decision tree takes the values and attributes into consideration in order to predict patterns 

of different classes. Decision tree is useful tool and it provides many advantages by 

illustration of classification in the form of trees. Decision tree are widely used in many 

areas such as psychology, computer science, medicine etc. (Han et al., 2012). 

 

Decision trees have three types, which are classification trees, regression trees, 

CART (Classification and Regression Tree). According to data set, one or more decision 

trees can be obtained based on splitting attributes. Each decision tree contains splitting 

nodes; ideally pure nodes should be obtained. In order to measure impurity of nodes the 

GINI index, the entropy can be used (Han et al., 2012). 

 

First of all, GINI index is the quality criteria which based on the parent nodes (n) that 

are split into the children partitions (p). The proportion of the class j that are distributed to 

node i for f (i, j) gives this index.  The GINI index is given by:  

 

                                        퐺퐼푁퐼(푠푝푙푖푡) = 퐺퐼푁퐼(푖)                               (2.6) 

 

The maximum split node is achieved when GINI index is zero. 

 

Secondly, entropy is the maximum energy reduction at nodes during node splitting. 

Entropy regards to class labels therefore if the class labels for the given records are all 

same, entropy is equal to zero. The entropy formula is defined as: 

 

                              퐸푛푡푟표푝푦(푖) = − (f(i, j). log [푓(푖, 푗)])                            (2.7)   
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Where f (i, j) is the proportion of the class j for the attributed node i (Gorunescu, 

2011). 

 

Data classification depends on two basic steps which are learning step to build a data 

structure and a classification step to predict class labels. During the execution of first step, 

a structure of classifier is built depending on how the data classes are described (Han et al., 

2012).  

 

In the second step, the built model is used for classification by measuring accuracy of 

the predicted class labels. Generally test set is processed in order to find accuracy, rather 

than training set. If the training is used in order to determine the accuracy of predicted 

values, the result would not be true due to classifiers can over fit the data.  A typical 

decision tree is shown in Figure 2.4 (Han et al., 2012). 

 

 
Figure 2.3. Decision tree sample (Han et al., 2012). 

 

Decision tree is described as a predictive model which illustrates classifiers and 

regression models. A decision tree includes nodes and each internal node splits the values 

into two or more sub-classes. Generally, decision trees should not be preferred with 

complex structures because the complexity has negative effect on the accuracy. The total 

number of nodes, tree depth and number of attributes are the tree complexity (Rokach and 

Maimon, 2008). 

 

Decision tree algorithm stops creating new nodes when no further splits exist. On the 

other hand, some data sets include wide variety of attributes that’s why decision tree 
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cannot make a split. In addition to this, prior to application of tree, some requirements must 

be followed. If the training data set is lack of subset records, classification for this subset 

would be impossible. Two main algorithms are used during building decision tree in order 

to measure purity of lead node. These algorithms are CART (Classification and regression 

trees) and C4.5 algorithm. CART algorithm has specific mechanism which depends on 

processing each node to get optimal split. At the end of this process, there will be no 

remaining nodes and the tree will be achieved. CART would calculate the error rate for the 

whole decision tree. However it should be taken into consideration that, even if the 

minimum entire error rate is achieved on the training data set, the model that we had at the 

end can be too complex or overfitting (Larose, 2005). 

 

Secondly, the C4.5 algorithm finds maximum splitting value until no further splits 

would remain. There are differences between CART and C4.5 algorithms. CART 

algorithm creates a binary tree; while C4.5 algorithm creates a tree includes several 

variables. The determination of purity for splitting variables is completely different for 

these two algorithms. The C4.5 algorithm selects optimal split to obtain the largest 

information gain. Even if C4.5 and CART divide the categorical values in different way, 

the dividing process for numerical value are quite similar for both algorithms. Decision 

trees are used in order to build decision rule (Larose, 2005). 
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3. COMPUTATIONAL WORKS 
 

 

3.1. Experimental Data Collection 

 

The published articles in the literature from 2002 to 2016 were examined in order to 

construct the data base for CO2 adsorption; the time period of 13 years should be sufficient 

to represent the carbon dioxide adsorption on amine modified adsorbents literature 

adequately. The articles, which are available in online sources such as Science Direct, 

Wiley, American Chemical Society, The Royal Society of Chemistry, Taylor and Francis 

and Springer, were used to construct the data set. The number of articles over the years was 

presented in Figure 3.1. 

 

 
Figure 3.1. Number of publication from 2002-2016. 

 

Various experimental studies on carbon dioxide adsorption of amine functionalized 

adsorbents reported numerous attributes and parameters which affect the performance of 

the adsorbents and carbon dioxide capture capacity. These parameters can be classified as 

follows: support type, support pretreatment conditions, support properties, sorbent 

preparation method, amine properties, and operational variables.  
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71 articles on carbon dioxide adsorption were evaluated. Some articles were removed 

from the list because they had missing values of some variables, hence they were not 

suitable for the analysis we performed. At the end, 30 of them were found to be suitable to 

create database for this project. The data set was constructed by extracting the data from 

these 30 articles on carbon dioxide adsorption from amine modified adsorbent. The final 

database includes 1356 experimental data with 26 input values and 2 output values. These 

outputs were extracted from same articles. All of these values and the attributes are shown 

as below in the Table 3.1 to 3.11. 

 

First of all, the database contained five different types of sorbent material; they all 

have mesoporous structures. The support types and number of data points involving these 

materials are given in Table 3.1. MCM-41 and SBA-15 were most commonly used 

sorbents in the literature for carbon dioxide adsorption. 

 

Table 3.1. Sorbent types in input variables. 

Variable Alternatives Data Number 

Sorbent Type 

MCM-41 740 

MCM-48 12 

SBA-15 594 

SBA-12 4 

SBA-16 6 

 

The support pretreatment conditions, especially calcination temperature and time are 

important because they influence the support properties, which are also crucial on carbon 

dioxide capture performance. These properties were identified as surface area, pore size, 

pore volume. These properties were usually tested before the modification of amine on the 

support surface. In the literature, the highest calcination temperature was 550 °C while the 

longest calcination time was 8 hours. In some articles, the calcination was not applied, 

therefore calcination time and temperature were set 0 °C and 0 hour. The detailed 

information of the calcination conditions can be seen from Table 3.2. 
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Table 3.2. Data number of calcined sorbent with calcination temperature and time. 

Variable 
Data Number of 

Calcined Sorbent 

Calcination 

Temperature (°C) 

Calcination Time 

(hr) 

Calcination 

Conditions 
1237 

400 5 

500 6, 7 

540 5, 6, 8 

550 4, 5, 6, 8 

 

Surface area, pore volume and pore size were found for each material from the 

articles before the amine loading. They directly impact the amount of amine which was 

loaded on the support surface and then the retained carbon dioxide amount. These support 

properties are mainly dependent on support type, and Table 3.3 shows their ranges for each 

support. 

 

Table 3.3. Surface area, pore size and pore volume of the support. 

Variable Alternatives Surface area 

(m2/g) 

Pore size  

(diameter) 

(nm) 

Pore volume 

(cm3/g) 

Support 

Physical 

Properties 

MCM-41   864-1506  2.3 - 33  0.62 - 3.09  

MCM-48   1290 2.58 1.15 

SBA-15  428-950 5.8 - 71  0.61-2.29  

SBA-12  1347 3.8 0.842 

 SBA-16  479 4.3 0.48 

 

Modification of the surface enhances adsorbent’s basicity and carbon dioxide 

interaction therefore affects adsorbent capture capacity. Modification is performed through 

amine groups on the support surface; the impregnation and grafting methods are used 

commonly for this purpose. During the construction of data set, only the articles, which 

include impregnation and grafting methods, were used. Table 3.4 summarizes the number 

of data of the modification method through all type of sorbents; grafting method was used 

more frequently than impregnation method in the literature. 
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Table 3.4. Modification method of amine through overall data set. 

Variable Alternatives 
Data Number 

Modification Method of Amine  

(Overall Data Set) 

Impregnation 586 

Grafting 887 

 

Table 3.5 illustrates the number of data of the modification method through each 

sorbent. It is obvious from table that MCM-48, SBA-12, SBA-16 were modified by 

grafting method, while SBA-15 and MCM-41 were modified by either grafting or 

impregnation method. The highest number of data points belongs to modification of 

MCM- 41 by grafting.  

 

Table 3.5. Modification method of amine through each sorbent. 

Variable Alternatives 
Grafting 

(Data Number) 

Impregnation 

(Data Number) 

Modification 

Method of Amine  

(Based on support 

type) 

MCM-41   575 252 

MCM-48   12 0 

SBA-15  290 334 

SBA-12  4 0 

SBA-16  6 0 

 

Amine properties are another set of significant variables on carbon dioxide capture 

performance of the adsorbent. As can be seen in Table 3.6, mostly primary amine is used 

for modification in carbon dioxide adsorption experiments.  

 

In addition to this, linearity of the amine structure, sterically hindered, amine type 

such as primary, secondary and tertiary can also be effective in the determination of the 

capacity so it is involved in Table 3.6.  



26 
 

Table 3.6. Amine properties of input variables. 

Variable Alternatives Data Number 

Amine Properties 

Primary  305 

Secondary  111 

Tertiary  8 

Linear  947 

Primary + Secondary  508 

Primary + Secondary + Tertiary  424 

Sterically Hindered  417 

 

In Table 3.6, sterically hindered amine type is indicated as well. Steric hindrance is 

an indication of how crowded the surroundings of the nitrogen atom on which CO2 would 

adsorb. If amine is sterically hindered, it was labeled as 1 in the database; while 0 if the 

steric hindrance was not observed. 

 

Table 3.7 contains the range of the molecular weight of amines used for modification 

of the support surface; in addition to the range of the nitrogen content of the sorbents. The 

amine, which was used during the modification process, directly affects the nitrogen 

content of the adsorbent. 

 

Table 3.7. Range of amine properties. 

Variable Alternatives Range 

Amine Properties 
Molecular Weight (g) 58- 800 

N content (mmol/gsorbent) 1.11 – 14.86 

 

Operational variables like pretreatment temperature, adsorption temperature, 

pressure, flux carbon dioxide concentration, relative humidity, pre-hydration conditions are 

also significant for the carbon dioxide capture performance of the adsorbent. These 

variables are given in Table 3.8 and 3.9. 
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Table 3.8. Range of the operational variables. 

Variable Alternatives Range 

Operational Variables 

Pretreatment Temperature  25-200 °C 

Adsorption Temperature  0-100  °C 

Adsorption Pressure  0.01-25.06 bar 

Flux CO2 Concentration   0.1-100 % 

Relative Humidity  0-78 % 

 

As can be seen from Table 3.8, adsorption temperature varies between 0 °C and 100 

°C. On the other hand adsorption pressure range is in between 0.01 and 25.06 bars. Flux 

CO2 concentration and relative humidity ranges are 0.1-100 % and 0-78 %, respectively. 

 

The last operational variable which is the presence or absence of pre-hydration; the 

pre-hydration was used in 45 experiments in the data set (Table 3.9). The data points were 

marked as “1” when pre-hydration method was applied and “0” for the cases without pre-

hydration. 

 

Table 3.9. Data number of pre-hydration method. 

Variable Alternatives Data Number 

Operational Variables Prehydration 45 

 

Finally, CO2 adsorption capacity, which is the output variable, is reported in two 

ways: the ratio of carbon dioxide over nitrogen (amino efficiency) and the CO2 adsorption 

capacity in mmol CO2/g adsorbent. Output variables are illustrated in Table 3.10.  

 

Table 3.10. Output variables. 

Output Variable Range Data Number 

Amino efficiency (CO2/N) 0.02-0.88 1356 

CO2 adsorption capacity 

(mmol CO2/g adsorbent) 0.05- 5.77 1356 
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The distribution of output variables on different sorbent types can be seen from Table 

3.11. It is clear from the table that SBA-15 had output range in between 0.05-5.77 mmol 

CO2/g adsorbent, while MCM-41 had the output range between 0.12-5.29 mmol CO2/g 

adsorbent. On the other hand, the highest CO2/N ratio was recorded for SBA-12 sorbent 

with a range in between 0.68-1.04. 

 

Table 3.11. Output variables based on the sorbent type. 

Input Variable 
Output: Amino efficiency 

(CO2/N) 

Output: CO2 adsorption 

capacity 

MCM-41 0.04-0.88 0.12-5.29 

MCM-48 0.08-0.84 0.06-0.34 

SBA-15 0.02-0.83 0.05-5.77 

SBA-12 0.68-1.04 0.38-0.49 

SBA-16 0.16-0.24 0.37-0.73 

 

3.2. Computational Details 

 

MATLAB R2014a was used to implement the computational work in this thesis. 

Two basic methods were used in calculations. Neural Network Modeling was used to 

develop models for the predictions of unstudied conditions. On the other hand, Decision 

Tree Modeling was implemented to develop heuristics to determine the best conditions for 

the carbon dioxide adsorption.  

 

3.2.1. Neural Network Modeling 

 

Data collection is the main step for neural network modeling and data were extracted 

from the literature by examining several articles therefore data set was built. After 

collecting the data set by extracting knowledge from the literature, preprocessing was 

applied to obtain final data.  

 

Once data were collected and preprocessing work was executed, then neural network 

model was applied to the whole data set.  There were two forms of output values gathered 

in the data set: amino efficiency (CO2/N) and adsorbent capacity (mmol CO2/g). The input 
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variables were the same for both output variables. Same neural network MATLAB code 

was applied to both of them and the results were reported. Main steps of neural network 

creation can be seen from Figure 4.2. 

 

 
Figure 3.2. Neural network creation main steps. 

 

The number of neurons in the hidden layer was changed and numerous neural 

network models were analyzed and evaluated for training and testing. If the neuron number 

is too low it could lead poor representation of the data while too many neuron numbers 

lead to overfitting of the model. Large networks can be established by high neuron 

numbers and the large networks have an advantage on memorize the training examples. 

Hence, training error is decreased if the number of neurons is high. However, large neuron 

numbers have an adverse effect on predicting the new situations due to lack of 

generalization ability. Therefore optimum neuron number was determined by checking the 

root mean square error for testing of different topologies. 

 

In order to prevent the negative effect of random initialization of the neural network 

weights, each neural network was trained ten times. Testing R2 and RMSE values of each 

model were compared to check ability of network to predict the unknown data. RMSE of 

testing was computed by applying 10-fold cross validation method in order to test the 

accuracy of the model predictions on the unknown data: the data set was  randomly divided 

into 10 subsets, the nine subsets was used to train the network while the remaining set was 

Collecting data

Preprocessing 
data

Building the 
network 

Training the 
network

Testing the 
network
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used for testing. This procedure was repeated 10 times and the RMSE for testing was 

determined taking the average of 10 tests. Calculation of RMSE is shown in Equation 3.1 

and R2 is shown in Equation 3.2. 

 

푅푀푆퐸 =
1
푁 × (푡 − 푝 )  

(3.1) 

 

 Where N is the number of experiments and pi and ti predicted and target value 

respectively.  

 

R = 1 − = 1 − ∑ ( )

∑
	푤ℎ푒푟푒	푡 = ∑                         (3.2)                     

 

The significance of input variables on carbon dioxide adsorption were also analyzed 

using neural networks in order to understand the relative importance of the input variables 

and their effect on the carbon dioxide adsorption. In order to find significance of the input 

variables, the change root mean square error method was used. During input significance 

determination process, one input variable was removed and the network was trained with 

the remaining variables. The difference in RMSE of this model with a model containing all 

input variables was used as the indicator of the significance of that input variable (larger 

the difference, more significant the variable). This procedure was repeated for all input 

variables, and changes of RMSEs from the full model were compared to determine the 

relative significance of input variables (Günay and Yildirim, 2011). 

 

During the neural network modeling using MATLAB, “tansig” activation function 

was used. On the other hand, “trainbr” (Bayesian Regularization Algorithm) and “trainlm” 

(Levenberg- Marquardt Algorithm) functions were used as training and testing algorithms 

respectively. The fastest training function was “trainlm” and the “trainbr” function has 

ability to determine the optimal regularization parameters and the weights and biases. The 

“mapminmax” function normalizes the data so that all data falls in the range [-1,1] . When 

the network inputs and targets are scaled to be in a range [-1,1], “trainbr” algorithm 

conclude the best performance (Baela et al., 2016). 
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3.2.2. Decision Tree Modeling 

 

Decision tree classification was used to find out the conditions and rules that led to 

high carbon dioxide adsorption capacities. 

 

Decision tree modeling process involved the following steps and considerable 

attention was given on these steps in order to obtain clear results: 

 

 Classify the outputs clearly 

 Separating the whole data into two parts as training and testing data set 

 Creating decision trees for training data set  

 Applying the results for training data set into testing data set 

 Finding different values, nod numbers and complexity of decision trees  

 

Firstly, experimental data were called from excel file and saved in the MATLAB 

workspace. The total data set was divided randomly into two training and testing sets. 

Training set was used for building the decision tree structure while test set was used to 

evaluate the generalization ability. Decision tree model was applied to both output values, 

which were amino efficiency (the ratio of carbon dioxide over nitrogen content) and 

adsorption capacity. 

 

Nominal categorization in decision tree was carried out in the ranges of outputs and 

these ranges involve each output one by one. The ranges of the ratio of carbon dioxide over 

nitrogen were from 0 to 0.9 while the range was 0 to 6 for adsorption capacity. The outputs 

were classified into four levels which were low, moderate, high and very high. Total data 

set was divided into two sets randomly and three fourth of the data were used for 

constructing (training) the decision tree. Remaining was used for testing to evaluate 

generalization ability. 

 

The comparison of the nod numbers and complexity of the decision trees was used to 

find the optimum prune and splitmin values. In order to obtain optimum results for 

operating conditions, relationship between these parameters were found with numerous 

tries. Splitmin value is an important parameter and it shows the impure nodes must have 
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the number of assigned splitmin value or more. Splitmin value was selected as 20 and it 

means that the node is not branched further if the number of data points is less than 20. In 

addition to this, prune value was used for reducing tree by removing branch and leaf nodes. 

Best prune value was chosen in order to prevent the complexity of the tree. Higher number 

of nodes can result in too large tree therefore overfitting can occur. The cases cannot be 

clearly distinct if decision tree has small number of nodes. 

 

The best performing decision tree was found by evaluating the results and error 

percentages. The simplicity of a decision tree and nominal error rate indicates the best 

decision tree model therefore simple decision trees were chosen. General rules and 

heuristics were deducted at the end of analysis to achieve the highest carbon dioxide 

capture performance. 
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4. RESULTS AND DISCUSSIONS 

 

 
Artificial neural network and decision tree methods were performed in order to 

analyze the experimental data extracted from the published articles in the literature on the 

carbon dioxide adsorption. The output results which were carbon dioxide capture 

performance were defined in two ways: the ratio of carbon dioxide over nitrogen and CO2 

adsorption capacity. MATLAB modeling was same for both variables and the same 

procedure was applied. 

  

4.1. Neural Network Analysis for CO2/N ratio 

 

The neural network model was constructed for the ratio of carbon dioxide over 

nitrogen first. Various network topologies were tested and the best performing structure 

was determined. Then this structure was used for input significance. 

 

4.1.1. Determining Optimum Artificial Network Topology 

 

The optimum neural network topology was determined by using value of testing 

RMSE and R2 because they indicated the ability of network to predict unknown data. 

Ability of network to estimate unknown data are more precious than prediction ability of 

training data. 10-fold cross validation technique was performed to obtain the testing RMSE 

and R2. Tangent sigmoid function was used as transfer function in order to normalize 

inputs and targets between -1 and +1. trainlm and trainbr, were used for as training and 

testing algorithms, respectively. 

 

During 10-fold cross validation process, the dataset was randomly divided into 10 

groups; one group was estimated using the network constructed from the remaining nine 

subsets. This procedure was repeated 10 times and RMSE were summed up to compare 

different structures. Training RMSE values were determined by the error between the 

experimental data points and predictions on the total data while testing RMSE values were 

calculated by 10-fold cross validation method.   
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Several network topologies were tested and compared with their RMSE values of 

testing and training. Both one and two-hidden-layer topologies were tested and it was 

found that two-hidden-layer structure has no practical superiority over the single-layer 

structures. Then one-hidden layer networks with the number of neurons changing from two 

to 10 were employed, and the training and testing errors were compared to decide the best 

structure representing the experimental data.  

 

The training and testing errors of nine networks with the increasing number of 

neurons in the first hidden layer are compared in Figure 4.1. The notation of “a, b, c” are 

the number in the x-axis that is used to label the neural networks as a: number of input 

variables, b: number of hidden layer, c: number of output. This notation indicates that 26 

input variables were processed through the increasing number of neurons (from two to10 

neuron) in one hidden layer and one output variable.  

 

The blue bars in Figure 4.1 display the training error which indicates the prediction 

accuracy of that particular network while testing error, which represents the generalization 

accuracy, is shown with red bars in Figure 4.1.  

 

 
Figure 4.1. Training and testing errors of different neural network topologies for 

CO2/N ratio. 
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Figure 4.1 shows that there is a drastic decrease in training RMSE values first with 

the larger network size (increase in neuron number) and then it does not change 

significantly with further increase in neuron number. Normally testing error should 

decrease first and then increase again as an indicator of overfitting. However, this kind of 

great change in trend was not observed in the neural network structures up to 10 neurons. 

Although number of data are still high enough to test higher number for neurons, the 

performance of the structures having seven or more neurons does not change significantly, 

and their fitness for representing the data are sufficiently good. Hence the structure of 26, 

9, 1 exhibits the minimum RMSE of testing (0.053) and low training RMSE (0.023) was 

assumed to be optimum and the input significance was analyzed with this structure. The 

experimental versus predicted CO2/N ratio was given in Figure 4.2 for optimal network 

(26, 9, 1) for both training and testing. It can be seen from the Figure 4.2 that successful 

modeling was achieved. 

 

 
Figure 4.2. Experimental versus predicted CO2/N ratio for: (a) training, (b) testing 

data by the optimal neural network topology. 

 

4.1.2. Analyzing input significance for CO2/N ratio 

 

Relative significance of input variables was analyzed by evaluating results for one 

hidden layer with nine neuron neural network model. In order to achieve this, change of 

root mean square error method was employed: the method involves removing one or a 
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group of variables from the network and retraining it with remaining variables. RMSE 

values were calculated for each run. The differences between RMSE for original model (it 

was 0.023) and the value calculated in the absence of a variable were accepted as an 

indicator of the significance of that variable for the output. High RMSE values show the 

high significance of that variable.   

 

Input significance analysis was performed six times in order to minimize the 

deviations due to random initialization, and then the average value of each variable was 

calculated. In addition to this, Table 4.1 shows the results of input significance neural 

network of CO2/N ratio. 

 

As can be seen from Table 4.1, adsorbent variables were found to have 34.33% 

significance while the operating variables had 65.67% significance. These are expected 

results; especially temperature, pressure and CO2 concentration has to be important; hence 

the model can be considered as successful. Amine type has considerable effect on how 

efficient the amino group is during adsorption process. It can be seen from table 4.1 that 

the total significance of amine type and properties, which was the summation of primary, 

secondary, tertiary, linearity, molecular weight of amine, steric hindrance of amine and 

nitrogen content, was 19.5%. Total significance of amine properties was quite high and 

comparable to most important parameter (pressure).  

 

During adsorption process, not all amino groups in the amine modified material are 

expected to be useful (Sanz et al., 2010). The number of moles of CO2 adsorbed per mole 

of amino groups gives amino efficiency (Sayari et al., 2012). By analyzing the distribution 

of amino groups in the sorbent structure, it may be understood how efficient the amino 

groups are. Molecular weight of amine (chain length) may have considerable effect on 

diffusion therefore is expected to affect amino efficiency.  

 

When high molecular weight-amines are deposited on the external surface of the 

mesoporous silica, they may block the pore entrance due to their long chain lengths and 

this may hinder the access of CO2 into the pores, where amino groups are located, leading 

to smaller CO2/N ratios (Sanz et al., 2012). In addition to this, molecular weight of the 
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amine was estimated to have a relative significance of 1.87 % on the determination of the 

amino efficiency, pointing out the effect of amine chain length. 

 

Table 4.1. Input significance results of neural network for CO2/N ratio. 

Input Variable 
RMSE 

(found) 

RMSE 

Difference 

Relative 

Significance% 

Group 

Significance 

% 

Support type 0.027 0.004 2.94 

Adsorbent 

Variables 

34.33 

Calcination conditions 0.026 0.003 2.42 

Surface area 0.025 0.002 1.91 

Pore size 0.026 0.003 2.66 

Pore volume 0.026 0.003 2.62 

Modification method 

of amine 0.026 0.003 2.20 

Primary amine 0.025 0.002 1.63 

Secondary amine 0.025 0.002 1.72 

Tertiary amine 0.025 0.002 2.12 

Linearity of amine 0.024 0.001 0.96 

MW (Molecular 

Weight) of amine 0.025 0.002 1.87 

Steric hindrance of 

amine 0.025 0.002 1.44 

N content 0.036 0.013 9.84 

Pretreatment T(°C) 0.026 0.003 2.58 

Operational 

Variables 

65.67 

T °C Adsorption 0.039 0.016 11.96 

P (bar) 0.064 0.041 30.01 

CO2 concentration (%) 0.045 0.022 16.04 

RH % (relative 

humidity) 0.027 0.004 3.50 

Prehydration 0.025 0.002 1.58 
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Table 4.1 shows that whether the amino groups involved are primary, secondary, or 

tertiary has an input significance of 5.47 % in total, the distribution being 1.63, 1.72, and 

2.12 %, respectively. Primary and secondary amines are known to react with CO2 under 

anhydrous conditions. However, in multi-functional amine structures or under conditions 

where adsorption is controlled by kinetics, some of the amine structures may not take part 

in the CO2 adsorption, even though they are primary or secondary. On the other hand, 

tertiary amines do not react with CO2 under anhydrous conditions even though they are 

accessible by the CO2 molecules. Thus tertiary amine effect is actually negative but 

apparently significant (2.12%). In humid adsorption conditions tertiary amines are also 

active (Samanta et al., 2012). 

 

Examination of CO2/N ratio with respect to adsorbent properties such as pore size, 

volume and surface area revealed that their significance were found as 2.66%, 2.62, and 

1.91% respectively. Surface area is usually associated with physical adsorption (Sanz 

Perez et al., 2013); the higher the surface area, usually the higher the adsorption capacity 

is. So, our finding of the relatively smaller significance of the surface area on amino 

efficiency makes sense, if the chemical interaction of amines with CO2 is considered. In 

addition, it was reported that higher surface area of PE-MCM-41 material resulted in low 

CO2/N ratio due to reaction of amine with support surface and lose its ability (Franchi et 

al., 2005). Pore size and volume, on the other hand, were found to be more significant on 

the determination of C/N ratio. This was also expected since these two properties were 

reported to control adsorption kinetics as well as the amount of amine loaded (Son et al., 

2008). Adsorption capacity was found to be the highest for the adsorbent, which had the 

largest pores. Normally, from a diffusion point of view, it may be foreseen that amino 

efficiency might be higher for larger pore sizes. Larger pores permit mobility of amino 

groups and improve CO2 diffusion therefore amino efficiency is increased (Sanz et al., 

2013). However, there is still the probability of the presence of inefficient amino groups 

due to their orientations even if the diffusion of CO2 is not problematic. 

 

Adsorption temperature has an essential effect on adsorption capacity and amino 

efficiency. Kinetic effect becomes dominant if the adsorption capacity is increased with 

increasing temperature. Since the adsorption temperature allows higher mobility, CO2 

diffusion is achieved to the areas which are not easily accessible at low temperature. As a 
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result, the possibility of reaction between amine groups which are located inside of the 

pores and CO2 is increased. It was observed that at low temperatures PEI impregnated on 

the external surface of material and diffusion limitation occurs. On the other hand, PEI 

enters inside the pores and becomes more active for CO2 at high temperatures (Sanz et al., 

2010). Significance of adsorption temperature on amino efficiency was calculated as 

11.96%. 

 

It should be noted that these relative significance are found within the limits of this 

experimental data set, hence results are empirical. The relatively low significance of a 

variable may not actually indicate that it is unimportant for the process. It may be due to 

the fact that it may not be changed much through the data set; for example if the optimum 

value of a variable is well established, and adopted in all works that are used to construct 

the data set, the significance would be low even though this variable is actually important. 

Hence the significance values in Table 4.1 should be considered as the indicator of whether 

changes in the value of a variable may produce changes in performance or not. 

 

4.2. Neural Network Analysis for CO2 adsorption capacity 

 

The neural network model was also constructed for the CO2 adsorption capacity. 

Similar to CO2/N ratio, the optimal network topology was found first, and this structure 

was used for input significance. 

 

4.2.1. Determining Optimum Artificial Network Topology 

 

10 neural networks with 26 inputs and one output variable (adsorption capacity) were 

built in different structures with different number of hidden layer and neurons. Single layer 

structure also showed better performance compared to two hidden layers for adsorption 

capacity as in the CO2/N case. Same approach for CO2/N was taken into consideration by 

calculating optimum neural network for capacity in all steps. 10-fold cross validation 

technique was performed to obtain the testing RMSE and R2. The RMSE and R2 values of 

testing were compared and they were used to find the optimal network. 
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Similar to previous section, “a, b, c” notation of represents the 26 input variables (a) 

introduced through different number of neurons (b, increased from 2 to 11) in the first 

hidden layer with one input variable (c), which was the adsorption capacity in this case. 

Figure 4.3 illustrates the comparison of training and testing errors of 10 networks with the 

increased number of neurons.  

 

 
Figure 4.3. Training and testing errors of different neural network topologies for CO2 

adsorption capacity. 

 

The yellow bars in Figure 4.3 show the training error of that specific network while 

the purple bars indicate the testing error, which is the indicator of generalization accuracy. 

It can be seen from Figure 4.3 that there is a sharp decrease of the training RMSE with the 

increase in neuron number. As the network gets larger, decrease in training RMSE 

decelerates. 

 

 Normally, the testing error decreases first with the increasing network size, and then, 

once the training error reaches the minimum, it starts to increase again due to overfitting. 

However there was no sharp change in testing RMSE for this work for the number of 

neurons from seven to 11. The network structure of 26, 10, 1 displays the minimum RMSE 
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of testing (0.25) with an obvious low RMSE of training (0.118). This structure was used to 

determine significance of input variables. 

 

The experimental versus predicted CO2 adsorption capacity plots of optimal network 

(26, 10, 1) for both training and testing are shown in Figure 4.4. It indicates considerably 

successful fitting and quite satisfactory RMSE and R2 values for both training and testing. 

 

 
Figure 4.4. Experimental versus predicted CO2 adsorption capacity for: (a) training, 

(b) testing data by the optimal neural network topology. 

 

     4.2.2. Analyzing input significance for adsorption capacity 

 

Neural network model was used to calculate the relative significances of input 

variables and to analyze the results. A procedure similar to the one followed for CO2/N 

ratio (Section 4.1) was performed in order to find the input significance results for CO2 

adsorption capacity. As mentioned earlier, input significance calculations was processed by 

removing one or a group of variables from the network and then retraining the whole 

network with remaining variables. Then the RMSE value in the absence of a variable is 

compared with the RMSE value found for full model (0.118) as the significance of that 

variable.  
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Table 4.2 illustrates the relative significance of inputs. It is seen from Table 4.2 that 

operational variables had 57.34% of relative significance in total while adsorbent variables 

had 42.66% of relative significance. Operational variables had much effect on the carbon 

dioxide adsorption capacity than adsorbent variables as it was calculated for CO2/N ratio. 

  

Table 4.2. Input significance results of neural network of CO2 adsorption capacity. 

Input Variable 
RMSE 

(found) 

RMSE 

Difference 

Relative 

Significance% 

Group 

Significance 

% 

Support type 0.1311 0.0131 1.97 

Adsorbent 

Variables 

42.66 

Calcination conditions 0.1380 0.0200 3.00 

Surface area 0.1306 0.0126 1.89 

Pore size 0.1313 0.0133 2.00 

Pore volume 0.1302 0.0122 1.84 

Modification method of 

amine 
0.1351 0.0171 2.56 

Primary amine 0.1335 0.0155 2.33 

Secondary amine 0.1194 0.0014 0.21 

Tertiary amine 0.1260 0.0080 1.20 

Linearity of amine 0.1246 0.0066 1.00 

MW (Molecular 

Weight) of amine 
0.1230 0.0050 0.75 

Steric hindrance of 

amine 
0.1228 0.0048 0.72 

N content 0.2727 0.1547 23.20 

Pretreatment T(°C) 0.1264 0.0084 1.25 

Operational 

Variables 

57.34 

T °C Adsorption 0.1849 0.0669 10.03 

P (bar) 0.3304 0.2124 31.86 

CO2 concentration (%) 0.1832 0.0652 9.78 

RH % (relative 

humidity) 
0.1362 0.0182 2.74 

Prehydration 0.1292 0.0112 1.67 
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The most important adsorbent variable was found as the nitrogen content with 

23.2%. It is much higher than for the case of CO2/N ratio as expected; adsorption capacity 

does not have information regarding to N contents as CO2/N does, hence it is normal that it 

was affected from N content more. Carbon dioxide adsorption depends on nitrogen 

functionality and its amount in the adsorbent. According to Sanz et al. (2013) study, 

nitrogen content of 50 wt % of TEPA modified PE-SBA-15 sorbent was found as 14.1 %, 

which was the highest compared to other adsorbents. They concluded that higher nitrogen 

content led to higher adsorption capacity. In this thesis, we also observed same trend in our 

analysis. 

 

Primary and secondary amines directly interact with CO2 while tertiary amine does 

not if water is not added. The effect of tertiary amine is crucial but it has negative effect on 

carbon dioxide capture process. In humid adsorption conditions tertiary amines are inactive 

(Samanta et al., 2012). As can be seen from Table 4.2, relative significance of primary 

amine (2.33%) was higher than secondary (0.21%) and tertiary amine (1.20%). Primary 

amine modified adsorbents exhibit high reactivity over secondary and tertiary amine-

modified ones. Primary amine containing silica sorbent exhibited highest carbon dioxide 

capture capacity compared to secondary and tertiary amine containing silica sorbent 

(Sayari et al., 2012).  

 

Adsorbent physical properties such as pore size, pore volume, surface area are found 

to have 5.73 % significance in total. According to the study by Son et al. (2008) adsorption 

capacity is also the highest for the adsorbent which had the largest pores. Pore diameter 

was detected as the most important variable by taking into consideration its effect on 

controlling adsorption kinetics. Mesoporous structures offer ability for organic amine to 

enter into pore space and good mass diffusion of CO2 molecules into the sorbent structure. 

In addition, surface functionalization and diffusion of reagents to the surface depend on 

pore size and pore volume (Samanta et al, 2012).  

 

As in shown Table 4.2, the relative significance of sorbent type was 1.97%. Based on 

the literature studies proving the inactivity of mesoporous silica structures towards CO2 

under the conditions of interest, it may be argued that if two different supports (e.g. MCM-

41 or SBA-15) are modified by the same amount of identical amines under the same 
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conditions, they will probably adsorb similar amounts of CO2 at identical reaction 

conditions. Similar findings that CO2 adsorption capacity is mainly dependent on pore size 

and volume rather than type of sorbent were reported before (Son et al., 2008). 

 

Studies with impregnation and grafting as amine modification method were extracted 

in this thesis and shown as one attribute in data set. Significance of method of amine 

modification was found as 2.56%. Impregnation method has ability to load more amine on 

support surface and it provides higher CO2 uptake rate. On the other hand, amine loading 

on support surface is restricted in grafting method but it has more thermal stability 

compared to impregnation. Effect of both type of modification method on carbon dioxide 

capture is essential but it cannot be generalized whether one of these methods is always 

better than other. According to Garcia et al. (2015) study, it was observed that grafted 

SBA-15 material showed higher CO2 adsorption capacity compared to PEI impregnated 

SBA-15 material. 

 

On the other hand, the operational variables had more dramatic effects on the results. 

As expected, pressure, CO2 concentration and the temperature are the major variables 

affecting the adsorption capacity. These results are understandable since the adsorption 

process is highly dependent on adsorption temperature, pressure and CO2 concentration. 

Adsorption pressure was found to be the most important variable with 31.86% 

significance. CO2 adsorption performance of adsorbent is greatly affected by CO2 partial 

pressure therefore it is valuable to understand the influence of this attribute (Wang et al., 

2007). The significance of CO2 concentration was detected as 9.78 % which can be seen 

from Table 4.2.  

 

Adsorption of carbon dioxide is an exothermic process. Thus, under the conditions 

where adsorption is purely controlled by thermodynamics adsorption capacity should 

decrease with increasing temperature. However, when kinetic effects are dominating, the 

reverse may also be true. The reason for this phenomenon is that the amine sites can exist 

in the sorbent channels like nanosized particles and the access to some of those may be 

restricted at low temperatures. In both ways, adsorption temperature has a significant effect 

on carbon dioxide adsorption process (Xu et al., 2002). It can be seen from Table 4.1 that 



45 
 

significance of temperature was found comparatively high with 10% which is consistent 

with literature data.  

 

CO2 adsorption capacity is affected by presence of water in adsorption process. 

However, the findings about the effect water are quite contradicting; in some experiments 

adsorption capacity increased under moist conditions, in some decreased or remained the 

same. The significance of relative humidity was determined as 2.74%. CO2 adsorption 

capacity of mesoporous adsorbent was increased with increasing relative humidity (Serna-

Guerro et al., 2010). On the other hand, it was also shown that under moist conditions 

adsorbed amount of CO2 decreased (Hiyoshi et al., 2005). 

 

4.3. Decision Tree Classification for CO2/N ratio 

 

The data base including 1356 instances with 26 attributes were classified according 

to their CO2/N ratio into four classes representing low, moderate, high, very high amino 

efficiencies. The ranges and number of data points in classes are: 0-0.22 (low), consisting 

361 data points; 0.22-0.30 (moderate), consisting 342 data points; 0.30-0.40 (high), 

consisting 319 data points; 0.40-0.90 (very high) consisting 334 data points. These 

divisions were chosen because they are sufficient to distinct the good and bad performance, 

and lead to an approximately equal number of data points in each class, hence it will not 

create class imbalance problem. Then, they were divided randomly into two parts which 

were training and testing sets. Three fourth of the total data including 1017 data was used 

to build decision tree and to train it while, one fourth of the total data including 339 data 

was used for testing set which test the generalization ability of the decision tree. 

 

The ranges of input variables leading to very high CO2/N ratio were predicted by 

applying decision tree analysis to develop heuristics which improve adsorption 

performance. In order to reach optimal decision tree, different prune and split min values 

were investigated. First, large tree were constructed and then different levels of prune 

value was applied until reaching minimum error rate. If the tree size is increased, training 

error decreased continuously while testing error decreased first and then increased due to 

model overfitting. Split min value was detected as 20 and optimal prune value found as 3.  

 



 
 

 
Figure 4.5. Optimal decision tree for total data set of CO2/N ratio. 
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The optimal decision tree was illustrated in Figure 4.5. Training and testing errors 

were 19.2% and 22.7% respectively. Testing error showed that the tree was able to predict 

the CO2/N levels reasonably well. It can be concluded from testing error that the model 

results were successful since these data points were not used during model construction. As 

can be seen from Figure 4.5, the first division at the top was according to molecular weight 

of amine, which was modified on the sorbent surface.  The decision point for molecular 

weight of amine was 65 g/g mol and classification process continues in the sub branches 

with adsorption pressure, adsorption temperature, nitrogen content, pore size and CO2 flux 

concentration. 

 

If the molecular weight of amine was higher than 65 g/g mol, tree showed that high 

amino efficiency level was not possible at the pressures less than 0.518 bar. If the 

molecular weight of amine was higher than 65 g/g mol and the pressure was higher than 

0.518 bar, tree suggested that the high CO2/N ratio depends on other  variables; the four 

most significant variables were molecular weight, pore size, adsorption temperature and 

adsorption pressure. In this division (MW was higher than 65 g/g mol and P was higher 

than 0.518 bar) certain conditions like the nitrogen content was lower than 8 mmol/g 

sorbent, pressure was higher than 3.44 bar, flux CO2 concentration was higher than 52.5%, 

pressure was less than 5.6 bar, nitrogen content was less than 5.4 g/gmol were suggested 

by tree to reach very high levels. In same division, the tree also showed that if nitrogen 

content was higher than 8 mmol/g sorbent pore size must be higher than 12 nm to achieve 

highest amino efficiency.  There were six other branches and possibilities towards very 

high CO2/N ratio in the same main branch. It can be seen that adsorption temperature, 

molecular weight, pressure and pore volume were the dominant parameters.  

 

If molecular weight was lower than 65 g/g mol, there had three braches which led to 

high CO2/N ratio with different combinations. In this division (molecular weight of amine 

was lower than 65 g/gmol), pressure was the decision point which had a value of 0.109 bar. 

Tree suggested that if the pressure was higher than 0.109 bar and temperature was lower 

than 62.5 °C, very high level of CO2/N ratio may be achieved. In the same division, there 

was one other branch which had highest CO2/N ratio. On the other hand, highest CO2/N 

ratio was accomplished when molecular weight was lower than 65 g/g mol, pressure was 

lower than 0.109 bar and temperature was lower than 42.5 °C. 
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Table 4.3. Classification accuracies of CO2/N ratio training data classes. 

Experimental Data Predictions for Training 

CO2/N  ratio 
Number 

of data 

0-0.22 

(low) 

0.22-0.30 

(moderate) 

0.30-0.40 

(high) 

0.40-0.90 

(very high) 

Classificati

on 

Accuracy 

(%) 

0-0.22 (low) 251 211 28 7 5 84.1 

0.22-0.30 

(moderate)  
263 24 202 29 8 76.8 

0.30-0.40 

(high) 
259 5 24 190 40 73.4 

0.40-0.90 

(very high) 
244 2 1 22 219 89.8 

 

Table 4.4. Classification accuracies of CO2/N ratio testing data classes. 

Experimental Data Predictions for Testing 

CO2/N  ratio 
Number of 

data 

0-0.22 

(low) 

0.22-0.30 

(moderate) 

0.30-0.40 

(high) 

0.40-0.90 

(very high) 

Classificati

on 

Accuracy 

(%) 

0-0.22 (low) 110 89 15 3 3 80.9 

0.22-0.30 

(moderate) 
79 9 53 14 3 67.1 

0.30-0.40 

(high) 
60 0 8 39 13 65.0 

0.40-0.90 

(very high) 
90 0 0 9 81 90.0 

 

 

The distribution of training and testing errors among tree classes for the optimum 

tree are shown in Table 4.3 and Table 4.4 respectively. Accuracy of training classification 
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was 81%. It can be seen from Table 4.3 that 822 of 1017 data points were correctly 

classified during training. The accuracy of testing classification was 75.7% which is quite 

successful since 262 of 339 data were classified accurately. It should be noted that even the 

wrong classes were placed mostly to the neighboring classes indicating that the success of 

the tree is actually higher than as it was indicated by the correct classification rate. The 

lowest and highest CO2/N ratio classification accuracies are high as expected since the 

model predicts outer classes better.  

 

It should be noted that these split values are calculated by learning algorithm of the 

decision tree therefore they are not the exact physical limits; they are just the center point 

between the values in two branches. 

 

 



 
 

 
Figure 4.6. Branches of decision tree leading the highest (0.40-0.90) CO2/N ratio.
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Branches of decision tree leading the highest amino efficiency and accuracy of each 

branch was showed in Figure 4.6. The heuristics leading to very high CO2/N ratio 

improved from the decision tree analysis were illustrated in Table 4.5. It can be seen from 

Table 4.5 that there are 11 different combinations and ranges of input variables which 

leads to high CO2/N ratio. In Table 4.5, rows from left to right indicate conditions for very 

high (0.40-0.90) CO2/N ratio and the last columns indicate the accuracy of prediction 

which was the ratio of correctly predicted number of data points over total data for each 

node that led to very high CO2/N ratio. In spite of the fact that the rules in Table 4.5 are 

empirical, they could lead future studies. It should be noted that the rows verified by high 

number of data points could be considered as heuristics for high amino efficiency. On the 

other hand, the rows include moderate number of data points could be used with cautions 

(Tapan et al., 2016). 

 

Table 4.5. Conditions for maximum CO2/N ratio determined by decision tree. 

 
 

Although they are not completely conclusive, some heuristics mat may be drawn 

from this table can be summarized. 

 

It can be seen from tree that, at high adsorption pressure, the best combination seems 

to depend on whether nitrogen content lower than 8 mmol/g sorbent or not, if the amine 
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has high molecular weight(MW≥65). The tree indicated the following set of rules for both 

cases. If nitrogen content of adsorbent is higher than 8 mmol/g sorbent, pore size must be 

higher than 12 nm. If nitrogen content of adsorbent is lower than 8 mmol/g sorbent, 

adsorption pressure becomes important. In this case, if the adsorption pressure is higher 

than 3.44 bar, flux CO2 concentration must be higher than 52.5%.  

 

 On contrary, if the adsorption pressure is lower than 3.44 bar, nitrogen content 

should be lower than 4.22 mmol/g sorbent and flux CO2 concentration, pore volume, 

adsorption temperature and pressure becomes dominant. 

 

If the molecular weight of amine was lower than 65 g/gmol, pressure and 

temperature becomes dominant. If pressure and temperature is high, pore size should be 

taken into consideration carefully and needs to be higher than 20 nm. 

 

4.3.1. Decision tree results of CO2 adsorption capacity  

 

Same procedure for decision tree analysis of CO2/N ratio in previous section was 

applied on CO2 adsorption capacity analysis. As for amino efficiency analysis, 1356 total 

data with 26 attributes were classified as low, moderate, high and very high levels 

according to their adsorption capacity values. The ranges were 0-1 mmol CO2/g adsorbent 

(low) consisting  310 data, 1-1.5 mmol CO2/g adsorbent (moderate) consisting 392 data, 

1.5-2 mmol CO2/g adsorbent (high) consisting 313 data, 2-6 mmol CO2/g adsorbent (very 

high) consisting 341 data. 1017 data was used training data set, while 339 data was used 

for testing set. 

 

Decision tree analysis of capacity was applied and some heuristics were developed 

by taking very high adsorption capacities into consideration. Optimal results were taken 

from the analysis for 20 split min and 4 prune value and decision tree was shown in Figure 

4.7.  

 

Decision tree was obtained with 16.6% training error and 18.0% testing error. It can 

be deduced from testing and training errors that decision tree model and analysis for 

adsorption capacity was quite satisfactory, and better than the case of CO2/N. 



 
 

 
 

Figure 4.7. Optimal decision tree for total data set of CO2 adsorption capacity.
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Figure 4.7 reveals that the data first divided at the top according to nitrogen content 

of an adsorbent. It is well known from many studies that nitrogen content is very effective 

on amount of captured carbon dioxide by reacting with carbon dioxide (Sanz et al., 2013). 

Decision point for nitrogen content at the top was 4.5 mmol/g sorbent. It was impossible to 

achieve very high CO2 adsorption capacity when nitrogen content was less than 3.2 

mmol/g sorbent. If nitrogen content was between 3.1 mmol/g and 4.5 mmol/g (3.1≤ N 

<4.5), tree suggested that there were two branches which led to the highest capacity. One 

of these two branches was for nitrogen content between 4.2 and 4.5 mmol/g and pressure 

was higher than 0.53 bar. In this division, tree indicated that amine needed to be grafted on 

the support surface in order to achieve the highest adsorption capacity. If nitrogen content 

was between 3.1 mmol/g and 4.5 mmol/g, pressure must be higher than 0.53 bar, otherwise 

the highest adsorption capacity cannot be reached. 

 

Decision tree showed that if nitrogen content was higher than 4.5 mmol/g, division 

continued with pressure and in this division there were five branches and combination 

towards the highest capacity. Tree suggested that, in this division (nitrogen content was 

higher than 4.5 mmol/g), the highest CO2 adsorbent capacity depends on adsorption 

pressure, presence or absence of primary amine, nitrogen content, surface area, and 

adsorption temperature. 

 

If the nitrogen content was higher than 4.5 mmol/g and pressure was higher than 0.44 

bar there were four combinations for achieving very high level of performance. In this 

division, tree suggested that nitrogen content higher than 9.2 mmol/g, calcination time was 

higher than 5.5 h, temperature was higher than 35 °C, high secondary amine led the highest 

adsorption capacity. On the other hand, in this division (nitrogen content was higher than 

4.5 mmol/g and pressure was higher than 0.44 bar), if nitrogen content was lower than 6.4 

mmol/g, pretreatment temperature, primary amine, surface area and adsorption temperature 

became dominant. In the literature, the significance of adsorption temperature and pressure 

were also indicated as relatively important parameters on adsorption performance and 

temperature effect on adsorption capacity is variable, depending whether the adsorption is 

controlled by thermodynamics or kinetics (Xu et al., 2002). 
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Tree suggested that, when the nitrogen content was higher than 4.5 mmol/g and 

pressure was lower than 0.44 bar, surface area cannot be lower than 1100 m2/g to achieve 

high capacity. In this division adsorption temperature and surface area were significant 

variables to determine the highest adsorption performance. 

 

Table 4.6. Classification accuracies of CO2 adsorption capacity training data classes. 

Experimental Data Predictions for Training 

CO2 

adsorption 

capacity 

Number of 

data 
0-1 (low) 

1-1.5 

(moderate) 

1.5-2 

(high) 

2-6 (very 

high) 

Classification 

Accuracy 

(%) 

0-1 (low) 228 203 20 1 4 89.0 

1-1.5 

(moderate) 
274 27 210 28 9 76.6 

1.5-2 

(high) 
246 2 23 186 35 75.6 

2-6 (very 

high) 
269 0 1 19 249 92.6 

 

Table 4.7. Classification accuracies of CO2 adsorption capacity testing data classes. 

Experimental Data Predictions for Testing 

CO2 

adsorption 

capacity 

Number of 

data 
0-1 (low) 

1-1.5 

(moderate) 

1.5-2 

(high) 

2-6 (very 

high) 

Classification 

Accuracy 

(%) 

0-1 (low) 82 72 6 0 4 87.8 

1-1.5 

(moderate) 
118 15 90 9 4 76.3 

1.5-2 

(high) 
67 0 6 49 12 73.1 

2-6 (very 

high) 
72 0 0 5 67 93.1 
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The distribution of training and testing errors among tree classes for the optimum 

tree are shown in Table 4.6 and Table 4.7, respectively. Accuracy of training classification 

was 83.4%. 

 

 It can be seen from Table 4.6 that 848 of 1017 data points were correctly classified 

during training. While accuracy of testing classification was 82.5% which is quite 

successful since 278 of 339 data were classified accurately shown in Table 4.7. This results 

show how good models classify and predict the data. 

 

Figure 4.8 illustrates branches of decision tree that have the highest adsorption 

capacity with accuracy information for each branch. Table 4.8 shows the conditions for 

high performance.  

 

It is seen from the top of tree that nitrogen content should not be lower than 3.1 

mmol/g sorbent. Decision point for nitrogen content is 4.5 mmol/g sorbent and tree 

suggested that the high performance could be achieved whether nitrogen content is lower 

or higher than this value (as long as higher than 3.1 mmol/g) if some other conditions are 

met.  

If nitrogen content is in between 3.1 and 4.5 mmol/g sorbent, adsorption pressure 

becomes dominant and it should not be less than 0.53 bar.  

 

If nitrogen content is higher than 4.5 mmol/g sorbent, tree suggested different rules. 

If pressure is lower than 0.44 bar, surface area must be higher than 1100 m2/g and 

temperature must be lower than 43 °C. On contrary, if pressure is higher than 0.44 bar, 

pretreatment temperature, presence of primary amine, adsorption temperature and surface 

area becomes important. In this case, nitrogen must be lower than 6.4 mmol/g sorbent and 

pretreatment temperature must be higher than 135 °C to achieve very high level. 



 
 

 
 

Figure 4.8. Branches of decision tree leading the highest (2-6) CO2 adsorption capacity.
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Table 4.8. Conditions for maximum CO2 adsorption capacity. 

 
 

It can be seen from Table 4.8 that rows from left to right explain conditions for the 

highest adsorption capacity and the accuracy of prediction was shown in the last column. 

There were seven different combinations and ranges of inputs, which led to very high 

adsorption capacity.  
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5. CONCLUSION AND RECOMMENDATIONS 

 
 

5.1 Conclusion 

 

In this thesis, the experimental data for carbon dioxide adsorption on amine modified 

mesoporous sorbents were collected from the published articles between the years 2002 to 

2016. The final database consisted of 30 articles and 1356 experimental data with 26 input 

variables and 2 output variables. Two kinds of data mining techniques that were decision 

tree and artificial neural networks were applied to the final data set to extract knowledge 

for carbon dioxide adsorption. 

 

Firstly, neural network analysis was applied and it was quite successful for predicting 

results in unknown conditions. The best performing neural network topology was found as 

26, 9, 1 which indicated 26 input variables and nine neurons in the first hidden layer for 

amino efficiency (CO2/N ratio) analysis. 10-fold cross validation technique was used for 

testing model. R2 value and RMSE was 0.83 and 0.053 respectively for testing neural 

network analysis of CO2/N ratio. On the other hand, the best neural network topology for 

adsorption capacity analysis was found as 26, 10, 1. R2 value and RMSE was 0.90 and 

0.250 respectively for testing neural network analysis of capacity. 

 

Input significance for amino efficiency and adsorption capacity calculated by using 

neural network showed that the most important factor was pressure with approximately 

30% relative significance. The order of significance decreased in the order: pressure > flux 

carbon dioxide concentration > adsorption temperature > nitrogen content > others. Amino 

efficiency analysis showed that the group significance of for operational variables was 65.6 

%, while adsorbent variables have the relative significance of 34.4 %. On the other hand, 

input significance analysis for adsorption capacity showed that operational variables had 

the relative significance of 57.3 % while the significance of adsorbent variables was 42.7 

%. 

 

Optimum decision tree structure for the entire database was also determined 

according to simplicity of decision tree and an acceptable error rate. Splitmin value was 20 
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for CO2/N ratio and CO2 adsorption capacity; whereas prune value was 3 and 4, 

respectively. The data points were divided in four levels; which were low, moderate, high 

and very high for both analysis. The decision tree analysis for CO2/N ratio was 

accomplished with 19.2% training error and 22.7% testing error which was quite 

successful. It was observed from the decision tree that first decision point is the molecular 

weight of amine followed by pressure, nitrogen content, adsorption temperature, flux 

carbon dioxide concentration and pore size and so on. Some heuristics were also developed 

for very high (0.4–0.9) CO2/N ratio from decision tree analysis. Same procedure was 

applied to CO2 adsorption capacity decision tree analysis. Decision tree was achieved with 

16.6% training and 18.0% testing error. First division of decision tree at the top was 

according to nitrogen content of an adsorbent this time. Then decision tree was divided 

into branches according to pressure, adsorption temperature, pore area, flux carbon dioxide 

concentration, which were quite similar to the results of CO2/N ratio analysis. The 

conditions that are required to achieve very high (2-6 mmol CO2/g adsorbent) adsorption 

capacity were also determined.  

 

As a result, artificial neural network analysis seemed to have high prediction ability 

for both capacity and CO2/N ratio analysis. Hence it could be used for extracting 

knowledge from published experimental data and direct the future studies. On the other 

hand, decision tree, as a widely used classification technique due to its simplicity and 

interpretability, was converted into set of rules that may be used in future studies.  

 

5.2. Recommendations 

 

In the light of this thesis, some recommendations can be stated in order to improve 

current methods and build better models to lead future researches. 

 

 In order to achieve wider range of dataset to lead in detailed learning, more data can 

be collected by evaluating more articles. This will improve the prediction ability of 

model therefore model accuracy would increase.  

 Other machine learning tools such as clustering can be applied to the dataset first, 

instead of applying neural network directly. The subset formed by clustering may be 

more suitable for neural network modeling.  
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 Input variables analysis can be performed to eliminate the ineffective variables, and 

data mining tools may be implemented by taking only the significant variables into 

consideration. This would provide quicker learning and increase the model 

capability. 

 Other adsorbent types can be added to the data set. Then this data set can be analyzed 

to understand the common and different aspects of different types of adsorbent. And 

only chemisorption data can be used. 
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