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ABSTRACT

USING CROSSLINGUAL INFORMATION FOR

KEYWORD SEARCH IN LOW RESOURCE LANGUAGES

Keyword search (KWS) is a subtask of spoken content retrieval that aims to

solve the problem of locating a written query within a large, unlabeled spoken doc-

ument. The dominant approach to KWS involves transcribing the document using

an automatic speech recognition (ASR) system and conducting the search on indexes

obtained from the ASR lattices. The large vocabulary continuous speech recognition

(LVCSR) systems used to decode the document typically require enormous amounts of

labeled data to give good recognition and, subsequently, search accuracy. Therefore,

KWS models built for languages for with relatively little labeled training data need

to contend with the deterioration in search performance that accompanies a decline

in ASR performance. This deterioration is exacerbated by the increased incidence of

search terms that are out of vocabulary (OOV) of the training data. One way of

improving KWS performance in such a setting is to leverage information from other

languages. In this work, we use a multilingual representation to build a vocabulary

agnostic KWS model. The multilingual bottleneck (BN) representation, obtained from

a neural network trained on the source languages, is used to train a metric learning

based KWS engine in the target languages. Experiments on the low resource datasets

from the IARPA Babel Program show the benefits of using the proposed system as

an alternative to, or in tandem with, more traditional multilingual models. In an ex-

tremely low resource setting, the performance of the proposed system exceed that of

the baseline system (also trained with multilingual data). Furthermore, in a milder

low resource setting, the proposed system performs better on OOV term retrieval than

the baseline. In either setting, we show that combining the results from both systems

yields a robustness against OOV terms and better overall performance.
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ÖZET

KISITLI KAYNAKLI DİLLERDE ANAHTAR SÖZCÜK

ARAMA İÇİN DİLLER ARASI BİLGİ KULLANIMI

Anahtar Sözcük Arama (ASA), metin halinde verilen bir sorgunun büyük, etiketlen-

memiş bir konuşma dokümanı içinde bulunmasını amaçlayan, konuşma arama prob-

lemlerinin bir alt kümesidir. ASA’ya en hakim yaklaşım, Otomatik Konuşma Tanıma

(OKT) sistemleri ile konuşma verisini metne çevirme ve aramayı OKT örülerinden elde

edilen dizinler içerisinde gerçekleştirmektir. Bu örüleri elde etmekte kullanılan Geniş

Dağarcıklı Sürekli Konuşma Tanıma (GDSKT) sistemleri iyi bir konuşma tanıma, ve

dolayısıyla anahtar sozcuk arama performansi icin tipik olara muazzam miktarlarda

etiketli veri gerektirmektedir. Bu nedenle, nispeten az etiketli eğitim verisi olan diller

için inşa edilen ASA modelleri, OKT performansında yasanan düşüşe eşlik eden arama

performansındaki bozulma ile mücadele etmelidir. Bu bozulma, egitim verisinin da-

garcigi disinda (DD) kalan terimlerin mevcudiyeti ile daha da kotuye gitmektedir.

ASA performansının böyle bir ortamda geliştirilmesinin bir yolu, diğer dillerden ge-

len bilgilerden yararlanmaktır. Bu çalışmada, dağarcıktan bagimsiz bir ASA modeli

oluşturmak için çok dilli bir gösterim kullanmaktayiz. Kaynak diller üzerinde eğitilmiş

bir sinir ağından elde edilen çok dilli darboğaz gösterimleri, hedef dillerde uzaklık ölçütü

öğrenme temelli ASA motorunu eğitmek için kullanılır. IARPA Babel Programındaki

kısıtlı kaynaklı veri kümeleriyle gerçekleştirilen deneyler, önerilen sistemin daha ge-

leneksel çok dilli modellere alternatif olarak veya onlarla birlikte kullanmanın yarar-

larını ortaya koymuştur. Son derece kısıtlı kaynak ortamında, önerilen sistemin per-

formansı, (yine çok dilli verilerle de eğitilmiş) temel sisteminkini aşmaktadır. Kaynak

kısıtlarının daha gevsetildigi bir başka kısıtlı kaynak ortamında ise , önerilen sistemin

DD terimlerde temel sistemden daha yüksek başarıma sahip olduğu görülmüştür. Her
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iki durumda da, iki sistemin sonuçlarını birleştirmenin daha da iyi bir DD direnci ve

yüksek bir genel performans sağladığı gösterilmektedir.
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1. INTRODUCTION

The ubiquity of devices capable of recording speech and the ever decreasing cost

of storage have resulted in a large trove of spoken data in the form of audiovisual

lectures, news broadcasts, podcasts, senate and courthouse recordings, interrogations,

call-center recordings, telephone wiretaps etc. The ability to search such archives

efficiently would assist significantly in research, media content consumption and law

enforcement.

While the search can be, and often is, conducted as text retrieval on the docu-

ments’ accompanying meta-data, any such search would have to rely on rigorous docu-

mentation by the content provider and would probably return an undesirably unwieldy

result to the end user especially if the document is too long. Keyword search (KWS)

involves trying to find the exact location of a written query of arbitrary length within

a spoken document. The KWS system returns a list of locations within the document

hypothesized to contain the query term along with a relevance score for each location.

The contemporary approach to KWS involves transcribing the audio archive into

words with a large vocabulary continuous speech recognition (LVCSR) system and

then conducting textual information retrieval on the transcription. The document

is decoded into lattices which are directed acyclic graphs that contain hypothesized

transcriptions of the utterance. An inverted index that maps words to their locations

in the lattices is then generated to be used for search. Since the document is decoded

using a language model with a fixed vocabulary, the words in the index are limited to

those in this lexicon. This leads to the problem of out-of-vocabulary (OOV) words.

Even with a large lexicon, one would be hard pressed to cover all the words types

in a language. Proper nouns, infrequent words, loan words, neologisms and common

typing errors as well as morphological inflections in morphologically rich languages are

especially difficult to cover. This OOV issue is particularly endemic in low resource

languages where the lexicon size is considerably smaller than what would otherwise be

expected for an LVCSR system.
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Any query term that contains an OOV word is automatically undetectable by an

LVCSR based KWS system. This fact is particularly irritating considering that the

term can have any number of words only one of which has to be OOV to condemn the

whole term. One approach to managing OOV queries has been to construct lattices of

subword units such as phones, syllables or morphs [2–4]. The relaxation of the lexical

constraint that enables subword lattices to retrieve of OOV terms comes at the cost

of increased false alarms by the system; therefore, systems that utilize word lattices

for in-vocabulary (IV) term retrieval and subword lattices for OOV retrieval have been

proposed [5, 6]. Of course, these amalgam approaches incur the computational cost of

multiple decoding passes. Another method of dealing with OOV terms involves lexicon

expansion prior to decoding. This involves extending the lexicon with automatically

generated pronounciations and thus reducing the OOV rate [7]. A more robust ap-

proach which relies less on the ability to accurately predict query words is the proxy

keyword method. This involves the substitution of acoustically similar “proxy” words

for the OOV ones [8,9]. The word replacement is carried out with the use of confusion

models that facilitate efficient insertion, deletion or substitution of phones to transform

the query word into the proxy.

The KWS methodology used in this work is inspired by another branch of speech

retrieval called query-by-example (QBE) spoken term detection (STD). In QBE-STD,

the task is locating a short spoken query, as opposed to a written one, in a much

larger speech document. The template matching techniques developed to to perform

QBE-STD have been shown to be serviceable even in zero resource settings and so are

independent of the existence of the search term in the training vocabulary.

The main contributions of this thesis are as follows:

(i) We propose a representation of the multilingual bottleneck features that is fea-

sible for dynamic time warping based search. To reduce the deleterious effect of

data scarcity to keyword search in low resource languages, we propose using a

vocabulary agnostic dynamic time warping system with a representation trans-

ferred from other languages. After observing that the crosslingual representation
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is not well separable, we propose using a Gaussian mixture model to generate

posterior features on which we then conduct the search. Furthermore, we inves-

tigate the effects of training the model with data from other languages and show

that, in cases of extreme data scarcity, it is the multilingually trained models

performs better than the monolingual ones as well as the LVCSR baseline. With

enough data in the target language though, the monolingual models we trained

performed better than their multilingually trained counterpart.

(ii) We extend the distance metric learning based approach to fully utilize the mul-

tilingual representation we have learned. Since the performance of our dynamic

time warping model depends on three things, namely; the document representa-

tion, the query model and the distortion function used to discriminate between

them, we propose a neural network architecture to jointly optimize all three. By

prepending a document representation learner (that takes the bottleneck features

as input) and a generative query model to a distance metric learner, we obtain a

unified framework to optimize our search. The search conducted with this frame-

work performed considerably better than the Gaussian posteriorgram approaches.

In a very low resource setting, we show that this method also outperforms the

LVCSR baseline, even when the baseline lexicon is augmented considerably. In

a more moderate low resource setting, we show that although, compared to the

LVCSR baseline, the proposed method performs worse on in-vocabulary terms, it

is significantly better on out-of-vocabulary ones and combining the two systems’

results results in further gains.

(iii) We propose a method of compressing the features used for search, and thus reduce

the memory footprint of the dynamic time warping algorithm. First we modify

the metric learner to have intermediate representations that can be interpreted as

probability mass functions. By minimizing the entropy of these distributions, we

are able to produce a very sparse representation of the features space which is store

in memory and used for search. We show that the degradation in performance is

minimal at good compression rates.

(iv) We improve upon existing score normalization techniques. Although the raw

scores returned by our system have distributions that vary by keywords, we mea-
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sure performance using a metric that uses a global threshold to determine the

relevance of each result. To meet this need for a normalization of scores across

keywords, we propose a parametrized generalization to the median normalization

method. The normalization uses median as a ”typical” member of the set and

normalizes around it. Parameterizing enables us to get the ”typical” values at

various percentiles and select the one that performs best.

(v) We propose a system combination method based on good separation of relevant

and irrelevant scores of each system. Given that the LVCSR baseline and the

proposed algorithm perform are trained in very different manners and perform

well on different subtasks of the whole task, it is reasonable to expect that a

combination of the results from the two would perform better than using either

individually. To this end, we propose a fusion based on the normalized cross en-

tropy which measures how-well calibrated a system is, i.e, how well separated are

relevant hypothesis from irrelevant ones. For each system, we learn a transforma-

tion which, when applied to the scores, minimizes the normalized cross entropy

for that system. After transforming the scores in this way, fusion can be done by

simple addition without much risk of boosting irrelevant hypotheses from either

system. Using a parametrized transformation, we are able to transfer to previ-

ously unseen datasets; furthermore, by using only two parameters, we reduce the

risk of overfitting to the set on which the parameters are learned. We show that

fusing the systems in this manner resulted in gains across languages and system

configurations.

The rest of this thesis is organized thus:

• In Chapter 2, some background knowledge about the problem domain is provided.

• In Chapter 3, the models proposed in this thesis are described in depth.

• In Chapter 4, the empirical results and discussion are provided. In addition, the

evaluation metrics are discussed.

• In Chapter 5, we draw our conclusions on the thesis.
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2. BACKGROUND

The focus of this thesis is using a multilingual representation to bootstrap key-

word search in low resource languages in a manner that is insensitive to OOV queries.

This chapter provides background information on keyword search systems and the use

of multilingual features in speech recognition and retrieval.

2.1. LVCSR based keyword search

LVCSR based KWS systems use a speech recognizer to transcribe the speech into

text and then conduct the search on the text. The LVCSR system outputs lattices

from which an index is constructed. The query is then searched in this index. Since

automatic speech recognition forms the backend for this and most other approaches to

KWS systems, it will be described first.

2.1.1. Statistical ASR

The transduction of spoken utterances into linguistic hypotheses is generally done

in a statistical manner. The procedure can be described as predicting the most likely

word sequence, W , given the observed acoustic sequence, X. The words are generally

split into sequences of phones, G e.g. (boş contains the phones b, o and S), which also

have to be decoded. The search can be expressed as:

Ŵ , Ĝ = arg max
W,G

P (W |X) (2.1)

= arg max
W,G

P (W )P (G|W )p(X|G)

p(X)
(2.2)

= arg max
W,G

p(X|G)P (G|W )P (W ) (2.3)

where Ŵ and Ĝ are the estimated word and phone sequences respectively, p(X|G) is

referred to as the acoustic model, P (G|W ) is referred to as the pronunciation model

and P (W ) is referred to as the language model [10].
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The acoustic sequence, X, is typically a perceptually inspired representation of

speech such as perceptual linear prediction (PLP) or mel-frequency cepstral coefficients

(MFCC). The acoustic model assigns a probability to each vector in X conditioned on

the underlying phone sequence. The language model gives the probability of each word

sequence and is typically implemented as a Markov chain from which the probability of

a word given a finite history of words can be obtained. The language model serves to

limit the search space and enable the distinction of acoustically similar word sequences

(such as Eye two have to oranges vs I too have two oranges) by assigning higher

probabilities to syntactically more likely word sequences [11].

Hidden Markov models (HMMs) are commonly used to model the temporal vari-

ations in speech. Before the resurgence of neural networks, the observation probability

distributions of the HMM states were modeled with Gaussian mixture models (GMMs).

While the complexities (and capacities) of earlier artificial neural networks (ANNs) were

limited, the proliferation of graphical processing units (GPUs), along with improved

training algorithms, has precipitated the development of deeper neural networks with

large output layers capable of modeling the context dependent phonemes typically used

as HMM states [12].

2.1.2. ASR Output

When decoding an acoustic sequence, an ASR system must search through a

large number of possible word sequences. Since keeping track of all such sequences is

impractical, unlikely hypothesis are pruned heuristically as the decoder runs [13]. The

graph of remaining hypotheses, called a lattice, along with their timing information

and scores can be stored for further use.

Although it is possible to construct the search index from one-best ASR output,

the recall rate of such an index is likely to be very low for any system with a non-

negligible word error rate (WER). For instance, if the ASR mistranscribes “I too have

two oranges” as “I do have two oranges”, searching the document for the former in a

one-best index would automatically return a false negative. Therefore, it is necessary to
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Figure 2.1. An example of an ASR lattice.

index the lattice or some such similar structure. In Figure 2.1, the lattice is represented

as a weighted finite state automaton (WFSA) whose arcs carry pairs of word and their

score (likelihood). The word sequence hypotheses are given by paths from the initial

to final state.

Confusion networks provide an alternative, approximate, representation for the

ASR output lattice [14]. Confusion networks are constructed by clustering temporally

proximate arcs to form confusion sets. Figure 2.2 shows a confusion network obtained

from the lattice in Figure 2.1.

0 1
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geliriz/0.2
izleriz/0.06

biz/0.29

3yani/1

Figure 2.2. A confusion network.
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As with the lattices, the ASR transcription hypotheses are represented by paths

through the confusion network. Note, however, that equivalent transcriptions are given

different scores by the two graphs and they might even result in different best path

labels. In particular, the best path through the confusion network in Figure 2.2 (“biz

yani”) does not even exist in the original lattice. In general, the best path through a

confusion minimizes the WER while the best path through a lattice minimizes the sen-

tence error rate. Furthermore, the confusion network introduces hitherto nonexistent

paths. This could result in higher recall and lower precision KWS.

2.1.3. Index and Search

The index is a structure that allows efficient mapping from (query) word to lo-

cation within an utterance. The index contains all the words in LVCSR lattice along

with their relevance score.

A timed factor transducer (TFT) converts the lattice weighted finite state trans-

ducers (WFSTs) into an inverted index represented as a WFST mapping word to

utterance with a three-way weight of beginning time, end time and posterior score.

The search is conducted by composing [15] the query, represented as a WFST

with the index, removing ε transitions and sorting. This results in an automaton with

single-arc paths whose labels carry utterance information and whose weights carry the

location and relevance information.

2.2. OOV term retrieval

The word-based LVCSR-KWS approach has the limitation of requiring before-

hand a knowledge of all the query words it would handle. Even with a large lexicon,

it is virtually impossible to cover all possible words in a language. Query terms that

include words outside the lexicon used to train the LVSCR system are referred to as

out-of-vocabulary. The presence of OOV terms can significantly hamper the perfor-

mance of a KWS system especially in low resource settings where the lexicon is severely
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limited, and in morphologically rich languages like Turkish, Finnish and Zulu where it

is difficult to cover all possible word inflections. Searches for neologisms and loan words

such as names of foreign celebrities, dances, cocktails etc. also serve to exacerbate this

issue in an increasingly interconnected and multicultural world.

Since the absence of OOV words from the lexicon of an LVCSR system precludes

them from appearing in the lattice (and index), it is necessary to develop methods

capable of handling the OOV limitations of word lattice based KWS. Some of those

methods will be explored in this section.

2.2.1. Subword Units

Words are the most commonly used units for ASR and KWS. For closed vo-

cabulary tasks, it is possible to cover the required vocabulary in training. For open

vocabulary tasks, such as search, such complete coverage is virtually impossible. Sub-

word language models improve the coverage and have been shown to improve ASR

performance in highly inflective languages.

Several subword units have been proposed for language modeling including lin-

guistic units such as phones, syllables and morphemes. Since linguistically motivated

subword units require language specific knowledge that might be expensive to get, data

driven subword units such as graphones, particles and morphs have also been studied.

The high OOV coverage of subword models generally comes at a cost of precision. This

can be explained by the difficulty of recognizing units of such short duration as well as

the laxer lexicon constraint [16].

Since word and subword models excel at different subtasks of KWS, hybrid models

that take advantage of the merits of both have been proposed such as using joint

indexes [17], using word models for in-vocabulary (IV) term retrieval and subword

ones for OOV [4,5].
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2.2.2. Lexicon expansion

Using openly available textual sources to augment the LVCSR lexicon and lan-

guage model can help reduce the OOV rate for low resource languages and, thus,

improve the performance of KWS systems [18]. In conjunction with an OOV detection

scheme [19], this approach has been shown reduce the OOV rate by up to half [7]. One

drawback of using lexicon expansion to counteract the OOV issue is that the efficacy

of such an approach is tied to how well the system is able to predict the OOV words

used in search and add them to the lexicon.

2.2.3. Proxy keywords

The inability to accurately predict the query terms limits the effectiveness of

lexicon expansion methods. One technique that works well without advance knowledge

of query terms is the use of acoustically similar “proxy” words [8, 9].

Using a grapheme-to-phoneme (G2P), such as that described in [20], the pronun-

ciation of an OOV word is obtained. A phone confusion model is then used to find IV

words with similar pronunciation by substituting, removing or inserting phones. Based

on the rationale that the ASR system would transcribe the OOV words as acousti-

cally similar ones, the proxies are then used for search. The whole procedure can be

implemented as a series of WFST compositions and optimization, resulting in a mod-

ified query WFST which is then composed with the index FST described in Section

2.1.3. With sufficient pruning, the proxy keyword WFST size, consequently, the rate of

false alarms due to proxy overgeneration, can be managed. It is also noteworthy that

the proxy keyword plugs into a word index without any need to re-decode the docu-

ment and reconstruct the lattice thus avoiding the computational overhead of hybrid

word-subword approaches.
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2.2.4. Template matching for keyword search

A recently proposed OOV-robust approach uses the dynamic time warping al-

gorithm to match a representation of the query to one of the document. With a

document represented as a phone posteriorgram, a query is generated as a sequence

of binary or average phone pseudo-posteriors and an inner-product based similarity is

used for the dynamic time warping [21]. In [22], a distance metric learning framework

is introduced for as a replacement of the geometric similarities previously used and the

average query model is employed. To bypass the make-do average query model, in [23],

a query model is learned jointly with the distance metric. The fact that the algorithm

matches strictly acoustic sequences results in a better OOV term performance than

the LVCSR approach since it employs no language model and has a minimized lexicon

dependency; however, this results in lowered IV term performance since the linguistic

data is not leveraged.

2.3. Multilingual Networks for Low Resource ASR and KWS

Due to the paucity of transcribed data endemic in low resource languages, the

ability to transfer knowledge from other, resource-rich, is an attractive area of research.

In particular, the use of multilingually trained neural networks to improve the ASR

and KWS in target languages has been studied extensively. Some of the previous work

will be summarized here.

One approach to multilingual modeling is to use a neural network whose layers

are shared across all languages. The network layer is trained on a phoneme set covering

all the languages [24]. The phoneme set is either a concatenation of the phoneme sets

of the different languages or one based on external knowledge such as the international

phonetic alphabet (IPA) [25]. Finetuning a network trained in this manner on the

target language has been shown to improve ASR performance [26].

The multilingual network could also be trained with language specific softmax

output layers. In [27], the multilingual network is trained sequentially. After each
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language is trained, the softmax layer is removed and replaced with the softmax layer

for the next language. This approach allows the network to be trained without having

all the data at hand but has the disadvantage of being biased towards later trained

languages. Truly multilingual training can be achieved by interleaving the training

samples from different languages [28–30]. The hidden layers of the network are shared

across the languages while each language has its own softmax output layer. For a

training example, only the softmax layer of the pertinent language is activated and

the gradients from all other language output layers are set to zero. The multilingual

network can also be used as a feature extractor. The idea is to learn a representation

that maintains some of the discriminative ability of the neural network. This repre-

sentation can be the senone or phoneme probabilities obtained from the output of the

neural network [31] or the activations of an intermediate layer [32]. In a multilingual

framework, unless the target language is part of the multilingual training, using the

output probabilities directly typically entails concatenating the output activations for

all the languages and performing some dimensionality reduction since the feature size

might otherwise be unmanageable. An alternative is to introduce an intermediate,

lower dimensional, bottleneck (BN) layer whose activations are used as features for

further processing. To counteract the degradation in modeling capacity that results

from introducing the BN layer in the middle of the network, a low-rank matrix fac-

torization is used [33]. Extracting the bottleneck features from the low-rank layer also

results in richer features since no compressive nonlinearities are applied.

2.4. Spoken Content Retrieval with Dynamic Time Warping

The template matching approach was recently proposed for KWS [21]. Inspired

by the success of dynamic time warping (DTW) variants in the QBE-STD task, it

has been shown that this approach does not suffer from the degradation that hampers

LVCSR-based KWS on OOV queries [34] since the DTW simply compares two acoustic

sequences. DTW involves aligning two sequences possibly different lengths and com-

puting a distortion measure between the two. Although it was used with some success

in isolated small vocabulary speech recognition applications [10,35,36], DTW has been



13

largely abandoned for large vocabulary and continuous speech recognition.

The applications of DTW to QBE-STD typically shun cepstral features as their

high speaker and environmental variability limit their efficacy in large, speaker inde-

pendent, retrieval applications. In [37], phone posteriorgrams are used to form both

query and document models. The posteriorgram in this case is a time varying phone

classification matrix obtained from a supervised deep neural network (DNN). The use

of Gaussian posteriorgrams has also been shown to be effective for content retrieval [38].

This approach, particularly suitable for very low resource scenarios, involves training

an unsupervised GMM and using the Gaussian occupation probabilities to label the

data. Despite not being explicitly trained to classify acoustic units, the Gaussian pos-

teriorgram nevertheless outperform cepstral representations for QBE.

A key difference between the use of DTW for speech recognition and QBE lies in

the lengths of the sequences to be warped. In recognition, although the template and

word to be classified are seldom the exact same length, it is expected that they are of

approximately the same length and so the two sequences are matched from end to end.

However, in retrieval applications, one sequence, the query, is much shorter than the

other and so trying to match them from end to end is unlikely to succeed since most

of the document is irrelevant to the query at hand. Therefore, different modifications

to the DTW algorithm have been proposed some of which will be explained below

especially as they pertain to our application.

2.4.1. Dynamic Time Warping

The DTW is a dynamic programming algorithm that seeks to align two sequences

of varying length. Given two sequences, X := (x1,x2, ...,xN) and Y := y1,y2, ...,yM),

the algorithm aims to compute an alignment path and a distortion measure between

them. A path is a sequence of tuples,

Π = {(nk,mk)}, k = 1, ..., K (2.4)
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such that xnk
is aligned with ymk

. The path is constrained so that:

(i) Π1 = (1, 1) and ΠK = (N,M)

(ii) Πk −Πk−1 ε {(0, 1), (1, 0), (1, 1)}, k = 2, ..., K.

The first constraint forces the beginning and end points of X and Y to be aligned

with each other. The second ensures continuity; no frame in X or Y is omitted.

Implicitly, the second condition also ensures monotonicity. Under these constraints, a

distortion between the two sequences can be computed:

DΠ(X ,Y) =
K∑
k=1

d(xnk
,ymk

) (2.5)

where d(., .) is a frame-wise cost function which is referred to henceforth as a distance

or metric function. It should be noted however, that this function is only a metric

in a semantic sense, that is, it assigns small distortion values to similar vectors and

high values to dissimilar ones. It does not necessarily satisfy the formal mathematical

axioms of metrics.

An optimal alignment path, Π̂, is the one that minimizes the distortion between

the two sequences:

Π̂ = arg min
Π

DΠ(X ,Y). (2.6)

Using dynamic programming, the algorithm is able to avoid the computational

cost of computing the score for all possible alignment paths. This is achieved by keeping

track of a matrix of minimum accumulated distortion, D; D(n,m) is the minimum

distortion between X (1 : n) and Y(1 : m). Thus the overall dynamic time warping

distortion between the two sequences is given by:

DΠ̂(X ,Y) = D(N,M). (2.7)
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for n = 1 to N , m = 1 to M do

if n = 1 then

D(n,m) =
∑n

i=1 d(xi,ym)

else if m = 1 then

D(n,m) =
∑m

i=1 d(xn,yi)

else

T = {(n− 1,m− 1), (n− 1,m), (n,m− 1)}

t = arg mintεT D(t)

D(n,m) = D(t) + d(xn,ym)

end if

end for

Figure 2.3. Dynamic Time Warping Algorithm.

2.4.2. Segmental Dynamic Time Warping

The segmental dynamic time warping (SDTW) is an altered DTW algorithm

designed to align subsegments of two utterances [39]. Consider the sentences:

(i) Very sad, Signor Milo, very sad;

(ii) You must try some artichokes while you are here, Signor Milo.

Since each sentence comprises a different sequence of words, any global alignment

between the two is sure to align frames from different words with one another; hence

the DTW distortion between the two is virtually meaningless. However, it is clear that

the utterances have segments that can be aligned; specifically, both contain the phrase,

“Signor Milo.” SDTW locates and aligns such similar subsegments.

The first modification to the DTW is the use of paths whose shapes are restricted.

SDTW uses a Sakoe-Chiba band [40] to prevent the frames of one utterance from

getting too far ahead of those from the other. For a path beginning at (n1,m1), the
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restriction is:

|(nk − n1)− (mk −m1)| ≤ R ∀ (nk,mk) ε Π (2.8)

This constraint limits the path two a region of width 2R+ 1 that may not contain the

coordinate corresponding to the end of both sequences, (N,M). The more significant

modification is that several alignment paths are generated by selecting different DTW

starting points. Thus, the boundary constraints of the DTW are removed. Equation

2.8 allows the partitioning of the search into grids with by providing a set of intuitive

starting points:

((2R + 1)k + 1, 1), 0 ≤ k ≤
⌊
N − 1

2R + 1

⌋
(2.9)

(1, (2R + 1)k + 1), 0 ≤ k ≤
⌊
M − 1

2R + 1

⌋
. (2.10)

Within each region a locally optimal alignment and distortion can be computed with

the DTW algorithm.

After the set of local alignment paths is computed, each path is shorn of its

dissimilar portions. The shearing process can be done by locating the segments of

the path with length-constrained minimum average (LCMA) distortion [41] and then

extending such segments to include neighboring points with low enough distortion.

The length constraint prevents the algorithm from always returning too short segments

corresponding to spurious matches between the two sequences.

The SDTW algorithm can be modified for QBE-STD [38]. Since the query sam-

ple is fixed, only the utterance is segmented, that is, only the starting points in Equa-

tion 2.10 are considered.
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2.4.3. Subsequence Dynamic Time Warping

The systems proposed in this thesis run the subsequence dynamic time warping

(SSDTW) variation. While the SDTW algorithm discussed in the Section 2.4.2 allows

the search of short, query, utterances within longer ones, its path restriction could cause

it to fail when the length of the matching segment in the document differs significantly

from that of the query. This can be costly when there is a significant mismatch in

speaking rates between the document and query speakers; in [42], it was found that

for the tendency of speakers to attempt to speak the query clearly and slowly could

result in significantly different lengths between the query and a matching segment of

the spoken document. SSDTW eschews with the DTW boundary conditions and the

diagonal bands in SDTW to conduct an exhaustive search between the query sequence

and all subsequences of the document [43,44].

for n = 1 to N , m = 1 to M do

if n = 1 then

D(n,m) = d(xn,ym)

L(n,m) = 1

else if m = 1 then

D(n,m) =
∑m

i=1 d(xi,ym)

L(n,m) = n

else

T = {(n− 1,m− 1), (n− 1,m), (n,m− 1)}

t = arg mintεT D(t)

D(n,m) = D(t)+d(xn,ym)
L(t)+1

L(n,m) = L(t) + 1

end if

end for

Figure 2.4. Subsequence Dynamic Time Warping Algorithm.

Each element, D(n,m), of the accumulated distortion matrix, tracks the distor-

tion between the query segment, X (1 : n), and the best most similar subsequence of

Y that ends at m. Akin to the length constraint of the SDTW, SSDTW incorporates
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path length normalization to prevent a bias towards short paths.

2.4.4. Dynamic Time Warping Optimization

One of the main drawbacks of DTW approaches is the high computational re-

source consumption that accompanies them. In general, the search time can be reduced

significantly by parallelizing with multiple processor cores [45–47]. Other methods of

reducing the computational load of DTW generally involve developing approximations

to the original search space on which to run the a quicker search, sometimes at the

cost of some retrieval performance.

The segment based DTW is one such method. In this approach, the query and

document utterances are segmented into contiguous regions of acoustically frames. The

segmentation can be achieved with hierarchical agglomerative clustering (HAC) [48]

by iteratively merging neighboring segments that minimize the increase in within-

segment variance. Using a segment-wise distance metric, a much faster DTW is then

conducted [49]. A second pass with frame level DTW on the hypotheses of the segment-

base DTW has been shown to alleviate the loss in retrieval performance [50] that

accompanies the segment based dynamic time warping.

Another approach involves the computation of a lower bound for the the DTW

distortion. Initially proposed for K-nearest neighbor (KNN) with DTW [51], the idea is

to compute a DTW lower bound between a template and different candidate sequences.

Afterwards, a fine DTW is run on the candidates in order of their lower bound score.

The process is halted when the next candidate has a lower bound that is greater than

the K-th smallest DTW score. In [52], this approach was applied to a SDTW-based

keyword spotting application. A lower bound for the posteriorgram is computed by

using an envelop of the query posteriorgram. It is shown that, with a sufficient value

of K, the computational gains are quite significant without much loss in retrieval

compared to a baseline SDTW system. Although the use of the KNN lower bound

reduces the DTW computations considerably, the estimation of the lower bound itself

is rather computationally expensive. In [53], a weaker lower bound is computed that
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reduces the lower bound computation at the expense in a relatively higher number of

DTW computations. The authors report that this results in an overall speedup even

when considering both the lower bound estimation and DTW rescoring. In [54], a more

general lower bound is proposed which has the advantage of not being bound to the

any one distance measure while also holding up to that in [52] in terms of keyword

spotting performance.

A somewhat similar approach is the pre-filtering of the posteriorgram before the

DTW [55]. This involves splitting the document into segments and then computing

a vector that represents the whole segment; similarly, a single vector is computed for

the query and a coarse similarity value is calculated between the two vectors. For

posteriorgram, the representation vector can be obtained by taking the average of the

frames within the segment and the normalized inner product is used to compute the

similarity. Any segment whose dissimalirity exceeds a threshold is eliminated from

further search. If a segment is within the desired similarity, it is extended temporally

to include neighboring frames and then a SSDTW fine search is conducted to compute

the refined similarity score as well as the hypothesized temporal location of the query.

Another way to reduce the computational cost of DTW, especially the local dis-

tance computations, is to index the document frames. The work in [56] provides a

framework for doing this using locality sensitive hashing (LSH) [57, 58]. Using a ran-

dom matrix, the frames of the utterances are projected to a different subspace and

thresholded at zero to get a bit signature so that the cosine similarity can be approxi-

mated by a function of the Hamming distance. The document bit signatures are then

sorted lexicographically and the nearest neighbors of each query frame bit signature

can be obtained with a binary search [59]. The bits are permuted for a number of

times and the nearest neighbor is computed for each; this increases the likelihood of

finding the actual nearest neighbors since the lexicographic sort inappropriately inflates

the importance of the initial bits. For sufficiently similar frames, the temporal neigh-

bors are also compared resulting in a sparse similarity matrix with diagonal-shaped

regions indicating matches between the utterances. Thereafter, a fast line search for

syllable-length diagonals [60] is run followed by SDTW to get refined search results.
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3. KEYWORD SEARCH WITH MULTILINGUAL

REPRESENTATION

In this thesis, we utilize the template matching approach to keyword search in

low resource languages. We follow this method in order to alleviate the effects of

linguistic (pronunciation lexicon, language model) paucity in such a scenario. Using

a transferred representation, we are able to leverage acoustic knowledge from other

languages in building the model for the language of interest. Thus, the effects of

both acoustic and linguistic scarcity are reduced. Our approach involves conducting

DTW-based KWS on various transformations of the multilingual BN representation.

3.1. Multilingual Bottleneck Features

The bottleneck features are generated from the activations of a hidden layer

of a multilingual acoustic model deep neural network with a bottleneck layer that is

significantly smaller than surrounding layers and a non squashing activation function to

prevent excessive gradient loss. This generator network is trained with MFCC features

from several languages to predict language-specific senone labels. The hidden layers are

shared across the languages up till the bottleneck layer; on top of these shared layers, a

language specific hidden layer and a language specific softmax output layer are added.

The training involves pooling the features from the source languages along with their

force-aligned labels and interleaving them in batches from different languages. Each

training batch contains only features from one language whose output layer is active

while the gradients from the other languages’ output layers are set to zero. By training

in this way, we are able to obtain a representation that is language independent and

compact while also keeping some of the discriminative power of the posterior features.

The BN extractor used in this work is a time-delay neural network (TDNN) with

rectified linear units (ReLU) as activation functions. The use of TDNN layers up to the

BN layer allows the incorporation of longer temporal contexts and by sub-sampling [61],
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Figure 3.1. Multilingual bottleneck neural network.

a lot of the latency associated with recurrent architectures is avoided.

3.2. Query Modeling for Search

Since the query is provided in text, a different modality from the document, con-

ducting DTW based search requires that the query be transduced to the same modality.

This is done by converting the query into a sequence of phonemes using the Sequitur

G2P toolkit [20] trained with the limited lexicon. Each phoneme is then decomposed

into sub-phoneme states (five states for silence and three for all other phonemes). Al-

though the sequence of phones can be used, the use of these sub-phonemic states allows

for finer discrimination in the dynamic time warping. Using the Viterbi forced align-

ment of the available transcribed training data, a set of clusters along with duration

statistics can be collected for each state. For each state, a centroid vector representa-

tive of its cluster of features is computed. These states are repeated (based on their

average duration in the training data) and concatenated to represent the query.

çiçeği ç i ç e i ç1ç2ç3 i1i2i3 ç1ç2ç3 e1e2e3 i1i2i3

Figure 3.2. A simple query model.
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When using the raw BN features for search, we use the cosine distance,

dcos(x,y) = 1− xTy

||x||.||y||
(3.1)

which measures the angular distance between two vectors and a query vector that

minimizes the total cosine distance within each state. Given a state cluster, C, the

class centroid, m, can be computed by minimizing:

JC =
∑
xεC

d(x,m)

= |C| −
∑
xεC

xTm

||x||.||m||

= |C| −
∑
xεC

xTm̂

||x||
where m = αm̂, ||m̂|| = 1.

The objective function becomes

JC = |C| −
∑
xεC

xTm̂

||x||
+ λ(m̂Tm̂− 1).

By taking the gradient of JC with respect to m̂ and setting it to zero, we get:

m̂ =
1

λ

∑
xεC

x

||x||
and

m =
α

λ

∑
xεC

x

||x||
.

Since the magnitude of m has no bearing on the distance, i.e. dcos(x,y) = dcos(βx, γy)

for all positive scalars β, γ, the scale, α/λ can be set to 1, resulting in:

m =
∑
xεC

x

||x||
. (3.2)

Thus the centroid for each state can be computed by taking the mean of the

normalized examples of that state in the training data.
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3.3. Gaussian Posteriorgram for Bottleneck Features

Gaussian mixture models are used to represent features with high variability

and have been used to generate posteriorgrams for spoken term detection [38]. In our

preliminary experiments, we found that when the raw BN features are used to represent

the document, their high variance made it difficult obtain an effective query model.

To deal with this, we train an unsupervised GMM with k-means initialization [62]

for each language on the bottleneck features of its training data. From the GMM,

posteriorgrams are generated and used to represent the search document.

The Gaussian posteriorgram is a sequence of vectors that represent the occupation

probabilities of the Gaussian densities. For an acoustic sequence, X := (x1,x2, ...,xN),

its Gaussian posteriorgram, G := (g1,g2, ...,gN). The dimensionality of each gi is the

number of Gaussian densities, m, in the underlying GMM. Formally, each gi is such

that:

gij = P (Dj|xi)

=
p(xi|Dj)P (Dj)∑m

k=1 p(xi|Dk)

(3.3)

where Dj and Dk are the j-th and k-th Gaussian densities in the GMM respectively.

We also investigate the impact of using bottleneck features from the source lan-

guages to bootstrap the GMM training. We train a multilingual unsupervised GMM

with the source languages’ training data and use it to generate posteriorgrams for

search in the target languages. Although this multilingual representation would be

desirable for multilingual search with spoken queries, the absence of a language in-

dependent orthographic system means the queries in KWS are necessarily language

dependent and so a more language specific document representation is more relevant

to our task. Therefore, for each of the target languages, we build another system by

performing a rapid finetuning of the multilingual GMM using that language’s training

data to better represent the language specific variabilities. From the language specific

GMMs, posteriorgrams are generated and used to represent the search document.
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The query is represented as a pseudo-posteriorgram as described in Section 3.2.

The state centroids are computed by taking the average of the class examples in the

training set. The nonnegative and probabilistic nature of the Gaussian posteriorgram

allows us to use the log-cosine similarity measure,

dlog(x,y) = −log(δ +
xTy

||x||.||y||
) (3.4)

where δ is a small positive number added to ensure that the operand of the logarithm

function is strictly positive. The log-cosine, in a sense, gives the log-likelihood of the

two frames being compared originating from by the same Gaussian density.

3.4. Dynamic Time Warping for Keyword Search

Given a query vector sequence, X := (x1,x2, ...,xN), the subsequence dynamic

time warping algorithm is used to find matching subsequence of the document vector

sequence, Y := (y1,y2, ...,yN). The algorithm, as applied to KWS, is shown in Fig-

ure 3.3. To avoid the need for backtracing to find the beginning of the path, a matrix,

B, of the starting points of each subsequence is stored in memory along with the matrix

of accumulated distances, D and the matrix of subsequence lengths, L.

From the last row of the matrix of accumulated distances, D, a vector, u, of the

raw scores of the subsequences most similar to the query ending at each frame of the

document can be computed.

u(m) = 1− D(N,m)

L(N,m)
. (3.5)
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for n = 1 to N , m = 1 to M do

if n = 1 then

D(n,m) = d(xn,ym)

L(n,m) = 1

B(n,m) = m

else if m = 1 then

D(n,m) =
∑m

i=1 d(xi,ym)

L(n,m) = n

B(n,m) = 1

else

T = {(n− 1,m− 1), (n− 1,m), (n,m− 1)}

t = arg mintεT D(t)

D(n,m) = D(t)+d(xn,ym)
L(t)+1

L(n,m) = L(t) + 1

B(n,m) = B(t)

end if

end for

Figure 3.3. Subsequence Dynamic Time Warping Algorithm for Keyword Search.

From this, the best score above a predefined threshold is returned as a “hit” for

the search. The location of hit and score are obtained thus:

tend = arg max
t

u(t)

tbeg = B(N, tend)

hit = Y(tbeg : tend)

score = u(tend).

(3.6)

Multiple hits for the query can be found by recursively removing a sufficient

neighborhood of the hit, (tbeg : tend), from u and repeating Equation 3.6 until a stopping

criterion is satisfied.
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3.5. A Unified Framework for Optimizing the Search Path

By observing the search algorithm and equations 3.5 and 3.6, we can see that:

score =
1

length(Π̂)

∑
(n,m)εΠ̂

d(xn,ym) (3.7)

where Π̂ is the path of the optimal matching subsequence. From this, we observe that

the score (along with the path) is dependent on:

• The document representation, {ym},

• the query model, {xn} and

• the distortion function d(., .) used.

Figure 3.4. Subsequence dynamic time warping for finding multiple hits [1].

We propose using a unified framework to optimize each of these implemented as

an extended distance metric learning (EDML) neural network. The EDML network is

based on the joint optimization of three parts:

(i) The distance learner learns a distance function called the sigma distance [22]

based on a weighted inner product between its inputs. Given a query vector,

x and a document vector, y, the distance function, parametrized by its weight

matrix, W, and bias value, c, is given by:

dσ(x,y) = σ(xTWTWy + c) (3.8)
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where σ(.) is the logistic sigmoid function. The parameters of the network

(W and c) are optimized to discriminate between sub-phoneme states. In the

ideal case, this network outputs:

d̂σ(x,y) =

0, if class(x) = class(y)

1, if class(x) 6= class(y).

(3.9)

(ii) The document representation is learned with a series of nonlinear neural network

layers. The part of the network responsible for this takes a bottleneck feature

vector, b, as input and outputs y. Since the bottleneck representation is quite

rich with classes that are not linearly separable, this part of the network serves to

simplify the representation and obtain more easily separable class representations.

y = F(b). (3.10)

The function (F) is simply a hierarchy of stacked ReLU layers.

(iii) The third part of the network generates the state models. It’s input is a one-hot

vector representing the state being modeled which is transformed into the query

model, x. It is parametrized by a single matrix, V so that:

x = Vo (3.11)

where o is a vector whose entries are all zero except for the entry corresponding

to the active state which is set to one [23, 34]. Since only one element of o is

active at a time, the query templates are the columns of the matrix V.

The query and document representation learners are prepended to the distance learner

as shown in Figure 3.5 to form a unitary network to be optimized.
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Figure 3.5. The extended distance metric learning network.

3.5.1. Training the Extended Distance Metric Learner

The training of the whole network is done using the backpropagation algorithm.

The forward pass takes mini-batches of pairs of inputs, (b,o), and performs the opera-

tions in Equations 3.11, 3.10 and 3.8 to obtain the dissimilarity between the represen-

tations (y,x) of the inputs. From this the objective function is computed. We use the

cross-entropy between the output dissimilarity, dσ(x,y), and the actual dissimilarity,

d̂σ(x,y), defined in Equation 3.9. The objective function per sample is defined as:

JCE = −d̂σ(x,y) log dσ(x,y)− (1− d̂σ(x,y)) log(1− dσ(x,y)). (3.12)

The gradients of the parameters with respect to this objective function are computed

and the parameters are updated with the Adam optimization method [63].

Certain considerations are made with regards to the choice of the sample pairs. If

the samples are chosen randomly, the network will be biased heavily towards outputting

values close to 1 since there are far more adversaries than there are samples of the same

class for any choice of b. For instance, a language with 39 non-silence phonemes has

122 (3 for each phoneme, 5 for silence) states. If these classes are equally represented
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and the network outputs a distance of 1 regardless of its inputs, the expected accuracy:

Ā = 121/122 ≈ 99%.

Clearly, this behavior is not desirable. Another, similar, issue results from the unequal

representation of the classes in the training set. For example, analysis of the data

shows that the silence states account for about 30% of all the training frames. A naive

training sample selection biases the network to model well represented sample classes

well at the expense of other classes.

To deal with these imbalances, we use a class sampling strategy to select the

training frames. The procedure can be summarized thus at a sample level:

(i) Sample two distinct classes from the set of sub-phoneme states with one-hot

representations o1 and o2.

(ii) Sample two feature vectors b1 and b2 belonging to the classes of o1 and o2

respectively.

(iii) Train the network with the sample pairs: (b1,o1), (b1,o2), (b2,o1) and (b2,o2).

By repeating this procedure iteratively, we can train the network with samples of

approximately equal class and similarity representation.

3.5.2. EDML-based Keyword Search

The EDML network provides a unified way to optimize the query, document

and the distortion function to run the dynamic time warping. To reduce latency, the

vectors obtained by passing the document features and state one-hot vectors through

the network up till the final dot product are stored. For the entire document BN

representation, B := (b1,b2, ...,bN), we compute and store another sequence, R :=

(r1, r2, ..., rN) where:

ri = WF(bi). (3.13)
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For the set of phone states, with one-hot representations O = {oj}, we compute and

store another set of representations, S := {sj} such that:

sj = W(Voj). (3.14)

The query is represented as a concatenation of the pertinent states from S and the

SSDTW search is conducted with R as the document and the distortion function:

dΣ(sj, ri) = σ(sj.ri + c). (3.15)

3.6. Low Entropy Representation for Keyword Search

One drawback of DTW based systems is the memory consumption that accompa-

nies them. In addition to the intermediate memory costs of running the search, there

is also the cost of storing the document representation. This is especially an issue

when deploying the system in a keyword search server where the document must be

stored in memory permanently as it would be impractically slow to load it from the

disk each time a user queries the system. In this section, we propose a modification to

the EDML network described in Section 3.5 that allows us to compress the document

representation significantly.

A softmax is added to the distance metric matrix. This results in a new document

representation, R̃ := (r̃1, r̃2, ..., r̃N) where:

r̃i = softmax(ri)

and a new set of phone state representations S̃ := {sj} where

s̃j = softmax(sj).
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Figure 3.6. The EDML network modified for sparsity.

In this representation, each frame can be interpreted as a vector of the probability

values of a categorical distribution. By minimizing the entropy of this categorical

distribution, we can get sparser frame representation which have a much lower memory

footprint than the original representation. The loss function of the EDML network from

Equation 3.12 is modified to effect this sparsity objective.

JT =JCE + λJH

= JCE + λ(H(r) +H(s))

=− d̂Σ(r, s) log dΣ(wr, s)− (1− d̂Σ(r, s)) log(1− dΣ(wr, s))

− λ
n∑
i=1

(ri log ri + si log si)

(3.16)

where H(.) is the information entropy, n is the dimensionality of r and s, and λ is

a hyperparameter that determines the relative weighting between the discriminative

objective and the sparsity objective. dΣ(., .) is defined in Equation 3.15 and

d̂Σ(r, s) =

0, if class(r) = class(s)

1, if class(r) 6= class(s).

(3.17)

Note that since r and s are vectors that sum up to one, their dot product is a value in

[0, 1]. Passing this value directly through a the final sigmoid nonlinearity produces a
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number within a maximum range of 0.245 (when c = 0.5). Therefore, we scale the dot-

product with a weight, w, before adding the bias term and applying the nonlinearity.

By using a large positive weight with a negative bias or a large negative weight with a

positive bias, we can use utilize the full range of the sigmoid activation.

3.7. Score Normalization

A keyword search system is expected to return some spurious hypotheses. Hence,

it is necessary to have a threshold of scores below which hypothesis are pruned away.

Since the query terms are not known beforehand, the threshold must be global (irre-

spective of query). However, different queries return hypotheses with different score

distributions; this fact makes it rather impossible to get a threshold for the raw scores

that returns a list of hypotheses with a good balance of misses and false alarms for any

given keyword without first normalizing to ensure that the effective dynamic ranges of

the scores are comparable across keywords. Figure 3.7 shows the unnormalized score

histograms of five randomly chosen keywords from the Turkish language KWS system.

Given a query, q, and Sq = {sq}, the set of its hypothesized hits, the normalized

score (s̃q) of each raw score, sq is a function of the entire set.

One method of score normalization for keyword search is the sum-to-one (STO)

normalization [64]. In this method, each score is normalized by the sum of all scores

returned for the query:

s̃STOq =
sq∑
s′εSq

s′
. (3.18)

STO has the effect of reducing the scores of queries with many putative hits while

enhancing those of terms with few hits. For our system, which returns thousands of

hits per query, this has an effect of significantly reducing the dynamic ranges of the

scores. A global threshold computed for such a set of scores would be unstable and

difficult to transfer to a dataset other than the one on which it was originally learned
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Figure 3.7. Histograms of unnormalized keyword scores.

because it would be very sensitive to slight numerical variations.

The keyword-specific thresholding (KST) is another method that has been used

successfully in normalization of scores for LVCSR based keyword search. By formu-

lating the problem as a likelihood ratio test, a threshold that maximizes the term

weighted value (TWV) is computed for each keyword. To get a global threshold, the

scores of each query can be weighted by a ratio of the target threshold to the computed

threshold. The threshold computation requires a knowledge of the prior probability of

the keyword which is obviously not available beforehand; therefore, an integration over

the posterior probabilities is used to estimate the priors. If the raw scores are posterior

probabilities, then the prior can be estimated by summing over the raw scores of a

query. In our system, however, the scores are DTW distortions which are not directly

interpretable as posterior probabilities and so cannot be used in the prior probability

estimation required for KST.
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Since we have numerous scores, we are able to compute low-variance estimates of

statistics of the score distributions. With these statistics, we can find what a “typical”

element of the set of scores is expected to be. A family of normalization schemes

have been proposed that use this along with information about the spread of the

distribution. The z-norm [65] works by subtracting the sample mean from each score

and then dividing by the sample standard distribution.

s̃zq =
sq −mean(Sq)

std(Sq)
. (3.19)

The z-norm is sensitive to irrelevant scores since it uses the mean to represent a

typical member of the set. Moreover, it is based on an implicit assumption that the

scores have a Gaussian distribution. In [66], it is claimed that the distribution of scores

returned by a DTW-based STD system are actually asymmetric with a long trailing left

trail and a steeper tail right of the mode (this can also be seen visually by inspecting

the scores histograms in Figure 3.7). The authors proposed another normalization

scheme, called m-norm, in which scores below the mode, considered, to be irrelevant

are ignored from the standard deviation computation. If we define another set of the

scores, Sζq := {sq ε Sq : sq > ζ}, then the m-norm normalized scores are given by:

s̃mq =
sq −mode(Sq)

std(S
mode(Sq)
q )

. (3.20)

The b-norm proposed in [67] uses the median in stead of the mode to represent

the typical element of the set. Since the sample mode can only really be computed

with histogram bins, changing the sizes and locations of the bins results in variations

in the mode. Therefore, the mode computation is not entirely dependent on just the

set of scores. The sample median, on the other hand, is computationally dependable

and has no axes of variation outside the members of the set. The b-norm normalized
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scores are given by:

s̃bq =
sq −median(Sq)

std(S
median(Sq)
q )

. (3.21)

In this work, we propose using a generalized version of the b-norm. If we define

the η-th percentile of the score distribution as the smallest number, φ(Sq, η), such that

η|Sq| < φ. The scores normalize with the generalized b-norm are given by:

s̃c(η)
q =

sq − φ(Sq, η)

std(S
φ(Sq ,η)
q )

. (3.22)

The η parameter controls how much of the original set is considered relevant. While the
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Figure 3.8. Histograms of keyword scores normalized with the generalized b-norm.

original b-norm can be obtained by setting η = 0.5, we found a value of η = 0.9 to be

optimal. In addition to the aligning the distribution of scores, normalizing with such a

high percentile enables us to prune more irrelevant hypotheses and prevent any further
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processing on them. Another somewhat subtle advantage of the high percentile results

from the standard deviation computation; since the standard deviation is computed

on scores above the percentile, setting a higher threshold gives on a smaller standard

deviation. Dividing by a smaller standard deviation results in a higher dynamic range

of normalized scores for which a more stable global relevance threshold can be set.
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4. EXPERIMENTS AND RESULTS

In this chapter, we describe the experiments performed to demonstrate the effi-

cacy of the methods described in the previous chapter. First we describe the dataset

on which the experiments are run and the metrics used to measure the system perfor-

mance. For each of the proposed models, we run experiments for four languages. In

each language, we run a pair of experiments to observe the performance of the models

at different levels of data scarcity and compare the results to a competitive baseline

system trained on the same data.

4.1. Dataset

The test experiments are performed on the limited language pack (LLP) data

from the IARPA Babel Program [68]. We divide the languages available to us into

two groups. Our target languages, on which we evaluate our models, are Pashto 1 ,

Turkish 2 , Zulu 3 and Kazakh 4 . The 19 other languages in the program are used as the

source languages and a pool of their LLP training data is used train the multilingual

bottleneck representation extractor as well as the multilingual GMM.

Each LLP has ten hours of transcribed conversational telephone speech. For each

language, we train an HMM-GMM with speaker adaptive training (SAT) on the LLP

and use the Viterbi algorithm to obtain frame level forced alignments. In the source

languages, these alignments are used as labels for training multilingual TDNN training.

In the target languages, the alignments are used to learn the query model and duration

statistics. We run two sets of experiments for the target languages; in the low resource

(LR) setting, we train with the LLP while in the extremely low resource (ELR) setting,

we train with only a one-hour subset of the LLP.

1babel104-v0.4bY (dev:kwlist3, evalpart1:kwlist4)
2babel105b-v0.4 (dev:kwlist, evalpart1:kwlist2)
3babel206b-v0.1e (dev:kwlist3, evalpart1:kwlist4)
4babel302b-v1.0a (dev:kwlist, evalpart1:kwlist4)
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In addition to the training data, each language has a pair of spoken documents

on which we conduct the search with the models built with the training data. The

development (dev) document has ten hours of speech with the necessary resources to

evaluate system performance. It is on this document that we tune the hyperparameters

of our models such as the normalization and fusion parameters, the score thresholds,

the sparsity weights and even which model to keep using. The evaluation (evalpart1)

document is the five-hour document on which we purely test our models which we have

trained on the training dataset and tuned on the development dataset. Although the

length of the full evaluation document provided in the Babel program is about fifteen

hours for each language, the information required for evaluation is openly available

only for a five-hour subset. Even though the number of query terms used in these

experiments vary by language, the number of evaluation terms is consistently higher

than the number of development terms; in a real use case, the number of user provided

queries is expected to eventually outgrow the number of queries used in system devel-

opment. Table 4.1 shows the number of keywords in each test for the LR setting as

well as the percentage of keywords that are OOV.

Table 4.1. Query distribution per language in the low resource setting.

LANGUAGE DOCUMENT QUERIES
OOV RATE

(%)

Pashto
Dev 2065 29

Eval 4203 23

Turkish
Dev 307 29

Eval 3171 38

Zulu
Dev 2000 40

Eval 3310 34

Kazakh
Dev 4171 26

Eval 4533 35
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4.2. Evaluation Metrics

Evaluation metrics are necessary to measure the performance of a model. A good

metric simulates how good an end user would consider the model to be. In this thesis,

we use the term weighted value metrics to measure system performance. In addition to

the TWV, we also discuss the normalized cross entropy (Cnxe) in this section. While

we do not directly use the Cnxe to measure system performance, it is instrumental to

our system fusion methodology.

4.2.1. Term Weighted Value

A KWS system returns a list of hypothesized hits which are (query, location-in-

document) pairs along with their respective confidence scores. Some of these are bound

to be false, so it is necessary for the system to provide a threshold below which the

scores are considered to be irrelevant. In this framework, there are two kinds of errors

possible:

• Misses occur when a query is not found in a document even though it exists or

if the query is found but it’s score is lower than the threshold. Given the sheer

unlikelihood of getting an exact match in timing between the system hits and the

reference, a hit is considered to match a reference location if they are within a

(500ms) neighborhood of each other.

• False alarms (FA) occur when a query is returned at a location where it does

not actually occur in the reference with a confidence score above the selected

threshold.

The term weighted value provides a measure of recall and precision at a global

threshold. If different queries terms use different thresholds, these thresholds must

be computable and transformable to the global threshold using only the information

available at search time. Given a set of terms, Q = {q} and a threshold, θ, the TWV
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is defined thus:

TWV (θ,Q) = 1− 1

|Q|
∑
qεQ

(Pmiss(q, θ) + βPfa(q, θ)) (4.1)

where

β =
C

V
(

1

Prq
− 1). (4.2)

C is the cost of a false alarm, V is the value of finding a term correctly and Prq is

the prior probability of a query. Following the 2006 NIST STD evaluations [69], the

ratio C
V

is set to 0.1 and Prq is set to 10−4 resulting in a value of 999.9. By observing,

Equation 4.1, we see that a system that returns all the correct hits and no false alarms

would have a TWV of 1 while one that returns not hits and no false alarms would have

a TWV of 0; furthermore, it is possible to get negative TWVs up to −β. For each

query, q, the following are defined:

Pmiss(q, θ) = 1− Ncorrect(q, θ)

Ntrue(q)

Pfa(q, θ) =
Nfa(term)

nTPS.T −Ntrue

(4.3)

where:

• Ncorrect(q, θ) is the number of true detections of q with a confidence score above

θ.

• Nfa(q, θ) is the number of false detections of q with a confidence score above θ.

• Ntrue(q) is the actual number of occurrences of q in the document. T is the length

of the document in seconds. nTPS is the number of trials per second. Since such

a value does not really exist for continuous speech, it is arbitrarily set to 1.

We define a few variations of the TWV to measure different aspects of KWS

system performance. These are:
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(i) The actual term weighted value (ATWV) is the measure of TWV at the selected

threshold. The ATWV is the closest representation of the goodness of the system

to an end user.

(ii) The maximum term weighted value (MTWV) is the value of the TWV at the

threshold that maximizes it. Generally, a development set is used to get the

threshold that gives the MTWV and this threshold is used for further search.

(iii) The optimum term weighted value (OTWV) is the MTWV with a term specific

optimal threshold for each term. The OTWV shows how well the scores are

ordered for each query.

(iv) The supremum term weighted value (STWV) is the TWV if the cost of false

alarms is considered to be zero. It is a measure of the overall recall rate of the

system.

4.2.2. Minimum Normalized Cross Entropy and System Fusion

The normalized cross entropy (Cnxe) is another metric that ha been used in

spoken term detection. Originally proposed for speaker recognition [70] and language

recognition [71], it has also been used to evaluate QbE-STD [72]. Where TWV mea-

sures the performance of the KWS system using hard decisions at a specific threshold,

Cnxe also measures how well calibrated the scores of a system, i.e. how well sepa-

rated the relevant hypotheses are from the irrelevant ones. A well calibrated system

has scores that can be interpreted as log-likelihood ratios. Such a system would have

scores of ∞ for targets and −∞ for non-target sections of the document and a Cnxe

value of 0. A non-informative system would have a Cnxe value of 1 and the higher

Cnxe values indicate severe system mis-calibration.

By optimizing the Cnxe of a system, we can get good score separation between

relevant parts of the document and irrelevant parts. Such a system would be robust

to changes in the operating point and threshold. In this way, optimizing the Cnxe is

very likely to lead to better TWV values.
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The minimum normalized cross entropy (Cnxe-min) is an analogue to the MTWV

for Cnxe. To compute Cnxe-min, we recalibrate the scores use a simple affine transform

on all the scores {x}:

x̂ = ax+ b

and optimize the Cnxe by conducting an exhaustive search over different values of

a and b. Note that although lower values for the Cnxe can be computed with the

pooling of adjacent violators algorithm [73,74], we stick to the affine transform since it

is parametric; in this way, we can learn these parameters on the development set and

transfer them to the evaluation set. Additionally, since there are only two parameters,

there is little risk of overfitting the development set.

We do not use the Cnxe-min to measure our system performance, rather we use

it as a way to learn the weights for system fusion. Given a system that we want to

combine with another, transforming it using the Cnxe-min parameters ensures that

there is better separation between the relevant and irrelevant scores. Therefore, when

we sum the transformed scores of the systems, we are less likely to increase the false

alarms of either one unless one of systems is overwhelmingly bad on its own.

4.3. Baseline System

We train a baseline model that uses the contemporary LVCSR based KWS ap-

proach. To have a fair comparison, we also incorporate the multilingual information

in training the baseline acoustic model. We truncate the multilingual TDNN at the

bottleneck layer (the last layer that is shared across the source languages), and for each

of the target languages, we append a ReLU layer followed by a softmax output layer

and finetune the entire network on that language’s training data while using a lowered

learning rate for the transferred layers.

An index is then constructed from the LVCSR lattices and used to search for the

queries. OOV words in the queries are handled with the proxies [8, 9] and the scores
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Table 4.2. Query distribution per language in the extremely low resource setting.

LANGUAGE DOCUMENT QUERIES
OOV RATE

(%)

Pashto
Dev 2065 65

Eval 4203 62

Turkish
Dev 307 68

Eval 3171 81

Zulu
Dev 2000 84

Eval 3310 76

Kazakh
Dev 4171 62

Eval 4533 80

are normalized with the KST method [75].

When the amount of training data is decreased, the size of the pronunciation

lexicon decreases and the OOV rate increases. This can be seen by comparing Ta-

bles 4.1 and 4.2. We see that although the keywords do not change, the percentage of

keywords that are out-of-vocabulary is considerably higher in the ELR setting than in

the LR one. Therefore, in the ELR setting, we have a second baseline system that uses

pronunciation lexicon of words in the whole LLP instead of just the one-hour subset.

This allows us to gauge how much of improvement we get from the scarcity of acoustic

data and how much from the scarcity of linguistic data. The second baseline simulates

a method like the lexicon expansion method [7] which works on the premise that it is

easier to obtain the pronunciation of words in a language from external sources than

it is to get more transcribed speech data.

4.4. Preliminary Experiments

Before undertaking the expensive task of training the multilingual BN represen-

tation for keyword search, we train a monolingual BN extractor with a 42-dimensional
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bottleneck layer using just the Turkish language. Using the monolingual BN represen-

tation, we run a series of KWS experiments using query models with a single class per

phoneme.

Using the average of the BN features of each class as our query model and the co-

sine similarity, we conduct the search on the Turkish development set. While we obtain

a positive STWV (recall) from this, our OTWV was very low and our MTWV zero.

From this we see that while the BN features do have discriminative information, the

classes are not well separated enough to be able to get a well ordered set of hypotheses.

Therefore, it is necessary to transform the features to a space where separation can be

more easily achieved.

By training a GMM with 1024 mixtures and using its posteriorgram, we get a

representation that is quite flattened compared to the bottleneck features and for which

the normalized inner product based similarities have been shown to be effective [39].

When we use the cosine similarity we see that at the expense of a slight reduction

in STWV, we get an increased OTWV and a positive MTWV. Using the log-cosine

distance function, we get an increase across all metrics.

All our query models so far have been based on the use of an average representa-

tion of each phonemic class. While this minimizes the total within-class distortion, it

does not account for separation between class and so it requires having a document rep-

resentation in which the different classes are already somewhat well linearly separated.

To avoid this dependency, we use the joint distance metric learning (JDML) [23, 34].

JDML learns a query model for a representation that has low within class distance

and a good separation of classes along with the distance function to use. This way,

we are able to increase the TWV metrics even beyond what we get with the posterior-

gram with the log-cosine distance. However, when we train the JDML on the Gaussian

posteriorgram, the results degrade compared to the log-cosine distance.

While JDML learns the distance metric and query model, it is still bound to

the document representation that we feed it. It is not hard to imagine that with a
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Table 4.3. Results on Turkish dev set with monolingual BN representation

DISTANCE METRIC RAW BN
GAUSSIAN

POST.

Cosine

MTWV 0 0.0228

OTWV 0.0552 0.1150

STWV 0.4361 0.4195

Log-cosine

MTWV - 0.1035

OTWV - 0.2618

STWV - 0.5819

JDML

MTWV 0.1164 0.0961

OTWV 0.2809 0.2444

STWV 0.6278 0.5676

EDML

MTWV 0.1809 0.1036

OTWV 0.3288 0.2627

STWV 0.6492 0.5992

better document representation, the network can more efficiently discriminate between

classes. With this rationale, we propose the EDML system described in Chapter 3.

Using the EDML, we are able to achieve a considerable increase in all TWV metrics

for the raw BN features over the JDML system. The improvement is more modest for

Gaussian posteriorgrams; in fact, the EDML results for the Gaussian posteriorgrams

are worse than the JDML for raw BN features.

From this experiments, we learn that, with enough babysitting, the bottleneck

representation is feasible for DTW based keyword search. In addition, we learn that

although the Gaussian posteriorgrams are better than the raw bottleneck features if

used directly, they are not as good for the distance metric learning based approaches.

This might be due to the fact that the frame embeddings for DTW obtained from

the metric learner are of a much smaller dimension than the Gaussian posteriorgrams.

This is a practical consideration as the frame embeddings need to be stored in memory
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during search. While the Gaussian posteriorgrams are sparse and can thus be stored

efficiently in memory, the same thus not hold for the frame embeddings. Storing ten

hours of 1024−D frame embeddings in half-precision floating point would require:

10 ∗ 360000 ∗ 4 ∗ 1024 bytes ≈ 15 GB.

All experiments reported henceforth use the multilingual BN representation. These

subsequent experiments do not include any further attempt to use the bottleneck fea-

tures directly.

4.5. Extremely Low Resource Experiments

For each of the target languages, we train our models with only a one-hour subset

of the LLP training data and evaluate the performance of the systems trained thus.

4.5.1. Development set

We train two baseline systems, B and B* with one-hour and ten-hour lexicons

respectively. The term weighted value splits (by IV and OOV terms) are shown in

Table 4.4. Note that although the MTWV performance of the two systems on IV and

OOV terms are similar, the overall performance of B* is considerably better than that

of B since the OOV rate of B is significantly higher (see Tables 4.1 and 4.2).

We train a GMM (GS) from scratch using only the bottleneck features of the one

hour data from each of the target languages. Seeing as this did not perform well, we

look to use the data from the source languages to bootstrap the GMM training.

Another GMM (GM) is trained from the source languages and used directly to

generate the document representation. The only knowledge used from the target lan-

guages comprises the alignments used to compute the averages for the query models.

Even so, the Turkish posteriorgrams obtained in this way outperform the monolingual

GMM trained on ten hours of Turkish language data (Table 4.3). Moreover, in the
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Table 4.4. ELR dev set baseline MTWV results

LANGUAGE B B*

All IV OOV All IV OOV

Pashto 0.0598 0.1458 0.0083 0.1233 0.1533 0.0449

Turkish 0.1037 0.3180 0.0166 0.2258 0.2867 0.0992

Zulu 0.0384 0.1905 0.0096 0.1472 0.2323 0.0253

Kazakh 0.0718 0.1854 0.0110 0.1321 0.1762 0.0185

Average 0.0684 0.2099 0.0114 0.1571 0.2121 0.0463

Table 4.5. MTWVs for ELR Gaussian posteriorgram on the dev set

LANGUAGE GS GM GF

Pashto 0.0653 0.0576 0.0516

Turkish 0.0003 0.1529 0.0002

Zulu 0.0057 0.1062 0.0032

Kazakh 0.0709 0.0799 0.0501

Average 0.0356 0.0992 0.0263

ELR setting, these posteriorgrams outperform both the baseline (B) and the language

specific Gaussian posteriorgrams (GS).

We further investigate the use of the multilingual GMM as an initialization for

the final GMM (GF). Starting with the pretrained GMM, we proceed to run the

expectation maximization algorithm using only the data from the target language.

The posteriorgrams generated in this way yield similar performance to those from GS.

Our final model for the ELR setting is the EDML trained using only the bottle-

neck and alignments of the ELR subset. This outperformed all the GMM-based models
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Table 4.6. MTWVs for best ELR systems on dev set

LANGUAGE B* EDML B*+EDML GAIN(%)

Pashto 0.1233 0.1104 0.1727 40

Turkish 0.2258 0.2737 0.3541 57

Zulu 0.1472 0.2319 0.2617 78

Kazakh 0.1321 0.1482 0.2021 53

IV Average 0.2121 0.1791 0.2713 28

OOV Average 0.0463 0.2176 0.2039 340

Average 0.1571 0.1910 0.2477 58

as well as both baselines. As the best of our systems, we kept it for fusion and eval set

experiments. We combine its results with those of the B* baseline using the Cnxe-min

parameters to transform each system’s scores. The EDML results along with the fusion

results are shown in Table 4.6.

4.5.2. Evaluation set

We use the thresholds learned on the development set to evaluate the B* and

EDML systems on the evaluation set. The fusion is done with the Cnxe-min parameters

learned on the development set as well. When we fuse the baseline results with the

EDML, we obtain an average ATWV improvement of 52%. One thing to notice (and

this also holds for the dev set experiments) is that the average OOV ATWV of the

fused system is worse than that of the EDML by itself. Therefore, a better combination

strategy would have been to use the fusion for IV terms and the EDML alone for OOV

terms. These results are shown in Table 4.6.

4.6. Low Resource Experiments

In the LR experiments, the entirety of the LLP training data of each target

language is used to train its KWS model.
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Table 4.7. ATWVs for best ELR systems on eval set

LANGUAGE B* EDML B*+EDML GAIN(%)

Pashto 0.1398 0.1037 0.1881 35

Turkish 0.1600 0.1836 0.2300 44

Zulu 0.1557 0.2131 0.2560 65

Kazakh 0.0870 0.0733 0.1294 49

IV Average 0.1784 0.1383 0.2136 20

OOV Average 0.0030 0.1586 0.1257 4090

Average 0.1356 0.1434 0.2009 48

4.6.1. Development Set

In the LR setting, we have two baseline systems, B and B′. For each target

language, B is trained in the same way as in the ELR setting except that the entirety

of the LLP data is used to finetune the multilingual network for LVCSR decoding and

search. B′ is trained with the EDML on posterior features from a monolingual DNN.

Comparison with B shows the effect of using the proposed models as opposed to an

LVCSR-based KWS system while comparison to B′ shows the impact of the transferred

crosslingual representation.

As in the ELR setting, here also, we train three GMM posteriorgram generator

for each target language. The first (GS) is trained using only the bottleneck features

in the target language; the second (GM) is trained with the features from the source

languages and is truly multilingual except for the query model which is necessarily

language specific; the final GMM (GF) uses GM as an initialization for the language

specific GMMs. In the LR dev-set experiments, we see that GM, which was the best

in the ELR setting is not nearly as good as GS. In fact, even after further optimizing

using language specific data to get GF, GS is still the superior model. These results

are shown in Table 4.9.



50

Table 4.8. LR dev set baseline MTWV results

LANGUAGE B B′

All IV OOV All IV OOV

Pashto 0.2621 0.3199 0.0931 0.1207 0.1106 0.1549

Turkish 0.4614 0.5813 0.1865 0.2783 0.2937 0.2440

Zulu 0.2912 0.3961 0.1335 0.2057 0.1684 0.2671

Kazakh 0.3359 0.4159 0.1229 0.1259 0.1127 0.1540

Average 0.3377 0.4283 0.1340 0.1827 0.1714 0.2050

Table 4.9. MTWVs for LR Gaussian posteriorgram on the dev set

LANGUAGE GM GS GF

Pashto 0.0739 0.1004 0.0901

Turkish 0.1577 0.2488 0.2134

Zulu 0.1245 0.1812 0.1583

Kazakh 0.0827 0.1477 0.1128

Average 0.1097 0.1695 0.1437

In addition to these Gaussian posteriorgram models, we train an EDML model for

each of the target languages. The MTWV scores obtained from this are considerably

better than those obtained from the Gaussian and the supervised monolingual phone

posteriorgram (B′). In fact, if we the compare B′ column in Table 4.10 to the EDML

column in Table 4.6, we see that even with one hour of data in the target language, our

average MTWV with the multilingual representation is slightly better than what we

get from monolingual training with ten hours of training data in the target language.

While we are unable to directly outperform the “B” baseline on all keywords in

the LR setting with the EDML, we get a much better OOV performance and on fusion,
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Table 4.10. MTWVs for best LR systems on dev set

LANGUAGE B′ B EDML B+EDML GAIN(%)

Pashto 0.1207 0.2621 0.1432 0.3052 16.4

Turkish 0.2783 0.4614 0.3320 0.5095 10.4

Zulu 0.2057 0.2912 0.2823 0.3753 28.9

Kazakh 0.1259 0.3359 0.2012 0.3789 12.8

IV Average 0.1714 0.4283 0.2260 0.4391 2.5

OOV Average 0.2050 0.1340 0.2747 0.2906 116.9

Average 0.1827 0.3377 0.2397 0.3922 16.2

we get an MTWV improvement of 15% on all keywords.

We have claimed in Section 3.2 that using three state phone representations is

better than using a single state per phone because it provides finer discrimination for

DTW search. To verify this claim, we run train an EDML model using only a single

state for each phonemic classes. From Table 4.11 we see that the use of three-state

phones gives an average relative MTWV gain of 6.7%.

Table 4.11. Dev set MTWV of single-state and three-state phone models for EDML

LANGUAGE
Single

State

Three

States
GAIN(%)

Pashto 0.1376 0.1432 4

Turkish 0.3295 0.3320 0.7

Zulu 0.2580 0.2823 9

Kazakh 0.1776 0.2012 13

Average 0.2257 0.2397 6.7
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4.6.2. Evaluation Set

Using the parameters learned on the dev set, we conduct experiments whose

results are shown in Table 4.12. As expected, since we the EDML system does not use

the lexicon or language model, it performs worse than the baseline on IV terms, but

its OOV term retrieval performance is significantly better.

Table 4.12. ATWVs for best LR systems on eval set

LANGUAGE B′ B EDML B+EDML GAIN(%)

Pashto 0.1180 0.3141 0.1540 0.3320 5.7

Turkish 0.1778 0.3665 0.2307 0.4267 16.4

Zulu 0.1956 0.3032 0.2552 0.3693 21.8

Kazakh 0.0654 0.2729 0.1251 0.3085 13.0

IV Average 0.1360 0.3810 0.1815 0.3936 3.3

OOV Average 0.1473 0.0971 0.2241 0.2422 149.4

Average 0.1392 0.3142 0.1912 0.3591 14.3

4.7. KWS with Low Entropy Features

The experiments described in this section are based on the modified EDML de-

scribed in Section 3.6. Using various values of the entropy weight, we obtain different

representations of varying sparsity and conduct our DTW based search on them. We

measure the sparsity in terms of the average frame entropy of the spoken document

and the density of the document. The density is measured as the ratio of the number

of elements greater than some threshold (we use 10−4) to the total number of elements.

The density is linearly proportional to the amount of memory required to store the

document.
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4.7.1. Development Set

We conduct experiments using three values of λ (0.01, 0.1 and 1) and compare

these to the default case of λ = 0. By increasing λ, we are able to get much sparser

representations. Using λ = 0.1, we get an average compression ratio of 3.85 : 1 without

much loss in TWV compared to the original EDML (see Table 4.10). Further increasing

the entropy weight to λ = 1 gives a compression ratio of 14.3 : 1 with a relative average

MTWV drop of about 19%.

Table 4.13. Dev set MTWV for low-entropy EDML with different values of λ

LANGUAGE λ = 0 λ = 0.01 λ = 0.1 λ = 1

Pashto 0.1420 0.1494 0.1478 0.0967

Turkish 0.3177 0.3301 0.3399 0.2883

Zulu 0.2664 0.2730 0.2735 0.2465

Kazakh 0.1755 0.1753 0.1827 0.1437

Average 0.2254 0.2320 0.2360 0.1938

Table 4.14. Dev set sparsity metrics

LANGUAGE Entropy Density

λ 0 0.01 0.1 1 0 0.01 0.1 1

Pashto 3.547 3.343 3.020 1.833 0.485 0.740 0.172 0.045

Turkish 3.153 3.468 3.209 2.241 0.602 0.385 0.279 0.070

Zulu 3.651 3.440 3.381 2.235 0.450 0.361 0.297 0.070

Kazakh 3.627 3.590 3.430 2.498 0.410 0.409 0.296 0.095

Average 3.495 3.460 3.260 2.202 0.487 0.474 0.261 0.070
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Tables 4.13 and 4.14 show the retrieval and compression performance at different

values of λ respectively. The same information is summarized in Figure 4.1
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Figure 4.1. Evolution of density and MTWV with change in λ.

4.7.2. Evaluation Set

In the eval set we use the low entropy EDML representations with hyperparam-

eters learned from the dev set. While there is some degradation in ATWV compared

to the regular EDML, it is not overly pronounced until we use a very high value of λ

(which of course gives very high compression rates).

Table 4.15. Eval set ATWV for low-entropy EDML with different values of λ

LANGUAGE λ = 0 λ = 0.01 λ = 0.1 λ = 1

Pashto 0.1478 0.1597 0.1510 0.1124

Turkish 0.2299 0.2295 0.2216 0.2038

Zulu 0.2375 0.2486 0.2450 0.2360

Kazakh 0.0885 0.1018 0.1009 0.0714

Average 0.1759 0.1849 0.1796 0.1559
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Table 4.16. Eval set sparsity metrics

LANGUAGE Entropy Density

λ 0 0.01 0.1 1 0 0.01 0.1 1

Pashto 3.545 3.356 3.024 1.833 0.484 0.745 0.172 0.045

Turkish 3.151 3.469 3.210 2.240 0.602 0.385 0.279 0.070

Zulu 3.657 3.452 3.389 2.235 0.451 0.362 0.297 0.070

Kazakh 3.628 3.590 3.429 2.497 0.410 0.409 0.296 0.095

Average 3.496 3.466 3.263 2.201 0.487 0.475 0.261 0.070

Tables 4.15 and 4.16 show the ATWV and retrieval performance of the system

on the eval set. Figure 4.2 summarizes the same information.
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Figure 4.2. Evolution of eval set density and ATWV with change in λ.
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5. CONCLUSIONS

In this thesis, we tackle some of the issues associated with keyword search in

data-scarce settings, namely the paucity of acoustic and linguistic data required for

building an LVCSR based KWS engine. To deal with the acoustic data scarcity, we

propose bootstrapping with data from other languages; to reduce the impact of the

paucity of linguistic data, we propose models based on dynamic time warping template

matching since it is less dependent on linguistic data and so is less sensitive to the

scarcity of such. Where the LVCSR system requires external assistance to deal with

out-of-vocabulary keywords, the proposed models does not differentiate between IV

and OOV terms.

The crosslingual information is extracted by training a multilingual neural net-

work with a low dimensional bottleneck layer whose activations are used as features

in the search. Although the source languages used in training the multilingual repre-

sentation do not include the target languages on which the actual search is conducted,

the representation proves to be useful for search in the target language nevertheless.

By transforming bottleneck features in various ways, we are able to obtain different

representations of the search document. Since the queries are in a different modality

from the document, we transform them into sequences of sub-phonemic states which

we then artificially model to resemble the document and then conduct the keyword

search.

Finding that the bottleneck features obtained from the multilingual neural net-

work do not lend themselves easily to query modeling, we generate a new document

representation by training unsupervised GMMs with the bottleneck features; these we

use to generate Gaussian posteriorgrams and form queries by taking an average of sam-

ples of each class in the training data. We propose using posteriorgrams obtained from

target language or multilingual (from the source languages) Gaussian mixture models.

When the amount of available training data in the target language is extremely lim-

ited, we find that the multilingual Gaussian posteriorgrams outperform those obtained
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from the GMMs trained on the target languages’ bottleneck features. As the amount

of target language data is increased though, the posteriorgrams generated from GMMs

trained on target languages’ data perform much better than those generated from the

multilingual GMMs.

We also propose a model (EDML) that simultaneously learns a document rep-

resentation, a query model for that representation and a distance function for these

representations. Using this model, we are able to far exceed the performance of the

Gaussian posteriorgrams. In an extremely low resource setting where only one hour

of training data is used from each target language, EDML surpasses the LVCSR base-

line even when the baseline is trained with an augmented lexicon of ten hours. In the

milder low resource setting where ten hours of training data is used per target language

though, EDML is only able to outperform the baseline on OOV terms. When the de-

tection results of EDML are combined with those from the baseline, an overall ATWV

increase of about 14% is observed including a 149% improvement on OOV terms.

Like other systems that use the dynamic time warping algorithm, the EDML-

based KWS system has a high memory cost. In addition to the intermediate memory

usage incurred during search, there is a permanent cost associated with keeping the

document in memory. To alleviate this cost, we propose an alteration to the EDML

that biases it towards outputting sparser frame embeddings. With this modification,

we’re able to reduce the memory footprint considerably at the cost of some retrieval

performance.

Since our system performance is evaluated on a single score threshold for all

queries, it is necessary to ensure that the detection score distributions are normalized

across keywords. We propose a generalization of an existing normalization technique

which, in addition to normalizing the keywords, prunes out more irrelevant hypotheses

and gives a higher dynamic range of normalized scores. With this high dynamic range,

thresholds are less sensitive to slight numerical perturbations in the hypotheses’ score.
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That the fusion of multiple systems, especially those that perform complementary

functions, leads to better performance is a well established fact in machine learning

in general, and keyword search in particular. We propose a fusion methodology that

works by re-calibrating the scores of each system with a transformation that maximizes

the separation between spurious hypotheses and true ones. After this, a simple addition

is enough to combine the scores from the systems.

Further work will mostly involve reducing the computational cost of running the

proposed systems. This will involve using approximations that allow the pruning away

of irrelevant swathes of the document before running the fine dynamic time search.

For instance, by using the lower bound dynamic time warping approaches or the pre-

filtering method on the low entropy frame embeddings from the sparse EDML, further

gains in processing time could be obtained. Additionally, a recurrent neural network

summarizer could be trained with which a quick comparison between the query and

portions of the document could be made before then running the full DTW.
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29. Veselý, K., M. Karafiát, F. Grézl, M. Janda and E. Egorova, “The language-

independent bottleneck features”, pp. 336–341, 2012.

30. Heigold, G., V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin

and J. Dean, “Multilingual acoustic models using distributed deep neural net-

works”, IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pp. 8619–8623, IEEE, 2013.

31. Hermansky, H., D. P. Ellis and S. Sharma, “Tandem connectionist feature extrac-

tion for conventional HMM systems”, IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP), Vol. 3, pp. 1635–1638, IEEE, 2000.
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