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all and for his guidance, motivation and fatherly attitude. I owe the completion of this

study to his limitless understanding on the circumstances a scholar may face throughout

an advanced study.
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ABSTRACT

RADIAL BASIS FUNCTION MODEL OF

NAVIER-STOKES EQUATIONS FOR WATER WAVES

In this study a numerical model using the radial basis function collocation method

(RBFCM) is developed for water wave propagation described by the Navier-Stokes

equations. For the test cases, two dimensional horizontal bottom tests and submerged

breakwater test are performed and the results are verified with the expected solutions

and the experiment results of Luth et al. (1994). The collocation configuration is

implemented to change instantly depending on the evolution of the free surface so that

a center close to the surface below a crest can be out of the defined collocation set

at another instant if there is trough on the free surface. The projection method of

Chorin (1968) is used to create an auxiliary equation from the continuity to compute

for the pressure in the flow field and the resulting Poisson equation is modeled using the

collocation on the boundary technique to obtain better accuracy with the definition

of additional out of domain centers close to the boundary which makes it possible

to define the governing equation as well as the boundary condition at a boundary

collocation center. The model is developed using the advanced features provided by

the recent programming languages so that it is extensible to account for more details

in the flow field and also different solvers can be implemented for different type of flows

and problems.
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ÖZET

SU DALGALARI İÇİN NAVİER-STOKES

DENKLEMLERİNİN RADYAL BAZLI FONKSİYON

MODELİ

Bu çalışmada, Navier-Stokes denklemleriyle tarif edilen dalga ilerlemesi problemi

için radyal bazlı kolokasyon yöntemini kullanan bir sayısal model geliştirilmiştir. Testi

için iki boyutlu yatay taban tesleri ve batık dalgakıran testi yapılmıştır ve sonuçlar bek-

lenen çözümler ile ve Luth et al. (1994) deney sonuçlarıyla doğrulanmıştır. Kolokasyon

tertibi zaman içinde değişecek şekilde tatbik edilerek yüzeyin durumuna göre tepe

altında yüzeye yakın bir kolokasyon merkezinin başka bir çözüm anında yüzeyde çukur

olması ihtimalinde çözüm alanında bulunan geçerli kolkasyon kümesi dışında kalması

sağlanmıştır. Süreklilik denkleminden yedek bir denklem yaratarak basınç alanını

çözmek için Chorin (1968) projeksiyon yöntemi kullanışmıştır ve sonunda elde edilen

Poisson denklemi sınırda kolokasyon yöntemiyle modellenerek çözüm alanı dışında

sınıra yakın konumlara yerleştirilen kolokasyon merkezleri sayesinde bir sınır merkezinde

aynı anda çözüm alanında geçerli denklemi ve sınır şartını sağlamak mümkün olmuştur.

Model programlama dillerinin güncel ileri özellikleriyle geliştirilerek akış alanında daha

çok detayı açıklayabilecek uzantıların yapılmasına ve aynı zamanda başka çözücüler

yazarak başka tür akıntıların çözülmesine olanak vermektedir.
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Figure 3.1. Problem definition sketch . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.2. Bottom boundary sketch. . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.3. Variation of sponge coefficient for cs with respect to x/Ls which is

the normalized distance of x from starting point of the sponge layer. 34

Figure 4.1. PDE collocation on the boundary illustration . . . . . . . . . . . . 44

Figure 4.2. Sequential flow chart of the model . . . . . . . . . . . . . . . . . . 47

Figure 5.1. Determination of the optimum shape parameter for Wave 1. . . . 55

Figure 5.2. Determination of the optimum shape parameter for Wave 2. . . . 56

Figure 5.3. Determination of the optimum shape parameter for Wave 3. . . . 57

Figure 5.4. Change of root mean square error in time for Wave 1. . . . . . . . 58

Figure 5.5. Change of root mean square error in time for Wave 2. . . . . . . . 59

Figure 5.6. Change of root mean square error in time for Wave 3. . . . . . . . 60

Figure 5.7. Free Surface During The First Period For Wave 1. . . . . . . . . . 61

Figure 5.8. Free Surface During The Tenth Period For Wave 1. . . . . . . . . 62



ix

Figure 5.9. Free Surface During The Twentieth Period For Wave 1. . . . . . . 63

Figure 5.10. Free Surface During The First Period For Wave 2. . . . . . . . . . 64

Figure 5.11. Free Surface During The Tenth Period For Wave 2. . . . . . . . . 65

Figure 5.12. Free Surface During The Twentieth Period For Wave 2. . . . . . . 66

Figure 5.13. Free Surface During The First Period For Wave 3. . . . . . . . . . 67

Figure 5.14. Free Surface During The Tenth Period For Wave 3. . . . . . . . . 68

Figure 5.15. Free Surface During The Twentieth Period For Wave 3. . . . . . . 69

Figure 5.16. Setup of Luth et al. (1994) experiment. . . . . . . . . . . . . . . . 70

Figure 5.17. Navier-Stokes and Nonlinear Potential model results at station x =

5.2m for Wave 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.18. Navier-Stokes and Nonlinear Potential model results at station x =

12.5m for Wave 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.19. Navier-Stokes and Nonlinear Potential model results at station x =

14.5m for Wave 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.20. Navier-Stokes and Nonlinear Potential model results at station x =

17.3m for Wave 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.21. Comparison of NS and Nonlinear Potential model results with the

experiment at station x = 5.2m for Wave 1. . . . . . . . . . . . . . 75



x

Figure 5.22. Comparison of NS and Nonlinear Potential model results with the

experiment at station x = 12.5m for Wave 1. . . . . . . . . . . . . 76

Figure 5.23. Comparison of NS and Nonlinear Potential model results with the

experiment at station x = 14.5m for Wave 1. . . . . . . . . . . . . 77

Figure 5.24. Comparison of NS and Nonlinear Potential model results with the

experiment at station x = 17.3m for Wave 1. . . . . . . . . . . . . 78

Figure A.1. Sequential flow chart of the model . . . . . . . . . . . . . . . . . . 97

Figure B.1. A continuous and a discrete sinosoidal function. . . . . . . . . . . 98



xi

LIST OF TABLES

Table 2.1. Airy Wave Model Properties . . . . . . . . . . . . . . . . . . . . . 9

Table 2.2. Stokes Wave Model Properties . . . . . . . . . . . . . . . . . . . . 10

Table 2.3. Stream Function Wave Model Properties . . . . . . . . . . . . . . 12

Table 2.4. Linear Shallow Water Wave Model Properties . . . . . . . . . . . . 13

Table 2.5. Boussinesq Wave Model Properties . . . . . . . . . . . . . . . . . . 15

Table 2.6. Some commonly used RBFs with global support . . . . . . . . . . 24

Table 2.7. Wendland’s positive definite functions with compact support . . . 24

Table 5.1. Properties of the input waves . . . . . . . . . . . . . . . . . . . . . 51

Table 5.2. Summary of the test properties for the horizontal bottom simulations 52



xii

LIST OF SYMBOLS

a Wave amplitude

Bj j-th stream function coefficient

c Shape parameter

C Wave celerity

Cm m-th order complex domain

Cn Estimate of Sommerfeld’s radiation boundary condition con-

stant at the n-th location

d Local depth

g Gravitational acceleration

f Derivative function

H Wave height

k Wave number

ki i-th Runge-Kutta coefficient

L Wave length

N Number of centers

p Pressure per unit density

pt Total pressure per unit density

r Radial distance between two centers

t Time variable

t0 Time at the start of a simulation

u Horizontal velocity component

u∗ Predicted horizontal velocity component
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1. INTRODUCTION

Mostly generated by the winds blowing over large ocean or sea surfaces, water

wave motion is an important phenomenon that needs careful consideration because

accurate prediction of the wave parameters plays a crucial role in the design of coastal

or off-shore structures and in the solution of the engineering problems occurring at the

nearshore region.

Several methodologies have been developed to measure the wave parameters that

can be broadly classified as physical and non-physical. Physical methods are mainly

composed of laboratory and field studies where data collection is performed to extract

information about the waves. On the other hand, mathematical modeling, which is

not exactly an alternative but rather a complementary work, is used estimate the wave

parameters. With the help of these non-physical models, a deeper understanding of

the problem is aimed to be developed. Also, measured physical data or experimental

results are used for the verification of the mathematical models.

Within the scope of laboratory tests, real physics of the problems related to the

the wave motion are simulated at certain scales. A wide variety of simulations are

available from those focused on pure wave mechanics to interaction of the waves with

their environment. On the other hand, wave parameters are measured and recorded in

field observations. This can be achieved by special instruments located at fixed on-site

or remote stations or attached to moving bodies like vessels.

Mathematical modeling of waves is mainly based on mathematical descriptions

of the wave motion made by making use of the physical laws under certain assump-

tions. Once a set of equations are constructed for the physics of the problem, exact or

numerical solutions are sought by using some modeling methods which are analytical,

numerical or statistical. Any combinations of these methods are also possible depend-

ing on the approach taken. It has to be noted at this point that a mathematical model

is as good as the physics built into the model.
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Of these methods, statistical approach does not always need determinate mathe-

matical equations of the wave motion and generally relies on data over which predictions

are made through some set of relations or distributions. Similar to stochastic models,

spectral models have also been developed assuming waves are not monochromatic and

water surface is composed of waves with different frequencies and directions. Since, this

study is about the propagation of monochromatic waves with a determinate physics,

stochastic and spectral models are not discussed further.

On the other hand, analytical and numerical methods propose solutions to the

determinate description of the wave motion under certain assumptions. Initial method

provides exact solutions, and the latter provides approximate solutions.

Analytical solution development of the wave models dates back to the early days

of research on the topic, as it was the only tool at that time. However with the invention

of computers, numerical models have started to be developed, and in parallel to the

enormous increase in the processing power of computers, numerical models have gained

priority. This is not only because analytical solutions are applicable to more particular

cases but also it has become possible to account for different aspects of the problems

in the same model through coupling multiple physics together. In this way, limitations

to analytical solutions have been breached and the needs of the industry and research

field have been met in a broader spectrum. A numerical method typically includes the

following steps.

(i) Discretization of the continuous problem domain.

(ii) Proposition of an approximate definition with undetermined coefficients for the

unknowns of the problem.

(iii) Construction of a set of equations on the discrete domain based on the mathe-

matical description of the problem.

(iv) Imposition of the initial and boundary conditions.

Approximate solutions to the problem variables are found by computing the unde-

termined coefficients. Meanwhile, several numerical techniques are employed depending
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on the linear or nonlinear nature of the problem.

Every numerical method has its own way of constructing the set of equations on

how the problem domain is discretized and the approximate solution is proposed. A

general distinction can be made among them through the definition of approximate

solutions whether a local portion of the discretized domain is used or not.

Models with local definitions of the unknowns are called local methods whereas

the models with definitions that are using the information of the whole domain are

called global methods. On the other hand, numerical methods differ according to the

geometrical elements they use to discretize the problem domain. Through the definition

of discrete elements or simply points, the models end up in different sets of equations.

One of the most difficult aspects of geometry discretization occurs when the prob-

lem domain deforms in time. This is always the case with the wave propagation models

where the free surface changes in time and the free surface boundary conditions are

to be satisfied on this deforming boundary. And, since some methods use geometrical

elements that do not change in time, they need special treatment to account for the

domain deformation in the resulting set of equations. This may result in a pay-off from

the accuracy and bring an inevitable difficulty in the development phase.

Likewise, it may be difficult for a method to define some of the parameters due

to the restrictions imposed by its geometrical elements. In such models, for example,

a set of parameters are computed at certain locations of the element while some other

parameters are located and computed elsewhere. This might cause loss of generality

and accuracy. For example, in a flow field with the pressure and the velocity field

are the main unknowns, some models might have elements where the pressure field is

computed on the surface while the velocity field is computed in the middle of these

elements.

Therefore numerical models that are made up of a mathematical model and a

numerical implementation of it, can be evaluated according their applicability, com-
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plexity, accuracy and performance. It is always desired from a numerical model to

be applicable to a wide range of problems and contain as much complexity as possible

so that special treatments are not required. In addition, the results are desired to be

at the highest level of accuracy and to use least computer resources in order to obtain

the results as fast as possible.

In this study a numerical model is developed based on the Navier Stokes (NS)

equations using the radial basis function collation method (RBFCM). By the selection

of NS Equations it is aimed to develop a numerical model with a mathematical for-

mulation that has less limitations and assumptions compared to other models. In this

sense, NS Equations are applicable to any kind of flow problems without any restric-

tions, although it is limited by other factors such as the limits of the computational

power of modern computers.

It has to be noted at this point that as the waves approach the shore, at some

point waves start to overturn and breaking occurs most of the time and there are various

types of mechanisms that need to be identified during breaking. These mechanisms

are needed to be implemented in a model if wave breaking is desired to be accounted

for. Therefore the model developed in this study must be clearly identified that wave

propagation is modeled up to the breaking point.

RBFCM is selected because it is it is easy to track the surface deformation since

position of the radial basis function (RBF) centers and collocation nodes can change

in time. Moreover, since it is easy to express geometrical features, less modeling ef-

forts needed for RBFCMs compared to alternative methods. Also, flexibility in the

expression of geometry makes it possible to define the parameters exactly compared to

methods that needs mostly inexact definitions

In this study, problem domain is reduced into a two-dimensional (2D) vertical

plane to speed up computations sacrificing the ability to validate the diffraction and

refraction effects on water waves occurring due to a variable bottom topography. How-

ever, the model can be extended into three dimensions (3D) without much effort due
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to the flexibility of RBFCM.

Viscosity is taken constant as it is deemed satisfactory for the purposes of this

study and assumed that any rotational effects originating at the bottom boundary

do not have enough time to develop inside flow region. This makes it possible to

ignore turbulent effects. However, a turbulence model can easily be coupled with NS

Equations.

Verification of the model is done by performing two types of numerical tests. In

the first type, input wave defined on the influx boundary is propagated on an horizontal

bottom where it is expected to propagate downstream without any change in its phase

and amplitude. In the second type, submerged breakwater laboratory test results of

Luth et al. (1994) are regenerated. It is found that the simulation results are in good

agreement with the solutions or laboratory test results.

In the following chapter, a literature review of the topic is given. In the first part,

some of the mathematical and numerical water wave models present in the literature

are presented. In the second part of the chapter, a brief review on RBFs and RBFCM

is given.

In Chapter 3, mathematical model is introduced. The governing NS equations are

presented along with the problem geometry and the boundary and initial conditions.

Also, assumptions and limitations of the model are listed.

Chapter 4 is about the numerical methodology followed in the study, namely

the RBFCM. Definition of the unknowns with the undetermined coefficients are given

according to RBFCM. It is shown how the continuous problem geometry is handled

by discrete set of RBF centers. Numerical formulation of the boundary conditions and

their implementation in the model are presented. Also, time marching methods used

in the model are given in detail.

In the last two chapters, test results are presented and conclusion of the study is
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given.
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2. LITERATURE REVIEW

2.1. Introduction

There have been numerous studies for the wave propagation problem present in

the literature. While the early models use analytical techniques, with the invention of

computers, numerical techniques have been started to be applied by researchers and

engineers. Computers have lead to substantial advancement in the state-of-the-art

of water wave propagation modeling and have made it possible to develop alternative

models mostly with a deeper understanding and knowledge. And, it can be clearly seen

that the capacity and capability of the models have been improved in parallel to the

advancement in computer technology. Also, while recent models are more sophisticated

than their predecessors, they require more computer resources.

As it was stated before, only determinate models for monochromatic waves are

reviewed. Stochastic and spectral models are omitted.

A clear distinction of the wave models presented below is tried to be avoided

because a model is characterized with many aspects and it is natural that some of

these make a clear distinction, some other aspect overlap. Therefore, they are rather

given in groups or separately. Some models have limitations with respect to the water

depth and it can be seen that efforts have been made to extend their validity and

applicability. NS Equation models, on the other hand, are valid for all depths without

any limitations.

A detailed discussion on small amplitude and shallow water models can be found

in the texts such as Stoker (1957), Le Méhauté (1976), Dean and Dalrymple (1984),

Sobey et al. (1987), Kowalik and Murty (1993), Dingemans (1997a,b), Svendsen (2006)

and Whitham (1999).

After the review of the wave models, a brief review is given on the RBFCM which
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is a more recent numerical technique compared to alternative methods. Also, various

RBFs used for the solution of partial differential equations (PDEs) are introduced and

development of the method is reviewed.

2.2. Small Amplitude Wave Model and Finite Amplitude Extension

Models

2.2.1. Linear Wave Model

The linear wave solution to the wave motion problem was first proposed by Airy

(1845). This model is alternatively called the linear wave, small amplitude wave or

Airy wave. Wave height (H) or wave amplitude (a) is very small compared to wave

length and local depth(d). In other words, wave steepness (H/L), relative wave height

(H/d) are assumed to be very small, i.e. H/L << 1, H/d << 1. This implies that the

free surface can be accepted at the mean water level when the free surface boundary

conditions are imposed.

As a wave approaches to the shore, its wave height increases because of shoaling

and its wave length decreases. In the mean time, local depth becomes smaller. There-

fore, wave steepness and relative wave height increases and assumptions of linear wave

model is violated and thus its validity breaks.

Another parameter that can be classify the wave models valid within a limited

range is the Ursell number given in Ursell (1953). Its form applicable to small amplitude

and shallow water waves is as follows.

UR =
H

L

(
L

d

)3

(2.1)

where UR is the Ursell number. Following from the very small definition of wave

steepness and wave length-to-depth ratio described above, Ursell parameter is very

small (UR << 1) for linear waves. In Table 2.1 several properties of the Airy Wave

model are listed. Although a comparison of the wave models with limited nature are



9

Table 2.1. Airy Wave Model Properties

Wave Theory Linear (Airy) Wave

Characteristic Parameters H/d << 1, H/L << 1, UR << 1

Range of Validity Deep Water (d/L > 0.5)

Intermediate Water (0.05 < d/L < 0.5)

Assumptions Irrotational, Nonhydrostatic, Perfect fluid,

Oscillatory, Exact solution, 2D vertical domain,

Flat impermeable bottom, Negligible surface tension

given later, it must be noted here that Airy wave theory gives reasonable results at

intermediate water depths while fair results are obtainable in deep water. The results

deteriorate in shallow water.

Analytical solutions can be obtained by assuming that a velocity field is derivable

from a potential function φ(x, z, t) where x is the horizontal and z the vertical direction.

This means the solutions are valid on a 2D vertical domain where the third dimension

is omitted with the assumption that wave crests are long enough and wave properties

do not change in the transverse direction. Also, the fluid is ideal for Airy models so

that friction is not considered.

2.2.2. Stokes Wave Model

Theory of Stokes Waves is found in Stokes (1847) where linear Airy wave theory

is extended by defining a perturbation parameter of a series solution. This makes

it possible to include nonlinear terms in the solution of the wave problem and get

better results compared to linear waves that are equivalent to the results obtained by

selecting only the order one expansion term. It is shown that it is possible to develop

a wave model at any order with the perturbation method implemented in the process

of deriving solutions.



10

Table 2.2. Stokes Wave Model Properties

Wave Theory Stokes Waves

Characteristic Parameters H/d << 1, H/L << 1, UR < 10

Range of Validity Deep Water (d/L > 0.5)

Intermediate Water (0.05 < d/L < 0.5)

Shallow Water (limited) (d/L < 0.05)

Assumptions Irrotational, Nonhydrostatic, Perfect fluid,

Oscillatory, Power series in H/L, 2D vertical domain,

Flat impermeable bottom, Negligible surface tension

In the case when small wave steepness (H/L << 1) assumption is valid, there is

only one mode of the solution and the wave form is purely sinusoidal. However, for

a more general case, small wave steepness assumption is neglected and the expansion

parameter ε = 2πH/L is assumed as an order 1 (O(1)) quantity. This way powers of ε

becomes meaningful and a wave model to any order can be generated. In particular,

the first order Stokes wave is the equivalent of linear wave model.

Fenton (1985) derived fifth order Stokes waves that are valid from deep water to

shallow water. However, it must be noted that validity remains as long as the wave

steepness is in similar order to the order of the Stokes waves. Otherwise, for long

waves in shallower region of the ocean, wave steepness might become very small and

thus Stokes solutions become invalid. In that case, alternative solutions are available

in the literature and reviewed in Section 2.3.

Properties of Stokes wave model is summarized in Table 2.2. The main difference

from the linear wave theory is in the conditions used for the validity of the wave and

the nature of the solution since the solution is exact for the linear waves whereas it is

a power series expression for Stokes waves.
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2.2.3. Stream Function Wave Model

Although there have been efforts to derive the Stokes waves in higher orders

for more accuracy and extending the validity region, the derivation process becomes

difficult manually after the second order. Therefore, following the work Chappelear

(1961) in which a numerical solution to the wave propagation problem is proposed,

Dean (1965) uses the stream function equation as the governing equation valid on a

problem domain, formulates the flow field variable, namely the stream function using

a series and in the least square sense obtained the coefficients of this series by best

fitting the so-called dynamic free surface boundary condition (DFSBC).

Method of Dean (1965) is simpler than that of Chappelear (1961) and these

two studies are the first models using power of computers in water wave propagation

problems. Also, the results of 40 wave cases are tabulated in Dean (1974) to be used

without the need of a computer.

Rienecker and Fenton (1981) uses a simpler method to obtain the Fourier series

coefficients but it is not applicable to deep water waves. Therefore Fenton (1988)

modifies this method so that coefficients are obtainable both for deep water and finite

depth region. A computer program is also given in the study.

In general these models are called the Fourier approximation methods since the

coefficients of the Fourier series are computed numerically. Also, along with the Stokes

waves where the parameters are expressed by a Fourier series, stream function method

can also be classified as Fourier method.

Although approximate, results of the stream function wave model are superior to

the Stokes waves used in the studies present in the literature. This is because computers

that have made it possible to propose a solution to any order. And, it has to be noted

that the limited capability of Stokes waves in shallow water is also surpassed by stream

functions up to 20th order.
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Table 2.3. Stream Function Wave Model Properties

Wave Theory Stream Function Waves

Characteristic Parameters None

Range of Validity Deep Water (d/L > 0.5)

Intermediate Water (0.05 < d/L < 0.5)

Shallow Water (d/L < 0.05)

Assumptions Irrotational, Nonhydrostatic, Perfect fluid,

Oscillatory, Fourier series in d/L,

2D vertical domain, Exact,

Flat impermeable bottom, Negligible surface tension

In Table 2.3 stream function wave properties are listed. Since it is a numerical

model and wave properties can be computed to any order, theoretically there is no

characteristic parameter limiting the validity of the theory except the breaking limit

of the waves.

2.3. Shallow Water Models

Expansion parameter of the Stokes Waves, ε = 2πH/L, is also an order 1 (O(1))

quantity. However, in shallow water, long wave length, L, is much higher than the

local depth d that the assumption on the expansion parameter becomes invalid as it

violates being an order 1 quantity.

In Ursell (1953), linear shallow water waves are classified according to Ursell

number where its value is much less than one (UR << 1), while it is an order one

quantity (UR ∼ O(1)) for cnoidal and solitary waves and much higher than one (UR >>

1) for nonlinear shallow water waves.
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Table 2.4. Linear Shallow Water Wave Model Properties

Wave Theory Linear Shallow Water Waves

Characteristic Parameters H/d << 1, UR << 1

Range of Validity Shallow Water (d/L < 0.05)

Assumptions Irrotational, Hydrostatic, Perfect fluid,

Oscillatory, Fourier series in d/L, 2D horizontal domain,

Varying impermeable bottom, Negligible surface tension

2.3.1. Linear Shallow Water Wave Models

Neglecting the convective terms, inertia, friction and nonlinear terms in the

mometum and continuity equations linear shallow water wave equations can be ob-

tained. With their application to several different cases under the assumptions H/d <<

1 and UR << 1, exact solutions can be obtained for this model. Due to these assump-

tions, these waves are called as long waves of small amplitude.

For the properties listed Table 2.4, it must be noted that the pressure in hy-

drostatic and solutions for various bathymetries exist for linear shallow water wave

equations. Although, it is always possible to obtain numerical solutions using linear

shallow water equations and various treatments can be introduced into the models for

computation of the different aspects of the waves, only exact solutions are considered

in the table.

2.3.2. Cnoidal, Solitary and Boussinesq Wave Models

For order one (O(1)) Ursell numbers, UR, it is possible to obtain the Boussinesq

equations by using a partial solution solution of the Laplace equation in the kinematic

(KFSBC) and dynamic free surface boundary conditions. This partial solution in terms

of velocity potential is obtained using the bottom velocity potential and it displays the
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variation of potential along the vertical direction.

While application of KFSBC results in a PDE in terms of the free surface pa-

rameter, η, DFSBC results in a PDE in terms of the velocity potential or the horizonal

velocity component. Alternative forms of the Boussinesq equations for different ref-

erence velocities can be given for example the velocity at the mean water plane, or a

depth averaged velocity can be used. In some models, total instantaneous volume flux

is used.

Since the nonlinear term appearing in the Boussinesq equations has a small co-

efficient, they are generally termed as weakly nonlinear equations. Also, Boussinesq

equations are expressed with the order of accuracy selected during derivation process

and this implies that they are not exact.

On the other hand, Boussinesq equations can be expressed in one variable if the

waves are assumed to travel in one direction. This way it is possible to eliminating

either one of the parameters.

Expression of fourth order Boussinesq equations in the free surface parameter,η,

is first found in Boussinesq (1872). Korteweg and deVries (1895) uses the assumption

that waves are propagating only in one direction to derive the so-called Korteweg-

deVries (KdV) equation which is a third order Boussines equation in one variable.

Benjamin et al. (1972) shows that there are not unique forms of the KdV equa-

tion and the Boussinesq equation so that it is possible to obtain alternative forms by

interchanging the order of derivations with respect to different parameters. Mei (1983)

proposes alternative forms of the Boussinesq equation.

Over a one dimensional domain of constant depth, imposing the condition waves

propagate only in one direction makes it possible to solve KdV equations analytically

leading to cnoidal wave solution that are of constant form. Cnoidal waves are valid in
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Table 2.5. Boussinesq Wave Model Properties

Wave Theory Boussinesq Wave Model

Characteristic Parameters H/d << 1, UR ≈ 1

Range of Validity Shallow Water (d/L < 0.05)(There are extension efforts)

Assumptions Irrotational, Nonhydrostatic, Perfect fluid,

Translatory, Exact (1st Order Theory),

Non-exact (higher orders),

Higher order models are numerical,

Up to 2D horizontal domain,

Varying impermeable bottom, Negligible surface tension

Figure 2.1. Validity of water wave theories by Le Méhauté (1976)

the shallow water region giving results better than linear shallow water wave model.

Therefore, it is better to use cnoidal wave model in shallow water compared to linear

and Stokes wave models. Cnoidal wave profile is expressed in terms of a Jacobian

elliptic integral, numerical algorithm of which is given in Press et al. (1986).

In the Figure 2.1, an updated version of Le Méhauté’s (1976) study comparing

water wave models is given. As it can be seen, Stokes waves are better in deep water

while cnoidal works well in shallow water, linear wave theory has better performance

at intermediate water and stream function waves at different orders work well at any

depths.

Also, for the case of inifinitely long waves cnoidal waves reduce to the solitary

waves which are in the form of single crest and the free surface, η, is greater than zero

everywhere. Applications of solitary wave model can be found in Munk (1949).

Extension of Boussinesq model into two dimensional horizontal domain with vary-
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ing depth is derived in Peregrine (1967) where equations are given in terms of the depth

averaged velocity and linear dispersion characteristic is diplayed clearly. A detailed re-

view of the topic is given in Madsen and Schäffer (1998).

In the literature, several efforts to enhance the deep water properties of the

Boussinesq wave models can be found. The idea is based on the fact that phase

velocity shows dependency on the highest order linear terms in the equations as water

depth increases.

On the other hand, Madsen et al. (1991) show a form of the equation with

linear dispersion characteristics dependent on a parameter that is optimized with least

squares and it shows better linear dispersion characteristics compared to Stokes waves

in deep water. This study is taken further in Madsen and Schäffer (1998) where a linear

differential operator termed as linear enhancement operator is proposed to ehance deep

water behavior of the Boussinesq wave model.

On the other hand, Nwogu (1993) shows similar enhancement to Madsen et al.

(1991) by expressing the Boussinesq equations at an arbirtary depth. Therefore, this

study sets a relationship between the arbitrary depth and the optimum enhancement

parameter found by Madsen et al(1991).

Another Boussinesq equations are made made fully nonlinear within the literature

of extension efforts of the model. Serre (1953) derived fully nonlinear equations keeping

nonlinear terms omitted in the classical derivations. Wei et al. (1995) examines the

accuracy of the fully nonlinear Boussinesq models.

There are also efforts to extend the accuracy of Boussinesq models by increasing

the order of equations. Gobbi and Kirby (1999) and Gobbi et al.(2000) used the average

of two reference velocities and introduced fifth order derivatives into the equations.

Besides, Yoon and Liu (1989) and Chen et al. (1998) develops a Boussinesq model

that took the interaction of waves with currents into account. Agnon et al. (1999) and
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Madsen et al. (2002, 2003), express boundary conditions on the bottom and the free

surface at the still water level in terms of horizontal and vertical velocity components

along with a truncated expansion solution for the Laplace equation and succeeded in

developing higher order Boussinesq models.

Furthermore as a successful numerical solution methodology Wei and Kirby (1995)’s

Adams-Bashforth-Moulton (ABM) integration method and frequency domain method

of Kaihatu (2003) are important to revise.

Also, for the purpose of including wave breaking,a viscosity or a diffusion term

is added to the Boussinesq equations in the following studies, Zelt (1991), Karambas

and Koutitas, Wei et al. (1995), Kennedy et al. (2000).

Similarly, Brocchini et al. (1992) and Schäffer et al. (1993) introduce roller

method and Veramony and Svendsen (1998, 2000) introduce viscous dissipation by

splitting the equation of motion into a potential and a rotational part to implement

wave breaking.

Since the developments in the Boussinesq modeling literature is exhaustive fol-

lowing extensive reviews can be given for futher reference, i.e. Kirby (1997, 2003),

Brocchini and Landrini (2013).

2.3.3. Nonlinear Shallow Water Wave Models

In nonlinear Shallow Water Equations (NSWE) characteristics coefficient of the

nonlinear terms is an order 1 (O(1)) quantity. And, this makes them strongly nonlinear.

In these models, velocity is assumed to be constant over the depth so that expressions

in terms of the depth averaged velocity are present in the literature.

There exists analytical and numerical solutions to nonlinear equations in the

studies like Thacker (1981), Synolakis (1987), Liu et al. (1995) and Titov and Synolakis

(1997), Kanoğlu (2004). Also, there are several numerical models focused on tsunami



18

wave propagation and run up in the literature.

2.4. Linear Uneven Bathymetry Model; Mild-Slope Equation

Within the literature of small amplitude waves, due to the need for including the

bottom variation into the models, mild-slope equation was developed by Eckart(1952)

and later by Berkhoff (1972, 1976). It was an improvement to its predecessor ray tracing

method and based on the assumption of mildly varying bathymetry. This assumption

lead to the conclusion that that a monochromatic wave propagates with its primary

mode only and the evanescent modes are negligible. Further studies have been made

by Kirby and Dalrymple (1983), Tsay and Liu (1982) to overcome the difficulty of

specifying shoreline boundary conditions and a parabolic approximation introduced

into the mild-slope equation.

2.5. Other Fully Nonlinear Potential Theory(FNPT) Models

Apart from the fully nonlinear Boussinesq models reviewed before, there are

Laplace equation based full 3D or 2D models present in the literature. These models

throughout the domain of interest make use of the potential theory and use Laplace

Equation as the governing equation and construct a system imposing the boundary

conditions of the flow. Although Laplace Equation is a linear PDE, nonlinearity is due

to the free surface boundary conditions. Also, time dependency is introduced through

free surface boundary conditions since the Laplace Equations is a steady state PDE.

Validity of these models covers the entire range of water depths. However, Laplace

equation based models assume that the fluid is ideal therefore there is no internal fric-

tion. Secondly, flow field is irrotational. This assumption is violated when irregularities

on the boundaries surrounding the fluid find time to cause substantial energy dissipa-

tion or when waves approach to the breaking point where the fluid becomes rotational.

These numerical models are more accurate than the models with limited range of ap-

plicability, but requires much more computational power.
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Romate (1989) and Broeze (1993) uses the boundary element method (BEM),

Kennedy and Fenton (1996, 1997) uses polynomials, Li and Fleming (1997) uses a

finite difference multgrid model in their 3D Laplace wave models. A more detailed

review on these models can be found in Ma (2010).

2.6. Navier Stokes Models

Another class of fully nonlinear wave models is the NS models based on the

NS equations which are composed of momentum equations and the continuity equa-

tion. NS Equations can be of several forms and when necessary they are coupled with

other physics like thermodynamics or magnetohydrodynamics. However, incompress-

ible, Newtonian, isotropic fluids momentum equations and the continuity are satisfac-

tory and detailed derivation can be found in Eringen (1980) and Schlichting (1979).

Analytical solutions present for the NS Equations are limited since they are ob-

tained after some simplifications and assumptions. Therefore they are limited to a

small set of flows. In the case of water wave propagation, when a detailed understand-

ing is required on the processes due to waves, analytical models are unsatisfactory and

numerical models are inevitable.

Compared to the models reviewed until this point NS models are more general and

free of some of the limitations those models have. Moreover, they are valid for entire

depths of water. One other superior aspect of the NS Equations is that viscosity is

present in them and hence no artificial term is needed to account for viscous dissipation

generally used to expand the capabilities of inviscid models.

There are also some drawback for NS models. First, they are difficult to imple-

ment. For example the pressure appears indirectly (with its gradient) in the equations

and there no other independent equations of the pressure to solve it directly. Instead,

there is the continuity equation that relates the gradient of the velocity components.

Therefore generally an equation for the pressure is derived form the momentum equa-

tions and its solution guarantees the satisfaction of the continuity. And, in projection
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methods, the resulting equation obtained from the addition of the derivatives of the

momentum equations with respect to directions they are defined along is an elliptic

type Poisson equation.

On the other hand, NS equations can be simplified with the definition of a stream

function on the plane where the resulting governing equation is a Poisson equation.

These models are called the stream-function vorticity models because the equation

displays the connection between the stream function and the vorticity. However, these

models are restricted to a plane and since extension of them to 3D brings some other

difficulties, they are not popular for water wave propagation problems.

On the other hand, NS Equations can be modeled directly with special techniques.

These techniques can be listed as explicit/implicit time marcing methods, artificial

compressibility methods and fractional step methods. Details of these methods can

be found in the texts Ferziger and Perić (2002), Cebeci et al. (2005), Versteeg and

Malalasekera (2007).

There are two options for the time marching methods. Variables are discretized

in time either explicitly or implicitly. When an explicit expression is used, a divergence

free velocity field is needed for the new time step. Therefore, a pressure equation is

derived using the continuity equation and its solution guarantees the velocity field at

the new time step to be divergence free.

Alternatively, implicit discretization leads to large systems of equations and due

to nonlinear nature of the problem, the coefficient matrix also depend on the un-

knowns of the new time step and direct solution is impossible. Therefore, iterative

solution methods are employed and depending on the problem size, these methods can

be very costly in terms of computer resources and implicit methods are developed to

reduce the costs of computation. These methods can be listed as Semi-Implicit Method

for Pressure-Linked Equations (SIMPLE) of Patankar and Spalding (1972), SIMPLER

(SIMPLE Revised) of Patankar (1980), SIMPLEC (SIMPLE Consistent) of Van Door-

mal and Raithby (1984), Pressure Implicit with Splitting of Operators (PISO) of Issa
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(1986).

Turbulent characteristics of a flow is an important issue in models. Turbulent

behavior in wave models is observed due to anomalities at the boundaries and wave

breaking. First of the three mostly used methods is the Reynold Averaged Navier

Stokes (RANS) model where RANS Equations are derived by splitting the mean flow

parameters and the turbulent fluctuations and then they are coupled with a transport

model. Widely used transport model is the k − ε model proposed by Launder and

Spalding (1974). Later in Speziale (1987) a nonlinear k− ε model developed. Wilcox’s

(1988, 1993a, b, 1994) k − ω model and Menter’s (1992a, b, 1994,1997) shear stress

transport (SST) k − ω model are common alternatives to the k − ε model. Since the

literature of the topic is very exhaustive more details can be found in Ferziger and

Perić (2002), Versteeg and Malalasekera (2007), Cebeci (2004).

Second method used in turbulence models is the Large Eddy Simulation (LES)

method in which large eddies are computed by space filtering out small scale eddies and

effect of small eddies are included with a subgrid scale model. These models demands

more computer resources than the RANS models. Finally, third approach to model the

turbulent behavior is employed in Direct Numerical Simulation (DNS) models. In DNS

models, spatial grids are sufficiently fine and time steps are sufficiently small to capture

every necessary length scales and fluctuations. However, the DNS models require the

most computer resources compared to alternatives.

One other inherent difficulty in NS equations based wave propagation models

is due to the free surface deforming in time. There are studies using a σ-coordinate

transformation that maps the vertical coordinate into σ = 0 on the bottom and σ = 1

on the surface. For example, Li and Fleming (2001), Lin and Li (2002), Yuan and Wu

(2004), Li (2008), Ma et al. (2015) used σ transformation to define the free surface

boundary conditions exactly. Major drawback of the σ coordinate transformation is

because of the multiple-valuedness of the free surface which occurs when the waves

start to overturn.
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On the other hand, several alternative methods that are tracking the free sur-

face with a specific approach without using any transformations have been developed.

Harlow and Welch (1965) developed the Marker and Cell (MAC) method in which the

free surface is tracked by massless particles. Longuet-Higgins and Cokelet (1976) used

Lagrangian descriptions of the free surface boundary conditions. Hirt et al. (1975)

developed Arbitrary Lagrangian-Eulerian (ALE) method applicable to greater defor-

mations handled by purely Lagrangian approach. Alfrink and van Rijn (1983) used an

integral method to compute free surface displacements. Hirt and Nichols (1987) pro-

posed Volume of Fluid (VOF) method in which fractional values are used to describe the

computational cells containing the free surface. Osher and Sethian (1988) constructed

a level-set equation to track the position of the free surface in their Level Set Method

(LSM). Monaghan (1992) developed Smooth Partial Hydrodynamics (SPH) method

where free surface is defined by particles whose properties are smoothed by a func-

tion. In their studies Kennedy and Fenton (1996, 1997) applied the semi-Lagrangian

approach in which they used the Eulerian description of the dynamic free surface

boundary conditon (DFSBC) and Lagrangian description of the free surface velocity

potential.

2.7. Radial Basis Function Collation Methods

For a set of collocation centers defined at locations xi on a problem domain Ω

where i is from 1 to N , it is possible to express a field variable using radial basis

functions (RBFs) that are functions of the Euclidean distances between these centers.

Namely,

y(x) =
N∑
j=1

αjϕ(|x− xj|, ε) (2.2)

where y is a field variable, |x − xj| is the disatance between center located at any

arbitrary location x on the domain and xj is the location of a center at j. Also, ε is a

shape parameter present in some RBFs.
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The standard RBFs can be classified as globally supported compactly supported.

In Table 2.6 some commonly used globally supported RBFs and in Table 2.7 compactly

supported RBFs due to Wendland (1995) are given. Apart from these traditional RBFs,

there are problem dependent RBFs and Kernel RBFs.

In Hardy (1971), the multiquadric radial basis functions (MQRBF) method is

used to interpolate the geophysical surfaces. Similarly, based on the bending theory of

a thin plate, thin plate spline (TPS) is used in Duchon (1975). In the study Franke

(1982) interpolation of scattered data with is compared with different methods and

MQRBF is the most accurate methods among the 29 methods used in the comparison.

In Kansa (1990a, 1990b) elliptic, parabolic and hyperbolic type PDEs are solved using

unsymmetric collocation method. It is shown in Wertz et al. (2006) that there is no

need to augment the approximate definition of variables with polynomials according

to unsymmetric collocation method of Kansa (1990a, 1990b).

In order to increase the accuracy and improve the stability, in Fedoseyev et al.

(2002), extra RBF centers are defined close to the boundary outside the domain. These

centers provided space for additional equations to be used in the resulting square linear

system. Therefore, the governing PDE is used on the boundary centers along with the

boundary conditions.

In Chen (2002) Kansa’s unsymmetric collocation method is modified and a sym-

metric Hermite formulation is proposed. This method does not use and extra collo-

cation centers close to the boundaries and makes use of the advantages of symmetric

linear system.

On the other hand, within the context of boundary element method (BEM),

Kupradze and Aleksidze (1964) pioneer the development of the method of fundamen-

tal solutions (MFS). In MFS the homogeneous type problems are discretized on the

boundary and approximate definitions to variables use the RBFs as the fundamental

solutions of the governing differential operators. Also, non-homogeneous problems are

solved by coupling the MFS by some other methods for the evaluation of the particular
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Table 2.6. Some commonly used RBFs with global support

Piecewise Smooth RBFs ϕ(r)

Piecewise Polynomial |r|n, n odd

Thin Plate Spline |r|n ln ‖r‖, n even

Infinitely Smooth RBFs ϕ(r, c)

Multiquadric(MQ)
√
r2 + c2

Inverse Multiquadric 1√
r2+c2

Gaussian e−cr
2

Table 2.7. Wendland’s positive definite functions with compact support

Dimension ϕ(r) Smoothness

1 (1− r) C0

(1− r)3+(3r + 1) C2

(1− r)5+(8r2 + 5r + 1) C4

2 (1− r)2+ C0

(1− r)4+(4r + 1) C2

(1− r)6+(35r2 + 18r + 3) C4

(1− r)8+(32r3 + 25r2 + 8r + 1) C6

solution according to PDE splitting approach of Chen (2002).

The global collocation methods are using all of the centers defined on a domain

and this results in dense system matrices that are sometimes ill-conditioned and com-

putationally expensive to solve. Especially to large scale time dependent problems,

global methods are not applicable. Therefore, several efforts have been made to elimi-

nate these problems.

As listed in the Table 2.7, using compactly supported RBFs is a solution to avoid
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dense matrices. In Wong et al. (199), the domain is divided into separate zones to

reduces the matrix sizes. On the other hand, some local methods like RBF-Finite

Differences (RBF-FD) method have been developed for the same purpose. Like the

finite difference coefficients obtained from the Taylor series expansion of parameters

around a point of interest, a collocation scheme involving neighboring centers are set

up to find their weights. And, using these weights a sparse linear system is obtained.

Details of the method can be found in studies Fornberg et al. (2013), Flyer et al.

(2015), Fornberg and Flyer (2015).

A detailed review of the RBF literature accumulated over the past couple of

decades can be found in Chen et al. (2014).
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3. MATHEMATICAL MODEL

In this chapter, mathematical definition of the wave propagation problem is intro-

duced along with the assumptions and boundary conditions. Some of the assumptions

are fundamental so that their existence restricts the applicability of the problem to a

specific set of cases, whereas some are less effective as the applicability of the model can

be extended through some additional implementations. Non-fundamental assumptions

are selected in a way to meet the purposes of the study.

3.1. Problem Definition

Mathematical model of the problem is based on the following assumptions

• The flow is unsteady.

• Incompressible.

• Viscous.

• Rotational effects caused by the irregularities on the boundaries do not have

enough time to alter the flow field within the time scale of the tests, i.e. viscosity

is taken constant. However, it is possible to implement the variation of the

viscosity throughout the flow field by coupling the model with a k− ε turbulence

model.

• Model verification cases are selected so that all of the wave properties and the

physical conditions do not change in the transverse direction. Therefore, defini-

tions and formulations are made in 2D. As it will be apparent in the next chapter

where the numerical formulation of the problem and its implementation is pre-

sented, accounting for the 3D problems requires not more than the additional

boundary conditions and more computer resources.

• Bottom boundary is rigid and impermeable.

• Density of the water is constant throughout the domain.

Under these assumptions NSE describing the wave motion can be defined by the
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Figure 3.1. Problem definition sketch

following momentum equations and the continuity.

u

t
+ u

u

x
+ w

u

z
= −p

x
− g η

x
+ ν∇2u (3.1)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+ ν∇2w (3.2)

∂u

∂x
+
∂w

∂x
= 0 (3.3)

where xL ≤ x ≤ xR , zb(x) ≤ z ≤ η(x, t) as illustrated in the Figure 3.1. Also,

u = u(x, z, t) and w = w(x, z, t) are the velocity components in the horizontal and

vertical direction respectively, p = p(x, z, t) is the dynamic pressure per unit density

of water, η = η(x, t) is the free surface, ν is the kinematic viscosity of water, t is time

and g is the gravitational acceleration.

Since the density is assumed as constant, it is incorporated in the pressure gra-

dient so that pressure per unit density of water is used in the Equations 3.1 and 3.2.
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Also the dynamic and hydrostatic pressure components are separated.

pt = g(η − z) + p (3.4)

where p is the dynamic part of the wave dynamic pressure, pt is the total pressure.

Hydrostatic part of the wave dynamic pressure is included in the hydrostatic term as

shown. Pressure terms in this equation are in per unit density of water. Using this

definition, the corresponding pressure gradients can be obtained follows.

∂pt
∂x

= g
∂η

∂x
+
∂p

∂x
(3.5)

and

∂pt
∂z

= −g +
∂p

∂z
(3.6)

Eventually,thegravitationaleffectappearingintheverticalmomentumequationsdisappearswhileanadditionaltermcontainingthefreesurfacegradiententersintothehorizontalmomentumequation.Inreturntothecomputationalcostofanextraderivative,greateraccuraciesareobtainedsinceroundofferrorsarehigherinthetraditionalexpressionoftheequationswiththetotalpressuresincethetotalpressureisgreaterinmagnitudecomparedtothedynamicpressure.

3.2. Initial Condition

Two alternative initial conditions are employed in the model. In one of the

conditions, simulations are started in an already formed flow field while cold start-

ing simulations start with a calm water. In the former, it is required that the field

parameters are known at the beginning, t = t0, that is,

u(x, z, t0) = u0 w(x, z, t0) = w0 η(x, t0) = η0 (3.7)

The other field variable, namely the dynamic pressure, is not necessarily known at the

beginning due to the implementation of pressure field coupling method that will be

explained in detail in the next chapter.
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Also, for cold starting simulations the initial values become

u(x, z, t0) = 0 w(x, z, t0) = 0 η(x, t0) = 0 (3.8)

3.2.1. Input Boundary Condition

For right going waves, input boundary condition is defined on the left end trun-

cation boundary at a location x = xL such that xL < xR where xR is the location of

the right end truncation boundary. Wave properties are assumed to be known at any

time on this boundary.

There are studies present in the literature using the linear wave theory as the

input boundary condition. However, in order to account for more general waves and to

overcome the difficulty in the application of the linear wave theory where the free surface

is assumed on the mean water level, stream function waves found in Chappelear(1961)

and Dean(1965) are used. Since the stream function wave parameters are computed

numerically, Fourier method solution of Fenton (1988) is employed. In this method,

stream function ψ(x, y) in a reference frame moving with the wave is expressed as

ψ(x, y) = −ũ(d+ z) +
( g
k3

)1/2 N∑
j=1

Bj
sinh jk(d+ z)

cosh jkd
cos jkx (3.9)

where ũ is the mean flow velocity, d is local depth at the input boundary, Bj are di-

mensionless constants k is the wave number, Ns is the order of the stream function.

This expression satisfies the bottom boundary condition exactly. Therefore in order to

obtain the unknown coefficients, an independent equation set is constructed using the

KFSBC and pressure boundary condition on the surface along with some other inde-

pendent equations relating the wave parameters. And the following field parameters

on fixed frame are obtained from the stream function and Fourier series interpolation.

η(xL, t) =
Ns−1∑
j=1

Bj cos jk(xL − Ct) +
1

2
BNs cosNsk(xL − Ct) (3.10)
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u(xL, z, t) = C − ū+

√
g

k

Ns∑
j=1

jBj
cosh jk(h+ z)

cosh jkh
cos kj(xL − Ct) (3.11)

w(xL, z, t) =

√
g

k

Ns∑
j=1

jBj
sinh jk(h+ z)

cosh jkh
sin kj(xL − Ct) (3.12)

p(xL, z, t) = r − gη − 1

2

[
(u− C)2 + w2

]
(3.13)

where r is the Bernoulli constant and C is the wave phase speed.

3.2.2. Free Surface Boundary Conditions

On the free surface z = η, it is assumed that the surface tension is negligible and

there no other external forces like the wind. Therefore, corresponding kinematic free

surface boundary condition is as follows.

∂η

∂t
+ us

∂η

∂x
= ws (3.14)

where us and ws are the components of the velocity field on the surface, namely,

us = u(x, z = η(x, t), t) ws = w(x, z = η(x, t), t) (3.15)

Therefore a Semi-Lagrangian description of the time rate of change of velocity

components on the free surface becomes

∂us
∂t

=
∂u

∂t

∣∣∣
z=η

+
∂u

∂z

∂η

∂t
(3.16)
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Figure 3.2. Bottom boundary sketch.

∂ws
∂t

=
∂w

∂t

∣∣∣
z=η

+
∂w

∂z

∂η

∂t
(3.17)

so that the centers are allowed to move with the free surface at fixed horizontal lo-

cations. One other alternative approach to this kind of surface tracking is the fully

Lagrangian approach where collocation centers on the surface are free to move in any

direction. This requires the full Lagrangian descriptions of the free surface boundary

conditions. In this study only the Semi-Lagrangian approach is implemented in the

model.

Also, when there is no ambient pressure, the gauge pressure on the free surface

is expressed as

p(x, z = η, t) = 0 (3.18)

3.3. Bottom Boundary Condition

For a rigid and impermeable boundary, no flux boundary condition is valid, that

is

v · n = 0 (3.19)

where v is the velocity vector and n is an arbitrary length bottom boundary nor-

mal vector. For a bottom defined as z = zb(x), normal vector can be derived either

geometrically as illustrated in Figure 3.2 or using the gradient vector.

From the Figure 3.2, a bottom boundary normal can be given in the form

n =
∂zb
∂x

i + j (3.20)
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as the slope tan β of the boundary tangent is equal to ∂zb/∂x. Or, alternatively the

gradient operator can be used to define the bottom boundary normal.

∇zb =
∂zb
∂x

i + j (3.21)

Once the bottom boundary vector is defined, it is possible to write the imperme-

able and rigid bottom boundary condition explicitly.

u
∂zb
∂x

+ w = 0 (3.22)

In the numerical formulation of the problem, this boundary condition is used to project

the momentum equations without the convective terms to derive a bottom boundary

condition of the pressure. Since the pressure field obtained using this condition is

used to correct the velocity field accordingly, using the Equation 3.22 explicitly on the

velocity components becomes unnecessary.

3.4. Radiation Boundary Condition

On the radiation boundary which is at a distance integral multiple of the wave-

length, it is assumed that wave properties repeat themselves for periodic simulations.

Namely, at x = xR = xL + mL where xL and xR are the locations of the input and

radiation boundary respectively, m is an integer, L is the wavelength, wave parameters

can be expressed as

u(xR, z, t) = u(xL, z, t) w(xR, z, t) = w(xL, z, t) η(xR, z, t) = η(xL, t) (3.23)

and since the flow properties of the input boundary is expected to be repeated on the

radiation boundary, flow field must be formed at the beginning. Therefore, periodic

boundary condition cannot be used in cold starting simulations.
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On the other hand, for the cases where the wave properties are not known at

the outgoing boundary, Sommerfeld (1949) radiation boundary condition(RBC) can

be used alone or coupled with the sponge layer of Israeli and Orszag (1981).

The Sommerfeld RBC poses the advection of a field variable ϕ in the form

∂ϕ

∂t
+ c

∂ϕ

∂x
= 0 (3.24)

where c is a constant. If the phase speed of the waves arriving at the radiation boundary

is known, then it can be used for c. However, in more complex cases, wave phase speed

cannot be determined. So, the following approximate estimate is used

Cn = − ϕn+1
i − ϕni

ϕn+1
i − ϕn+1

i−1
(3.25)

which is a forward implicit method due to Miller and Thorpe (1981). In this numerical

expression, superscript denotes the time step and n + 1 refers to the next time step

of integration performed at time step n and subscript denotes the discrete locations of

field variables where i is the location on the radiation boundary and i− 1 is the closest

location next to the radiation boundary. The relationship between the c in Sommerfeld

RBC and Cn is as follows.

Cn = c
∆t

∆x
(3.26)

where ∆t is the time step and ∆x is the distance between the between the radiation

boundary and the discrete location closest to the radiation boundary.

The form proposed by Miller and Thorpe (1981) is simply the ratio of the first

order discretizations of the derivatives appearing in the Sommerfeld RBC. Namely, the

factor c is left alone

c = −∂ϕ
∂t
/
∂ϕ

∂x
(3.27)
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Figure 3.3. Variation of sponge coefficient for cs with respect to x/Ls which is the

normalized distance of x from starting point of the sponge layer.

where the time rate of change is discretized using the Euler’s scheme at location i on

the radiation boundary from time tn to tn+1

∂ϕ

∂t
≈ ϕn+1

i − ϕni
∆t

(3.28)

and the spatial derivative is discretized according to the backward finite differences

scheme at time tn+1

∂ϕ

∂x
≈
ϕn+1
i − ϕn+1

i−1

∆x
(3.29)

On the other hand, sponge layer is introduced into the momentum equations with an

artificial term according to Israeli and Orszag (1981).

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −∂p

∂x
− g ∂η

∂x
+ ν∇2u− cs(x)u (3.30)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+ ν∇2w − cs(x)w (3.31)

where cs is the damping coefficient of the sponge layer and on 0 ≤ x ≤ Ls it is given as

cx(x) =
exp(x/Ls)− 1

exp(1)− 1
(3.32)

where Ls is the length of the sponge layer. cS attains its maximum value 1 right at

the radiation boundary and its minimum at the starting location of the sponge layer.

Variation of cs is illustrated in Figure 3.3.

In a more detailed definition of sponge layer, Wei and Kirby (1995) use an addi-

tional term like an artificial viscous damping term and add extra coefficients to adjust
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the slope of the coefficients. So, the damping terms w1(x) and w2(x) added to the

momentum equations on xs ≤ x ≤ xf

∂u

∂t
+ u

∂

u
∂x+ w

∂u

∂z
= −∂p

∂x
− g ∂η

∂x
+ ν∇2u− w1(x)u− w2(x)∇2u (3.33)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= −∂p

∂z
+ ν∇2w − w1(x)w − w2(x)∇2w (3.34)

are expressed as

w1(x) = α1ωf(x) (3.35)

w2(x) = α2ωf(x) (3.36)

where

f(x) =
exp

(
x−xs
Ls

)r
− 1

exp(1)− 1
(3.37)

with ω being the frequency of the wave, α1, α2, r being the constants to be determined

by trial and error. With this version of sponge layer coefficients, it is possible adjust

the slopes of the damping coefficient cs shown in Figure 3.3. It is expected that the

better these slopes match the natural variations of the parameters at the interface

between the real problem domain and the sponge layer, the less reflection occurs from

this interface.
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4. NUMERICAL METHODOLOGY

In the first part of this chapter numerical discretization of the problem in time is

presented along with the methodology that provides the means for the solution of the

pressure field. Beause there are no other independent equation for the pressure and

the remaining equation other than the momentum equations is the continuity which

is an equation of the velocity field only, an equation for the pressure is derived. In

the the second part RBF approximations of the problem is introduced along with the

selected numerical method that determines how the equation sets are defined both for

the computation of the velocity components and the pressure field. In the third part of

this chapter, time marching methods implemented in the model are presented. And in

the final part software design methodology of the model is discussed and a flow chart

of the model is given.

4.1. Explicit Discretization In Time and The Pressure Equation

According to the projection method of Chorin (1968) and Temam (1969), initially

provisional values for the velocity field are obtained from the momentum equations

without the pressure terms. Namely,

u∗ − un

∆t
+ un

∂un

∂x
+ wn

∂un

∂z
= ν∇2un (4.1)

w∗ − wn

∆t
+ un

∂wn

∂x
+ wn

∂wn

∂z
= ν∇2wn (4.2)

where u∗ and w∗ are the provisional velocity components. Superscript n denotes the

time step of the previous step, therefore this formulation corresponds to the initial

provision of the velocity field for the new time step n + 1. In the second step of the

pressure correction method, the velocities are corrected to obtain the velocity field at
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the new time step n+ 1 as in the following.

un+1 − u∗

∆t
= −

(
∂pn+1

d

∂x
+ g

∂ηn

∂x

)
(4.3)

wn+1 − w∗

∆t
= −∂p

n+1
d

∂z
(4.4)

This correction step requires the computation of the pressure field at the new time

step. Computing the derivative of the Equation 4.1 with respect to x and Equation

4.2 with respect to z before summing them together while using continuity whenever

necessary following Poisson type elliptic differential equation the pressure field at the

new time step is obtained.

∇2pn+1
d =

1

∆t

(
∂u∗

∂x
+
∂w∗

∂z

)
− g ∂

2η

∂x2
(4.5)

This elliptic differential equation is subject to

p = 0 (4.6)

on z = η. The bottom boundary condition can be obtained by projecting the Equations

4.3 and 4.4 using the impermeable bottom boundary condition vn+1 ·n = 0. Therefore,

the bottom boundary condition on z = z(x) becomes

−∂p
n+1

∂x
+
∂pn+1

∂z
=

(
−g∂η

n

∂x
+
u∗

∆t

)(
−∂zb
∂x

)
+
w∗

∆t
(4.7)

In a similar manner, the pressure boundary condition on the radiation boundary
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is as follows.

∂p

∂x
= −g∂η

n

∂x
+
u∗

∆t
(4.8)

On the input boundary, dynamic pressures per unity density of water are obtained

from the input wave given in Equation 3.13.

Explicit time discretization method in the Equations 4.1 and 4.2 is a first order

numerical method called the Euler method. In order to minimize the numerical errors

that may accumulate in time, this method is replaced by higher order methods. The

main objective of using Euler method here is to present the derivation of the projection

method. However, computation of the dynamic pressure field and the correction of the

velocity field are performed according to the derivations given above.

4.2. Explicit Integration Methods

Two different explicit self starting methods and six different explicit predictor-

corrector type multistep integration methods are implemented in the model. Since

the multistep methods require information earlier than the results of the most recent

integration step, the initiation of the field variables must be performed up to the

required number of steps by a self starting method. Therefore, fourth order Runge-

Kutta method is implemented for the initiation of the variables at the beginning. Once,

there are enough steps to employ methods of higher accuracy, time marching of field

variables is performed with higher order multistep methods.

Also, being a predictor-corrector type method where derivatives are computed

twice per time step, second order MacCormack method is implemented for the col-

location centers that might be entering into the solutions at a later time during the

computations depending on the evolution of the free surface. Especially for steep

waves, it will be apparent in the following sections that more accurate computation of

the vertical momentum equations require collocation centers close to the free surface
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above the trough level. This implies that some centers are needed to be enabled or

disabled depending on the location of the free surface in time. As a good initiator it

is difficult to implement the fourth order Runge Kutta method for the centers enabled

at a time step other than the first four steps since it evaluates four times per time

step while the other already enabled centers are being integrated with higher order

methods evaluating twice per time step. Therefore, MacCormack method evaluating

the derivatives twice in a time step keeps pace with the higher order predictor-corrector

methods compared to the fourth order Runge Kutta method and initiates the variables

at the recently enabled centers up to the required number of time steps by higher order

multistep methods.

More detailed information about the methods presented below can be found in

Burden and Faires (2001).

4.2.1. MacCormack Method

From time step n to n+ 1, a variable at the new time step yn+1 can be obtained

as follows.

y∗ = yn + ∆tf(tn, yn) (4.9)

yn+1 =
1

2
(yn + y∗) +

∆t

2
f(tn+1, y∗) (4.10)

where y∗ is the predicted value of the variable, function f is the time rate of change of

y and ∆t is the time step.
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4.2.2. Fourth Order Runge Kutta Method

Value of a variable y at a new time step n+ 1 is computed through

k1 = f(tn, yn)

k2 = f(tn+1/2, yn + 0.5k1)

k3 = f(tn+1/2, yn + 0.5k2)

k4 = f(tn+1, yn + k3)

yn+1 = yn +
∆t

6
(k1 + 2k2 + 2k3 + k4)

(4.11)

where k1 to k4 are the intermediate values computed at the beginning, middle and end

of the time step. Here, n+ 1/2 refers to the mid step, namely t = tn + 0.5∆t.

4.2.3. Predictor Corrector Methods

?? The predictor corrector methods are explicit multistep methods where the

unknown variables are predicted initially with a predictor type integrator and using

the predicted values for the new time step, a second evaluation is performed to correct

the results. Therefore, these methods cost twice evaluations per time step. Since the

unknown values corresponding to time steps earlier than the last computed time step

are used, these methods are called multistep methods. In fact, the predictor step is

purely explicit in time, whereas the corrector step is implicit in nature. However, the

values of the new time step is obtained by the explicit predictor and used in the implicit

corrector. Hence, the predictor-corrector methods are explicit methods. The predictor

methods are called Adams-Bashforth predictor methods and the corrector methods are

called Adams-Moulton corrector methods.

For a variable y being computed from time tn to tn+1 Adams-Bashforth predictor

methods of order two to six are as follows.

y∗ = yn +
∆t

2

[
3f(tn, yn)− f(tn, yn−1)

]
(4.12)
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y∗ = yn +
∆t

12

[
23f(tn, yn)− 16f(tn, yn−1) + 5f(tn, yn−2)

]
(4.13)

y∗ = yn +
∆t

24

[
55f(tn, yn)− 59f(tn, yn−1) + 37f(tn, yn−2)− 9f(tn, yn−3)

]
(4.14)

y∗ = yn +
∆t

720

[
1901f(tn, yn)− 2774f(tn, yn−1) + 2616f(tn, yn−2)

− 1274f(tn, yn−3) + 251f(tn, yn−4)
] (4.15)

y∗ = yn +
∆t

1440

[
4277f(tn, yn)− 7923f(tn, yn−1) + 9982f(tn, yn−2)

− 7298f(tn, yn−3) + 2877f(tn, yn−4)− 475f(tn, yn−5)
] (4.16)

On the other hand, for a variable y being computed from time tn to tn+1 Adams-

Moulton corrector methods of order two to six are as follows.

yn+1 = yn +
∆t

12

[
5f(tn+1, y∗) + 8f(tn+1, yn)− f(tn+1, yn−1)

]
(4.17)

yn+1 = yn +
∆t

12

[
5f(tn+1, y∗) + 8f(tn+1, yn)− f(tn+1, yn−1)

]
(4.18)

yn+1 = yn +
∆t

24

[
9f(tn+1, y∗)− 19f(tn+1, yn)− 5f(tn+1, yn−1) + f(tn+1, yn−2)

]
(4.19)

yn+1 = yn +
∆t

720

[
251f(tn+1, y∗) + 646f(tn+1, yn)− 264f(tn+1, yn−1)

+ 106f(tn+1, yn−2)− 19f(tn+1, yn−3)
] (4.20)
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yn+1 = yn +
∆t

1440

[
475f(tn+1, y∗) + 1427f(tn+1, yn)− 798f(tn+1, yn−1)

+ 482f(tn+1, yn−2)− 173f(tn+1, yn−3) + 27f(tn+1, yn−4)
] (4.21)

In the implementation of the model each of the predictor method method is

coupled with the corrector of the same order and Adams-Bashforth-Moulton Predictor

Corrector Method of Order 2,3,4,5 are implemented. These methods are denoted by

ABM2, ABM3, ABM4, ABM5 respectively. Also, it is possible to iterate corrector step

more than once to enhance the accuracy of the results but it is computed once in the

model since the time step was chosen small enough.

4.3. Radial Basis Function Collocation Method

Until now, the continuous mathematical description of the wave propagation

problem is given and discretization of the field variables in time is presented. In

this section, approximate definitions of the variables at collocation locations and the

resulting discrete system of equations obtained from the continuous definitions are

presented.

For a set of N centers located throughout the domain, approximate definition of

velocity components at the i -th center at time t can expressed as

u(xi, t) =
N∑
j=1

αujϕ(|xi − xj|, ε)

w(xi, t) =
N∑
j=1

αwj ϕ(|xi − xj|, ε)

(4.22)

where xi is the location of the i -th center such that xi = xii + zij in 2D. Also, radial

basis function ϕ is a function of the distance between center i and j, and ε is the

shape parameter that controls flatness of the RBFs. As apparent in the equations,

this definition makes the numerical method to be termed as global as all of the centers

defined throughout the domain are considered in the computation of a variable at an
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arbitrary center.

Although, some RBFs do not contain the shape parameter, it is not defined as

optional in this definition because all of the RBFs implemented in the model contains

this shape parameter. The RBFs implemented in the model are listed below.

ϕ(rij, ε) =
√
r2ij + ε2 (Multiquadric RBF, MQRBF) (4.23)

ϕ(rij, ε) = 1/
√
r2ij + ε2 (Inverse Multiquadric RBF, IMQRBF) (4.24)

ϕ(rij, ε) = 1/
(
r2ij + ε2

)
(Inverse Quadric RBF, IQRBF) (4.25)

ϕ(rij, ε) = exp(ε2r2ij) (Gaussian RBF,GARBF) (4.26)

where rij is the distance between the centers i and j.

The spatial derivatives for the velocity components at collocation center i are

obtained through,

∂ui
∂x

=
N∑
j=1

∂ϕij
∂x

αuj
∂ui
∂z

=
N∑
j=1

∂ϕij
∂z

αuj ∇2ui =
N∑
j=1

∇2ϕijα
u
j

∂wi
∂x

=
N∑
j=1

∂ϕij
∂x

αwj
∂wi
∂z

=
N∑
j=1

∂ϕij
∂z

αwj ∇2wi =
N∑
j=1

∇2ϕijα
w
j

(4.27)

where the coefficients are obtained from the Equation 4.22 given that the velocity

components are known at the collocation center locations.

On the other hand, approximate expression of the dynamic pressure field is similar

to the velocity field but the coefficients are obtained solving the boundary value problem

given in Equation 4.5 along with the corresponding boundary conditions. For that

purpose Kansa’s unsymmetric collocation method given in Kansa (1990a,1990b) is

used. In this method using the approximate definition, a set of equations from the

governing differential equation and the boundary conditions are set up to solve for the
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Figure 4.1. PDE collocation on the boundary illustration

coefficients. Since the resulting coefficient matrix is unsymmetric as apparent from the

definitions of the variables and their spatial derivatives, the method is also termed as

unsymmetric.

Furthermore, as discussed before, since the method defined is a global method, the

solutions are very sensitive to the errors developing in time due to the boundaries. This

is an inherent problem in numerical methods since there are no information beyond the

boundaries and most of the time causes instabilities in the models. Compared to local

methods, boundary errors are reflected faster in global methods and the need arises for

extra treatments.

The PDE collocation on the boundary method helps to the convergence of the

global RBF methods, increases stability and accuracy. As illustrated in the Figure

4.1 for each of the centers on the boundary there is a pairing center just outside the

domain close to to the boundary center. These extra collocation centers guarantee

a square coefficient matrix and makes it possible to define the boundary condition

and the governing equation at the same time at each of the collocation centers on the

boundary.

Therefore given that there are M centers on the boundary, approximate definition

for the dynamic pressure per unit density of water at a collocation center i can be given

as,

p(xi, t) =
N+M∑
j=1

αpjϕ(|xi − xj|, ε) (4.28)

and its derivatives can be expressed in a similar fashion to the velocity components as

given below.

∂pi
∂x

=
N∑
j=1

∂ϕij
∂x

αpj
∂pi
∂z

=
N∑
j=1

∂ϕij
∂z

αpj ∇2pi =
N∑
j=1

∇2ϕijα
p
j (4.29)
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4.4. Numerical Discretization of the Free Surface

The free surface variable η at center i can be approximately defined as

ηi(xi, t) =
Ns∑
j=1

αηjϕ(|xi − xj|, ε) (4.30)

where the centers are located along a line for 2D problems which makes the collocation

a 1D collocation where the distance between the centers i and j is simply obtained by

|xi−xj|. Also the Ns collocation centers located along a line are independent from the

collocation centers used for the velocity and pressure field.

Similarly, spatial derivatives of the free surface are obtained as follows.

∂ηi
∂x

=
Ns∑
j=1

αηi
∂ϕi
∂x

∂2ηi
∂x2

=
Ns∑
j=1

αηi
∂2ϕi
∂x2

(4.31)

4.5. Program Flow and Essential Modules

From a sequential perspective, the following steps are performed from time T0 to

Tf and it is illustrated in a flowchart given in the Figure 4.2.

(i) Collocation centers are set up and coefficient matrices are computed.

(ii) Unknown parameters un, wn and ηn are initialized for n = 1.

(iii) At the beginning of the time step t = T0 + (n + 1)∆t where T0 is the start of

simulation, ∆t is the step size, time rate of change of the variables fnu ,fnw,fnη are

computed. Time derivatives of the velocity field is computed using the Equations

4.1 and 4.2 where the pressure terms present in the momentum equations are

missing, namely fnu and fnw are the rate of change of provisional values for the

velocity field. On the other hand, rate of change of the free surface is computed

according to the KFSBC given in the Equation 3.14.

(iv) Predicted values for the unknowns up∗, wp∗ and etap are computed according to
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the predictor step of the explicit time integration method. Superscript p is used

to denote the predicted values and the velocity components are marked with ∗

since these values are the provisional values.

(v) Time is incremented by a single step ∆t.

(vi) Boundary value problem for the pressure given in Equation 4.5 is setup and

solved. And, corresponding pressure gradients are computed according to the

equations given in 4.29.

(vii) Velocity field is corrected according to the Equations 4.3 and 4.4.

(viii) Rate of change of the variables are computed with the predicted values, fpu , fpw

and fpη .

(ix) As the corrector step of the integration method unknowns un+1∗, wn+1∗, ηn+1 for

the new time step n+ 1 are computed.

(x) Corresponding pressure field and the gradients are computed.

(xi) Velocity components un+1∗, wn+1∗ are corrected to get un+1, wn+1.

(xii) At the end of the time step, geometry is updated using ηn+1 and the coefficient

matrices are updated accordingly.

(xiii) Computations in steps (iii) to (xii) are repeated until the final time Tf is reached.

However, sequential implementation of the model has many drawbacks since it is diffi-

cult to extend the features of the model and reusability is out of consideration. There-

fore, modular design approach is used to make the model efficient, reusable and exten-

sible. This also allowed the separation of the related tasks from the other irrelevant

tasks. Basic modules of the model developed for these purposes are explained below.

4.5.1. Integrator Module

This module implements the explicit integrator methods defined in the sections

4.2.1 through ?? . At the beginning, options of the module such as the method of

integration, time step, start and final time of the simulation are input. If the integration

method is not a self starting method rather a multistep method, lower order methods

are also input in case the defaults are desired to be overridden.
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Start

Prepare geometry and coefficient matrices

n ← 1, Initialize un,wn,ηn

t ← (n − 1)∆t, Compute fnu ,fnw,fnη

Predictor step: Compute up∗,wp∗,ηp

t ← t + ∆t

Solve for p and its gradients

Apply pressure correction to get up and wp

Compute fpu ,fpw,fpη

Corrector Step: Compute un+1∗,wn+1∗,ηn+1

Solve for p and its gradients

Apply pressure correction to get un+1 and wn+1

Update geometry and coefficient matrices, n ← n + 1

t ≤ Tf

Finish

Yes

Figure 4.2. Sequential flow chart of the model
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Another aspect of the module is that multiple variables in arrays of different sizes

can be integrated through high level data types. This way the free surface in the size

of the number of centers on the surface boundary can be integrated together with the

velocity components in the size of the number of centers throughout the domain.

Also, depending on the free surface some of the centers inside the domain at a time

step may fall outside the domain at a later time or the opposite may happen. Therefore,

this method integrates the variables defined in the arrays through instantaneously

updated ranges where centers out of these ranges are ignored. However this approach

needs one other array that holds the history of the centers for the multistep methods

since the centers freshly entering in the computations may need to be integrated with

lower order methods until the main method of integration is possible to use.

This module is applicable to any kind of initial value problems since the routine

computing the problem specific derivatives is provided through late-binding which is

possible by a procedure pointer.

4.5.2. Geometry Module

This module manages the creation of the collocation centers and determination of

the ranges of centers in use. The collocation centers are managed through collections in

which centers are separated in groups. Therefore, it is easier to compute the valid range

set at a time step. Also, using ranges performs better than performing computations

on centers one-by-one.

4.5.3. Collocation Module

Once the geometry is set up this module performs the computation of coefficient

matrices. Also, since the positions of the free surface change in time, coefficient matrices

are updated accordingly with this module.
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4.6. Stability and Filtering

For time dependent problems instabilities may occur in time in numerical models.

Main treatment for the stabilization of the model is made by the PDE collocation on the

boundary method as described above. However, due to nonlinear nature of the problem

further smoothing is needed to filter out the unwanted noise that accumulates in time

due to truncation of the floating point numbers. Therefore, 9 center Shapiro filter of

Shapiro (1970) is used at some defined number of intervals during the computations on

the surface centers. A 9 center Shapiro filter using 4 centers to the left and 4 centers

to the right of the point of interest is used in the model. If there are m centers on the

surface, values of the variable v at center i is as follows.

vfi =
1

256

[
186vi + 56 (vi + vi−1)− 28 (vi−2 + vi+2)

+ 8 (vi−3 + vi+3)− (vi−4 + vi+4)
] (4.32)

On the other hand, since at the ends of the domain there are centers that do not

have enough number of centers to use the given 9 center Shapiro filter, 3, 5 and 7 order

filters are used for the three centers other than the ones at the ends. The values at the

ends are left as they are. The 3, 5 and 7 center filters are respectively as follows.

vfi =
1

4

[
2vi + vi+1 + vi−1

]
(4.33)

vfi =
1

16

[
10vi + 4(vi+1 + vi−1)− (vi−2 + vi+2)

]
(4.34)

vfi =
1

64

[
44vi + 15(vi+1 + vi−1)− 6(vi−2 + vi+2) + vi−3 + vi+3

]
(4.35)

The filters presented here are symmetric as identical number of centers are used in

the filters for both sides of the center of interest. There are unsymmetric filters using
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different number of centers but they are not considered in this study.
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5. TEST RESULTS

In this section, results of the validity tests are presented. Three waves of different

depths are determined and used as an input. Their parameters and required values in

time as the simulations proceed in time are computed using Stream Functions.

In the first part of the tests long duration (20 wave periods) tests are performed for

horizontal bottom geometry with periodic boundary condition at the outgoing bound-

ary. And the results are compared with the stream function wave form expected

downstream. These tests are performed using the multi-quadric radial basis function

that requires a shape parameter. Therefore, the process involving the determination

of the optimum shape parameter is also presented.

In the second part of the tests, submerged break water test results are given and

compared with the results of the experimental results of Luth et al. (1994).

The input waves used in the computations are selected from different water

depths, namely deep, intermediate or shallow water. And their properties are given in

Table 5.1.

Table 5.1. Properties of the input waves

Wave Name Wave 1 Wave 2 Wave 3

Local Depth 0.4m 10m 5m

Period 2.02s 3s 15s

Height 0.02m 0.1m 0.1m

Length 3.74m 14.05m 103.5m

H/L 0.0053 0.0071 0.001

d/L 0.11 0.71 0.001

Depth Intermediate Deep Shallow



52

Table 5.2. Summary of the test properties for the horizontal bottom simulations

Test Property Integrator RBF ∆t(s) dx-dz(m) nx-nz

Wave 1 ABM5 MQ 0.01 0.1-0.05 38-9

Wave 2 ABM5 MQ 0.01 0.41-0.25 35-41

Wave 3 ABM5 MQ 0.01 0.74-0.50 141-11

5.1. Horizontal Bottom Tests

For each of the waves defined in Table 5.1, a domain of one wavelength in the

horizontal is assumed along with the local depth. Initially, the wave form is present in

the domain which can be called a warm starting simulation. On the radiation boundary

periodic boundary condition is used.

In all of the tests, MQRBF is used where the shape parameter is in the form of

a factor. The integrator method selected is the Adams-Bashforth-Moulton Predictor

Corrector Method of Order 5(ABM5). Time increment is 0.01s for all of the tests. Since

the geometries differ for a given input wave, different number of centers are defined for

each of the wave domains. Along the horizontal, 38 centers per wavelength are located

for Wave 1 whereas 35 and 141 centers are located for Wave 2 and Wave 3. Similarly,

9, 41 and 11 centers are located in the vertical for each of the horizontal locations.

Stream function solutions are computed using the Fenton (1988) numerical model. For

each of the tests MQRBF is used where the shape parameter is in the form of a factor.

The test configurations are summarized in Table 5.2.

5.1.1. Determination of Optimum Shape Parameter For The Waves

For each of the waves, several test runs are performed for 20 wave periods (T )

with different values of the shape parameter and comparing with the stream function

solution the root mean square errors are plotted with respect to these values in the

Figures 5.1, 5.2 and 5.3. In these tests, number of centers is kept constant as given

in Table ?? for a given wave. The shape parameters are in the form of a factor of
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the distance term in the RBF expressions. Also, for the optimum shape parameters,

variation of the root mean square errors are plotted in the Figures 5.4,5.4 and 5.4. It

can be observed that Wave 1 deviates from the stream function solution of the potential

theory by 1.6%, Wave 2 deviates 2.1% and Wave 3 deviates 0.9% of the wave height

(H).

The resulting free surfaces during the first, tenth and twentieth periods at four

instants are plotted in Figures 5.7, 5.8,5.9 for Wave 1, 5.10,5.11, 5.12 for Wave 2 and

5.13, 5.14, 5.15 for Wave 3. It is observed that the results are in good agreement with

the expected surfaces.

5.2. Submerged Breakwater Test

For this test, experimental set up of Luth et al. (1994) illustrated in the Figure

5.16 is used. Compared to the original setup, instead of the beach, a sponge layer

between horizontal locations x = 25m and x = 40m is used instead of the beach. At

the end of the sponge layer, Sommerfeld radiation boundary condition is imposed to

minimize the reflections. The reason for using a sponge layer is because of its simplicity

because the beach requires a run-up, breaking and post-breaking model additional to

the propagation model developed in the study.

For comparison purposes a fully nonlinear potential model is also developed and

its results are presented along with the Navier-Stokes model. This has made it possible

to compare two different numerical models of different theories. The results presented

here are not the best match and no further simulations are performed to present the

best match as the phenomena involved in the problem is complex. It can observed that

the results are in agreement with the experimental results where there is some phase

and amplitude difference between the results. These variations in the amplitude and

the phase are because of the damping layer settings of the numerical models and beach

setup of the experiment.

Ideally, the water surface is calm at the beginning, t = t0 and if the simulations
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continues long enough a steady profile can be observed. However, the simulations

are cut after some time when the profiles resemble each other because there are no

treatments for the reflection from the sponge layer and the breakwater in the setup.

At stations x = 5.2m, x = 12.5m, x = 14.5m and x = 17.3m, the results

of nonlinear potential theory model introduced in Appendix A is compared with the

Navier-Stokes model developed for this study in the Figures 5.17, 5.18, 5.19, 5.20. And

finally, both numerical model results are compared with the experiment results in the

Figures 5.21, 5.22, 5.23 and 5.24.

At station x = 5.2m, the three profiles are almost identical. At station x =

12.5m and x = 14.5m, the experimental results and nonlinear potential theory results

are closer to each other compared to NSE results. However, at station x = 17.3m

experimental results and the NSE results are closer to each other while the potential

theory results fall a little far from both of these result sets.
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Figure 5.16. Setup of Luth et al. (1994) experiment.
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6. CONCLUSION

This study shows that based on the Navier-Stokes mathematical model, water

wave propagation can be modeled with radial basis function collocation method and the

model developed in the study can be used for the estimation of wave parameters in the

flow field. Considering the flexibility, accuracy and ease of development that RBFCM

provides, it is also shown that more complex flows in more challenging conditions can

be modeled with more realistic mathematical assumption of water wave propagation

phenomenon.

In the future studies, the model can be coupled with a turbulence model to

account for the imperfections in the problem geometry. Also, already built-in three

dimensional module can be verified with 3D benchmark tests. A turbulence model

estimates the thickness of the boundary layer and gives an estimate for the viscosity

which can be incorporated into the model through the viscous term that has the kine-

matic viscosity as a coefficient. Further, this will bring the necessity of using different

implementations at the inside and outside of the boundary layer.

Another follow up study can be the implementation of wave breaking into the

model. Since some of the RBF centers are collocated like particles on the free surface,

it will not be too much difficult to overcome the multiple-valuedness problem when

the waves start to overturn for some breaking types. This extension also requires

an implementation of dissipation mechanism on the surface and flow definition after

breaking.

Since the model is developed in modules, it is also possible to use some of them

to develop solvers for other type of flows. Solvers will only determine the locations

of the collocation centers, input the initial values and modify the parameters in time

according to the boundary conditions of the flow problem being modeled.
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APPENDIX A: NONLINEAR POTENTIAL MODEL

Nonlinear potential model results are also displayed in the submerged breakwater

test for comparison. Details of the mathematical and numerical model are presented

here.

A.1. Mathematical Model

Based on the following assumptions

• The flow is unsteady.

• Incompressible.

• Fluid is inviscid.

• Flow is irrotational.

• Model verification cases are selected so that all of the wave properties and the

physical conditions do not change in the transverse direction. Therefore, defini-

tions and formulations are made in 2D. As it will be apparent in the next chapter

where the numerical formulation of the problem and its implementation is pre-

sented, accounting for the 3D problems requires not more that the additional

boundary conditions and more computer resources.

• Bottom boundary is rigid and impermeable.

• Density of the water is constant throughout the domain.

for a velocity potential function φ = φ(x, z, t) defined throughout the domain such that

∂φ

∂x
= u

∂φ

∂z
= w (A.1)

where u and w are the velocity components, the equation of continuity, i.e.

∂u

∂x
+
∂w

∂z
= 0 (A.2)
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reduces to the Laplace’s equation

∇2φ = 0 (A.3)

which valid over the problem domain. And the nonlinear kinematic and dynamic free

surface boundary conditions on the free surface z = η(x, t) respectively becomes.

∂η

∂t
=
∂φ

∂z
− ∂φ

∂x

∂η

∂x
(A.4)

∂φ

∂t
= −gη − 1

2
|∇φ|2 +

∂φ

∂z

∂η

∂t
(A.5)

The dynamic free surface boundary condition given in A.5 is based on semi-Lagrangian

approach.

On the bottom z = zb(x),

∂φ

∂z
+
∂φ

∂x

∂zb
∂x

= 0 (A.6)

rigid impermeable boundary condition is valid. On the input boundary at x = xL, wave

parameters are known. If the outgoing boundary condition is periodic, it is assumed

that wave properties are assumed to be equal to properties at the input boundary for

integral distances of domain length. One of the two other boundary conditions is the

Sommerfeld radiation boundary condition given as follows.

∂φ

∂t
+ c

∂φ

∂x
= 0 (A.7)

And, according to the sponge boundary condition for xR ≥ x ≥ xs, the dynamic
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free surface boundary condition is modified.

∂φ

∂t
= −gη − 1

2
|∇φ|2 − cs(x)φ (A.8)

where xs is the starting location of the sponge layer, cs(x) is the sponge coefficient.

A.2. Numerical Methodology

In this model, boundary conditions are time dependent while the governing equa-

tion in A.3 is steady. Therefore, the unknown variables are the free surface η, velocity

potential φ on the surface and the velocity potentials on the outgoing boundary at

x = xR if the Sommerfeld boundary condition is used. However, at an instant spa-

tial the derivatives of the velocity potential is obtained by solving the boundary value

problem for the potentials.

Also, PDE collocation on the boundary method is implemented in the model so

that each of the boundary centers has a corresponding center just outside the domain

to provide the necessary number of equations. Therefore, it is possible to define the

governing equation in A.3 along with the boundary condition at each of the boundary

centers. Therefore given N collocation centers defined over the domain M of which

defined on the boundaries, an additional M collocation centers are defined outside the

domain. The approximate definition for the velocity potential φ at center i is as follows.

φ(xi, t) =
N+M∑
j=1

αφjϕ(|xi − xj|, ε) (A.9)

where xi is the vector denoting the position of the center i, ϕ is a radial basis function

which depends on the geometric distance between centers i and j, and ε is a shape

parameter that may exist in the definition of a radial basis function. Magnitude of

the shape parameter ε determines the flatness of the radial basis functions being used.

Also, the spatial derivatives of the velocity potential are given below.
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∂φi
∂x

=
N∑
j=1

∂ϕij
∂x

αφj
∂φi
∂z

=
N∑
j=1

∂ϕij
∂z

αφj ∇2φi =
N∑
j=1

∇2ϕijα
φ
j (A.10)

On the other hand, the free surface variable η can be expressed similar to the

Equation 4.30 and the spatial derivatives is identical to the derivatives expressed by

the equations given in 4.31.

A.2.1. Program Flow

In this section sequential program flow is presented even the modules described

in Section 4.5 are also used in the nonlinear potential theory model. From T0 to Tf

incrementing time by ∆t at each time step, following steps are followed for a predictor-

corrector type integration method.

(i) Centers over the domain along with the extra centers outside the domain are

located. The coefficient matrices are prepared.

(ii) Unknown parameters φn, ηn are initialized for n = 1.

(iii) Time rate of change of the variables fnφ ,fnη are computed using A.5, A.4.

(iv) Using the predictor step of the integrator method predicted values φp and etap

are computed.

(v) Time is incremented by ∆t.

(vi) Boundary value problem for the potentials given in Equation A.3 is setup and

and solved for the potential coefficients αφ given in A.9 and the required spatial

derivatives are computed using A.10

(vii) Using the predicted values of the unknowns, rate of change of the variables are

computed, i.e. fpφ and fpη are obtained.

(viii) φn+1 and ηn+1 for the new time step n+ 1 are computed using the corrector step

of the integration method.

(ix) Geometry is updated using ηn+1 and the coefficient matrices are updated accord-
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ingly at the end of the time step.

(x) Steps (iii) to (ix) are repeated until the final time Tf is reached.

A flowchart of the steps described above is given in Figure A.1.
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Start

Prepare geometry and coefficient matrices

n ← 1, Initialize φn,ηn

t ← (n − 1)∆t, Compute fnφ ,fnη

Predictor step: Compute φp,ηp

t ← t + ∆t

Solve for φ and find its derivatives

Compute fpφ ,fpη

Corrector Step: Compute φn+1,ηn+1

Solve for φ and find its derivatives

Update geometry and coefficient matrices, n ← n + 1

t ≤ Tf

Finish

Yes

Figure A.1. Sequential flow chart of the model
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APPENDIX B: SOURCES OF ERROR IN NUMERICAL

MODELS

Numerical errors are inevitable in models and magnitude of them is one of the

important parameters in validating accuracy of the results. There are several factors

causing these errors which are very well known by seasoned modelers. Depending

on its nature, errors may lie in a band around the target results, fluctuate with a

pattern visible to an eye, sometimes propagate and sometimes grow in time for unsteady

problems and iterative solutions. For a numerical modeler, it is important to keep the

numerical errors under control to prevent inaccurate calculations. Sources of errors can

be listed as such.

• Approximation of continuous unknowns in a discrete space.

• Complexity of the problem due to its definition or other geometric restraints.

• Insufficient problem definition, especially on boundaries.

• Rounding and truncation errors.

• Method errors.

Numerical models, basically, perform simultaneous solution of equation sets com-

posed of discrete parameters that are defined as an approximate counterpart of the

continuous parameters of the problem domain. This representation does not result in

unexpected results if the target solution is smooth like the figure below however some-

times due to the nature of the problem steep changes may occur and might be local.

As a precaution algorithms are developed to adapt these steep changes and pay much

more attention than smooth regions. Also in some cases resolution of discretization

might not be enough to catch the expected behavior. This is a very common issue for

modelers whose problems involve turbulence.

Figure B.1. A continuous and a discrete sinosoidal function.

Another issue in the accuracy of numerical models is the complexity of the prob-
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lems they can solve. Either the mathematical description contains complex terms like

the viscous term in fluid models or the geometry can be very complex. Complex ge-

ometries are hard to discretize and define corresponding equation sets which are mostly

a function of the problem geometry.

Sometimes available mathematical description of the problem might be insuf-

ficient and modelers try to construct a work around to handle the situation using

artificial components, independent equations or representations. A common example

to this error source is the radiation boundary conditions for elliptic wave propagation

problems. There are well devised equations to overcome this difficulty for wave models

truncating the problem domain. Eventually, these solutions all remain as approximate

definitions.

Roundoff and truncation errors are more common error types, former of which

depends on the storage capacity of computer systems and the latter is caused by chop-

ping off the terms of a series expansion after some order. In computers, real type

variable cannot be stored exactly binary representation of variable values are stored

as much as it is possible by the capacity of the system. This may cause inaccurate

calculations and catastrophic failures may occur like some reported events in the last

decades.In the truncation error, since it is impossible to construct an infinite loop and

since computation time is critical in some model runs, it is best to ignore the terms

after some limit. This might cause problems if the terms neglected are considerable in

magnitude.

And a final possible source of error worth to note is method specific errors.

It depends on the type of discretization where discrete set of equations are defined

to get approximations of parameters. For example, explicit time integration meth-

ods are well known to cause instabilities during the computations where most of the

time Courant–Friedrichs–Lewy (CFL) condition is not met according to Courant et al.

(1928).

Most of the numerical models used in practice are equipped with some precautions
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to stop the calculations when the results tend deviate from logical ranges. Artificial

dampers, numerical filters are commonly used methods to control errors if possible.

Hence, care must be given to the assessment of numerical model results. Sometimes

verification of the parameters for simpler and smaller problems might be necessary.

Effects of resolution and other numerical parameters need to be investigated almost in

every numerical study. It might not always be possible but it may be better to verify

the models with possible alternative numerical models.


