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also want to thank Prof. Can Özturan and Assist. Prof. Sinan Yıldırım for attending

my thesis jury.

The thesis is mostly based on the model ’Sum Conditioned Poisson Factorization’.
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ABSTRACT

TENSOR DECOMPOSITION MODELS FOR

KNOWLEDGE GRAPHS

Extracting new unknown facts from given facts in the format of triples(entity-

relation-entity) is a popular statistical relational learning task and defined with the

name of knowledge graph link prediction problem. Due to nature of the problem def-

inition, tensors are widely preferred to represent existing datasets. In the presence of

latent features for entities and relations, tensor factorization models are used to ap-

proximate to the original dataset tensor. These latent features of entities and relations

are estimated/inferred during approximation and interaction between them reveals the

probabilities of triple existences.

In this thesis, we propose the tensor extension of recently introduced Sum Con-

ditioned Poisson Factorization, in order to use it in knowledge graph problems. Sum

Conditioned Poisson Factorization is an alternative to Generalized Linear Models and

can be used to model bounded data with L component Poisson Factorizations which are

conditioned on their summation. Unlike GLMs which factorize canonical parameters,

SCPF decomposes directly the moment parameters. For knowledge graph problems, we

define two Poisson tensor factorizations by conditioning their summation to a tensor of

ones. We introduce maximum likelihood parameter estimation with Expectation Max-

imization and Bayesian inference with variational inference and Gibbs sampling. We

compare the predictive performance of SCPF models with the performance of state of

the art Generalized Linear Model, Logistic Tensor Factorization on standard datasets

(Nation, UMLS, and Kinship).
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ÖZET

BİLGİ GRAFİKLERİ İÇİN TENSÖR AYRIŞTIRMA

MODELLERİ

Üçlüler(varlık-ilişki-varlık) biçiminde ifade edilen gerçekleri kullanarak yeni ve

bilinmeyen gerçekler çıkarsamak popüler bir istatistiksel ilişkisel öğrenme görevidir ve

bilgi grafiği bağlantı tahmini problemi ismi ile tanımlanır. Problem tanımının doğası

gereği mevcut veri setlerini temsil etmek için tensörler yaygın olarak tercih edilmekte-

dir. Varlıklar ve ilişkiler için saklı özelliklerin varlığında, orijinal veri kümesi tensörüne

yaklaşmak için tensör ayrıştırma modelleri kullanılır. Varlıkların ve ilişkilerin bu saklı

özellikleri, yaklaşım sırasında kestirilir/çıkarsanır ve aralarındaki etkileşim, üçlülerin

varoluş olasılıklarını ortaya çıkarır.

Bu tez çalışmasında, bilgi grafik problemlerinde kullanılmak üzere, yakın zaman

önce tanıtılan Toplam Koşullu Poisson Ayrıştırması’nın tensör uzantısını önermekteyiz.

Genelleştirilmiş Doğrusal Modeller’e alternatif olarak Toplam Koşullu Poisson Ayrıştır-

ması değer aralığı sınırlı olan veriyi, toplamları üzerinden koşullandırılmış L bileşen

Poisson Ayrıştırması ile modellemek için kullanılabilir. Standart parametreleri ayrıştı-

ran Genelleştirilmiş Doğrusal Modeller’den farklı olarak, Toplam Koşullu Poisson Ay-

rıştırması doğrudan moment parametrelerini ayrıştırır. Bilgi grafiği problemi için top-

lamları birler tensörüne koşullanmış iki Poisson tensör ayrıştırması tanımlamaktayız.

Beklenti Enbüyütme ile en büyük olabilirlik kestirimi, varyasyonel çıkarsama ve Gibbs

örneklemesi ile ise Bayesci çıkarsama sunuyoruz. Toplam Koşullu Poisson Ayrıştırması

modellerinin öngörü performanslarını, standart veri kümeleri (Nation, UMLS, ve Kin-

ship) üzerinde, en ileri Genelleştirilmiş Doğrusal Model olan Lojistik Tensör Ayrıştırma-

sı’nın performansıyla karşılaştırmaktayız.
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1. INTRODUCTION

Ability of gaining knowledge through reasoning is a crucial indicator of intelli-

gence. A fully intelligent agent could obtain some structured knowledge from unstruc-

tured data [2], but the amount of information that is extracted by this way would be

limited. Hence, intelligent agents are expected to discover and understand the relations

between the components in the known information so that the new knowledge can be

inferred through reasoning.

One way to represent the knowledge and the facts in a structured form is keeping

them in triple forms. A triple is formed by two entities and one relation which connects

entities to each other [3]. This connection can be directed or undirected but in either

case, the problem is the same that is exploring new unknown triples. The triples

constitute a knowledge graph together, and the problem of discovering new triples is

called knowledge graph link prediction or knowledge graph completion problem which

is an example of statistical relational learning problems [4].

In order to illustrate the problem and domain better, some known triples for

Nation dataset is given in Figure 1.1. The dataset is a directed graph and the nations

are subjects and objects of the facts which are connected to each other via relations.

Although the number of triples in the figure is quite small, we are still able to ex-

tract some knowledge about these nations by taking our prior knowledge on concepts

into account. As an example, by considering the economic aid of USA to the other

countries, we may conclude that USA is a prosperous country. Beside of this, it is

clearly seen that China and India have bad relationship. Most of the time, models

that we are developing have no such prior knowledge about concepts so they have to

infer the attributes of items and relations by themselves. For example, if a knowledge

graph contains a relation like ’marriedTo’, the model has to realize that it is a sym-

metric relation by looking at the facts with ’marriedTo’ relation. So for a given triple

(’David’,’marriedTo’,’Victoria’), the model is expected to propose a new triple (’Victo-

ria’,’marriedTo’,’David’) as a new fact. All the entity-relation-entity combinations are
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potential facts, but only small amount of them are really facts and our objective is to

discover them.

Figure 1.1. Sample triples from Nation dataset.

Knowledge graphs are being utilized in various areas including web search engines,

social networks, e-commerce, biomedical, and chatbots. Google extracts triples by

scanning web pages [5], and use these triples to improve its search engine. DBpedia

serves a knowledge base to the Internet users by extracting triples from Wikipedia

which contains rather organized knowledge thanks to its structural form [6]. Moreover,

knowledge graphs were used to link social media profiles with concepts to understand

users’ interests better [7]. IBM improves Watson’s question answering and chatbot

system with a knowledge graph [8]. Walmart creates knowledge graphs for better

advertisement and customer behaviour modeling [9]. Knowledge graphs are also useful

in bioinformatics: several relational datasets exist such as protein-protein and genes-

diseases interactions [10–13] which are widely used in disease treatment research. As

it is evident from a wide spectrum of applications, the Knowledge Graph is a popular

and generic representation for relational knowledge in a structural form, hence it is

worth to study as a statistical object.
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1.1. Tensor Representations for KG

For I entities and K relations, we can use an I × I ×K tensor(multidimensional

array) X to represent the data by signing the corresponding indices for the existing

triples. For example, if we know that entity i is connected to entity j via relation k, we

sign the xijk with 1, otherwise with 0. By keeping signing the corresponding indices,

we can fulfill the tensor with 1s and 0s, and this is a structural way to represent the

dataset.

Mainly, two different assumptions can be made for such tensorized datasets, open

world assumption and closed world assumption [3]. In open world assumption, we

assume that the given facts are known and represented by 1, but it is misleading to

accept not given triples as false. Therefore, in open world assumption, we have only

1s in our hand and learning should be made over 1s, with no distinction between false

and unknown relations. On the the other hand, in the closed world assumption, one

assumes that the absence of triples is an indicator of a false relationship, so it accepts

not given triples as false, and we use both 1s and 0s in learning stage. Although open

world assumption is typically a better way to represent a domain, it is conceptually

harder to deal with datasets that only contain 1s, so most of the models in literature

accept closed world assumption and in this thesis we also follow this trend.

1.2. Evaluation

All the entity-relation-entity combinations are potentially true facts. In the eval-

uation phase, a trained model assigns scores to the combinations. The scores reflect

the model’s belief in triples to be fact. Hence a threshold needs to be decided so that

the triples which are scored above the threshold are labeled as facts.

1.3. Tensor Decomposition Models for KG

Due to nature of the data, approximate tensor decomposition models [14,15] are

widely used for knowledge graph completion task. In the presence of a divergence
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metric D(.||.), a 3-way array X is approximated by low dimensional matrices W , H,

and G. An additional core tensor can be used alongside W , H, and G, as well.

(W,H,G)∗ = arg min
W,H,G

D(X||W,H,G)

In machine learning, approximating matrices W , H, and G are usually interpreted

as latent variables of a graphical model [16] which defines some kind of dependency

structure between the latent variables and observations. So, the problem of finding the

optimal approximating matrices can be described as an inference problem in the graph-

ical model. After inferring the latent variables by considering the observations and the

graphical structure, one can estimate the unobserved tensor elements by running the

forward model.

Parafac and Tucker decompositions are the most popular tensor decomposition

methods and refer to two different graphical model structures. In Parafac decompo-

sition, tensor X is approximated by a summation of R rank 1 tensors where R is the

rank of approximating tensor X̂ or model order. So, the approximation of an element

of tensor X can be expressed as the following

xijk ≈ x̂ijk =
R∑
r

wirhjrgkr

In Tucker decomposition, multiplications and summations are applied not over the

common index r but over the p, q, r which represent the indices of the vectors wi:, hj:,

gj: respectively. Scaling parameters λpqr can be introduced, as well.

xijk ≈ x̂ijk =

P,Q,R∑
p,q,r

λpqrwiphjqgkr

Parafac and Tucker decompositions are used for knowledge graph link prediction prob-

lem in [17] and [18] respectively. [1, 19] use Tucker like decomposition and name it

RESCAL. Beside of tensor factorization, matrix factorization models are used for

knowledge graph completion [20]. Moreover, neural models have become so popular
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in machine learning society recently, and one of its applications on knowledge graph

completion can be found in [21]. Distance based models are also popular in knowledge

graph completion problems [22–24].

This thesis focuses on tensor decomposition models, so the other methods men-

tioned above are out of scope. We especially studied Tensor extension of Sum Con-

ditioned Poisson Factorization [25] which is built upon Poisson Nonnegative Matrix

Factorization [26]. Additionally, we implemented Logistic Tensor Factorization which

is state of the art method currently, for comparison.

1.4. Sum Conditioned Poisson Factorization

As statistical objects, tensor decomposition models introduce latent features for

the items which interact with each other and generates the observations. Likelihood

distribution of observations are generally chosen from exponential family distributions:

xijk ∼ exp(ψ(xijk)ξijk − A(ξijk)) (1.1)

where ψ, ξ, A are sufficient statistics, canonical parameters and log-partition function

respectively. One decomposition approach is factorization of the canonical parameters

which refers to the tensor factorization extension of Generalized Linear Models(GLM).

Generalized Linear Models [27] map the output of predictor to the expectation parame-

ter of likelihood distribution via an inverse link function. As an example Logistic Tensor

Factorization handles knowledge graph completion as a binary classification problem

with sigmoid inverse link function and Bernoulli likelihood distribution. Equivalently,

mean parameters of observation likelihoods can be mapped to the canonical parame-

ters via link function, Logit in LTF case, and factorization is applied to the canonical

parameters.
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Alternatively, one may express the observation likelihood with moment parame-

terization and model the moment parameters:

xijk ∼
1

Z
exp(−D(xijk||µijk)) (1.2)

where µ is the first central moment or the mean parameter of exponential family dis-

tribution and Z is a normalizer. Some models directly factorize the moment parameter

µ and Poisson NMF [26] is one of them.

In moment parameterization, the mean parameter is constructed with the sum-

mation of latent sources which are generated by the interactions of latent features. In

Poisson factorization case, the latent sources are non-negative and this makes the de-

signed model highly interpretable. Moreover, predictive performance of a model may

vary with the type of parametrization.

In order to investigate the effect of moment parameterization on knowledge graph

problems, we present Sum Conditioned Poisson Factorization. Sum Conditioned Pois-

son Factorization introduces L component Poisson Factorizations by constraining their

summation to a fixed value so that binary, ordinal, and multinomial data can be mod-

elled with moment parametrizations.

Like Logistic Tensor Factorization, Sum Conditioned Poisson Factorization is also

a latent variable model and finds latent features for entities and relations by utilizing

given data points, then uses these features to estimate true and false triples in a test

set.

Purpose of this thesis is completion of knowledge graph tensor, but latent feature

approach enables us to propose solutions for the other problems related to knowledge

graphs, i.e. clustering of entities and relations, and entity resolution which refers to

detecting the same entities [3] such as US and USA.
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1.5. Thesis Organization

Chapter 1 is the introduction part and provides the problem definition along with

the motivations and previous works. Theoretical background that is required to un-

derstand the rest of the thesis is supplied in Chapter 2. SCPF models are proposed

in Chapter 3. Chapter 4 focuses on the inference techniques for the proposed mod-

els. Chapter 5 exhibits the experiment results and comparisons. In Chapter 6, final

comments and possible further research topics are provided.
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2. THEORETICAL BACKGROUND

In this chapter, we review the required theoretical background for this thesis.

Firstly, we describe RESCAL decomposition and its extension Logistic Tensor Fac-

torization. Secondly, Poisson Nonnegative Matrix Factorization is introduced. Lastly,

Expectation-Maximization Algorithm, Variational Bayes and Gibbs Sampling methods

for inference are presented for this class of models.

2.1. Rescal and Logistic Tensor Factorization

RESCAL [19,28] is a tensor factorization model which is designed specifically for

knowledge graphs. RESCAL factorization introduces global latent features for entities

and relations. Independent of its role in the triples, the latent features of entity i are

represented by a vector ai. The latent features of relation k are kept in matrix B::k.

Figure 2.1. Logistic Tensor Factorization graph representation. Original figure can be

found in [1].

Entity feature vectors ai and aj interact with each other via relation feature ma-

trix B::k to generate the tensor element xijk. The type of this interaction is Tucker
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like. Pairwise multiplications of entity vector elements are weighted by correspond-

ing relation matrix values and the summation of weighted components generates a

score ξijk that is proportional to the triple’s probability of being true. Based on the

parameterization choice, ξijk refers to a canonical parameter or a moment parameter.

ξijk =
∑
p,q

bpqkaipajq

In the original RESCAL model, authors use Normal distribution to model xijk and they

reach closed form update equations for alternating least squares algorithm. On the

contrary, likelihood distribution of xijk in Logistic Tensor Factorization [1] is Bernoulli

distribution which defines nature of the data better in return of slower learning stage.

xijk ∼ BE(xijk;σ(ξijk)) (2.1)

where ξijk = ai:
TB::kaj:.

ξijk is the canonical parameter of Bernoulli distribution and needs to be mapped

to the mean parameter via an inverse link function. Sigmoid function is used as the

inverse link function to map the value of ξijk to a range of (0, 1).

σ(ξijk) =
1

1 + exp(−ai:TB::kaj:)

LTF model accepts that the latent features of entities and relations are sampled from

Normal distribution.

ai: ∼ N (ai:; 0, λAI)

B::k ∼ N (B::k; 0, λBI)
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Authors present Maximum A Posterior solution for this problem

arg max
A,B

p(A,B|X) ∝ p(X|A,B)p(A)p(B)

arg max
A,B

log p(A,B|X) ∝ log p(X|A,B) + log p(A) + log p(B)

The problem can be converted to a loss minimization problem easily.

Loss = − log p(A,B|X)

arg min
A,B

−
∑
k

[X::k � log σ(AB::kA
T ) + (1−X::k)� log(1− σ(AB::kA

T ))]

+λA ‖A‖2F +
∑
k

λB ‖B::k‖2F

Derivatives of loss function with respect to parameters A and B::k are derived below.

∂Loss

∂A
=
∑
k

[(σ(AB::kA
T )−X::k)AB

T
::k + (σ(AB::kA

T )−X::k)
TAB::k] + 2λAA

∂Loss

∂B::k

= AT (σ(AB::kA
T )−X::k)A+ 2λBB::k

Although the solution is not in closed form, the derivatives are derived and can

be used in an unconstrained optimization method to solve this problem.

2.2. Poisson NMF

Originally proposed by Lee and Seung (1999), Non-negative Matrix Factoriza-

tion(NMF) [29] is both a model and an algorithm to decompose a non-negative matrix

X into non-negative matrices W and H. In their original paper, authors show that

NMF finds more meaningful and interpretable bases when compared with Principal

Component Analysis(PCA). Since then, NMF has become a popular matrix decom-

position method and applied to various areas for various purposes including topic
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modelling [30], clustering and manifold learning [31, 32], image analysis [33], source

separation [34], and financial data analysis [35].

In [36], authors propose two different cost functions to be minimized and come

up with multiplicative update rules for them.

(i) minimize ‖X −WH‖2 w.r.t W and H for W,H ≥ 0

(ii) minimize D(X||WH) w.r.t W and H for W,H ≥ 0 where D(A||B) = A log A
B
−

A+B

Figure 2.2. Nonnegative Matrix X is approximated by multiplication of nonnegative

matrices W and H.

For given J data instances with I features, W is a template matrix which keeps

the R different bases, and H is the excitation matrix which determines the weights of

the bases for each of the data instances. Hence, a data instance xj can be approximated

via Whj.

Poisson NMF [26] is a hierarchical generative model description of original NMF.

Poisson NMF introduces additional latent sources s1:I,1:J,1:R to describe the problem

better and try to minimize Kullback-Leibler divergence.

Below equations describe the generative model of Poisson NMF.

sijr ∼ PO(sijr;wirhjr)

xij =
R∑
r=1

sijr
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Figure 2.3. Poisson NMF introduces additional latent variables S.

In the article, author applies EM-algorithm for inference and comes up with update

equations which are exactly same with the multiplicative update rules of original NMF

model. This was the first time which showed that the algorithm of NMF is not only

EM-like but exactly EM algorithm.

By defining prior distributions on w and h, a hierarchical model can be con-

structed. For easiness in Bayesian inference, conjugate prior of Poisson distribution

namely Gamma distribution is chosen as prior distribution.

wir ∼ G(wir; a
w, bw/aw)

hjr ∼ G(hjr; a
h, bh/ah)

2.3. EM Algorithm

Both Maximum Likelihood and Maximum a Posteriori(MAP) parameter estima-

tion methods are based on the idea of putting a probability distribution on data (x)

and tuning the parameters of the distribution (θ) such that the likelihood of observed

data is maximized under this specified probability distribution. Maximum a Posteriori
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solution requires an additional prior distribution on parameters. For numeric simplic-

ity, we generally work in log scale which is a monotonic function that does not change

the solution.

(i) Maximum Likelihood solution: arg maxθ log p(x|θ)

(ii) MAP solution: arg maxθ log p(θ|x) = arg maxθ log p(x|θ) + log p(θ)

In order to evaluate the likelihood of the data in latent variable models, the latent

variables (z) need to be marginalized out. The number of components that need to be

marginalized out increases as the number of data instances increases and makes the

marginalization (
∑

z p(x, z|θ)) intractable. Because of the intractable marginalization,

one can not compute the likelihood, directly and EM algorithm [37, 38] brings an

iterative solution to this problem.

It would be easier to estimate the model parameters if the latent variables were

known. EM algorithm replaces the unknown exact latent variable values with the soft

values of latent variables. This is achieved in Expectation(E)-step by computing the

posterior distributions of latent variables and using them to evaluate the expectation

of log-joint distribution. In Maximization(M)-step, model parameters are learned.

As it is stated above, marginalization of latent variables (
∑

z p(x, z|θ)) is in-

tractable most of the time and this makes harder to work directly with log-likelihood.

EM algorithm offers a way to work with lower bound to log-likelihood. In order to

understand it better, we rewrite the log-likelihood with some arrangements.

log p(x|θ) = log
∑
z

q(z)
p(x, z|θ)
q(z)

= logEq
[
p(x, z|θ)
q(z)

]
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Because logarithm is a concave function, Jensen’s inequality can be applied to

write the following.

log p(x|θ) ≥ Eq
[
log

p(x, z|θ)
q(z)

]
= Eq[log p(x, z|θ)]− Eq[log q(z)]

A lower bound for log-likelihood is found above and represented with L(q, θ) which is

a function that depends on the choice of distribution q and the model parameters θ.

We go further and rearrange it

L(q, θ) =
∑
z

q(z)(log p(z|x, θ) + log p(x|θ))−
∑
z

q(z) log q(z)

=
∑
z

q(z) log
p(z|x, θ)
q(z)

+
∑
z

q(z) log p(x|θ)

=
∑
z

q(z) log
p(z|x, θ)
q(z)

+ log p(x|θ)

The first term above, is the negative KL divergence

L(q, θ) = −KL(q(z)||p(z|x, θ)) + log p(x|θ)

So, log-likelihood can be written as the summation of the KL divergence and a lower

bound.

log p(x|θ) = L(q, θ) +KL(q(z)||p(z|x, θ)) (2.2)

The KL divergence is a divergence metric between two probability distributions and

its range is defined on non-negative values. The KL divergence is minimized when

the distributions are equal. Therefore, we set q(z) = p(z|x, θ) to minimize the KL

divergence and to maximize the lower bound L(q, θ). By replacing q(z) with p(z|x, θ),
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we write the maximum L(q, θ) for the old θ parameters.

L(p(z|x, θold), θ) =
∑
z

p(z|x, θold) log p(x, z|θ) +
∑
z

p(z|x, θold) log p(z|x, θold)

The above equation completes the E-step and enables us to evaluate the log-likelihood

for the parameters θold. The second term of the equation does not depend on θ, but

the first term does. So it can be further increased by new θ values and this process

refers to the M-step.

E and M steps can also be considered as inference and learning steps. In the

E-step, we infer the posteriors of latent variables and in the M-step, we learn the new

θ parameters.

Because the second term does not contain new θ parameters, we take the first

term and denote it with Q(θ|θold). So, E and M steps can be organized as the following.

E-step : Q(θ|θold) = Ep(z|x,θold)[log p(x, z|θ)]

M-step : θnew = arg max
θ
Q(θ|θold)

2.4. Variational Bayes

In the E-step of EM algorithm, we assumed that p(z|x) can be calculated, but

this is not always the case. When p(z|x) can’t be calculated exactly, we approximate

to it with a simpler, instrumental distribution q(z;φ), where φ is variational parame-

ters. Bayesian Inference of Sum Conditioned Possion Factorization does not contain

model parameters, instead, parameters replaced with random variables. Because of

this reason, in this section, we do not take model parameters into account.

As it is showed in Equation 2.2, loglikelihood can be expressed as summation

of a lower bound(ELBO) and a KL divergence. In this section, we utilize the same
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expression with little differences.

log p(x) = L(q, φ) +KL(q(z;φ)||p(z|x))

By considering the easiness, among all possible probability distributions, we choose the

fully factorized ones as the probability distribution family for q(z;φ) and this is called

mean field approximation [38–40].

q(z) =
R∏
i=1

qi(zi)

where R is the number of latent factors. We put this expression into lower bound

equation and then we solve it for each qi one at a time, by accepting other qis are

known. Below we show the solution for qj.

L(q, φ) =
∑
z

∏
i

qi(log p(x, z)−
∑
i

log qi)

We separate the terms that contain qj, and the other terms are accepted as constants

because they are not affecting our solution.

L(q, φ) =
∑
zj

qj(
∑
zi 6=j

log p(x, z)
∏
i 6=j

qi)−
∑
zj

qj log qj + const

=
∑
zj

qjEqi 6=j
[log p(x, z)]−

∑
zj

qj log qj + const

=
∑
zj

qj log exp(Eqi6=j
[log p(x, z)])−

∑
zj

qj log qj + const

We want to find qj which maximizes this expression. If we look at closer to this

expression, it can be seen that it is nothing but the negative KL divergence between

qj and exp(Eqi 6=j
[log p(X,Z)]) plus some constant.

L(q, φ) ∝ −KL(qj|| exp(Eqi6=j
[log p(x, z)]))
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So, we find that

qj ∝ exp(Eqi 6=j
[log p(x, z)]) (2.3)

qj(zj) is a probability distribution, so this expression should be normalized. A simple

way of proper calculation is associating this expression with a distribution from expo-

nential family. In order to utilize this simple way, we choose the probability distribution

family of qj(zj) carefully, by considering conjugacy.

2.5. Gibbs Sampling

As we will show in the upcoming chapters, expectations of random variables are

critical in Bayesian inference, but sometimes due to intractable integrations, analytical

computation of an expectation becomes impossible. In this case, we can use Monte

Carlo integration to approximate to the expectation.

Ep(x)[x] ≈ 1

T

T∑
i=1

x(i)

where x(i)s are samples from probability distribution p(x).

The above equation requires well distributed samples from target distribution. If

the target distribution is not among well known probability distributions, it may be

hard to sample from target distribution directly. Monte Carlo methods [41,42] enable

us to generate random samples from probability distributions which are difficult to

sample from.

Gibbs sampling [43, 44] is a Markov Chain Monte Carlo(MCMC) [45, 46] algo-

rithm. MCMC utilizes a Kernel K(x(i)|x(i−1)) which is basically transition probability

Markov Chain of states for sampling. For healthy process, Markov Chain should be

irreducible and aperiodic. Probability distribution of the new sample depends on the
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old sample and transition probability kernel.

p(x(i)) =

∫
K(x(i)|x(i−1))p(x(i−1))dx(i−1)

If we have a set of random variables x1, x2, ..., xD and full conditional probabilities of

each random variables p(xd|x−d) are tractable, we can use Gibbs Sampling. Gibbs Sam-

pling start with randomly initialized values for x1, x2, ..., xD, and then take samples xd

from p(xd|x−d) for d = 1 : D. After some burn in period, distributions of samples from

full conditionals will be identical to the distributions of samples from joint distribution

which we could not generate in the beginning [25].

Figure 2.4. Gibbs sampling for Parafac decomposition
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3. PROPOSED MODEL

Sum Conditioned Poisson Factorization [25] is proposed as a general matrix and

tensor decomposition framework to model binary, ordinal, and multinomial data using

the moment parametrization which is expressed in the Chapter 1 together with the

motivations. In this chapter, tensor extension of Sum Conditioned Poisson Factoriza-

tion is introduced and designed for Knowledge Graph problem. Parafac and Rescal

like(Tucker) decompostions are introduced respectively. Before diving into details of

the model, reader can find the properties of Poisson random variables which are con-

ditioned on summation of 1, in Appendix A.

3.1. Parafac Decomposition

Basically, the model contains two tensors X1 and its complement X2. X1 is the

real data tensor that we are working with and contains the observed triples, therefore

it is formed by 1s and 0s. X2 is complement of tensor X1 and takes the values which

make the summation of two tensors a tensor of ones which is stated with N in Figure

3.1.

Figure 3.1. Parafac decomposition of Sum Conditioned Poisson tensor factorization.

From now on, Xl will be used instead ofX1 andX2 if the properties that we use are

valid for both of the tensors and same notation will be valid for other representations.
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Xl is approximated by summation of R tensors and these tensors named as latent

sources Sl. Values in the tensors Sl are sampled from Poisson distribution and the rate

tensors are generated with outer product of latent vectors wl,:r, hl,:r, gl,:r which are the

columns of matrices Wl, Hl, Gl respectively. This process is illustrated in Figure 3.1

and Figure 3.2.

Figure 3.2. Elements of latent matrices interact with each other and generate xl,ijk

To simplify the Bayesian inference, we define Gamma prior distributions on wl,ir,

hl,jr, gl,kr. Gamma distribution is conjugate prior of Poisson distribution and this

makes Bayesian inference stage easier for us. When we use EM algorithm for parameter

estimation, we no longer accept wl,ir, hl,jr, gl,kr as random variables but parameters

and prior distributions on them becomes insignificant unless we apply Maximum A
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Posterior(MAP) estimation. Full generative model is defined in the equations below.

wl,ir ∼ G(wl,ir; a
w, bw/aw) sl,ijkr ∼ PO(sl,ijkr;wl,ir × hl,jr × gl,kr)

hl,jr ∼ G(hl,jr; a
h, bh/ah) xl,ijk =

∑
r

sl,ijkr

gl,kr ∼ G(gl,kr; a
g, bg/ag) nijk =

∑
l

xl,ijk

W1 and H1 matrices are latent feature matrices for entities according to their

roles(etiher subject or object) in triples. G1 is the latent feature matrix for relations.

Each entities and relations have R dimensional latent features and these features are

forming the rows of matrices.

Given their summation, conditional distribution of independent Poisson random

variables is Multinomial distribution [47]. For the summation of 1, conditional distri-

bution of two Poisson random variables turns into Bernoulli distribution which is a

special case of Multinomial distribution. Thanks to the summation tensor N which is

a tensor of ones, we have the following property.

p(xl,ijk|nijk, w:,i:, h:,j:, g:,k:) = Ber

(
xl,ijk;

∑
r

wl,irhl,jrgl,kr∑
l

∑
r

wl,irhl,jrgl,kr

)
(3.1)

The above property enables us to model knowledge graph problems with Sum

Conditioned Poisson Factorization.

In Chapter 1, we stated that we accept closed world assumption. In order to

apply this assumption in our models, we introduce a mask tensor M which has the

same dimensionality with X1 and X2. mijk takes the value 1 if we observe the true or

false relationship entityi− relationk − entityj, and takes the value 0 if this relationship

is not observed. Thus we assume that the tensors we observe are X1�M and X2�M .

The same rule is also valid for Rescal-like(Tucker-like) decomposition model.
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3.2. RESCAL-like(Tucker-like) Decomposition

In Parafac decomposition model, we assumed that an entity has two different

latent representations for its two different roles in triples which are either being object

or subject. Now, we assume that an entity has a global latent representation and it

does not vary with the role of entity in a triple.

Figure 3.3. Illustraion of Tucker-like decomposition for Sum Conditioned Poisson

Factorization.

Rescal-like decomposition for Sum Conditioned Poisson Factorization is illus-

trated in Figure 3.3. In this illustration, rank R is taken 2, and we throw notation l

away, because this scheme is valid for both l = 1 and l = 2. hi: is the latent feature

vector for entity i and elements of hi: are multiplied with elements of hj:. These mul-

tiplications are weighted with weights W::k and generates Sijk:: values. An entity has a

global latent feature which does not vary with the type of relation or the role of entity

in the triple. The features of relations are the weights that determine in what way

entity features interact with each other.
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Generative model of Rescal-like decomposition for Sum Conditioned Poisson Fac-

torization is given below.

wl,cdk ∼ G(wl,cdk; a
w, bw/aw) sl,ijkcd ∼ PO(sl,ijkcd;wl,cdk × hl,ic × hl,jd)

hl,ir ∼ G(hl,ir; a
h, bh/ah) xl,ijk =

∑
c,d

sl,ijkcd

nijk =
∑
l

xl,ijk

Figure 3.4. An R×R×K weight tensor for relations and an I ×R latent features

matrix for entities.

In this formulation, Wl is a R × R × K tensor which keeps latent features or

weights of relations, so each relation has its own R × R matrix shaped weights. Hl

is I × R matrix which keeps latent features of entites, so each entity has its own R

dimensional vector shaped features.

By conditioning on the summation of 1, we write the following equation.

p(xl,ijk|nijk, w:::k, h:i:, h:j:) = Ber

(
xl,ijk;

∑
c,d

wl,cdkhl,ichl,jd∑
l

∑
c,d

wl,cdkhl,ichl,jd

)
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Rather than Rescal-like decomposition, a more general Tucker decomposition can be

applied by introducing another matrix Gl to represent latent features of entities when

their role is object in triples.
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4. INFERENCE

In this chapter, we present Maximum Likelihood parameter estimation for both

Parafac decomposition and Rescal-like decomposition of Sum Conditioned Poisson Fac-

torization. We derive update equations for parameters with Expectation-Maximization

algorithm. Additionally, we present Bayesian inference for Parafac decomposition of

SCPF via variational inference and Gibbs Sampling. The derivations follow closely

[25,26].

4.1. EM Algorithm for Parafac Decomposition

Original model accepts that wl,ir, hl,jr, gl,kr are random variables which are sam-

pled from Gamma Distribution. In Maximum Likelihood learning, we put some re-

strictions on model such that wl,ir, hl,jr, gl,kr are not random variables but parameters.

4.1.1. E-step

In Chapter 2, we defined the E-step as evaluating the following expectation.

Q(θ|θold) = Ep(z|x,θold)[log p(x, z|θ)]

For our model, this equation turns into

Q
(
W,H,G|W (t), H(t), G(t)

)
= Ep(S|N,X,W,H,G) [log p(N,X, S|W,H,G)] (4.1)

We will first evaluate p(N,X, S|W,H,G) and then continue with p(S|N,X,W,H,G)

and Ep(S|N,X,W,H,G) [log p(N,X, S|W,H,G)].
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p(N,X, S|W,H,G) = p(N |X)p(X|S)p(S|W,H,G)

=
∏
l,i,j,k

[
δ

(
nijk −

∑
l

xl,ijk

)
δ

(
xl,ijk −

∑
r

sl,ijkr

)
∏
r

Po (sl,ijkr;wl,irhl,jrgl,kr)

]
(4.2)

Now, we start to evaluate the posterior of latent sources S.

log p(S|N,X,W,H,G) = log p(N,X, S|W,H,G)− log p(N,X|W,H,G) (4.3)

In order to evaluate this posterior, we need to calculate p(N,X|W,H,G) first. We may

simply write p(N,X|W,H,G) =
∑
S

p(N,X, S|W,H,G), but there are some X values

in the tensor which are not observed, so we need to integrate them out as well. As it

is stated in Chapter 3, we use mask parameters mijk to indicate whether we observe

xijk or not.

p(N,X|W,H,G) =(∑
S

∏
l,i,j,k

[
δ
(
nijk −

∑
l

xl,ijk

)
δ
(
xl,ijk −

∑
r

sl,ijkr

)
∏
r

Po(sl,ijkr;wl,irhl,jrgl,kr)
])mijk

(∑
S

∑
X

∏
l,i,j,k

[
δ
(
nijk −

∑
l

xl,ijk

)

δ
(
xl,ijk −

∑
r

sl,ijkr

)∏
r

Po(sl,ijkr;wl,irhl,jrgl,kr)
])(1−mijk)

(4.4)

Superposition property of Poisson distribution [25, 26, 48] allows us to transform the

above equation into a simpler form.

log p(N,X|W,H,G) =
∑
l,i,j,k

mijk logPo
(
xl,ijk;

∑
r

wl,irhl,jrgl,kr

)
+
∑
i,j,k

(1−mijk) logPo
(
nijk;

∑
l

∑
r

wl,irhl,jrgl,kr

)
(4.5)
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By using Equation 4.2 and Equation 4.4, we can derive p(S|N,X,W,H,G). Details of

the derivation can be found in Appendix B.

log p(S|N,X,W,H,G) =
∑
l,i,j,k

mijk logM(sl,ijk:;xl,ijk, pl,ijk:)

+
∑
l,i,j,k

(1−mijk) logM(sl,ijk:;nijk, ql,ijk:) (4.6)

where pl,ijkr =
wl,irhl,jrgl,kr∑
r
wl,irhl,jrgl,kr

and ql,ijkr =
wl,irhl,jrgl,kr∑

l,r
wl,irhl,jrgl,kr

.

Our aim is to evaluate the expectation in the Equation 4.1, so we write it detaily.

Ep(S|N,X,W,H,G) [log p(N,X, S|W,H,G)] = E

[ ∑
l,i,j,k

(∑
r

logPO(sl,ijkr;wl,irhl,jrgl,kr)

+ log δ
(
xl,ijk −

∑
r

sl,ijkr

)
+ log δ

(
nijk −

∑
l

xl,ijk

))]
p(S|N,X,W,H,G)

=
∑
l,i,j,k

(∑
r

(
E [sl,ijkr] logwl,irhl,jrgl,kr

−wl,irhl,jrgl,kr − E [log Γ(sl,ijkr + 1)]
)

+E

[
log δ

(
xl,ijk −

∑
r

sl,ijkr

)]

+ log δ
(
nijk −

∑
l

xlijk

))
(4.7)

We will optimize the objective function with respect to model parameters, so we keep

the terms that include them and write the objective function.

Q(W,H,G|W (t), H(t), G(t)) =
∑
l,i,j,k,r

(E [sl,ijkr] logwl,irhl,jrgl,kr − wl,irhl,jrgl,kr) (4.8)

Evaluating E [slijkr] is easy now, because in Equation 4.6 we calculated the conditional

distribution p(S|N,X,W,H,G) and it is nothing but combination of two multinomial

distributions.
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Ep(S|N,X,W,H,G) [sl,ijkr] = mijk
wl,irhl,jrgl,krxl,ijk∑
r

wl,irhl,jrgl,kr
+ (1−mijk)

wl,irhl,jrgl,krnijk∑
l

∑
r

wl,irhl,jrgl,kr
(4.9)

This completes the E-step and parameters need to be updated in the M-step.

4.1.2. M-Step

In the E-step of EM algorithm, we derived the objective function that we would

like to maximize. In the M-step, we derive update equations for parameters, by simply

taking derivative of Q(W,H,G|W (t), H(t), G(t)) with respect to parameters wl,ir, hl,jr,

gl,kr and equalizing to 0.

∂Q

∂wl,ir
= 0⇒ w

(t+1)
l,ir =

∑
j,k

Ep(S|N,X,W,H,G) [sl,ijkr]∑
j,k

hl,jrgl,kr
(4.10)

∂Q

∂hl,jr
= 0⇒ h

(t+1)
l,jr =

∑
i,k

Ep(S|N,X,W,H,G) [sl,ijkr]∑
i,k

wl,irgl,kr
(4.11)

∂Q

∂gl,kr
= 0⇒ g

(t+1)
l,kr =

∑
i,j

Ep(S|N,X,W,H,G) [sl,ijkr]∑
i,j

wl,irhl,jr
(4.12)

By using Equation 4.9, we rewrite the update equations in Table 4.1.
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Table 4.1. EM update equations for Parafac decomposition.

Parameters Update equations

wl,ir
wt

l,ir∑
j,k
htl,jrg

t
l,kr

∑
j,k

[
mijkh

t
l,jrg

t
l,krxl,ijk∑

r
wt

l,irh
t
l,jrg

t
l,kr

+
(1−mijk)h

t
l,jrg

t
l,krnijk∑

l,r
wt

l,irh
t
l,jrg

t
l,kr

]
hl,jr

htl,jr∑
i,k
wt

l,irg
t
l,kr

∑
i,k

[
mijkw

t
l,irg

t
l,krxl,ijk∑

r
wt

l,irh
t
l,jrg

t
l,kr

+
(1−mijk)w

t
l,irg

t
l,krnijk∑

l,r
wt

l,irh
t
l,jrg

t
l,kr

]
gl,kr

gtl,kr∑
i,j
wt

l,irh
t
l,jr

∑
i,j

[
mijkw

t
l,irh

t
l,jrxl,ijk∑

r
wt

l,irh
t
l,jrg

t
l,kr

+
(1−mijk)w

t
l,irh

t
l,jrnijk∑

l,r
wt

l,irh
t
l,jrg

t
l,kr

]

4.2. Variational Bayes for Parafac Decomposition

In this section, we introduce W,H,G latent variables with gamma priors for

each, as it is defined in the original model description in Chapter 3. In the presence

of latent variables, computation of posterior distribution p(S,W,H,G|X,N) becomes

intractable. We introduce a fully factorized instrumental distribution q(S,W,H,G) in

order to approximate to original posterior distribution under the reverse KL divergence

KL(q||p) metric.

q(S,W,H,G) = q(S)q(W )q(H)q(G)

A general form of fixed point iteration is supplied in Equation 2.3. Same procedure is

applied for SCPF.

q(S)(t+1) ∝ exp
(
〈log p(N,X, S,W,H,G)〉q(W )(t)q(H)(t)q(G)(t)

)
q(W )(t+1) ∝ exp

(
〈log p(N,X, S,W,H,G)〉q(S)(t+1)q(H)(t)q(G)(t)

)
q(H)(t+1) ∝ exp

(
〈log p(N,X, S,W,H,G)〉q(S)(t+1)q(W )(t+1)q(G)(t)

)
q(G)(t+1) ∝ exp

(
〈log p(N,X, S,W,H,G)〉q(S)(t+1)q(W )(t+1)q(H)(t+1)

)
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Log-joint distribution log p(N,X, S,W,H,G) is given in Appendix C. By keeping the

terms that include the random variables S, we write the following.

q(sl,ijk:) ∝ exp

(∑
r

sl,ijkr(〈logwl,ir〉+ 〈log hl,jr〉+ 〈log gl,kr〉)− log Γ(sl,ijkr + 1)

)
(
mijkδ

(
xl,ijk −

∑
r

sl,ijkr

)
+ (1−mijk)δ

(
nijk −

∑
l,r

sl,ijkr

))

q(S) ∝
∏
l,i,j,k

[
mijkM(sl,ijk:,xl,ijk,pl,ijk:) + (1−mijk)M(sl,ijk:,nijk,ql,ijk:)

]
(4.13)

The variational distribution of S is Multinomial distribution. After recognizing distri-

bution family, it is easy to find expectations which will be used later in derivations of

fixed point iterations for w, h, g.

〈sl,ijkr〉 = mijkxl,ijkpl,ijkr + (1−mijk)nijkql,ijkr (4.14)

for pl,ijkr =
exp(〈logwl,ir〉+〈log hl,jr〉+〈log gl,kr〉)∑
r
exp(〈logwl,ir〉+〈log hl,jr〉+〈log gl,kr〉) , ql,ijkr =

exp(〈logwl,ir〉+〈log hl,jr〉+〈log gl,kr〉)∑
l,r

exp(〈logwl,ir〉+〈log hl,jr〉+〈log gl,kr〉)

Similarly, we derive fixed point iterations for w.

q(wl,ir) ∝ exp

((
awl +

∑
j,k

〈sl,ijkr〉 − 1

)
logwl,ir −

(
awl
bwl

+
∑
j,k

〈hl,jr〉 〈gl,kr〉

)
wl,ir

)

∝ G(wl,ir;α
w
l,ir, β

w
l,ir)

where

αwl,ir = awl +
∑
j,k

〈sl,ijkr〉 βwl,ir =

(
awl
bwl

+
∑
j,k

〈hl,jr〉 〈gl,kr〉

)−1
exp(〈logwl,ir〉) = exp(Ψ(αwl,ir))β

w
l,ir 〈wl,ir〉 = αwl,irβ

w
l,ir
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Ψ(.) is Digamma function. Derivations for fixed point iterations of h and g are

analogous to w and supplied in Appendix C.

4.3. Gibbs Sampling for Parafac Decomposition

Gibbs Sampling algorithm is given in Chapter 2. The algorithm requires sampling

from full conditional distributions. So, in this section, we supply the full conditional

probability distributions of random variables s, w, h, g. In Figure 4.1, the Gibbs Sam-

pling algorithm for Parafac Decomposition can be found.

Figure 4.1. Gibbs sampling for Parafac decomposition

Conditional probability distribution for S is given in Equation 4.6, and it is noth-

ing but combination of two Multinomial distributions. Therefore, sampling of sl,ijkr

can be done easily by sampling from one of the Multinomial distributions according to

observation situation of xijk.

sl,ijkr ∼

M(sl,ijk:;xl,ijk, pl,ijk:), if mijk = 1

M(s:,ijk:;nijk, q:,ijk:), otherwise

where pl,ijkr =
wl,irhl,jrgl,kr∑
r
wl,irhl,jrgl,kr

and ql,ijkr =
wl,irhl,jrgl,kr∑

l,r
wl,irhl,jrgl,kr

.
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Sampling scheme for sl,ijkr intuitively makes sense. If xl,ijk is observed, then its

value is distributed to R piece of sl,ijkr latent sources according to their weights pl,ijkr

and these R piece of sl,ijkr latent sources generate xl,ijk indeed. If xl,ijk is not observed,

then summed value nijk is distributed to L×R piece of sl,ijkr latent variables according

to their weights ql,ijkr because these L×R latent variables generate the value of nijk.

In Chapter 3, model description has been made and prior distribution of random

variables W,H,G was selected as Gamma distribution by emphasizing its easiness for

the inference. Now, we will use it to derive full conditional distributions for W,H,G.

log p(wl,ir|W−wlir
, H,G, S,X,N) ∝ log p(wl,ir) + log p(sl,i::r|wl,ir, hl,:r, gl,:r)

= log p(wl,ir) +
∑
j,k

log p(sl,ijkr|wl,ir, hl,jr, gl,kr)

= log G(wl,ir; a
w, bw/aw)

+
∑
j,k

logPO(sl,ijkr|wl,irhl,jrgl,kr)

= (aw − 1) logwl,ir − wl,ir(aw/bw)

− log Γ(aw) + aw log(bw/aw)

+
∑
j,k

(−wl,irhl,jrgl,kr + sl,ijkr log(wl,irhl,jrgl,kr)

−sl,ijkr!)

∝ (aw +
∑
j,k

sl,ijkr − 1) logwl,ir

−wl,ir(aw/bw +
∑
j,k

hl,jrgl,kr)

log p(wl,ir|W−wlir
, H,G, S,X,N) ∝ log G

(
wl,ir; a

w +
∑
j,k

slijkr, (a
w/bw +

∑
j,k

hljrglkr)
−1
)

(4.15)

Because Gamma distribution is conjugate prior of Poisson distribution, posterior dis-

tribution is in the form of Gamma distribution and sampling is really simple now.
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Conditional distributions of H and G can be derived similarly, and details are

given in the Appendix D.

log p(hl,jr|H−hljr ,W,G, S,X,N) ∝ log G
(
hl,jr; a

h +
∑
i,k

slijkr, (a
h/bh +

∑
i,k

wlirglkr)
−1
)

(4.16)

log p(gl,kr|G−glkr ,W,H, S,X,N) ∝ log G
(
gl,kr; a

g +
∑
i,j

slijkr, (a
g/bg +

∑
i,j

wlirhljr)
−1
)

(4.17)

The main task of Knowledge Graph is extraction of new facts, so it is a prediction

task and we need to use our model for this purpose. To do that, we can use the sampled

latent variables slijkr. Expected value of sl,ijkr can be stated as the following.

E[sl,ijkr] =
1

T − Tburn-in

T∑
t=Tburn-in

s
(t)
l,ijkr (4.18)

We do not consider the samples which are gathered in the burn-in period, because

Gibbs iterations need to converge so that the samples from full conditionals behave

like if they were gathered from joint distribution.

By using Equation 3.1 and Equation 4.18, we can state the expectation of xl,ijk

with the following equation.

E[xl,ijk] =

∑
r

E[sl,ijkr]∑
l,r

E[sl,ijkr]
(4.19)

4.4. EM Algorithm for Rescal-like Decomposition

EM algorithm for Rescal-like Decomposition is very much similar to EM algorithm

of Parafac Decomposition, nevertheless we will supply all the details in this section.
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4.4.1. E-step

We start with objective function that we want to maximize.

Q
(
W,H|W (t), H(t)

)
= Ep(S|N,X,W,H) [log p(N,X, S|W,H)] (4.20)

In order to calculate the objective function, we need to calculate the conditional dis-

tribution p(S|N,X,W,H) together with the expectation of conditional distribution

p(N,X, S|W,H). We start with p(N,X, S|W,H).

p(N,X, S|W,H) = p(N |X)p(X|S)p(S|W,H)

=
∏
l,i,j,k

[
δ

(
nijk −

∑
l

xl,ijk

)
δ

(
xl,ijk −

∑
c,d

sl,ijkcd

)
∏
c,d

Po (sl,ijkcd;wl,cdkhl,ichl,jd)

]
(4.21)

As it is done in Section 4.1, we marginalize latent variables S out. Additionally unob-

served X variables have to be marginalized out.

p(N,X|W,H) =(∑
S

∏
l,i,j,k

δ

(
nijk −

∑
l

xl,ijk

)
δ

(
xl,ijk −

∑
c,d

sl,ijkcd

)
∏
c,d

PO (sl,ijkcd;wl,cdkhl,ichl,jd)

)mijk
(∑

S

∑
X

∏
l,i,j,k

δ

(
nijk −

∑
l

xl,ijk

)

δ

(
xl,ijk −

∑
c,d

sl,ijkcd

)∏
c,d

Po (sl,ijkcd;wl,cdkhl,ichl,jd)

)(1−mijk)

(4.22)

We use the superposition property of Poisson distribution to reach the below equation.

log p(N,X|W,H) =
∑
l,i,j,k

mijk logPO
(
xl,ijk;

∑
c,d

wl,cdkhl,ichl,jd

)
+
∑
i,j,k

(1−mijk) logPO
(
nijk;

∑
l

∑
c,d

wl,cdkhl,ichl,jd

)
(4.23)
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Posterior probability p(S|N,X,W,H) can be calculated by using Equation 4.21 and

Equation 4.23.

log p(S|N,X,W,H) = log p(N,X, S|W,H)− log p(N,X|W,H)

=
∑
l,i,j,k

mi,j,k logM(sl,ijk::;xl,ijk, pl,ijk::)

+
∑
l,i,j,k

(1−mi,j,k) logM(s:,ijk::;nijk, q:,ijk::)

(4.24)

where pl,ijkcd =
wl,cdkhl,ichl,jd∑

c,d
wl,cdkhl,ichl,jd

and ql,ijkcd =
wl,cdkhl,ichl,jd∑

l,c,d
wl,cdkhl,ichl,jd

.

After calculating required components, we can evaluate the expectation.

Ep(S|N,X,W,H) [log p(N,X, S|W,H)] = E

[ ∑
l,i,j,k

(∑
c,d

logPO(sl,ijkcd;wl,cdkhl,ichl,jd)

+ log δ
(
xl,ijk −

∑
r

sl,ijkr

)
+ log δ

(
nijk −

∑
l

xl,ijk

))]
p(S|N,X,W,H)

=
∑
l,i,j,k

(∑
c,d

(
E [sl,ijkcd] logwl,cdkhl,ichl,jd

−wl,cdkhl,ichl,jd − E [log Γ(sl,ijkcd + 1)]
)

+E

[
log δ

(
xl,ijk −

∑
c,d

sl,ijkcd

)]

+ log δ
(
nijk −

∑
l

xl,ijk

))
(4.25)

So, the objective function becomes

Q(W,H|W (t), H(t)) =
∑

l,i,j,k,c,d

(E [sl,ijkcd] logwl,cdkhl,ichl,jd − wl,cdkhl,ichl,jd) (4.26)
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By using Equation 4.24, we write

E [sl,ijkcd] = mijk
wl,cdkhl,ichl,jdxl,ijk∑
c,d

wl,cdkhl,ichl,jd
+ (1−mijk)

wl,cdkhl,ichl,jdnijk∑
l

∑
c,d

wl,cdkhl,ichl,jd
(4.27)

4.4.2. M-step

In this section we derive update equations for the parameters W and H. Because

of the definition of Rescal-like decomposition model, objective function contains both

hl,ic and hl,jd which are latent representations of entities in the role of object and subject

respectively. We keep hl,jd constant and derive equations for hl,ic.

∂Q

∂wl,cdk
= 0 => w

(t+1)
lcdk =

∑
i,j

E [sl,ijkcd]∑
i,j

hl,ichl,jd
(4.28)

∂Q

∂hl,ic
= 0 => h

(t+1)
l,ic =

∑
j,k,d

E [sl,ijkcd]∑
j,k,d

wl,cdkhl,jd
(4.29)

Table 4.2. EM update equations for Rescal-like decomposition.

Parameters Update equations

wl,cdk
wt

l,cdk∑
i,j
htl,ich

t
l,jd

∑
i,j

[
mijkh

t
l,ich

t
l,jdx,lijk∑

c,d
wt

l,cdkh
t
l,ich

t
l,jd

+
(1−mijk)h

t
l,ich

t
l,jdnijk∑

l,c,d
wt

l,cdkh
t
l,ich

t
l,jd

]
hl,ic

htl,ic∑
j,k,d

wt
l,cdkh

t
l,jd

∑
j,k,d

[
mijkw

t
l,cdkh

t
l,jdxl,ijk∑

c,d
wt

l,cdkh
t
l,jdh

t
l,ic

+
(1−mijk)w

t
l,cdkh

t
l,jdnijk∑

l,c,d
wt

l,cdkh
t
l,jdh

t
l,ic

]
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5. EXPERIMENTS

Predictive power of Sum Conditioned Poisson Factorization is tested on 3 stan-

dard knowledge graph datasets(Nation, UMLS, Kinship). These datasets are highly

imbalanced and the number of negative examples is much more higher than the num-

ber of positive examples. As it is stated before, we accept closed world assumption by

assuming that the given triples are positive examples and not given triples are negative

examples. For each knowledge graph, we create 10 different datasets by randomly split-

ting the knowledge graph into training set(50%) and test set(50%). We use area under

the ROC curve [49] as evaluation metric and compare the predictive performances

of Sum Conditioned Poisson Factorization models and Logistic Tensor Factorization.

Furthermore, we visualize the estimated features to examine if they are interpretable

or not.

5.1. Nation Dataset

Nation dataset [50] is formed by 14 nations and 56 relations between them. This

dataset is relatively small sized when compared with the other two datasets and ratio

of positive examples to negative examples is higher than the other datasets’.

Figure 5.1. Visualization of Nation dataset.
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In Figure 5.1, we visualize the Nation dataset by transforming 14 × 14 × 56

dimensional tensor to a 14× (14× 56) dimensional matrix where black cells represent

the known triples.

Table 5.1. Entities and relations in Nation dataset.

Entities Relations

Brazil, Burma, China,

Cuba, Egypt, India,

Indonesia, Israel,

Jordan, Netherlands,

Poland, USSR, UK,

USA

economicaid, releconomicaid, treaties, reltreaties,

officialvisits, conferences, exportbooks, relexportbooks,

booktranslations, relbooktranslations, warning,

violentactions, militaryactions, duration,

negativebehavior, severdiplomatic, expeldiplomats,

boycottembargo, aidenemy, negativecomm, accusation,

protests, unoffialacts, attackembassy,

nonviolentbehavior, weightedunvote,

unweightedunvote, tourism, reltourism, tourism3,

emigrants, relemigrants, emigrants3, students,

relstudents, exports, relexports, exports3, intergovorgs,

relintergovorgs, ngo, relngo, intergovorgs3, ngoorgs3,

embassy, reldiplomacy, timesincewar, timesinceally,

lostterritory, dependent, independence, commonbloc0,

blockpositionindex, militaryalliance, commonbloc1,

commonbloc2

Parameter estimation with EM algorithm was applied to Parafac and Tucker

SCPF models. We implemented also Bayesian Inference for Parafac SCPF with both

variational inference and Gibbs sampling. We applied the same training procedures

for latent ranks 2, 4, and 8. During training, latent features were estimated/inferred,

and these features were used in test phase to extract new facts. A threshold value

needs to be determined to label the positive and negative triples. A large threshold

value causes most of the test examples to be labeled negative, in the opposite case,
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most of the examples are labeled positive. We measured the true-positive-rates and

false-positive-rates for various threshold values and we constructed ROC curves to use

them as performance evaluation metric. Additionally, in the original LTF implementa-

tion, authors prefer to use L-BFGS algorithm [51] which is a quasi-Newton method for

optimization. We reimplemented LTF by using Tensorflow [52] library which supplies

automatic differentiation and optimization tools. Because L-BFGS algorithm is not

available in Tensorflow, we prefered Stochastic Gradient Descent. For variational in-

ference, we set the shape and the mean parameters of Gamma distribution to 1. and 0.5

respectively. For Gibbs sampling these parameters were set to 0.3 and 0.5 respectively.

1000 samples with 200 burn-in samples were gathered for Gibbs sampling.

Figure 5.2. Area under the ROC curve comparison for training set.

We did not evaluate Gibbs sampling for training set because the samples for

latent sources S are used to estimate the masked X values and these samples compose

exactly the unmasked X values.
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Figure 5.3. Area under the ROC curve comparison for test set.

Both Parafac and Tucker SCPF models are superior to LTF in training set eval-

uation. In testing phase, performances of SCPF models are better than or equal to

LTF’s, except the Gibbs sampling with rank 8.

In order to examine the interpretability of latent features, we visualized them.

In Figure 5.4, entity latent features that are estimated with Parafac SCPF(EM)are

visualized and the large values are represented by dark colors. Just by looking at these

features, some similarities between countries can be detected e.g. USA and UK. Beside

of latent features, we also visualized latent features for some of the relations in Figure

5.5.

In SCPF, latent feature values are all non-negative and their additive combina-

tions generate the observations. This enables us to associate the nation feature vector

indices with some global characteristics. For example, the first and the last subject

vector indices are directly proportional to a nation’s potential of economic aid to other
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countries. Hence, these indices are somehow related to a nation’s economic power and

we can categorize USA, UK, and Netherlands as prosperous countries.

Figure 5.4. Entity latent features that are estimated with Parafac SCPF(EM)

An interesting observation is that the ’Export books’ and the ’Economic aid’

relations have similar representations. So one can arrive at a conclusion that a nation’s

economic power is directly proportional to its intellectual knowledge.

Figure 5.5. Relation latent feature examples that are estimated with Parafac

SCPF(EM)

The countries that let in immigrants are the ones that has a large value in the

second index of their object representation e.g. USA, UK, USSR, Netherlands. These
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countries are also the ones that the other countries are dependent on. They are also

popular with foreign students.

Most of the time, ’Military Allience’ defines symmetrical relationship between

countries. So it has a more complicated feature representation when compared with

the other ones.

Figure 5.6. Expectations of entity latent features that are inferred with Parafac

SCPF(VI)

We also visualize the expectations of latent variables that are inferred with vari-

ational inference in Figure 5.6 and Figure 5.7. For the latent feature priors, we used

the same mean parameters 0.5, but different shape parameters 1. and 0.1 for items and

relations respectively. Keeping the scale parameters small, we reach sparse representa-

tions for relation latent features as it can be seen in Figure 5.7. Similar interpretations

that are made for the latent features in the maximum likelihood parameter estimation

case can be made here as well. This time interpretation is easier because of sparse

representations of relation latent features.
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Figure 5.7. Expectations of relation latent feature examples that are inferred with

Parafac SCPF(VI)

We compare the features that are estimated with Rescal-like SCPF and LTF.

Both models use global vector representations for items and matrix representations for

relations. Although it is too limited to approximate the original tensorized data, we

chose rank 2 for simplicty.

Figure 5.8. Entity latent features that are estimated with Rescal-like SCPF

Associating the economic power of nations with ’Economic Aid’ relation, we can

categorize USA, UK, and Netherlands as prosperous nations. Considering the repre-

sentations of ’Economic Aid’ and ’Dependent’ relations, it can be stated that Poland,

Jordan, Indonesia, Cuba, Egypt, and Burma need the economic aid of prosperous coun-
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tries. Prosperous countries are also prone to accept immigrants and foreign students.

Figure 5.9. Relation latent feature examples that are estimated with Rescal-like

SCPF

In Figure 5.10 and Figure 5.11, we visualize the features that are estimated with

LTF. This time, features can take the negative values and the small values are repre-

sented by light colors.

Figure 5.10. Entity latent features that are estimated with LTF
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The latent features that are estimated with LTF are more complicated and harder

to interpret. The latent feature visualizations reveal the superiority of moment param-

eterization to canonical parameterization in terms of interpretability.

Figure 5.11. Relation latent feature examples that are estimated with LTF

5.2. UMLS Dataset

UMLS dataset [53] is a biomedical ontology dataset with 135 entities and 49

relations. 6752 triples are known facts and this refers to almost 0.75% of all possible

triples.

Figure 5.12. Visualization of clipped UMLS dataset.
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In Figure 5.12, we visualized UMLS dataset with a 135× (135× 5) dimensional

matrix by selecting 5 relations for easiness in visualization and black cells in the matrix

refer to known triples.

Figure 5.13. Area under the ROC curve comparison for training set.

Implementation details for UMLS dataset is same with the implementation for

Nation dataset. Differently, latent ranks are specified as 8,16, and 24. Because Gibbs

sampling implementation is computationally time consuming, we did not apply Gibbs

sampling, instead we used variational inference for Bayesian inference.

In Figure 5.13 and Figure 5.14, we compared the performances of models with

the metric of area under the ROC curve for training and test sets respectively. SCPF

models perform better than LTF both in training and test sets. For higher order ranks,

number of parameters that need to be estimated increases and the dimensionality of

the space that we work on increases as well. In this high dimensional space, number of
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local optimum points is higher and it complicates the objective of finding local optimum

that is close to global optimum. Considering the inconsistency in performance of LTF,

we can state that LTF starts to get stuck in local minima of loss function space which

are not close to global optimum points. On the other hand, our models do not encounter

such a problem and deliver consistent results by outperforming LTF.

Figure 5.14. Area under the ROC curve comparison for test set.

5.3. Kinship Dataset

This dataset [54] includes kinship relations within the Alwayarra tribe with 104

entities and 26 relations. For easiness in visualization, we selected 5 relations and

marked the known triples with the black color on 104×(104×5) dimensional matrix in

Figure 5.15. By keeping the implementation procedures same, we tested SCPF models

and LTF on Kinship dataset except Gibbs sampling.
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Figure 5.15. Visualization of clipped Kinship dataset.

Unfortunately, Tucker SCPF do not converge, so it is not involved in the results

section. As it can be seen in Figure 5.17 and Figure 5.16, SCPF outperforms LTF on

both training and test sets for all ranks.

Figure 5.16. Area under the ROC curve comparison for training set.

Although the results are getting better as we increase the rank during the training

phase, the same observation cannot be made for the test set. Hence, we observe

overfittings as we increase the ranks.
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Figure 5.17. Area under the ROC curve comparison for test set.
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6. CONCLUSION

In this thesis, we presented Parafac and Rescal-like tensor decompositions for

Sum Conditioned Poisson Factorization with the aim of link prediction in knowledge

graphs. Sum Conditioned Poisson Factorization is presented as a better alternative to

Generalized Linear Model based tensor factorizations. In order to evaluate the pre-

dictive power of Sum Conditioned Poisson Factorization, we tested its performance on

standard knowledge graph datasets. For comparison, we chose Logistic Tensor Factor-

ization which is a state of the art Generalized Linear Model developed for knowledge

graph link prediction problem, specifically.

We presented maximum likelihood parameter estimation for both Parafac and

Rescal-like Sum Conditioned Poisson Factorizations with Expectation Maximization

algorithm. Additionally, we introduced Bayesian inference for Parafac SCPF with

variational inference and Gibbs sampling.

The experiments on standard datasets(Nation,UMLS,Kinship) revealed that Sum

Conditioned Poisson Factorization is superior to Logistic Tensor Factorization, in terms

of prediction performance. Moreover, we showed the effect of the parameterization

choice on interpretability of latent variables, by visualizing the estimated/inferred la-

tent variables. SCPF models estimated/inferred highly interpretable and meaningful

latent feature representations for entites and relations.

The estimated latent feature representations can be used to solve the other knowl-

edge graph related problems such as clustering and entity resolution. Clustering refers

to grouping the entities or the relations that have the similar features. The entity

resolution is detecting the entities which are named differently but refer to the same

item. Furthermore, interpretability of latent features enable us to analyze in what way

entities or relations are similar. We made such an analysis on the Nation dataset by

grouping the countries and the relations according to their features.
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APPENDIX A: SUM CONDITIONED POISSON

VARIABLES

The idea of SCPF is based on conditioning the summation of Poisson random

variables to a fixed value. In this thesis, we specifically interested in Knowledge Graph

problem, so we fixed the summation to 1. To handle the property, we introduce two

Poisson random variables x1 and x2 such that

x1 ∼ Po(x1;λ1) = exp(−λ1)
λx11
x1!

x2 ∼ Po(x2;λ2) = exp(−λ2)
λx22
x2!

y = x1 + x2 = 1

We evaluate the probability of y

p(y = 1) = p(x1 = 1)p(x2 = 0) + p(x1 = 0)p(x2 = 1)

= λ1exp(−λ1)exp(−λ2) + λ2exp(−λ1)exp(−λ2)

= (λ1 + λ2)exp(−λ1 − λ2)

Conditioned on y = 1, we find the probability of x1 = 1

p(x1 = 1|y = 1) =
p(x1 = 1, y = 1)

p(y = 1)
=

λ1
λ1 + λ2

Similarly we find the conditional probability p(x2 = 1|y = 1)

p(x2 = 1|y = 1) =
p(x2 = 1, y = 1)

p(y = 1)
=

λ2
λ1 + λ2
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By looking at these probabilities, we see that sum 1 conditioned Poisson variables are

actually Bernoulli variables as the followings

p(x1 = 1|y = 1) = Ber

(
x1;

λ1
λ1 + λ2

)
p(x2 = 1|y = 1) = Ber

(
x2;

λ2
λ1 + λ2

)
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APPENDIX B: EM FOR PARAFAC DECOMPOSITION

EM algorithm for Parafac Decomposition is explained in Chapter 3, but some

details have been left to Appendix.

log p(S|N,X,W,H,G) =
∑
l,i,j,k

[
log δ

(
nijk −

∑
l

xl,ijk

)
+ log δ

(
xl,ijk −

∑
r

sl,ijkr

)

+
∑
r

logPO (sl,ijkr;wl,irhl,jrgl,kr)

]
−
∑
l,i,j,k

mijk logPO
(
xl,ijk;

∑
r

wl,irhl,jrgl,kr

)
−
∑
i,j,k

(1−mijk) logPO
(
nijk;

∑
l

∑
r

wl,irhl,jrgl,kr

)
=
∑
l,i,j,k

[
log δ

(
nijk −

∑
l

xl,ijk

)
+ log δ

(
xl,ijk −

∑
r

sl,ijkr

)

+
∑
r

mijk logPO (sl,ijkr;wl,irhl,jrgl,kr)

−mijk logPO

(
xl,ijk;

∑
r

wl,irhl,jrgl,kr

)]

+
∑
i,j,k

(∑
l,r

[(1−mijk) logPO (sl,ijkr;wl,irhl,jrgl,kr)]

− logPO

(
nijk; (1−mijk)

∑
l,r

wl,irhl,jrgl,kr

))

=
∑
l,i,j,k

mijk

[∑
r

(
slijkr log

wl,irhl,jrgl,kr∑
r

wl,irhl,jrgl,kr
− log Γ(slijkr + 1)

)

+ log Γ(xl,ijk + 1)

]
+ log δ

(
xl,ijk −

∑
r

sl,ijkr

)

+ log δ

(
nijk −

∑
l

xl,ijk

)

+
∑
i,j,k

[
(1−mijk)

∑
l,r

slijkr log
wlirhljrglkr∑
r

wlirhljrglkr
+ log Γ(nijk + 1)

]
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log p(S|N,X,W,H,G) =
∑
l,i,j,k

mijk logM(sl,ijk:;xl,ijk, pl,ijk:)

+
∑
i,j,k

(1−mijk) logM(s:,ijk:;nijk, q:,ijk:)

where pl,ijkr =
wl,irhl,jrgl,kr∑
r
wl,irhl,jrgl,kr

and ql,ijkr =
wl,irhl,jrgl,kr∑

l,r
wl,irhl,jrgl,kr

.
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APPENDIX C: VARIATIONAL BAYES FOR PARAFAC

DECOMPOSITION

Joint distribution needs to be evaluated for Variational Bayes

log p(N,X, S,W,H,G) = log p(N |X) + log p(X|S) + log p(S|W,H,G)

+ log p(W ) + log p(H) + log p(G)

=
∑
i,j,k

[
mijk

(
log δ

(
nijk −

∑
l

xlijk

)

+
∑
l

log δ

(
xlijk −

∑
r

slijkr

))

+ (1−mijk) log δ

(
nijk −

∑
l,r

slijkr

)]

+
∑
l,i,j,k,r

−wlirhljrglkr + slijkr log(wlirhljrglkr)− log Γ(slijkr + 1)

+
∑
l,i,r

(awl − 1) logwlir −
awl
bwl
wlir − log Γ(awl )− awl log(bwl /a

w
l )

+
∑
l,j,r

(ahl − 1) log hljr −
ahl
bhl
hljr − log Γ(ahl )− ahl log(bhl /a

h
l )

+
∑
l,k,r

(agl − 1) log glkr −
agl
bgl
glkr − log Γ(agl )− a

g
l log(bgl /a

g
l )

Fixed point iterations for w is supplied in Chapter 4. By symmetry, derivations for h

and g is supplied.

αhljr = ahl +
∑
i,k

〈slijkr〉 βhljr =

(
ahl
bhl

+
∑
i,k

〈wlir〉 〈glkr〉

)−1
exp(〈log hljr〉 = exp(Ψ(αhljr))β

h
ljr 〈hljr〉 = αhljrβ

h
ljr
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αglkr = agl +
∑
i,j

〈slijkr〉 βglkr =

(
agl
bgl

+
∑
i,j

〈wlir〉 〈hljr〉

)−1
exp(〈log glkr〉 = exp(Ψ(αglkr))β

g
lkr 〈glkr〉 = αglkrβ

g
lkr
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APPENDIX D: GIBBS SAMPLING FOR PARAFAC

DECOMPOSITION

Full conditional distribution for H is given

log p(hljr|W,H−hljr , G, S,X,N) ∝ log p(hljr) + log p(sl:j:r|wl:r, hljr, gl:r)

= log p(hljr) +
∑
i,k

log p(slijkr|wlir, hljr, glkr)

= log G(hljr; a
h, bh/ah)

+
∑
i,k

logPO(slijkr|wlirhljrglkr)

= (ah − 1) log hljr − hljr(ah/bh)− log Γ(ah)

+ah log(bh/ah) +
∑
i,k

(−hljrwlirglkr

+slijkr log(wlirhljrglkr)− slijkr!)

∝ (ah +
∑
i,k

slijkr − 1) log hljr

−hljr(ah/bh +
∑
i,k

wlirglkr)

log p(hljr|W,H−hljr , G, S,X,N) ∝ log G
(
hljr; a

h +
∑
i,k

slijkr,
(
ah/bh +

∑
i,k

wlirglkr
)−1)
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Similarly,

log p(glkr|W,H,G−glkr , S,X,N) ∝ log p(glkr) + log p(sl:j:r|wl:r, hl:r, glkr)

= log p(glkr) +
∑
i,j

log p(slijkr|wlir, hljr, glkr)

= log G(glkr; a
g, bg/ag)

+
∑
i,j

logPO(slijkr|wlirhljrglkr)

= (ag − 1) log glkr − glkr(ag/bg)− log Γ(ag)

+ag log(bg/ag) +
∑
i,j

(−glkrwlirhljr

+slijkr log(wlirhljrglkr)− slijkr!)

∝ (ag +
∑
i,j

slijkr − 1) log glkr

−glkr(ag/bg +
∑
i,j

wlirhljr)

log p(glkr|W,H,G−glkr , S,X,N) ∝ log G
(
glkr; a

g +
∑
i,j

slijkr,
(
ag/bg +

∑
i,j

wlirhljr
)−1)


