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ABSTRACT

COLLABORATIVE FILTERING AND CONTENT BASED

HYBRID MODELS FOR RECOMMENDING SCIENTIFIC

ARTICLES

Recommendation systems (RS) are programs that assist users in accessing infor-

mation in vast amount of data collections. In this thesis, we investigate hybrid models

that use both implicit ratings such as tags, bookmarks or impressions, and content in-

formation such as user’s profile or item properties. In the literature, recommendation

approaches that use such information are known as collaborative filtering (CF) and

content-based methods, respectively. As computation methodology we investigate and

compare two techniques, one is based on matrix decomposition and the other one is

based on deep learning. As a matrix decomposition based approach, we investigate

Bayesian nonnegative matrix factorization (BNMF), that we enhance using side infor-

mation, the titles and abstracts of scientific articles, besides the implicit rating matrix.

As a deep learning method, we explore collaborative deep learning (CDL), which uses

probabilistic matrix factorization as CF method and Bayesian stacked denoising au-

toencoder (SDAE) as content feature extraction. We apply these techniques in our

experiments to a CiteULike dataset with a rating density of 0.22%. Our experimen-

tal results show that CDL is more effective than coupled BNMF on this dataset. In

our opinion, CDL performs better due to its Bayesian SDAE component which has

nonlinear and deep structure.
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ÖZET

BİLİMSEL MAKALE ÖNERİSİ İÇİN İŞBİRLİKÇİ

FİLTRELEME VE İÇERİK TABANLI HİBRİT MODELLER

Öneri sistemleri (RS), kullanıcıların, çok sayıda veri koleksiyonu içerisinden bil-

giye erişmelerine yardımcı olan programlardır. Bu tezde, etiketler, yer imleri veya izlen-

imler gibi örtük derecelendirmeleri ve kullanıcının profili veya öğe özellikleri gibi içerik

bilgilerini kullanan hibrit modelleri araştırıyoruz. Literatürde, bu tür bilgileri kullanan

öneri yaklaşımları, sırasıyla işbirlikçi filtreleme (CF) ve içerik tabanlı yöntemler olarak

bilinmektedir. Hesaplama metodolojisi olarak biri matris ayrıştırmasına, diğeri ise de-

rin öğrenmeye dayanan iki tekniği karşılatırıyoruz. Matris ayrıştırma temelli yaklaşım

olarak, örtük derecelendirme matrisinin yanı sıra, bilimsel makalelerin başlıklarını ve

özetlerini yan bilgi olarak kullanan Bayesci negatif olmayan matris faktörizasyonu

(BNMF) yöntemini araştırıyoruz. Derin öğrenme metodu kapsamında CF yöntemi

olarak olasılıksal matris faktörizasyonunu ve içerik tabanlı özellik çıkarımı olarak isti-

flenmiş gürültü giderici otokodlayıcılarına (SDAE) Bayesci yaklaşımı kullanan işbirlikçi

derin öğrenme (CDL) yöntemini araştırıyoruz. Deneylerimizde bu teknikleri % 0.22’lik

derecelendirme yoğunluğuna sahip bir CiteULike veri kümesine uyguluyoruz. Deney-

sel sonuçlarımız, CDL’nin bu veri setinde bağlaşık BNMF’den daha etkili olduğunu

göstermektedir. Bizim görüşümüzce, CDL, doğrusal olmayan ve derin bir yapıya sahip

olan Bayesci SDAE bileşeni nedeniyle daha iyi performans göstermektedir.
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1. INTRODUCTION

The growth in accessibility and wide adoptation of Internet services and online

markets led to a rapid expansion in the number of products and the amount of infor-

mation available to users. As a side effect of this expansion, the difficulty of access

to the effective products and useful information that address the needs of users grows.

The available collections of consumable data and products have reached such levels

that it is practically impossible that a user will be able to even browse through a tiny

fraction of available items. For example, there are over 35 million songs and over 2

billion playlists in Spotify and over 20.000 new songs are added daily [8,9]. We cannot

expect a single user to listen to all new music to pick the ones that she would like. In

another case, Netflix has nearly 15,400 titles across the globe [10]. So, users would like

to be informed about movies that they may like to watch instead of browsing the whole

content. Therefore, the relevant information based on the user’s preferences should be

acquired according to the task at hand or to the need of the users. Recommendation

systems are tools that suggest specific items like academic papers, movies, news, music,

books and any other products that users aim to access or users would be interested

even they have no previous knowledge about [11]. Recommendation systems (RS) are

being developed in order to assist people with relevant and useful information in lo-

cating products that they need. With the help of RS, the users benefit from avoiding

excessive search time. Also, many times users do not have enough experience in the

task they need. So that, they may have difficulties in evaluating the items among many

alternatives. These users may also benefit from these systems considerably.

1.1. Related Work

The fundamental structure of an RS can be formalized by a relation R, where

R(i, j) denotes the relation between user i and item j. In the collaborative filtering

approach, which is explained below, R corresponds to the rating which user i gives to

item j. In this approach the task is estimating the values R∗(i, j) which converges to

missing values R(i, j) [12]. An example of such a rating matrix is given in Figure 1.1.
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Since users cannot review even a tiny proportion of all items, R mostly tends to be

sparse.

Figure 1.1. An example of rating matrix representation

RS emerged around the middle of 1990’s as a separate research task. The re-

search in the subject gained momentum with Netflix’s awarded competition and with

conferences and workshops dedicated to this subject [12]. In the literature, RS are

categorized according to the knowledge they utilize [12, 13].

(i) Collaborative filtering (CF) methods use explicit information such as direct rat-

ings of users for the items [1, 14]. The main idea behind this approach is that if

a user has similar preferences to another user, it means that they have similar

taste and recommendations should be made accordingly.

(ii) Neighborhood methods aim to find the nearest neighbors according to a dedicated

similarity measure between the items or the users or both. Some of the latent

factor techniques in RS can be viewed under this method [12].

(iii) Content-based methods use implicit information like user profiles and product

descriptions [12, 15]. These methods focus on the similarity of items and make

suggestions according to the user’s previous preferences and suggest similar items.
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(iv) Demographic RS use user’s demographic profile, like language, country, age or

any other related information.

(v) Knowledge-based RS approach is based on the domain knowledge, and they are

case-based, that is they utilize the specific item features. They check which user

preferences are met with the items.

(vi) In community-based systems, the suggestions are made according to the user’s

friends’ preferences assuming close friends share similar taste.

(vii) On the other hand, hybrid models merge different techniques to get the advantage

of each method [6,7, 16].

Various machine learning methods are used in recommendation systems. Some

approaches use restricted Boltzmann machines or recurrent neural networks instead

of latent factor analysis [3, 17, 18]. They do not use content information. Some hy-

brid studies for music recommendation use recurrent neural networks and deep belief

networks with bag-of-words for content representation [19, 20]. These models are de-

terministic and do not state noise factor, therefore they are not very robust.

There seems to be no consensus about the best approach for recommendation

systems in general. The context, density, quality and characteristics of the gathered

data and the goal or the task of the system can affect the best approach to the particular

dataset [21]. In addition to that, the evaluation of the system should be made according

to the task at hand. Evaluation metrics used to evaluate the performance of the system

should differ depending on the objectives.

1.2. Data Types

There are various data types utilized in recommendation systems. One kind of

data is explicit feedback such as user-item ratings, i.e. direct opinion of the user on

the item. The other kind of data is implicit feedback such as the items that purchased

by the user, the clicks on a specific web page or songs listened. Implicit feedback does

not explicitly provide direct satisfaction ratings from the users [12]. Generally implicit

feedback data may be much more dense; however, it provides indirect and low-quality
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information. On the other hand, explicit feedback provides more relevant information

about the preferences of the users. However, it is much more difficult to obtain, so that

it is mostly very sparse.

1.3. Evaluation

Evaluating the quality and value of the system is not a straightforward task in

the context of RS. Hence, evaluation methodologies used for this purpose is another

research topic widely studied within this area. These systems’ outputs are not suitable

for comparing ground truths with the predicted outcomes most of the time. How rele-

vant a prediction to the aim of the system may differ significantly. Evaluating a system

for novelty of recommendations would require using different evaluation mechanisms

compared to evaluating the same system for its utility to an end user. Choosing the

relevant evaluation metric is crucial for performance measurement. Generally, evalua-

tion metrics are classified in [22] as (i) prediction metrics, e.g. Mean Absolute Error,

Root of Mean Square Error, Normalized Mean Average Error; (ii) set recommenda-

tion metrics, e.g. Precision, Recall and Receiver Operating Characteristic; (iii) rank

recommendation metrics, e.g. the half-life and the discounted cumulative gain; and

(iv) diversity metrics, e.g. the diversity and the novelty of the recommended items.

We used recall metric in our study, because the density of the bookmarked articles is

very low. The details are explained in Chapter 4.

1.4. Challenges

There are various challenges in recommendation systems. Often the data acquired

for the recommendation system is very sparse. That is there are very few explicit data

with respect to the user and item number. A commercial recommendation system

may have millions of customers and millions of items but explicit ratings from users

may only be available for a tiny fraction of the items. Therefore, the proposed models

should handle large but sparse data. The other problem is the rapid addition of new

users or new items to the existing system. So, scalability is another challenge in recom-

mendation systems, where the proposed methodology should handle rapidly growing
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and sparse data [23].

One of the main challenges in RS is the recommendation of a new added item or

recommendation for a new user entered the system. This is the so-called ’cold-start’

problem. Since the new item in the system does not yet have any ratings, it will not

be recommended and will be out of reach. One possible solution is using additional

data related to the items. The other possible solution is to use some motivated users

to rate each new item. The new user problem is a more challenging problem since the

system does not have any preference information about the user [22]. Hybrid models

are often used to overcome the cold-start problem by merging different techniques, i.e.

different source of information. For example, using item content information beside

rating values is a hybrid method as we stated in this thesis.

Collaborative filtering methods are the most popular techniques in RS. However,

they are sensitive to the sparsity level and the balance of a dataset. CF methods cannot

make effective recommendations in sparse settings [22]. In addition, they suffer deeply

when a new item or a new user is added to the system because of the dependency

on explicit data. On the other hand, content-based methods do not rely on explicit

ratings for recommendation.

1.5. Contributions of Our Work

In this study, we focused on a subset of hybrid recommendation models. Coupled

Bayesian nonnegative matrix factorization (CBNMF) is a Bayesian nonnegative matrix

factorization technique which utilizes both rating and content data as a coupled matrix.

Collaborative topic regression (CTR) is a hybrid model, which consists of probabilistic

matrix factorization on the CF approach, and Latent Dirichlet Allocation (LDA) for

topic modelling (i.e. inferring topical categories of the content). Collaborative deep

learning (CDL) is similar to CTR but uses stacked denoising autoencoder for content

modeling instead of LDA. Some details of our study are as follows:
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(i) Our main contribution is to apply Bayesian nonnegative matrix factorization

method as a hybrid recommendation system. Collaborative filtering and content-

based approach are applied as coupling the rating matrix and the content matrix.

We compared our proposed method with a state-of-art hybrid method, collabo-

rative deep learning.

(ii) We used implicit user-item preferences. We only know whether a user has chosen

a specific item. The lack of information may indicate a seen but not preferred

item or not-seen item. The rating matrix R is a binary matrix, where 1 indicates

a user’s preference. 0 stands for either a seen, but not preferred item or not seen

item.

(iii) For content representation, we used the bag-of-words representation with normal-

ized term frequency-inverse document frequency (TF-IDF) values. TF-IDF is a

measure used in natural language processing for indicating how a word is impor-

tant or relevant to a document in a corpus [4]. It is the product of the word’s

frequency in the document and inverse logarithm of the ratio between the number

of documents in the corpus and the number of documents the word appears.

(iv) We compared the methods, coupled Bayesian nonnegative matrix factorization

and collaborative deep learning, at two different settings which are sparse and

dense settings. In the sparse setting, the training set contains one item for each

user. In the dense setting, the training set contains ten items for each user. The

test set is all the remaining ratings of the users. For each setting five different

training-test sets are used.

(v) We used Recall@300 values of the recommended items as the evaluation metric. It

is the ratio between successful recommendations of the top 300 recommendation

of the system and all the items that users have chosen in the test set.

The rest of this thesis is organized as follows: In Chapter 2, we introduce and

provide an overview of the related subjects under the scope of this thesis. The sub-

jects include knowledge characteristics of this problem, notation for the rest of this

document, related collaborative filtering methods, approaches related to the content

representation and content models, and an overview of the approaches used for evaluat-
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ing RS. In Chapter 3, we explain three hybrid models which are based on collaborative

filtering and content-based methods. These are coupled Bayesian nonnegative matrix

factorization, collaborative topic regression and collaborative deep learning methods.

In this thesis, we mainly focus on coupled Bayesian nonnegative matrix factorization

and collaborative deep learning as to introduce CBNMF and compare it with a state of

the art method, CDL. Collaborative topic regression is the main model that collabora-

tive deep learning method is based on. Chapter 4 provides the details and the results

of our experiments. Finally, in Chapter 5, we discuss and conclude our work and offer

future directions for our study.
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2. BACKGROUND

In this section, we outlined some concepts and methodologies that are addressed

in our work. Feedback types and the notation used in our work are explained as well

as some commonly used methods. As we introduce each method, we explain both

the method itself and commonly used inference techniques for that method in the

same subsection. We briefly reviewed some evaluation approaches in recommendation

systems at the last section.

2.1. Explicit vs Implicit Feedback in Recommendation Systems

The data used in recommendation systems are the interaction of the users with

the system provided. The data can be any kind of information related to a user and

a particular item, such as given ratings, purchases, mouse clicks, repeated usage. In

general, the data is categorized as explicit feedback and implicit feedback according to

the quality of the information [12].

Explicit data reflect the direct preferences of users on a particular item [12]. A

recommendation system inquires the user about the preference on the specified item.

The rating may be in the discrete scale of [1-5] as in former Netflix rating system, or of

[1-10] as in IMDB on a movie in these cases, or may be binary as in Netflix new rating

system or as in [24] on news stories. The binary rating indicates whether the user likes

the item or not, or the item is relevant or not.

Implicit feedback is user’s behavior on the recommendation system. Implicit feed-

back is the actions of the user in the system like mouse clicks, bookmarking, saving,

watching a whole video, movie rental history, search history, and any other activity.

User’s opinion is not directly available, however, user’s preference can be inferred ac-

cording to her/his actions [12].
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Explicit feedback allows to infer more reliable information on the users’ prefer-

ences, however, it can be considered as costly. It requires encouraging users to rate

items in the recommendation system. On the other hand, implicit feedback is available

by navigating and using the system. Users do not have to do additional task other than

using the system. Some recommendation systems use explicit feedback as a primary

source and implicit feedback as supportive data [12]. Our work focuses on the implicit

feedback of the users in a scientific article platform, which we will give the details in

Section 4.1.

2.2. Notation

Even though we give details of the notation in each subsection, the following

notation is common throughout this thesis.

The IxJ matrix R denotes the rating matrix of I users and J items. That is rij is

the rating of user i for the item j. The IxK matrix U states for the user latent feature

matrix and KxJ matrix V states the item latent feature matrix. The row vector ui

and column vector vj represent latent feature vectors of user i and item j throughout

the dataset respectively. IxS matrix, X, denotes content representation. I. are identity

matrices with dimensions stated in subscripts, such as IJ , IK , which are JxJ and KxK

identity matrices.

The hyperparameters symbolized with λ, like λu, λv etc, denote precision param-

eters for Gaussian distributions. The matrix, W, and the vector, b, are weight matrix

and bias vector respectively. The parameter denoted by Cij, is the confidence parame-

ter for user i and item j, where Ci is JxJ diagonal matrix, where diagonal values are

item rating confidence values for user i.

2.3. Collaborative Filtering for Recommendation Systems (CF)

Collaborative filtering methods mostly use explicit feedback which is the direct

opinion of the user on an item [12]. The main idea behind this approach is that users
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that have a similar preference will prefer alike items. Similarity can be measured ac-

cording to their preference history [23]. A user will give a similar rating to an item with

another user if they gave similar ratings for some other items in the recommendation

system [12].

Su and Khoshgoftaar categorize collaborative filtering methods in two categories

in their survey on CF. These are memory based and model based CF methods. The

most common method in memory based CF methods is neighbor-based collaborative

filtering method. Neighborhood approach is interested in the relationships between

items or users. It is based on the idea that there are users with similar preferences or

items in similar categories. The similarity measure is the main component in memory

based CF methods. Two commonly used similarity measures are the correlation-based

similarity and vector cosine based similarity [23]. Selecting top-N recommendations

according to k most similar users or items are two tasks in this approach. Since our

focus is more on model-based CF methods, we will not go into detail on memory-based

methods.

Usage of Bayesian belief nets, clustering, latent semantic, sparse factor analysis,

dimensionality reduction techniques such as singular value decomposition and prin-

cipal component analysis in collaborative filtering are examples of model-based CF

techniques [23].

Matrix factorization for recommendation systems is categorized as a latent factor

model in collaborative filtering methods [11]. Latent factor models extract same latent

factors from users and items, which can explain the observed explicit feedback, that is

ratings [11].

Explicit feedback in collaborative filtering methods is a high-quality information

on preferences, though it generally provides sparse information. Nevertheless, implicit

feedback or temporal data can also be used besides the explicit data [12].
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2.3.1. Matrix Factorization

As mentioned above, matrix factorization is an efficient and reliable method for

recommendation systems with explicit feedback [11]. In this method, the rating matrix

R is factorized as the product of user-feature matrix U and item-feature matrix V as

shown in Figure 2.1. The rating of user i for the item j is the product of the K-length

row vector ui and column vector vj, which are the K feature weights corresponding

to user i and item j respectively. This model is highly related with singular value de-

composition (SVD), a well-known matrix factorization method. However, conventional

SVD is defined on the complete matrices. The rating matrices are generally highly

sparse matrices. Therefore, while computing the feature matrices, only the known en-

tries are taken into consideration [12]. The objective is to minimize the regularized

squared error given in Equation 2.1. Regularization is required to avoid overfitting.

The error is computed over the observed ratings. α is the regularization term and

determined via cross training.

min
u,v

∑
(u,v)∈K

(ri,j − uivj)2 + α(‖ui‖2 − ‖vj‖2) (2.1)

Figure 2.1. Matrix factorization: Coloured circles represents the extracted features

that may explain the observed ratings.
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2.3.2. Learning

Stochastic gradient descend and alternating least squares methods are two fre-

quent used methods for learning the latent factors [11].

2.3.2.1. Stochastic Gradient Descent(SGD). In stochastic gradient descent learning

method, the gradient of the objective function as stated in equation 2.1 is used to

modify the values of the parameters in iteration. The parameters are updated in the

opposite direction of the gradient. The update is done for each rating in the training

set [11]. The error and update equations are given in equations 2.2 where γ is the

learning rate. Learning rate determines how the gradient will effect the update amount.

eij = rij − uivj

ut+1
i = uti + γ(eijvj − αui)

vt+1
j = vtj + γ(eijui − αvj)

(2.2)

2.3.2.2. Alternating Least Squares(ALS). Another method to compute the parame-

ters is to fix U and solve the system for V, and then fix V and solve for U. Iterating

between U and V allows objective to converge. Alternating least squares is generally

favorable when parallel computing is possible and when implicit data is used. When

the data is not sparse SGD may be not practical. The update equations for ALS are

as follows:

V = (UTU)−1UTR

U = RVT (VTV)−1
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2.3.3. Probabilistic Matrix Factorization (PMF)

Probabilistic matrix factorization (PMF) is a latent factor collaborative filtering

method [1]. The aim is to handle large and imbalanced datasets effectively. The model

adds Gaussian observation noise to matrix factorization model.

The conditional distribution is defined as follows:

p(R|U, V, λ) =
I∏

i=1

J∏
j=1

[
N (rij|uivj, λ−1)

]mij

User and item feature vectors have zero mean Gaussian priors. The generative process

of PMF is as follows:

(i) Draw K-length user latent row vector ui for user i:

ui ∼ N (0, λ−1u IK)

(ii) Draw K-length item latent column vector vj for item j:

vj ∼ N (0, λ−1v IK)

(iii) Draw rating values of user i and item j pair:

rij ∼ N (uivj, λ
−1)

The matrix denoted by IK is KxK identity matrix. The precision hyperparameters are

symbolized with λu, λv and λ. The Gaussian probability distribution function, with

mean µ and precision λ is depicted as N (x;µ, λ−1). The graphical model of PMF is

shown in Figure 2.2.

The logarithm of the posterior distribution is as follows:

ln p(U, V |R, λ, λu, λv) = −λ
2

I∑
i=1

J∑
j=1

mij(rij − uivj)2 −
λu
2

I∑
i=1

uTi ui −
λv
2

J∑
j=1

vjv
T
j

+
1

2

((
I∑

i=1

J∑
j=1

mij

)
lnλ+ IK lnλu + JK lnλv

)
+ C

(2.3)
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The precision hyperparameters are assumed to be fixed. Maximizing the log-posterior

is equivalent to minimizing the sum of squared-errors objective function with regular-

ization terms, as given:

E =
λ

2

I∑
i=1

J∑
j=1

mij(rij − uivj)2 +
λu
2

I∑
i=1

‖ui‖2Fro +
λv
2

J∑
j=1

‖vj‖2Fro

Maximizing the log posterior is equivalent to minimizing the given objective function,

and this can be done by gradient descent.

Figure 2.2. Graphical model of PMF [1] and representation of the matrices for

CiteUlike dataset. The colored circles on the U and V matrices represent for the

extracted features.

Salakhutdinov and Mnih also proposed Bayesian treatment for PMF [25]. Since

PMF requires regularization parameter tuning, full Bayesian approach allows to inte-

grate over all model parameters and hyperparameters. They also showed that training

can be done efficiently by MCMC methods on Netflix dataset.

2.3.4. Bayesian Nonnegative Matrix Factorization (BNMF)

In real life, most data are nonnegative. Factorizing a nonnegative matrix with

the nonnegativity constraint in the product matrices is called nonnegative matrix fac-
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torization [2, 26]. In addition to SGD and ALS techniques in matrix factorization,

multiplicative update algorithm can be used to obtain the product matrices. When

the matrices are initialized with positive values, the updates do not violate positiv-

ity [26].

In this case, Bayesian nonnegative matrix factorization is a Bayesian approach to

nonnegative matrix factorization [2]. The hierarchical model is as follows:

U ∼ p(U|Θu), V ∼ p(V|Θv),

si,k,j ∼ PO(si,k,j;ui,kvk,j), ri,j =
∑
k

si,k,j.

A schematic representation and the graphical model is given in Figures 2.3 and 2.4.

Figure 2.3. Graphical model of Bayesian nonnegative matrix factorization [2]

Cemgil showed that a fully Bayesian treatment can be implemented efficiently by varia-

tional Bayes or MCMC [2]. Computation of marginal likelihoods allows model selection
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in full Bayesian approach. The priors are chosen as Gamma distribution from the con-

jugate family of Poisson intensity.

ui,k ∼ G(ui,k; aui,k,
bui,k
aui,k

), vk,j ∼ G(vk,j; a
v
k,j,

bvk,j
avk,j

),

aui,k, bui,k, avk,j and bvk,j are shape and scale parameters for the Gamma distributions.

The objective is to minimize the Kullback-Leibler (KL) distance of R and UV.

(U,V)∗ = arg min
U,V >0

D(R||UV)

Missing values can also be taken into consideration via masking.

Figure 2.4. A schematic representation of Bayesian nonnegative matrix

factorization [2]
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2.3.4.1. Variational Bayes. The bound of the marginal log-likelihood for Variational

Bayes method is as follows: [2]

LR(Θ) ≡ log p(R|Θ) >
∑
S

∫
d(U, V )q log

p(R, S, U, V |Θ)

q

= 〈log p(R, S, U, V |Θ)〉q +H[q] ≡ BV B[q]

q is the instrumental distribution. It is defined as a factorised form in order to make

it tractable:

q(S, U, V ) = q(S)q(U)q(V )

=

(∏
i,j

q(si,1:K,j)

)(∏
i,k

q(ui,k)

)(∏
k,j

q(vk,j)

)
≡
∏
α∈C

qα

α ∈ C = {{S}, {U}, {V }} is the set of disjoint clusters. As stated in [2], although a

perfect q distribution is not available in closed form, a local optimum can be reached

by the following fixed point iterations:

q(S)(n+1) ∝ exp(〈log p(R, S, U, V |Θ)〉q(U)nq(V )n)

q(U)(n+1) ∝ exp(〈log p(R, S, U, V |Θ)〉q(V )nq(S)n)

q(V )(n+1) ∝ exp(〈log p(R, S, U, V |Θ)〉q(U)nq(S)n)

For each iteration, B[q(n)] ≤ B[q(n+1)] for n = 1, 2, ... given q(0) as initialization.

The update equations with sufficient statistics are given below. The details are

given in [2].

q(si,1:K,j) ∝M(si,1,j, ..., si,k,j, ..., si,K,j; ri,j, pi,1,j, ..., pi,k,j, ..., pi,K,j)

pi,k,j =
exp(〈log ui,k〉+ 〈log vk,j〉)∑
k exp(〈log ui,k〉+ 〈log vk,j〉)

,

〈si,k,j〉 = ri,jpi,k,j
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q(ui,k) ∝ G(ui,k;αu
i,k, β

u
i,k),

αu
i,k ≡ aui,k +

∑
j

〈si,k,j〉, βu
i,k ≡

(
aui,k
bui,k

+
∑
j

〈vk,j〉

)−1
,

exp(〈log ui,k〉) = exp(Ψ(αu
i,k))βu

i,k,

〈ui,k〉 = αu
i,kβ

u
i,k

q(vk,j) ∝ G(vk,j;α
v
k,j, β

v
k,j),

αv
k,j ≡ avk,j +

∑
i

〈si,k,j〉, βv
k,j ≡

(
avk,j
bvk,j

+
∑
i

〈ui,k〉

)−1
,

exp(〈log vk,j〉) = exp(Ψ(αv
k,j))β

v
k,j,

〈vk,j〉 = αv
k,jβ

v
k,j

The matrices with u and v in the subscript are RI×K
+ and RK×J

+ , respectively. El-

ementwise matrix multiplication and division are represented as .∗ and ./, respectively.

The algorithm derived for Variational Bayes for nonnegative matrix factorization is

given in Figure 2.5. The notation is as follows:

Eu = {〈ui,k〉} Lu = {exp(〈log ui,k〉)}),

Σu =

{∑
j

〈si,k,j〉

}
,

Au = {aui,k} Bu = {bui,k},

αu = {αu
i,k}, βu = {βu

i,k}

Ev = {〈vk,j〉} Lv = {exp(〈log vk,j〉)}),

Σv =

{∑
i

〈si,k,j〉

}
,

Av = {avk,j} Bv = {bvk,j},

αv = {αv
k,j}, βv = {βv

k,j}
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Initialise:

L
(0)
u = E

(0)
u ∼ G(.;Au, bu/Au), L

(0)
v = E

(0)
v ∼ G(.;Av, Bv/Av)

for n=1... to MAXITER do

Source sufficent statistics

Σ
(n)
u := L

(n−1)
u . ∗ (((X. ∗M)./(L

(n−1)
u L

(n−1)
v ))L

(n−1)T
v )

Σ
(n)
v := L

(n−1)
v . ∗ (L

(n−1)T
u ((X. ∗M)./(L

(n−1)
u L

(n−1)
v )))

Means

E
(n)
u := α

(n)
u .∗β(n)

u α
(n)
u = Au+Σ

(n)
u β(n)

u = 1./(Au./Bu+ME
(n−1)T
v )

E
(n)
v := α

(n)
v . ∗ β(n)

v α
(n)
v = Av + Σ

(n)
v β(n)

v = 1./(Av./Bv + E
(n)T

u M)

Compute Bound (Optional)

Means of Logs

L
(n)
u = exp(Ψ(α

(n)
u )). ∗ β(n)

u L
(n)
v = exp(Ψ(α

(n)
v )). ∗ β(n)

v

Update Hyperparameters (Optional)

end for

Figure 2.5. Variational Nonnegative Matrix Factorization Algorithm [2].

2.3.5. Restricted Boltzmann Machines for Collaborative Filtering (RBM)

Salakhutdinov, Mnih, and Hinton presented a model to use RBMs, a two-layer

undirected graphical model, as a tool for collaborative filtering, and they showed ef-

ficient learning and inference procedures for related models. They demonstrated this

model on Netflix data, where movies are rated in the range of 1-5 [3].

The graphical representation of the model is shown in Figure 2.6. In this model,

each user has an RBM with the movies they rated. The number of latent units is

fixed for all users, and the weights and biases are shared, that is all RBMs use the

same weights and biases between hidden units and the visible movie softmax unit. The

binary latent units and softmax values related to the rated movies for each user differ

for each RBM.

The conditional multinomial and conditional Bernoulli distribution of the ob-

served rating matrix and latent hidden units respectively are given in Equations 2.4
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and 2.5. V is a K x m binary indicator matrix, where K is the scale of the rating and

m is the number of movies the user rated. vki is 1, if the user rated movie i with a

rating of k, 0 otherwise. h is binary latent feature vector, W k
ij is the weight for movie

i, feature j and rating k, bki is the bias for movie i and rating k. F is the number of

hidden units.

p(vki |h) =
exp(bki +

∑F
j=1 hjW

k
ij)∑K

l=1 exp(bli +
∑F

j=1 hjW
l
ij)

(2.4)

p(hj = 1|V) = σ(bj +
m∑
i=1

K∑
k=1

vkiW
k
ij) (2.5)

The marginal distribution over V is as follows:

p(V) =
∑
h

exp(−E(V,h))∑
V′,h′ exp(−E(V′,h′))

(2.6)

E(V,h) is the energy term:

E(V,h) = −
m∑
i=1

F∑
j=1

K∑
k=1

W k
ijhjv

k
i +

m∑
i=1

logZi −
m∑
i=1

K∑
k=1

vki b
k
i −

F∑
j=1

hjbj

Here, Zi =
∑K

l=1 exp(bli +
∑

j hjW
l
ij) is the normalization term, which restricts

the condition
∑K

l=1 p(v
l
i = 1|h) = 1.

The proposed learning algorithm of this model is derived by gradient descent

in the log-likelihood of the marginal distribution on V to update weights and biases.

Gradient ascent parameter update can be derived from the marginal distribution given

in Equation 2.6. The derivation lead to the following update rule [3]:

OW k
ij = ε

∂ log p(V)

∂W k
ij

= ε(〈vki hj〉data − 〈vki hj〉model)
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Figure 2.6. RBM model for two users and five movies [3] The number of binary latent

nodes are the same but values are distinct for each user. The weights are the same

between the latent nodes and the corresponding movie. If a movie is rated for a user,

that weight is used. Different colors indicate different users.

〈vki hj〉model is the expectation according to the model distribution, model statistics,

and it cannot be calculated analytically less than exponential time. So, they used an

objective function called ”Contrastive Divergence” [27]. CD is the difference between

two Kullback-Leibler divergences with one missing term in the objective function [28].

OW k
ij = ε(〈vki hj〉data − 〈vki hj〉T )

〈vki hj〉T is the T th sample from Gibbs sampling, started from a data point. Model

samples drawn with Gibbs sampling are also called negative samples, where data points

are called positive samples. Instead of calculating expectation, a point estimate is

performed. The gradient of the log-likehood of the marginal distribution on V turns

out to be the difference between the actual data and the generated data from the
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model. In practice, it turns out that only one sample from Gibbs sampling is sufficient

for getting reasonable evaluations [3].

Variations of this model are also proposed. RBM’s with Gaussian hidden units,

where latent units are h are Gaussian variables. In Netflix dataset, the information

of the complete set of movies which the user rated is given in advance. The training

data contains the rating values of a subset of the rated movies, but not the rates of the

remaining movies. In conditional RBM, the authors make use of this advantage and

they define a joint distribution over V and h conditional on r. This is the usage of

conditional RBM’s on Netflix dataset. Conditional factored RBM’s are factorization

of W, in two low-rank matrices in order to reduce the number of free parameters. This

allows the model to converge much faster than the unfactorized conditional RBM.

2.4. Latent Dirichlet Allocation (LDA)

Latent Dirichlet allocation is a topic modeling technique where the topics of the

documents are learnt in an unsupervised approach. It is a generative model, mostly

used on text corpora for corpus exploration, document classification, and information

retrieval [4, 7]. It is a mixed-membership model for a collection of discrete data. A

document in the corpus is considered as related to different topics. Each topic has a

probability distribution on the vocabulary, and each word in a document comes from a

topic and considered as drawn from the vocabulary according to the topic’s distribution

on the vocabulary.

The generative model of LDA is as follows:

For each item j, draw words of the context as follows:

(i) Draw topic proportions for item j:

θj ∼ Dirichlet(α);
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(ii) For each word wjs:

(a) Draw topic assignment for the related word:

zjs ∼Mult(θj)

(b) Draw the word:

wjs ∼Mult(βzjs)

LDA is a hierarchical model, as shown in Figure: 2.7. In LDA, learned topic propor-

tion vector allows representing a document as a low dimensional topic vector. Topic

distribution stands for latent factors of the document.

Figure 2.7. Graphical model of LDA [4]

Model parameters can be estimated by variational EM as described in [4].

2.5. Autoencoders

Autoencoders are unsupervised learning approaches used to extract useful infor-

mation from data. For example, they can be used for pretraining data for a classifica-

tion task to increase performance. Traditionally, an encoder is a deterministic function,
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y = f(x), that maps x to y. An decoder is a deterministic function, z = g(y), that

maps y to z, where z is typically the mean of distribution that is considered to generate

x in high probability. [5]

If the dimension of y, d′, is less than the dimension of x, d, the autoencoder

is called an under-complete autoencoder. On the other hand, if d′ is greater than d,

it is an overcomplete autoencoder. In most cases, traditionally, an under-complete

autoencoder is used for dimension reduction [29].

Recently, encoders and decoders are generalized to stochastic mappings penc(y|x)

and pdec(x|y) rather than deterministic functions. The aim is to prevent learning

identity function and learn useful features for the task in hand [29].

The general form of an autoencoder is using an affirm transformation on the

data and adding nonlinearity. The reconstruction form is similar, applying an affine

transformation and adding nonlinearity.

y = f(x) = s(Wx + b) (2.7)

z = g(y) = s(W′y + b′) (2.8)

s(.) is a nonlinear function like a sigmoid or tanh. If the nonlinearity is not introduced

and loss function is squared loss error, the model would be principal component analysis

(PCA). [5]

2.5.1. Denoising Autoencoders (DAE)

Denoising autoencoders aim to reconstruct the original data from the noisy ver-

sion of the data. The idea is to extract useful features while reconstructing the input

from its corrupted version. A schematic representation is given in Figure 2.8. x−

denotes the corrupted version of x [5].
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Figure 2.8. Denoising Autoencoder [5]- L(x, z) is the associated loss function, which

is taken as proportional to the negative log-likelihood of the input, given the

representation, p(x|z).

y = f(x−) :f → encoder function

z = g(y) :g → decoder function

L(x, z) ∼ − log p(x|z)

In [5], three types of noise are introduced for input corruption. An isotropic Gaussian

noise can be added, x−|x ∼ N (x, σ2I). Second alternative, masking noise, is to set

randomly chosen elements of x to 0 with a given fraction γ. Lastly, salt-and-pepper

noise can be used. In this case, randomly chosen elements of x, again with a fraction

of γ, is set to maximum or minimum value according to a fair coin. For example, 0 or

1 [5].

The objective is to maximize the likelihood of reconstructing the input, given the

representation. The likelihood p(x|z), can be chosen according to the input: [5]

• If x ∈ Rd, that is X|z ∼ N (z, σ2I), L(x, z):

Objective function to minimize is L(x, z) ∼‖ x− z ‖2, which is the squared error

objective.

• If x is binary, x ∈ {0, 1}d, that is X|z ∼ B(z):

z should also be in [0, 1]d , so using a sigmoid function for activation is appropriate.

Cross-entrophy loss is the objective to minimize.
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L(x, z) = −
∑

j[xj log(zj) + (1− xj) log(1− zj)]

Other settings can also be used in autoencoders [5].

Geometric interpretation of DAEs is learning a lower dimensional nonlinear man-

ifold [5]. The corrupted values would be farther to the manifold and the stochastic

operator will learn to map them on the manifold.

2.5.2. Stacked Denoising Autoencoders (SDAE)

Stacked denoising autoencoders are deep structures, where denoising autoen-

coders are stacked one on another. The procedure is similar to other similar deep

structures like stacking RBMs in Deep Belief Networks [30]. The corrupted input is

used for training the first layer. For the second layer’s training, the input is given with-

out corruption and the corresponding representation for the first layer is corrupted for

the second layer training. And this is applied to as many layers as the structure is

designed. After each layer is trained, a finetuning is applied to whole network [5].

2.5.3. Probabilistic Stacked Denosing Autoencoder (PSDAE)

In probabilistic version of SDAE, the transformation is stochastic [6]. The trans-

formations given on equations 2.7 and 2.8 basically becomes as follows:

y|x− ∼ N (Wx− + b, λ−1w Ik)

z|y ∼ N (W′y + b′, λ−1w Id)

Ik and Id are identity matrices with dimensions of y and x, respectively. λw is a known

precision for the Gaussian distribution. The model can be defined by a generative

process as follows: [6]
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(i) Draw the weight, bias and node values for each layer l of the SDAE,

(a) Draw for each n. column of the weight matrix, Wl, and bias of the layer,

Wl,∗n ∼ N (0, λ−1w IKl
)

bl ∼ N (0, λ−1w IKl
)

(b) Draw each row of Xl,

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl

)

(ii) For each item, j,

(a) Draw clean input,

Xc,j∗ ∼ N (XL,j∗, λ
−1
n IS)

As shown in Figure: 2.10, the middle layer is the bottleneck layer to extract useful

features as a dimension reduction technique. Namely, for a L layered SDAE, X0 is

the corrupted input, XL/2 is the bottleneck layer, and XL is the reconstructed input.

The precision values, λw, λs, and λn are hyperparameters. The graphical model of the

SDAE is shown in Figure: 2.9.

In the model, all parameters can be considered as random variables. Joint log-

likelihood of the parameters with given hyperparameters can be used to maximize the

posterior distribution [6, 7].

L = p({Xl},Xc, {Wl}, {bl}|λs, λw, λn)

= −λw
2

∑
l

(‖Wl‖2F + ‖bl‖22)

−λn
2

∑
j

‖XL,j∗ −Xc,j∗‖22

−λs
2

∑
l

∑
j

‖σ(Xl−1,j∗Wl + bl)−Xl,j∗‖22
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Figure 2.9. Graphical model of SDAE [6]

The weights and biases can be learned by back propagation with respect to Wl and

bl.

As explained in Section 3.3, PSDAE can be used to reduce the dimensionality of

the content information of the item.

2.6. Evaluation of Recommendation Systems

In order to compare different systems precise metrics should be set, however,

in this field, there are different approaches regarding how to evaluate an RS. In this
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Figure 2.10. A representation of SDAE [6]

section, we will briefly outline the evaluation of recommendation systems.

In the early stages of the recommendation system researches, most of the eval-

uation paradigms were based on the accuracy of the predicted ratings [31]. Accuracy

metrics basically measure how close are the system’s predictions to actual user ratings.

They can be categorized into thre classes [31]. Prediction Accuracy metrics can evalu-

ate the recommendation system when it tries to predict the user’s exact rating. Mean

Absolute Error (MAE), Root Mean Squared Error (RMSE), and their derivations such

as normalized MAE, normalized RMSE, average MAE, average RMSE are predictive

accuracy metrics [12, 31].

RMSE and MAE are defined as follows:

RMSE =

√
1

‖ T ‖
∑

(i,j)∈T

(r∗ij − rij)2

MAE =

√
1

‖ T ‖
∑

(i,j)∈T

‖ r∗ij − rij ‖

Classification Accuracy metrics, or usage prediction metrics [12] classify the items as

relevant or irrelevant, that is evaluating the prediction of the items that the user is



30

Table 2.1. Notation of the related item properties for classification accuracy

Recommended Not Recommended Total

User Interested Nri Nni Ni

User Not Interested Nru Nnu Nu

Total Nr Nu N

interested or not [12, 31]. Three main measures are Precision, Recall and Receiver

Operating Characteristics (ROC) Curves.

Recall =
Nri

Ni

Precision =
Nri

Nr

The notation for possible rating characteristics and for totals is shown in Table 2.1.

Recall is the ratio between the number of relevant recommended items and user’s

all relevant items. Precision is the ratio between the number of relevant recommended

items and all recommended items. ROC Curve measures true positive and false positive

rates. After ordering the recommended items from most relevant predictions to less

relevant ones, the curve is drawn from the origin. If the recommended item is relevant

the curve is drawn vertical if it is not relevant it is drawn horizontal to right. If the

relevance is not known, no action is taken. ROC curves are more suitable when a false

recommendation is costly [12, 31]. If the order of the recommendation is important

Rank Accuracy Metrics give more effective measures.

In recommendation systems, accuracy is not the only metric to measure the ef-

fectiveness of recommendations. Quality and usefulness of the predictions are also

important. Coverage, confidence, novelty, diversity, utility, scalability, adaptivity are

some alternative evaluation views other than accuracy [12].
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(i) Coverage can be considered in three ways, item space coverage, userspace coverage

or cold start. Item space coverage measure favors recommendations which cover a

high proportion of the catalog, where userspace coverage favors recommendations

which cover a wide range of users. Cold start problem occurs when a new item

or user is introduced to the system as mentioned in Chapter 1.

(ii) Confidence is the measure of a system where how confident it is on the recom-

mendation it made. For example, the system may predict the top rating for two

items, the order of the items may be decided according to the confidence level of

the system.

(iii) Novelty is for measuring how the recommended items are novel for the users. It

can be measured by user questionnaire, or the data can be organized in time and

some previously rated items can be hidden and the system would get a rewarding

feedback for new recommendations but will be punished for the recommendations

that are previously rated but hidden to the system.

(iv) Diversity metric is to evaluate the system in terms of diversity of items. The

accuracy is also important, but recommending diverse items rather than similar

items may become very valuable in some domains. The item-item similarity

metric is taken into consideration besides the accuracy.

(v) Utility of the recommendations may be important in some systems. For example,

it is more profitable to match recommendations with high profit and lead to

cross-selling in e-commerce platforms.

(vi) Scalability of the system is another crucial point of a recommendation system.

This metric is to evaluate the system’s performance as the data grows.

(vii) Adaptivity is the sensitivity to the changes in the item catalog or user preferences.

For example, when there is a mass shooting incident, the older news on the

previous mass shooting incidents will be preferable again, while they would not

be in other cases.

In this chapter, we outlined some basic concepts like feedback types and evalua-

tion methodologies in recommendation systems for completeness of our work and gave

mathematical background and explained the components of the models that we are
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going to discuss in the next chapter.

In the following chapter, we explained the two models that we compared in our

work, Coupled Bayesian Nonnegative Matrix Factorization and Collaborative Deep

Learning. We also described Collaborative Topic Regression model which is the basis

model of Collaborative Deep Learning.
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3. HYBRID MODELS

In Chapter 1, different kinds of RS have been mentioned briefly. Each one of them

addresses a different approach to the problem. For example, collaborative filtering has

been found very accurate when there are sufficient rating data on the items. However,

it has the cold start problem. On the other hand, demographic-based systems may

get better recommendations when there is high-quality information on the users. The

motivation behind the hybrid models in RS is to integrate different approaches in one

system so that the advantage of one approach can overcome the setback of the other

one and vice versa [12].

There are different ways to combine different approaches, as categorized in [13].

Different recommendation systems can be combined in a (i) weighted score; the system

may (ii) switch between recommendation systems; a (iii) mixed set of recommenda-

tions can be presented to users; features may be extracted from different methods

and (iv) combined features are used in the actual recommendation component; one

recommender may be used to extract features and (v) augmented features are fed to

the actual recommender; in (vi) cascade systems different techniques are used for the

same data and each has a given priority and in case of a tie in high priority systems,

low priority techniques determine the results; in (vii) meta-level hybrid systems one

recommender technique’s output is given as input to another technique [13].

The hybrid approaches we concentrated on can be categorized as feature aug-

mentation technique, though they are tightly coupled models [6,13]. In tightly coupled

methods, features extracted from one method affect the other method’s features and

vice versa. That is, the information of one method is shared and affect the other one.

The knowledge transfer is bidirectional. On the other hand, if just one method extracts

the features and makes use of the other one, it is called loosely coupled methods [6].

We concentrated on tightly coupled methods in our work. Three different meth-

ods are explained in the following sections.
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3.1. Coupled Bayesian Nonnegative Matrix Factorization (CBNMF)

In this approach, we used BNMF technique explained in Section 2.3.4 by coupling

the rating matrix with the content matrix. Schematic representation of CBNMF is

shown in Figure 3.1.

U, V and R are the user feature matrix, item feature matrix, and rating matrix

respectively, as defined in Section 2.2. X is the bag-of-words SxJ matrix representation

of the content. The most informative top S words are taken into account. We define

Z = {R,X} as the concatenation of rating matrix and content matrix, and T = {U,Y}

as the concatenation of user feature matrix and content feature matrix. The generative

model of CBNMF becomes as follows:

tp,k ∼ G(tp,k; atp,k,
btp,k
atp,k

), vk,j ∼ G(vk,j; a
v
k,j,

bvk,j
avk,j

), (3.1)

sp,k,j ∼ PO(sp,k,j; tp,kvk,j), zp,j =
∑
k

sp,k,j. (3.2)

In [2], Cemgil defines mask matrix, in order to omit the missing values. On the

other hand, in our data, we do not know whether 0 entries are missing or they are not

preferred, and we have a complete content matrix which we do not want to take into

consideration as much as rating data, we used a fixed weight matrix W instead of a

mask matrix. It functions like confidence parameters as in [7]. In the algorithm stated

in Figure 2.5, M was the mask matrix. If rij is not missing mij is 1, otherwise it is 0.

In CBNMF, weight matrix W has three different values, as follows:

wp,j =


a p <= I and rpj = 1

b p <= I and rpj = 0

c otherwise, that is p > I
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Figure 3.1. Schematic representation of coupled NMF. The colours on the matrix Z

indicate weight values wpj. Dark green is a, light green is b and mid green is c.

3.2. Collaborative Topic Regression (CTR)

Collaborative Topic Regression (CTR) uses probabilistic matrix factorization as

latent factor model for rating analysis, and Latent Dirichlet Allocation (LDA) as a

probabilistic topic model for content analysis [7]. The graphical model of CTR is given

in Figure 3.2.

The generative model of LDA and PMF were given on Section: 2.4 and 2.3.3.

The generative process of CTR is as follows:

(i) Draw a latent user vector for each user i, ui ∼ N (0, λ−1u IK).

(ii) For each item j,

(a) Draw topic proportions θi ∼ Dirichlet(α),
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(b) Draw item latent offset εj and get the item latent vector vj as,

εj ∼ N (0, λ−1v IK)

vj = εj + θj

(c) For each word wjs,

i. Draw topic assignment zjs,

zjs ∼Mult(θ)

ii. Draw word wjs,

wjs ∼Mult(βzjs)

(iii) For each user-item pair (i, j), draw the rating,

rij ∼ N (uivj, c
−1
ij )

K is the number of topics and latent features for item feature vectors and user

feature vectors. λu, λv and α are hyperparameters. The precision of the distribution

for rij, cij, is confidence parameter. As cij grows, the surer we are of the value of rij.

vj is the combination of topic proportion and a latent offset. This allows adjusting

the weight of the content in the recommendation. If there is no rating information

on the item j, offset is 0. All we have is based on the content information. As the

amount of rating for item j increases, that is more users are rated item j, we take

rating information more into consideration than the content topic proportions [7].

Full posterior of the parameters ui, vj and θj is intractable. The authors devel-

oped an EM-style algorithm to learn MAP estimates. Maximizing the log likelihood of

U, V, θ1:J and R given λu, λv and β is equivalent the maximization of the posterior.

L = −λu
2

∑
i

uiu
T
i −

λv
2

∑
j

(vj − θj)
T (vj − θj)

+
∑
j

∑
s

log(
∑
k

θjkβkwjs
)−

∑
i

∑
j

cij
2

(rij − uivj)
2

U and V can be updated by fixing θj via gradient descent. Learning the topic pro-

portions θj can be made by setting a lower bound on L(θj) as described in [7], and

using projection gradient. Prediction are made by point estimate of ui, θj and εj to
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Figure 3.2. Graphical model of CTR [7]

approximate their expectations as stated in [7],

r∗ij ≈ u∗i (θ
∗
j + ε∗j) = u∗iv

∗
j

3.3. Collaborative Deep Learning (CDL)

Collaborative deep learning (CDL) is a hybrid model where the ratings are fac-

torized by PMF and the content information is modeled via PSDAE [6]. The extracted

features of the content data and the item vectors are combined by a bias vector as

similar in the collaborative topic regression model as explained in Section 3.2. The

graphical representation of the model is given in Figure 3.3. The generative process of

the model is as follows:

(i) For each layer l of PSDAE, draw

(a) Wl,∗n ∼ N (0, λ−1w IKl
)

bl ∼ N (0, λ−1w IKl
)

(b) Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl

)

(ii) For each item j, draw,

(a) Xc,j∗ ∼ N (XL,j∗, λ
−1
n IS)
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Figure 3.3. Graphical model of CDL [6]
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(b) Draw a bias column vector, and set the latent item vector accordingly,

εj ∼ N (0, λ−1v IK)

vj = εj + XT
L
2
,j∗

(c) Draw a latent user row vector for each user i,

ui ∼ N (0, λ−1u IK)

(d) For each user and item pair (i, j), draw a rating

Ri,j, Ri,j ∼ N (uivj,C
−1
ij )

λu, λv, λw, λs and λn are hyperparameters. The rating information of I users related

to J items is represented with IxJ matrix R. Xo, the corrupted version of the input

matrix Xc, is the input of PSDAE. Rij is a binary matrix, where Rij = 1 if the user i

added to her or his library, 0 otherwise. Xl is the JxKl output matrix of the l.layer of

PSDAE. L is the number of all layers. Since the feature extraction is in the bottleneck

layer, which is the L/2. layer, an L layered SDAE is considered as a L/2 level PSDAE.

Wl and bl are the weights and biases respectively. W+ represents the weights and

biases of all layers. Cij is the confidence parameter as stated in [7], if Rij = 1,

Cij = a, Cij = b otherwise. It indicates how much Rij is reliable. λs hyperparameter

is considered as infinite in order to simplify the calculations. That is, the Gaussian

distribution converges to Dirac delta function. In this model, the collaborative filtering

part utilizes the extracted information from the content data and the features of the

content data are forced to enhance the performance of the PMF.

Training of the model is based on an EM based algorithm of the maximum a

posteriori estimate. As stated in [7], maximization of the posterior distribution is

to maximize the joint log-likelihood of the parameters U,V,{Xl}, Xc, {Wl},{bl},R,

given the hyperparameters λu, λv, λw, λs and λn.
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As λs goes to infinity the likelihood becomes as follows:

L = −λu
2

∑
i

‖ui‖22 −
λw
2

∑
l

(‖Wl‖2F + ‖bl‖22)

− λv
2

∑
j

‖vj − fe(X0,j∗,W
+)T‖22

− λn
2

∑
j

‖fr(X0,j∗,W
+)−Xc,j∗‖22

−
∑
i,j

Cij

2
(Rij − uivj)

2

The full expression is given in [6].

fe(.) is the encoder function, which takes the corrupted version of the content

data as input and provides the encoding of the data, which is the L/2. layer of the

PSDAE. fr(.) is the reconstruction function, which takes the corrupted input, encodes

it and then reconstructs the uncorrupted content data, that is basically the PSDAE.

For given W+, ui and vj can be updated by coordinate ascent as in [7] and [32]

as follows:

uT
i ← (VCiV

T + λuIK)−1VCiRi

vj ← (UCjU
T + λvIK)−1(UCjRj + λvfe(X0,j∗,W

+)T )

U and V represent the feature matrices of all users and items respectively. Ci =

diag(Ci1, ...,CiJ) is the diagonal matrix of the confidence values. Ri is the ith user’s

vector representing the all items’ ratings for that user and Rj is the jth item’s vector

representing all users’ ratings for that item.

There are two extreme sides of the hyperparameter settings. One of them occurs

when λn/λv ratio reaches to positive infinity. In this case, PMF and PSDAE parts of

the model disconnect from each other and the features learned by PSDAE are used

directly. In the other case, when λn/λv ratio approaches to zero, PSDAE’s decoder
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vanishes. It is stated in [6] that in either case, the performance drops significantly.

Wl and bl can be learned by back-propagation given U and V. The gradients of

the likelihood with respect to Wl and bl are as follows:

OWl
L = −λwWl

− λv
∑
j

OWl
fe(X0,j∗,W

+)T (fe(X0,j∗,W
+)T − vj)

− λn
∑
j

OWl
fr(X0,j∗,W

+)(fr(X0,j∗,W
+)−Xc,j∗)

Obl
L = −λwbl

− λv
∑
j

Obl
fe(X0,j∗,W

+)T (fe(X0,j∗,W
+)T − vj)

− λn
∑
j

Obl
fr(X0,j∗,W

+)(fr(X0,j∗,W
+)−Xc,j∗)

By updating U,V,Wl and bl alternatingly, the local optimum of the likelihood can

be reached.

The rating of an index is to be predicted similarly as stated in [7] according to

the observed test data, D.

E[Rij|D] ≈ E[ui|D](E[(fe(X0,j∗,W
+)T |D] + E[εj|D])

That is, the predicted rating can be calculated as follows:

R∗ij ≈ (u∗j)(fe(X0,j∗,W
+∗)T + ε∗j) = u∗iv

∗
j



42

In this chapter, we explained two hybrid models, coupled Bayesian nonnega-

tive matrix factorization (CBNMF) and collaborative deep learning (CDL), that we

compared in our experiments and another hybrid model,collaborative topic regression

(CTR), that collaborative deep learning is mainly based on.

In the following chapter, we give the details of our experiments and their results.
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4. EXPERIMENTS AND RESULTS

CDL is a state-of-art hybrid model, which uses a deep structure for content

feature extraction. CBNMF aims to use the advantage of BNMF in order to combine

the rating data and content information. We compared these two methods in our work.

We reproduced CDL and applied CBNMF to the same dataset.

In our experiments, we chose CiteUlike-a dataset [33]. CiteULike is a platform

for researchers to search and bookmark the articles they are interested in. The details

of the dataset are given in Section 4.1. The dataset was obtained and used in [7] at

the first time. After work can be found in [6, 34, 35]. The advantage of this dataset

is that it is available for researchers. There is another dataset called CiteULike-t in

which there are more users and items and it is more sparse. However, we used the

CiteUlike-a dataset in the scope of our work.

Another commonly used dataset for recommendation systems is Netflix dataset.

Although the rating dataset is available, it is not directly applicable to the models that

we are working on. It does not contain plot summary or synopsis data, which should

be collected separately. This process is out of our work’s scope.

4.1. CiteULike-a Dataset

As mentioned before, we used CiteUlike-a dataset. It contains 5551 users, 16980

items, and 204987 user-item pairs. The density of the data is 0.22 % [34]. User-item pair

indicates that the user added that item to her/his library. Figure 4.1 shows the density

of the selected, preferred articles per user. The amount of each user’s preferred articles

among the dataset is not balanced. 81% of the users bookmarked less than 50 articles

among 16980 articles and there are very few users, just 15 users, who bookmarked more

than 300 articles. The content is represented by the bag-of-words representation of the

titles and abstracts of the articles. It is the bag-of-words matrix with normalized term

frequency-inverse document frequency (TF-IDF) values of the top 8000 discriminating
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Figure 4.1. The density of the bookmarked articles per user

words according to their TF-IDF values. TF-IDF value of word i, in document j is

calculated as follows:

tf idfij = tfij log(
N

dfi
)

tfij =
# of word i in document j

# of words in document j

dfi =
# of documents word i appears

# of all documents in corpus

tfif is the frequency of word i in document j, dfi is the number of documents which

contains word i in the corpus, and N is the total number of documents in the corpus.

The higher the value of TF-IDF indicates high relevancy and high discriminating value.

Example of content representation is shown in Figure 3.1 as the lower part of matrix
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Z.

Two different settings are used in the experiments as in [6].

(i) Sparse Setting: In training set, 1 item is randomly selected for each user. The

remaining pairs are reserved for the test. The sparsity of the sparse training set

is 0.0059%.

(ii) Dense Setting: In the training set, 10 items are randomly selected for each user.

The remaining pairs are reserved for the test. That is, the sparsity of the sparse

training set is 0.0589%.

4.2. Experiments

We have four different setups for experiments. Two methodologies for two differ-

ent settings. We made grid-search for optimum hyperparameters in CDL, and for the

best starting point for hyperparameter selection in CBNMF. The final results are the

average values of five experiments for the best hyperparameter choices.

4.2.1. Collaborative Deep Learning

Before training the whole system, the content fed to SDAE for pretraining of

the content. After pretraining, the whole system has been trained. Hyperparameter

search for λu, λv, λn, is done by grid search. Best results for sparse setting and dense

setting are obtained with λu = 10, λv = 1000, λn = 100, and λu = 10, λv = 1, λn = 104,

respectively.

We used two leveled SDAE with [8000-200-50] architecture as in [6]. Masking

noise with a fraction of 0.3 is used for input corruption, that is randomly chosen

elements of x set to 0 with the fraction of 0.3. Dropout rate of 0.1 is used as in [6].
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4.2.2. Coupled Bayesian Nonnegative Matrix Factorization

The content was pretrained before training the coupled matrix. Hyperparameters

are searched via grid search. The confidence parameters a and b are fixed for 1 and

0.01, respectively. c for the content is searched by grid search and set to 0.4. Even

tough, we updated hyperparameters during training, starting point for shape and scale

parameters are sensitive to starting point. Hence, we also applied grid search for

initialization of shape parameters, atp,k, a
v
k,j. Mean values btp,k and bvk,j are set to 1. In

the final setup of the experiment the initial values of hyperparameter were atp,k = 100,

btp,k = 1, avk,j = 1, bvk,j = 1 for both sparse and dense settings.

4.3. Evaluation

In this thesis, we evaluated the results according to two metrics, recall and mean

average precision, as in [6, 7, 34]. Recall measure is more suitable than precision for

implicit feedback [14,32].

The recall@M is defined as follows as explained in Section 2.6:

recall@M =
number of items user preferes among the recommended top M items

total number of items that user preferes

The second metric, mean average precision (mAP), is the mean of average precisions

[36].

AP@M =
1

|R|

M∑
i=1

(
ri
i

i∑
j=1

rj

)

mAP@M =

∑
n AP@M

n

|R| is the number of relevant documents at top M recommendations. ri is 1 if ith

recommendation is relevant, 0 otherwise. n is the number of users whom recommenda-

tions are made in our case. In the average precision calculation, each recommendation’s

precision is considered from the beginning. Only the relevant recommendation’s preci-
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Table 4.1. Mean Average Precision (mAP@500) results of CDL and CBNMF

mAP@500 Sparse Setting Dense Setting

CDL 0.0457 0.0922

CBNMF 0.0133 0.0324

sion is taken into account [36]. The order of the recommendations matters in average

precision metric, where the order is not taken into consideration in recall metric.

4.3.1. Results of Our Experiments

Recall for top 300 recommendation results are given in Figure- 4.2. mAP results

for top 500 recommendation are given in Table-4.1. The results are the mean of five

different training sets for best-known hyperparameters.

Figure 4.2. Recall@M results of our experiments
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5. CONCLUSIONS AND FUTURE WORK

In this study, we compared two hybrid models, coupled Bayesian nonnegative

matrix factorization (CBNMF) and collaborative deep learning (CDL), as well as re-

viewing some models that are related to these hybrid models, namely, matrix factor-

ization, probabilistic matrix factorization, Bayesian nonnegative matrix factorization

(BNMF), restricted Boltzmann machines, latent Dirichlet allocation, autoencoders, de-

noising autoencoders (DAE), stacked denoising autoencoders (SDAE) and probabilistic

SDAE.

Our main contribution to this field is to apply Bayesian nonnegative matrix fac-

torization method [2] as a hybrid recommendation system to propose preferable aca-

demic articles to users. Collaborative filtering and content based approach are applied

as coupling the rating matrix and the content matrix. We compared our proposed

method with a state-of-art hybrid method, collaborative deep learning [6].

We used CiteULike-a dataset, where the structure of the data consists of two

parts. One of them is the main rating information which contains sparse and missing

implicit binary values. The other part is the titles and abstracts of the articles.

We reproduced the experimental results of CDL [6], and adapted BNMF [2] as

a hybrid model. We made grid search to find the optimal best hyperparameters on

both of the models. Top 300 recommendations of the models are inferred. Recall and

mean average precision metrics are calculated for the evaluation, since these metrics

are more appropriate for both implicit feedback and characteristics of the information

in this study.

Experimental results showed that CDL outperforms CBNMF, although both are

using content data beside the rating information. This is primarily caused by Bayesian

stacked DAE in CDL. It seems to extract more effective features from the content data.

CDL benefits from robustness because of the Bayesian nature and also benefits from
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extracting more useful features because of its deep structure by means of nonlinearity

on the hidden layers.

To be more precise, Bayesian NMF allows robust and effective modelling in the

cases where provided information obeys nonnegativity constraint. It is a hierarchical

latent factor analysis which facilitates Bayesian model selection. On the other hand,

Principal component analysis (PCA) is a statistical method to span the dataset into

pricipal components, directions of the highest variance. NMF is an alternative to PCA,

and it can also handle missing information on the contrary to PCA. In nonnegative

matrix factorization, template matrix can be considered as basis matrix and excitation

matrix is the weights of the bases for the corresponding entries. Each entry on the

input matrix is represented as a linear combination of the bases [2]. Autoencoders

with linear transformation and mean squared error objective and the same number of

hidden neurons as with the PCA’s principal component, learn the same span as PCA.

Also, linear autoencoder is also can be considered as a matrix factorization method. If

the hidden-layer is non-linear, then autoencoder behaves differently [37].

An autoencoder learns a representation of the inputs. It is deterministic, whereas

RBMs are statistical and learn probability distributions. On the other hand, denoising

autoencoders are probabilistic and Bayesian treatment of DAE is generative. Nonlin-

earity in DAE and RBMs, allows to build deep structures, namely stacked DAE and

deep belief nets respectively [5, 6]. So, nonlinearity and deep structure of Bayesian

SDAE seem the causes of out-performance of CDL.

As future work, our study can be extended in the following directions:

(i) For coupled BNMF, other observation models, such as truncated Gaussian or

Gamma, can be used instead of Poisson distribution because of the binary rating

information, and other cost functions like Euclidian or Itakura-Saito divergences

can be used, other than KL divergence [38].

(ii) Different representation of the content data can be explored. Bag-of-word rep-

resentation does not consider order of the words. Regarding the order of the
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words in represenation may allow extract more effective features. For example,

in [39] order of the words was taken into consideration in the skip-gram model as

a distributed representation, or different word embedding methods can be used

as in [40].

(iii) Another direction would be to use different deep structures for feature extraction,

such as recurrent neural networks as in [35] or convolutional neural networks. So

that, the order of the words would be taken into consideration and stronger

representations can be used as in (ii).
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