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ABSTRACT

DAILY LIFE ORIENTED INDOOR LOCALIZATION BY

FUSION OF SMARTPHONE SENSORS AND Wi-Fi

Smartphones are leading among the fastest-growing technologies. With their nu-

merous features, smartphones are the best assistants to users in their lives on several

counts. However, a smartphone still requires an extensive configuration to assist every

user efficiently and effectively. In this thesis, we are motivated to develop a system

that makes a smartphone self-configure automatically depending on its place. This

has been well established for outdoor environments with contributions of GPS (Global

Positioning System). However, GPS does not provide accurate data in indoor envi-

ronments. Hence, in this thesis, we aim to determine the exact place of a smartphone

in a room by exploiting on-device sensors and Wi-Fi services. The key point of our

study is that it entirely works on the smartphone. In accordance with our motivation,

sensors data and Wi-Fi RSSI values were collected from fixed places via Data Collec-

tion Application which we developed on an Android smartphone. A fusion fingerprint

database was created. Five supervised machine learning algorithms were evaluated

on the fingerprint database in terms of classification accuracy and process time. The

best performance was obtained from Decision Tree Classifier with 98% accuracy rate

on 20% of training samples. Predictive power of used features were studied to specify

which sensors are more meaningful for distinguishing indoor places from each other.

Depending on model evaluation results, a Data Classification Application was devel-

oped on the same Android smartphone to generate a dedicated decision tree for each

different room. Tests were carried out in three different rooms to show that more than

80% accuracy was achieved in finding the correct place in each room.
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ÖZET

AKILLI TELEFON ALGILAYICILARI VE KABLOSUZ

BAĞLANTI BİRLEŞİMİ İLE GÜNLÜK YAŞAM ODAKLI

İÇ MEKAN KONUMLANDIRMASI

Akıllı telefonlar en hızlı gelişen teknolojilerin başında geliyor. Sayısız özellikleriyle,

akıllı telefonlar insanların pek çok konuda en büyük yardımcısıdır. Öte yandan, in-

sanlara daha etkin ve verimli bir şekilde destek sunabilmeleri için yapılandırılmaları

gerekiyor. Bu çalışmayı yapmamız için bizi teşvik eden, bulundukları konumlara göre

akıllı telefonların otomatik olarak yapılandığı sistemdir. Bu özellik, Küresel Konum-

landırma Sistemi’nin (KKS) katkılarıyla dış mekanlarda mümkündür. Fakat KKS ver-

ilerinin iç mekanlarda yeterli doğruluk sağlayamamasından dolayı, bu tezde, cihazın

kendi sensörleri ve Wi-Fi kullanılarak akıllı telefonun bir oda içerisindeki yerinin tam

olarak belirlenmesi amaçlanmıştır. Çalışmamızın kilit noktası, tamamen akıllı telefon

üzerinden çalışılıyor olmasıdır. Motivasyonumuza uygun olarak iç mekanda belirli yer-

lerden, sensör verileri ile Wi-Fi sinyal verileri, bir Android akıllı telefonda geliştirdiğimiz

Veri Toplama Uygulaması kullanılarak toplandı. Bu uygulama ile bir tümleşik veri

tabanı yaratıldı. Beş farklı denetimli makine öğrenme algoritması oluşturulan veri ta-

banına uygulanarak doğruluk ve işlem süresi kriterlerine göre değerlendirildi. Öğrenme

setinin %20’sinde %98 doğruluk sağlayan Karar Ağacı Sınıflandırıcısı en başarılı sınıflan-

dırıcı olduğu belirlendi. Kullanılan sensör verilerinin hangisinin konumları birbirinden

ayırmakta daha anlamlı olduğunu bulmak için, özelliklerin tahminleme gücü araştırıldı.

Model değerlendirme sonuçları baz alınarak, her odaya özgü karar ağacı oluşturmak

amacıyla yine aynı Android akıllı telefon üzerinde Veri Sınıflandırma uygulaması gelişti-

rildi. Üç farklı odada gerçekleştirlen testlerde, her bir odadaki doğru noktayı saptama

başarısının yüzde 80’den fazla olduğu görüldü.
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1. INTRODUCTION

This has happened to everyone at least once: You fall asleep on the couch and

there is no one to wake you up and tell you to go to your bed. Imagine your phone,

which is right next to you, thinking about you in a situation like this: he is sleeping on

the couch right now and it is the middle of the night. I should set an alarm for him and

make sure he does not fall asleep here. Imagine your phone taking itself into do not

disturb mode so that you do not get distracted when you sit down to study. It could

turn on night mode on when on your night stand. It could be in studying mode when

in your office and in silent mode while in the meeting room. It could remind you to

adjust your posture when you are at the study desk for too long. And even imagine it

playing soothing music for you when put on dining table. All of these will be possible

if we can achieve reliable indoor localization.

Indoor localization is a system that locates and navigates people in buildings.

The existence of the huge and complicated buildings in modern life has created a need

for distinguishing indoor locations and navigating people who spend most of their time

inside. The acquisition of physical location is the fundamental basis for Location-Based

Systems (LBS). Global Positioning System (GPS), the prevalent technology for outdoor

localization, does not work well in indoor environments due to the blocking of signals

by walls, floors and ceilings. Therefore, indoor localization has been an active research

field. To acquire high-accuracy localization in indoor environments, many techniques

have been developed.

With the rapid development in sensor technology, the variety of sensors on the

phone has increased. Modern smartphones are equipped with many different sensors

such as accelerometer, gyroscope, lux, proximity, magnetic field and temperature sen-

sors. Hence, they can already hear, see and sense the environment. They have high

computational performance and programmable capabilities. Most wireless technologies

such as Bluetooth and Wireless Fidelity (Wi-Fi) are also accessible by smartphones.

With wide usage, the smartphone has become the first truly pervasive computer [1].
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Thus, the majority of the indoor positioning studies have been based on the mobile

platform.

Inside buildings, Wi-Fi has been seen as a good alternative to GPS. The RSSI

is used to calculate the distance measurements required for Wi-Fi-based location es-

timation. Received Signal Strength Indicator (RSSI) is a measure to indicate relative

quality of a signal which is received from a client device. Localization techniques based

on the RSSI can be divided into two main categories: The signal propagation model and

fingerprinting [2]. For the first method, multiple Wi-Fi transmitters must be exactly

located in an indoor location. These transmitters are then used as reference points.

Knowing exact locations of transmitters makes possible to calculate relative positions

of the receivers. Distance can be estimated by using received signal information. If

we briefly summarize the method, the strength of the signal emitted from the receiver

is known. Also, the strength of the received signal is known. The difference between

the first strength and last strength is described as signal attenuation due to the path

loss. Path loss can be calculated by measuring signal attenuation between the receiver

and transmitter when they are located at a known distance from each other. How-

ever, the signal propagation model is not sufficiently applicable since there are many

components affecting signals such as walls, doors and movable furniture (even people).

The signal strength reduces when one of said objects is between the transmitter and

the receiver due to its physical resistance. Hence, the path loss value cannot reflect

the real attenuation. In this manner the location of the receiver can be erroneously

estimated as far away from its real location. The next method widely used for Wi-Fi

technology is fingerprinting. This is a more common method than the previous one in

recent studies [3]. The main idea of fingerprinting is recording RSSI values from Wi-

Fi Access Points (APs) located around for the determined locations. We will explain

the fingerprinting approach in detail in the next sections. Briefly, in this method the

receiver is routed in different locations. RSSI from Wi-Fi APs around must be sys-

tematically recorded to a database. The information of the determined location and

which transmitter sends the signals are also recorded to the database. The database is

also referred to as fingerprint map. Thus, fingerprinting requires data collection. By

using the Wi-Fi fingerprint database, estimation can be done for any location with a
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common similarity algorithm, such as Euclidian distance. On the other hand, signals

can be affected by physical obstacles such as people inside, and RSSI values can be

changed at different times. This may causes differences between current RSSI value

and recorded RSSI value on fingerprint database. Even so, it is still currently the most

used technique in recent studies given its low cost and high accuracy [4].

Besides, the features of smartphones are not limited to receiving Wi-Fi signals.

Beyond signal-based technologies, there are many sensor technologies on smartphones.

Basically, sensors can be considered under two groups: motion sensors and ambient

sensors. The gyroscope and accelerometer are well known sensors as motion sensors.

The gyroscope measures the rate of rotation of a device’s x, y and z axes in rad/s. It is

an electronic circuit that provides information about the orientation of the smartphone

in three-dimensional space. Most applications use the data to perform functions on

the smartphone, such as rotating the screen. The accelerometer measures acceleration

in each of the three dimensions, as its name implies. Both accelerometer and gyro-

scope are hardware-based. Some other software-based sensors like step detector, step

counter, sleep tracker and motion type detector (walking, running, etc.) can derive

their data both from the accelerometer and from the gyroscope. They are also used

in indoor navigation studies to track users’ by their movements. This is referred to as

pedestrian dead-reckoning [5]. The dead-reckoning technique does not directly work as

a localization system. It provides only relative position of the pedestrian. The method

is that a pedestrian is tracked from a determined start point by using step count, step

length and heading angle. The accelerometer makes it possible to measure step count

information by providing acceleration data. The gyroscope is used to measure angular

heading.

Moreover, another fingerprinting approach has been proposed by using a mag-

netometer in smartphones. A magnetometer is an electronic compass technology that

measures magnetic fields of environment. However magnetic fields may fluctuate at

certain places, which may cause some big localization errors. Nevertheless, magnetic

fingerprinting has become a widely used technique in recent studies [7]. Ambient

sensors, such as barometer, proximity sensor, ambient light sensor, thermometer and
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humidity sensor, are frequently used sensors. They can be called environmental sen-

sors, since they are used to sense physical specification of an environment. Due to the

growing sensor technology and their high-sensitivity measurements, ambient sensors

have been used to distinguish different environments. Some have started to employ

these technologies in indoor localization. Barometers have been used for [8] detect-

ing floor level and elevators in interior places by monitoring variations of atmospheric

pressure. Ambient light sensors are also used as ambient sensors for indoor localization

but suffer from time variation during a day and from seasons in the year, due to the

daylight variations and usage of florescence in indoor places [9].

In addition, smartphone cameras and microphones also have been proposed as

supported technologies. Even though energy consumption of cameras is significantly

high [10] and they reduce the battery life, some recent works use cameras and image

processing to detect interior places in indoor localization systems. In a similar manner,

microphones have been used to detect ambient sounds [9]. However, instead of a

single technology-based indoor localization approach, the majority of studies combine

multiple technologies and data sources to increase efficiency of the systems.

The physical specifications of an interior place are another considered issue in

indoor localization studies. Indoor maps have been published by Google for airports,

malls, stadiums and other terminals of public transportation [11]. On the otherhand,

there are many studies that have focused on more individual places such as home and

offices [12].

Everyone has a daily routine, and people spend their time in certain places gener-

ally during a day. In this study, we aimed to use indoor localization to support mobile

phone applications as a location-based service. We do not attempt to navigate the user

and do not track the phone. We focus on improving the ability of the most ubiqui-

tous technology of recent times, the smartphone. Our motivation has become to make

smartphone more self-configured by considering users location in indoor environments.

Our main target is to make it possible to determine whether a smartphone is on study

desk or on the nightstand, or whether in front of the window or on the top of dinner
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table in a same room. Thereby, our daily settings can be automated by the smartphone

itself. For example, if a user puts his phone on the bedside table, night mode can be

turned on. If the user puts his phone on a study desk, do not disturb mode can be

activated automatically. On the kitchen table, some dinner music can be played.

Generally, applications have focused on distinguishing different rooms, corridors

and such places that are obviously separated from each other. On the other hand,

they are tracking the phone. In this thesis, we are not tracking a smartphone or

not navigating a user indoor. We construct a system based on where smartphones

are placed during a day. Thus, we have done our experiments in certain locations in

home and office environments. We have collected magnetic field, ambient light and

proximity sensor and Wi-Fi data from three different indoor locations. All sensor

data and Wi-Fi data have been used to create a fingerprint database. The produced

database becomes an input for evaluation of supervised machine learning algorithms.

This is giving an advantage to analyze the ambient specification of the environment.

A successful classification based on ambient features of indoors to distinguish different

corners from each other in a room can be used in lots of smartphone applications

supported technology. Mobile devices can take automatic actions according to its

current position. It can be also increase the precision of tracking systems in indoor

environments.

1.1. Thesis Outline

The rest of the thesis is organized as follows: In Chapter 2, we present the

related work in indoor localization, Wi-Fi fingerprinting, magnetic fingerprinting, am-

bient sensing and data classification methods for sensor data. In Chapter 3, we provide

an overview for a better understanding of the thesis. In Chapter 4, we present a data

collection approach and methodologies. In Chapter 5, we provide an extensive com-

parison of machine learning models on our fusion dataset. In Chapter 6, we introduce

our data classification application and its algorithms, our tests and obtained results.

In Chapter 7, we conclude the thesis and discuss the future work.
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2. RELATED WORKS

Indoor localization has been an attractive research field due to its wide application

domain. The infrastructure requirement may be the first basis for classification among

current indoor localization systems. A special infrastructure must be deployed to create

indoor localization systems with some technologies, such as Bluetooth Low Energy

(BLE).

Verhaevert et al. [13] propose a room level localization system motivated by

elderly and needy people who need to be followed or for protecting valuable objects

in a house against the theft. They deployed BLE nodes on the objects and people

wanted to be located. In addition, a BLE sensor is placed in the approximate center of

each room. There is no need to fingerprint or measure RSSI values, and the statistical

triangulation methods are not used. The central BLE sensor sends advertising packets,

and the RSSI values are calculated for each receiver nodes by measuring the difference

between the transmitted and received power. They are calculating an average of the

measured RSSI values over a total of five values. By this manner they reached the most

accurate results with a correct localization more than 90%. Even if battery replacement

is not required on a regular basis, the system requires extra infrastructure installation

in the home environment. The motivation of the study is similar to ours; we have

used the home environment also. Nevertheless, we posit that for the indoor locations

such as rooms in home, the infrastructure installation is not practical, while there are

various alternative and ubiquitous technologies.

As to infrastructure-less technologies, we can investigate recent studies under the

following categories: Wi-Fi-based, inertial sensor-based, magnetic field-based, ambient

sensors-based and fusion technologies-based systems.
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2.1. Wi-Fi-Based Localization Systems

Before looking through Wi-Fi-based systems, it is helpful to survey wireless-

based localization systems briefly. Liu classifies wireless-based technologies according

to their coverage area distances. It deals with FM and Global System for Mobile

(GSM) under the long distance, Wi-Fi and ZigBee under the medium distance, and

Bluetooth and Radio-frequency identification (RFID) under short distance wireless

technologies. Doiphode et al. [4] present a classification for wireless technologies in

indoor localization studies similar to that of Liu et al. [3]. Table 2.1 combines their

comparison tables [3,4].

Table 2.1: Comparison of existing wireless technology for indoor localization

Technology Range Accuracy
Dedicated

Infrastructure
Disadvantages

GSM 100 m ∼ 10 km 50-500m No
Highly

patented

Wi-Fi 35 m (indoor) 1-5m
No(for most

places)

High variance

signal

Bluetooth 10 m
Connectivity

Range
Yes

Cover range

is limited

RFID 1m
Connectivity

Range
Yes

Cover range

is limited

ZigBee 30 ∼ 60 m
Connectivity

Range
Yes

Need

dedicated

infrastructure

However, the mathematical methods to analyze wireless signals are definite and

common for all of those technologies. They can be split into proximity, triangulation,

and fingerprint. Proximity is the simplest method. Generally GSM-based localization

systems use this method. If a user node can connect to a base station, the location

of the user can be estimated approximately. Naturally, there is high variance in this
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method. Therefore it has not been featured in recent localization studies.

Triangulation is the geometric calculation of a user based on at least three known

stations. There are two different types of triangulation. The first one is angle-based

(AOA). In this method, the directional antenna technology is used in both user and

anchor nodes. The angle of the received signal is retrieved by nodes. A later version is

time-based triangulation (TOA or TDOA). This is based on distance calculated from

travel time of the signals. Since the speed of signal is known, the distance can be

calculated by using time information. However, triangulation methods can suffer from

wall penetration and resistance to obstacles in indoor locations.

On the other hand, fingerprint technology is a prominent term in recent local-

ization literature. This is commonly used with signal-based technologies. It can be

explained as the characteristic or feature of signals briefly. Received Signal Strength

(RSS) leaves a fingerprint. If we assumed that there are specific wireless sources such as

Wi-Fi access points in an indoor environment, for some specific locations, the features

of RSS will be different from each other. Thus, it can be handled as fingerprint data

for those locations. If the fingerprint information of each location can be obtained, the

current location can be estimated. However, this method requires an extensive training

phase.

Basically, there are two different fingerprinting methods: radio-map-based and

map-free fingerprinting. The radio-map-based fingerprinting has two phases: offline

phase and online phase. A site survey in an environment is required in the offline

phase. The location information, which may be strict coordinates or labels, and RSS

values from base stations/access points are being collected during site survey. Hence,

a map is obtained at the end of offline phase. Then in the online phase, current RSS

information is collected by the user node to apply localization technique in order to

estimate location. Liu et al. [14] describe the main challenge in fingerprinting as the

RSS could be influenced from diffraction, reflection and scattering in the propagation.
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In the map-free fingerprinting method, RSS data is not collected from each loca-

tion in the indoor environment. Some locations are chosen as landmarks. The landmark

represents a known place that can be used to calibrate indoor navigation. It is gener-

ally used with the pedestrian dead-reckoning method, which will be investigated later

in this section.

2.2. Magnetic Field-Based Localization

Fingerprinting method is not only used with Wi-Fi but also used with magnetic

field technology as well. Chunk et al. [7] propose an indoor localization system based

only on geomagnetism. They create magnetic field fingerprints map by using an elec-

tronic compass. As usual in the fingerprinting method, there are two different phases

(training and estimating). Both are realized with a single device they developed. They

have worked in a lab building that houses machine shops, machine rooms for servers

and desktops. The structure of the building includes steel and concrete as usual. Ac-

cording to the result of their investigations, magnetic field features of indoor locations

are characteristic in most cases. 70% of the predicted data had errors of less than 2

meters. However, while magnetic field data is being collected, the orientation of the

electronic compass must be taken in the account. Thus, they used their fingerprint

map to predict orientation as well. The advantage of the magnetic fingerprint is that

it does not require any fixed local references, like the Wi-Fi AP. The disadvantage of

this work in itself is that they must be working with their own production because it

requires a cost. Accordingly, their systems are working in server-client architecture.

That is, the electronic compass reads the data and transfers them to the computer.

The other magnetic-field-base localization system, IndoorAtlas [15] takes advan-

tage of the modern smartphone. It is a cloud-based location service. Under the In-

doorAtlas, there are three different applications; IndoorAtlas Floor PlansTM (web

application to build floor plans) IndoorAtlas Map CreatorTM (mobile application to

collect magnetic field data) and IndoorAtlas API (to use the location service). The API

is used for sending processed sensor data to the location service. The location service

estimates the current location and returns the estimated locations to the API’s event
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listener. They claimed that they can estimate the location inside a building within

0.1-2.0 meters.

The magnetic field may vary within a single room due to some metal objects in the

room, the construction features, or the electronic items (television, desktop computer,

etc.) that are static objects in the room. For this reason, in the present study, we also

want to observe whether the magnetic field is characteristic in a fixed position in the

determined locations in a single room.

2.3. Ambient Sensors-Based Localization

Mazilu et al. [12], unlike prior work, use only ambient sensors to assess their

effectiveness for indoor localization. Since they are not tracking users or objects, and

they only aim to label users location directly, their study is similar to ours. They

claimed that ambient properties of different rooms differ due to the environmental

variations. For example, a room with south frontage of a home may receive more

day light than rooms with north frontage. In addition, artificial light may differ from

between rooms owing to light source. The heater size may affect the room temperatures,

while humidity level may be affected from user activities such as cooking and taking

showers. They used light, humidity and temperature sensors together. As a result

of their works, combinations of ambient sensors allow to distinguish rooms in a home

with an accuracy between 0.72 and 0.81 metres, obtained from experiments using 132

hours of data collected from 3 residences. As to their methodology, it can be said that

a fingerprinting approach is used for ambient sensors. They have collected data from

different rooms in the training phase then applied some machine learning approach

such as C4.5 to make prediction in the test phase. According to their inference at the

end of their experiments, artificial light is the most informative variable, but it is not

available during the day in a home. In addition, while temperature and humidity tend

to have constant values during the day for each location, light information is directly

related to the time of the day (i.e., natural or artificial light). Two of the prominent

advantages of using ambient sensors in indoor localization is that it does not require

additional infrastructure deployment and has low power consumption. On the other



11

hand, ambient-sensors-based localization has some limitations: for example, ambient

data is affected by events such as opening windows or starting the air-conditioning unit

(for temperature and humidity sensors).

Based on the work of the Mazilu et al. [12], we also aimed to measure how

informative the ambient features of different locations are in only one room. Depending

on the physical laws, temperature and humidity can radiate quickly in a room, and

measured values do not vary within the room, whereas the light value may vary at

different locations of a room. For example, a table in front of a window may receive

much larger amount of daylight, while an interior seat may have a lower light value.

Hence, we used ambient light sensor data in our study.

2.4. Fusion Technologies in Indoor Localization

Beyond the single technology-based systems, the fusion technologies have started

to be studied by researchers in indoor localization studies. Tejada et al. [9] propose

a system that uses smartphone magnetometer, microphone and ambient light sensor

in a fusion approach. They took sessional changes in light patterns into consideration

by doing experiments in an office environment during summer and winter. To make

clear the fusion concept, it is useful to explain that the information sources are not

used sequentially or separately in the localization system, but rather all data sources

are used in a same fingerprint database. Still, in a fusion fingerprint database the

components may have different weight from each other. As the results of the study of

Tejada et al. [9] since magnetic fields have smaller variations than other sources, such

as indoor light intensity or environmental audio, the magnetic field signal source has

more weight in the estimation model of the user location.

Chen et al. [16] propose a sensor fusion framework for combining Wi-Fi, Pedes-

trian Dead Reckoning (PDR) and landmarks. They have developed an Android ap-

plication for real time localization and navigation. PDR, discussed above, is another

widely-used localization technique. It determines the current position based on the pre-

vious position of user, estimated step length and walking direction of the pedestrian.
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Localization accuracy of the PDR approach can be affected by determined initial point,

step detection, step length and walking direction. In particular, initial point is very im-

portant since PDR can extract relative location according to the initial point. Hence,

this information is provided by the determined initial position (referred to as a land-

mark). A Wi-Fi positioning system is used to detect landmarks in order to make a start

point for the PDR algorithm and to maintain calibration during navigation. Moreover,

magnetometer sensor data is combined in the system to detect walking direction, and

ambient pressure sensor data is used for floor changes.

Wi-Fi has not only been combined with PDR, it has been also started to be

combined with various technologies. In recent studies, WAIPO, proposed by Gu et

al. [17], uses Bluetooth and Wi-Fi interfaces, camera, magnetometer, gyroscope and

accelerometer sensors on the smartphone for localization. In [17] RSS-based localiza-

tion is improved by spatio-temporal co-occurrence, user location preferences and the

magnetic calibration. This is a smartphone-based localization system in a server–client

architecture. They build the photo fingerprint by capturing the photos of each room.

Photos are taken by smartphone automatically. Thus, the quality of photos is poor

and cannot be controlled by user. Besides, this causes obvious privacy issues. Using

cameras in localization systems increases computational effort while decreasing power

usage significantly compared to other ambient-sensor-based technologies.

2.5. Machine Learning in Localization

Machine learning is an inevitable part of fingerprinting method. Therefore, one

of the most important factors in accuracy of localization is deriving the appropriate

machine learning algorithm. Bozkurt et al. [18] present a competitive study about ma-

chine learning algorithms for indoor positioning. Evaluation of algorithms according to

performance of the classification for indoor positioning was the objective of their study.

For this purpose, Nearest Neighbour (NN), Sequential Minimal Optimization (SMO),

J48, Nave Bayes and BayesNet algorithms were comparatively tested. Experiments

were performed by using WEKA library. They used UJIIndoorLoc database, which

can be downloaded from UCI Machine Learning Repository. According to their test
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results, by using the whole dataset, J48 gives the best accuracy (99.89%). Compared

with the above systems, our approach, instead of positioning between rooms, focuses

on positioning between different locations within the same room. It uses Wi-Fi data,

magnetometer, ambient light and proximity sensor data by combining all of them in

a single fingerprint database. Thus, it does not require any infrastructure deployment

to the environment. Nowadays, Wi- Fi access points are everywhere. Our approach

works based on any Wi-Fi APs, not specific ones. Moreover, other used ambient sen-

sors exist on almost every modern smartphone. The proposed system works only on

Android Platform and there is no need to send data to any other platform. Users can

collect data by smartphone, can keep them in the smartphone and can classify them

in the smartphone. This brings the advantage of being able to see data and classifi-

cation results in real time with mobile applications. Users can conduct experiments

more easily in this manner. It also keeps energy consumption at a balanced level. In

indoor environments, such as homes, university buildings and offices, Wi-Fi services

are generally used in active mode.

2.6. Daily-life Oriented Applications Based on Smartphone Sensors

Ambient light and proximity sensors are generally integrated with each other and

they exist in almost all smartphone models. They can be used in a variety of different

applications. For example, screen of a smartphone can be turned off by using the

proximity sensor when user puts the phone on his/her ear. The light sensor is used

for adjusting display light of smartphones [26]. Infra-red-based proximity sensors can

detect objects that are up to 200 cm meters away and they are used in most up to date

smartphone models.

In recent studies, these sensors are used to get information from an environment

user has been. Kim et al. [29] propose a system that collects data from ambient light

sensors and extracts information about environment luminance from different light

sources. Hariadi et al. [27] provide an application that gives information to the user

about convenience of the lighting condition in terms of room types. It is expected

that user can save energy on lighting by using ambient light sensor on the smartphone.
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Fahim et al. [28] propose an activity recognition system that uses ambient light and

proximity sensors for classifying user activities. They use proximity sensor to find the

place of the smartphone that might be at the hand or in the pocket of users.

A person spending most of the time at indoor locations usually places the smart-

phone at a fixed place nearby, such as on the study desk he is sitting in, on the table

she is dining, instead of carrying the phone in the pockets. At this kind of places,

there might be static objects around the smartphone. For example, there might be

a bookshelf on a table where user put smartphone on. In addition, there might be a

stable night lamp on the nightstand and user can puts his/her phone while he/she is

sleeping. Hence, proximity sensor of the smartphone can detect stationary objects at

these locations and distance measure from these objects provide information about the

location of the smartphone.

The ambient luminance value may also be different in various locations in a room.

For example, a table in front of a window gets more illumination under the daylight

than a table placed a faraway location. Different lighting conditions in different places

make the ambient light sensor produce different values. Thus, it provides information

about the location of the smartphone. Likewise, magnetic field features of indoors

comprise of refraction of the geo-magnetic field by steel structures, and fixed large

objects. Kim et al. [29] has created a magnetic field map for an interior of 250 square

meters by using multiple magnetic field sensor in a mobile robot, and navigated robot

by using this map. Their proposed navigation system based on magnetic field maps

obtains the mean distance error which is less than 0.1 m.

As mentioned Section 2.1, it is attempted to enhance the performance of Wi-Fi

based positioning, which is commonly used technology in indoor localization by using

supporting technologies such as magnetic field based localization. Contribution of the

ambiance characteristics of indoors to seperate different locations has been investigated

in this thesis. Magnetic field sensor, ambient light and proximity sensors which can be

found in most of smartphones has been chosen for investigation. Our main goal is to

extract the ambient character of certain positions rather than providing a navigation
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system.

In recent studies, various machine learning approaches are applied on Wi-Fi fin-

gerprint databases for indoor localization [32, 33, 34]. Cheng et al. [34] propose an en-

hance indoor localization scheme with machine-learning to enhance accuracy in noisy

environments by integrating AP selection and the proposed signal strength reconstruc-

tion. Zhang et al. [30] apply deep learning algorithms on a fusion dataset which com-

bines Wi-Fi and magnetic field data. They improve effectiveness of smartphone indoor

localization compared to existing approaches based on Wi-Fi only.
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3. OVERVIEW

In this thesis, we aim to develop a methodology to identify user-selected places

of a smartphone in an indoor environment. This is the necessary step to develop

various place-oriented user-assistance applications on smartphones as exemplified in

the Introduction section.

Perspective of a typical smartphone user simply puts our methodology. Assume

that the user wants to identify different places in an indoor location, say in a lounge.

Assume also that she wants the smartphone to switch to silent mode automatically

on study desk or set an alarm on sofa. This example shows that she needs to select

these places firstly. For this specific example, these places are sofa and study desk.

Obviously, selected places need to be as dissimilar from each other as possible so that

smartphone sensors and Wi-Fi can differentiate them. Our user wants her smartphone

to be aware of these places whenever she puts it. Hence, the the phone needs to learn

these places by itself. As a result, a supervised learning method has to exist in the

phone. A supervised learning method requires a substantial amount of labelled data for

correct identification of a place. Hence, our user needs to collect data from all selected

places at different times in various days. While collecting data, she has to label the data

with the names of the selected places. So, she needs our application for labelled data

collection. After sufficient amount of data is collected, the machine learning algorithm

that we implemented on the smartphone can be executed to identify the places. If the

user is not happy with the identification results, then she can continue data collection

until she is happy with the results. She can use our application for different indoor

locations, such as her lounge, sitting room and her office. Location and place change

can be easily sensed by the smartphone after executing the necessary software that we

developed throughout this thesis.

The following chapters of this thesis further details this methodology as described

below:
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(i) Since data collection is done with smartphones, we have developed an application

to collect sensor and Wi-Fi data of a smartphone. When the developed applica-

tion is initiated by user, the application perceives lux, proximity, magnetic field

sensor data and Wi-Fi signals around. Received values are recorded to the lo-

cal memory of phone with the timestamp. Details of this process will be given

in the next chapter, “Data Collection”. To demonstrate that our application

can differentiate different locations and places in those locations, data collection

environments are chosen as two rooms in a house and an office. In the same

application, we developed a user interface to allow the user to collect data for five

different places for each chosen environment. During the data collection, smart-

phone is located on close points in the same place. As an example, during the

data collection from the table in the middle of lounge, the smartphone can take

place at any corner of the table. On the other hand, the smartphone is always

put on the table with the same orientation at every single data collection instant

so as to fully exploit magnetic field sensor data from its three different axes. At

the last part of Chapter 4, raw forms of sensor data are visualised to observe

ambient features of locations where data was collected from. Visualisation part

is carried out on a regular personal computer, not on the smartphone. This part

is essential to demonstrate that smartphone sensors behave discriminatively in

different environments and places.

(ii) We want the smartphone to learn the places by itself. Therefore, we need a

machine learning algorithm executing on the phone whenever the user wants to

improve the identification of the places. Training time should not take too long

to make the user get bored and quit the training process. To start with, we

developed a shifting-window based mechanism for data cleansing. This part is

implemented on the phone because it is also used during place identification. We

determined the best machine learning algorithm offline. To do this, we used five

well-known machine learning algorithms from the literature, exercised them on

our data set and compared their performance in terms of execution time and ac-

curacy. The complete model selection process is explained in “Machine Learning

Models Evaluation” chapter.
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(iii) Though we determined the learning algorithm offline, the phone has to generate

the model for each room by itself, because each indoor location has its own con-

straints due to the placement of the furniture, construction characteristics and

the usual behaviour of its inhabitants. Hence, the best learning model for one

room is usually different from the other environments. To achieve this, we de-

ployed Weka library on Android to implement “Data Classification Application”

which is explained in Chapter 6. By using this application, the user can now both

train the model and execute it to identify selected places with her smartphone.

We demonstrated that a unique model has been generated for every room. Clas-

sification accuracy and time are directly correlated with the training set size. So

the user might also wonder how many times she has to visit her selected places

so that she can get a reliable place identification. To answer this question, we

carried out a number experiments to present them in the same chapter.

Hence, in this thesis we achieved an end-to-end user experience on the smart

phone for collecting and cleansing data, using this data for training a model, exploiting

the same model for place identification, improving the model accuracy by collecting

more data whenever desired. Within our knowledge, this thesis is the first study of

this kind in the literature.
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4. DATA COLLECTION

In accordance with our motivation, we have developed a data collection system

that allows us to gather data from the daily life locations of users. Since we aim to

distinguish pre-determined minimal places in a room or in an office from each other,

and focus on making this study a part of a daily routine of a user, a simple, handy

Android application has been developed to collect ambient sensors data and Wi-Fi

signals, and record them in the memory of smartphone.

Nowadays, most smartphone producers are in tight competition, and smartphones

are well-equipped with high-tech sensor technology. Recent technology has reached the

level of taking selfie photos by squeezing phone [19]. There are many brands, models

and operating systems actively used in market.

Since the Android OS has the highest share in the market and most brands such

as Samsung, Sony, HTC, LG etc. use Android OS, many developers prefer to use

Android [20]. Especially, when an application works with sensors, usable device range

becomes important. While some smartphone models may have temperature, heart rate,

and even squeez sensors, some others may have only light sensors and accelerometers.

Producers organize popular technologies in smartphones in order to provide a balanced

price range. Hence, Android is the best OS to obtain a product range for developers.

For these reasons, in this thesis, Android OS is used to develop applications. We have

worked with the Samsung Galaxy Note II. Note II was released in November 2012 [21].

4.1. Device Specification

The device specifications, which are given in Table 4.1 and Table 4.2, support our

aims in terms of sensor technologies and computational power. Samsung Galaxy Note

II (GT-N7100) is powered by a 1.6GHz quad-core and it comes with 2GB of Random

Access Memory (RAM).
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Table 4.1: Technical features of Samsung Galaxy Note II

Feature Value

Processor 1.6GHz Quad-Core

RAM 2 GB

Internal Storage 16 GB

Expandable Storage(up to) 64 GB

Operating System Android 4.1

Table 4.2: Sensor Models of Samsung Galaxy Note II

Sensor Name Model

Compass/ Magnetometer AK8963C Magnetic Field Sensor

Proximity sensor CM36651 Color&Proximity Sensor

Ambient light sensor CM36651 Color&Proximity Sensor

4.2. Environmental Conditions

Unlike many other indoor localization studies, the data has been collected only

from determined locations. We have determined five locations in each selected room.

In a home environment, the experiments have been done in 2 different rooms (1 and

2 in Figure 4.1). The floor plan of the home and the room sizes are given below in

Figure 4.1, which is a representative floor provided by the builder.



21

Figure 4.1: Floor plan of the home used in experiments

• 1 Lounge : 25.00 m2

• 2 Living Room : 15.15 m2

• 3 Kitchen : 13.70 m2

In addition, we have done experiments in an open office environment where there

are divided rooms at different floors. We have determined five tables at locations that

differ within but not between floors to collect data. Due to the fact that there is only

one Wi-Fi AP around the office building, we aimed to measure the effect of the numbers

of Wi-Fi AP’s in indoor localization. For each determined location, the smartphone was

approximately placed to the same place with the same position and direction during

the data collection process. To make our tests under stable environmental conditions,
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we have paid attention to keep objects, especially electronics and metal items, in the

places they have always been. However, the light conditions change according to the

daily routine. During the day, normal daylight has been used as expected in every

home, while after the sunset artificial light has been put into use.

4.3. Data Collection Application

In this section, we explain our raw sensor data collecting process.

Figure 4.2: Data Collection Application interface
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The application can be used only with start and stop buttons to collect data.

They are shown in Figure 4.2. While user activate the record by start button, the

counter on the screen shows seconds. The user places the smartphone in a fixed position

of his choice. In Figure 4.3 and Figure 4.4, smartphone placements and chosen locations

are shown for the lounge and living room.

Figure 4.3: Chosen places in lounge
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Figure 4.4: Chosen places in living room

At the determined locations, the smartphone is placed and kept at the same

position for approximately one minute. The data collection method is activated by

the start button being pressed manually by the user after placement. Then, the stop

button terminates the data collection. During the time between start and stop but-

ton pressing, the received sensor data is recorded on the local memory of the phone

without processing. A timer is displayed to control the collection time by users. In

this manner, we have collected data at different times in a day. In Android OS, the

SensorEventListener interface allows developers to read sensor data by easy methods.
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The data reading frequency is adjustable. The predefined constant values in Android

are as follow:

• SensorManager.SENSOR_DELAY_NORMAL (delay of 200000 microseconds) (default

value)

• SensorManager.SENSOR_DELAY_GAME (delay of 20000 microseconds)

• SensorManager.SENSOR_DELAY_UI (delay of 60000 microseconds)

• SensorManager.SENSOR_DELAY_FASTEST (delay of 0 microseconds)

We used SensorManager.SENSOR_DELAY_NORMAL value for delay equal to 0.2 sec-

onds.

To access Wi-Fi connection, the Wi-FiManager class has been used. This class

provides the primary Application Program Interface (API) for managing all aspects

of Wi-Fi connectivity. We have created a class from the BroadcastReceiver abstract

class. This class has been used to activate the Wi-Fi scanner method of Wi-FiManager.

The BroadcastReceiver can receive data depending on Wi-FiManager configurations.

We have designed an asynchronized process to run BroadcastReceiver, and scan Wi-Fi

signals at least 8 times in a minute. This method provides Service Set Identifier (SSID),

Basic Service Set Identifier (BSSID), and RSSI information of the Wi-Fi AP located

nearby.

4.4. Data Exploratory Visualization

It is an important step to discover the data before machine learning algorithms

are applied. In this way, the size of the data, the attributes of the data, and the data

types of those attributes are understood.

In the given raw data graphics of lounge, living room, and office environments,

it can be observed that approximately 60–150 seconds’ data were collected at different

times. Times of the collection activities for lounge are shown in Table 4.3, the living

room in Table 4.4, and the office in Table 4.5.
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Table 4.3: Data collection times for the lounge

Room Date Time

lounge 25.6.2017 15:00

lounge 26.6.2017 00:50

lounge 27.6.2017 13:46

lounge 27.6.2017 17:20

lounge 27.6.2017 19:10

lounge 28.6.2017 10:40

lounge 28.6.2017 11:55

lounge 28.6.2017 15:40

lounge 27.6.2017 15:32

lounge 3.7.2017 18:00

lounge 8.7.2017 11:15

lounge 9.7.2017 13:42

lounge 9.7.2017 17:13

lounge 9.7.2017 19:16

lounge 10.7.2017 20:35

lounge 22.7.2017 09:42

lounge 23.7.2017 09:25
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Table 4.4: Data collection times for the living room

Room Date Time

living room 25.6.2017 14:49

living room 26.6.2017 00:40

living room 27.6.2017 14:08

living room 27.6.2017 15:33

living room 27.6.2017 17:35

living room 27.6.2017 19:20

living room 27.6.2017 21:10

living room 28.6.2017 11:45

living room 28.6.2017 11:35

living room 28.6.2017 15:50

living room 29.6.2017 10:25

living room 3.7.2017 18:20

living room 9.7.2017 17:00

living room 9.7.2017 18:55

living room 10.7.2017 20:45

living room 22.7.2017 09:50

living room 23.7.2017 09:35



28

Table 4.5: Data collection times for the office

Room Date Time

Office 28.4.2017 10:52

Office 28.4.2017 16:00

Office 28.4.2017 17:14

Office 05.05.2017 12:15

Office 12.5.2017 14:32

Office 22.5.2017 14:24

Office 22.5.2017 15:15

Office 23.5.2017 15:24

Office 23.5.2017 17:44

Office 29.5.2017 13:25

Office 29.5.2017 15:51

Office 31.5.2017 15:52

Office 5.5.2017 12:15

We have labelled chosen places for each room as Place1, Place2, Place3, Place4

and Place5.

Place1 in the lounge is located in front of the window, on the floor. There is a

flowerpot right next to it. Place2 is located on a radiator that is on the right side.

Place3 is on a coffee table, the furthest spot from the window. Place4 is on the sofa’s

side furthest from the window, to the right next to the Wi-Fi modem. Place5 is on the

console opposite the wall with the window.
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Figure 4.5: Proximity sensor data from lounge

As it is seen in Figure 4.5, proximity sensor fluctuates for Place1 during the day,

while showing stable values for other locations. The position of the flowerpot changes

according to the window being open or closed. Similarly, it is thought that whether

the curtains are blinded or not affects the variation of the proximity value.

Figure 4.6: Lux sensor data from lounge
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Figure 4.6 shows that, light sensor varies for all locations at different times a

day. However, lux value varies differently at different days even at similar times of day.

While, the lowest lux value is at the furthest position to the window (Place5) when

there is day light, the highest lux value is at Place1, which is right next to the window.

After sunset, this alignment changes under fluorescence light.

Figure 4.7: Magnetic field data on X-axis from lounge

Figure 4.8: Magnetic field data on Y-axis from lounge
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Figure 4.9: Magnetic field data on Z-axis from lounge

It can be seen in Figure 4.7, Figure 4.8 and Figure 4.9, while magnetic field shows

similar values for all locations at different days and hours, it considerably fluctuates

for Place2 and Place3 at X, Y and Z axes.

Figure 4.10: RSSI values of 1.Wi-Fi AP from lounge
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Figure 4.11: RSSI values of 2.Wi-Fi AP from lounge

Figure 4.12: RSSI values of 3.Wi-Fi AP from lounge
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Figure 4.13: RSSI values of 4.Wi-Fi AP from lounge

When it comes to Wi-Fi values, there is a Wi-Fi access point in this room, as

mentioned before. Graphic that is shown in Figure 5.6, belongs to this access point.

Other access points (Wi-Fi AP2, Wi-Fi AP3 and Wi-Fi AP4) are the APs of which the

signals are available for all locations and the ones that give the most results from Wi-Fi

scanning and their RSSI values are shown in Figure 4.10, in Figure 4.11, in Figure 4.12

and in Figure 4.13. The values of Wi-Fi AP1 fluctuate more than those of the others.

In the process of gathering data, movement inside the room was inevitable. The user

placing the phone and then taking it back when the time is up was a handicap for

Wi-Fi signals inside the room. Values taken from other APs are mostly in a certain

interval for each location. On the other hand, RSSI values are scaled between -40 to

-80 for Wi-Fi AP1, showing that RSSI values are higher for AP1 in this room than the

others (AP2, AP3, AP4).

For the living room, Place1 is located on radiator in front of the window. Place2

is next to the TV inside the bookshelf. Place3 is on the floor in the middle of the room.

Place4 is on the big sofa, located on the left side of the room. Place5 is on the little

sofa, which is the furthest spot from the window.
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Figure 4.14: Proximity sensor data from living room

As it is seen in Figure 4.14, proximity sensor data, as in the other room, fluctuates

at Place1, which is closest location to the window. It is stable for other locations. The

curtain at Place1 is open or closed from time to time, changing in accordance with the

situation of window.

Figure 4.15: Lux sensor data from living room
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Figure 4.15 shows that, under the daylight conditions, light sensor gives the

highest value at the window side, while giving the lowest value at Place2. Since Place2

is located on the bookshelf, it predicted to receive less light than other locations. Data

gathered after 21:00 and 00:00 were gathered under fluorescence light. In this case,

values are totally different from the values taken under the day light. However, lux

values of all locations under the fluorescence light are regular for all examples.

Figure 4.16: Magnetic field data on X-axis from living room

Figure 4.17: Magnetic field data on Y-axis from living room
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Figure 4.18: Magnetic field data on Z-axis from living room

When Figure 4.16, 4.17 and 4.18 is observed, it is clear that magnetic field data,

while giving regular values for all locations, varies on a large scale for Place2, which is

right next to the TV.

Figure 4.19: RSSI values of 1.Wi-Fi AP from living room
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Figure 4.20: RSSI values of 2.Wi-Fi AP from living room

Figure 4.21: RSSI values of 3.Wi-Fi AP from living room
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Figure 4.22: RSSI values of 4.Wi-Fi AP from living room

While scanning for Wi-Fi, it might not be possible to get signals from all Wi-

Fi access points in every scanning process. Signals can be interrupted due to various

physical reasons. From Figures 4.19, 4.20, 4.21 and 4.22, it has been observed that

signals coming from Wi-Fi AP4 are weaker than the others. On the other hand, since

Wi-Fi AP1 (in the lounge) is in the same house, the highest RSSI values are gathered

from this access point.

In the office environment, tables that data gathered from are different only with

regard to their positions. There is a laptop on each table. Any phones or electronic

devices were not interfered with while gathering data. Data was gathered only during

the work hours. As it is seen in Figure 4.23, on the contrary to the house environment,

proximity sensor data fluctuates in the office. People in the office kept working on their

tables in the process of data gathering. Therefore, proximity sensors sense different

objects nearby.
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Figure 4.23: Proximity sensor data from office

Figure 4.24: Lux sensor data from office

Since fluorescence light is available at all times during the day in the office, Figure

4.24 shows that the daylight effect was felt less than the home environment. It has

been observed that light has different values for different positions in the environment.
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As it is seen in Figure 4.25, 4.26 and 4.27, magnetic field variations have similar

values for all locations, even though there are possible variations for each of the three

axes in the office.

Figure 4.25: Magnetic field data on X-axis from office

Figure 4.26: Magnetic field data on Y-axis from office
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Figure 4.27: Magnetic field data on Z-axis from office

The office is a building with 19 floors. The entire building has been provided

with Wi-Fi service from a single access point for each floor. Wi-Fi AP1 is the Wi-Fi

service provided by the company. Figure 4.28 shows that, RSSI values of Wi-Fi AP1

vary for all locations on a large scale. Wi-Fi AP2 is a connection that is not possible to

access from every location. As it is seen in Figure 4.29, RSSI values of Wi-Fi AP2 are

distinctive in this regard. The connection is not available at the tables facing north,

while it is available at the tables facing south.
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Figure 4.28: RSSI values of 1.Wi-Fi AP from office

Figure 4.29: RSSI values of 2.Wi-Fi AP from office

To visualize the characteristics of the sensor data for different locations, radar-

charts have been created. The radarchart, also referred to as a spider graph, is an

effective visualization method to compare multiple quantitative variables. This kind

of radarchart is beneficial for observing that which variables have similar values or if

there are any extremes for each variable. For collected dataset, these charts provide a
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chance to make comparison between data which are collected from at the same times

of different days.

In addition, to visualize our dataset on radarcharts, we scaled all variables by

using z-score. A z-score, which is also known as a standard score, can be put on

a normal distribution curve. Z-scores of variables are calculated by subtracting the

mean of all data points from each individual data point, then dividing those points

by the standard deviation of all points. Thus, z-scores can expressed as number of

standard deviations from their means.

z =
X − µ

σ
(4.1)

where X is the value of a variable, µ is mean, and µ is standart deviation. As we

explained in the data collection part, we have datasets from different times of different

days. Each sample for each place is approximately 1 minute long. We have created

radarcharts for these 1-minute samples separately. To put a dot on radarchart for each

variable, we have calculated median values for each variable.

In the radarcharts, variables are represented as;

• L : Lux

• P : Proximity

• X : Magnetic field on X-axis of smartphone

• Y : Magnetic field on Y-axis of smartphone

• Z : Magnetic field on Z-axis of smartphone

• R1 : RSSI of Wi-Fi AP1

• R2 : RSSI of Wi-Fi AP2

• R3 : RSSI of Wi-Fi AP3

• R4 : RSSI of Wi-Fi AP4

In the lounge, when we look at Figure 4.30 we can observe that, for Place1, lux

value almost reaches maximum at any time but evening times without florescence. In
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Figure 4.30: Radarchart of Place1 in lounge at various times
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Figure 4.31: Radarchart of Place2 in lounge at various times
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Figure 4.32: Radarchart of Place3 in lounge at various times
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Figure 4.33: Radarchart of Place4 in lounge at various times
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Figure 4.34: Radarchart of Place5 in lounge at various times
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this place, which is the location nearest to the window, lux value is always the highest

in the room. Magnetic field is a stable component for each axis. The Wi-Fi RSSI

values do not show similar characteristic during the day for all places.

As it is seen in Figure 4.31, in Place2 at the lounge, it can be said that the

polygons of close times look like similar, although they have been collected on different

days. For example, the polygon at 19:10 and the polygon at 19:16 are almost the same,

with slight difference in R1 and Z. Another notable point for Place2 is that magnetic

field on X-axis mostly reaches to maximum value at different hours. And the average

values of R2 component during all day is remarkably higher than the average values of

R2 component of other places.

Figure 4.32 shows that in Place3, from 5:00 p.m. to morning hours, light compo-

nent proportionally shows stable values. And the values of magnetic fields are almost

same at any time of day.

When we look at Figure 4.33, in Place4, magnetic field values on X, Y, Z axes

do not change much at different times of the day. Apart from this, it can be seen that

R1 value is relatively higher due to the proximity of Place4 to Wi-Fi AP in the same

room.

As it is seen in Figure 4.34, in Place5, values of light sensor are lower than values

of light sensor of other places at almost each time of the day because Place4 is the

furthest location to window in the lounge.

It is noteworthy to emphasize that, while the values of proximity sensor are

almost zero in all places, in Place1, it shows an increase in certain hours of the day.

The reason behind this increase stems from the changing position of curtain which

tends to be brought down during evening hours.

For living room and office we have also created radarcharts. They can be found in

Appendix A.
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For living room, it is deduced that Place1 is the only location that proximity

sensor gives high value since Place1 is located next to the window and movement

of curtain triggers the proximity sensor. At the morning hours, light sensor reaches

maximum value at this location for this room.

Values of the magnetic field on X,Y,Z axes are constant during all day and Value

of light sensor is close to minimum except the hours between 09.50 a.m. and 03.30

p.m. at Place2. In addition to that, R1 and R2 reach the highest value at this location

for this room. On the other hand, R3 reaches the highest value at Place5.

At Place3 in living room, radarcharts are providing similar values at close hours

even though related data were collected on different days. For instance, radarcharts of

05.35 p.m. and 06.55 p.m. show similar polygons.

In the office environment, Wi-Fi signals originate from only one source. Thus,

polygons created for the office are hexagons. Radarcharts for office show that most of

the time, RSSI values does not change for each place at different hours. Proximity sen-

sor data and magnetic field values change location by location. Place4 and Place5 are

two tables at one meter distance from each other. Similarity of polygons of radarcharts

for those places overlap with their physical proximity.

As it is seen from radarcharts, sensor data show various characteristics in different

places at different times. Hence, it could be said that, every sensor variable can be

used as an attribute to distinguish places from each other. Time is also a distinctive

parameter for sensor data classification.
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5. MACHINE LEARNING MODELS EVALUATION

With the concepts of machine learning, different systems have become under-

standable. There are two main approaches in machine learning: supervised learning

and unsupervised learning. For using supervised learning models, given training dataset

must include target output for each sample in the dataset. Supervised learning models

correlates outputs with the given samples. In unsupervised learning models, there are

not known outputs for the given dataset. It correlates samples of given dataset with

each other and makes extractions based on the similarities of samples with each other.

The main target of this study is classifying different locations in a room by using

ambient features, time and Wi-Fi RSSI signals around the smartphone. It is important

to use the correct learning algorithm while performing this classification, in terms

of classification accuracy and processing performance. In this chapter, performance

of the different machine learning algorithms are evaluated for the created fingerprint

database. Since, the data has been collected from known places, each record in the

dataset includes place label in itself. Therefore, our smartphone sensor and Wi-Fi

dataset is appropriate to classify with supervised machine learning models.

5.1. Creating Fusion Dataset

The data collection application provides a fusion dataset as well as raw data. Raw

data contains sensor data with different lengths. For example, for the 30-second-long

dataset, there are approximately

• 300.000 records for light sensor data,

• 300.000 records for proximity sensor data,

• 70.000 records for magnotemeter data,

• 300 rows for Wi-Fi data.
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The differences between the data record counts are caused by sampling a period

of sensors.

As we can see in the raw data graphics, these records may include outliers. To

eliminate these outliers, we applied a sliding window median function to raw data.

This function provides equal-length sensor data for all sensors. It means, if we take

w as window size, the median of the first w values of raw data records is calculated

and added to the new array. Then, if we take s as shift size, the median value of the

next w records is calculated by beginning from the (s+1)th record. This calculation

needs to be maintained until the end of the raw data records. We divided raw data

records in 1-second-length windows, and applied a 0.5-second length segments as shift

size. Duration of the data recording for a place is the same for each sensor. They

all are activated by start button and deactivated by stop button at the same time.

Hence, the duration (measured in seconds) is common. The given formulas are used

for calculating window size and shift size, respectively.

WindowSize =
Number of raw data records

Duration in seconds
(5.1)

ShiftSize =
Number of raw data records

Duration in seconds ∗ 2
(5.2)

Preprocessed data can be acquired by applying this function. This function is

operated by data collection application after the process of gathering raw data. A

preprocessed data table is saved on local memory of a phone. The preprocessed data

table is used in data classification, which will be explained in detail below.

As to Wi-Fi, it has been processed differently due to its different characteristics.
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While other sensors produce only numeric data, Wi-Fi data includes more than one

component in different data types for scanning. It includes SSID, BSSID and RSSI

values at least. As we mentioned above, we did not install any specific access point

and used only existing ones. During our data collection phase, it was observed that the

owners of the access points, such as neighbours, may change the settings of their access

points. SSID is the most changeable setting, of course. Someone may want to change

the visible name of their access points frequently. On the other hand, the existing

access points may vary day after day. If specific Wi-Fi AP’s are not used in this type

of localization, Wi-Fi becomes depended on many changeable situations. They can

be deactivated by their users at any time. Thus, in the home environment, we create

Wi-Fi fingerprint by the following methodology:

During a data collection period, each received Wi-Fi signal is recorded in cache

memory with their BSSID, SSID and RSSI information for each location. At the

end of the collection phase –via stop click– received signals are sorted according to

their power in descending order. Then, BSSID’s of Wi-Fi access points that have the

strongest signals are appended on each other. Obtained strings are assigned to places

as Wi-Fi labels.

In the office environment, since there are only Wi-Fi APs mostly, Wi-Fi data is

handled as numeric data. We assigned RSSI values with the methodology of other

numeric sensor data.

5.2. Algorithms and Techniques

To find the most appropriate supervised machine learning algorithm, AdaBoost-

Classifier, DecisionTreeClassifier, SVC, GaussianNB, and KNeighborsClassifier algor-

tihms were used to train our dataset. In the following section, these algorithms will be

briefly explained.
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5.2.1. Decision Tree Classifier

It is a predictive machine learning model. The components of a decision tree

model can be similar to those of a real tree. A root, branches, internal nodes and ter-

minal nodes are the essential components. Each node of decision tree demonstrates an

attribute. The branches show the probabilistic values of the attributes in the observed

samples. The terminal nodes represent the dependent variable.

The dependent variable can also be referred to as the class attribute, which is the

attribute to be predicted. Since its value is attached to the values of all of the other

attributes, it is named as dependent. Other attributes supporting the predicted value

of the dependent variable are the independent variables in the dataset.

Among the data classiffication models, the tree is much simpler, comprehensible

model [36]. It is constructed based on the probabilities of variables, thus the tree

models may vary from each other in terms of nodes placement. If the internal node

and terminal nodes look very similar on each side of the root, then the tree is referred

to as a balanced tree. Generally, a balanced tree is a good model. If the subtrees in

the decision tree only have one solution, then all of the subtrees are degraded to simple

solutions and the construction process may be improved without any change in the

result. In literature, there are remarkable studies by Ross Quinlan in this field [37] The

prominent algorithms of Quinlan are ID3 and C4.5 [38]. The ID3 algorithm was first

created, and the C4.5 is the naturally improved version of the previous algorithm [39].

The principle idea behind the both algorithms is information theory.

5.2.2. K-Nearest Neighbor

According to this algorithm, feature extraction during classification is used to

find the closeness of the new sample to be classified according to k of the previous

samples [43].
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For example, to find an accurate class for a new sample with k = 3, the nearest

three of the previously classified samples are taken. If these k samples belong to a

class, the new sample also belongs to the same class. To find the closeness between

different samples, the Euclidian distance can be used.

It is a simple machine learning algorithm. However, it is preferred in small-scale

learning processes because it performs the operations on large-scale data with a long

time basis.

5.2.3. Ada Boost Classifier

In a boosting classifier, a lot of weak learners are combined to form one powerful

learner. In this method, predictors are trained sequentially [42].

In the Adaboost (Adaptive Boosting) algorithm, an estimator takes underfit

training situation into account, which is performed by another estimator previously [41].

To build an Adaboost classifier following steps are applied: the first classifier is

trained on the training set and makes predictions. Then, relative weight of incorrectly

categorized training data is increased. The second classifier is trained with the increased

relative weight of incorrectly categorized training data. After the second classifier

predicts, the weights are updated again. This process continues until all classifiers in

the Ada-Boost Classifier are trained.

5.2.4. Gaussian Näıve Bayes

This algorithm is based on Bayes Theorem. It is a widely used supervised learning

model since it is powerful on noisy data and easy to implement [44]. It can be performed

on large and more complicated databases. Despite of its plain design and simplified

assumptions, Naive Bayes classifier gives much better results than expected in real

world situations.
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5.2.5. Support Vector Machines

They are supervised learning models and widely used for classification and re-

gression analysis.

The SVM learning algorithm creates a model that assigns new samples to a

category by applying a non-probabilistic binary linear classification method.

SVMs can efficiently perform both linear and non-linear classification with a

kernel function [40].

5.3. Benchmark Model

In the literature, several comparative study investigates performance of different

machine learning methods for indoor positioning.

First, Bozkurt et al. [18] provides an evaluation of algorithms according to per-

formance of the classiffication for indoor positioning. For this purpose, Nearest Neigh-

bour (NN), Sequential Minimal Optimization (SMO), J48, Nave Bayes and BayesNet

algorithms were comparatively tested. Experiments were performed by using WEKA

library. They used UJIIndoorLoc database, which can be downloaded from UCI Ma-

chine Learning Repository. According to their test results, by using the whole dataset,

J48 gives the best accuracy (99.89%). UJIIndoorLoc dataset only includes Wi-Fi RSSI

data as an attribute.

Zhang et al. [33] proposes combining a grid search based kernel support vector

machine with principle component analysis. Principle component analysis reduces

dimension of measurements. They used grid search for fine tuning the support vector

machine algorithm. They compared K-Nearest Neighbour, Back Propagation Neural

Network and Support Vector Machine based methods on their RSSI-based dataset

for doing indoor localization. They have collected RSSI samples from 16 different Aps.

They performed a comparison by using iteratively 30, 50, 70 samples as training dataset
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and remain samples as test dataset. Localization performance is evaluated in terms of

computational efficiency and accuracy. They are compared average location errors in

meters. Their proposed Support Vector Machine algorithm with principal component

analysis is better than K-Nearest Neighbour, Back Propagation Neural Network and

classical Support Vector Machine algorithms.

Tariq et al. [35] compares different machine learning classifiers performance on

capacitive sensor-based indoor localization system. They have done their tests in a

3m × 3m room. Their performance metrics are localization accuracy, average dis-

tance error, precision and recall. In addition to that, they assess the contribution of

training data size on localization accuracy with different algorithms. Bayes Net, K-

Nearest Neighbours, Support Vector Machine, Random Forest and Adaptive Boosting

algorithms were evaluated.

The common point of these studies is the use of data accuracy as an evaluation

metric in each case. The performance of algorithms varies for different size of training

samples. Contrary to our approach, their studies are only one technology-based lo-

calization. Fodero et al. [30] combines two different technologies, Wi-Fi and magnetic

field. They collected data with a smartphone from indoor locations. They used Deep

Neural Network algorithm for the classification of indoor location dataset.

5.4. Our Evaluation Methodology

Given machine learning algorithms were performed on each dataset separately

for three different indoor areas where data collected from (lounge, living room, office)

since we have focused on positioning in a room.

5.4.1. Evaluation Metrics

Machine learning models evaluation must be performed according to the charac-

teristic of the dataset. In this study, our dataset includes ambient sensors and Wi-Fi

data as attributes and it is a multiclass dataset since there are five places in each dataset
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for different rooms. In accordance with a multi-class dataset, accuracy was used for

performance indicator to find the best supervised machine learning model among eval-

uated methods. Accuracy can be measured with metrics such as True Positive (TP),

False Positive (FP), False Negative (FN) and True Negative (TN). These values are

obtained from a confusion matrix, which shows the number of correctly or incorrectly

predicted data points. Accuracy is the possibility of the classifier can correctly predict

positive and negative samples.

Comparison of different supervised machine learning models has been performed

based on given evaluation metrics in below:

• Classification accuracy on training dataset

• Classification accuracy on test dataset

• Process time of data training and testing.

A free software machine learning library Scikit-learn [45] was used for implemen-

tation by Python programming language.

5.4.2. Data Pre-processing

At the beginning, each numerical feature have been normalized by using Min-

Max Scaler. This function transforms features by scaling each feature individually to

a given range.

Then categorical variables are converted to numerical variables by using the one-

hot encoding scheme. Generally, learning models takes numerical inputs as features.

Using one-hot encoding scheme for transforming categorical variables to numerical

variables is common process. For a possible value in a categorical feature, a dummy

variable is created by one-hot encoding.
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5.4.3. Shuffling and Splitting Data

After the data pre-processing, dataset was shuffled and splitting data to obtain

training data and test datasets. Each dataset was shuffled for for each room separately.

80% of the data is used for training and 20% for testing by random sampling for each

each room separately.

5.4.4. Model Evaluation

At this part, a prediction function was implemented. This function;

• Trains the chosen learner on the training data and calculates the process time,

• Performs prediction on the test dataset,

• Records the total prediction time,

• Calculates the accuracy score for both the training subset and testing subset.

This function is called for 5 different learning models by using Sklearn library

which are given below;

• AdaBoostClassifier(random state=10)(ABC)

• DecisionTreeClassifier(random state=10)(DTC)

• SupportVectorClassifier(random state=10)(SVC)

• GaussianNaiveBayes()(GNB)

• KNeighborsClassifier(number of neighbors=5)(KNN)

Random state parameters are used as a seed in random number generator. Using a

same number as random state while a classifier is running guarantees that produces out-

puts are same for each classification. Number of neighbors parameter is used as for de-

termining how many neighbor is used in comparison of distances to current point at each

iteration.
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These classifiers were evaluated by changing the learning sample sizes. Learning

data size was calculated the number of records equal to 20%, 50%, and 100% of the

training data, and used each training set separately in the prediction process to observe

their effects to model performance. With this method, we would like to show that

how much training data is required to obtain the highest accuracy. As to, training

and predicting time comparison between different algorithms, it could be said that,

SVC spends the longest time during training and prediction. Increasing the number

of samples for each algorithm increases the processing time. ABC runs longer on the

training set than on the test set. KNN spends more time on prediction than on training.

The initial results are given below in Figure 5.1, Figure 5.2, Figure 5.3 for each

room.
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The given figures show that, for the Decision Tree Classifier and KNN, training

dataset volume does not affect the accuracy metric after 50% of the data. Also we can

say that, enhancing training dataset increase the accuracy except the AdaBoostClas-

sifier.

In addition, learning curves are created for each model to observe training score

and cross-validation score depending on the training size. It can be seen in Figures

5.4, 5.5, 5.6 that, the validation score could be increased with more training samples

in all models except AdaBoostClassifier. In addition that, DesicionTreeClassifier gives

the highest validation score with the lowest training examples.

According to given figures above, it can bee seen that, Decision Tree Classifier is

the best according to accuracy and processing time. Hence, it has been chosen model

for indoor positioning with room level data.
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5.5. Refinement of the Best Model

Finding optimal parameters and optimizing model is an inevitable part of super-

vised learning. Thus, fine tuning on parameters and feature importance analysis was

performed on our best model, namely Desicion Tree Classifier.

5.5.1. Improving Results with Choosing the Best Model

We have implemented a grid search algorithm to optimize the parameters of

decision tree classifier in order to improve the localization accuracy. We used Grid-

SearchCv algorithms in ScikitLearn [45]. For this aim, the best parameter was searched

for maximum depth of tree model.

From 3 to 10 (possible depth level numbers for the decision tree model) values

were given for maximum depth parameter in grid search algorithm. Finding the most

appropriate maximum depth parameters protects model from overfitting. Grid search

algorithm has returned the maximum depth value equals to 6 for the best model.

To compare accuracy scores of optimized model and unoptimized model, prediction

process was done with the best classifier model by using fine tuned maximum depth

parameter. In grid search algorithm we used all training and test set without any data

reduce. A comparison is made between predictions by using initial and final models,

and it has been observed that the accuracy scores did not change in both cases.

5.5.2. Feature Importance

In this part, it has been aimed to determine which features provide the most

predictive power which is the percentage of information in the class variable that can

be explained by the features in the model. This is an important part to specify which

sensors are more meaningful for distinguishing indoor locations from each other. By

determining feature importance, Data Collection Application may be optimized by

removing less important sensor data collection, then the power consumption of the

application may be reduced.
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As a result of this analysis, it is observed that the most predictive features for

each room is different. Normalized weights for each room are shown in Figures 5.7,

5.8, 5.9.

Normalized feature weights were changed for each room due to difference between

environmental conditions of the rooms where data is collected from. Cumulative feature

weights represents cumulative sum of the features weights.

Figure 5.7: Normalized weights for features of lounge data

Figure 5.8: Normalized weights for features of living room data
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Figure 5.9: Normalized weights for features of office data
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6. DATA CLASSIFICATION APPLICATION

After the analysis of machine learning models, an Android application is imple-

mented to run J48 algorithm on the sensor data to show smartphones computational

availability to realize classification.

6.1. Weka and J48

Weka is an open source machine-learning tool that includes a notable collection

of algorithms to apply on different datasets given by users. It is a commonly used

tool for preprocessing data, classification, and clustering since it is also called from

independent Java codes.

Recently, since mobile devices have processors that can compete with comput-

ers (and their computational power reached considerably high levels), data mining on

mobile devices became applicable. Hence, Weka moved onto the mobile platform es-

pecially on Android devices, which allow developers to implement Java codes. This

progress makes it easier to make a classification, gathering, and it also helps rule mining

functions on Android platforms.

In this thesis, a Weka library is deployed on an Android application to classify

collected sensor data. The developed methods are explained in the following sections.

Interface of the application is shown in Figure 6.1.
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Figure 6.1: User interface of classification application

As it can be seen in Figure 6.2, by using this application, the user can choose the

training dataset from the local memory of the phone.

Figure 6.2: CSV files in local memory of phone which were created by Data

Collection Application
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Figure 6.3: Sample screen-shots of a trained model and some test results for chosen

train and test files

With this application, users can take the opportunity to classify data collected

by the same phone cumulatively. Users can display the decision tree model and classi-

fication results in the screen as it is shown in Figure 6.3.
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Trained decision tree models created by Data Classification Application are given

in Figure 6.4, 6.5 and 6.6 for each location:

Figure 6.4: Trained model for lounge

As it is seen in Figure 6.4, decision tree model of lounge is based on magnetic field,

lux, proximity and time attributes. Wi-Fi is not used as an attribute for classification

in this room.
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Figure 6.5: Trained model for living room

Figure 6.5 shows that, on contrary to the decision tree model of lounge, Wi-Fi

is used as an attribute in decision tree model of living room while proximity does not

take place in this model. Also, magnetic field, lux and time attributes are used for this

room.
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Figure 6.6: Trained model for office

As it is seen in Figure 6.7, for the office, decision tree model is less complicated

than the models of other rooms. Simplicity of the decision tree model of office coincides

with our observation in the radarchart graphics given in Section 4.4.

Moreover, obtained decision tree models by Data Classification Application, com-

pletely overlapping with the feature importances of each room which are given in Sec-

tion 5.6.2. The most important features are magnetic field, lux and proximity sensors

data for decision trees of lounge and living room while there are only lux and proximity

sensor data in the decision tree model of office.

6.2. Cross Validation Computation on Smartphone

When the training set includes the test set, the error rate of the prediction de-

creases defectively. Not using the entire dataset during training is a way out to handle

with this problem. Some data can be excluded to use as test data. In this manner,

the real performance of the trained model on new datasets can be assessed. This is the

basic concept of the cross validation.

Here we used 10 fold cross validation, which is the most common kind of cross

validation. In 10-fold cross validation, the dataset is divided into 10 subsets. One of

them is used as the test set iteratively. In each iteration, except for the chosen subset,

the other subsets are used together as a training set. Classification algorithm is run for
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the chosen subset and the prediction is made based on the training set. Then it repeats

9 more times by changing the test set with next the subset. Consequently, the average

error rate is calculated according to predictions. The 10-fold cross validation method

has been applied on each consolidated dataset to measure how successful a prediction

could be made according to those models.

Figure 6.7: 10-fold Cross Validation for lounge
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Figure 6.8: 10-fold Cross Validation for living room

Figure 6.9: 10-fold Cross Validation for office
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As it is shown in Figure 6.7, 6.8 and 6.9, cross validation achieves almost 100%

accuracy for each location. The reason behind this high accuracy rate is that although

the cross-validation is performed within the dataset, there is still data collected from

the same time from the same place.

To improve the reliability of cross-validation, we distinguished the learning set

from the data of the test set. We used 1.,2.,3.,...(n-1). datasets to build a training

model and applied it on n datasets for classification. This process was iterated n times

until all datasets were once in the testing and computed the overall confusion matrix.

All computations have been made on a smartphone. Results for all three rooms are

given in Table 6.1, Table 6.2, and Table 6.3:
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Table 6.1: Results of iterative cross-validation for lounge

Dataset # Correctly Classified Incorrectly Classified

1 79,6774 20,3226

2 100 0

3 80 20

4 80,1441 19,8559

5 0 100

6 79,6774 20,3226

7 80 20

8 80 20

9 99,7015 0,2985

10 99,8387 0,1613

11 99,8858 0,1142

12 99,8592 0,1408

13 79,875 20,125

14 99,8387 0,1613

15 59,8611 40,1389

16 68,5915 31,4085

17 80 20

Average 80,4088 19,5912
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Table 6.2: Results of iterative cross-validation for living room

Dataset # Correctly Classified Incorrectly Classified

1 62,0635 37,9365

2 20 80

3 100 0

4 80,4348 19,5652

5 99,8387 0,1613

6 79,8611 20,1389

7 100 0

8 100 0

9 99,8864 0,1136

10 99,8889 0,1111

11 81,3415 18,6585

12 84,5588 15,4412

13 100 0

14 99,7222 0,2778

15 99,8507 0,1493

16 100 0

Average 87,9654 12,0346
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Table 6.3: Results of iterative cross-validation for office

Dataset # Correctly Classified Incorrectly Classified

1 99,8361 0,1639

2 80 20

3 100 0

4 60,6349 39,3651

5 98,5714 1,4286

6 80,4412 19,5588

7 100 0

8 100 0

9 100 0

10 58,9063 41,0938

11 99,1935 0,8065

Average 88,8712 11,1288

As it can be seen from the results, since the data received at close intervals show

similar characters, the accuracy is higher when this data is tested. Hence, enhancing

collected dataset by getting samples from different times of a day is going to increase the

accuracy of classification. With the current dataset, the classification method reaches

85,7485% accuracy.

6.3. Effect of Collected Dataset Amount to Accuracy

To evaluate the effect of enhancing the training set amount on classification ac-

curacy, a different experimental test is applied.

In this test, training dataset has been collected from five chosen places in a room

at the evening times of different days. Collection times of the data are given in Table

6.4.
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Table 6.4: Times of data collection

Time of

Data Collection
dataset

20.12.2017

23:05
D1

22.12.2017

23:58
D2

24.12.2017

00:17
D3

24.12.2017

03:37
D4

24.12.2017

21:15
D5

24.12.2017

23:25
D6

26.12.2017

21:25
D7

26.12.2017

22:31
D8

27.12.2017

00:19
D9

27.12.2017

19:41
D10

27.12.2017

21:30
D11
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The dataset which is named as D11 was used as test data. And rest of datasets

were used for training. Classification application was run iteratively. For the first iter-

ation, only D1 data was used as training data. In the following steps, the next dataset

has been appended on previous data. For example, in the second iteration our training

data was D1+D2 and, in the third iteration our data training data was D1+D2+D3. In

each iteration, our dataset enhanced cumulatively with the collected datasets and the

classification application run for classifying test data (D11). We recorded the correctly

classified rate for all classification. With this method, we aimed to demonstrate how

much we have to train to reach the maximum accuracy for classification.

Since the room conditions were stable during the data collection, the values read

by sensors in datasets are similar. Therefore, correctly classified rate is getting higher

while enhancing the training data cumulatively. The results are given in Figure 6.10.

We reached almost 100% accuracy at end of the 8th iteration.

Figure 6.10: Classification results for the different size of datasets

Results of the test shows that, under the stable conditions with regards to level

of light and position of furniture around, when data is collected from the same location

for eight times , the classification accuracy can reach almost 100% accuracy.
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7. CONCLUSIONS

Beyond the indoor localization, we presented a study on investigation of envi-

ronmental features to distinguish different places from each other in a room. We used

ambient light and proximity sensors since indoor places have different lumination at

different corners and includes lots of stable objects around places where a user places

his/her smartphone. In addition, like lots of studies in literature, we have collected

magnetic field sensor data and Wi-Fi data to combine them with ambient sensors

data. We have marked five different points for three different locations (two houses,

one office). By using different ambient sensors, we tested whether the devices could

distinguish the characteristics of these locations.

In this thesis, we first offer a sensor data collection application that can be used

in everyday life. With this application running on the Android platform, we aimed

to identify place of devices in closed and physically small spaces, like our homes and

business locations. We have collected data from five pre-determined places in three

different rooms. On different days, we collected 1-minute-long data at certain hours

of the day from these points. When collecting data, we have worked in the ordinary

circumstances of the places. That is, we have not made any special changes in the

position of the objects in the rooms. The data collection application we have developed

presents the raw and processed state of the collected sensor data.

At the second part, we have visualised collected raw data to explore sensor data

and Wi-Fi. We made observations on raw data to see different values produces from dif-

ferent locations according to their environmental differences. The graphs we obtained

show that the sensor data has a certain characteristic for each position, depending on

the time the data was collected. Since the ambient light changes at different times of

the day, we decided to take the time as a component in addition to the sensor data.

In the data collection application, raw data is also processed to filter out the

noise. In this process we have implemented the median function on the one-second
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window. We combined all the sensor data in a fusion and obtained a fusion database.

We have evaluated our fusion database by using machine learning concept which is

a hot research topic. We thereby created data sets that we can analyze with several

supervised machine learning algorithms.

At the evaluation of the machine learning models part, we measured the perfor-

mance of five different machine learning algorithms for each room individually. We

determined the best classifier as the Decision Tree Classifier in terms of accuracy and

process time. In this part, firstly we pre-processed our dataset by normalizing nu-

merical features and converting categorical features to numerical values with one-hot

encoding scheme. Then we shuffled dataset and splitted into test and training datasets.

We performed Decision Tree Classifier, Ada Boost Classifier, K-Nearest Neighbor, Sup-

port Vector Machine, Gaussian Näıve Bayes algorithms on separately 20% 50% 100%

on training dataset to create model. Then we compared accuracy on training set,

accuracy on test set, and process times of each algorithms. In addition to that, we

created learning curves for each algorithms. The best performance was obtained with

the Decision Tree Classifier with 98% accuracy rate on 20% of training samples. To

optimize the best classifier we applied some fine tuning methods. By using the grid

search algorithm, we found the best parameters for the maximum depth in the tree

model. We performed the Decision Tree Classifier with the optimal maximum depth

value and compared the accuracy scores with the unoptimized model. Accuracy score

did not change in both models. Predictive power of used features were also investigated

to specify which sensors are more meaningful for distinguishing indoor locations from

each other. Weighted feature importances are changed by environmental conditions

of indoor locations where data collected from. According to the results we obtained,

proximity and light sensor data in an office environment were the most decisive fea-

tures, while magnetic field data and Wi-Fi were the most decisive features in home

environment. Since the most predictive feature changes from a place to another place,

we decided to use each feature in our proposed system. We have shown that by com-

bining different ambient sensors and Wi-Fi, it is possible to distinguish certain places

where users can usually place their phones in daily life in a room.
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Unlike the studies in the literature, we used light and proximity sensors in ad-

dition to Wi-Fi and magnetic field sensor, which are the most commonly used data

sources in indoor positioning. We used these sensors to investigate whether or not the

interior spaces could be characterized. Algorithms we performed for classification pro-

vide remarkable accuracy. However, predictive power of used features did not show a

stable performance in every room. Thus, to prove contribution of ambient light, prox-

imity and magnetic field sensor data, more experiments are required in more rooms

with different characteristics.

At the last part, we developed an application to create a decision tree model by

using Weka library on Android. By using this application, a decision tree model was

created for each location. To test the model success, firstly, 10-fold cross validation

was applied for each dataset. As a result of these tests, we have seen that the models

are close to 100% accuracy. However, since there might be samples from the test set in

the learning set, we have applied an iterative test. We left a certain data set, collected

at a time from the learning set, and built a decision tree model with the rest of data.

We then tested the remaining dataset. This method was iteratively applied on each set

of data from the learning set. As a result of this iterative test, we achieved an average

accuracy of 85%. In addition, we demonstrate that, by enhancing size of collected data

we can reach almost 100% classification accuracy.

In this study, data collection, pre-processing, building the decision-tree model and

making classification according to the created model are all done on the mobile device.

In this way, we provide a basis for smartphones to support users in their daily lives by

taking automatic actions, which is our main motivation in this thesis. For future work,

we aim to enable smartphones to automatically perform certain operations at certain

times and at certain locations according to the habits of their users.
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APPENDIX A: RADARCHARTS FOR LIVING ROOM

AND OFFICE

Created radarcharts for five chosen places in living room and office are given in

next pages.



94

00:40

L

P

X

Y

Z R1

R2

R3

R4

09:35

L

P

X

Y

Z R1

R2

R3

R4

09:50

L

P

X

Y

Z R1

R2

R3

R4

10:25

L

P

X

Y

Z R1

R2

R3

R4

11:35

L

P

X

Y

Z R1

R2

R3

R4

11:45

L

P

X

Y

Z R1

R2

R3

R4

14:08

L

P

X

Y

Z R1

R2

R3

R4

14:49

L

P

X

Y

Z R1

R2

R3

R4

15:33

L

P

X

Y

Z R1

R2

R3

R4

15:50

L

P

X

Y

Z R1

R2

R3

R4

17:00

L

P

X

Y

Z R1

R2

R3

R4

17:35

L

P

X

Y

Z R1

R2

R3

R4

18:20

L

P

X

Y

Z R1

R2

R3

R4

18:55

L

P

X

Y

Z R1

R2

R3

R4

19:20

L

P

X

Y

Z R1

R2

R3

R4

20:45

L

P

X

Y

Z R1

R2

R3

R4

21:10

L

P

X

Y

Z R1

R2

R3

R4

Figure A.1: Radarchart of Place1 in living room at various times
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Figure A.2: Radarchart of Place2 in living room at various times
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Figure A.3: Radarchart of Place3 in living room at various times
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Figure A.4: Radarchart of Place4 in living room at various times
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Figure A.5: Radarchart of Place5 in living room at various times
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Figure A.6: Radarchart of Place1 in office at various times
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Figure A.7: Radarchart of Place2 in office at various times
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Figure A.8: Radarchart of Place3 in office at various times
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Figure A.9: Radarchart of Place4 in office at various times
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Figure A.10: Radarchart of Place5 in office at various times


