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ABSTRACT

MODEL PREDICTIVE CONTROL OF DIESEL ENGINE

AIR PATH WITH ACTUATOR DELAYS

In recent years, emission regulations of the countries have been tightened with

the increase in the number of cars. Nevertheless, reducing the emissions of diesel

engines is a difficult technical issue. Since the Diesel Engine Air Path (DEAP) is a

MIMO system with 2 actuators, EGR valve and VGT valve, and 2 outputs, manifold

absolute pressure (MAP) and air mass flow (MAF), control of this system with SISO

PID controllers requires an iterative fine-tuning process for controller parameters due

to coupled effect of VGT and EGR on MAP and MAF.

The main objective of this thesis is the Model Predictive Control (MPC) of MIMO

Diesel Engine Air Path system. MPC is a well-known technique in the literature with

its many applications on MIMO systems. Existing results show that MPC can satify the

desired settling time, zero steady-state error, and overshoot criteria for both outputs

MAP and MAF. However, the effect of actuator delay that considerably affects system

performance, is not addressed sufficiently. In this thesis, MPC of DEAP is extended

with a delay term added to actuators EGR and VGT on the plant model. A linear

state-space model of the plant is obtained by using the System Identification techniques

and the states of the identified model are extended due to delay term. It is shown that

MPC performs better when the delay is taken into account in the algorithm. Another

contribution of this thesis is that SISO PID controllers are optimized by Particle Swarm

Optimization (PSO) method. The PID gains found by Ziegler-Nichols (ZN) method

are taken as the initial points of the PSO and it is shown that PSO improves the PID

controller performance for the MIMO system.
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ÖZET

EYLEYİCİ GECİKMELİ DİZEL MOTOR HAVA

YOLUNUN MODEL ÖNGÖRÜLÜ KONTROLÜ

Son yıllarda, otomobillerin sayısındaki artışla ülkelerin emisyon düzenlemeleri

sıkılaştırılmıştır. Bununla birlikte, dizel motorların emisyonlarının azaltılması zor bir

teknik konudur. Dizel Motor Hava Yolu (DMHY), 2 eyleyici, EGR valfi ve VGT vanası,

ve 2 çıkışı, manifold mutlak basıncı ve hava kütle akışı, olan çok giriş çok çıkışlı (ÇGÇÇ)

bir sistem olduğundan, tek giriş tek çıkışlı (TGTÇ) PID denetleyiciler ile bu sistemin

kontrolü, çıkışlar üzerinde eyleyicilerin birleşik etkisi nedeniyle kontrol parametreleri

için yinelenen ince ayar işlemi gerektirir.

Bu tezin temel amacı, ÇGÇÇ DMHY sisteminin Model Öngörülü Kontrolüdür.

Model Öngörülü Kontrol, literatürde ÇGÇÇ sistemler ile ilgili birçok uygulama ile

iyi bilinen bir tekniktir. Mevcut sonuçlar, Model Öngörülü Kontrolün istenen çökme

süresini, sıfır sabit durum hatasını ve sistem çıkışlarının her ikisinin de aşma kriter-

lerini karşılayabildiğini göstermektedir. Bununla birlikte, sistem performansını önemli

ölçüde etkileyen eyleyici gecikmesinin etkisi yeterince ele alınmamıştır. Bu tezde,

DMHY’nun Model Öngürülü Kontrolü, sistem modelinde EGR ve VGT eyleyicilerine

eklenen gecikme süresiyle genişletilmiştir. Sistem tanımlama teknikleri kullanılarak,

sistemin doğrusal bir durum-uzay modeli elde edilmiş ve belirlenen modelin durumları

gecikme süresi nedeniyle genişletilmiştir. Algoritmada gecikme göz önüne alındığında

Model Öngörülü denetleyicinin daha iyi performans gösterdiği gösterilmiştir. Bu tezin

bir başka katkısı ise TGTÇ PID denetleyicilerinin Parçacık Sürü Optimizasyonu (PSO)

yöntemi ile optimize edilmiş olmasıdır. Ziegler-Nichols (ZN) yöntemi ile bulunan PID

kazanımları PSO’nun başlangıç noktaları olarak alınmıştır ve PSO’nun, ÇKÇÇ sistem

için PID denetleyici performansını iyileştirdiği gösterilmiştir.
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1. INTRODUCTION

In recent years, vehicles powered by diesel engines are preferred due to their

advantages over gasoline engines in terms of fuel consumption, torque output, and

carbon oxides (CO, CO2) emissions. However, because of their high nitrogen oxide

(NOx) and particulate matter (PM) generation, emission regulations have tightened

that makes diesel engine production a challenging task for the suppliers in terms of

development, control, and calibration processes.

To obey the emission legislation, some components are added to the engine air

path such as Exhaust Gas Recirculation (EGR) valve, Diesel Particulate Filter (DPF),

and Selective Catalytic Reduction (SCR). On the other hand, high performance is

achieved from the engine with the addition of a turbocharger system which is a novel

technology that makes the engine size smaller and increases the power output with the

same fuel consumption compared to normally aspirated engine.

In automotive, using separate single input single output (SISO) control loops with

proportional-integral-derivative (PID) controllers is still the most popular technique to

control the diesel engine air path (DEAP). However, with the increase in the number

of components added to it, traditional methods become time consuming and complex

due to increasing number of control parameters. Model Predictive Control (MPC) is a

promising technique for such complex and multi-input multi-output (MIMO) systems.

1.1. Related Work

Control of the diesel engine air path with MPC is a recent popular research topic.

There are several studies in literature to deal with this problem. In [1], instead of

using two separate single-input single output (SISO) control loops as in the production

engines, explicit MPC approach is adopted to get good tracking results for both mass

air flow (MAF), and intake manifold pressure (MAP). First of all, since air path of diesel

engine is a highly nonlinear system, it is modeled as a combination of linear systems.
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Although clustering is recommended to divide the operating range into regions, it is

divided into 12 regions empirically. Engine speed and fuel injection are the quantities

describing the operating range. Then, locally linear models are used to define each

region. Prediction error method (PEM) with 2nd order models is chosen to obtain

good identification results. As a control strategy, EGR and VGT positions are taken

as manipulated variables, while engine speed and injected fuel are taken into account

as measured disturbances because they are the dominant parameters determining the

warm engine dynamics. Subsequently, control problem is formulated as an optimal

problem with constraints. Due to the computational effort of online QP solution at each

step, the cost function is treated as a multiparametric quadratic program (mp-QP).

Therefore, explicit MPC becomes useful for high-speed applications. The proposed

approach is tested on a BMW M47D engine. An improvement of NOx-PM tradeoff is

obtained.

Another study on the implementation of explicit MPC approach to diesel engine

air path is [2]. The proposed algorithm for the air path regulation in turbocharged

diesel engines allows tracking of the time-varying set point values generated by the

supervisory level controller while satisfying the actuator constraints. To obey the

emission standards, EGR and VGT actuators should be well tuned for regulating the

intake mass flow for combustion with the desired burnt gas fraction to minimize NOx,

without violating the air-fuel ratio associated with the particulate matter (PM) gener-

ation. However, since burnt gas fraction and air-fuel ratio are unmeasurable quantities

using normal sensors, two intermediate variables, compressor air mass flow rate and

intake manifold pressure are introduced as the new controlled variables, which are

closely related with the previous ones. To solve this complex problem, Explicit MPC

is preferred as one of the most promising strategies in industrial applications. Firstly,

the operation range of the engine is divided into sub-regions and each sub-region is

modelled by a proper linear system ranging from 2nd order to 3rd order by using a

system identification method based on the data. Then, an augmented explicit MPC

(EMPC) design is carried out and implemented on a heavy-duty off-highway engine. As

a result, compared to traditional MPC, EMPC provides a time-saving way in real-time

applications, while maintaining the identical performance as MPC. Implementation of
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Figure 1.1. Implementation Procedure of EMPC on the Diesel Engine [2].

the EMPC procedure is shown in Figure 1.1.

Because of the nonlinear dynamics of the air-path system and constraints on

inputs and process variables, achieving desired performance specifications is a chal-

lenging task. For this reason, instead of linear model predictive control techniques,

nonlinear model predictive control is applied to the turbocharged diesel engine in [3].

Firstly, a third order nonlinear model of diesel engine is described with the assumption

of constant intake and exhaust manifold temperatures. Later, closed loop stability of

the NMPC approach is shown. The objective of the control is to track the set points

of the intake manifold pressure, exhaust manifold pressure, compressor power, and ef-

fective areas of EGR and turbine valves. Lastly, optimal control problem is solved at

each sample in finite horizon and applied to the system as in the conventional MPC

approach. Although simulation results show that a better transient performance is

achieved, NMPC is not suitable for fast systems due to its high computation time.

Nonlinear Model Predictive Control (NMPC) of a diesel engine air path is studied

in [4]. Instead of modeling the air path by a multilinear approach, a data based Linear

Parameter Varying (LPV) model is used to obtain a superior tracking result. Another

reason for choosing LPV model is to avoid the huge parametrization work of a mean
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Figure 1.2. Inputs and Outputs of LPV Model [4].

value model. Two MISO models are used to identify MAF and MAP independently

according to inputs EGR positon, VGT positon, engine speed, and fuel flow that are

shown in Figure 1.2. To calculate the MAF and MAP, first order transfer functions

with different parameters are defined. VGT position and engine speed N are taken as

the scheduling parameters of the transfer functions. To identify the model parameters,

data-based Autoregression with Exogenous Input (ARX) method is used. After the

identification step, the nonlinear model is substituted into the MPC formulation. The

obtained quadratic problem is solved by using the active set strategy method. To test

the performance of NMPC, LPV model is linearized and a linear MPC is designed. In

simulations, it is shown that LPV NMPC performs better than a linear MPC since it

involves the exact model.

In [5], a fixed geometry turbo and a variable valve actuation (VVA) system are

controlled by using the MPC technique with intake valve hold (IVH), intake valve

close (IVC), advanced angle, and needle opening pressure (NOP) as the manipulating

variables. The aim of this study is to minimize the pumping losses to decrease the

fuel consumption while CO2 based burned gas fraction (BGF) tracks a desired set

point and air-fuel ratio stays greater than a limit. The reason of selecting BGF as the

control objective is its strong relationship to NOx emissions. Because of the nonlinear

characteristic of the engine and limited memory of the electronic control unit (ECU),

multiple linear models are used to cover the operating range of the engine. Linear

Kalman filters are used to estimate the state variables of the linear models. A simplified

implicit MPC approach is proposed as a control strategy. Simulation results obtained
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from a six cylinder heavy-duty Volvo Diesel engine exhibit the good performance of

MPC with regards to fuel consumption and emission rates.

As a difference from [5], instead of VVA, EGR valve and VGT are controlled by

multi-linear MPC in [6]. 192 linear models are used to describe the air path. The

objective functions are to keep NOx emissions under a certain limit by tracking the set

points of BGF and to keep air-fuel ratio greater than a reference level while minimizing

fuel consumption. Implicit MPC performed on a production engine is shown to improve

transient response while decreasing the fuel consumption and emissions.

1.2. Motivation of the Thesis

As discussed above, there are several studies in the literature that deal with the

DEAP control problem by using the EMPC and Nonlinear MPC methods, and linear

or LPV models of the system. However, control of input delayed DEAP system has not

been addressed sufficiently. In this thesis, MPC of a MIMO system with and without

input delay is studied. Also, SISO PID controllers are tuned by Ziegler-Nichols (ZN)

Method and Particle Swarm Optimization (PSO). The main motivation of the thesis is

to cope with the tight emission regulations and get rid of the tuning effort of standard

gain-scheduled PID controllers. The main objectives are listed below:

• System identification is performed for different operation regions of a nonlinear

system.

• MPC method is practiced on a MIMO DEAP system. Input, input rate, and

output constraints are handled in the optimization problem. All of the functions

and algorithm are developed in Matlab environment to make use of the Quadratic

Optimization Problem solver.

• Input delay effect on control system design is examined. Deterioration of the

control performance due to the dead time is prevented by the force of Model

Predictive Control.

• The performance of the standard ZN-PID controllers is increased by using the

PSO method for MIMO system.
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1.3. Organization of the Thesis

The organization of the rest of the thesis is as follows:

In Chapter 2, the main components of the diesel engine air path are introduced.

Firstly, physical equations of the components used in the Mean Value Modeling (MVM)

approach are described. Then, Linear Parameter Varying (LPV) modeling method is

defined to use in model base control algorithms. Lastly, AVL Boost RT model layout

is presented.

In Chapter 3, Model Predictive Control technique is explained with all steps for

systems with linear state-space models. Firstly, the original model is extended with

disturbance models in order to deal with the model-plant mismatch. Secondly, state

estimation step is detailed for the output prediction. Then, the optimization problem

with its quadratic cost function and constraints are established.

In Chapter 4, the system identification study of the Boost RT model is presented.

Also, Model Predictive Control of the system is described with its tuning parameters.

The results of the controller are given when the operation region and set points of the

system are changed.

In Chapter 5, the actuator delay is added to the plant. The model used in the

MPC algorithm is redefined to deal with the input delay effect. The performance of

the MPC controller is evaluated in the case of actuator delays.

In Chapter 6, standard SISO PID controllers are designed for the control of the

MIMO system with and without actuator delay. Tuning of the PID controllers are

done by the ZN Method and improved by the PSO method. Finally, the results of the

3 control methods are compared.

In Chapter 7, the thesis concludes with a brief summary and future recommen-

dations.
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2. DIESEL ENGINE AIR PATH

A basic physical model layout of the diesel engine is as below:

Figure 2.1. Diesel Engine Air Path.

Variable Geometry Turbocharger (VGT) and Exhaust Gas Recirculation (EGR)

valve are strongly coupled MIMO system in the air path of the engine, since they are

both driven by the exhaust gas. The working principle of the VGT is to use the power

of waste gasses produced during combustion in order to rotate the turbine wheel and

to compress the air transmitted to intake manifold by compressor which is connected

to turbine with a shaft. VGT controls Mass Air Flow (MAF) by changing the blade

angles or vane in the turbine. On the other hand, EGR valve provides reduced NOx

emissions by recirculating some of the exhaust gas. In this way, temperature in the

cycliders are reduced due to mixture of fresh air with recirculated burnt gas that has a

poor portion of oxygen. As a consequence, reduction in the temperature decreases the

NOx formation rate during the chemical reactions. Manifold Absolute Pressure (MAP)

is the other parameter to be controlled and it is directly affected by the relationship

between EGR valve position and VGT valve position. However in the industry, multiple

SISO control loops with PID controllers are used to manage this MIMO system.
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2.1. Modelling Diesel Engine Air Path

Since MPC requires accurate models for prediction, a sufficient model of the

diesel engine air path is the first step for the implementation of MPC. One of the most

popular ways to model the diesel engine air path is the Mean Value Modeling (MVM)

approach that is based on the physical equations. An 8th order model is derived in [7]

with the equations in Sections 2.1.1, 2.1.2, and 2.1.3:

2.1.1. Turbocharger

Turbocharger block contains compressor and turbine blocks that are connected

via shaft. The rotational speed of this turbocharger shaft is expressed as,

Ṅt =

(
60

2π

)2
Pt − Pc
JtNt

(2.1)

where Nt is the turbocharger speed, Jt is the turbocharger inertia, Pt and Pc are the

power of turbine and compressor, respectively. The following expressions describe the

dynamics of the compressor side:

(
Tc,is
Ta

)
=

(
pc
pa

) γ−1
γ

(2.2)

ηc =
Tc,is − Ta
Tc − Ta

(2.3)

By combining (2.2) and (2.3), one obtains

Tc = Ta +
1

ηc
Ta

((
pc
pa

) γ
γ−1

− 1

)
(2.4)

Equation (2.4) gives the downstream temperature of the compressor where Ta and pa

are the temperature and pressure at the inlet, pc is the pressure at the outlet, γ is the

specific heat ratio, ηc is the isentropic efficiency that is calculated by using the relation



9

between theoretical temperature (Tc,is) and the actual temperature (Tc). By using

the thermodynamics law, multiplication of compressor mass flow (Wci) and enthalpy

change yields the compressor power:

Pc = Wcicp(Tc − Ta)

= WcicpTa
1

ηc

((
pc
pa

) γ
γ−1

− 1

)
(2.5)

The dynamics of the turbine are similar to those of the compressor and are described

by

Tt = Tx − ηtTx

(
1−

(
pt
px

) γ
γ−1

)
(2.6)

Pt = WxtcpTxηt

(
1−

(
pt
px

) γ
γ−1

)
(2.7)

where Tt and pt are the turbine outlet temperature and pressure, Pt is the turbine

power, and Wxt is the turbine flow.

2.1.2. Engine

By defining Je as engine inertia, Jdr as driveline inertia, Tl as the load torque, Tb

as the difference between torque obtained from the cylinders and friction torque, the

crankshaft speed is derived as

Ṅ =
60

2π

Tb − Tl
Je − Jdr

(2.8)

Equation (2.9) gives the mass flow rate from intake manifold to cylinders where ηv is

the volumetric efficiency and Vd is the displacement volume.

Wie = ηv
mi

Vi

N

60

Vd
2

(2.9)
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2.1.3. Manifolds

Intake and Exhaust manifolds are the other components to be modeled in order

to complete the diesel engine air path cycle. Conservation of Energy, Conservation of

Mass, and Ideal Gas laws give the manifold pressures (ṗi and ṗx), accumulation rate

of mass in manifolds (ṁi and ṁx), and manifold temperatures (Ti and Tx):

ṗi =
γR

Vi
(TicWci + TrWxi − TiWie)

ṗx =
γR

Vx
(TeWex − Tx(Wxi +Wxt))

(2.10)

ṁi = Wci +Wxi −Wie

ṁx = Wex −Wxi −Wxt

(2.11)

Ti =
Vi
Rmi

pi

Tx =
Vx
Rmx

px

(2.12)

Standard orifice equation is used to calculate the mass flow through the EGR valve

(Wxi) as follows:

Wxi =
Ar(xr)px√

RTx

√
2γ

γ − 1

[
p

2
γ
r − p

γ+1
γ

r

]
(2.13)

where

pr = max

(
pi
px
,

(
2

γ + 1

) γ
γ−1

)
(2.14)

Lastly, the effect of intercooler is added to the system. Then, the downstream temper-

atures of EGR and intercooler (Tdown) are calculated by using the heat exchanger effec-

tiveness (ηh.e.), the upstream temperature (Tup), and the coolant temperature (Tcool)
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as follows:

Tdown = ηh.e.Tcool + (1− ηh.e.)Tup (2.15)

Using such a high order model makes the control design complex and difficult to

implement. For this reason, in [8], the higher order model is simplified to a third order

nonlinear model by differentiating the ideal gas law and the following linear parameter

varying (LPV) form of the model is obtained:

ṗi =
RTi
Vi

(Wci +Wxi −Wie) +
Ṫi
Ti
pi

ṗx =
RTx
Vx

(Wie +Wf −Wxi +Wxt) +
Ṫx
Tx
px

Ṗc =
1

τ
(−Pc + ηmPt)

(2.16)

where τ is a time constant, ηm is the turbocharger mechanical efficiency. To further

simplify the model, temperature changes (Ṫi and Ṫx) are neglected and nm is assumed

to be equal to 1. The compressor flow is given by

Wci =
ηc
cpTa

Pc(
pi
pa

)µ
− 1

, µ =
γ − 1

γ
= 0.286 (2.17)

The EGR flow is also defined as:

Wxi =
Ar(xr)px√

RTx

√
2
pi
px

(
1− pi

px

)
(2.18)

where Ar is the effective area of EGR valve that depends on the valve lift xr. Finally,

mass flow from the intake manifold to cylinders Wie, turbine flow Wxt, and turbine

power Pt are defined by taking the reference temperature Tref = 298K and pressure

pref = 101.3kPa and by linearizing the effective area as a function of VGT position:

Wie = ηv
pi
TiR

N

60

Vd
2

(2.19)
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Wxt = (axv + b)

(
c

(
px
pa
− 1

)
+ d

)
px
pref

√√√√Tref
Tx

√
2
pa
px

(
1− pa

px

)
,

a = 490.4, b = 633.7, c = 0.4, d = 0.6

(2.20)

Pt = WxtcpTxηt

(
1−

(
pa
px

)µ)
(2.21)

By combining (2.16)-(2.21), we obtain

ṗi =
RTi
Vi

nc
cpTa

Pc(
pi
pa

)µ
− 1
− pi
Vi

µvVd
2 · 60

N +
RTi
Vi

px√
RTx

√
2
pi
px

(
1− pi

px

)
Ar

ṗx =
Tx
Ti

pi
Vx

ηvVd
2 · 60

N− RTx
Vx

px√
RTx

√
2
pi
px

(
1− pi

px

)
Ar

− RTx
Vx

a

(
c

(
px
pa

)
+ d

)
px
pref

√
2
pa
px

(
1− pa

px

)√
Tref
Tx

xv

− RTx
Vx

b

(
c

(
px
pa

)
+ d

)
px

pref

√
2
pa
px

(
1− pa

px

)√
Tref
Tx

+
RTx
Vx

Wf

Ṗc = −Pc

τ

+
ηtcpTx
τ

(
1−

(
pa
px

)µ)
px
pref

√
Tref
Tx

a

(
c

(
px
pa
− 1

)
+ d

)√
2
pa
px

(
1− pa

px

)
xv

+
ηtcpTx
τ

(
1−

(
pa
px

)µ)
px

pref

√
Tref
Tx

b

(
c

(
px
pa
− 1

)
+ d

)√
2
pa
px

(
1− pa

px

)
(2.22)

LPV systems are described by models with matrices depending on a time varying

parameter ρ(t). A general form of an LPV system is:

ẋ = A(ρ(t))x+B(ρ(t))u

y = C(ρ(t))x+D(ρ(t))u
(2.23)
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For the case of the air path model, (2.22) can be written in the form of (2.23) by

taking the intake manifold pressure pi, exhaust manifold pressure px and compressor

power Pc as states; effective area of EGR valve Ar and VGT position xv as the manip-

ulated variables; and engine speed N and fuel flow Wf as the external disturbances.

Since the scheduling parameter contains the states, a quasi-LPV model is obtained as

follows:


ṗi

ṗx

Ṗc

 = A(ρ(t))


pi

px

Pc

+B(ρ(t))


Ar

xv

N

Wf

 (2.24)

where ρ(t) is a time varying scheduling parameter.

2.2. Boost RT Model

For control oriented purposes, development of a diesel engine air path model

with Mean Value Modeling approach is a time consuming and complex process due

to its highly nonlinear dynamics. Therefore, a model designed in the AVL Boost RT

software is used in this study. AVL Boost RT is a tool that allows component based

model development. Each component works according to physical equations and only

requires the parameters specific to the designed model. Moreover, the software enables

to import the developed model to Matlab Simulink for controller simulations [9].

The overview of the diesel engine model imported to Simulink is shown in Figure

2.2. The model has five inputs namely engine speed (n sp), fuel (mf tot), VGT position

(ang vgt), EGR position (ang egr), and start of injection setpoint which is determined

by the 2D map depending on the engine speed and fuel. Depending on these inputs,

only two outputs MAF and MAP are used for control purposes.
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Figure 2.2. Simulink Interface of Boost RT Model

2.3. Summary of the Chapter

This chapter includes the physical equations of the components in the DEAP,

i.e., turbocharger, engine, manifolds, and intercooler. Additionally, LPV modeling has

been described for DEAP modeling that is used in example MPC applications in the

literature. Lastly, AVL Boost RT plant model has been presented which will be used

in this thesis for control purpose.



15

3. MODEL PREDICTIVE CONTROL

Model Predictive Control (MPC) is a trending strategy for the control of multi

input-multi output systems. The objective of MPC is to calculate the future manipu-

lated inputs denoted by u to optimize the future behaviour of the plant output denoted

by y [2]. It determines the optimal control sequence that minimizes the objective func-

tion within a limited optimization window at each instant and then, uses the first

element of this control sequence to apply to the system in the next step.

Figure 3.1 shows the general MPC scheme at time k. Np and Nc symbols denote

the control horizon and prediction horizon, respectively. To clarify the terms, prediction

horizon (Np) can be described as the number of future samples for prediction of plant

output and control horizon (Nc) is the number of samples within the prediction horizon

that are used to capture the control action. Note that, Nc can be less than or equal to

Np. Since the lengths of these parameters directly affect the complexity of the problem

and system performance, the number of samples should be selected to provide the

optimal solution.

The key elements of the MPC algorithm can be summarized in 4 headings:

(i) Model of the controlled system to predict the future outputs.

Figure 3.1. General MPC methodology [10].
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(ii) Prediction of Outputs.

(iii) Cost function.

(iv) Constraints.

3.1. Model

As the MPC approach is based on the prediction of the future outputs of the

plant, a state space model of the plant is required to generate the desired control signal

that allows the system to track the desired trajectory. To develop an MPC algorithm,

the steps explained in the MPC Toolbox of Matlab are followed. All formula and

derivations in this section can be found in [11].

3.1.1. Plant Model

A discrete time state space model of the system used in MPC calculations is given

by:

xp(k + 1) = Apxp(k) +Bpup(k)

yp(k) = Cpxp(k) +Dpup(k)
(3.1)

where Ap, Bp,Cp,Dp matrices are the model matrices obtained by System Identification;

xp and up are the system’s states and inputs vectors. Since the model includes the

measured disturbance inputs, (3.1) is rearranged by separating the Bp matrix columns

into Bpu that corresponds to manipulated inputs u(k) and Bpv that corresponds to

measured disturbance inputs v(k). The following form is obtained:

xp(k + 1) = Apxp(k) +Bpuu(k) +Bpvv(k)

yp(k) = Cpxp(k) +Dpup(k)
(3.2)
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3.1.2. Disturbance Models

MPC solves the optimization problem based on the identified plant model. There-

fore, the accuracy of the plant model directly affects the calculation of the desired in-

puts. In order to account for the model-plant mismatch errors and to guarantee steady-

state offset-free reference tracking, an output disturbance model is directly added to

plant model outputs. An integrator driven by white noise wod with zero mean and unit

variance is added for each measured output:

xod(k + 1) = Aodxod(k) +Bodwod(k)

yod(k) = Codxod(k) +Dodwod(k)
(3.3)

where Aod, Bod, Cod, and Dod are constant state space matrices, xod is the vector of

output disturbance states, and yod is the vector of output disturbances to be added to

plant outputs.

Beside the output disturbance model (3.3), to cope with the undesired measure-

ment noise on the measured outputs, a measurement noise model is added as:

xn(k + 1) = Anxn(k) +Bnwn(k)

yn(k) = Cnxn(k) +Dnwn(k)
(3.4)

where wn is white noise with zero mean and unit variance, xn is the vector of noise

model states, and yn is the vector of noise signals to be added to measured plant

outputs.

The overall augmented system model to use for output prediction can be combined

as:

xc(k + 1) = Axc(k) +Bu0(k)

ym(k) = Cxc(k) +Du0(k)
(3.5)
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where the augmented form of system states, input vector, and system matrices are

given by:

xc(k) = [xTp (k) xTod(k) xTn (k)]T ,

u0(k) = [uT (k) vT (k) wTod(k) wTn (k)]T ,

A =


Ap 0 0

0 Aod 0

0 0 An

 , B =


Bpu Bpv 0 0

0 0 Bod 0

0 0 0 Bn

 ,
C =

[
Cp Cod Cn

]
, D =

[
Dp Dod Dn

]
.

It is important to note that, controllability of the augmented model should be

checked to achieve closed-loop control performance as discussed in [12].

3.2. Prediction of Outputs

3.2.1. State Estimation

In general, when system identification-based model derivation is performed, sys-

tem states are not related to a physical variable and are not measurable. To predict

the future outputs based on the system model, the first step is the estimation of these

unknown states. For a successful state estimation, observability of the augmented sys-

tem matrices (A,C) is a pre-condition. The necessary and sufficient condition for the

observability is that the observability matrix must have full rank.

Kalman filter is a popular state observer used in most control applications. It is

a technique to estimate the unknown states based on a state space model, measured

data, and noise covariance data. The basic diagram of the Kalman State Estimation

is below:
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Figure 3.2. Kalman State Estimation Cycle [13].

For a state space system with white noise process and measurement disturbances,

state estimation process via Kalman filter is as follows:

(i) Innovation variable e(k) is calculated based on the current measured plant output

ym(k) and the state estimate calculated from previous step xc(k|k − 1) as:

e(k) = ym(k)− Cxc(k|k − 1)

(ii) A more accurate estimate of the state variable is calculated by using the new

measured information. This new state is:

xc(k|k) = xc(k|k − 1) +Me(k)

(iii) After optimum input is calculated, future state estimate is computed as follows

in order to use in the next control interval:

xc(k + 1|k) = Axc(k|k − 1) +Buuopt(k) +Bvv(k) + Le(k)

where Bu and Bv are the columns of B corresponding to u and v vectors, respec-

tively.

The second step above is referred to as ’Measurement Update’ phase in the

Kalman State Estimation Process where the third step is called the ’Time Update’

phase. In here, M and L are the Kalman innovation and estimator gain matrices that
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are calculated by using the kalman function in Matlab. The inputs to the function are

the observer model (3.5) and noise covariance matrices that are calculated as below:

Q = BBT , R = DDT , N = BDT

The steady-state Kalman filter gain L and innovation gain M are calculated as:

L = PCTR−1, M = PCT (CPCT +R)−1

to minimize the steady-state error covariance and the covariance matrix P is the solu-

tion to the Algebraic Riccati Equation:

AP + PAT +BQBT − PCTR−1CP = 0

More detailed information can be obtained from [13] and [14].

3.2.2. Output Prediction

Prediction of future states at time k and within the optimization window Np are

calculated by:

xc(k + 1|k) = Axc(k|k) +Buu(k|k) +Bvv(k)

xc(k + 2|k) = Axc(k + 1|k) +Buu(k + 1|k) +Bv(k + 1|k)

· · ·

xc(k +Np|k) = Axc(k +Np|k) +Buu(k +Np|k) +Bvv(k +Np|k)
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and future predicted outputs at time k and within the optimization window Np are:

y(k + 1|k) = Cxc(k + 1|k) +Dvv(k + 1|k)

y(k + 2|k) = Cxc(k + 2|k) +Dvv(k + 2|k)

· · ·

y(k +Np|k) = Cxc(k +Np|k) +Dvv(k +Np|k)

Denote the columns of D matrix corresponding to manipulated inputs u and

measured disturbances v in the overall output model (3.5) as Du and Dv, respectively.

Although there is a Du term, no direct feedthrough is assumed from u to y since the

current plant output is required for both prediction and control. Therefore, Du term

is assumed as zero matrix. On the other hand, specifically on the diesel engine model

identified in this study, Dv term is found as zero matrix; therefore D term will not be

used in the remaining calculations. However, it will be shown in equations. To simplify

the calculations in the next sections, ∆u term is introduced as input change rate:

∆u(k) = u(k)− u(k − 1)

After defining the vectors:

Y = [y(k + 1|k) y(k + 2|k) y(k + 3|k) . . . y(k +Np|k)]T

∆U = [∆u(k) ∆u(k + 1) ∆u(k + 2) . . . ∆u(k +Nc − 1)]T

V = [v(k|k) + v(k + 1|k) + . . . v(k +Np|k)]T

and putting together the predicted state equations, the output vector is given by:

Y = Sxxc(k|k) + Su1u(k − 1) + Su∆U +HvV (3.6)
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where

Sx =


CA

CA2

...

CANp

 ; Su1 =


CBu

CBu + CABu

...∑Np−1
h=0 CAhBu

 ;

Su =


CBu 0 . . . 0

CBu + CABu CBu . . . 0
...∑Np−1

h=0 CAhBu

∑Np−2
h=0 CAhBu . . .

∑Np−Nc
h=0 CAhBu

 ;

Hv =


CBv Dv 0 . . . 0

CABv CBv Dv . . . 0
...

CANp−1Bv CANp−2Bv CANp−3Bv . . . Dv



3.3. Optimization Problem

The general purpose of the MPC control design is to obtain a predicted output

that follows the desired trajectory within a prediction horizon. To find such a control

input that provides the goal, generally a quadratic cost function (J) and constraints

are defined. A general form of a QP is as follows:

min
x

1

2
zT H̄z + f̄T z

subject to Ainz ≤ bin

Aeqz = beq

(3.7)

Then, Quadratic Optimization Problem (QP) is solved by well known QP solvers [15].
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3.3.1. Cost Function

The general cost function used in MPC applications contains 4 cost functions that

are namely output reference tracking cost (Jy), manipulated variable reference tracking

cost (Ju), manipulated variable change cost (J∆u), and a slack variable cost (Jε) which

is used to quantify the soft constraint violations. Each cost function contains weighting

factor within itself for prioritization. The overall cost function is:

J(z) = Jy(z) + Ju(z) + J∆u(z) + Jε(z)

In this study, manipulated variables do not need to track a reference value, but

they should remain in a desired range during the control process. Instead of including

J∆u in the cost function, it is added to the constraint part of the optimization problem.

The detailed form of cost functions are given below:

Jy = (Y − Yref )TQ(Y − Yref ) (3.8)

J∆u = ∆UTR∆U (3.9)

Jε = ρεε
2 (3.10)

where Yref is the desired trajectory vector, Q is the output reference tracking weighting

value, R is the weight matrix to pay attention to the size of ∆U , and ρε is the constraint

violation penalty.
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To form an optimization problem similar to (3.7), firstly, the cost function (3.8)

is rearranged. By substituting (3.6) into (3.8), the following equation is obtained:

Ju = (Su∆U + cy)
TQ(Su∆U + cy)

= ∆UTSTuQSu∆U + 2cTyQSu∆U + cTyQCy

= ∆UTSa∆U + 2cTyQSu∆U + cTyQCy

(3.11)

where

cy = Sxxc(k|k) + Su1u(k − 1) +HvV − Yref , Sa = STuQSu

Due to cy term depending only on prediction state, previous step control input, mea-

sured disturbances, and output reference values, it does not affect the solution of the

optimization problem; hence cTyQCy part is ignored in the cost function. By putting

together all cost function terms together, we obtain

J = ∆UTSa∆U + 2cTyQSu∆U + ∆UTR∆U + ρεε
2

= ∆UT (Sa +R)︸ ︷︷ ︸
H

∆U + 2cTyQSu︸ ︷︷ ︸
fT

∆U + ρεε
2 (3.12)

Let the QP decision variable z be

z = [∆U ε]T

Then we can rewrite the cost function as follows:

J =
1

2

∆U

ε

T 2H 0

0 2ρε


︸ ︷︷ ︸

H̄

∆U

ε

+

f
0

T
︸ ︷︷ ︸
f̄T

∆U

ε



=
1

2
zT H̄z + f̄T z

(3.13)
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3.3.2. Constraints

Another important part of the MPC design is to take into account the constraints

that are generally imposed on the outputs, inputs, and rate of change of the inputs.

3.3.2.1. Output Constraints. The output constraints inequalities are written with the

minimum and maximum output limits ymin and ymax and the constraint softness values

vymin and vymax as follows:


ymin(k + 1)

...

ymin(k +Np)


︸ ︷︷ ︸

Ymin

−ε


vymin(k + 1)

...

vymin(k +Np)


︸ ︷︷ ︸

V ymin

≤


y(k + 1|k)

...

y(k +Np|k)


︸ ︷︷ ︸

Y

≤


ymax(k + 1)

...

ymax(k +Np)


︸ ︷︷ ︸

Ymax

+ε


vymax(k + 1)

...

vymax(k +Np)


︸ ︷︷ ︸

V ymax

The constraint softness and output limit values are assumed as constant during the

prediction horizon Np, i.e., we have

Ymin − εV y
min ≤ Y ≤ Ymax + εV y

max (3.14)

Equation (3.14) can be transformed into the inequality matrices form as in (3.7):

−Y − εV y
min ≤ −Ymin

Y − εV y
max ≤ Ymax

by putting Y as in (3.6),

−Su∆U − εV y
min ≤ −Ymin + Sxxc(k|k) + Su1u(k − 1) +HvV

Su∆U − εV y
max ≤ Ymax − Sxxc(k|k)− Su1u(k − 1)−HvV
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−Su −V y
min

Su −V y
max


︸ ︷︷ ︸

M1

∆U

ε


︸ ︷︷ ︸

z

≤

−Ymin
Ymax


︸ ︷︷ ︸

N1c

+

 Sx

−Sx


︸ ︷︷ ︸

N1x

xc(k|k) +

 Su1

−Su1


︸ ︷︷ ︸

N1u

u(k − 1) +

 Hv

−Hv


︸ ︷︷ ︸

N1v

V

M1z ≤ N1 (3.15)

where N1 = N1c +N1xxc(k|k) +N1uu(k − 1) +N1vV

3.3.2.2. Input Constraints. The same procedure as in 3.3.2.1 is followed to get the

input inequality constraints in QP format where umin and umax are the minimum and

maximum input limits and vumin and vumax are the constraint softening values, i.e., the

input constraints are represented as follows:


umin(k)

...

umin(k +Nc − 1)


︸ ︷︷ ︸

Umin

−ε


vumin(k)

...

vumin(k +Nc − 1)


︸ ︷︷ ︸

V umin

≤


u(k|k)

...

u(k +Nc − 1|k)


︸ ︷︷ ︸

U

≤


umax(k)

...

umax(k +Nc − 1)


︸ ︷︷ ︸

Umax

+ε


vumax(k)

...

vumax(k +Nc − 1)


︸ ︷︷ ︸

V umax

Umin − εV u
min ≤ U ≤ Umax + εV u

max (3.16)

Then, the inequalities in (3.16) are rearranged and the following inequalities are ob-

tained:

−U − εV u
min ≤ −Umin

U − εV u
max ≤ Umax

(3.17)
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The next step is writing the U matrix in terms of the optimization variable ∆U . The

relation between ∆U and U is as follows:

∆U =



I 0 0 . . . 0 0

−I I 0 . . . 0 0

0 −I I . . . 0 0
...

0 0 0 . . . −I I


︸ ︷︷ ︸

T1

U −



I

0

0
...

0


︸︷︷︸
T2

u(k − 1)

Then, U can be written as:

U = T−1
1 ∆U + T−1

1 T2u(k − 1)

After substituting U into (3.17), the input constraint matrices are transformed into

the inequality matrices’ form as in (3.7) by the following equations:

−T−1
1 ∆U − εV u

min ≤ −Umin + T−1
1 T2u(k − 1)

T−1
1 ∆U − εV u

max ≤ Umax − T−1
1 T2u(k − 1)

−T−1
1 −V u

min

T−1
1 −V u

max


︸ ︷︷ ︸

M2

∆U

ε


︸ ︷︷ ︸

z

≤

−Umin
Umax


︸ ︷︷ ︸

N2c

+

 T−1
1 T2

−T−1
1 T2


︸ ︷︷ ︸

N2u

u(k − 1)

M2z ≤ N2 (3.18)

where N2 = N2c +N2uu(k − 1)

3.3.2.3. Input Rate Constraints. It is also possible to limit the input rate of change

with the minimum and maximum ∆umin and ∆umax values. As in the previous steps,
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v∆u
min and v∆u

max are the constraint softening values and constraint inequalities can be

written as follows:


∆umin(k)

...

∆umin(k +Nc − 1)


︸ ︷︷ ︸

∆Umin

−ε


v∆u
min(k)

...

v∆u
min(k +Nc − 1)


︸ ︷︷ ︸

V ∆u
min

≤


∆u(k|k)

...

∆u(k +Nc − 1|k)


︸ ︷︷ ︸

∆U

≤


∆umax(k)

...

∆umax(k +Nc − 1)


︸ ︷︷ ︸

∆Umax

+ε


v∆u
max(k)

...

v∆u
max(k +Nc − 1)


︸ ︷︷ ︸

V ∆u
max

∆Umin − εV ∆u
min ≤ ∆U ≤ ∆Umax + εV ∆u

max (3.19)

Next, (3.19) is rearranged as follows:

−∆U − εV ∆u
min ≤ −∆Umin

∆U − εV ∆u
max ≤ ∆Umax

−I −V ∆u
min

I −V ∆u
max


︸ ︷︷ ︸

M3

∆U

ε


︸ ︷︷ ︸

z

≤

−∆Umin

∆Umax


︸ ︷︷ ︸

N3

M3z ≤ N3 (3.20)
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As a last step, an extra inequality constraint is added to keep the slack variable

ε higher than 0:

[
0 −1

]
︸ ︷︷ ︸

M4

∆U

ε


︸ ︷︷ ︸

z

≤ 0︸︷︷︸
N4

M4z ≤ N4 (3.21)

Then, all inequality constraints (3.15), (3.17), (3.20), and (3.21) are put together to

obtain overall inequality matrices Ain and Bin:

Ain =
[
M1 M2 M3 M4

]T
Bin =

[
N1 N2 N3 N4

]T
In summary, all constraints are arranged in the form of (3.7) so that QP solver can be

used.

3.4. Quadratic Problem Solver

For solving a QP (3.7), there are commonly used methods in the literature namely

Active Set Methods [16] and Interior Point Methods [17]. QP solution methods are not

detailed in this study. Matlab mpcqpsolver function is used to calculate the optimum

z variable in each time step. The first element of z corresponds to rate of change of

inputs in the first prediction step ∆u(k|k). Then, the optimum control signal u(k|k)

that is applied to the system is obtained by adding the z(1) to previous control input

as follows:

u(k|k) = u(k − 1) + z(1) (3.22)

where z(1) = ∆u(k|k).
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3.5. Summary of the Chapter

In this chapter, the Model Predictive Control procedure for linear state-space

models has been explained. Model extension technique to deal with the model-plant

mismatch and state estimation technique to predict the unknown states have been

detailed. Subsequently, quadratic optimization problem with constraints has been

established. In the following chapter, the MPC technique is applied to the MIMO

DEAP problem.
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4. SYSTEM IDENTIFICATION AND MPC OF DEAP

To control a nonlinear system, defining multiple linear models for different oper-

ation regions and designing MPC for each region, and then switching the controllers

depending on the operation region is a common method. This methodology is known

as Gain-Scheduled MPC.

In this chapter, system identification process of DEAP model is described. Also,

Gain-Scheduled MPC simulation results are presented. All simulations are performed

in the Matlab/Simulink environment.

4.1. System Identification of DEAP

Diesel engine air path is a system with highly nonlinear dynamics. However, on

the bright side, a nonlinear system can be approximated as a linear system around a

specific operating point.

System identification proceeds mainly in 4 stages [18]:

• Experiment Design and Data Collection.

• Model Selection

• Parameter Estimation

• Validation.

Experiment Design part is an essential identification step to obtain a best possible

excitation of the system. Input/output data should be maximally informative to catch

the important system dynamics. Gaussian White Noise, Random Binary Sequence

(RBS), Pseudo Random Binary Sequence (PRBS), Multisine inputs are the commonly

used excitation signals in literature.
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The second step of the identification is choosing an appropriate model structure.

State-space models are good candidates to represent MIMO systems and have simpler

structure for model based control design. When there is no physical interpretation

consideration of the system (black-box modeling), a linear state-space model with a

suitable order (order is the number of states in the state space model case) can be

viewed as a way to achieve input/output data fit. A general discrete time state space

model structure is given by:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(4.1)

where A,B,C,D are the system matrices to be identified, x(k) is the system state, u(k)

is the system input, and y(k) is the output. Note that, when the black-box modeling

is performed, system states do not have to correspond to physical states of the system

directly. Therefore, state estimation process is necessary.

Prediction Error Method (PEM) and Subspace-Based State-Space Identification

(4SID) are two well-known techniques for state-space model estimation. The basic idea

behind the PEM method is to minimize the error between the measured output data

and the predicted output of the model. On the other hand, 4SID methods are developed

based on the information about the column space of the extended observability matrix

or row space of state sequence matrix of a state-space system to identify the parameters

of the system. For more information about the PEM and 4SID, [18] and [19] can be

checked. Morever, N4SID method is a popular subspace identification algorithm that

uses the estimates of state sequence matrix to find to A,B,C and D matrices of the

model [20], [21]. Matlab System Identification Toolbox allows for using PEM and

N4SID techniques just by defining the input-output data and model structure.

There are several approaches to validate the estimated model. Plotting the esti-

mated model output and measured output provides inside into how estimated model

imitates the plant. A validation data set different from estimation data can be desig-

nated to avoid over-fitting of the model. This process is called cross-validation. Corre-
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lation analysis on the prediction errors can also be performed to check the validity of

the estimated model.

In this study, AVL Boost Rt diesel engine air path model is used as the plant

model. The plant has 4 inputs namely engine speed, fuel rate, VGT position, EGR

position and 2 outputs MAF and MAP. Engine speed and fuel rate are the measured

disturbances of the system whereas VGT and EGR positions are the manipulated

variables that are run by the controller. Operation region of the engine is divided into

sub-zones according to different engine speed and fuel rate in order to get sufficiently

precise local linear models.

To predict the linear model around 2000 rpm engine speed and 8 mg/st fuel

operating points (called as region 1), the system was excited with the signals shown in

Figure 4.1. Random noise signals were superposed to operating points. On the other

hand, PRBS signals were chosen for the manipulated variables VGT and EGR position

to catch the system dynamics. Figure 4.2 shows the output signals of the plant that

correspond to inputs in Figure 4.1.

By using Matlab System Identification toolbox, PEM and N4SID identification

methods were tested with the state space models of order from 2 to 8. After the trials

with validation data different from estimation data, a 4th order state space model

derived with the N4SID method performed the best fit to the system output. The

fitness value is calculated by the fit formula based on Normalized Root Mean Square

Error (NRMSE) between estimation data y and model output ŷ as shown in (4.2)

fit = 100

(
1− ||y − ŷ||
||y −mean(y)||

)
(4.2)

where ||.|| indicates the 2-norm. The calculated plant model equation is the following:

x(k + 1) = Ax(k) +Bu(k) +Ke(k)

y(k) = Cx(k) +Du(k) + e(k)
(4.3)
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Figure 4.1. Identification input signals for region 1.

Figure 4.2. Identification output signals for region 1.



35

Figure 4.3. Identification input signals for region 2.

where A and B are 4 × 4, C and D are 2 × 4 and K is 4 × 2 system matrices, x(k)

is the system state at time k, u(k) is the vector of system inputs consisting of engine

speed, fuel, VGT position, and EGR position and y(k) is the vector of outputs MAF

and MAP. Discretization step size is 0.1 second. The model outputs MAF and MAP

fit to the estimation data 77.83% and 93.69% respectively.

A second operation region is chosen in this study for gain-scheduling control

purpose. While keeping the engine speed around 2000 rpm, 20 mg/st fuel region is

taken as the second operation region that represents the high fuel zone and results

more boost pressure than region 1. The excitation input signals and corresponding

outputs are shown in Figures 4.3 and 4.4, respectively. Moreover, a 4th order linear

state space model as in (4.3) is obtained with the N4SID method with the fitness

values 75.66% for MAF and 93.19% for MAP. System matrices obtained by System

Identification for operation region 1 and operation 2 are given in Appendix.
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Figure 4.4. Identification output signals for region 2.

4.2. MPC Design Parameters

The main design parameters of the MPC controller are listed below:

(i) Prediction and Control Horizons: Prediction horizon (Np) is chosen as 15 samples

while control horizon (Nc) is setting 3.

(ii) Constraint Parameters: Input, output, and input change rate constraints are

determined according to real engine operation limits.

• Output constraints: The physical unit of MAF is kg/h and MAP is in terms

of mbar.

 40

250

 ≤
ymaf
ymap

 ≤
1000

2500


• Input constraints: Actuator limits are the input constraints.

0

0

 ≤
uvgt
uegr

 ≤
60

50
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• Input rate constraints: This constraint limits are related to movement speed

of the actuator in terms of [%/ms].

−0.5

−0.5

 ≤
δuvgt
δuegr

 ≤
0.5

0.5


In addition to the constraint limits given above, the slack variable described

in Section 3.3.2 is included in the constraint equations with constraint softness

values. Maximum and minimum constraint softness values are set as 0 for input

and input rate to prevent violations while they are set to 1 for output constraints.

(iii) Weighting Matrices: The weighting factors mentioned in Section 3.3.1 are tuned

to give the same priority for the reference tracking performance of both outputs

MAP and MAF considering their dimensions. Another important point in the

multiobjective cost tuning is that the slack variable weight should be too high

compared to others to avoid constrained violations. In simulations, the following

weighting matrices are used:

Qmaf = 15, Qmap = 1, Rvgt = 15, Regr = 1.5, ρε = 108

where Qmaf and Qmap are the reference tracking weighting values of MAF and

MAP outputs; Rvgt and Regr are the weighting values to pay attention to the

sizes of change of VGT input and change of EGR input, respectively; and ρε is

the constraint violation penalty.

(iv) Disturbance Model Parameters (Integral action): To eliminate model-plant mis-

match and steady-state error, output disturbance model is added to identified

system model as mentioned in Section 3.1.2. The model parameters are tuned as

follows:

Aod =

1 0

0 1

 , Bod =

0.1 0

0 0.7

 ,
Cod =

1 0

0 1

 , Dod =

0 0

0 0

 .
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Figure 4.5. Simulink Diagram of Input Delay Free MPC System.

(v) State Estimator Gain: State estimator gain matrices are calculated using ’kalman’

function of Matlab.

(vi) Sample Time (Ts): Sample time of the simulations is 10ms.

4.3. MPC of DEAP without Actuator Delay Model

Actuator time delay (or input delay) is a general problem to be considered in

control phase for most of the real-time systems. In this study, first of all, the plant

model BOOST-RT is designed as input delay free which takes into account the dynamic

relations between the injected fuel, engine rpm, VGT position, EGR position, and

MAF and MAP outputs. Then, system identification process is applied as described

in Section 4.1. Lastly, linear MPC is computed for the delay free model.

Figure 4.5 depicts the block diagram of the delay free control system. Switch

function is used to control the model switching when the operation points is changed.

MPCBlock calculates the VGT and EGR inputs described in Chapter 3 and with the

design parameters in Chapter 4.2. The codes written in the control block are given in

the Appendix.
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Figure 4.6. Simulation Results of MPC on Input Delay Free Model - Rising Step

Setpoint Change.

In order to check the control performance, two cases are examined on the system

that are setpoint increase case and setpoint decrease case. 2 operation points are chosen

and the system is linearized at these points for the MPC methodology as described in

Section 4.1. Simulation results of MPC of DEAP are given in Figures 4.6 and 4.7 with

MAF and MAP output values, corresponding setpoints, and EGR and VGT control

inputs. In Figure 4.6, operation point is changed from region-1 to region-2 whereas in

Figure 4.7, it comes back to former state region-1.

From Figures 4.6 and 4.7 it is noted that MPC exhibits good performance in

terms of settling time and steady-state error. It satisfies the expected settling times

which are observed from the open loop response of the system as approximately 1.5 sec

for MAF and 2 sec for MAP. Additionally, MPC obeys the actuator position change

rate constraints even when there is a sudden change in setpoint.
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Figure 4.7. Simulation Results of MPC on Input Delay Free Model - Falling Step

Setpoint Change.

4.4. Summary of the Chapter

In this chapter, system identification has been performed on AVL Boost RT

DEAP model. Further, MPC technique has been applied to control the model. It

is shown that MPC has a good control performance in terms of rise time, overshoot,

and zero steady-state error when the operation region and set points of the system are

changed. The identified model and MPC codes derived in this chapter will form the

basis of the MPC of the actuator-delayed MIMO system that will be studied in the

next chapter.
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5. MPC OF DEAP WITH ACTUATOR DELAY MODEL

Actuator time delay is a physical limitation for the control of real-time systems.

In most of control applications, although time delays are ignored for simplicity, it

deteriorates the control performance of the system. In this chapter, actuator time

delays with dead time are explicitly embedded to the VGT and EGR inputs in the

model. 70 ms is experimentally estimated dead time of the actuators. Therefore, delay

length is set to 7 samples since the model step time Ts is 10 ms. The new control

diagram is shown in Figure 5.1.

5.1. Control of Input Delayed System without Delay Consideration in

MPC

In this section of the study, system response with MPC is examined when the

actuator dead time is added to the system.

Simulation results are given in Figure 5.2. Since MPC makes the predictions

based on delay-free model, the performance of the controller is deteriorated and thus

making the system oscillate, especially in operation region-2.

Figure 5.1. Simulink Diagram of the Delayed System.
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Figure 5.2. Simulation Results of MPC Input Delayed System.

5.2. Control of Input Delayed System with Delay Consideration in MPC

Model predictive control (MPC) is well known control methodology for its ability

to deal with a system with time delay [22]. The presence of time delay in a system causes

state dimension expansion, which does not represent the system dynamics. Therefore,

observer is employed to estimate the state of the system while the delay is embedded

to the input of the plant. Augmentation of the plant model described in (3.2) is shown

in Figure 5.3 and delay model is implemented to the state-space equations by the

following steps:

(i) Write up new in terms of up,

u(k) = up new(k −N) −→ up new(k) = u(k +N)
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Figure 5.3. Augmentation of the Plant with Delayed Input.

where N is the delay sample which is set to 7 for this system.

(ii) Define new states,

xu(k) =


xu1(k)

xu2(k)
...

xuN(k)

 =


u(k)

u(k + 1)
...

u(k +N − 1)


,

xu(k + 1) =


0 I 0 0 . . . 0

0 0 I 0 . . . 0
...

0 0 0 0 . . . 0


︸ ︷︷ ︸

O


xu1(k)

xu2(k)

. . .

xuN(k)

+


0

0
...

I

up new(k)
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(iii) Combine state equations and rewrite the plant model,

xp new(k + 1) =

xp(k + 1)

xu(k + 1)

 =

Ap Bpu 0 . . . 0

0 O


︸ ︷︷ ︸

Ap new

xp(k)

xu(k)



+


0

0
...

I


︸︷︷︸
Bpu new

up new(k) +


Bpv

0
...

0


︸ ︷︷ ︸
Bpv new

v(k),

yp new(k) = yp(k) =
[
Cp Dpu 0 . . . 0

]
︸ ︷︷ ︸

Cp new

xp(k)

xu(k)



Each element xui in new xu state variable is 2× 1 matrices because the actuator delay

is added to both VGT and EGR inputs. At the same time, corresponding identity (I)

and zero (0) elements in O matrix are 2×2 matrices for the same reason. Overall plant

equation is:

xp new(k + 1) = Ap newxp new(k) +Bpu newup new(k) +Bpv newv(k),

yp new(k) = Cp newxp new(k)
(5.1)

5.2.1. Numerical Analysis

In the remaining part of the study of delayed MPC, new plant model is augmented

with the disturbance models as discussed in Section 3.1.2. All states are estimated with

Kalman filter and then, output prediction and cost optimization steps proceed respec-

tively by sticking to related sections in Chapter 3. Afterwards, prediction horizon Np

and control horizon Nc are adjusted to 30 and 7 respectively to increase the controller

performance.
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Figure 5.4. Simulation Results of MPC on Input Delayed Model - Rising Step

Setpoint Change.

In simulation results depicted in Figures 5.4 and 5.5, MPC improves its perfor-

mance when the model used in MPC is updated with the input delay. This shows that

MPC performs better when the model used in it for predictions is closer to the actual

plant model.

5.3. Summary of the Chapter

In this chapter, MPC for the AVL Boost RT DEAP model with actuator delays

has been studied. The linear state-space model that is used in MPC has been extended

with the new states due to delay effect to get a better control performance. It is shown

that MPC performs better when the delay-case is taken into account in the plant

model. In the following chapter, MPC performance will be compared to standard PID

controllers.
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Figure 5.5. Simulation Results of MPC on Input Delayed Model - Falling Step

Setpoint Change.
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6. OPTIMIZED MIMO PID CONTROL OF DEAP

Map-based gain-scheduled PI-PID controllers are commonly used in industrial

automotive control applications [23, 24]. The general formula of a PID controller is

given by

u(s)

e(s)
= Kp +Ki

1

s
+Kds (6.1)

where u(s) is the control signal, e(s) is the error between the reference signal and

measured output, Kp is the proportional gain, Ki is the integral action gain, and Kd

is the derivative term gain. Proportional control affects the system responsiveness to

the error, the integral term is used to eliminate steady-state errors, and the derivative

action is used to add damping to the system. The controller parameters are thus chosen

in order to achieve prescribed performance criteria in terms of rise and settling times,

overshoot, and steady-state error.

The differentiation is sensitive to the noise. Therefore, derivative action is com-

bined with a first order filter in practical applications [25]. Matlab Simulink PID

controller block is designed with this filter in derivative term and it is shown as:

u(s)

e(s)
= Kp +Ki

1

s
+

Kds

1 + 1
N
s

(6.2)

where N is the filter coefficient.

In the air path control problem, SISO PID control loops are designed where VGT

position regulates the MAP level and EGR position regulates the MAF level. Simulink

overview of the closed-loop PID control system is shown in Figure 6.1. SetPoints block

contains the maps that output the MAF and MAP reference values according the

fuel injection and engine rpm operation points. VGT and EGR positions are regulated

with PID controllers designed in PID Controller VGT and PID Controller EGR blocks.

The parameters of the PID controllers are scheduled with maps in the controller blocks
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Figure 6.1. Simulink Diagram of the PID Control System.

with respect to fuel injection operation points. The inside of the PID Controller VGT

block is shown in Figure 6.2. PID Controller EGR block is designed with the same

principles. Also, the saturation blocks are used to keep the VGT and EGR inputs

within the physical limits between 0 and 60.

The tuning of PID controller gains is a challenging task to get good performance

in terms of closed loop stability and reference tracking. There are several methods in

the literature for PID Tuning in a systematic way such as Ziegler-Nichols (ZN) and

Cohen-Coon methods. On the other hand, optimization-based algorithms are the recent

techniques to find controller gains for optimum performance, especially for systems

with multiple controllers [26]. Genetic Algorithm [27], Simulating Annealing [28], and

Particle Swarm Optimization [29] are examples of these techniques that are suitable

for multi-parameter PID tuning.

In this chapter, firstly Ziegler-Nichols method is used to tune the PID controllers

based on SISO approach. Then, Particle Swarm Optimization (PSO) technique is

applied to Diesel Engine Air Path Control problem by taking the results of ZN method

as a starting point in the optimization.
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Figure 6.2. PID Controller VGT block.

6.1. Zeigler-Nichols Tuning Method

Zeigler-Nichols technique was proposed by Zeigler and Nichols in 1940s for the

purpose of tuning the SISO conventional controllers and accepted as the standard in

practical control applications [30]. Controller gains are calculated according to Table

6.1.

To obtain the parameters Kcr and Pcr, the steps below are followed:

(i) Set Integral and derivative gains to zero.

(ii) Increase proportional gain until critical oscillations occur.

(iii) Record proportional gain Kcr where the oscillations occur and period of oscilla-

tions Pcr in seconds.

Table 6.1. Ziegler-Nichols Tuning Rules.

Controller Type\Gain Kp Ki Kd

P 0.5Kcr 0 0

PI 0.45Kcr 1.2Kp/Pcr 0

PID 0.6Kcr 2Kp/Pcr KpPcr/8
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(iv) Calculate the controller gains according to Table 6.1.

6.2. Particle Swarm Optimization Method

Particle Swarm Optimization (PSO) is an evolutionary computation-based op-

timization technique introduced by Kennedy & Eberhart in 1995. It is a population

based algorithm, inspired by behaviours of flocks of birds or fish [26], [31]. In PSO, each

particle has an initial position and velocity at the beginning. At each iteration, the

objective function of each particle is calculated and the velocity and position of each

particle are updated with the experience of finding the best objective. The velocity

and position update equations are as follows:

Vi(k + 1) = w(k)Vi(k) + c1rand1(Pbesti(k)−Xi(k)) + c2rand2(Gbest(k)−Xi(k))

(6.3)

Xi(k + 1) = Xi(k) + Vi(k + 1) (6.4)

where Vi(k) is the velocity of the ith particle at the kth iteration; w is the inertia weight;

c1 and c2 are the acceleration factors; rand1 and rand2 are the uniformly distributed

random variables between 0 and 1; Xi(k) is the position of the ith particle at iteration

k; Pbesti(k) is the best position of the ith particle at iteration k; and Gbest(k) is

the best position of the group until iteration k [26]. The iterations are repeated until

the calculation reaches a stopping criteria such as maximum number of iterations or a

relative change in the best cost function. The general flow chart of the PSO algorithm

is given in Figure 6.3.

PSO has the ability to solve derivative-free unconstrained optimization prob-

lems or optimization problems with bounds. In this study, particleswarm function of

Matlab is used by determining the cost function and lower and upper bounds of the

variables. To define the cost function, there are some basic performance indicators and

commonly used ones are the integral of the square error (ISE), integral of the absolute
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Figure 6.3. General Flow Chart of PSO [32].

value of the error (IAE), and integral of the time-weighted absolute error (ITAE). In

this study, IAE minimization is chosen as the cost function. IAE is calculated by the

formula:

IAE =

∫ T

0

| e(t) | dt (6.5)

where T is the duration of simulation.



52

6.3. Numerical Analysis

In this part of the study, PID controller parameters are tuned for plant model

with and without input delay by using the Ziegler-Nichols Tuning Method and Particle

Swarm Optimization. These scenarios were discussed in Sections 4.3 and 5.2 under

MPC methodology and are numerically evaluated for 3 control strategy in this section.

For the tuning of SISO PID controllers by ZN Method, firstly, EGR valve is closed

and a PID controller is tuned for the MAP control. Then, a P controller is designed

for the MAF control. We have opted for a P controller in regulating MAF as we have

observed that PI and PID with suggested ZN parameters may lead to instability in the

system.

After determining the initial PID and P gains by ZN technique, PSO algorithm

is used to find the optimum PID parameters for MAP and MAF outputs. The cost

function chosen to minimize the algorithm is the summation of the normalized IAE of

the two outputs given as follows

IAE =

∫ T2

T1

(
| ymaf − ymaf ref |

ymaf ref
+
| ymap − ymap ref |

ymap ref

)
dt (6.6)

where ymaf and ymap are the measured outputs MAP and MAF; ymaf ref and ymap ref

are the reference values for tracking of MAF and MAP outputs; T1 is the second where

the setpoint is changed and T2 is chosen as T1 + 3 second because 3 sec is enough time

for offset-free tracking in the system.

The inertia weight and acceleration factors used in the PSO algorithm are chosen

as the default settings of the Matlab 2017b particleswarm function. Two parameters,

swarm size and maximum iteration number, are set to 20 as a termination criteria.
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Figure 6.4. Critical Oscillations on the MAP.

6.3.1. PID Tuning for Model Without Actuator Delay

In this part of the study, firstly, the MAP control loop is tuned for operation

region-2 for rising step change scenario by adjusting the gains of the VGT controller.

The EGR valve is closed and then, the derivative and integral terms of the MAP

controller are set to 0 and proportional gain is adjusted until critical oscillations begin

in the MAP output. At this point, the value of the critical gain and the period of

oscillations are noted. The critical oscillations on the MAP can be seen in Figure 6.4.

Then, PID controller gains are calculated according to Ziegler-Nichols method given

in Table 6.1.

MAF control is calibrated in the same manner as in the MAP control. This

time, the obtained VGT controller gains are kept constant. Then, EGR controller

proportional gain is increased until critical oscillations occur on the MAF output. Kcr

and Pcr values are recorded. Lastly, P controller is designed by ZN method. The Kcr,

Pcr, and calculated gain values for both MAP and MAF loops are given in Table 6.2.
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Table 6.2. Critical Oscillation and PID Parameters for Region-2.

Kcr Pcr Kp Ki Kd

MAP 1.4 0.12 0.84 14 0.0126

MAF 1.1 0.02 0.55 0 0

Table 6.3. PID Optimization Parameters for Region-2.

MAF MAP

Kp Ki Kd Kp Ki Kd

Initial Value 0.55 0 0 0.84 14 0.0126

Lower Bound 0.1 0 0 0.1 1 0

Upper Bound 1 50 0.05 2 20 0.05

PSO Result 0.6493 38.9192 0 0.4538 1.0606 0.0066

Next, PSO algoritm is used to tune the PID parameters for MAP and MAF

control. Initially, ZN parameters are given to the optimization. Although Ki and Kd

terms in ZN-PID controller causes oscillations, they are kept as free parameters in the

optimization by assigning lower and upper bounds. Initial conditions, upper and lower

bounds given to optimization and parameters chosen by PSO are summarized in Table

6.3. In addition, average simulation time for 20 iteration is 5.5 hour.

Simulation results of ZN-PID controller, PSO-PID controller, and MPC for rising

step change are shown in Figure 6.5. Also, Table 6.4 shows the MAP and MAF tracking

performance of 3 controllers in terms of IAE of MAF and MAP outputs and their

normalized summation.

When the results of the 3 controllers are compared in the rising step setpoint

change case, MPC exhibits better performance in terms of overshoot in the system

response for both output. Additionally, MPC obeys the actuator position change



55

Figure 6.5. Simulation Results of 3 Controller on Input Delay Free Model - Rising

Step Setpoint Change.

rate constraints even if there is a sudden change in the setpoint. Actuator position

change rate could not be handled by the PID controller. On the other hand, PSO-PID

improves the performance of the ZN-PID controller and gives the minimum cost in

terms of normalized IAE sum of two outputs. However, it results in overshoot in MAP.

The second case is the falling step change case for the delay free model. A PID

controller is designed for the operation region-1 as well. A similar way to rising step

change case is followed to find the PID parameters. After Kcr and Pcr are determined,

calculated ZN-PID and ZN-P parameters are used as initial points of the PSO. Param-

eters and the result of the PSO algorithm are summarized in Table 6.5 and closed loop

responses of the 3 controllers are shown in Figure 6.6. Additionally, Table 6.6 gives

the IAE values of 2 outputs and their normalized sum to compare the performances of

the 3 controllers.



56

Table 6.4. Output Performance of 3 Controllers for Region-2.

Controller Type\Cost IAE (MAF) IAE (MAP) IAE (Normalized Sum)

MPC 4.4243 138.3123 0.1475

ZN-PID 62.7335 153.5726 0.8578

PSO-PID 1.2116 162.4726 0.1254

Table 6.5. PID Optimization Parameters for Region-1.

MAF MAP

Kp Ki Kd Kp Ki Kd

Initial Value 1.05 0 0 3.96 79.2 0.0495

Lower Bound 0.1 0 0 0.1 10 0

Upper Bound 2 10 0.01 5 100 0.1

PSO Result 2 1.6087 0.0009 3.0614 10 0.0074

As seen from Figure 6.6, ZN-P control results in a steady-state error and overshoot

on MAF output. Although PSO-PID removes the steady-state error, there is still an

overshoot on the MAF output. On the other hand, MPC and PSO-PID satisfy the

expected settling times which are approximately 1.5 sec for MAF and 2 sec for MAP.

Further, MPC removes the steady-state error and the overshoot in the system and it

has the minimum cost compared to PID controllers.

Table 6.6. Output Performance of 3 Controllers for Region-1.

Controller Type\Cost IAE (MAF) IAE (MAP) IAE (Normalized Sum)

MPC 5.7768 156.9380 0.2241

ZN-PID 52.5121 150.8728 1.0399

PSO-PID 21.1654 146.1289 0.4980
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Figure 6.6. Simulation Results of 3 Controller on Input Delay Free Model - Falling

Step Setpoint Change.
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Table 6.7. PID Optimization Parameters for Input Delayed Model Region-2.

MAF MAP

Kp Ki Kd Kp Ki Kd

Initial Value 0.375 0 0 0.21 1.1667 0.0095

Lower Bound 0.1 0 0 0.1 0.1 0

Upper Bound 1 10 0.05 1 10 0.05

PSO Result 0.2344 6.3045 0.0004 0.2261 0.3007 0.0137

6.3.2. PID Tuning for Model With Actuator Delay

The dynamics of the system change if an input delay is added. This case has been

examined in Chapter 5 and the ability of MPC to handle delay has been demonstrated.

In this section, ZN-PID and PSO-PID controllers are designed for the rising-step change

case and the falling step change case for the input-delayed system.

For the rising step change case, a ZN-PID controller is designed for the MAP

control whereas a ZN-P controller is used for the MAF control to avoid the oscillations

in the system. Then, these parameters are given to the optimization as starting points.

Table 6.7 summarizes the controller parameters and Figure 6.7 shows the simulation

results. Furthermore, Table 6.8 gives the IAE performances of the 3 controllers.

Simulation results in Figure 6.7 show that PID controllers tuned by ZN and PSO

result in oscillations in MAF and overshoot in both MAF and MAP outputs. On the

other hand, MPC can handle the delay effect and performs better than PID controllers

in terms of overshoot and oscillations. However, it has a slower MAP response than PID

controllers due to the fact that it obeys the actuator position change rate constraints.

This results in higher IAE than PSO-PID algorithm.

Lastly, a PID controller and a P controller are tuned for operation region-1 by

ZN method when there is an input delay in the system. As discussed before, PSO
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Figure 6.7. Simulation Results of 3 Controller on Input Delayed Model - Rising Step

Setpoint Change.

Table 6.8. Output Performance of 3 Controllers for Delayed Model Region-2.

Controller Type\Cost IAE (MAF) IAE (MAP) IAE (Normalized Sum)

MPC 11.0442 276.4756 0.332

ZN-PID 71.2192 204.0266 0.9941

PSO-PID 8.9791 171.770 0.2250
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Table 6.9. PID Optimization Parameters for Input Delayed Model Region-1.

MAF MAP

Kp Ki Kd Kp Ki Kd

Initial Value 0.47 0 0 0.84 4.8 0.0367

Lower Bound 0.1 0 0 0.1 1 0

Upper Bound 1 10 0.05 2 10 0.05

PSO Result 0.2896 1.6323 0.0036 0.6623 1 0

Table 6.10. Output Performance of 3 Controllers for Delayed Model Region-1.

Controller Type\Cost IAE (MAF) IAE (MAP) IAE (Normalized Sum)

MPC 6.7171 174.1308 0.2761

ZN-PID 61.1368 166.9334 1.2026

PSO-PID 19.9565 145.2457 0.4764

algorithm is run and the parameters in Table 6.9 are obtained. Simulation results can

be seen in Figure 6.8 and discussed according to Table 6.10.

In the last example, as in the other examples, it is seen that PSO has improved

the performance of ZN controller. However, MPC is superior to others in terms of

overshoot, settling-time, and steady-state error due to its predictive and multi-objective

structure.

6.4. Summary of the Chapter

In this chapter, DEAP model with and without actuator delays has been con-

trolled by SISO PID controllers. For the tuning of the PID controllers, ZN method and

PSO method with the initialization of ZN parameters have been introduced. It has

been shown that PSO has improved the control performance of the PID controllers.
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Figure 6.8. Simulation Results of 3 Controller on Input Delayed Model - Falling Step

Setpoint Change.
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Furthermore, the results of the 3 control methods have been compared, and it has

been observed that MPC is superior to others in terms of overshoot, settling-time, and

steady-state error when the setpoint decreases. When the setpoint increases, PSO-

PID has the minimum normalized IAE sum of the two outputs. However, it results in

overshoots in the system outputs.
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7. CONCLUSION

Control of MIMO Diesel Engine Air Path is a challenging task for car manufac-

turers due to tightening emission regulations. In industry, control of this system is

generally done by SISO PID controllers. However, working with PID controllers re-

quires high calibration effort. On the other hand, it is difficult the fulfill the tightening

emission standards without taking into account the decoupling between actuators.

The first objective of this thesis has been to apply MPC technique on Diesel

Engine Air Path system. For this reason, system identification has been performed on

2 operation points of the system. The performance of the MPC controller has been

evaluated when there is a change in the system operation point and setpoints of the

outputs increase/decrease. It has been shown that MPC can handle the settling time,

overshoot, and zero steady-state criteria for both outputs even if there is a coupling

between 2 actuators and 2 outputs.

Actuator delays are commonly present in real-time systems and they deteriorate

the control performance. In Chapter 5, a time delay has been added to the system

actuators and model in the MPC algorithm has been extended with this time delay.

It has been shown that MPC performs better when the delay is taken into account in

the algorithm.

Although model based control algorithms are the mostly studied techniques in

literature, SISO PID controllers are still the most common control method in auto-

motive industry. Calibration of these SISO PID controllers are done by calibration

engineers starting with Ziegler-Nichols constants and then tuned manually until a de-

sired performance is achieved. To improve the performance of PID controllers and

tune the parameters in a systematic way, PSO algorithm has been used in this study.

Two PID controllers for MAF and MAP control have been tuned starting with the ZN

calibration parameters. It has been seen in numerical analysis that PSO improves the

control performance compared to ZN tuning.
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As a conclusion, performances of the MPC, ZN-PID, and PSO-PID controllers

have been compared in terms of IAE of MAF and MAP outputs and their normalized

summation. It has been observed that MPC has the minimum tracking cost when

the setpoint is decreased. On the other hand, if the setpoint is increased, the cost of

PSO-PID controller is the lowest compared to others. However, it results in overshoot

in MAP output and leads oscillations in MAF output when there is an input delay

in the system. MPC can handle the delay effect without causing oscillations on the

system outputs. The final conclusion of this work is about the computation time of the

PSO-PID controllers. For each scenario discussed in this thesis, PSO algorithm has

been run about 5.5 hour for the calibration of PID controllers. In real time systems, it

requires a big offline calibration effort for each predefined operation point. Since the

MPC is an online algorithm, it requires less offline preparation time than calibrating

the PID controllers.

Lastly, there are some open subjects for further improvements of this study. One

of them is improvement of the plant model used in MPC control. Instead of black-box

modeling, a more accurate model can be developed such as by using Neural Network,

Machine Learning, or Fuzzy Logic. A second improvement is in the PID tuning part.

The PSO can be started from more proper initial conditions to reach a global optimal

solution. On the other hand, cost function IAE of the PSO algorithm can also be

extended to reduce the overshoot.
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APPENDIX A: SYSTEM IDENTIFICATION

MATRICES/MATLAB CODES

In this part, the plant model matrices obtained by System Identification for 2

operation regions and the codes written in Matlab environment for MPC control are

given.

A.1. System Identification Matrices

System matrices of operation region 1 are obtained as follows:

Ap =


0.837 −0.155 0.062 −0.067

−0.015 0.087 −0.383 −0.133

−0.049 −0.129 0.510 −0.011

0.029 −0.069 0.034 0.633

 , Bp =


0 0.002 −0.001 0

0 −0.001 −0.002 0.003

0 0.001 −0.001 0.001

0 −0.001 0 0.001

 ,

Cp =

 111.095 −245.572 49.291 10.431

1571.988 −26.136 19.525 −36.703

 , Dp =

0 0 0 0

0 0 0 0

 .
(A.1)

System matrices of operation region 2 are given below:

Ap =


0.851 −0.105 0.115 −0.040

0.094 0.157 −0.382 −0.273

−0.041 −0.198 0.389 −0.173

−0.028 −0.007 0.282 0.739

 , Bp =


0 0.002 −0.001 0

0 −0.001 −0.002 0.004

0 0.001 −0.001 0.001

0 −0.003 0 0

 ,

Cp =

 227.113 −236.058 52.452 2.918

3257.899 −170.959 127.491 −65.065

 , Dp =

0 0 0 0

0 0 0 0

 .
(A.2)
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A.2. Matlab Codes for MPC

At the beginning, the user defined model parameters, disturbance parameters,

input, input change, output constraints, controller sample time, prediction and control

horizons, cost function weightings are defined for 2 operation region.

Figure A.1. m File of Parameter Definitions.



71

Figure A.1. m File of Parameter Definitions (cont.).
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Also, all matrices mentioned in Chapter 3 are calculated with the calculateOf-

flineMatrices function given below. This function is called from the above m file before

the simulation is started.

Figure A.2. calculateOfflineMatrices Function.
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Figure A.2. calculateOfflineMatrices Function (cont.).
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Figure A.2. calculateOfflineMatrices Function (cont.).
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Figure A.2. calculateOfflineMatrices Function (cont.).
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Figure A.2. calculateOfflineMatrices Function (cont.).
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Lastly, calculateOnlineMatrices function is called from the Simulink MPCBlock

at each sample of the simulation to calculate optimum manipulated variables.

Figure A.3. calculateOnlineMatrices Function.
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Figure A.3. calculateOnlineMatrices Function (cont.).

State estimation function called from calculateOnlineMatrices function is:

Figure A.4. estimateStates Function.


