
TRAINING BIDIRECTIONAL GENERATIVE ADVERSARIAL NETWORKS

WITH HINTS

by

Uras Mutlu

B.S., Computer Engineering, Istanbul Technical University, 2016

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2019



ii

TRAINING BIDIRECTIONAL GENERATIVE ADVERSARIAL NETWORKS

WITH HINTS

APPROVED BY:

Prof. Ethem Alpaydın . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Prof. Ali Taylan Cemgil . . . . . . . . . . . . . . . . . . .

Prof. Olcay Taner Yıldız . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 02.01.2019



iii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my thesis advisor Prof. Ethem Alpaydın

for his support, guidance and patience through my masters education. I am very

grateful that he believed in me and accepted me as his student when I had accomplished

nothing. It has been a pleasure for me to work with him and learn from him. I

would also like to thank Prof. Ali Taylan Cemgil and Prof. Olcay Taner Yıldız for

participating in my thesis jury and their helpful comments and suggestions on my

thesis.

I am the most thankful to have a remarkably supportive family and close friends.

I could not have started my masters education and begun pursuing an academic career

without their emotional support all along the way. I thank my dearest friends Ege

Bilgin, Elif Güngör, Eylül Eracar, Kaan Sayım and Sercan Sağman, for being there for

me whenever I needed to run away from the overwhelming hours of studying, working

or trying to meet deadlines. I thank Pelin Yurdadön wholeheartedly for sharing my

burden and offering help wherever she is and whenever she can.

I would like to show my gratitude to the colleagues and friends in Boğaziçi Univer-

sity and Perceptual Intelligence Laboratory for their support and friendship. I thank

Alper Ahmetoğlu for having briefly adversarial but invaluably generative discussions

and his very helpful insights. I also thank Burak Dündar and Derya Soydaner for their

companionship. I am much obliged to Ahmet Alp Kındıroğlu, Alper Kamil Bozkurt,

Alptekin Orbay, Doğa Siyli, Gizem Esra Ünlü, Mehmet Burak Kurutmaz, Oğulcan

Özdemir and Ufuk Can Biçici for their friendship and the productive discussions in the

laboratory room that we share.

This thesis is partially supported by Boğaziçi University Research Funds with

Grant Number 18A01P7. We also thank TETAM for the computing facilities provided.



iv

ABSTRACT

TRAINING BIDIRECTIONAL GENERATIVE

ADVERSARIAL NETWORKS WITH HINTS

The generative adversarial network (GAN) is a deep learning architecture that

learns a generative model by training a later discriminator to best differentiate “fake”

examples generated by the generator from the “true” examples sampled from the train-

ing set. The generator of GAN takes a low-dimensional latent space vector as input and

learns to generate the corresponding input example. The aim of the generator is to gen-

erate examples that can not be separated from the true examples by the discriminator.

The aim of the discriminator is to maximize the separability of the generated exam-

ples from the true examples. A recent extension is the bidirectional GAN (BiGAN)

where an encoder is also trained in the inverse direction to generate the latent space

vector for a given training example. Recently, Wasserstein GAN has been proposed for

GAN and our first contribution is to adapt Wasserstein loss to BiGANs. The added

encoder of the BiGAN also allows us to define auxiliary reconstruction losses as hints

to learn a better generator, and this is our second contribution. Through experiments

on five image data sets, namely, MNIST, UT-Zap50K, GTSRB, Cifar10, and CelebA,

we show that Wasserstein BiGANs, augmented with hints, learn better generators in

terms of image generation quality and diversity, as measured visually by analyzing the

generated samples, and numerically by the 1-nearest-neighbor test.



v

ÖZET

ÇİFT YÖNLÜ ÇEKİŞMELİ ÜRETİCİ AĞLARIN

İPUÇLARIYLA EĞİTİLMESİ

Çekişmeli üretici ağlar (ÇÜA), eğitim kümesindeki “gerçek” örnekler ile üretici

ağ tarafından üretilen “sahte” örnekleri birbirinden ayırmak için eğitilen bir ayırıcı ağ

yardımıyla üretken bir model öğrenen bir derin öğrenme mimarisidir. ÇÜA’nın üretici

ağı düşük boyutlu bir saklı uzay vektörünü girdi olarak alıp bu vektöre karşılık ge-

len bir örnek üretir. Yakın zamanda öne sürülen çift yönlü ÇÜA’da (ÇYÇÜA) ise ek

bir kodlayıcı ağ yardımıyla ters yöne gidilerek girdi olarak verilen bir örnekten saklı

uzay vektörü elde edilir. Bu tezdeki ilk katkımız, yine yakın zamanda önerilen Wasser-

stein ÇÜA’da kullanılan Wasserstein yitiminin ÇYÇÜA’ya uyarlanmasıdır. ÇYÇÜA’ya

eklenen kodlayıcı ağ aynı zamanda ipucu niteliğinde yardımcı geri çatma yitimleri

tanımlanmasını ve böylece daha iyi eğitilmesini sağlayabilir. Bu tezdeki ikinci katkımız

da bu yardımcı geri çatma yitimlerinin tanımlanması ve uygulanmasıdır. Resim içerikli

beş farklı veri kümesinde deneyler yapılarak Wasserstein ÇYÇÜA’nın ipuçları eklenmiş

halinin resim üretim kalitesi ve çeşitliliği açısından daha iyi üretici ağlar öğrendiği

gösterilmiştir. Bu sonuçlara hem üretilen resimlerin görsel analizi, hem de üretilen res-

imlerle veri kümesinde bulunan gerçek resimler arasında yapılan en-yakın-bir-komşu

sınaması sonucu elde edilen nicel verilerin analizi ile varılmıştır.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Neural Networks and Deep Learning . . . . . . . . . . . . . . . . . . . 1

1.3. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. GENERATIVE ADVERSARIAL NETWORKS . . . . . . . . . . . . . . . . 6

2.1. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2. Training GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3. Wasserstein GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4. Loss-Sensitive GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1. Inception Score (IS) . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.2. Frechét Inception Distance (FID) . . . . . . . . . . . . . . . . . 13

2.5.3. 1-Nearest Neighbor Test (1-NN) . . . . . . . . . . . . . . . . . . 14

3. BIDIRECTONAL GENERATIVE ADVERSARIAL NETWORKS AND VARI-

ANTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2. Bidirectional Generative Adversarial Networks . . . . . . . . . . . . . . 16

3.3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4. Wasserstein BiGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5. Loss-Sensitive BiGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6. Hints for Improving Generation Quality . . . . . . . . . . . . . . . . . 21

3.6.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



vii

3.6.2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.6.3. Data Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6.4. Convolutional Spaces of G and E . . . . . . . . . . . . . . . . . 25

3.6.5. Convolutional Space of D . . . . . . . . . . . . . . . . . . . . . 25

3.6.6. Feature Space of Inception-v3 Network . . . . . . . . . . . . . . 26

4. EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1. Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.1. Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2. Model Architectures . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3. Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2. Vanilla vs. Wasserstein BiGAN . . . . . . . . . . . . . . . . . . . . . . 34

4.3. Vanilla vs. Loss-Sensitive BiGAN . . . . . . . . . . . . . . . . . . . . . 37

4.4. The Effect of Different Hints on Reconstruction Criteria . . . . . . . . 37

4.5. Latent Space Interpolations . . . . . . . . . . . . . . . . . . . . . . . . 46

5. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 51

5.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



viii

LIST OF FIGURES

Figure 1.1. An example neural network with one hidden layer. Input layer

contains two neurons, hidden layer contains three neurons and the

output layer contains one neuron. w and v values are the weights

of the connections that are learned from data. . . . . . . . . . . . 3

Figure 1.2. AlexNet architecture [1]. The input is a 224 × 224 × 3 image and

the output are the class probabilities for classes in the ImageNet

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 2.1. The generative adversarial network (GAN) is composed of a gen-

erator G and a discriminator D. G generates fake x from z and D

learns to discriminate fake G(z) from true x. . . . . . . . . . . . . 7

Figure 2.2. GAN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 2.3. Example data generated by a simple GAN. Cross shaped data

points are the true data and the round shaped data points are

the generated (fake) data. . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3.1. The autoencoder (AE) is composed of an encoder E and a decoder

Dec. The encoder maps x to latent z and the decoder reconstructs

x from z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 3.2. The bidirectional GAN also has an encoder E that learns to map

true x to latent z. The discriminator takes the concatenated pair

(shown as “⊕”) z, x as input. The red components show the addi-

tions to the GAN proper, shown in Figure 2.1. . . . . . . . . . . . 17



ix

Figure 3.3. BiGAN Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.4. Data Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.5. Convolutional Spaces of G and E . . . . . . . . . . . . . . . . . . 25

Figure 3.6. Convolutional Space of D . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 3.7. Feature Space of Inception-v3 Network . . . . . . . . . . . . . . . 27

Figure 4.1. Some examples from MNIST. . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.2. Some examples from UT-Zap50K. . . . . . . . . . . . . . . . . . . 29

Figure 4.3. Some examples from GTSRB. . . . . . . . . . . . . . . . . . . . . 30

Figure 4.4. Some examples from Cifar10. . . . . . . . . . . . . . . . . . . . . . 30

Figure 4.5. Some examples from CelebA. . . . . . . . . . . . . . . . . . . . . . 31

Figure 4.6. The evolution of the 1-NN leave-one-out fake (left) and (true) ac-

curacies of vanilla and Wasserstein BiGANs during training. . . . 36

Figure 4.7. The evolution of the 1-NN leave-one-out fake (left) and (true) ac-

curacies of vanilla and Loss-Sensitive BiGANs during training. . . 38

Figure 4.8. Reconstruction errors of Vanilla BiGAN models. . . . . . . . . . . 41

Figure 4.9. Reconstruction errors of Wasserstein BiGAN models. . . . . . . . 42

Figure 4.10. Reconstruction errors of Loss-Sensitive BiGAN models. . . . . . . 43



x

Figure 4.11. Reconstruction errors of best performing hints on each data set

with respect to loss functions. . . . . . . . . . . . . . . . . . . . . 44

Figure 4.12. Randomly generated images with best performing Wasserstein Bi-

GAN models measured in terms of 1NN accuracy. . . . . . . . . . 45

Figure 4.13. Reconstruction examples of MNIST, UT-Zap50K and GTSRB. Mod-

els follow the order in Table 4.4 from left to right. . . . . . . . . . 47

Figure 4.14. Reconstruction examples of Cifar10 and CelebA. Models follow the

order in Table 4.4 from left to right. . . . . . . . . . . . . . . . . 48

Figure 4.15. Interpolation examples of MNIST, UT-Zap50K and GTSRB. The

best performing model for each data set (in terms of reconstruction

error) is used for obtaining the interpolations. . . . . . . . . . . . 49

Figure 4.16. Interpolation examples of Cifar10 and CelebA. The best performing

model for each data set (in terms of reconstruction error) is used

for obtaining the interpolations. . . . . . . . . . . . . . . . . . . . 50



xi

LIST OF TABLES

Table 3.1. Summary of Proposed Hints . . . . . . . . . . . . . . . . . . . . . 27

Table 4.1. The Generator Architecture of 32× 32 Models . . . . . . . . . . . 32

Table 4.2. The Encoder Architecture of 32× 32 Models . . . . . . . . . . . . 32

Table 4.3. The Discriminator Architecture of 32 × 32 Models. *Not included

in the discriminator of Wasserstein BiGAN . . . . . . . . . . . . . 33

Table 4.4. Fake and true LOO 1-NN accuracies, FID scores, and reconstruction

errors of different Vanilla and Wasserstein BiGAN variants. *Best

scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



xii

LIST OF SYMBOLS

C Rectified Linear Function

C Covariance

D Discriminator network

Dc Activations of the cth convolutional layer of the discriminator

network

Dec Decoder network

E Encoder network

Em mth layer of the encoder network

f First activation function

g Second activation function

G Generator network

Gn nth layer of the generator network

h Hidden unit

i ith index

Ic Activations of the cth layer of the Inception-v3 network

j jth index

k kth index

L Loss

M Classification model

p Probability distribution

S Sample

v Weight of the connection between hidden and output neurons

w Weight of the connection between input and hidden neurons

x Input

x̂ Generated data

xt Training data

X Training data distribution

y Output

z Latent space



xiii

zt Sampled latent space for training

ẑ Inferred latent space

4 Distance Metric

β Penalty coefficient

µ Mean

∇ Gradient



xiv

LIST OF ACRONYMS/ABBREVIATIONS

4-GAN Triangle Generative Adversarial Network

1-NN 1-Nearest Neighbor

2D Two Dimensional

3D Three Dimensional

AE Autoencoder

AAE Adversarial Autoencoder

ALI Adversarially Learned Inference

ALICE Adversarially Learned Inference with Conditional Entropy

ANN Artificial Neural Network

AVB Adversarial Variational Bayes

BEGAN Boundary Equilibrium Generative Adversarial Network

BiGAN Bidirectional Generative Adversarial Network

BiCoGAN Bidirectional Conditional Generative Adversarial Network

CGAN Conditional Generative Adversarial Network

CNN Convolutional Neural Network

ConvD Convolutional space of the discriminator network

ConvGE Convolutional spaces of the generator and the encoder net-

work

DCGAN Deep Convolutional Generative Adversarial Network

DGP Direct Gradient Penalty

DS Data Space

EBGAN Energy-Based Generative Adversarial Network

FBGAN Featurized Bidirectional Generative Adversarial Network

FA Factor Analysis

FID Fréchet Inception Distance

GAN Generative Adversarial Network

GP Gradient Penalty

GPU Graphics Processing Unit

HQBiGAN High Quality Bidirectional Generative Adversarial Network



xv

Incpt Feature space of Inception-v3 network

Info-GAN Information Maximizing Generative Adversarial Network

IS Inception Score

JGP Joint Gradient Penalty

KL Kullback-Leibler

LOO Leave-One-Out

LS-BiGAN Loss-Sensitive Bidirectional Generative Adversarial Network

LS-GAN Loss-Sensitive Generative Adversarial Network

LSGAN Least Squares Generative Adversarial Network

MDGAN Multi-Discriminator Generative Adversarial Network

ML Machine Learning

PCA Principle Component Analysis

SGD Stochastic Gradient Descent

VAE Variational Autoencoder

WGAN Wasserstein Generative Adversarial Network

WBiGAN Wasserstein Bidirectional Generative Adversarial Network



1

1. INTRODUCTION

1.1. Supervised Learning

Machine learning (ML) is a field of computer science studying algorithms that

learn from data, hugely nourished from the fields of statistics, probability theory, and

optimization. There are some problems for which we do not have an algorithm and

ML can help us with those. For example, it is not feasible to explicitly write a function

to detect a cat in an image, but suppose we have a number of images containing many

objects in them, including cats. We can use these images and the information we know

about these images (if they contain a cat or not) to come up with a statistical model.

Assuming that we have a rich and diverse collection of images, then we can build an

adequate model that estimates the probability of a cat given an image as input. That

is, using a method called supervised learning, we can come up with an algorithm that

learns a function from the images and whether they contain a cat or not. More formally

within the context of the given example, images are the data and information about

whether an image contains a cat or not are their corresponding labels (ground truth).

One of the reasons why machine learning is very popular these days is the amount

of data available. Clearly, a research field interested in learning from data benefits

greatly from the so-called explosion of available data. Also improvements in hardware

technology and the reduction in costs of computation power make more algorithms

feasible. In recent years, the machine learning approach that has been the most pop-

ular is the artifical neural network (ANN) model trained with a method called back-

propagation [2].

1.2. Neural Networks and Deep Learning

An artifical neural network is inspired by the human nervous system. There are

input neurons and output neurons connected to each other. These connections have

weight values that determine how much the value of the output neuron is influenced by



2

the values of the input neurons. Basically, we can think of this network as a function

of the input values given the weights of the connections as the function parameters.

When we have more layers of neurons between the input and output neurons,

with each layer having a connection to the previous layer, we have a multilayer network

and when we have many layers, we have a deep learning model. These intermediate

layers between the input and the output are called hidden layers and the neurons in a

hidden layer are named hidden units. Let us consider an example with only one hidden

layer. Formally, let x be the input and y be the output. We can calculate the values

(activations) of the hidden units as:

hi = f

(∑
j

wijxj

)
(1.1)

where wij is the weight of the connection between input xj to the hidden unit hi and

f is the activation function. After calculating the values of the hidden units, output

of the network can be calculated as:

yi = g

(∑
k

vikhk

)
(1.2)

where vik is now the weight from hidden unit hk to the output unit yi and g is the

activation function. Figure 1.1 shows an example neural network.

We need a measure of error to be able to train (improve) our model. The higher

is the value of the error function, the more the weights of the network must be tweaked

so that the model can give the desired output and has smaller error. Training a deep

learning model means minimizing the error of the network with respect to the input

data. This is achieved with an iterative optimization algorithm called the stochastic

gradient descent (SGD). Using SGD to minimize the error of a neural network is called

the back-propagation algorithm [2].



3

x1

x2

h2

h1

h3

y

w11

v1

v2

v3

w21

w31

w12

w22

w32

Figure 1.1. An example neural network with one hidden layer. Input layer contains

two neurons, hidden layer contains three neurons and the output layer contains one

neuron. w and v values are the weights of the connections that are learned from data.

Deep learning has become hugely popular after the AlexNet [1] architecture

achieved great success in object recognition from images trained on a large scale image

data set. AlexNet is a convolutional neural network (CNN), which is a special type of

network mainly applied to the image domain. CNNs take advantage of the 2D struc-

ture of an image by scanning the local regions and checking for local features. Pixels

in these local regions are multiplied with the weights of the convolutional layer which

are meaningful features of the input image. These weights in local regions are called

filters, also known as kernels. Each filter has a fixed size named the kernel size that

defines the receptive field. The number of filters and the sizes of the receptive field

are hyperparameters that determine the number of weights of a convolutional layer.

Each filter produces a different set of 2D output neuron activations with their respec-

tive weights and when these output activations are stacked together, they form a 3D

volume as the convolutional layer output. Figure 1.2 shows the AlexNet architecture

with its convolutional layers represented as 3D volumes.

After the success of AlexNet, other significant deep learning architectures fol-

lowed such as VGG-16 [3], Google Inception [4], and ResNet [5]. These models have

generalized very well to the image domain and their pre-trained versions are often used



4

in many computer vision studies.

Figure 1.2. AlexNet architecture [1]. The input is a 224× 224× 3 image and the

output are the class probabilities for classes in the ImageNet data set.

Deep learning models have also been applied to other areas such as natural lan-

guage processing and speech processing. In the field of natural language process-

ing, there are applications to machine translation [6, 7], building a language model

[8], question-answering systems [9], and learning vector representations of words [10].

Speech processing systems are also greatly improved with deep learning models [11,12].

With the great success of deep learning in many problems, studies that exper-

imentally show the weaknesses and security issues of deep learning models have also

become popular. Studies on adversarial examples have shown that applying slight per-

turbations to the input images may cause misclassifications, sometimes with very high

confidence [13,14].

This thesis is one method for generative modeling, which is an application area

of machine learning that aims to learn the distribution of the data and generate new

examples from it. Learning the distribution of the data in an unsupervised manner

means that the generative model learns the structure of the data. The learned model



5

then can be used to obtain abstract representations as rich features that can be used

in many applications. With improvements in generative modeling, it is possible to

understand the properties and features of any data set without any supervision, which

is crucial since there is a lot of data to extract meaning from in the real world.

1.3. Organization

This thesis is organized as follows: In Chapter 2, we discuss the generative adver-

sarial network (GAN) model with the explanation and formalization of the algorithm,

literature review, and evaluation methods. In Chapter 3, we explain the bidirectional

GAN (BiGAN) with its formulation, adaptation to some other GAN optimization

methods, and our proposed hints to improve their training. We give experimental re-

sults in Chapter 4 and finally in Chapter 5, we summarize the results and contributions

of our work together with some possible future research directions.



6

2. GENERATIVE ADVERSARIAL NETWORKS

2.1. Algorithm

The Generative Adversarial Network (GAN), proposed in 2014 [15], has since

become very popular in the field of generative modeling. GAN is composed of two

networks, a generator G and a discriminator D (Figure 2.1). Both G and D are deep

neural networks with convolutional and dense layers as appropriate. The generator

takes z as input and generates x; z are low-dimensional and are sampled from an

assumed probability distribution p(z) (e.g., multivariate Gaussian with independent

features). Once training is done, we can generate new x by sampling from p(z) and

using G.

The samples generated by G are called fake, they are the adverse examples to

the true xt that we have in our training set. The aim of the discriminator is to tell

the true and fake samples apart as well as possible, and that is how it is trained; the

aim of the generator on the other hand is to generate fake samples so well that the

discriminator cannot tell them apart. The two networks G and D play an adversarial

game and gradually improve their abilities. The following log-likelihood criterion is

maximized by D and minimized by G:

LGAN =
∑
xt∈X

logD(xt) +
∑

zt∼p(z)

log(1−D(G(zt))) (2.1)

where xt are the true samples drawn from the training set X and G(zt) are the fake

samples with zt sampled from p(z). The algorithm of GAN is given in Algorithm 2.1

If we define pg as the distribution of the samples obtained from the generator,

and pdata as the distribution of the true samples, this adversarial game is equivalent to

minimizing the KL-divergence between pg and pdata.



7

  D

z G(z)
fake

true

  G

x

Figure 2.1. The generative adversarial network (GAN) is composed of a generator G

and a discriminator D. G generates fake x from z and D learns to discriminate fake

G(z) from true x.

for number of training iterations do

for k steps do

Sample zt ∼ p(z)

Choose xt ∈ X

Update D(x) and D(G(z)) by maximizing Eq. 2.1, do not update G

end for

Sample zt ∼ p(z)

Update G(z) by minimizing Eq. 2.1, do not update D

end for

Figure 2.2. GAN Algorithm.



8

(a) Convergence (b) Mode collapse

Figure 2.3. Example data generated by a simple GAN. Cross shaped data points are

the true data and the round shaped data points are the generated (fake) data.

The generator network is analogous to a counterfeiter who is trying to produce

fakes without getting caught, and the discriminator network is analogous to the police,

who is trying to detect if the instance is fake or legitimate [15].

2.2. Training GAN

There is a very rich literature on GANs, even though the architecture is relatively

new. This literature review is implicitly split into two sections. We review various re-

search directions and variants of GANs. We will then discuss some notable applications

of GANs (chosen from a vast set).

Research has shown that training GANs is difficult [16]. Perhaps the most com-

mon problem in GAN training is known as mode collapse. This occurs when the

generator network of the GAN learns to generate only one or more modes of the data,

instead of all the modes. The discriminator is easily fooled since the mode that the

generator learns to produce exists in the true data. In Figure 2.3, we show a simple

experiment where the data is drawn from a mixture of two bivariate Gaussians. Figure

2.3a shows a good convergence where the generated data covers both components. On

the other hand, in Figure 2.3b, the generated data covers only one component. There



9

are a significant number of studies that aim to prevent or reduce the effect of mode

collapse [17–20]. Another problem with GAN training is vanishing gradients. This

occurs when the discriminator output is very close to zero. Both of these problems

have been known since the original GAN article [15].

There have been many attempts to stabilize GAN training, both empirically

and theoretically. Several empirical tips and tricks have been proposed, such as label

smoothing, mini-batch discrimination, and feature matching [18]. Another empirical

suggestion is to use denoising feature matching that stabilizes training by obtaining

high-level representations from an auto-encoder and feeds these representations to the

generator [19].

GANs are also used as class-conditional generators. Conditional GAN (CGAN)

[21] provides the means to generate class-conditional samples by feeding the class label

to both the generator and the discriminator. A more recent related work is Info-GAN

[22], which is trained to code semantic information to the latent space by maximizing

the mutual-information between a subset of the latent space and the fake (generated)

data.

GAN has found a lot of applications in computer vision. Architectural variants

of GAN are used for image-to-image translation [23, 24], enhancing the resolution of

images (super-resolution) [25], image inpainting [26], high-resolution image blending

[27], semantic image segmentation [28], and text-to-image synthesis [29, 30]. Some

additional notable GAN variants include the attention-based GAN [31], and the larger-

scale GAN models such as progressive GAN [32], large-scale GAN [33] and the very

recent GAN with the style-based generator architecture [34].

There are GAN variants that use different loss functions to stabilize the training.

Wasserstein GAN [17] and loss-sensitive GAN (LS-GAN) [20] are the ones that we use

in this thesis and explained in Sections 2.3 and 2.4. Least squares GAN (LSGAN) [35]

adopts the least squares loss function instead of the log-likelihood for the discriminator

to stabilize the training and improve the image generation quality. Mode regularized



10

GAN [36] penalizes the missing modes during training to ensure that the GAN will not

collapse into fewer modes than it should. Energy-based GAN (EBGAN) [37] proposes

a set of energy functions and regularizers to stabilize GAN training. An interesting

idea in this work is to use an autoencoder architecture for the discriminator and to

utilize the reconstruction loss as the energy function. Unrolled GAN [38] uses unrolled

optimization for the generator which is a computationally expensive yet successful

method to stabilize the training of GANs.

2.3. Wasserstein GAN

From a theoretical perspective, altering the loss criterion of GAN to prevent mode

collapse and stabilize training has been popular. A notable example is the Wasserstein

GAN [17]. Wasserstein loss is nowadays used as the most popular alternative to the

original GAN loss. Informally, Wasserstein distance (also referred to as the Earth-

Mover distance) is the minimum cost of transporting the probability mass from one

distribution to another; in our case, from that of the fake samples to that of the true

samples. It has been shown that minimizing Wasserstein distance leads to more stable

training [17] and better quality images when used in generating face images [32]. For

the GAN, the Wasserstein loss is defined as:

LWGAN =
∑

xt,zt∈p(z)

D(xt)−D(G(zt)) (2.2)

for pairs of true and fake samples (xt, G(zt)). This loss is maximized by D and mini-

mized by G; D tries to make this difference as large as possible and G tries to minimize

it. D wants the output of D(xt) to be higher for true samples xt than for generated

fake samples D(G(zt)) and G wants the opposite. Note that here D is not a 0/1 clas-

sifier (estimating the posterior probability that its input is a true sample) as in GAN

proper but a regressor whose output a scalar score (of the “trueness” of its input)—D

of Wasserstein GAN is called a critic. In terms of implementation, the (single) out-

put of D in Wasserstein GAN is a linear unit whereas that of the vanilla GAN has a

sigmoid.



11

An improved version of the Wasserstein GAN proposes an additional gradient

penalty term to enforce a 1-Lipschitz constraint on the gradients of D [39]:

LGP = (‖∇G(z)D(G(z))‖2 − 1)2 (2.3)

and the augmented Wasserstein loss becomes:

LWGAN-GP = LWGAN + βLGP (2.4)

where β is the hyper-parameter named the penalty coefficient that defines the trade-off

between the two terms.

2.4. Loss-Sensitive GAN

A loss criterion for training GANs that is very similar to the Wasserstein loss is

the loss-sensitive GAN (LS-GAN) proposed independently [20], which not only looks at

the difference as in Wasserstein loss but also imposes a margin. LS-GAN also imposes

a prior on the true data distribution by using a Lipschitz regularity condition. This

means that in LS-GAN it is assumed that the density of the true data will not change

sharply.

In LS-GAN, D is trained to minimize (and G is trained to maximize) the following

(In LS-GAN, D(x) learns the “fakeness” as opposed to Wasserstein GAN, where D(x)

learns the “trueness” of a sample):

LLS-GAN =
∑

xt,zt∈p(z)

C(4(xt, G(zt)) +D(xt)−D(G(zt))) (2.5)

where 4 is a distance metric between xt and G(zt) which defines the margin, and C is

the rectified linear function to make sure that this equation satisfies a+ = max(a, 0).

An important note here is that if the margin term is removed, LS-GAN becomes

identical (except for sign) to minimizing the Wasserstein distance.



12

LS-GAN also employs a gradient penalty but it slightly differs from Wasserstein

GAN. The direct gradient penalty is given as:

LDGP =
1

2
||∇xD(x)||2 (2.6)

When training the discriminator to learn a loss function, the direct gradient

penalty is added to the loss of D with the hyper-parameter β:

LLS-GANDGP
= LLS-GAN + βLDGP (2.7)

2.5. Evaluation

2.5.1. Inception Score (IS)

Originally, there were not any widely used evaluation criterion for GANs except

for visual qualitative analysis. The search for a quantitative and robust evaluation

metric for GANs have quickly become an area of interest. Inception Score (IS) is the

first such criterion to have become widely adopted in the GAN literature [18]. Idea

is to use the Google Inception network [4] pre-trained on the large-scale ImageNet

data set [40] to compute the class label distribution of the fake examples. Formally,

Inception Score is computed as:

IS(pg) = eEx∼pg [KL(pM (y|x)||pM (y))] (2.8)

where M denotes the Google Inception network, x is a fake example, i.e., x = G(z),

pM(y|x) states the label distribution of x predicted by the classification model M , and

pM(y) is the marginal of pM(y|x = G(z)).

The motivation behind pM(y|x) is that if G is a good generator, the generated

image will contain meaningful objects and it will be classified with one of the labels



13

of the ImageNet data set with high probability. On the other hand, if the generated

examples are ambiguous, we will not have one of the labels with high probability and

pM(y|x) will be close to pM(y), leading to a low Inception Score.

There are two main problems here [41]. The first one is the bias introduced by the

heavy reliance on the pre-trained network. In other words, the distributions on both

sides of the KL divergence term in Eq. 2.8 are heavily dependent on the classification

model M . The second problem is the missing distribution of the true samples pdata in

the equation. One can of course calculate the Inception Score of the true samples and

a comparison can be made.

2.5.2. Frechét Inception Distance (FID)

Frechét Inception Distance (FID) [42] is another widely used evaluation metric

in the GAN literature. FID also uses the Google Inception network but in a different

way. The intermediate representations of true and fake samples are obtained from

the Google Inception network. The means and covariances of true and fake sample

distributions are calculated under the multivariate Gaussian assumption. The Frechét

distance is the distance between the two multivariate Gaussians calculated for the true

(data) and fake (g) examples:

FID(pdata, pg) = ||µdata − µg||+ Tr(Cdata + Cg − 2(CdataCg)
1/2) (2.9)

where µ and C denote the mean and covariance, respectively.

An FID score close to zero means that the two distributions are close to each

other. Unlike the Inception Score, this metric includes the true data distribution in

the calculation. The drawback is the bias introduced by the multivariate Gaussian

assumption. This metric is also reliant on the pre-trained network.



14

2.5.3. 1-Nearest Neighbor Test (1-NN)

1-nearest neighbor (1-NN) test [41,43] is a two-sample classifier test to determine

if two distributions are identical. With GAN, we have two distributions pdata and pg

and we want to assess how much they overlap.

The first step is to take equal number of samples Sdata and Sg from both distri-

butions and label them as positive and negative, respectively. Then a 1-NN classifier

is trained with these samples and the leave-one-out (LOO) accuracy is computed for

all of the samples. The idea is that if the two distributions actually overlap (desired

case), then the LOO accuracy should be close to 50%, meaning that the true samples

and fake samples are mixed well enough to have the accuracy of the 1-NN classifier

close to random.

More interestingly, the true and fake accuracies can be analyzed separately, then

the 1-NN test gives us more information. For example, when the accuracy for true

samples (1-NN true accuracy) is low (close to 0%), it means that the generator is pro-

ducing fake samples that mix with at least some modes of the true sample distribution.

On the other hand, when the accuracy for fake samples (1-NN fake accuracy) is high,

this shows that the neighbors of the fake samples are other fake samples. If we see

both, this is an indication of mode collapse.

Although 1-NN test is not widely used in the GAN literature, we believe that

this metric is both informative and unbiased since 1-NN is a non-parametric classifier

that makes no assumptions about the data distributions nor needs any pre-trained

classifier. In this thesis, the 1-NN test is our primary evaluation metric we use to

compare different GAN models.

There are some other evaluation criteria proposed for GANs but we will not go

into more detail in this thesis, but we can state that evaluating GAN performance

quantitatively is still an open research problem.



15

3. BIDIRECTONAL GENERATIVE ADVERSARIAL

NETWORKS AND VARIANTS

3.1. Background

In many real-world applications with images, speech, text, and so on, our obser-

vations x are high-dimensional; at the same time, we know that all these dimensions

are not all necessary or independent. An important research area in machine learning is

hence dimensionality reduction where we want to map x to a lower-dimensional z-space

without loss of information, and many methods, e.g., principal components analysis

(PCA), have been proposed to learn such a mapping. In a generative model , we posit

that the dimensions of z are latent factors that interact to generate the observed x.

One example model is factor analysis (FA), which one can view as going in the opposite

direction of PCA.

Unsupervised dimensionality reduction can be learned using the neural network

architecture called the autoencoder (AE) [44] (Figure 3.1). The encoder part com-

presses x to z (as in PCA) and the decoder part generates x from z (as in FA). The

two networks back-to-back are trained to reconstruct the input, that is, to minimize

the difference between the output of the decoder and the input to encoder. In the

simplest case, both the encoder and decoder are one-layer (i.e., linear) networks and

in this case, it has been shown that the encoder spans the same subspace as PCA, but

with the encoder and the decoder having more layers, the AE does nonlinear dimen-

sionality reduction with z corresponding to more interesting, abstract features of the

input.

Typically the encoder and the decoder are taken to be inverses of each other in

terms of network architecture. For example with image data, the encoder starts with

one or more convolution layers that successively down-sample followed by one or more

dense layers decreasing dimensionality at each layer; the decoder starts from there and



16

increases dimensionality at each layer starting with one or more dense layers and ending

with one or more up-sampling convolutions to generate the image back again.

x E z Dec x̃

Figure 3.1. The autoencoder (AE) is composed of an encoder E and a decoder Dec.

The encoder maps x to latent z and the decoder reconstructs x from z.

The autoencoder is not a generative model; for any xt, we can find the corre-

sponding zt and then reconstruct xt, but we have no way of generating new x outside

of the training set. In the variational autoencoder (VAE) [45], we consider zt as ran-

dom variables sampled from a known distribution p(z) (e.g., Gaussian), and we add

an extra term to the reconstruction error to favor this. Once training is done, we can

sample from this p(z) and use the decoder to generate new x.

3.2. Bidirectional Generative Adversarial Networks

GAN proper can generate x for any z but does not have an inverse mapper for

generating the corresponding z for a given x. The Bidirectional GAN (BiGAN) [46]

and the equivalent Adversarially Learned Inference (ALI) [47] models were proposed

independently and contain also an encoder component E mapping true x to z (in the

inverse direction of the generator) (Figure 3.2). Unlike GAN where the discriminator

sees only x as input, in BiGAN D sees both x and z, i.e., the observation and its latent

representation together. For a true sample, x is given (it is taken from the training set)

and the corresponding z is generated by the encoder E; for a fake sample, z is given

(sampled from p(z)) and corresponding x is generated by the generator G.

The encoder E is also implemented as a deep neural network and (as in AE) its

architecture is usually taken as the inverse of G. It is trained just like the generator,

namely by back-propagating from the loss function defined at the output of the dis-



17

  D

z G(z)

z
fake

true

  G

x E(x)

x

  E

+

+

Figure 3.2. The bidirectional GAN also has an encoder E that learns to map true x to

latent z. The discriminator takes the concatenated pair (shown as “⊕”) z, x as input.

The red components show the additions to the GAN proper, shown in Figure 2.1.

for number of training iterations do

for k steps do

Sample zt ∼ p(z)

Choose xt ∈ X

ẑ = E(xt)

x̂ = G(zt)

Update D(x, ẑ) and D(x̂, z) by maximizing Eq. 3.1

end for

Sample zt ∼ p(z)

x̂ = G(zt)

Update G(z) and E(x̂) by minimizing Eq. 3.1

end for

Figure 3.3. BiGAN Algorithm.



18

criminator. Once training is complete, just like we can use the generator to predict x

for new z, we can use the encoder to predict z for any x.

In the original BiGAN formulation, the same loss used for GAN is adapted:

LBiGAN =
∑
xt

logD(xt, E(xt)) +
∑

zt∼p(z)

log(1−D(G(zt), zt)) (3.1)

except that D sees both the input and its latent representation. Again, this loss is

maximized by D and minimized by G and E. We call this the vanilla BiGAN . The

algorithm of BiGAN is given in Algorithm 3.2.

3.3. Related Work

There are many variations and applications of BiGANs in the literature. Some of

these models are existing GAN architectures and variants with different optimization

criteria that use a BiGAN-like structure to obtain an inverse mapping from x to z.

There are extensions of the conditional GAN that mix the class-conditional gen-

eration property with the ability to learn the inverse mapping, hence introducing the

bidirectonality. Two example variants are the invertible conditional GANs [48] and the

bidirectional conditional generative adversarial networks (BiCoGAN) [49]. These two

models are the class-conditional extensions of BiGANs.

Invertible CGAN [48] uses two encoders, one for obtaining the latent code of

an example and the other for obtaining a latent code for a label (attribute). Both

outputs are fed into the generator to obtain fake examples with arbitrarily modified

attributes. Two more variants are proposed in the same study as using a single encoder

with shared layers and two outputs for examples and labels, and using two encoders

again but conditioning the image encoder on the label encoder. It is shown that the

best results were obtained using the first approach, that is using separate encoders for

images and labels without conditioning one to the other.



19

BiCoGAN [49] is very similar to invertible CGAN. An important difference is

that while invertible CGAN uses a pre-trained CGAN to learn the inverse mappings

for both the images and labels, encoder of BiCoGAN is trained simultaneously with

the generator and the discriminator and it is shown that it learns both the intrinsic

and extrinsic factors of the inverse mappings of data samples better than the invertible

CGAN.

In triangle GAN (4-GAN) [50], two generators and two discriminators are trained

to learn the two-way conditional distributions between two domains. Bidirectional

mappings between the two domains are learned by the generators and the discrimi-

nators are trained to separate the true data and two kinds of fake data, coming from

two different domains. These domains can be image-label, image-image, and image-

attribute pairs. Thus, 4-GAN is also trained in a class-conditional manner and it can

be used in a variety of applications.

Most of the applications of BiGAN and its variants are in the field of computer

vision. Featurized bidirectional GAN (FBGAN) [51] trains a BiGAN and uses the

latent representations learned by BiGAN to reconstruct and denoise the images that

are used to exploit the vulnerabilities of classification models. These images are called

adversarial examples (not related to the adversarial training approach of GANs). Since

the BiGAN is assumed to have learned the data distribution in a more abstract way,

it becomes more robust against noise and incoherent changes in images. The denoised

images by the FBGAN then can be used safely in classification.

BiGAN-like models are also used in image translation [52], conditional image

synthesis [53], and automatic colorization [54].



20

3.4. Wasserstein BiGAN

The motivation to use Wasserstein GAN and its formulation were given in Section

2.3 with the Equations 2.2 and 2.4. It is straightforward to adapt this for BiGAN:

LWBiGAN =
∑

xt,zt∈p(z)

D(xt, E(xt))−D(G(zt), zt) (3.2)

where again the difference is that D sees both the input and its latent representation.

The gradient penalty term in the improved version of the Wasserstein GAN is

also adapted to BiGAN with the extension of the latent space input to D [39]:

LJGP = (‖∇G(z)D(G(z), z)‖2 − 1)2 (3.3)

and the augmented Wasserstein loss for BiGAN becomes:

LWBiGAN-GP = LWBiGAN + βLJGP (3.4)

where β is the hyper-parameter named the penalty coefficient that defines the trade-off

between the two terms.

3.5. Loss-Sensitive BiGAN

We introduce bidirectionality and adapt the loss-sensitive GAN explained in Sec-

tion 2.4 to BiGAN. If we modify Eq. 2.5 for training BiGANs, we add the latent space

vectors to the input of the discriminator and also we define another margin for latent

space representations. Margins can be grouped together as:

∆x,z = ∆(x,G(z)) + ∆(z, E(x)) (3.5)



21

Equation 2.5 becomes the following for loss-sensitive BiGAN (LS-BiGAN), again

minimized by the discriminator and maximized by the generator:

LLS-BiGAN =
∑

xt,zt∈p(z)

C(∆xt,zt +D(xt, E(xt))−D(G(zt), zt)) (3.6)

3.6. Hints for Improving Generation Quality

3.6.1. Motivation

Training a GAN is difficult because of a number of reasons.

(i) Though through the concept of adversarial training it is cast as a supervised

problem, training a generator is in fact an unsupervised learning task and unsu-

pervised learning is more difficult because there is less feedback.

(ii) There are two models D and G to train and hence the problem of model selection

is multiplied by two. Both are typically many-layered deep networks where one

needs to fine-tune the depth and width to the task.

(iii) The error at the output of D is used to update not only D but also back-

propagated through it to update G, making it doubly deep.

(iv) There is no good measure that we can use to assess that a GAN has converged

to a good solution. People typically generate and display a bunch of examples

that are evaluated visually but that is far from ideal and cannot be automated.

There are some measures that have been proposed (Section 2.5), but they come

with assumptions which may not always hold for the tasks at hand.

As a result of these, making a GAN work typically requires much more trial-and-

error than with other machine learning scenarios.

The approach that we take in this thesis to improve the training of GAN is by

using auxiliary terms that are added to the loss function to be optimized. These terms



22

typically define constraints on G and aim to learn a better G. They can be thought

of as regularizers or they can equally be interpreted as “hints” to help the learning

process converge to solutions that we believe have a higher chance of giving a better

output.

The BiGAN architecture is especially suited in this regard: The fact that the

additional encoder E works as the inverse of G, the two placed back to back (E followed

by G in Figure 3.2), can be seen as an autoencoder: For a training instance x, we can

calculate its reconstruction as x̂ = G(E(x)). The auxiliary error terms that we use are

based on this implicit autoencoder; we could not have defined them on an ordinary

GAN.

3.6.2. Related Work

There are GAN variants in the literature that also learn an inverse mapping and

use this to improve the training with extra constraints. From the variational Bayes

point of view, variational autoencoders combined with GANs present models that re-

semble BiGAN. The VAE-GAN [55] model combines the GAN architecture with a

variational autoencoder and jointly trains GAN with an additional reconstruction loss

coming from the VAE. This model does not directly minimize the reconstruction error

of pixels but uses an abstract representation obtained from D. This corresponds to

learning a similarity metric between true and fake data distributions by utilizing the

D network. Alpha-GAN (α-GAN) [56] also combines the best of both worlds, varia-

tional training and adversarial training, with tricks such as using a hybrid loss function,

adopting a synthetic likelihood instead of the intractable likelihood, and using the D

network as a posterior approximator. Adversarial variational Bayes (AVB) [57] also

uses a BiGAN-like structure but it differs from BiGAN in using variational training. It

is reported that this difference improves the reconstruction quality. A work very sim-

ilar to the AVB and VAE is the adversarial autoencoder (AAE) [58] which uses a KL

divergence loss to match the arbitrary prior distribution of the latent space with the

aggregated posterior distribution of the hidden code of the autoencoder. The more re-

cently proposed VEEGAN [59] learns the inverse mapping via a reconstructor network



23

and also includes a reconstruction loss to stabilize the adversarial training. Introspec-

tive adversarial networks [60] make use of a hybrid model of VAE and GAN to perform

photo editing by combining adversarial training with the variational autoencoder train-

ing to minimize the reconstruction loss in the pixel space.

The boundary equilibrium GAN (BEGAN) [61] uses a discriminator network ar-

chitecture resembling an autoencoder. A reconstruction loss derived from the Wasser-

stein distance is used as a lower bound for the autoencoder. Multi-Discriminator GAN

(MDGAN) [62] is very recent and uses two different discriminators; one is a GAN dis-

criminator and the other one is an autoencoder to enforce a reconstruction error that

serves as an anomaly detector. High quality bidirectional GAN (HQBiGAN) [63] is

an extension of BiGAN which learns a mapping from the feature space to the latent

space (instead of the data space to the latent space in vanilla BiGAN). This means that

the input of the E network is not the data points but the abstract features extracted

from the D network. CycleGAN [23] uses a BiGAN-like inverse mapping that maps a

source image to target image instead of mapping from data space to latent space. With

this source-to-target mapping, CycleGAN is able to perform image-to-image transla-

tion. This inverse mapping is also used to stabilize the training by introducing a cycle

consistency loss. DiscoGAN [64] and DualGAN [65] variants also propose additional

reconstruction terms added to the adversarial training of the original GAN. These two

studies differ from ours in terms of GAN architectures and using reconstruction loss

only on the data (pixel) space.

Perhaps the most similar work in the literature to our work is ALI with conditional

entropy (ALICE) [66]. This study also proposes adding a reconstruction loss term to

the adversarial training of BiGANs. However, while the main purpose of ALICE is

to improve the reconstruction quality of BiGAN and ALI models by adding a cycle-

consistency loss term to the training, our aim and proposed methods are more driven

to improve the generation quality and diversity of the models, while also improving the

reconstruction quality. Therefore, we offer a different set of reconstruction criteria than

ALICE to enhance the training of both the generator and the encoder. Another differ-

ence is that in our work we experiment with Wasserstein GAN and loss-sensitive GAN,



24

while ALICE uses the vanilla GAN formulation as the adversarial training criterion.

In the following subsections, we discuss four such criteria leading to four different

BiGAN variants. We define four auxiliary errors and they are added to the BiGAN loss

of Equation (3.4) after multiplied by a λ term, which is adjusted using cross-validation.

Note that such auxiliary error terms are hints on G (and E), and as such are used to

update G (and E), to learn a better generator (and encoder), and even if they use D,

they do not update D. Table 3.1 shows the summary of the proposed hints.

3.6.3. Data Space

The most straightforward method is to use the reconstruction loss in the original

data space (e.g., pixels in images) as minimized by the auto-encoder: (see Figure 3.4)

LDS =
∑
xt

‖xt − x̂t‖2 =
∑
xt

‖xt −G(E(xt))‖2 (3.7)

where x is the actual data and x̂ is its reconstruction using first E as the encoder and

then G as the decoder. This method is similar to DiscoGAN [64], DualGAN [65], and

ALICE [66].

  D

z G(z)

z
fake

true

  G

x E(x)

x

  E

+

+

  G
DS Loss

x̂
-

Figure 3.4. Data Space



25

3.6.4. Convolutional Spaces of G and E

Instead of measuring the loss in the data space, we can measure it at a more

abstract level, corresponding to features higher than pixels in images. Because G and

E networks are taken as the exact inverses of each other, we can define a correspondence

between layers of G and E: Increasing layers of G correspond to decreasing layers of

E. (See Figure 3.5)

For training instance x, Let Gn(E(x)) and Em(x) be the vectors of activations of

at convolution layer n of G and convolution layer m of E respectively. Then we can

define the following a loss in terms of their difference:

LConvGE = ‖Gn(E(x))− Em(x)‖2 (3.8)

  D

z G(z)

z
fake

true

  G

x E(x)

x

  E

+

+

  G
ConvGE Loss-

Em(x)

Gn(E(x))

Figure 3.5. Convolutional Spaces of G and E

3.6.5. Convolutional Space of D

The discriminator D takes x as input and processes it in its many layers learning

successively more abstract representations. Therefore, we can first pass x and x̂ ≡

G(E(x)) from convolutional layers of D and then compare the activations at some



26

layer of D. (See Figure 3.6)

We denote by Dc(x) the vector of activations at layer c of D, and define a loss in

terms of the difference there between a training instance and its reconstruction:

LConvD = ‖Dc(x)−Dc(x̂)‖2 (3.9)

Note that we do not update D with this term, we only update G and E; we are

only using all the layers of D until c for feature extraction. A similar approach is also

taken in VAE-GAN [55] and α-GAN [56].

  D

z G(z)

z
fake

true

  G

x E(x)

x

  E

+

+

  G ConvD Loss-

Dc(x)
  D

  D

Dc(x̂)

x̂

Figure 3.6. Convolutional Space of D

3.6.6. Feature Space of Inception-v3 Network

Inception-v3 network is a very deep convolutional neural network which performs

well on many computer vision tasks [67]. This network is trained with the very large

ImageNet data set and it is believed to have generalized well to the image domain.

Because of this we can hypothesize that it has learned to detect important high-level

features in its later layers which define a space in which to compare the quality of a



27

reconstruction, x vs. x̂. (See Figure 3.7)

Let Ic(x) be the vector of activations of the Inception-v3 network at layer c. Then

the reconstruction loss can be defined as:

LIncpt = ‖Ic(x)− Ic(x̂)‖2 (3.10)

Again, the inception network is just used as a postprocessor whose output is used

to update G and E.

  D

z G(z)

z
fake

true

  G

x E(x)

x

  E

+

+

  G Incpt Loss-

Ic(x)
  I

  I

Ic(x̂)

x̂

Figure 3.7. Feature Space of Inception-v3 Network

Table 3.1. Summary of Proposed Hints

Definition Formula

DS Data space ‖x−G(E(x))‖2

ConvGE Convolutional spaces of G and E ‖Gn(E(x))− Em(x)‖2

ConvD Convolutional space of D ‖Dc(x)−Dc(x̂)‖2

Incpt Feature space of Inception-v3 network ‖Ic(x)− Ic(x̂)‖2



28

4. EXPERIMENTS AND RESULTS

4.1. Setting

4.1.1. Data Sets

We use five well-known real-world image data sets frequently used to test GANs;

they are MNIST, UT-Zap50K shoes, German Traffic Sign Recognition Benchmark

(GTSRB), Cifar10, and CelebA.

The MNIST data set [68] consists of 60,000 handwritten grayscale digit images

each of size 28 × 28. The training set contains 50,000 images and 10,000 images are

in the test set. There are a total of 6,000 images for each digit from zero to nine.

For architectural convenience, we resize the images in the data set to 32 × 32 using

bilinear interpolation. We also normalize the pixel values to the range between −1 and

1. Reason of this normalization is given in Section 4.1.2. Examples from the MNIST

data set are given in Figure 4.1. MNIST is probably the most popular image data set

used in deep learning in general and GANs in particular.

Figure 4.1. Some examples from MNIST.



29

The UT-Zap50K [69, 70] data set contains 50,025 shoe images in the RGB-color

scheme. These are catalog images collected from an e-commerce website with four

major categories; shoes, sandals, slippers, and boots. All of the images contain a white

background and the shoes are centered. Images in the original data set are of varying

sizes but we resize them to 32×32 for comparability with other data sets and methods.

Some example images are shown in Figure 4.2. We use this data set to measure the

quality and diversity of the fake samples since there are many fine-grained details in

shoe images.

Figure 4.2. Some examples from UT-Zap50K.

The GTSRB [71] data set contains more than 50,000 images of traffic signs taken

from the streets and roads in Germany. There are more than 40 classes of traffic signs in

the data set. Images are collected in a realistic manner under different lighting, angles,

and backgrounds. The training set contains 39,209 traffic sign images, which we again

resize to 32× 32 for architectural convenience and comparability. Some examples can

be seen in Figure 4.3. The motivation to use this data set comes from the fact that

it contains realistic images with different angles and backgrounds, therefore it is not

easy for GAN to produce fake samples that look real. Nowadays, with research moving

forward in autonomous vehicles we believe that working on such a data set is very

important.



30

Figure 4.3. Some examples from GTSRB.

The Cifar10 data set [72] contains 50,000 training images and 10,000 test images

of ten various objects and scenes. Images are in color and each of them is sized 32×32.

The ten classes of images include many natural objects such as birds, cats, dogs,

frogs, airplanes, and so on. Each class contains 6,000 samples in total. Generating

fake data to resemble the images in this data set is still a challenge for GAN since

the images contain diverse backgrounds, lighting, angles, and perspectives. Cifar10 is

another very well known benchmark data set in the research field of computer vision.

Figure 4.4 shows some examples. We use Cifar10 to mainly assess and demonstrate

the reconstruction ability of our methods.

Figure 4.4. Some examples from Cifar10.



31

CelebA [73] is a large-scale data set of celebrity face images, consisting of 202,599

samples of 10,177 identities collected from the internet. There are also five landmark

locations and 40 attribute annotations for each image. Images in the data set contain

many pose variations and background clutter. The rich amount of annotations and

labels provide the means to use this data set in a diverse set of computer vision ap-

plications. Original images are in color and in various sizes; we use the aligned and

cropped version of the data set. Images are roughly aligned using similarity transfor-

mation according to the eye locations. We resize the images to 64×64. Some examples

can be seen in Figure 4.5. CelebA data set has quickly become a widely used data set

in the GAN literature and we decided to experiment on this data set for comparison

to other studies and to test the semantic attributes of the latent space interpolations.

Figure 4.5. Some examples from CelebA.

4.1.2. Model Architectures

For the generator, the discriminator, and the added encoder for BiGAN, we use

network architectures that are similar to the ones used in Deep Convolutional GAN

(DCGAN) [74]. The architectures of the networks for the generator and the encoder

are given in Tables 4.1 and 4.2, respectively. The encoder architecture is the exact

inverse of the DCGAN generator. Note that the last layer of the generator performs



32

Table 4.1. The Generator Architecture of 32× 32 Models

Layer Input Output Kernel Stride Padding Output Size

Input Input size = z × 1× 1 z × 1× 1

ConvTranspose2D z 128 4× 4 1 0 128× 4× 4

BatchNorm2D Momentum = 0.9 128× 4× 4

ReLU 128× 4× 4

ConvTranspose2D 128 64 4× 4 2 1 64× 8× 8

BatchNorm2D Momentum = 0.9 64× 8× 8

ReLU 64× 8× 8

ConvTranspose2D 64 32 4× 4 2 1 32× 16× 16

BatchNorm2D Momentum = 0.9 32× 16× 16

ReLU 32× 16× 16

ConvTranspose2D 32 3 4× 4 2 1 3× 32× 32

Tanh 3× 32× 32

Table 4.2. The Encoder Architecture of 32× 32 Models

Layer Input Output Kernel Stride Padding Output Size

Input Input size = 3× 32× 32 3× 32× 32

Conv2D 3 32 4× 4 2 1 32× 16× 16

BatchNorm2D Momentum = 0.9 32× 16× 16

ReLU 32× 16× 16

Conv2D 32 64 4× 4 2 1 64× 8× 8

BatchNorm2D Momentum = 0.9 64× 8× 8

ReLU 64× 8× 8

Conv2D 64 128 4× 4 2 1 128× 4× 4

BatchNorm2D Momentum = 0.9 128× 4× 4

ReLU 128× 4× 4

Conv2D 128 z 4× 4 1 0 z × 1× 1



33

Table 4.3. The Discriminator Architecture of 32× 32 Models. *Not included in the

discriminator of Wasserstein BiGAN

Layer Input Output Kernel Stride Padding Output Size

Input xt Input size = 3× 32× 32 3× 32× 32

Conv2D 3 32 4× 4 2 1 32× 16× 16

LeakyReLU Slope = 0.2 32× 16× 16

Dropout2D Rate = 0.2 32× 16× 16

Conv2D 32 64 4× 4 2 1 64× 8× 8

BatchNorm2D* Momentum = 0.9 64× 8× 8

LeakyReLU Slope = 0.2 64× 8× 8

Dropout2D* Rate = 0.2 64× 8× 8

Conv2D 64 128 4× 4 2 1 128× 4× 4

BatchNorm2D* Momentum = 0.9 128× 4× 4

LeakyReLU Slope = 0.2 128× 4× 4

Dropout2D* Rate = 0.2 128× 4× 4

Conv2D 128 128 4× 4 1 0 128× 1× 1

Input zt Input size = z × 1× 1, Concat with ↑ (128 + z)× 1× 1

Dropout2D* Rate = 0.2 (128 + z)× 1× 1

Conv2D (128 + z) 256 1× 1 1 0 256× 1× 1

LeakyReLU Slope = 0.2 256× 1× 1

Dropout2D* Rate = 0.2 256× 1× 1

Conv2D 256 256 1× 1 1 0 256× 1× 1

LeakyReLU Slope = 0.2 256× 1× 1

Dropout2D* Rate = 0.2 256× 1× 1

Conv2D 256 1 1× 1 1 0 1× 1× 1

Sigmoid* 1× 1× 1



34

hyperbolic tangent (tanh) activation to produce images with pixel values ranging from

−1 to 1, which is the reason to normalize all the training images in the data sets

between the same range. The only difference for BiGAN is that the discriminator

takes both the data point x and its latent z as input. The BiGAN discriminator passes

x through some convolutional layers and then z is concatenated to the output of the

last of these convolutional layers, which is then passed through two additional 1 × 1

convolutions (both having 256 hidden units for 32×32 inputs and 512 hidden units for

64× 64 inputs) acting as fully connected layers before outputting a scalar number (in

the vanilla BiGAN, a sigmoid activation is applied to this scalar), see Table 4.3 for the

architecture of the discriminator for 32× 32 inputs. Following the original Wasserstein

GAN [17], we did not add batch normalization and dropout layers in the discriminator

of Wasserstein BiGAN. We follow the same approach for also LS-BiGAN. All data sets

except CelebA has 32 × 32 inputs; for CelebA, we add one additional convolutional

layer for mapping between 64× 64 and 32× 32.

4.1.3. Training Details

With MNIST, the latent z dimensionality is 50 and models are trained for 1, 000

epochs. For UT-Zap50K, GTSRB, and Cifar10, z dimensionality is 64 and the models

are trained for 800 epochs. For CelebA models, z dimensionality is 100 and the number

of epochs is 200. In all experiments, the latent z are sampled from standard normal

distribution; we used 0.0005 as the learning rate and Adam optimizer. Training is done

on a single Tesla V100 GPU.

4.2. Vanilla vs. Wasserstein BiGAN

In our first set of experiments, we compare vanilla and Wasserstein BiGAN on all

five data sets in terms of generated image quality and diversity. To assess quantitatively,

we use the leave-one-out (LOO) 1-nearest neighbor (1-NN) classifier test [41, 43] as

follows: After each training epoch, we generate 1, 000 fake samples using the generator

and we take 1, 000 true samples from a held-out test set. For each sample from this

2, 000 images, we leave the sample out, fit a 1-NN classifier to the remaining samples



35

with their class labels as true and fake, and we predict the class of the left-out sample.

If the true data distribution and the generated fake distribution overlap, as we hope

they do, we expect both true and fake accuracies to be around 0.5. Typically, these

values start from around 1.0 and decrease during learning. Since 1-NN test is done on

a held-out set of data, it also evaluates the diversity of the generated images.

In Figure 4.6, we show these on all five data sets. On MNIST, we see that

Wasserstein GAN converges to almost 0.5 whereas this is not the case for vanilla

BiGAN—the fake accuracy goes back up to 1.0 after 60 epochs; the fakes form a

group by themselves. The true accuracy converges to around 0.8, which shows that

most true samples are close to each other. These imply that the generator is able to

realistically generate only one mode or some modes of the data, which is an indication of

mode collapse or mode dropping. On UT-Zap50K, GTSRB, and Cifar10, Wasserstein

BiGAN and Vanilla BiGAN perform very similarly. In the case of CelebA, Wasserstein

BiGAN converges to around 0.5 accuracy for both true and fake samples whereas

vanilla BiGAN’s fake accuracy is around 0.7 and its true accuracy is around 0.4. This

shows that Wasserstein BiGAN is able to generate more realistic samples for CelebA.

The first two rows for each data set in Table 4.4 summarize the average fake and true

accuracies respectively; vanilla BiGAN and Wasserstei BiGAN results are in the first

two columns.

Another criterion used to assess GAN is the Fréchet-Inception distance (FID) [42]

that we use here to compare Vanilla and Wasserstein BiGANs. As we discussed in Sec-

tion 2.5.2, FID first passes true and fake samples through the Inception-v3 network and

retrieves the activations of an (768-dimensional) intermediate layer. It then fits multi-

variate Gaussians to representations of true and fake samples separately and measures

the distance between them. Table 4.4 (the third row for each data set) also shows the

results of the FID evaluation. On MNIST and Cifar10, WBiGAN-Inception model gives

the best FID scores. A reason for Inception model performing best on Cifar10 may

be that the Inception-v3 network is trained by ImageNet data set which contains the

classes of Cifar10 data set. In the case of UT-Zap50K and GTSRB, best FID scores are

obtained by Vanilla BiGAN. On CelebA data set all the models except vanilla BiGAN



36

(a) MNIST

(b) UT-Zap50K

(c) GTSRB

(d) Cifar10

(e) CelebA

Figure 4.6. The evolution of the 1-NN leave-one-out fake (left) and (true) accuracies

of vanilla and Wasserstein BiGANs during training.



37

give competitive results, the best being WBiGAN. Although FID is widely used in the

GAN literature, we believe that assuming the multivariate Gaussian is too restrictive.

4.3. Vanilla vs. Loss-Sensitive BiGAN

As an extension to our first set of experiments to decide the best performing

BiGAN variant, we compare the Vanilla BiGAN and the loss-sensitive BiGAN on all

five data sets. We measure the image generation quality and diversity using the 1-NN

test. The results of the experiments are shown in Figure 4.7. It can be seen that in

terms of fake and true accuracies, LS-BiGAN is closer to 50% on all of the data sets

except for the GTSRB. We also see again that mode collapse does not occur on MNIST

with LS-BiGAN. Looking at the results, we can infer that using LS-BiGAN instead

of vanilla BiGAN is a better choice for all data sets except for GTSRB in terms of

image quality and diversity. It is important to note that LS-BiGAN also stabilizes the

training of the MNIST model.

Our experimental results using the loss-sensitive approach, neither for GAN nor

for BiGAN, do not show any significant difference from those using Wasserstein loss.

4.4. The Effect of Different Hints on Reconstruction Criteria

In our second set of experiments, we test for the effect of the auxiliary hints we

proposed in Section 3.6 with Wasserstein BiGAN, leading to four variants.

After training a BiGAN variant, we use its generator G as the decoder and put

it after its encoder E to form an autoencoder. We can then use this autoencoder

to assess the quality of the reconstruction learned by BiGAN as follows: We take an

out-of-the-sample test instance x, pass it first the encoder to obtain a latent z, which

we then pass through the generator (using it as a decoder) network to get x̃, and we

calculate ‖x− x̂‖2. We do this on 2,000 test samples and show how the average changes

during training for all BiGAN experiments.



38

(a) MNIST

(b) UT-Zap50K

(c) GTSRB

(d) Cifar10

(e) CelebA

Figure 4.7. The evolution of the 1-NN leave-one-out fake (left) and (true) accuracies

of vanilla and Loss-Sensitive BiGANs during training.



39

Table 4.4. Fake and true LOO 1-NN accuracies, FID scores, and reconstruction errors

of different Vanilla and Wasserstein BiGAN variants. *Best scores.

BiGAN WBiGAN DS ConvGE ConvD Inception

M
N

IS
T

F
ak

e

0.763 0.594 0.624 0.629 0.596∗ 0.610

T
ru

e

0.717 0.594 0.556 0.618 0.585* 0.597

F
ID

32.03 37.11 8.75 9.66 8.89 8.48*

R
ec

0.190 0.264 0.041* 0.278 0.060 0.212

U
T

-Z
ap

50
K F

ak
e

0.804 0.827 0.767 0.787 0.750* 0.769

T
ru

e

0.917 0.909* 0.912 0.920 0.918 0.931

F
ID

37.11* 38.95 41.44 36.82 37.77 45.36

R
ec

0.115 0.141 0.035* 0.193 0.051 0.081

G
T

S
R

B

F
ak

e

0.778 0.759* 0.812 0.826 0.833 0.788

T
ru

e

0.928 0.925 0.878 0.902 0.907 0.822*

F
ID

54.45* 59.23 66.79 61.94 65.04 64.54

R
ec

0.299 0.377 0.126 0.405 0.102* 0.219

C
if

ar
10

F
ak

e

0.529 0.531 0.496* 0.533 0.496* 0.507

T
ru

e

0.500* 0.499* 0.499* 0.500* 0.499* 0.499*

F
ID

33.76 35.66 33.37 35.74 32.30 31.97*

R
ec

0.287 0.400 0.121* 0.310 0.128 0.248

C
el

eb
A

F
ak

e

0.662 0.501* 0.503 0.508 0.580 0.475

T
ru

e

0.498* 0.498* 0.497 0.498* 0.504 0.502*

F
ID

17.39 13.36* 14.12 14.49 14.09 14.36

R
ec

0.237 0.290 0.056* 0.389 0.064 0.352



40

We also apply the hints to vanilla BiGAN and loss-sensitive BiGAN models and

show the average reconstruction errors to compare all the variants. Figure 4.8 shows

the results for the vanilla BiGAN. We can see that BiGAN-DS model gives the min-

imum reconstuction error closely followed by BiGAN-ConvD in all of the data sets.

For Wasserstein BiGAN variants, in Figure 4.9 we see that WBiGAN-ConvD and

WBiGAN-DS perform the best on all data sets. WBiGAN-Inception is competitive in

models trained with UT-Zap50K and GTSRB data sets. WBiGAN-ConvGE does not

significantly differ from WBiGAN and both does not perform well in terms of recon-

struction error. We believe that DS model presents better results since the added loss

term directly minimizes the reconstruction error. ConvD model surprisingly perform

almost as well as DS and this shows that the discriminator network learns informative

representations which can be obtained from its intermediate layers. For LS-BiGAN

models trained with different hints, we see in Figure 4.10 that LS-BiGAN-DS model

gives very good results on all data sets but surprisingly, LS-BiGAN-ConvD is the best

for UT-Zap50K and GTSRB data sets.

Figure 4.11 shows the reconstruction errors of BiGAN variants trained with dif-

ferent loss functions, with the best performing hints for each data set. On MNIST,

UT-Zap50K, Cifar10, and CelebA data sets, DS models gave the best reconstruction

errors. On GTSRB data set, ConvD model performed the best. We see that the given

hints work well with each loss function, except for MNIST that suffers mode collapse

and performs the worst on vanilla BiGAN.

In Figure 4.12, we show randomly generated images using the best performing

WBiGAN models for the five data sets; these images are generated with the models

giving true and fake accuracies closest to 0.5. DS and ConvD models are used to

generate the examples of MNIST and UT-Zap50K respectively. GTSRB examples are

generated with WBiGAN-Inception which delivers the closest true and fake accuracies.

Images generated from the CelebA data set has true and fake accuracies closest to

0.5 with WBiGAN. The only exception here is the Cifar10 data set where all models

perform similarly in terms of true and fake accuracies. As a tie-breaker, we used the

model with the minimum FID score to generate the examples, which is the WBiGAN-



41

(a) MNIST (b) UT-Zap50K

(c) GTSRB (d) Cifar10

(e) CelebA

Figure 4.8. Reconstruction errors of Vanilla BiGAN models.



42

(a) MNIST (b) UT-Zap50K

(c) GTSRB (d) Cifar10

(e) CelebA

Figure 4.9. Reconstruction errors of Wasserstein BiGAN models.



43

(a) MNIST (b) UT-Zap50K

(c) GTSRB (d) Cifar10

(e) CelebA

Figure 4.10. Reconstruction errors of Loss-Sensitive BiGAN models.



44

(a) MNIST - Data Space (b) UT-Zap50K - Data Space

(c) GTSRB - ConvD (d) Cifar10 - Data Space

(e) CelebA - Data Space

Figure 4.11. Reconstruction errors of best performing hints on each data set with

respect to loss functions.



45

(a) MNIST with WBiGAN-DS (b) UT-Zap50K with WBiGAN-ConvD

(c) GTSRB with WBiGAN-Inception (d) Cifar10 with WBiGAN-Inception

(e) CelebA with WBiGAN

Figure 4.12. Randomly generated images with best performing Wasserstein BiGAN

models measured in terms of 1NN accuracy.



46

Inception.

In Table 4.4, we also show the minimum average reconstruction errors of all of

the Wasserstein BiGAN models. We see that the WBiGAN-ConvD and WBiGAN-DS

models greatly reduce the reconstruction error on all data sets. WBiGAN-Inception

variant works well on UT-Zap50K and Cifar10 but it does not lead to a significant im-

provement on other data sets. We suspect that the WBiGAN-Inception model performs

well with Cifar10 simply because of the fact that Inception-v3 model was trained on

ImageNet which contains many classes from the Cifar10 data set. Finally, WBiGAN-

ConvGE model does not improve the result on any data set. We believe that the main

reason for this is that the intermediate representations in the convolutional layers of G

and E networks do not provide sufficient information and hence do not define a good

reconstruction criterion. WBiGAN-ConvD model takes advantage of the last convo-

lutional layer of D and provides a better abstract representation and this makes the

reconstruction of these representations more useful.

Figures 4.13 and 4.14 show example reconstructions of the same true test im-

age with different models. Wasserstein BiGAN without any auxiliary reconstruction

loss performs the worst. WBiGAN-ConvGE model also does not perform well. We

can infer by visual inspection that the best models are WBiGAN-DS and WBiGAN-

ConvD. The performance of the latter tells us that the discriminator learns a very good

representation of the data.

4.5. Latent Space Interpolations

With trained BiGAN models, it is possible to interpolate in the dimensions of the

latent space and observe how changes in z causes changes in x. In the case of training

with image data, these interpolations can sometimes result in semantically meaningful

changes. With trained BiGAN models we have an inverse mapping to the latent space

which implies that we do not have to interpolate in arbitrary directions. To be more

precise, we can extract the latent z1 and z2 of two true images x1 and x2 through the

encoder network. Then we can generate new data by moving from z1 to z2 and see the



47

(a) MNIST

(b) UT-Zap50K

(c) GTSRB

Figure 4.13. Reconstruction examples of MNIST, UT-Zap50K and GTSRB. Models

follow the order in Table 4.4 from left to right.



48

(a) Cifar10

(b) CelebA

Figure 4.14. Reconstruction examples of Cifar10 and CelebA. Models follow the order

in Table 4.4 from left to right.

resulting x generated in the way. If this procedure results in slowly altering semantic

attributes in x, we can state that the encoder network has learned semantic features

of the data. Some examples of interpolations using the BiGAN variants can be seen in

Figures 4.15 and 4.16. These examples are generated using the best performing models

for all data sets, measured in terms of the reconstruction error.

These results show that the interpolations slowly change some semantic attributes

of the samples. In MNIST, when interpolating from a true image of the digit five to

digit six changes the thickness and the shape of the digit. In CelebA, head orientations

and genders change with interpolation with mixed attributes in the middle.



49

(a) MNIST with WBiGAN-DS

(b) UT-Zap50K with WBiGAN-DS

(c) GTSRB with WBiGAN-ConvD

Figure 4.15. Interpolation examples of MNIST, UT-Zap50K and GTSRB. The best

performing model for each data set (in terms of reconstruction error) is used for

obtaining the interpolations.



50

(a) Cifar10 with WBiGAN-DS

(b) CelebA with WBiGAN-DS

Figure 4.16. Interpolation examples of Cifar10 and CelebA. The best performing

model for each data set (in terms of reconstruction error) is used for obtaining the

interpolations.



51

5. CONCLUSIONS AND FUTURE WORK

5.1. Conclusions

• We generalized the bidirectional GAN by using the Wasserstein loss function that

has recently been shown to work better than GAN proper. In our experiments on

MNIST, UT-Zap50K, GTSRB, Cifar10 and CelebA data sets, we see that training

BiGANs with Wasserstein loss leads to more stable training and generation of

better quality images, when compared with vanilla BiGAN.

• We experimented with loss-sensitive GAN and adapted its loss function to Bi-

GAN. We have seen in our experiments that while performing better than the

vanilla BiGAN, loss-sensitive BiGAN did not demonstrate a significant superior-

ity or inferiority against the Wasserstein loss.

• We evaluated the training stability, generation quality and diversity of our BiGAN

models using the leave-one-out 1-NN test. We see that the 1-NN test allows us

to monitor how well the true and fake samples overlap and gives us a good

quantitative measure to evaluate different BiGAN variants.

• We showed that by taking advantage of the autoencoder structure of BiGANs, it

is possible to reduce the reconstruction error without compromising the generated

image quality and diversity. Since the purpose of BiGANs is to learn an inverse

mapping from the data space to the latent space, we believe this improvement

is essential for BiGANs to be able to learn better abstract representations of the

data.

• Specifically, our WBiGAN-DS and WBiGAN-ConvD variants dramatically reduce

the reconstruction error on all data sets when compared with the Wasserstein

BiGAN without hints, paving the way to improved BiGAN models which can

learn better representations and features of the data in an unsupervised manner.

• We believe that the success of WBiGAN-ConvD model shows us that the discrim-

inator learns the structure of the data well enough to provide good intermediate

representations that improve the quality of the model when used in reconstruc-

tion.



52

• We have not seen any improvement in reconstruction quality with WBiGAN-

ConvGE model. We observed that reconstructing the hidden representations

of intermediate layers of the generator and the encoder do not provide enough

information to improve the reconstruction quality.

• We examined our proposed reconstruction criteria not only with Wasserstein Bi-

GAN, also with vanilla and loss-sensitive BiGAN. We conclude from our exhaus-

tive experiments that all three BiGAN variants are affected positively in terms

of reconstruction quality when trained with the help of our proposed hints.

• We analyzed the latent space interpolations of best performing Wasserstein Bi-

GAN models (in terms of reconstruction quality) to validate our assumption that

a better reconstruction quality leads to a better learned representations of the

data. We have observed semantic changes in images when interpolating from the

latent space of one image to the other image.

• We presented a generator, an encoder, and a discriminator architecture and train-

ing setup for BiGAN which performs well on all five data sets without the need of

exhaustive model tuning. These architectures are also easily scalable to images

with higher resolutions.

To recap, we can state that for the purpose of generating high quality and diverse

data, Wasserstein BiGAN works quite well. If the purpose is to train BiGANs for

reconstructions or obtaining meaningful features of the data, our experimental results

indicate that WBiGAN-DS or WBiGAN-ConvD variants we propose lead to improved

reconsturction and meaningful semantic features of the data.

5.2. Future Work

• There are other loss functions that have been recently proposed for GANs, such

as least-squares GAN [35], boundary equilibrium GAN [61], and energy-based

GAN [37]; testing their BiGAN versions together with the hints we propose is

one possible future research direction.



53

• In this work, we have used the pre-trained Inception-v3 model to obtain features

for reconstructions on the feature space. Pre-trained parameters of other famous

architectures, such as VGG-16 [3] or ResNet [5], can also be utilized to obtain

different features.

• The scalability of our models and BiGANs in general can be examined using

higher resolution images. For example, large-scale and high resolution data sets

such as ImageNet [40] or CelebA-HQ [32] can be used to train BiGAN proper

and our proposed variants.

• We can perform semi-supervised or supervised learning tasks such as classifica-

tion using the latent features obtained by our improved models. This will indicate

whether the latent z are useful in a supervised setting. Note that if the labels are

present in the data, this label information can also be used to define new super-

vised hints in addition to, or instead of the unsupervised hint of the reconstruction

loss.



54

REFERENCES

1. Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks”, Advances in Neural Information Processing Sys-

tems , pp. 1097–1105, 2012.

2. Rumelhart, D. E., G. E. Hinton and R. J. Williams, “Learning representations by

back-propagating errors”, Nature, Vol. 323, No. 6088, p. 533, 1986.

3. Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale

image recognition”, arXiv preprint arXiv:1409.1556 , 2014.

4. Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke and A. Rabinovich, “Going deeper with convolutions”, IEEE Conference

on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

5. He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recogni-

tion”, IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–

778, 2016.

6. Sutskever, I., O. Vinyals and Q. V. Le, “Sequence to sequence learning with neural

networks”, Advances in Neural Information Processing Systems , pp. 3104–3112,

2014.

7. Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural machine translation sys-

tem: Bridging the gap between human and machine translation”, arXiv preprint

arXiv:1609.08144 , 2016.

8. Bengio, Y., R. Ducharme, P. Vincent and C. Jauvin, “A neural probabilistic lan-

guage model”, Journal of Machine Learning Research, Vol. 3, pp. 1137–1155, 2003.



55

9. Kumar, A., O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong,

R. Paulus and R. Socher, “Ask me anything: Dynamic memory networks for nat-

ural language processing”, International Conference on Machine Learning , pp.

1378–1387, 2016.

10. Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed

representations of words and phrases and their compositionality”, Advances in

Neural Information Processing Systems , pp. 3111–3119, 2013.

11. Hinton, G., L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups”, IEEE

Signal Processing Magazine, Vol. 29, No. 6, pp. 82–97, 2012.

12. Xiong, W., J. Droppo, X. Huang, F. Seide, M. Seltzer, A. Stolcke, D. Yu and

G. Zweig, “Achieving human parity in conversational speech recognition”, arXiv

preprint arXiv:1610.05256 , 2016.

13. Szegedy, C., W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-

low and R. Fergus, “Intriguing properties of neural networks”, arXiv preprint

arXiv:1312.6199 , 2013.

14. Goodfellow, I. J., J. Shlens and C. Szegedy, “Explaining and harnessing adversarial

examples”, arXiv preprint arXiv:1412.6572 , 2014.

15. Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville and Y. Bengio, “Generative adversarial nets”, Advances in Neural

Information Processing Systems , pp. 2672–2680, 2014.

16. Arjovsky, M. and L. Bottou, “Towards principled methods for training generative

adversarial networks”, arXiv preprint arXiv:1701.04862 , 2017.

17. Arjovsky, M., S. Chintala and L. Bottou, “Wasserstein GAN”, arXiv preprint



56

arXiv:1701.07875 , 2017.

18. Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford and X. Chen,

“Improved techniques for training GANs”, Advances in Neural Information Pro-

cessing Systems , pp. 2234–2242, 2016.

19. Warde-Farley, D. and Y. Bengio, “Improving Generative Adversarial Networks

With Denoising Feature Matching”, International Conference on Learning Repre-

sentations , 2017.

20. Qi, G.-J., “Loss-sensitive generative adversarial networks on Lipschitz densities”,

arXiv preprint arXiv:1701.06264 , 2017.

21. Mirza, M. and S. Osindero, “Conditional generative adversarial nets”, arXiv

preprint arXiv:1411.1784 , 2014.

22. Chen, X., Y. Duan, R. Houthooft, J. Schulman, I. Sutskever and P. Abbeel, “Info-

GAN: Interpretable representation learning by information maximizing generative

adversarial nets”, Advances in Neural Information Processing Systems , pp. 2172–

2180, 2016.

23. Zhu, J.-Y., T. Park, P. Isola and A. A. Efros, “Unpaired image-to-image translation

using cycle-consistent adversarial networks”, arXiv preprint arXiv:1703.10593 ,

2017.

24. Dong, H., P. Neekhara, C. Wu and Y. Guo, “Unsupervised image-to-image trans-

lation with generative adversarial networks”, arXiv preprint arXiv:1701.02676 ,

2017.

25. Ledig, C., L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. P.

Aitken, A. Tejani, J. Totz, Z. Wang et al., “Photo-Realistic Single Image Super-

Resolution Using a Generative Adversarial Network.”, Computer Vision and Pat-

tern Recognition (CVPR), Vol. 2, p. 4, 2017.



57

26. Yeh, R. A., C. Chen, T.-Y. Lim, A. G. Schwing, M. Hasegawa-Johnson and M. N.

Do, “Semantic Image Inpainting with Deep Generative Models.”, Computer Vision

and Pattern Recognition (CVPR), Vol. 2, p. 4, 2017.

27. Wu, H., S. Zheng, J. Zhang and K. Huang, “GP-GAN: Towards realistic high-

resolution image blending”, arXiv preprint arXiv:1703.07195 , 2017.

28. Luc, P., C. Couprie, S. Chintala and J. Verbeek, “Semantic segmentation using

adversarial networks”, arXiv preprint arXiv:1611.08408 , 2016.

29. Zhang, H., T. Xu, H. Li, S. Zhang, X. Huang, X. Wang and D. Metaxas, “Stack-

GAN: Text to photo-realistic image synthesis with stacked generative adversarial

networks”, arXiv preprint arXiv:1612.03242 , 2017.

30. Reed, S., Z. Akata, X. Yan, L. Logeswaran, B. Schiele and H. Lee, “Generative

adversarial text to image synthesis”, arXiv preprint arXiv:1605.05396 , 2016.

31. Zhang, H., I. Goodfellow, D. Metaxas and A. Odena, “Self-Attention Generative

Adversarial Networks”, arXiv preprint arXiv:1805.08318 , 2018.

32. Karras, T., T. Aila, S. Laine and J. Lehtinen, “Progressive growing of GANs for

improved quality, stability, and variation”, arXiv preprint arXiv:1710.10196 , 2017.

33. Brock, A., J. Donahue and K. Simonyan, “Large scale GAN training for high

fidelity natural image synthesis”, arXiv preprint arXiv:1809.11096 , 2018.

34. Karras, T., S. Laine and T. Aila, “A style-based generator architecture for gener-

ative adversarial networks”, arXiv preprint arXiv:1812.04948 , 2018.

35. Mao, X., Q. Li, H. Xie, R. Y. Lau, Z. Wang and S. P. Smolley, “Least squares gen-

erative adversarial networks”, 2017 IEEE International Conference on Computer

Vision, pp. 2813–2821, 2017.

36. Che, T., Y. Li, A. P. Jacob, Y. Bengio and W. Li, “Mode regularized generative



58

adversarial networks”, arXiv preprint arXiv:1612.02136 , 2016.

37. Zhao, J., M. Mathieu and Y. LeCun, “Energy-based generative adversarial net-

work”, arXiv preprint arXiv:1609.03126 , 2016.

38. Metz, L., B. Poole, D. Pfau and J. Sohl-Dickstein, “Unrolled generative adversarial

networks”, arXiv preprint arXiv:1611.02163 , 2016.

39. Gulrajani, I., F. Ahmed, M. Arjovsky, V. Dumoulin and A. C. Courville, “Improved

training of Wasserstein GANs”, Advances in Neural Information Processing Sys-

tems , pp. 5767–5777, 2017.

40. Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database”, IEEE Conference on Computer Vision and

Pattern Recognition, 2009., pp. 248–255, 2009.

41. Xu, Q., G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu and K. Weinberger, “An

empirical study on evaluation metrics of generative adversarial networks”, arXiv

preprint arXiv:1806.07755 , 2018.

42. Heusel, M., H. Ramsauer, T. Unterthiner, B. Nessler and S. Hochreiter, “GANs

trained by a two time-scale update rule converge to a local Nash equilibrium”,

Advances in Neural Information Processing Systems , pp. 6626–6637, 2017.

43. Lopez-Paz, D. and M. Oquab, “Revisiting classifier two-sample tests”, arXiv

preprint arXiv:1610.06545 , 2016.

44. Hinton, G. E. and R. R. Salakhutdinov, “Reducing the dimensionality of data with

neural networks”, Science, Vol. 313, No. 5786, pp. 504–507, 2006.

45. Kingma, D. P. and M. Welling, “Auto-encoding variational Bayes”, arXiv preprint

arXiv:1312.6114 , 2013.

46. Donahue, J., P. Krähenbühl and T. Darrell, “Adversarial feature learning”, arXiv



59

preprint arXiv:1605.09782 , 2016.

47. Dumoulin, V., I. Belghazi, B. Poole, O. Mastropietro, A. Lamb, M. Arjovsky and

A. Courville, “Adversarially learned inference”, arXiv preprint arXiv:1606.00704 ,

2016.

48. Perarnau, G., J. van de Weijer, B. Raducanu and J. M. Álvarez, “Invertible con-

ditional GANs for image editing”, arXiv preprint arXiv:1611.06355 , 2016.

49. Jaiswal, A., W. AbdAlmageed, Y. Wu and P. Natarajan, “Bidirectional Condi-

tional Generative Adversarial Networks”, arXiv preprint arXiv:1711.07461 , 2017.

50. Gan, Z., L. Chen, W. Wang, Y. Pu, Y. Zhang, H. Liu, C. Li and L. Carin, “Trian-

gle generative adversarial networks”, Advances in Neural Information Processing

Systems , pp. 5247–5256, 2017.

51. Bao, R., S. Liang and Q. Wang, “Featurized Bidirectional GAN: Adver-

sarial Defense via Adversarially Learned Semantic Inference”, arXiv preprint

arXiv:1805.07862 , 2018.

52. Li, Z., W. Wang and Y. Zhao, “Image Translation by Domain-Adversarial Train-

ing”, Computational Intelligence and Neuroscience, Vol. 2018, 2018.

53. Odena, A., C. Olah and J. Shlens, “Conditional image synthesis with auxiliary

classifier GANs”, arXiv preprint arXiv:1610.09585 , 2016.

54. Larsson, G., M. Maire and G. Shakhnarovich, “Learning representations for au-

tomatic colorization”, European Conference on Computer Vision, pp. 577–593,

Springer, 2016.

55. Larsen, A. B. L., S. K. Sønderby, H. Larochelle and O. Winther, “Autoencoding

beyond pixels using a learned similarity metric”, arXiv preprint arXiv:1512.09300 ,

2015.



60

56. Rosca, M., B. Lakshminarayanan, D. Warde-Farley and S. Mohamed, “Variational

approaches for auto-encoding generative adversarial networks”, arXiv preprint

arXiv:1706.04987 , 2017.

57. Mescheder, L., S. Nowozin and A. Geiger, “Adversarial variational Bayes: Unify-

ing variational autoencoders and generative adversarial networks”, arXiv preprint

arXiv:1701.04722 , 2017.

58. Makhzani, A., J. Shlens, N. Jaitly, I. Goodfellow and B. Frey, “Adversarial au-

toencoders”, arXiv preprint arXiv:1511.05644 , 2015.

59. Srivastava, A., L. Valkov, C. Russell, M. U. Gutmann and C. Sutton, “VEEGAN:

Reducing mode collapse in GANs using implicit variational learning”, Advances in

Neural Information Processing Systems , pp. 3308–3318, 2017.

60. Brock, A., T. Lim, J. M. Ritchie and N. Weston, “Neural photo editing with

introspective adversarial networks”, arXiv preprint arXiv:1609.07093 , 2016.

61. Berthelot, D., T. Schumm and L. Metz, “BEGAN: boundary equilibrium generative

adversarial networks”, arXiv preprint arXiv:1703.10717 , 2017.

62. Intrator, Y., G. Katz and A. Shabtai, “MDGAN: Boosting Anomaly Detec-

tion Using Multi-Discriminator Generative Adversarial Networks”, arXiv preprint

arXiv:1810.05221 , 2018.

63. Bang, D. and H. Shim, “High Quality Bidirectional Generative Adversarial Net-

works”, arXiv preprint arXiv:1805.10717 , 2018.

64. Kim, T., M. Cha, H. Kim, J. K. Lee and J. Kim, “Learning to discover cross-domain

relations with generative adversarial networks”, arXiv preprint arXiv:1703.05192 ,

2017.

65. Yi, Z., H. R. Zhang, P. Tan and M. Gong, “DualGAN: Unsupervised Dual Learning



61

for Image-to-Image Translation.”, International Conference on Computer Vision

(ICCV), pp. 2868–2876, 2017.

66. Li, C., H. Liu, C. Chen, Y. Pu, L. Chen, R. Henao and L. Carin, “Alice: Towards

understanding adversarial learning for joint distribution matching”, Advances in

Neural Information Processing Systems , pp. 5495–5503, 2017.

67. Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the

Inception architecture for computer vision”, IEEE Conference on Computer Vision

and Pattern Recognition, pp. 2818–2826, 2016.

68. LeCun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied

to document recognition”, IEEE , Vol. 86, No. 11, pp. 2278–2324, 1998.

69. Yu, A. and K. Grauman, “Fine-Grained Visual Comparisons with Local Learning”,

Computer Vision and Pattern Recognition (CVPR), June 2014.

70. Yu, A. and K. Grauman, “Semantic Jitter: Dense Supervision for Visual Com-

parisons via Synthetic Images”, International Conference on Computer Vision

(ICCV), Oct 2017.

71. Stallkamp, J., M. Schlipsing, J. Salmen and C. Igel, “Man vs. computer: Bench-

marking machine learning algorithms for traffic sign recognition”, Neural Networks ,

Vol. 32, pp. 323–332, 2012.

72. Krizhevsky, A. and G. Hinton, Learning multiple layers of features from tiny im-

ages , Tech. rep., Citeseer, 2009.

73. Liu, Z., P. Luo, X. Wang and X. Tang, “Deep learning face attributes in the wild”,

Proceedings of the IEEE International Conference on Computer Vision, pp. 3730–

3738, 2015.

74. Radford, A., L. Metz and S. Chintala, “Unsupervised representation learn-



62

ing with deep convolutional generative adversarial networks”, arXiv preprint

arXiv:1511.06434 , 2015.


