
ANOMALY DETECTION IN TIME SERIES

by

Onur Poyraz

B.S., Electrical and Electronics Engineering, Boğaziçi University, 2016

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computational Science and Engineering

Boğaziçi University

2019

ii

ANOMALY DETECTION IN TIME SERIES

APPROVED BY:

Prof. Ali Taylan Cemgil

(Thesis Supervisor)

Assist. Prof. Mustafa Baydoğan

Assist. Prof. Serap Kırbız

DATE OF APPROVAL: May 27, 2019

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Ali Taylan Cemgil for his support and

mentorship. I feel genuinely privileged to study under his supervision. It was an honor

for me to work with him. I also received a lot of support from my instructors in my

graduate years. I especially want to thank Dr. Emre Uğur, and Prof. Cem Say. I

would also like to thank Dr. Suzan Üsküdarlı for her cheerful approach.

I have spent incredible years in my graduate study. For this, first of all, I should

thank my friends in our lab. I feel lucky to be able to work with the members of

PILAB Sigma, and I am grateful for this. Especially I thank my old friend and my

fate partner Semih Akbayrak, Burak Kurutmaz who was once my business partner and

will be my ‘brö’ forever, my great friend Serkan Buğur, my lovely friend Merve Ünlü,

and finally my knight brother Gökhan Çapan, for their excellent support on me. I

also want to thank Hakan Kalaycı, Caner Türkmen, Çağlar Hızlı, Özge Bozal, Melih

Barsbey, Serhan Daniş, Çağrı Sofuoğlu, İlker Gündoğdu and Burak Suyunu for their

friendship, great academic discussions, and joyful coffee breaks. Finally, I thank Mine

Öğretir for everything she has brought me and for her great support. They all made

me love the department.

On the other side, I want to thank my family. I would like to express my deepest

gratitude for the opportunity they provided and their endless moral support. I wouldn’t

finish my graduate studies without them.

Finally, I want to thank Borusan Arge and Bankalararası Kart Merkezi (BKM)

for their data support. I participated in their projects, and it was a pleasure to work

with them.

iv

ABSTRACT

ANOMALY DETECTION IN TIME SERIES

Anomaly detection (AD) is the discovery of the observations which does not con-

form with the rest of the observations. The types of anomalies and their occurrences

that exist in the data set are tried to be determined. On the other hand, time series

structures have dynamic structures, which are evolving over time, and in such struc-

tures, observations will be affected by previous observations. This thesis focuses on the

anomaly detection process under time series structures. This problem is not always

straightforward because the definition of anomaly could change with the context of the

dynamic structure and anomaly detection process in the system could interfere with

the intense noises at the observations.

In this thesis, we try to identify anomalies in the sub-sequences of the stream-

ing data. When doing so, we also want to discriminate the anomalies in the system

with the faulty observations. Therefore we investigate collective anomalies in the data.

We propose both statistical inference methods and deep learning approaches for such

type of anomaly detection in time series (ADTS) problem. We use a Gaussian mix-

ture model (GMM) and a customized hidden Markov model (HMM) as statistical

approaches, while we use Recurrent Neural Networks (RNN) and Long Short-Term

Memories (LSTM) as deep learning approaches. Except for GMMs, we take into ac-

count the sequential structures of data sets in the models proposed above. We apply

our methodologies to the Borusan wind turbines data and we compare the model results

with the experiments we performed on this dataset.

v

ÖZET

ZAMAN SERİLERİNDE OLAĞANDIŞILIK SEZİMİ

Olağandışılık Sezimi (AD), mevcut veri kümesinin diğer gözlemleriyle örtüşmeyen

gözlemlerin sezimlenmesidir. Olağandışılık türleri ile bunların veri kümesi içindeki

oluşumları belirlenmeye çalışılır. Öte yandan, zaman serisi yapıları zaman içinde gelişen

devingen yapılara sahiptir ve bu tür yapılarda gözlemler önceki gözlemlere bağlıdır. Bu

tez, zaman serisi yapıları altındaki olağandışılık sezimi sürecine odaklanmaktadır. Bu

problem her zaman kolay değildir, çünkü olağandışılığın tanımı, sürecin devingen yapısı

bağlamında değişebilir ve sistem içerisindeki olağandışılık sezimi işlemi gözlemlerdeki

yüksek gürültülerle karışabilir.

Bu tezde, akış verilerinin alt kümelerinde meydana gelene olağandışılıkları be-

lirlemeye çalışıyoruz. Bunu yaparken, sistemdeki olağandışılıkları hatalı gözlemlerden

ayırt etmek istiyoruz. Bu nedenle verilerdeki toplu olağandışılıkları araştırmaktayız.

Bu özelliklere sahip olan zaman serisinde olağandışılık sezimi (ADTS) için hem is-

tatistiksel çıkarım yöntemleri hem de derin öğrenme yaklaşımları öneriyoruz. Derin

öğrenme yaklaşımları olarak Tekrarlayan Sinir Ağları (RNN) ve Uzun Kısa Süreli

Bellek’i (LSTM) kullanırken, Gaussian karışım modelini (GMM) ve özelleştirilmiş bir

gizli Markov modelini (HMM) istatistiksel yaklaşımlar olarak kullanıyoruz. GMM’ler

hariç, yukarıda önerilen modellerde veri kümelerinin sıralı yapılarını dikkate alıyoruz.

Yöntemlerimizi, Borusan rüzgar türbinleri verilerine uyguluyoruz ve model sonuçlarını

bu veri kümesi üzerinde yaptığımız deneylerle karşılaştırıyoruz.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF SYMBOLS . x

LIST OF ACRONYMS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

1.1. Related Work . 2

1.2. Outlooks of the Problem . 3

1.3. Challenges . 6

1.4. Scope of Our Work . 8

2. THEORETICAL BACKGROUND . 9

2.1. Hidden Markov Model . 11

2.2. Inference in Hidden Markov Model . 13

2.2.1. Filtering . 13

2.2.2. Smoothing . 14

2.2.2.1. Parallel Smoother . 15

2.2.2.2. Sequential Smoother 16

2.2.3. Prediction . 17

2.2.4. Viterbi Algortihm . 17

2.3. Learning in Probabilistic Models . 18

2.3.1. Expectation-Maximization Algorithm 19

2.3.2. Baum-Welch Algorithm . 21

2.4. Deep Learning Sequence Models . 23

2.4.1. Recurrent Neural Networks . 24

2.4.2. Long Short-Term Memory . 26

2.4.3. Learning in RNN and LSTM 28

3. MODELS AND ALGORITHMS FOR ANOMALY DETECTION 29

3.1. Gaussian Mixture Model for Anomaly Detection 29

vii

3.2. Hidden Markov Model for Anomaly Detection 32

3.2.1. Generative Model and Learning 33

3.2.2. Calculation of Predictive Distribution 35

3.3. Deep Learning Sequence Models for Anomaly Detection 37

3.3.1. Forward Propagation in RNN 38

3.3.2. Forward Propagation in LSTM 38

3.3.3. Learning . 39

3.3.4. Prediction and Anomaly Score 40

4. EXPERIMENTS AND RESULTS . 42

4.1. Wind Turbine Dataset . 42

4.1.1. Modeling The Power Curve of Wind Turbine 44

4.1.2. Experiments with the Probabilistic Models 46

4.1.3. Experiments with the Deep Learning Sequence Models 50

5. CONCLUSION AND FUTURE WORK . 57

REFERENCES . 59

APPENDIX A: COMPARISON OF THE LOSS FUNCTIONS 65

viii

LIST OF FIGURES

Figure 2.1. Graphical models for time-series models 10

Figure 2.2. Graphical model for hidden Markov Model 12

Figure 2.3. Cell structures of the RNN and LSTM 24

Figure 2.4. Folded and unfolded representation of the computational graphs . 25

Figure 3.1. One dimensional Gaussian mixtures for the each value on the x-axis 32

Figure 4.1. Individual sequential observations for the sensory information . . . 43

Figure 4.2. The relationship between the wind speed, rotor speed and grid power 44

Figure 4.3. Comparison of the mixture of Gaussians in the GMM with the

mixture of Gaussians in the HMM which defined on the power curve 47

Figure 4.4. State transition diagram of the HMM 48

Figure 4.5. Comparison of the performance of HMM with GMM 49

Figure 4.6. Predicted rotor speed observations with RNN and LSTM models

which use Tukey’s biweight loss 51

Figure 4.7. Predicted generated power observations with RNN and LSTM mod-

els which use Tukey’s biweight loss 52

Figure 4.8. Generated from 1-layer network and observed power curves 53

ix

Figure 4.9. Generated from 2-layer network and observed power curves 54

Figure 4.10. Anomaly scores of the 1-layered networks on test data. 55

Figure 4.11. Anomaly scores of the 2-layered (stacked) networks on test data. . 56

Figure A.1. Comparison of the loss functions 65

Figure A.2. Comparison of the gradients of loss functions 66

x

LIST OF SYMBOLS

BE(.) Bernoulli distribution

C Cell state

D(.‖.) Divargence metric

DKL(.‖.) Kullback-Leibler divergence

Ep(.) [.] Expectation with respect to function p(.)

Et Anomaly prediction for time t

L Loss

N (.) Gaussian distribution

p(.) Probability distribution function

p Neural network input parameters at time t

P Input dimension of NN

q (.) Variational distribution function

Q(., .) Energy function between two variables

r Neural network output parameters at time t

r̂ Neural network predictions at time t

R Output dimension of NN

st Hidden variable at time t

s1:T , s Set of hidden variables

S Hidden state dimension

T Number of time slices

W Weight matrix of the neural network

xt Observed variable at time t

x1:T , x Set of observations

yt Result at time t

y1:T , y Set of results

ŷt Predicted variable at time t

ŷ1:T , ŷ Set of predictions

xi

α(st) Forward recursion

β(st) Backward recursion

γ(st) Correction smoother

η Learning rate

Θ Parameter set

µ Mean

π Initial latent state parameter of hidden Markov Model

σ(.) Sigmoid Function

σ Variance

Σ High variance

φ(st) Most likely hidden state sequence

τ Time index

Ψ State transition matrix of hidden Markov Model

Ψŝ,ŝ′ Probability of state transition from state ŝ′ to ŝ

Ω Emission probability of hidden Markov Model

Ωx̂,ŝ Emission probability of observation x̂ from given state ŝ

xii

LIST OF ACRONYMS/ABBREVIATIONS

2D Two Dimensional

3D Three Dimensional

AD Anomaly Detection

ADTS Anomaly Detection in Time Series

ANN Artificial Neural Networks

AR Auto-Regressive

BPTT Backpropagation Throuh Time

EM Expectation-Maximization

GMM Gaussian Mixture Model

HMM Hidden Markov Model

KL Kullback-Leibler

LDS Linear Dynamical Systems

LSTM Long-Short Term Memory

MAP Maximum a Posteriori

MD Multidimensional

MLE Maximum Likelihood Estimation

MAD Median Absolute Deviation

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

MSE Mean Square Error

NN Neural Network

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SMC Sequential Monte Carlo

SSM State-Space Models

1

1. INTRODUCTION

Anomalies are patterns or items in observations that do not conform to a well-

defined notion of rational behavior of the system [1]. In the literature, anomalies are

also known as outliers, novelties, noise, deviations, and exceptions [2]. Identification

of these anomalies in the defined context is known as ‘anomaly detection’ (AD) [3].

The importance of anomaly detection is mainly due to the fact that anomalies usually

contain critical and valuable information. For example, fraudulent credit card transac-

tions [4], tumors in the brain MRIs [5] and heavy traffic on the network [6] are examples

of anomalies and detection of them is vitally important. On the other hand, it may be

equally important to describe the normal working behavior or pattern of any system,

and so we need to identify the anomalies within the observations to extract such a

pattern.

Anomaly detection is an omnipresent problem that has been researched in many

different application areas. It is similar to noise removal [7] or noise accommodation [8]

or novelty detection [9, 10] problems in the literature. All of these methods deal with

unfamiliar observations in the data that do not conform to the usual pattern or distri-

bution. In the noise removal and noise accommodation problem, these observations are

undesirable and ineffective. On the other hand, in the novelty detection and anomaly

detection, most of the valuable information and ‘interestingness’ of the data lies in the

unfamiliar observations. Novelty detection methods have the purpose of incorporating

the novel pattern into the regular model. In contrast to these, the primary goals of

the anomaly detection are to find or detect the problematic observations which may

indicate some malfunctions or defects and try to distinguish abnormal observations

and patterns by learning standard patterns.

There are, basically, two types of anomaly detection. The first type of anomaly

detection methods focuses on static structures, which do not change over time and are

capable of representing only a single snapshot of observations [11]. However, real-world

scenarios have dynamic structures, which are evolving over time. So, both normal be-

2

havior and definition of the anomaly may vary. Therefore, the second type of anomaly

detection methods takes into account the dynamic structures of the observations [1].

Such methods evaluate observations under some ‘context’. The structure of the sys-

tem, that generates the observations, determines the notion of the context, which is a

part of the problem. In literature, one of the essential contexts is the time series and

called as anomaly detection in time series (ADTS). In the context of the time series,

observations will be affected by previous observation(s) (i.e., dynamical structures). In

ADTS, observations are evaluated under a context (i.e., time) and do not necessarily

have to be an anomaly to be considered as anomalies. Such structures are named as

contextual anomaly or conditional anomaly [12]. In such structures, one observation

could be considered as an anomaly according to the position in the sequence, i.e., a high

number of transactions on the weekend is usual while fewer transactions are expected

in the week. In particular, in the context of the anomaly detection in time series the

interesting objects are often not rare objects, but ‘unexpected bursts’ in the activity.

Therefore, to detect abnormal movements in such a context, one should consider the

time-series effect of the system. In this work, we are interested in such problems.

1.1. Related Work

The literature on anomaly detection is quite extensive. Excellent overviews of the

anomaly detection methods are presented by [1, 2], which covers almost all anomaly

detection literature. In other overviews, [13,14] investigates anomaly detection in time

series problems. This two survey mention most of the current work on this subject. In

another work, [15] studies the evaluation of the problem of anomaly detection. This

work is essential since the evaluation of the AD is the omnipresent problem.

On the other side of this work, we have to review the time-series literature,

which is also an extensive literature. In the surveys [16, 17], authors investigate the

nature of time series data in detail. In the work [18], the authors mentioned the most

popular time series forecasting techniques and analysis. In [19,20], they give Bayesian

treatment for the solution of time-series problem, and they give detail about the most

well-known time series models, HMM [21] and AR model. More recently, in [22],

3

authors examine the deep learning approaches for unsupervised feature learning in the

time series problems.

So far, we talked about more general perspectives. However, there are many

applications related to ADTS. One of the most recent and well-known studies is [23].

In this study, a deep learning sequence model for ADTS is developed, and this work

is applied to the electro cardiogram (ECG), space shuttle, power demand, and multi-

sensor engine dataset. Similarly, ADTS models are used for credit card fraud detection

[4, 24], industrial damage detection [25,26] and attack detection in networks [27].

1.2. Outlooks of the Problem

In this section, we will cover the outlooks of anomaly detection frequently en-

countered in applications. Basically, it is possible to distinguish these points of view

as anomaly definition, problem definition, data types, and availability of the labels.

Proper identification of the anomalies is crucial, and it is the first step in anomaly

detection. There are mainly two definitions of an anomaly which vary according to the

problem, outlined in the literature which are;

(i) Point Anomalies. Point anomaly refers to cases where abnormal observations

occur individually [28]. The single observation could be considered as an anomaly

concerning the rest of the concerning the rest of the observations or unusual

according to the data stream. In this type of anomaly, one should define the

boundary of typical region and observations which are different from the usual

observations are called anomalies. Since the problem includes time as the context,

the normal region should be determined according to this context.

(ii) Collective Anomalies. Collective anomaly refers to the sequential collection of

abnormal data samples according to the complete data stream [1]. In this type,

observations can be considered as anomalies together even though they may not

be anomalous individually. In this context, both anomalies in observation inter-

vals and changes in the generative model in the long term are examined.

4

(iii) Contextual Anomalies. Contextual anomalies refer to the evaluation of obser-

vation according to a specific context. If an observation instance is anomalous

in that particular context (but not otherwise), then it is termed as a contex-

tual anomaly (also referred to as conditional anomaly). In that approach, it is

assumed that each observation has two sets of attributes; Contextual attributes

and Behavioral attributes. These attributes define the characteristics of the ob-

servations.

Even though the definition of the anomalies is the primary objective, the descrip-

tion of the problems requires different approaches and solutions. In the literature, most

of the research focus on three main problem definitions;

(i) Sequence-based AD. The primary purpose is to detect the abnormal sequences

concerning data set, which consist of similar time series sequences. Since dif-

ferent sequences are compared, each sequence could be considered as multi-

dimensional (MD) data that accepts each timestep as a dimension. Therefore

classical anomaly detection methods can be valid in this type of problem.

(ii) Subsequence-based AD. The primary aim is to detect the unusual sub-sequence

concerning the rest of the time series data set. The sub-sequences that does not

fit the rest of the long sequence is searched. Therefore, most of the sequence

is assumed to be healthy, and sub-sequences most different than to the rest of

the sequence are considered as an anomaly. In this work, we usually deal with

sub-sequence based AD problems.

(iii) Pattern frequency based AD. This approach is slightly different from previous

methods. It takes into account the occurrence rates of the observations, and if

an observation has not occurred in the correct time than it is considered as an

anomaly.

It is essential to determine the nature of the input regardless of the problem

because all systems operate according to specific inputs types and the nature of data

determines both the model and methodology. Both inputs and observations could be

5

binary, categorical or continuous as a data type and could be univariate or multivariate

according to data dimension. In addition to these, observations could be count data,

or there may be other constraints on them. Furthermore, there are periodicity and

synchronization features of time series data. Both the nature of the data and the

constraints affect the models to be applied. Finally, one who will deal with ADTS

problem should evaluate the relations between the observations [29]. In this work, we

consider observations as a time series and divide them into three parts according to

data types regarding time series effect;

(i) Continuous streams. Observations in which the flow occurs continuously. Obser-

vation indexes are defined within a finite or infinite interval.

(ii) Discrete streams. Observations are formed by event logs, so it is discrete se-

quences. Our work is based on discrete streams.

(iii) Multi-dimensional streams. Each observation is fed from multiple sources and

includes more than one instance. According to data sources, it could be both

continuous stream or discrete stream or the mixture of them.

One of another main outlook of the anomaly detection problem is the availability

of the labeled data. In the literature, there are typically three classes of anomaly

detection according to the availability of the data labels [1].

(i) Supervised Anomaly Detection. It requires a labeled dataset for each observation.

Therefore the main problem becomes a classification problem. The only difference

is that abnormal observations do not act as a class because of the unbalanced

nature of anomalies.

(ii) Semi-supervised Anomaly Detection. It requires the knowledge of the ordinary

behavior at the training set. In this technique, the usual working behavior of

the system will be learned from the training data labeled as healthy. At the test

phase, abnormal observations will be detected.

(iii) Unsupervised Anomaly Detection. The primary assumption of this technique is

that one should suppose that there is a small amount of the abnormal observations

6

in both train and the test dataset. The main goal is to detect abnormal pattern

rather than finding abnormal observations.

Labeling all observations in sequential data is costly. Therefore, in most cases,

getting a labeled set of data is almost impossible. Moreover, if one of the system or

anomalies have a dynamical structure, then a new class of patterns or anomalies can

arise. It means that there could be no labeled data for a while.

1.3. Challenges

Anomaly detection problems are straightforward at the conceptual level. One

should define the representation of the ordinary behavior or region of the observations

and then declare any observation which does not comply with this definition as an

anomaly. However, there are some challenges in the anomaly detection problem, which

made the problem hard to solve.

(i) Definition of normal behavior: This problem is a crucial point for almost any

machine learning problem. Especially in the unsupervised methods, observations

include both normal and abnormal data, so one can not directly define the regular

pattern of the system according to data. So one needs to detect anomalies to find

the normal region and then determine the normal region to declare anomalies.

Obviously, this problem is recursive and more complicated than it seems.

(ii) Evolution of normal behavior: In many domains, the definition of healthy behav-

ior is evolving. In such cases, the previous definition of healthy behavior may not

be sufficient to explain the new one. So, one has to take this phenomenon into

account in anomaly detection application to accurately determine the anomaly.

(iii) Definition of the anomaly: Applications usually have a wide variety of nature

and include a different kind of data. For example, an ECG, the periodicity of

the observations is vital to detect anomalies while fraudulent transactions appear

on single observations. On the other hand, an observation within a series could

be continuous or discrete, and corresponding anomalies change form accordingly.

7

Additionally, one could investigate single point in series or some sub-sequence or

whole sequence, and the desired anomaly affects the entire model. In addition to

all these, sometimes evolution in the streaming observations could be an anomaly.

(iv) Adversarial anomalies: In most problems, the anomalies are not clearly visible.

Furthermore, in some problems, adversarial anomalies are trying to hide within

normal data (i.e., fraudulent transactions in the transaction records).

(v) Noise: In real-world applications, observations usually collected in a noisy envi-

ronment. On the other hand, anomalies are also some kind of noise. Therefore,

to develop successful anomaly detection method, one should separate the noise

and anomalies.

(vi) Availability of the labeled data: Available labels are vital for almost any machine

learning problem but especially in anomaly detection. One needs to define the

typical behavior pattern to declare some observations as an anomaly. To evaluate

the correctness of the model, one directly needs labeled data. Since the time series

data is usually too large, the labels needed are often unreachable.

(vii) Computational Complexity: Time series data is usually broad and continues to

expand. Also, because the observations are dependent on each other, the rela-

tionship between observations should be learned. Therefore, the ADTS problem

requires a lot of computational power.

(viii) Evaluation: Almost all time series data is not adequately labeled. There may

not even be a label in some of them. In some cases, there may not be a direct

label, in which the given label could be only foreseen. Furthermore, sometimes

anomalies in the system interfere with the intense noise. So, the evaluation of

ADTS could change according to the problem and the application.

In ADTS problems, there is no general solution. Solutions depend on the outlooks

of the problem that are mentioned, such as type of data, the type of anomaly. The

proposed solutions take shape according to the nature of the problems and try to cope

with some of the above difficulties.

8

1.4. Scope of Our Work

So far, we defined the anomaly detection problem in time series data along with

the motivation of this thesis and the previous works. We want to detect collective or

point anomalies in discrete and multivariate streams using sub-sequence based anomaly

detection approaches with semi-supervised anomaly detection methods. We also want

to discriminate the anomalies created by the system and the anomalies caused by the

errors in the observations. To deal with such problems, we propose both statistical

methods and deep learning algorithms. To successfully model the sequential observa-

tions we use the ‘Hidden Markov Model’ (HMM) as a statistical inference algorithm,

while we use ‘Recurrent Neural Network’ (RNN) and ‘Long Short Term Memory’

(LSTM) as deep learning approaches. Then, we compare the observations with the

model predictions in order to create an anomaly score for each step.

Our work focuses on two main applications, which are anomaly detection in wind

turbines and anomaly detection in merchant transactions. In wind turbines, we define

a set of observations as an anomaly while in merchant transactions, we interested in

single point anomalies. Both applications rely on semi-supervised methods.

The rest of the thesis is organized as follows: The theoretical background re-

quired for the continuation of this thesis is given in Chapter 2. Chapter 3 contains the

methods and algorithms that we propose to detect anomalies in time series. The data

descriptions, experimental settings, and experimental results are given in Chapter 4.

Chapter 5 includes the final comments about the works and further researches.

9

2. THEORETICAL BACKGROUND

In the previous chapter, we discussed the problem of anomaly detection in time

series. This chapter is devoted to providing some concepts and methodologies which

are addressed in our work. We will cover different statistical time series models in

general terms and introduce our notation. Subsequently, we will address learning and

inference methods in such models. Afterward, we will cover the deep learning sequence

models.

The entropy maximizing model for the set of observation x1:T = {x1, x2, ..., xT }
is to assume the instances are independent and identically distributed (i.i.d.) random

variables (RV) [30]. However, in the context of the time series, it is natural to consider

models consistent with the causal nature of time [20]. So, we can get the following

causal form of joint distribution p(x1:T) by applying Bayes’ rule recursively:

p (x1:T) = p (xT | x1:T −1) p (x1:T −1) (2.1)

=
T∏
t=1

p (xt | x1:t−1) (2.2)

This representation of time series has natural causal interpretation in which ob-

servations depend on all the past information. This phenomenon corresponds to the

cascade graph, shown in Figure 2.1(a), which is the most general form of belief network.

Obviously, it is an intractable and expensive problem for a large scale model.

The fundamental solution to this problem is the assumption of conditional inde-

pendence. Intuitively, it corresponds to the removal of the edges in the cascade graph.

One of the most well-known models for conditional independence assumption on time-

series model is the Markov model. In which, Lth-order Markov model assumes that

given observation only depends on previous L observations. Mathematically, assump-

tion of the Lth-order Markov model is as the following:

10

x1 x2 · · · xt

(a) Cascade graph for time-series

x1 x2 · · · xt

(b) Second-order Markov model

x1 x2 · · · xt

(c) First-order Markov model

Figure 2.1. Graphical models for time-series models

11

p (xt | x1:t−1) = p (xt | xt−L:t−1) (2.3)

Although Lth-order Markov model is a simplified representation of the cascade

graph, it still has relatively high complexity in which posterior distribution of the latent

space is still untractable. On the other hand, the most straightforward representation

of the Markov model is the 1st-order Markov model, which assumes each observation

in the sequence only depend on previous observation. Although it looks easy, it has a

tractable posterior distribution, and therefore, it is an influential and powerful model

which allows stronger modeling. Mathematical interpretation of the first-order Markov

model is as follows:

p (xt | x1:t−1) = p (xt | xt−1) (2.4)

Graphical models for cascaded graph, second(Lth)-order Markov model and first-

order Markov model are shown in Figure 2.1(b) and Figure 2.1(c), respectively. The

complexity increases with the order of the network.

2.1. Hidden Markov Model

Up to the present, we examined the models which are directly built on obser-

vations. However, such models are suffering from low representation power on data.

The reason for this is that observations are not always accurate and can deceive the

model. Therefore, in the literature, a more general framework of time series models

exists which uses latent, unobservable variable st, which generates observations.

From now on, instead of building models where observations depend on previous

observations, we build models in which the observations depend on the hidden variable.

One of the most well-known models with this structure is the ‘state-space models’

12

s1 s2 · · · st

x1 x2 · · · xt

Figure 2.2. Graphical model for hidden Markov Model

(SSM). In this model, each observation is assumed to be generated from a latent (or

hidden) variable. Therefore, Markov structure is formed on latent variables, s1:T ,

not on the observations, x1:T . The observed variables are dependent on the hidden

variables through an emission, p (yt | xt) [31]. Hidden Markov Model is the particular

case of SSM in which hidden variables are only dependent on the previous hidden

variable [21]. Hence, state-transition dynamics are shown as p (st | st−1). In other

words, Hidden Markov models are first order state-space models. Graphical model for

HMMs is given in Figure 2.2. The joint probability distribution for this model is given

below. Initial state s1 can be considered as dependent on initial hidden state s0 and

p (s1) = p (s1 | s0) so that one could get a simpler expression for joint probability.

p (s1:T , x1:T) =

[
T∏
t=1

p (xt | st)
][

T∏
t=2

p (st | st−1)

]
p (s1) (2.5)

=
T∏
t=1

p (xt | st) p (st | st−1) (2.6)

There are different naming for hidden Markov models because both discrete and

continuous models share the same graphical model structure. For the convention, we

use the term ‘state-space models’(SSM) as a generic name for latent state Markov

models, ‘hidden Markov Model’(HMM) for the discrete latent state Markov models

and ‘linear dynamical systems’(LDS) for continuous latent state Markov models.

13

The hidden variables in HMM are always discrete, while observations could be

both discrete or continuous. Therefore for a HMM, in the case of S different states, the

state transition distribution p(st | st−1) can be defined by an S×S transition matrix Ψ

and, Ψŝ,ŝ′ = p (st = ŝ | st−1 = ŝ′) denotes the probability of going from state ŝ′ to state

ŝ at the time t. It is important to note that the transition matrix Ψ is build from non-

negative entries Ψŝ,ŝ′ , and sum of entries in columns of transaction matrix is equal to

1,
∑

ŝ Ψŝ,ŝ′ = 1 Similarly, in the case of X discrete observations, emission distribution

p(xt|st) can be defined by X × S emission matrix Ω and Ωx̂,ŝ = p (xt = x̂ | st = ŝ).

If the output is continuous then st selects one of the potential S output distributions

p(xt | st).

2.2. Inference in Hidden Markov Model

Hidden Markov models have widespread applications with different purposes in

many different domains, such as speech recognition, bioinformatics, and time series

forecasting. Therefore, different outputs or statistics may be requested from the model.

One may try to infer the current latent state st useing all the observations x1:t from

the past to the present. It can be shown as p (st | x1:t). This approach is named as

filtering in the literature. On the other hand one can try to infer the past p (st−L | x1:t)

or try to infer the future p (st+L | x1:t) with positive L, which are known as smoothing

and prediction respectively. Finally one can try to identify the most likely hidden path

arg maxs1:T p (s1:T | x1:T) which is known as Viterbi path. and can be calculated with

Viterbi algorithm. In the following parts, we will discover these methods.

2.2.1. Filtering

Filtering is the estimation of the current hidden state by using all observations

so far, p (st | x1:t). To compute that, one can first find joint marginal p (st, x1:t) which

is proportional to conditional marginal p (st | x1:t) and conditional marginal can be

reached by the normalization.

14

p (st, x1:t) =
∑
st−1

p (st, st−1, x1:t−1, xt) (2.7)

=
∑
st−1

p (xt | x1:t−1, st, st−1) p (st | x1:t−1, st−1) p (x1:t−1, st−1) (2.8)

=
∑
st−1

p (xt | st) p (st | st−1) p (st−1, x1:t−1) (2.9)

If we define α (st) = p (st, x1:t) and put that equation into the Equation 2.9

we could get the following recursive equation which known as α-recursion or forward

recursion;

α (st) = p (xt | st)︸ ︷︷ ︸
corrector

∑
st−1

p (st | st−1)α (st−1)︸ ︷︷ ︸
predictor

(2.10)

where α (s1) = p (x1, s1) = p (x1 | s1) p (s1). This recursive formula shows that

filtered distribution α(.) is propagated through forward in each time-step and it acts

like a ‘prior’ distribution for the following time-step. In other words, at each time step

the calculated posterior becomes the new prior the for following time-step [31].

2.2.2. Smoothing

Smoothing is basically the estimation of the past hidden states from the given

data. Mathematically it can express as p(st | x1:T) where the T is the length of

the sequence and t < T . Similar to what have we done in the previous section,

we calculate the joint marginal p(st, x1:T) instead of conditional marginal p(st | x1:T).

There are conceptually two main approaches to calculate smoothing: Parallel Smoother

and Sequential Smoother.

15

2.2.2.1. Parallel Smoother. In this approach, the posterior distribution is rewritten

in the form with contributions from the past and the future, taking advantage of

d-separation in the Equation 2.13. It is the best-known smoothing method in the

literature [21] and algebraically it can be shown as follows.

p (st, x1:T) = p (st, x1:t, xt+1:T) (2.11)

= p (st, x1:t) p (xt+1:T | st, x1:t) (2.12)

= p (st, x1:t)︸ ︷︷ ︸
past

p (xt+1:T | st)︸ ︷︷ ︸
future

(2.13)

= α (st) β (st) (2.14)

where β(st) is called as β-recursion or backward recursion. Since α(.) and β(.)

recursions are independent of each other, and they may be run in parallel. From now

on, the β-recursion needs to be calculated. The derivation of the β-recursion is as

follows:

p (xt+1:T | st) =
∑
st+1

p (xt+1, xt+2:T , st+1 | st) (2.15)

=
∑
st+1

p (xt+1 | xt+2:T , st+1, st) p (xt+2:T , st+1 | st) (2.16)

=
∑
st+1

p (xt+1 | st+1) p (st+1 | st) p (xt+2:T | st+1, st) (2.17)

=
∑
st+1

p (xt+1 | st+1) p (st+1 | st) p (xt+2:T | st+1) (2.18)

β(st) =
∑
st+1

p (xt+1 | st+1) p (st+1 | st) β (st+1) (2.19)

This α − β recursion is known as Forward-Backward algorithm. Smoothed pos-

terior can be obtained by the normalization of the result of the Forward-Backward

algorithm.

16

2.2.2.2. Sequential Smoother. In this approach, the recursion is directly formed for

smoothed posterior. In the literature, it is also known as correction smoother. This

method, again, uses the advantages of the d-separation this time in a different way.

It makes future observations unnecessary by the conditioning on the latent present

state [32].

p (st | x1:T) =
∑
st+1

p (st, st+1 | x1:T) (2.20)

=
∑
st+1

p (st | st+1, x1:t, xt+1:T) p (st+1 | x1:T) (2.21)

=
∑
st+1

p (st | st+1, x1:t) p (st+1 | x1:T) (2.22)

If we define γ(st) = p (st | x1:T) and put that equation into the Equation 2.22,

then we could get the following recursive equation which known as γ-recursion;

γ(st) =
∑
st+1

p (st | st+1, x1:t) γ(st+1) (2.23)

In this smoother, the probability p (st | st+1, x1:t) ∝ p (st+1 | st) p (st | x1:t). So,

it may directly be calculated from the filtered results. It is called dynamic reversal

because it equals to change the directions in the latent space. This methods also

named as correction smoother because it changed the filtered result. One could realize

that sequential smoother is proportional to parallel smoother. Mathematically it can

be shown as;

γ (st) ∝ α (st) β (st) (2.24)

17

2.2.3. Prediction

Prediction of the succeeding states and observations is another important topic

in the latent space models. One can find the following sequence of length L as follows:

p (xt+1:t+L | x1:t) =
∑
st:t+L

(
t+L∏
τ=t+1

p (xτ | sτ) p (sτ | sτ−1)

)
p (st | x1:t) (2.25)

If the L-step ahead predictive distribution is more important than the predictive

distribution of the 1-step ahead, the sum is taken over future observations in the

Equation 2.25. So the new density is as follows:

p (xt+1:t+L | x1:t) =
∑
st:t+L

p (xt+L | st+L)

(
t+L∏
τ=t+1

p (sτ | sτ−1)

)
p (st | x1:t) (2.26)

2.2.4. Viterbi Algortihm

Finding the most likely sequence s1:T of hidden states is significant problem [33,

34]. The most likely sequence s1:T for posterior p (s1:T | x1:T) is the same with the most

likely sequence for joint probability p (s1:T , x1:T). This joint probability is equivalent

to Equation 2.6.

max
s1:t

p (s1:t, x1:t)︸ ︷︷ ︸
φ(st)

=

(
max
st

p (xt | st) p (st | st−1)

)
max
s1:t−1

p (s1:t−1, x1:t−1)︸ ︷︷ ︸
φ(st−1)

(2.27)

In this recursion, the message is sent from the beginning to the end of the chain.

From the set of observations x1:T , the Viterbi algorithm starts to find the most likely

states st beginning from the last.

18

2.3. Learning in Probabilistic Models

Learning is the estimation of the model parameters θ from the given data x ≡
x1:T . Parameter estimation methods such as maximum likelihood estimation (MLE)

and maximum a posteriori (MAP) are based on the idea of defining a probability

distribution on data x and tuning the parameters θ of the distribution such that likeli-

hood of observed data is maximized under this particular probability distribution [35].

Maximum a Posteriori requires an additional prior distribution on parameters which

is equivalent to regularization. Additionally, probability distributions are functions

distributed between 0 and 1 and can take very small values. Therefore, for numerical

stability, they are examined on a logarithmic scale, which is a monotonic function. So

the general solution form is as follows;

• Maximum Likelihood Estimation: arg maxθ log p (x | θ)
• Maximum a Posteriori: arg maxθ log p (θ | x) ≡ arg maxθ (log p (x | θ) + log p (θ))

In latent space models, the hidden variables s ≡ s1:T should be marginalized

out in order to calculate the likelihood of the data. In time series problem, since the

hidden dimensions grows with time, it is usually impossible to track marginalization∑
s p(x, s | θ). Therefore it is impossible to calculate the likelihood of the data directly.

Intractable likelihood of the HMM is as follows:

p (x1:T) =
∑
sT

p (sT , x1:T) =
∑
sT

α (sT) (2.28)

where α (sT) is shown in Equation 2.10. So, the goal is the learning of the maxi-

mum likelihood parameters [19] which can be carried out by the following algorithms.

It is important to note that sum is exponential in the sequence length. Therefore,

although the above formula appears straightforward, it is often impossible to calculate

it directly.

19

2.3.1. Expectation-Maximization Algorithm

Maximizing the likelihood is an essential problem under missing data or latent

variables [36]. We mentioned that this is usually an intractable problem in time series

models. There is an iterative and convenient method in order to solve such problems,

which is called Expectation-Maximization (EM) Algorithm. The primary goal of the EM

algorithm is to find a θ that maximizes the marginal likelihood p(x | θ) or log marginal

likelihood log p(x | θ). Since, the logarithm is a monotonic function, maximizing θ for

these two likelihood is the same. Usually, log marginal likelihood is preferred because

it has numerical stability in calculations. The main idea of the EM algorithm is to

form an alternative objective function for which individual parameter updates can be

achieved. By doing so, the marginal likelihood will be replaced by a lower bound. So,

one can iteratively maximize this lower bound.

To derive a lower bound on log marginal likelihood log p(x | θ), Kullback-Leibler

(KL) divergence which is always non-negative and measures the distance between prob-

ability distributions is considered [37]. In EM algorithm, one define a ‘variational’ dis-

tribution q (s | x). Then, the distance between ‘variational’ distribution q (s | x) and

the parametric model p (s | x, θ) can be measured by KL divergence as follows:

DKL (q (s | x) ‖p (s | x, θ)) = Eq(s|x) [log q (s | x)− log p (s | x, θ)] (2.29)

= Eq(s|x) [log q (s | x)− log p (s,x | θ)] + log p (x | θ)

≥ 0 (2.30)

Equation 2.29 is obtained from Bayes’ rule p (s | x, θ) = p (s,x | θ) /p (x | θ)
where p (x | θ) does not depend on s. So, lower bound on log marginal likelihood could

be obtain by rearranging the inequality between Equation 2.29 and Equation 2.30:

log p (x | θ) ≥ −Eq(s|x) [log q (s | x)]︸ ︷︷ ︸
Entropy

+Eq(s|x) [log p (s,x | θ)]︸ ︷︷ ︸
Energy

(2.31)

20

The right-hand side of the Equation 2.31 is known as a lower bound for log-

likelihood and represented as L(q, θ) which depends on the choice of distribution q

and the model parameters θ. Energy term is, on the other hand, known as ‘expected

complete log-likelihood’ [19]. Log-likelihood of the data is shown as follows:

log p (x | θ) = L (q, θ) +DKL (q (s | x) ‖p (s | x, θ)) (2.32)

Therefore, by minimizing divergence in Equation 2.32, one can achieve to max-

imize the lower bound on the log-likelihood of the observations. The lower bound

L depends both on model parameters θ and ‘variational distributions’ q. The EM

algorithm tries to find this lower bound iteratively by optimizing it w.r.t. θ and q,

respectively. This algorithm is built upon two steps which are;

• Expectation (E-step): Finds the variational distribution q (s | x) for fixed θ

• Maximization (M-step): Finds the model parameters θ for fixed q (s | x)

The algorithm starts with initial model parameters θold. In the E-step, the

variational distribution q (s | x) is set to posterior distribution p
(
s | x, θold

)
and log-

likelihood is calculated under θold. In the M-step, θnew will be found which maximizes

the log-likelihood. Since only the ‘energy’ term of the lower bound in Equation 2.31

depends on θnew, M-step corresponds to maximization of the energy. By denoting

‘energy’ as Q
(
θ, θold

)
, E and M steps could be shown as follows:

E-step : Q
(
θ, θold

)
= Ep(s|x,θold) [log p (s,x | θ)] (2.33)

M-step : θnew = arg max
θ
Q
(
θ, θold

)
(2.34)

These steps are repeated until the convergence. E-step and M-step could also be

considered as an inference step and learning step. In the E-step, posterior of the latent

variables are inferred, and in the M-step, the new model parameters θnew are learned.

21

2.3.2. Baum-Welch Algorithm

Baum-Welch algorithm is special case of the EM algorithm which is for learn-

ing model parameters of a hidden Markov model (HMM) [38]. In the HMM, state

transition matrix Ψ, where Ψŝ,ŝ′ = p (st = ŝ | st−1 = ŝ′), emission matrix Ω, where

Ωx̂,ŝ = p (xt = x̂ | st = ŝ), and initial state parameter π, where πŝ = p (s1 = ŝ), could

be learned from the given set of data x under the assumption that the number of

hidden states S is known. Therefore model parameters θ are parameterized by state

transition Ψ, emission probability Ω and initial state π, in such θ = (π,Ψ,Ω) [39].

The energy term of the HMM is obtained from the logarithm of the joint proba-

bility density of HMM in Equation 2.6 under the assumption of the independent and

identically distributed (i.i.d.) which is as follows:

Q
(
θ, θold

)
=

N∑
n=1

Ep(sn|xn,θold) [log p (sn,xn | θ)] (2.35)

=
N∑
n=1

Ep(sn1 |xn,πold) [log p (sn1)]

+
N∑
n=1

Tn∑
t=2

Ep(snt ,snt−1|xn,Ψold)
[
log p

(
snt | snt−1

)]
+

N∑
n=1

Tn∑
t=1

Ep(snt |xn,Ωold) [log p (xnt | snt)] (2.36)

One need to maximize energy term specified in Equation 2.36. We need to max-

imize this equation according to our three different parameters. This procedure corre-

sponds to the M-step of the EM algorithm.

Optimizing Equation 2.36 with respect to p (s1) and forcing p (s1) to be a distri-

bution one can get M-step of the initial parameters π as follows:

πnewŝ ≡ p
(
s1 = ŝ | θold

)
=

1

N

N∑
n=1

p
(
sn1 = ŝ | xn, θold

)
(2.37)

22

This is the average number of time where initial state s1 is in state ŝ w.r.t. πold.

Similarly one should optimize Equation 2.36 w.r.t. p (st | st−1) to get M-step of the

transition paramaters Ψ which is as follows:

Ψnew
ŝ,ŝ′ ≡ p

(
st = ŝ | st−1 = ŝ′, θold

)
(2.38)

∝
N∑
n=1

Tn∑
t=2

p
(
snt = ŝ, snt−1 = ŝ′ | xn, θold

)
(2.39)

Which is equivalent to the average number of times that transition from latent

state ŝ′ to ŝ. One should force the rows of the Ψ to be a distribution; therefore, these

rows should be normalized. The following equation could achieve it:

Ψnew
ŝ,ŝ′ =

∑N
n=1

∑Tn
t=2 p

(
snt = ŝ, snt−1 = ŝ′ | xn, θold

)∑
ŝ

∑N
n=1

∑Tn
t=2 p

(
snt = ŝ, snt−1 = ŝ′ | xn, θold

) (2.40)

By doing so, one force to Ψ to be probability of transition from latent state ŝ′ to

ŝ. Similar to the previous update equations, M-step for the emission parameters are

obtained by the optimization of Equation 2.36 w.r.t p (xt | st). Update equation is as

follows:

Ωnew
x̂,ŝ ≡ p (xt = x̂ | st = ŝ) (2.41)

∝
N∑
n=1

Tn∑
t=1

p
(
snt = ŝ | xn, θold

)
I [xnt = x̂] (2.42)

This is equivalent to the average probability of emission form latent state ŝ to

observation state x̂. Similar to transition probability, to get stationary probability

distribution on emission matrix Ω we need to normalize this equation for emission

probability as follows:

Ωnew
x̂,ŝ =

∑N
n=1

∑Tn
t=1 p

(
snt = ŝ | xn, θold

)
I [xnt = x̂]∑N

n=1

∑Tn
t=1 p (snt = ŝ | xn, θold)

(2.43)

23

In the E-step, three quantities p
(
sn1 = ŝ | xn, θold

)
, p
(
snt = ŝ, snt−1 = ŝ′ | xn, θold

)
and p

(
snt = ŝ | xn, θold

)
which are used in M-step update equations, should be calcu-

lated. The derivations of this quantities are shown in the section 2.2.

2.4. Deep Learning Sequence Models

Up to the present, we examined statistical models and algorithms. However, deep

learning techniques for making inferences in time series are also very successful. In this

section, we will continue to more in-depth dive into such sequence models. It should

be noted that we will be only interested in networks that produce an output at each

time step.

A neural network (NN), in the case of artificial neurons, is called an artificial

neural network (ANN). It resembles an interconnected group of neurons which math-

ematically correspond to non-linear activation functions. That is, neural networks are

non-linear statistical data modeling or decision making tools which can be used to

model complex relationships between inputs and outputs or to find patterns in data.

Additionally, these structures are transformed into deep models with an increased num-

ber of hidden layers. We will use the name ‘traditional, fully connected feedforward

network’ for all systems that share such similar ideas. Such networks would have sepa-

rate parameters for each input feature so they would need to learn all parameter space

separately at each position in the sequence. By doing so, these models technically as-

sume that all inputs and outputs are independent of each other. However, observations

are not independent of each other, and modeling the relationship between them allows

us to achieve more successful results. To overcome this problem, deep learning sequence

models use the parameter sharing approach. Parameter sharing makes it possible to

share features across different sequence positions of the network. By this modification,

NN approaches gains the ability to work in a sequence prediction since it takes into

account the previous inputs to predict the next output. ‘Recurrent Neural Networks’

(RNN) and ‘Long Short-Term Memory’ are the two instance of such models.

24

h(.)
st−1

xt

st

st

(a) RNN Cell

σ(.)

σ(.) g(.)

σ(.)

· +

·

·

h(.)

ct−1 ct

st−1

xt

ft

it

ĉt

ot

ŝt

st

st

(b) LSTM Cell

Figure 2.3. Cell structures of the RNN and LSTM

2.4.1. Recurrent Neural Networks

Recurrent Neural Networks (RNN) are the neural networks for processing se-

quence data, which contains cycles in the structure [40]. In the literature, any NN

with the cycles can be considered as an RNN. Such cycles allow detecting recurrences

of patterns and networks share the same weights across several time-steps [41]. This

chain structure makes them powerful to analyze sequences and time series problems.

The folded and unfolded computational graphs of the RNNs and LSTMS are shown

in Figure 2.4. These graphs represents the mapping between an input sequence x and

corresponding output sequence ŷ. L refers to loss and shown as D (y‖ŷ) while W ’s

correspond to the weight matrix of the network. C represents the neural network in

the loop and called as ‘cell’. These computational graphs inspire these networks with

the loops where each loop in the network represents the influence of the previous value

of each variable on the next value of the same variable.

The forward propagation of the RNN assumes that there is a non-linear activation

function at the hidden units. Hidden state of the network is the result of this activation

function. Outputs are the linear transformations of the hidden states. Graphically

recurrent neural networks can be shown as Figure 2.4 with the cell in Figure 2.3(a).

Forward propagation begins with the s0. Then for each time step following update

equations will be applied:

25

C

x

ŷ

L

y

Wsx

Wys

Wss · · · C C C · · ·

xt−1 xt xt+1

ŷt−1 ŷt ŷt+1

Lt−1 Lt Lt+1

yt−1 yt yt+1

Wsx Wsx Wsx

Wys Wys Wys

Wss Wss Wss Wss

Figure 2.4. Folded and unfolded representation of the computational graphs

s′t = Wssst−1 +Wsxxt + bs (2.44)

st = h (s′t) (2.45)

ŷt = Wysst + cy (2.46)

By the help of the chain structure and recurrence, these neural networks can learn

sequences and patterns. However, there are some disadvantages to RNNs. Since the

gradients are transferred over time and pass through the non-linear activation function

at each time step, the gradients tend to be decreasing exponentially and disappears

after a few time steps. Therefore networks tend to forget the previous inputs after a few

time steps and accordingly cannot handle the long-term dependencies. This problem

is usually called as the ‘vanishing gradient’ in the literature. [42].

26

2.4.2. Long Short-Term Memory

Learning long-term dependencies in dynamical systems is one of the main chal-

lenges in deep learning researches. RNNs achieve to learn the short-term dependencies

but they usually fail on long-term dependencies. Long Short-Term Memory (LSTM)

structure is designed to capture long-term dependencies, as a special kind of RNN. The

idea behind that structure is to remember the information for an extended period by

default. Therefore LSTMs have emerged as effective and scalable models for several

learning problems related to sequential data [43]. They are a special kind of RNN that

are good at learning long-term dependencies. Similar to all kind of RNNs, LSTMs have

the form of a chain of repeating modules of neural networks [44].

LSTM is a kind of gated RNN. The idea behind the gated RNNs is creating paths

through time that have derivatives that neither vanish nor explode [40]. Gated RNNs

accomplish this idea by the gates that change connection weights at each time step.

The central idea behind the LSTM architecture is a memory cell which can maintain

its state over time, and non-linear gating units which regulate the information flow

into and out of the cell [45]. The idea of introducing internal recurrence, in addition to

the outer recurrence of the RNN, is to produce paths where the gradient can flow for

long time-steps. In standard RNN, repeating structure (cell) has a simple structure,

an activation function. On the other hand, LSTM cell has four layers which interact

with each other. The combination of the Figure 2.4 and Figure 2.3(b) could form

graphical representation of the LSTMs. Forward propagation and interactions in the

single LSTM cell are derived step by step as following:

(i) It should be decided which information should be thrown away from the previous

cell state. Decision is made by ‘forget gate’ ft. It is derived as follows:

ft = σ
(
Wf

ssst−1 +Wf
sxxt + bf

)
(2.47)

(ii) It should be decided which new information coming from input xt will be stored

in new cell state. In order to do this, first a proposal ĉt should be made for the

27

new cell state and then it should be decided how much of this proposal will be

accepted. The decision maker for this process is the ‘input gate’ it. These are

derived as follows:

ĉt = g
(
W ĉ

ssst−1 +W ĉ
sxxt + bĉ

)
(2.48)

it = σ
(
W i

ssst−1 +W i
sxxt + bi

)
(2.49)

(iii) The new step is the determination of the new cell state. For this purpose, the

outputs obtained in the previous steps should be used. Derivation of the updated

cell state is as follows:

ct = ft � ct−1 + it � ĉt (2.50)

(iv) The new hidden state st is calculated after the calculation of the new cell status

ct. But this transformation is done in 3 steps. First, the cell state ct is passed

through the activation function h(.) as in RNN and unfiltered hidden state ŝt is

obtained. Then the obtained result is filtered by the ‘output gate’ ot and the

hidden state st is obtained . The derivations as follows:

ŝt = h (ct) (2.51)

ot = σ (Wo
ssst−1 +Wo

sxxt + bo) (2.52)

st = ot � ŝt (2.53)

(v) The predictions ŷt of the network are obtained as follows. It is the linear trans-

formation of the hidden state st at time t, with the output weights of the network

Wys, as in RNN.

ŷt = Wysst + cy (2.54)

LSTMs are the improved version of the RNNs. It has a better capacity of holding

past information to current state and known as state of the art sequence model [45].

28

2.4.3. Learning in RNN and LSTM

After forward propagation, the loss L between yt and ŷt and gradients will be

calculated. Computation of the gradients through an RNN and an LSTM is a straight-

forward problem [40]. A particular version of the backpropagation algorithm, which

is known as Backpropagation Through Time (BPTT), should be applied [46]. BPTT

operates on an unfolded computational graph of RNN in time. The unfolded network

contains t inputs and outputs, but the network shares the same parameters over all

networks. Then the backpropagation algorithm is used to find the gradient of the loss

function concerning all the network parameters.

29

3. MODELS AND ALGORITHMS FOR ANOMALY

DETECTION

In Chapter 1, we briefly mentioned the anomaly detection in time series problem

and showed that several studies in the literature address different approaches for the

problem. In Chapter 2, we mentioned the models and inference algorithms that are

necessary for the development of anomaly detection in time series applications. In this

chapter, the development of anomaly detection algorithms will be examined. Anomaly

detection models should be able to distinguish the anomalies arising from the outliers

in the system and the anomalies resulting from the errors in the observations. Besides,

these models should be able to cope with missing observations to achieve more fruitful

results, because such missing observations may disrupt the resulting anomaly score.

Another issue is the importance of the models that can detect anomalies online because

the anomalies are often wanted to be detected as soon as possible, even before they

happen. The rest of this section contains details about the works we have done by

paying attention to the above details.

3.1. Gaussian Mixture Model for Anomaly Detection

The problem of anomaly detection is more common in real data than in virtual

data. Therefore, while modeling the system, it should be ensured that erroneous ob-

servations do not disturb the model. Therefore, we should be able to model these

erroneous observations while developing our model. In other words, we can say that

systems feed on multiple sources where one of them produce erroneous observations. If

we can develop a model in this way, we can better detect system behavior and detect

anomalies. We can develop such a model with Gaussian mixtures. Let assume; we

have a one-dimensional observation. We assume that these observations come from

2 different distributions. So, we define two distributions. The first one is for non-

outlier observations, and it has Gaussian distribution with a mean and ideal amount of

variance that is calculated during the expectation maximization process. The second

30

distribution is for outlier observations and has 0 mean and ∞ variance. Then, let us

assume, there is another Bernoulli distributed parameter r which decides either given

observation is an outlier or not. Then, we evaluate the model for parameters of the

first distribution during the process. So our generative model is as follows:

rt ∼ BE(π) (3.1)

p (y | x, r, µ, σ) ∼ N
(
µ, σ2

)r=0N (0,Σ)r=1 (3.2)

Here, r = 1 represents the outlier observations and r = 0 represents the non-

outlier ones. Under the assumption of prior outlier probability r, this model is intended

to find the possibility of µ(n+1) and σ(n+1) which are maximizing the expectation of

log p (y, r | x, µ, σ) under the probability distribution p
(
r | x, y, µ(n), σ(n)

)
. Mathemat-

ically it could be shown as follows:

µ(n+1), σ(n+1) = arg max
µ,σ

Ep(r|x,y,µ(n),σ(n)) [log p (y, r | x, µ, σ)] (3.3)

To calculate Equation 3.3, one should derive the probability distribution inside

the expectation in Equation 3.3, which is log p (y, r | x, µ, σ), and p
(
r | x, y, µ(n), σ(n)

)
.

Following equations shows the derivation of the p (y, r | x, µ, σ), which is essential to

calculate the previous two distributions:

p (y, r | x, µ, σ) =
∏
t

p (yt, rt | xt, µ, σ) (3.4)

=
∏
t

p (yt | xt, rt, µ, σ) p (rt) (3.5)

=
∏
t

(
1− π0√

2πσ2
exp

(−(µt − yt)2

2σ2
t

))(1−rt)

×
(

π0√
2πΣ

exp

(−y2
t

2Σ

))(rt)

(3.6)

31

After the calculation of p (y, r | x, µ, σ), one can directly calculate the outlier

probability r given all other parameters. To calculate this probability, there is a need

for the sum of the probability in Equation 3.6 over r. It can be calculated with the

following form:

p (r | x, y, µ, σ) =
p (r, y | x, µ, σ)

p (y | x, µ, σ)
(3.7)

=
p (r, y | x, µ, σ)

Σrp (r, y | x, µ, σ)
(3.8)

Up to the present, we derived the conditional distribution of outlier probability

p (r | x, y, µ, σ) and we derived the calculations of the probability p (y, r | x, µ, σ). Now,

let π
(n)
t be the probability of rt = 1 given all other parameters. Then π

(n)
t will be equal

to Equation 3.10;

π
(n)
t = p

(
rt = 1 | xt, yt, µ(n), σ(n)

)
(3.9)

π
(n)
t =

π0
Σ

exp
(
−y2t
2Σ

)
π0
Σ

exp
(
−y2t
2Σ

)
+ 1−π0

σ
exp

(
−(µt−yt)2

2σ2

) (3.10)

From now on, we will calculate the log likelihood of the probability in the Equa-

tion 3.3. The objective is the maximization of the log-likelihood. The derivations for

the calculation of the log-likelihood is as follows:

Ep(r|x,y,µ(n),σ(n)) [log p (y, r | x, µ, σ)] =
∑
t

Ep(r|x,y,µ(n),σ(n)) [log p (yt, rt | x, µ, σ)]

=
∑
t

〈
rt

(−y2
t

2Σ2

)〉

+
∑
t

〈
(1− rt)

((−(µt − yt)2

2σ2
t

)
− logσt

)〉

Q(µ, σ) ∝
∑
t

(1− π(n)
t)

(
(µt − yt)2

2σ2
t

+ logσt

)
(3.11)

32

Figure 3.1. One dimensional Gaussian mixtures for the each value on the x-axis

Now, we can iteratively calculate the µ(n+1) and σ(n+1) values that maximize

Q(µ, σ) such that;

µ(n+1) = arg max
µ

Q(µ, σ(n)) (3.12)

σ(n+1) = arg max
σ

Q(µ(n), σ) (3.13)

In this model, the system does not consider the time series properties. Figure 3.1

shows an intuitive but straightforward example of the Gaussian mixtures. The model

decides the outlier observations and then learns the system behaviors. r parameters

are learned during the training, and they will become the anomaly score of the system.

3.2. Hidden Markov Model for Anomaly Detection

The purpose of this section is to create a model that will learn the operation of a

system as a time series and generate a warning against distortions and deterioration in

this system. The model is also expected to catch anomalies in an unsupervised manner

because the anomaly detection needs to be done online, and it is often not possible to

find the data marked as an anomaly. Also, usually, there is not enough data available to

model or validate the deterioration phase. For this reason, the behavior of the system

in normal working conditions has been modeled. The model will generate a warning if

the system works outside of the normal working conditions. [47]

33

In this approach, the behavior of the system is modeled as a Hidden Markov

Model. Also, it is assumed that the system always selects a state from a discrete state

space, and according to this state, the system creates multi-dimensional observations.

The state that the system chooses at any time depends only on the previous state.

This state space corresponds intuitively with the phases that the system enters during

operation (such as being closed or working on full power). However, one of the main

difficulties of the problem is that the data set does not have an attribute, such as the

phase of the system. Therefore, the state space should be found with the unsupervised

learning algorithm. There are also some missing observations and outliers in the data

set due to the sensors. These are other factors that must be accounted for in the

Hidden Markov Model.

In the model, hidden variables of the system for the states at the tth time step

is shown as st and observations of the system at the tth time step is shown as xt.

Observations are usually multi-dimensional and expressed as a vector with a length

of P + R, such that xt =
[
p1
t · · · pPt r1

t · · · rRt

]T
. There are usually two kinds

of the subgroup of observations which are observations that drives the system and

observations that are driven by the systems and shown as p1:P and r1:R, respectively.

We will show p1:P as p and r1:R as r for the simplicity of the representation, unless

otherwise required.

3.2.1. Generative Model and Learning

The discrete state space of the system consists of S different states which indicate

the typical operating phases, and there is 1 additional state which indicates contra-

dictory observations. In fact, with the slight modification of the observation model,

instead of defining a separate state for the modeling of contradictory observations, it

can be assumed that each observation is observed to be very noisy with a small likeli-

hood. However, as far as we can tell from our analysis, outlier values are more likely

to be seen in succession. For this reason, the state space of the model is defined in a

way where there is an additional latent feature.

34

In our model the probability of transitions between states is shown in parameter

Ψ ∈ R(S+1)×(S+1). In other words, the transition probability from state ŝ′ to state ŝ is

Ψŝ,ŝ′ . Each situation has its own observation distribution. The observation distribution

where the outliers are observed (ŝ = 0) is a uniform distribution defined in the space

of the observation. The observational distributions of the other states (ŝ > 0) are

multivariate Gaussian distributions with the variables µŝ and Σŝ:

p(s1) = U{0, S} (3.14)

p(st = ŝ | st−1 = ŝ′) = Ψŝŝ′ (3.15)

p(xt | st = ŝ) =

c, ŝ = 0

N (xt;µŝ,Σŝ), ŝ > 0

(3.16)

The next step is the calculation of the variables Ψŝŝ′ , µŝ and Σŝ from the data.

Since this operation is expensive to perform over the whole dataset, random sequences

with the length of τ can be selected from the dataset. Let x
(i)
1:τ be the ith selected

sequence and suppose that corresponding s
(i)
1:τ are known for this sequence. Then

sufficient statistics for the variables can be calculated as follows:

〈
xtx

T
t

〉
p(xt|st=ŝ)

≈ V(i)
ŝ =

∑τ
t=1[s

(i)
t = ŝ]xtx

T
t∑τ

t=1[s
(i)
t = ŝ]

(3.17)

〈
xt

〉
p(xt|st=ŝ)

≈ m
(i)
ŝ =

∑τ
t=1[s

(i)
t = ŝ]xt∑τ

t=1[s
(i)
t = ŝ]

(3.18)

C
(i)
ŝŝ′ =

τ∑
t=2

[s
(i)
t−1 = ŝ′][s

(i)
t = ŝ] (3.19)

The average of sufficient statistics (V(i)
ŝ , m

(i)
ŝ , C

(i)
ŝŝ′) of selected sequences can be

used to estimate the final values of Vŝ, mŝ and Cŝŝ′ . Moving averages can be computed

using a ηi variable in the range [0, 1] to make this process less costly. Estimation of

variables of distributions from the sufficient statistics are as follows:

35

Ψŝŝ′ ≈ Cŝŝ′/
∑
k

Ckŝ′ (3.20)

µŝ ≈ mŝ (3.21)

Σŝ ≈ Vŝ −mŝm
T
ŝ′ (3.22)

The states s
(i)
1:τ must be known for the calculations of Equation 3.17, Equation 3.18

and Equation 3.19. If the variables Ψŝŝ′ , µŝ and Σŝ are known, s
(i)
1:τ can be estimated

using the following recursive equation with the Viterbi algorithm:

max
s
(i)
1:t

p
(
s

(i)
1:t, x

(i)
1:t

)
︸ ︷︷ ︸

φ
(
s
(i)
t

)
=

(
max
s
(i)
t

p
(
x

(i)
t | s(i)

t

)
p
(
s

(i)
t | s(i)

t−1

))
max
s
(i)
1:t−1

p
(
s

(i)
1:t−1, x

(i)
1:t−1

)
︸ ︷︷ ︸

φ
(
s
(i)
t−1

)
(3.23)

Therefore, the desired variables can be deduced by a recursive algorithm which

first assumes the states constant and makes maximization over the variables and then

assumes the variables constant and makes maximization over the states.

If there are missing data, the only thing that will change is the distribution of

observations. Fortunately, one of the advantageous properties of the Gaussian dis-

tribution and the uniform distribution is that the marginal probability can be easily

calculated. For example, in the case where observation p∗ is not observed, the dis-

tribution with Gaussian joint distribution will be transformed from the µ and Σ into

(P +R− 1) dimensional Gaussian distributions obtained by subtracting all the rows

and orders for the observation p∗.

3.2.2. Calculation of Predictive Distribution

In the previous section, the process of learning the normal working pattern of the

system is performed. After that, the observed behavior should be evaluated with the

36

learned model. In our opinion, calculating the predictive distribution to do this task

is one of the most efficient ways. One of the important points is that instead of the

predictive distribution p(xt | x1:t−1) of xt, predictive distribution of the system driven

parameters conditioned on the parameter which drives the system p(rt | pt, x1:t−1) is

more meaningful. Because the behavior of the system is how the system produces its

output under given external conditions. The predictive distributions of the system

driven observations, which are conditional on system driver parameters, are in fact the

ratio of the predictive distribution of all observations to the predictive distribution of

the system driver observations:

p (rt | pt, x1:t−1) =
p (xt | x1:t−1)

p (pt | x1:t−1)
(3.24)

Additionally, the predictive distributions of all observations and the predictive

distributions of the system driver observations could be calculated by following recur-

sive equations:

p (xt | x1:t−1) =
∑
st

p (xt, st | x1:t−1) (3.25)

=
∑
st

p (xt | st) p (st | x1:t−1) (3.26)

=
∑
st

p (xt | st)
∑
st−1

p (st, st−1 | x1:t−1) (3.27)

=
∑
st

p (xt | st)
∑
st−1

p (st | st−1) p (st−1 | x1:t−1) (3.28)

p (pt | x1:t−1) =
∑
st

p (pt | st)
∑
st−1

p (st | st−1) p (st−1 | x1:t−1) (3.29)

In order to find posterior probabilities p (st−1 | x1:t−1) in these equations, it is

sufficient to find and normalize forward probabilities. The forward probabilities can

also be found in the following recursive equation:

37

p (st, x1:t)︸ ︷︷ ︸
α(st)

= p (xt | st)
∑
st−1

p (st | st−1) p (st−1, x1:t−1)︸ ︷︷ ︸
α(st−1)

(3.30)

In order to generate anomaly prediction Et from predictive distribution, the per-

formance of the predictive distribution calculated by HMM is compared with the per-

formance of the uniform distribution. If the uniform distribution is better than HMM,

Et will be higher. We foresee these cases as anomalies:

Et =
c

c+ p (rt | pt, x1:t−1)
(3.31)

3.3. Deep Learning Sequence Models for Anomaly Detection

In this section, deep learning models are developed for anomaly detection in

time series. The developed models in this section are also expected to handle missing

observations, and they are developed to find deterioration and anomalies in the system.

Since usually there is no deterioration or anomaly label, these model should be an

unsupervised model. Therefore, the model uses the system outputs r as a label and

trained under system inputs p and system outputs r. In other words, the model learns

the system. The developed model will perform analysis on time series; so, RNNs and

LSTMs, which are deep learning sequence models, are used. We will decide on the

anomalies according to the conformity of the observations to the outputs of the model.

In this approach, we designed deep models that learn the relationship between

the system driver parameters (input) and the system driven parameters (output), and

the model also learns patterns of the system from the given input [48,49]. Both inputs

and outputs are multidimensional and expressed as a vector with the lenghts of P
and R as pt =

[
p1
t · · · pPt

]T
and rt =

[
r1
t · · · rRt

]T
, respectively. Therefore the

developed models should generate system driven observations from the system driver

38

observations, so it will act as a kind of generative model and learn to generate outputs

regarding the system behavior [23]. Because deep learning sequence models can learn

system dynamics in more detail, we prefer to look at the error of the outputs instead

of defining an outlier state as in HMM.

3.3.1. Forward Propagation in RNN

The inputs and outputs of the system are defined. Now, in this step, the model

is expected to learn the pattern between inputs and outputs. Since these networks are

expensive to perform over whole dataset, random sequence with length of τ can be

selected at each training epoch. Let p
(i)
1:τ be the ith selected input sequence and r

(i)
1:τ

is the corresponding output sequence. The model will calculate the predicted output

sequence r̂
(i)
1:τ . Forward propagation of RNN for this model is as follows:

s′t = Wssst−1 +Wspp
(i)
t + bs (3.32)

st = h (s′t) (3.33)

r̂
(i)
t = Wrsst + cy (3.34)

Where bs corresponds to bias terms in the hidden layer of the NN and cy corre-

sponds to bias term in the output layer. Ws are the model weights that are learned

through training. This forward propagation is calculated from 1 : τ for the ith sub-

sequence at each epoch. There will be T /τ subsequence at each training step. T
corresponds to the number of total data instance.

3.3.2. Forward Propagation in LSTM

In a similar way with the RNN, random sequence with length of τ can be selected

at each training epoch. Let p
(i)
1:τ be the ith selected input sequence and r

(i)
1:τ is the

corresponding output sequence. The model will calculate the predicted output sequence

r̂
(i)
1:τ , as in RNN. The forward propagation of LSTM for such a model is as follows:

39

ft = σ
(
Wf

ssst−1 +Wf
spp

(i)
t + bf

)
(3.35)

ĉt = g
(
Wc

ssst−1 +Wc
spp

(i)
t + bc

)
(3.36)

it = σ
(
W i

ssst−1 +W i
spp

(i)
t + bi

)
(3.37)

ct = ft � ct−1 + it � ĉt (3.38)

ŝt = h (ct) (3.39)

ot = σ
(
Wo

ssst−1 +Wo
spp

(i)
t + bo

)
(3.40)

st = ot � ŝt (3.41)

r̂
(i)
t = Wrsst + cr (3.42)

Where bs correspond to the bias term in the gates and hidden layers, and cy is

the bias at the output layer. ft, it and ot corresponds to forget gate, input gate, and

output gate, respectively. ĉ is the proposed cell state, while ct is the cell state of the

network. In a similar manner, ŝt is the proposed hidden state for the network, while

st is the filtered and resulted in the hidden state of the network.

3.3.3. Learning

After the calculation of forward propagation and generation of the predictions

r̂
(i)
1:τ , the loss should be calculated. We could adjust the model by changing the model

parameters W . So, the objective is the minimization of the loss concerning W which

is as follows:

arg min
W
L
(
r

(i)
1:τ‖r̂(i)

1:τ

)
(3.43)

The loss will be calculated and then the weights, W , are updated with the time se-

ries specific gradient descent algorithm which is backpropagation through time (BPTT)

at each time-step [46]. The forward propagation and the weight update procedure with

40

BPTT algorithm will continue with the new sub-sequences i′ at each epoch until the

convergence. Thus, the model parameters, W , are learned. As a result of this proce-

dure, the model is able to reproduce system outputs.

3.3.4. Prediction and Anomaly Score

We developed models which learn the system to be analyzed. The next step is to

find anomalies. After the training phase, let us assume that there is a sequence, with

a length T , and we represent it as p1:T . Then the model will calculate the predicted

outputs r̂1:T with the learned weights and bias terms as in the equations 3.42 and 3.34.

Then, to detect the anomalies, the loss L between the observed data r1:T and model

predictions r̂1:T should be calculated separately for each time step.

E ′t = L (rt‖r̂t) (3.44)

We have linear units at the output layer; therefore, our predictions are the result

of that linear units. So, we need to select appropriate loss function. Root mean square

error (RMSE), mean square error (MSE) and mean absolute error (MAE) are the

most appropriate loss functions. However, since system outputs are multi-dimensional

and some of the sensors return numerically large values and dominate the error, such

loss functions, especially MSE and RMSE, have drawbacks. One way to handle this

drawback is to use another distance metric, which measures the percentage error. This

metric is called as a mean absolute percentage error (MAPE). However, it brings out

other problems such as high error rate at the points where observations are too small.

We have one additional problem during training, which are the anomalies in the training

set. The model we developed performs unsupervised learning. Therefore, the model

should not be affected by anomalous observations during training. This could be

achieved by applying robust optimization techniques at the loss function [50]. So,

we need a loss function that will not be influenced by the anomalies; which is robust

loss function [51]. The solution of this problem is in the robust statistics literature [52],

and we use the Tukey’s biweight loss function as a robust optimization method for a

41

deep regression [51]. We compare different loss functions and detailed analysis of the

loss functions could be found in Appendix A.

We normalize all the inputs and outputs and model calculates the results and

errors on the normalized data. When doing reconstruction, we unnormalize it. When

it comes to producing an anomaly score, we are applying the following steps:

(i) Calculate the error of each observation and create an unnormalized anomaly score

from the error for each observation.

(ii) Calculate the average loss of the fake observations which are uniformly selected

within the range of the space of the feature space.

(iii) Compare unnormalized error with the uniformly selected samples error and create

normalized anomaly score.

Let c represents the average loss of the uniformly selected random observations

over observations space, and let E ′t shows the unnormalized error for the tth observation.

Then we can obtain normalized anomaly score with the following equation:

Et =
E ′t

c+ E ′t
(3.45)

If there is a higher probability of error for the specified time step, then corre-

sponding observation will be marked as an anomaly. For the detection of collective

anomaly [27], moving averages of the resulting errors can be computed using a η vari-

able in the range [0, 1], which is as follows:

Êt = Êt−1 × η + Et × (1− η) (3.46)

In this section, we developed two similar models which use RNN and LSTM,

respectively. If there are long-term dependencies of the system, LSTM is expected to

give more accurate results, if not, RNN is expected to give similar results.

42

4. EXPERIMENTS AND RESULTS

In this chapter, we present applications of the anomaly detection models de-

scribed in Chapter 3. In the beginning, we apply GMM, which does not take into

account the sequential feature of the data, and then we implement the HMM, which

is a probabilistic sequence model. Then, we expand our work with the application of

deep learning sequence models. We perform experiments and compare the results with

models constructed on RNN and LSTM, respectively.

In this study and the experiments presented in this chapter, data collected from

the wind turbines of Borusan in Bandırma were used.

4.1. Wind Turbine Dataset

Borusan Vestas V90-3MW wind turbines dataset was created from 20 different

wind turbines which are identical. For each wind turbine, there are observations col-

lected at 25737 different consecutive time-steps. Each observation is the collection

of wind speed, rotor speed, and generated power values. This data set was created

with data collected at 10-minute intervals from February to July. There are only two

reported anomalies in the data set. However, it is known that there are unreported

and undetected anomalies. Additionally, this dataset contains some Null and incorrect

sensory information because of the faulty sensor measurements. These errors occur

randomly and do not continue. Therefore, we know that there is no accurate data

in the data set and that there are errors and missing data in the observations. The

visualization of the wind, rotor, and power data could be found in Figure 4.1.

In this dataset, wind speed can be seen as an input to the system while the rotor

speed and the generated power are the outputs of the system. However, it can be seen

from Figure 4.1 that there is not a direct relationship between these features. The

reason behind this phenomena is that previous observations and working condition of

the turbine affect the current time observations because of the physical relationships

43

(a) Wind speed observations as a time-series

(b) Rotor speed observations as a time-series

(c) Generated grid power observations as a time series

Figure 4.1. Individual sequential observations for the sensory information

44

Figure 4.2. The relationship between the wind speed, rotor speed and grid power

in the mechanical system of the wind turbines. Therefore, the outputs cannot be

generated directly according to input data, and it requires the system state, which

indicates how the system reacts to the given input. The interaction graph which is

obtained from a limited time interval and does not consider the time series feature can

be seen in Figure 4.2.

4.1.1. Modeling The Power Curve of Wind Turbine

The power curve of wind turbines defines the relationship of a wind speed or rotor

speed, or both, to the amount of power generation. Since, the physical machinery has

a sophisticated control mechanism, as well as environmental variations that are not

directly measurable, makes this relationship more complicated. Therefore, we have to

create a model that works under different circumstances according to basic working

principals of the wind turbines. For this purpose, we use Bayesian approaches to

generate the power curve of the wind turbine efficiently.

45

There are different approaches to the modeling of the power curve. Some of the

works use wind speed and grid power to evaluate the power curve [25] and some other

uses rotor speed and grid power to evaluate power curve [26]. On the other hand, we use

both rotor speed and wind speed because only wind cannot give too much information

because it has too much uncertainty and there is a lot of sudden changes in the wind

speed. On the other hand, rotor speed itself again cannot give desired results because

there is break points in the rotor speed - power curve graph. In addition to that,

such a discontinuity is not desired in such a model. Therefore we use both wind speed

and rotor speed to analyze power curve model. By this selection, we see that the

discontinuity in the rotor speed - grid power model is gone, and the high variance in

the wind speed - power curve is also reduced. Therefore increasing the dimensionality

of the power curve significantly strengthens our hands in terms of better analysis.

The power curve shows us the critical features of the wind turbine machinery

system. However, although the wind speed, rotor speed, and grid power are included,

the turbine still contains some discontinuity in the power curve as a result of some

states of the turbine. Since there is a gearbox in the turbine, we expect that kind of

relationship, and we can see the location of this change points from the power curve.

In addition to the previous details, we can also add the time factor to the account.

When we do this, we create the power curve using the incoming data sequence. On

this page, we can analyze not only the power curve but also the trends of change on

the power curve.

We aim to find the optimum power curve for each turbine individually because

the physical machines are complex systems, and even if they work with precisely the

same mechanism, they can show different production values. The power curve includes

the main line that the turbine is likely to generate and the variance that occurs. It is

important to note that since wind turbines are rotating systems, the variance of the

production will increase with the rotor speed. Therefore our model should take into

account that property.

46

4.1.2. Experiments with the Probabilistic Models

We started this study by reconstruction of the power curves of the wind turbines

using Gaussian Mixture Model(GMM). This model learns the power curve of the wind

turbine as a mixture of Gaussian distribution over the available data. At this point,

we assume that our observations include both turbine states and anomalies. Therefore

we assume that, in the model, there are 10 different Gaussian distributions for turbine

operation states which should be learned and there is 1 Gaussian distribution with the

infinite variance, uniform over output space, for sensory information errors or anoma-

lies. These Gaussian distributions are then learned using the EM algorithm, except

the distribution corresponds to anomalies. Once the distributions are learned, we can

determine which distribution the incoming data belongs to, and what observations are

anomalies. Therefore, according to this model, the incoming data has a predictive error

rate. This model, which is more straightforward than HMM, does not take into ac-

count the time effect and how the consecutive observations should behave is not taken

into account. Therefore, the Gaussian distributions in the model are learned without

this knowledge. Since the incoming data is not analyzed as a time series, the model is

more susceptible to faulty data coming from the sensors and can not catch the faulty

transitions between states. The mixtures are shown in Figure 4.3(a). Moreover, the

model may be insufficient to detect unexpected fluctuations in the power output of the

turbine.

In the expanse of this study, the power curves of the wind turbines are constructed

as time series using HMM. This model also learns the power curve of the wind turbine

as a mixture of Gaussian distribution over the available data. Therefore we assume

that, as in GMM, there are 10 different Gaussian distributions for turbine operation

states which should be learned and there is 1 Gaussian distribution with the infinite

variance, uniform over output space, for sensory information errors or anomalies. We

design our model in such a way as to determine which distribution will come from

which distribution. Therefore, the previous distribution will have an impact on the

distribution of the observations. Therefore the learned mixtures of the Gaussian dis-

tributions of the states will be slightly different from that obtained in the GMM. The

47

(a) The mixture of Gaussians

(b) Distributions in the latent space

Figure 4.3. Comparison of the mixture of Gaussians in the GMM with the mixture of

Gaussians in the HMM which defined on the power curve

48

Figure 4.4. State transition diagram of the HMM

learned Gaussian mixtures by HMM are shown in Figure 4.3(b). The better modeling

of the system, as can be seen in Figure 4.3 has resulted in more obvious mixtures. This

model was trained by processing the sample mini-series of 144 measurements, which

corresponds to one-day observations. During this training, the learning speed was cho-

sen as ηt = 1/ (t+ 1). On the other hand, the state transition diagram of the HMM is

shown in Figure 4.4. As can be seen from the transition diagram, it is possible to switch

from any state to anomaly. Therefore, the HMM model is more tolerant to incorrect

measurements from the detectors and can detect abnormal changes in the power curve

without being affected by false observations as it learns the operation of the turbine.

As a result of these studies, it can be seen that HMM can make error prediction more

clear than GMM, according to Figure 4.5(c) and Figure 4.5(d). However, the most

critical point of HMM is that it minimizes the false positive error prediction. In most

cases, the GMM tends to produce false positive predictions, as shown in Figure 4.5(f),

but HMM has achieved much better results in this regard. A detailed comparison be-

tween GMM and HMM model is given in Figure 4.5. Malfunctions are shown as black

vertical lines in graphs. The collective anomaly result is cumulatively calculated from

the anomaly forecast for each observation and converted into a warning signal.

49

(a) The error prediction of HMM on the turbine

which works under normal conditions

(b) The error prediction of GMM on the turbine

which work under normal conditions

(c) HMM generates two clear warning before mal-

function on the June

(d) Warnings of GMM are not clear as warning

generated by HMM

(e) HMM does not predict error for the turbine

which works under normal conditions

(f) GMMs tend to produce false positive warnings

on the normally working turbine

Figure 4.5. Comparison of the performance of HMM with GMM

50

4.1.3. Experiments with the Deep Learning Sequence Models

In this part of the study, we are interested in deep learning models to detect

anomalies. Therefore we apply such models to the power curve of the wind turbines to

learn about the system dynamics. The main idea behind this study is to reconstruct

the power curve of the wind turbines with developed models. Then, in the test phase,

we will first reconstruct the power curve, and compare this reconstruction with the new

observations and measure how wrong they are. This measurement will also determine

our anomaly score. In the experimental setup, we basically compare the RNN network

with LSTM network. While making this comparison, we will do our experiments by

changing two additional parameters. The first parameter to examine the effect on the

model is the depth of the network. For both RNN and LSTM, we compare the results

with 1-layer network with 2-layer network (stacked) [23]. The other parameter to ex-

amine the effect on the model is loss function. We examine the effect of the L1 loss and

MSE loss on the developed model. We focus on these two losses because both models

have the rectified linear output layer, and these loss functions are more appropriate

for such a model. In the rest of the experimental setup, we set all hyperparameters

to the same for the healthy comparison. We set learning rate η = 0.01 for all of the

network setups, and we train each network for 1000 number of the epoch. All the

experimental setups use the same batch size, 144 observation time-step for one batch.

In the experiments, both RNN and LSTM network has the number of hidden layer size

128.

In these experiments, we implement 12 different experiment setup. These setups

include RNN or LSTM, 1-layer or 2-layer, and L1 loss or MSE loss or Tukey’s biweight

loss. Our experiments show that both RNN and LSTM setups have almost similar

performance on the system. This is because wind turbine dataset does not contain long-

term dependencies and to obtain good estimation we do not need to know information

from the future. On the other side, experiments show us that stacked networks perform

better on the power curves. This situation may be due to the complexity of the power

curve. Finally, we see in the experiments that L1 loss is a better choice to model

such data because data includes anomalous observations and MSE loss not robust for

51

Figure 4.6. Predicted rotor speed observations with RNN and LSTM models which

use Tukey’s biweight loss

such observations while L1 does. Tukey’s biweight loss, on the other hand, allow us to

perform more robust optimizations and perform better on our task. These networks

almost totally correctly estimate the generated power and rotor speed values from the

given wind speed, as in Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9. The first

two figures are generated from the stacked RNN and stacked LSTM network with the

Tuckey’s biweight loss. Except for a small difference, both the RNN and LSTM model

creates almost the same predictions on rotor speed and grid power values. The third

figure includes generated power curves for all experimental setups. In all figures, blue

dots represent the observations while red dots show the model outputs. In Figure 4.8,

one can detailly analyze the performance of the 1-layer models with a different setting.

Similarly, in Figure 4.9, we share the performance of stacked (2-layered) networks.

Despite their small differences, all models produced acceptable results and found almost

the same anomaly result. The anomaly scores are shown in Figure 4.10 and Figure 4.11.

Black vertical lines in the figures represent the malfunction in turbines, and the system

generates warning before the malfunction. Additionally, we know that at the February

there is an iciness on the turbines. Models successfully detect these anomalies in all

52

Figure 4.7. Predicted generated power observations with RNN and LSTM models

which use Tukey’s biweight loss

experiments. These figures show that the results are very similar to each other and

also similar to the ones that we find with probabilistic models in Figure 4.5. Detailed

analysis of the 1-layer networks can be found in Figure 4.10, while Figure 4.11 includes

detailed analysis of the 2-layer (stacked) networks. In both experiments, blue dots

represent the observations while red dots represent the predictions.

53

(a) RNN with MSE loss (b) LSTM with MSE loss

(c) RNN with L1 loss (d) LSTM with L1 loss

(e) RNN with Tukey’s biweight loss (f) LSTM with Tukey’s biweight loss

Figure 4.8. Generated from 1-layer network and observed power curves

54

(a) RNN with MSE loss (b) LSTM with MSE loss

(c) RNN with L1 loss (d) LSTM with L1 loss

(e) RNN with Tukey’s biweight loss (f) LSTM with Tukey’s biweight loss

Figure 4.9. Generated from 2-layer network and observed power curves

55

(a) RNN with MSE loss (b) LSTM with MSE loss

(c) RNN with L1 loss (d) LSTM with L1 loss

(e) RNN with Tukey’s biweight loss (f) LSTM with Tukey’s biweight loss

Figure 4.10. Anomaly scores of the 1-layered networks on test data.

56

(a) RNN with MSE loss (b) LSTM with MSE loss

(c) RNN with L1 loss (d) LSTM with L1 loss

(e) RNN with Tukey’s biweight loss (f) LSTM with Tukey’s biweight loss

Figure 4.11. Anomaly scores of the 2-layered (stacked) networks on test data.

57

5. CONCLUSION AND FUTURE WORK

In this work, we developed models and algorithms for anomaly detection in time

series data. We conducted our work in two different approaches, which are statistical

algorithms and deep learning based sequence models. As a result of this work, the

models that we developed can perform on the same datasets, and that can create a

similar anomaly score.

As a statistical approach, we developed a special kind of hidden Markov model

which can handle anomaly detection task on noisy real-world data. We assign one

additional hidden state, ‘outlier state’ to the latent space to explain noisy, unwanted

observations. This is similar to what we did in the GMM. In GMM, we defined Gaussian

mixtures, which correspond to latent states of the system, and we represented an

additional Gaussian mixture with has high variance, which corresponds to ‘outlier

state’ in HMM. However, in GMM, we can track anomalies only from the outlier state.

If an observation falls into an outlier state, then the model arises an anomaly error.

This approach has the following main drawbacks which we solved with HMM;

(i) The observations in the outlier state are often not outliers of the system we seek

to detect. The observations in this state are mostly composed of errors in the

observations.

(ii) GMM can not track the state transitions. Therefore, if unexpected observations

occur, GMM cannot detect it.

The deep learning based models we proposed are constructed with RNN and

LSTM. This part of our study emerged by combining specific parts of two studies

[23, 27]. Malhotra et.al. in [23] performed anomaly detection method on cyclic data;

on the other hand, Bontemps et.al. in [27] tried to identify the collective anomalies. In

the light of these studies, we developed an anomaly detection model which first learns

the patterns of the system and then evaluates the new coming observations considering

the previous observations. This model, similar to HMM, track more complex state

58

transition, and therefore, it can catch the collective anomalies. We were able to observe

the effects of the degree of past dependence on the system. Since LSTMs are very

successful in capturing past links, we could have achieved much more successful results

with LSTMs when the system has such a dynamic.

As we demonstrated in our experiments, the proposed models are powerful, flex-

ible, and yield good results in an arguably challenging problem. Nonetheless, both

models and applications can be further improved in many respects. Possible future

research directions are as follows:

(i) Although HMM model is successful in detecting anomaly states, it is not equally

successful in capturing the change of system over time. Therefore, over time, its

performance may decline.

(ii) LSTM model is successful in capturing collective anomalies but can be sensitive

to missing data, which in some cases may adversely affect system performance.

(iii) The application areas of the models could be expanded with new datasets, which

requires the track of the changes in normal behavior.

(iv) To solve the two problems mentioned above, a more complex model can be created

including the combination of LSTM and HMM or the particle filter.

(v) Coupled anomaly detection is planned to be developed. Conduction of anomalies

in the systems by looking at other parallel systems will improve the analysis and

anomaly warnings.

59

REFERENCES

1. Chandola, V., A. Banerjee and V. Kumar, “Anomaly detection: A survey”, ACM

computing surveys (CSUR), Vol. 41, No. 3, p. 15, 2009.

2. Hodge, V. and J. Austin, “A survey of outlier detection methodologies”, Artificial

intelligence review , Vol. 22, No. 2, pp. 85–126, 2004.

3. Mehra, R. K. and J. Peschon, “An innovations approach to fault detection and

diagnosis in dynamic systems”, Automatica, Vol. 7, No. 5, pp. 637–640, 1971.

4. Aleskerov, E., B. Freisleben and B. Rao, “Cardwatch: A neural network based

database mining system for credit card fraud detection”, Proceedings of the

IEEE/IAFE 1997 computational intelligence for financial engineering (CIFEr),

pp. 220–226, IEEE, 1997.

5. Spence, C., L. Parra and P. Sajda, “Detection, synthesis and compression in

mammographic image analysis with a hierarchical image probability model”, Pro-

ceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis

(MMBIA 2001), pp. 3–10, IEEE, 2001.

6. Barford, P., J. Kline, D. Plonka and A. Ron, “A signal analysis of network traf-

fic anomalies”, Proceedings of the 2nd ACM SIGCOMM Workshop on Internet

measurment , pp. 71–82, ACM, 2002.

7. Teng, H. S., K. Chen and S. C. Lu, “Adaptive real-time anomaly detection us-

ing inductively generated sequential patterns”, Proceedings. 1990 IEEE Computer

Society Symposium on Research in Security and Privacy , pp. 278–284, IEEE, 1990.

8. Rousseeuw, P. J. and A. M. Leroy, Robust regression and outlier detection, Vol.

589, John wiley & sons, 2005.

60

9. Markou, M. and S. Singh, “Novelty detection: a review—part 1: statistical ap-

proaches”, Signal processing , Vol. 83, No. 12, pp. 2481–2497, 2003.

10. Markou, M. and S. Singh, “Novelty detection: a review—part 2: neural network

based approaches”, Signal processing , Vol. 83, No. 12, pp. 2499–2521, 2003.

11. Ranshous, S., S. Shen, D. Koutra, S. Harenberg, C. Faloutsos and N. F. Sama-

tova, “Anomaly detection in dynamic networks: a survey”, Wiley Interdisciplinary

Reviews: Computational Statistics , Vol. 7, No. 3, pp. 223–247, 2015.

12. Song, X., M. Wu, C. Jermaine and S. Ranka, “Conditional anomaly detection”,

IEEE Trans. Knowl. Data Eng., Vol. 19, No. 5, pp. 631–645, 2007.

13. Chandola, V., A. Banerjee and V. Kumar, “Anomaly detection for discrete se-

quences: A survey”, IEEE Transactions on Knowledge and Data Engineering ,

Vol. 24, No. 5, pp. 823–839, 2012.

14. Gupta, M., J. Gao, C. C. Aggarwal and J. Han, “Outlier detection for temporal

data: A survey”, IEEE Transactions on Knowledge and Data Engineering , Vol. 26,

No. 9, pp. 2250–2267, 2014.

15. Chandola, V., V. Mithal and V. Kumar, “Comparing anomaly detection techniques

for sequence data”, Technical Report 08-021 , 2008.

16. Harvey, A. C., Forecasting, structural time series models and the Kalman filter ,

Cambridge university press, 1990.

17. Das, S., Time series analysis , Princeton University Press, Princeton, NJ, 1994.

18. Brockwell, P. J., R. A. Davis and M. V. Calder, Introduction to time series and

forecasting , Vol. 2, Springer, 2002.

19. Barber, D., A. T. Cemgil and S. Chiappa, Bayesian time series models , Cambridge

University Press, 2011.

61

20. Barber, D. and A. T. Cemgil, “Graphical models for time-series”, IEEE Signal

Processing Magazine, Vol. 27, No. 6, pp. 18–28, 2010.

21. Rabiner, L. R., “A tutorial on hidden Markov models and selected applications in

speech recognition”, Proceedings of the IEEE , Vol. 77, No. 2, pp. 257–286, 1989.

22. Längkvist, M., L. Karlsson and A. Loutfi, “A review of unsupervised feature

learning and deep learning for time-series modeling”, Pattern Recognition Letters ,

Vol. 42, pp. 11–24, 2014.

23. Malhotra, P., L. Vig, G. Shroff and P. Agarwal, “Long short term memory networks

for anomaly detection in time series”, Proceedings , p. 89, Presses universitaires de

Louvain, 2015.

24. Srivastava, A., A. Kundu, S. Sural and A. Majumdar, “Credit card fraud detec-

tion using hidden Markov model”, IEEE Transactions on dependable and secure

computing , Vol. 5, No. 1, pp. 37–48, 2008.

25. Ouyang, T., A. Kusiak and Y. He, “Modeling wind-turbine power curve: A data

partitioning and mining approach”, Renewable Energy , Vol. 102, pp. 1–8, 2017.

26. Romero, A., Y. Lage, S. Soua, B. Wang and T.-H. Gan, “Vestas V90-3MW wind

turbine gearbox health assessment using a vibration-based condition monitoring

system”, Shock and Vibration, Vol. 2016, 2016.

27. Bontemps, L., J. McDermott, N.-A. Le-Khac et al., “Collective anomaly detec-

tion based on long short-term memory recurrent neural networks”, International

Conference on Future Data and Security Engineering , pp. 141–152, Springer, 2016.

28. Hawkins, S., H. He, G. Williams and R. Baxter, “Outlier detection using replicator

neural networks”, International Conference on Data Warehousing and Knowledge

Discovery , pp. 170–180, Springer, 2002.

62

29. Tan, P.-N., Introduction to data mining , Pearson Education India, 2018.

30. Hoadley, B., “Asymptotic properties of maximum likelihood estimators for the in-

dependent not identically distributed case”, The Annals of mathematical statistics ,

pp. 1977–1991, 1971.

31. Barber, D., Bayesian reasoning and machine learning , Cambridge University Press,

2012.

32. Rauch, H. E., C. Striebel and F. Tung, “Maximum likelihood estimates of linear

dynamic systems”, AIAA journal , Vol. 3, No. 8, pp. 1445–1450, 1965.

33. Viterbi, A., “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm”, IEEE transactions on Information Theory , Vol. 13, No. 2,

pp. 260–269, 1967.

34. Forney, G. D., “The viterbi algorithm”, Proceedings of the IEEE , Vol. 61, No. 3,

pp. 268–278, 1973.

35. Gauvain, J.-L. and C.-H. Lee, “Maximum a posteriori estimation for multivariate

Gaussian mixture observations of Markov chains”, IEEE transactions on speech

and audio processing , Vol. 2, No. 2, pp. 291–298, 1994.

36. Dempster, A. P., N. M. Laird and D. B. Rubin, “Maximum likelihood from incom-

plete data via the EM algorithm”, Journal of the Royal Statistical Society: Series

B (Methodological), Vol. 39, No. 1, pp. 1–22, 1977.

37. Kullback, S. and R. A. Leibler, “On information and sufficiency”, The annals of

mathematical statistics , Vol. 22, No. 1, pp. 79–86, 1951.

38. Tu, S., “Derivation of Baum-Welch Algorithm for Hidden Markov Models”, Cite-

seer , 2015.

39. Bishop, C. M., Pattern recognition and machine learning , springer, 2006.

63

40. Goodfellow, I., Y. Bengio, A. Courville and Y. Bengio, Deep learning , Vol. 1, MIT

press Cambridge, 2016.

41. Graves, A., “Supervised sequence labelling”, Supervised sequence labelling with

recurrent neural networks , pp. 5–13, Springer, 2012.

42. Hochreiter, S., “The vanishing gradient problem during learning recurrent neural

nets and problem solutions”, International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems , Vol. 6, No. 02, pp. 107–116, 1998.

43. Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural computa-

tion, Vol. 9, No. 8, pp. 1735–1780, 1997.

44. Olah, C., Understanding lstm networks , 2015, http://colah.github.io

/posts/2015-08-Understanding-LSTMs, accessed at May 2019.

45. Greff, K., R. K. Srivastava, J. Koutńık, B. R. Steunebrink and J. Schmidhuber,

“LSTM: A search space odyssey”, IEEE transactions on neural networks and learn-

ing systems , Vol. 28, No. 10, pp. 2222–2232, 2017.

46. Werbos, P. J. et al., “Backpropagation through time: what it does and how to do

it”, Proceedings of the IEEE , Vol. 78, No. 10, pp. 1550–1560, 1990.

47. Poyraz, O., M. B. Kurutmaz, A. T. Cemgil and S. Selamoğlu, “Anomaly detection

on wind turbines”, 2018 26th Signal Processing and Communications Applications

Conference (SIU), pp. 1–4, IEEE, 2018.

48. Graves, A., A.-r. Mohamed and G. Hinton, “Speech recognition with deep recurrent

neural networks”, 2013 IEEE international conference on acoustics, speech and

signal processing , pp. 6645–6649, IEEE, 2013.

49. Pascanu, R., C. Gulcehre, K. Cho and Y. Bengio, “How to construct deep recurrent

neural networks”, arXiv preprint arXiv:1312.6026 , 2013.

64

50. Breheny, P., Robust regression, 2012, http://web.as.uky.edu/statistics/users

/pbreheny/764-F11/notes/12-1.pdf, accessed at May 2019.

51. Belagiannis, V., C. Rupprecht, G. Carneiro and N. Navab, “Robust optimization

for deep regression”, Proceedings of the IEEE International Conference on Com-

puter Vision, pp. 2830–2838, 2015.

52. Black, M. J. and A. Rangarajan, “On the unification of line processes, outlier

rejection, and robust statistics with applications in early vision”, International

Journal of Computer Vision, Vol. 19, No. 1, pp. 57–91, 1996.

65

APPENDIX A: COMPARISON OF THE LOSS

FUNCTIONS

Neural networks are trained under loss functions. So, for this purpose, we will

compare the MSE loss, L1 loss, and Tukey’s Biweight loss.

During the analysis, let rt = yt − ŷt is residual for single output and let ρ(.)

corresponds to error for given residual. The loss of individual residuals are as follows:

ρ(rt) =
1

2
r2
t (A.1)

ρ(rt) = |rt| (A.2)

ρ(rt) =


c2

6

[
1−

(
1−

(
rt
c

)2
)3
]

, if |rt| ≤ c

c2

6
, if |rt| > c

(A.3)

Where Equation A.1 corresponds to MSE loss, Equation A.2 refers to L1 loss and

Equation A.3 corresponds to Tukey’s biweight loss functions. The results and figures

of these losses are shown in the Figure A.1. The gradients of these loss functions are

shown in Figure A.2. Mathematically, these gradients are as follows, respectively:

6 4 2 0 2 4 6
rt

0

1

2

3

4

5

6

Lo
ss

MSE Loss
L1 Loss
Tukey's Biweight Loss

Figure A.1. Comparison of the loss functions

66

6 4 2 0 2 4 6
rt

3

2

1

0

1

2

3

G
ra

di
en

t
MSE Loss
L1 Loss
Tukey's Biweight Loss

Figure A.2. Comparison of the gradients of loss functions

ρ′(rt) = rt (A.4)

ρ′(rt) =

 −1 , if rt < 0

1 , if rt > 0
(A.5)

ρ′(rt) =

 rt

(
1−

(
rt
c

)2
)2

, if |rt| ≤ c

0 , if |rt| > c
(A.6)

The choice of c of the ‘Tukey’s biweight’ loss depends on the ‘asymptotic effi-

ciency’. It sets to 4.685to provides an asymptotic efficiency 95% that of linear regres-

sion for the normal distribution. In the use case, one should calculate the median

absolute deviation (MAD) of the residuals and set the new residuals as follows:

rMAD
t =

rt
1.4826×MADt

(A.7)

Median Absolute Deviation (MAD) measures the variability in residuals and cal-

culated as follows:

MADt = mediank∈{1,...,P}
(∣∣rt,k −medianj∈{1,...,P} (rt,j)

∣∣) (A.8)

