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ABSTRACT

GAIT ANALYSIS USING SMARTWATCHES

Monitoring gait characteristics is an important tool used in many areas including

orthopedics, sports, rehabilitation and neurology. Current methods applied to analyze

the gait need clinical settings and equipments for measuring gait parameters. In this

study, we propose an unobtrusive and comfortable system to perform gait analysis.

Smartwatches equipped with embedded sensors including accelerometer and gyroscope

are used to extract three main parameters of gait: step length, swing time and stance

time.

Data is collected from 26 healthy and volunteer participants with different ages

and genders in clinical settings. Subjects wore smartwatches on both wrists, data is

collected from two sensors: accelerometer and gyroscope. The data is preprocessed

and step features are extracted. Relevant gait parameters are estimated using various

regression models and compared with the ground truth data coming from the clinician

using the golden standard instrumented walkway.

Four machine learning algorithms including Linear Regression (LR), Gaussian

Process Regression (GPR), Support Vector Machine (SVM) and Regression Tree, and

two neural network architectures Convolutional Neural Network (CNN) and Long

Short-Term Memory (LSTM) are used to fit data. Performance of the models is mea-

sured using a basic error metric, i.e. RMSE. The best model fitting the data is found

as GPR. Its RMSE value for the step length (cm) estimation is calculated as 5.29 cm.

Besides the placement of sensors is less convenient than the state of the art

studies, the gait analysis with smartwatches gives promising results and encourages for

extended future studies.
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ÖZET

AKILLI SAAT KULLANILARAK YÜRÜME ANALİZİ

Yürüme karakteristiklerinin takibi ortopedi, spor, rehabilitasyon ve nöroloji gibi

birçok alanda kullanılan önemli bir araçtır. Mevcut yürüme analizi teknikleri klinik bir

ortamı ve birçok ekipmanı gerektirmektedir. Bu çalışmada, göze batmayan ve konforlu

bir yürüme analizi sistemi sunulmuştur. İvmeölçer ve jiroskop gibi gömülü sensörlere

sahip olan akıllı saatler üç temel yürüme parametresinin tespiti için kullanılmıştır:

adım uzunluğu, salınım süresi ve basma süresi.

Farklı yaşlardan ve cinsiyetlerden, sağlıklı ve gönüllü 26 kişiden klinik ortamda

veri toplanmıştır. Katılımcıların her iki bileklerine de birer akıllı saat takılmış, ivmeölçer

ve jiroskop sensörlerinden veri toplanmıştır. Toplanan veri bir ön işlemden geçirildikten

sonra adım özellikleri elde edilmiştir. İlgili yürüme parametreleri çeşitli regresyon mod-

elleri kullanılarak tahmin edilmeye çalışılmış ve klinik tedavi uzmanının altın standart

yürüme yolunu kullanarak elde ettiği referans değerlerle karşılaştırılmıştır.

Lineer Regresyon (LR), Gaussian Proses Regresyonu (GPR), Destek Vektör Maki-

nesi (SVM) ve Regresyon Ağacı makine öğrenimi algoritmaları ve Konvolüsyonel Sinir

Ağı (CNN) ve Uzun Kısa Süreli Bellek (LSTM) sinir ağı mimarisini içeren teknikler

veriye uygun bir model geliştirmek için kullanılmıştır. Modellerin performansı temel

bir hata ölçüm parametresi olan Kök Ortalama Kare Hatası (RMSE) ile ölçülmüştür.

Veriye en uygun model Gaussian Proses Regresyonu (GPR) olarak tespit edilmiştir.

İlgili modelde adım uzunluğu 5.29 cm Kök Ortalama Kare Hata değeri ile hesaplanmıştır.

Sensörlerin konumunun mevcut çalışmalara göre daha az kullanışlı bir yerde,

yani bileklerde olmasına karşın, akıllı saatlerle yapılan yürüme analizinde umut verici

sonuçlar ortaya çıkmış ve gelecek çalışmalar için teşvik edici nitelikte olmuştur.
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1. INTRODUCTION

Walking is one of the most important activities that people perform during daily

life. The quality of gait activity has an important effect on individual’s quality of life.

For most of daily life activities people need to walk, therefore it is crucial to keep gait

quality as high as possible.

Gait analysis is a systematic method to assess a person’s body movements dur-

ing walking or running and detect abnormalities in a gait cycle. The assessment is

mostly held with the help of an observer or a clinician and several types of technical

equipments to measure gait related parameters. Gait analysis is used in different areas

including sports and healthcare. While in the field of sports, it can help to improve the

performance of players for gait related activities [3, 4], in the healthcare field, it pro-

vides comprehensive analysis of the gait process and used to assess and treat patients

with physical injuries, abnormalities in the legs or feet [5, 6] or neurological disorders

causing gait problems [7, 8]. The process of clinical gait analysis is applied to gather

quantitative information about gait to understand the abnormalities with the help of

specialized technology including camera-based motion capture systems, electrodes lo-

cated on the body to track muscle activity, and platforms to measure the pressure in a

walkway that patient creates on the ground. The parameters measured during the gait

analysis are mainly step length, stride length, cadence, speed, cycle time, stance time,

swing time, stance ratio, clearance and turning rate. After the collection of these ob-

jective measurements, gait experts use these data to decide the best treatment method

for each patient.

Apart from various physical ailments like injuries or problems related to leg or

feet, some of the neuro-degenerative diseases including Parkinsonś Disease (PD) [9],

Amyotrophic Lateral Sclerosis (ALS) [10], and Huntington Disease (HD) [11] can cause

abnormality on gait e.g. slowed movement, impaired balance, taking small steps, freez-

ing of gait. Since the effects of these diseases on gait disturbances are unpredictable

in terms of progression and emergence of degeneration, following up patterns of gait
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may help to detect abnormality and take precautions to prevent getting worse. How-

ever, such symptoms may not occur during a short period of gait analysis in a clinic.

To detect signs of abnormality in the gait of a patient with a neurological disorder, a

continuous monitoring system is needed and this continuity is not possible with instru-

mented pathways. However, recent developments in wearable computing technologies

provide a valuable opportunity to check such conditions and give a capability of remote

monitoring to clinicians.

Wearable computing technologies provide many facilities in very different areas

with creative applications. Healthcare monitoring is one of the popular research areas

in ubiquitous computing. Rapid development in unobtrusive computing technologies

leads to advanced diagnostic and therapeutic capabilities. Availability of data exchange

between healthcare systems and wearable computing devices, and ability to analyze the

streaming data enable continuous patient care. Wireless body area networks (WBAN),

inertial measurement units (IMUs), smartphones, smartwatches, fitness bands, wear-

able glasses are some prominent devices used in wearable computing area for healthcare.

With the recent improvements in inertial measurement units (IMUs) and video

cameras, medical professionals are given the opportunity of remote monitoring. How-

ever, video recordings have always been prone to raise privacy issues, and IMUs turned

out to be not really unobtrusive sensors due to their size, maintenance and setup

complications.

The smartwatch is one of the latest products in this field and a very promis-

ing mobile device which equipped with a rich set of on-board sensing capabilities in

terms of healthcare monitoring. Compared to other wearable devices used in health

management, smartwatches may be a step forward with very comfortable usage and

friendly user interface. Using smartwatches health status metrics including activity

levels [12] and heart beats, an individual’s health [13] can be logged comfortably. An-

other health related metric which has a potential to be detected via smartwatches is

walking. Thanks to the high level of comfort that smartwatches present, gait analysis

can be held in both indoor and outdoor environments.



3

In numerous studies focusing on gait analysis, inertial measurement units (IMU)

are exploited to determine the gait metrics [14–16]. An IMU include sensors of ac-

celerometer, gyroscope and magnetometer. In most gait analysis studies, these mea-

surement units are located on feet and gait metrics are extracted mostly analyzing foot

movements. Although a smartwatch includes all sensors that an IMU contains, since

it is a wrist-worn device, detecting standard metrics of gait is challenging. Moreover,

using a wrist-mounted device do not allow us to use domain knowledge that may as-

sist the inferences. For instance, determining the zero-velocity periods which are quite

useful for calculating most of the gait parameters is easy with foot-mounted sensors

while it is almost impossible to find with a wrist-worn device.

In this study, we aim to investigate the capability of a smartwatch for determining

standard temporal gait metrics including step length, stance time, and swing time. To

validate usage of a smartwatch for gait analysis, we collected data from healthy and

volunteer 26 subjects with ages range from 23 to 58 in hospital settings. Subjects wore

two smartwatches one for each wrist. Data is collected during the gait analysis held by

a clinician. Collected data from smartwatches are used to extract the aforementioned

spatio-temporal gait metrics and the results are compared with a clinician’s assessment.

Contributions of the proposed system compared to the state of the art works can

be summarized as follows:

• Unobtrusive and comfortable design is an important advantage of the system.

By using a smartwatch for gait analysis, patients do not need to go to a hospital

or a clinic, the analysis can be held during daily life settings. With the help of

comfortability of the watch, people will not be disturbed during the evaluation.

• Gait analysis with a smartwatch is a more economical solution. Analyzing the

gait in hospital settings needs more resources both in terms of human and physical

sources. Ability to analyze the gait with a smartwatch only needs the necessary

software solutions besides the smartwatch.

• Continuous monitoring opportunity is another contribution of the system. Detec-

tion of abnormality in a gait cycle has an important effect especially for people
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with neurological or orthopedic disorders in terms of following up the course

of their disease. It gives the clinicians a valuable chance to check the current

conditions of a patient.

The rest of the thesis is organized as follows. In Chapter 2, the state of the art

works are presented in the context of gait analysis domain. Technical equipments used

in studies and goals reached are discussed. In Chapter 3, the data collection platform

and convenience of the exploited device compared to the state of the art measurement

units are explained. In Chapter 4, experimental setup, the data collection procedure

and preprocessing of collected data are presented. Chapter 5 contains the overall data

analysis, models used and their comparative results are explained in detail. Lastly,

in Chapter 6; conclusions derived, difficulties encountered and prominence of using a

smartwatch to analyze gait and directions for future research are stated.
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2. LITERATURE SURVEY

In this section, we provide a brief information about human gait cycle and the

standard gait parameters that are aimed to detect with a smartwatch data collection

platform and related works in the literature trying to find relevant gait parameters.

2.1. Human Gait Cycle and Gait Metrics

The gait cycle is defined as repetitive gait events [17] including steps and strides.

While a stride means a whole gait cycle, a step indicates one single step during the

gait. The step time is calculated as the time between heel strike of one leg while the

stride time is the whole gait cycle. Similarly, a step length is the distance between

consecutive heel strike events while the stride length is the distance covered during the

whole gait cycle.

A gait cycle involves two main phases, namely stance phase and swing phase.

The stance phase begins with the initial contact of the foot and ends with when the

relevant foot is off. On the other hand, the swing phase starts when the foot is off and

ends when the foot initial contact occurs. The stance phase approximately occupies

60% the whole gait cycle while the swing phase constitutes only 40% of it. A single

gait cycle is shown in Figure 2.1.

Another gait metric is cadence which is a rhythmic metric of a gait cycle and

defined as the rate person walk, expressed in steps per minute. Speed as the name

suggests indicates the velocity of a walking person. Definitions for spatio-temporal

gait metrics are also listed in Table 2.1 .

In this study, we are mainly interested with the gait parameters: step length,

stance time, and swing time.



6

Figure 2.1: Human gait cycle [1].

Table 2.1: Definitions for spatio-temporal gait metrics.

Gait Metric Description

Stride length Distance between successive positions of the same foot

Step length Distance between successive instances of foot floor contact

Stance time The time while the foot is in contact with the floor

Swing time The time while the foot is not in contact with the floor

Cadence Number of steps taken per unit time

Speed Distance / time
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2.2. Related Works

Gait related analysis tools have been developed since the late 19th century. In

the beginning, camera-based motion capture systems are evolved [18,19]. Applications

based on multi-camera motion capture systems and platforms having a capability of

measuring ground force applied by the subject are developed successfully and used in

certain gait analysis laboratories [20, 21]. However, such systems require specialized

laboratories, expensive devices and excessive time for the setup and processing of data.

Recently, increasing potential of wearable sensor technology provides an alterna-

tive method to develop inexpensive and effective way for gait analysis which is con-

ducted using motion sensors including accelerometers, gyroscopes, pressure sensors,

inclinometers, goniometers [22,23]. During the analysis these sensors are placed on dif-

ferent parts of the subject’s body, such as the foot and wrist and the signals recorded

by the sensors are used to perform the gait analysis.

To present the state of the art works, we especially focus on the gait analyses

performed using inertial measurement units (IMUs) since these systems are closer to

our work in terms of exploited sensor types, being wearable and locations placed. Also

we restrict the presentation of the related works according to the targeted gait metric

types, i.e., studies measure the stride length, step length, swing time, stance time,

cadence.

In [24], they presented a mobile gait analysis system using the inertial sensor

platform Shimmer 2R [25] consisting a 3D accelerometer and a gyroscope located on

both ankle joints to measure the gait parameters stride length, stride time, swing and

stance time. The data is collected from 101 elderly patients. GaitRite is used as the gold

standard system [26] which is a portable pressure sensor layer. The patients performed

normal walking on this electronic walkway. They do not apply manual filtering to

the collected sensor data, since the Shimmer sensor units have an integrated low-pass

filter. Stride events are segmented by detecting successive time warping. After this

segmentation, time of gait events including toe-off (TO), heel strike (HS) and mid-
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stance (MS) are detected and using these time information, they formulate functions

to get relevant parameters. The correlation between the ground truth data and their

method is found as ≥0.94 for stride and stance time, ≥0.89 for swing time. The mean

absolute error for stride length is calculated as 6.27 cm while the correlation is 0.93 for

this parameter.

In [27], wearable sensors placed on shoes were used to get crucial information

for patients with Parkinson’s disease (PD) during the treatment process. Features of

interest are stride velocity and stride length, turning angle, path length, and swing

width. An optical motion capture system is used as a gold standard. Physilog sensor

module including accelerometer and gyroscope is used for data collection. For each gait

cycle, by detecting positive peaks of angular velocity mid-swing phases are extracted.

After that extraction, initial and ending contacts of foot are detected with the help

of zero crossing of angular velocity around mid-swing and the parameters are derived

using this information for each successive foot flats. The system was tested with 10

PD patients and 10 elderly subjects with similar age. For stride velocity and stride

length, they asserted that their results are better than the compared previous systems

with accuracy±precision 2.8 cm/s ± 2.4 cm/s and 1.3 cm ± 3.0 cm while the compared

system has the value of accuracy±precision 3 cm/s ± 7.6 cm/s for stride velocity and

3.5 cm ± 8.5 cm for stride length [28].

Another work using inertial sensors to measure gait patterns is [29]. The aim of

the study is determination of mild motor impairment symptoms in PD to help early

diagnosis of the disease and detecting mild and intermediate gait impairment to help

therapy monitoring in PD. Sensors are placed on the shoes and 16 healthy subjects and

14 PD patients are asked to walk for 10 meters. Biometrical features are extracted from

the sensor signals exploiting single steps and the whole gait sequences. For frequency

based analysis, Fourier-Transform of gait sequences are used. After the feature ex-

traction step, 290 features are gathered. Then, the Sequential Backward Selection [30]

method is used to reduce the number of features. Three different classifiers are used

for the classification including Boosting with Decision Stump as a weak learner, Linear

Discriminant Analysis (LDA) and Support Vector Machines (SVM) [30]. Their system
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has a sensitivity of 88% and a specificity of 86% in classifying patients and the con-

trol group. Additionally, in distinguishing mild and intermediate gait impairment, the

system has 100% sensitivity and 100% specificity.

In [31], inertial sensor based wearable system is developed to obtain quanti-

tative measurements to detect gait disorders and balance problems in patients with

Alzheimer’s disease (AD). Sensors are mounted on feet and waist. The system consists

of the phases including stride detection, decomposing of gait cycles, and extracting

details of the gait using these cycle information. The balance is determined by using

the signal from the sensor placed on the waist of subjects. Experiments are held with

21 AD patients and 50 healthy subjects. For the gait analysis part, participants are

asked to walk along the straight line of 40 m while for the balance detection part, they

are asked to perform several balance ability tests. Signals are low-pass filtered and

stride events are detected in two phases. Firstly, the variance of magnitudes for 0.03

s windows of the sensor signal without overlapping are evaluated, secondly according

to the differences in the variances start and end points of strides are extracted. Rele-

vant gait parameters which are number of strides, walking time, mean of stride length,

stride frequency, speed and cadence are calculated by detecting the points of toe-off

and heel-strike events using y-axis angular velocity of gyroscope signals as proposed

in [32]. The results of the experiments show that the system is quite successful to

identify whether the subject is an AD patient or not and the wearable devices can be

very helpful to analyze gait and balance problems in AD patients especially for early

diagnosis of AD.

The method using a body worn sensor placed on the back of a subject was pro-

posed in [33]. The total step count and mean spatial gait characteristics are estimated.

Data is collected along the way from 80 subjects: 40 young and 40 older healthy adults.

Participants are asked to walk in an instrumented walkway GaitRite [26] and around a

25 m loop. Estimations for spatio-temporal gait metrics were made using the time in-

formation of initial contact (IC), final contact (FC) and step length, related algorithms

are designed using the works [34] and [35] respectively. 17 different features of gait, i.e.

mean, variability and asymmetry of step time, stride time, stance time, swing time,
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step length and step velocity for both participant groups are calculated and compared

with gold standards. The system gives promising results for estimating the total step

count and the mean spatio-temporal gait metrics but for variability and asymmetry,

the results are poor.

Tunca et.al. proposed a mobile IMU-based gait analysis system by combining

accelerometer and gyroscope sensor mounted on the foot [15]. The system aims to

extract spatio-temporal gait metrics containing stride length, cycle time, stance time,

swing time, cadence, speed, clearance and turning rate. An IR depth-camera-based

reference system is used for the ground truth. The data is collected from 22 subjects

and after the proposed model is validated to emphasize its clinical applicability, the

system is tested on 17 patients with various neurological disorders. Methodologies

including zero-velocity update and Kalman filtering is used for data preprocessing. By

extracting IC and FC events, related gait parameters are determined. To find turning

steps, foot orientation and foot ankle rotation estimations are exploited. The system

provides efficient techniques to combine accelerometer and gyroscope data and more

robust estimations in case of difficulties in data collection and pathological gait. Gait

abnormalities resulted from various neurological disorders can be captured in non-

hospital settings.

In [36], the approach to estimate a pedestrian’s stride length from an inertial

measurement unit mounted on foot is proposed. The data is collected from 13 subjects

with different walking patterns in terms of speed of walking. The back-propagation

method in artificial neural networks is used for the step length estimation. Five features

extracted to train the network are the mean of stride frequencies, the maximum accel-

eration in a cycle, the standard deviation and the mean of acceleration, and the height

of a subject. Results show that the proposed approach estimates the stride length with

2% error. Considering the number of participants, the model has a promising error

value, it can be improved and be more robust when training with more subjects.

In [37], as different than the other related works presented, hand-held inertial

measurement units are exploited to estimate the step length. The step frequency and
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the height of subjects are used to create a linear model. After steps are identified

with a peak detection approach, power spectral density (PSD) analysis is applied to

detect the step frequency. The Recursive least-squares (RLS) [38] method is exploited

to calibrate the parameters of the model. The data is collected from 12 participants

and the system is tested with 10 different subjects. The model estimates the travelling

distance with an error between 2.5 and 5%.

In [39], a smartwatch and a wireless pulse oximeter were used to detect Mild

Cognitive Impairment (MCI) which is defined as the stage between the normal aging

and Alzheimer’s disease. The acceleration and the gyroscope data are composed with

the data coming from a photoplethysmography. The data is collected from 69 elderly

subjects (35 healthy, 34 with MCI). Firstly, the sensor data is filtered and the peak

detection algorithm is used to count the steps. A set of statistical features are extracted

using the sliding window technique for each sensor data. Then a feature selection

algorithm is applied to select features. Several classification algorithms are used to

validate the set of features and to classify the healthy subjects and the subjects with

MCI. The accuracy of the classification with the gait related feature set is found as

86%.

In [40], a smartwatch accelerometer was used to assess the association between

the severity of motor fluctuations and the quantity of daily walking and also to assess

the effect of levadopa intake on average daily walking quantity. The data is collected

from 304 patients with Parkinson’s Disease . The gait detection algorithm is developed

and trained on 10 hours of the walking and non-walking data. The raw acceleration

data is partitioned into 5 sec windows and the features in both the time and frequency

domains. Then, a decision tree model is created to classify the walking and non-walking

intervals. The accuracy of the classification is found as 98.5%. The Unified Parkinson’s

Disease Rating Scale (UPDRS) items related to the impact of fluctuations is used to

determine the level of severity. The scores of the items are accepted as the ground

truth in the analysis. Then, a linear regression algorithm is performed. In conclusion,

the results of the analysis show that there is no association between the severity of

fluctuations and the time spent during walking.
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Musale et.al. proposed an authentication system based on a smartwatch [41].

They evaluated the capability of a smartwatch on detecting distinct patterns of the

gait of the user. The data was collected from 51 participants during the 500 meters

walking. The sensor data coming from the accelerometer and the gyroscope of the

smartwatch was preprocessed, segmented into equal sized windows and a set of features

were extracted. They trained a classifier to authenticate the users and reached an

accuracy of 91.8%.

Nemati et.al. proposed a system which estimates the gait velocity using the

sensors embedded in a smartwatch [42]. Peak detection algorithm is used to find

walking steps and a Kalman filter is applied to recover the missing peaks due to the

arm movement. Velocity of the gait is estimated using the duration of steps. A strong

correlation between the walking speed and and the inverse of the square of the step

time is found. The data is collected from 25 subjects. Each subject is asked to walk

50 m six times with various walking speed. The velocity of the gait is estimated with

the average precision of 91.7%.

The number of inertial units used in the prominent related works, their locations

in the body and the gait parameters extracted from the collected sensor data is intro-

duced in Table 2.2. By studying the state of the art works, it is observed that recent

works which exploited from the smarwatches and studied on the human gait generally

focused on the classification of the subjects in terms of the health conditions or used

the sensor-derived features for an authentication framework.
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Table 2.2: Number of IMUs, their locations and targeted gait metrics in the related

works.

Ref. Number of IMU Position Gait Metrics

[24] 1 Shoe
Stride length and time, swing and

stance time

[27] 1 Shoe
Stride velocity, length, turning angle,

path length, and swing width

[29] 2 Shoes
Step duration and some

statistical features

[31] 2
Shoes and

waist

Number of strides, mean of stride length,

speed and cadence

[33] 1 Back
Stance time, swing time, step length

and step velocity

[15] 2 Feet
Stride length, stance time, swing time,

cadence, speed, and turning rate

[36] 1 Shoe Step length

[37] 1 Hand Step length

[42] 1 Hand Gait velocity
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3. SMARTWATCH SENSING

In this part, we present an overview of the smartwatch used in this study, its

sensing capability and briefly compare it with the wearable IMU which is the commonly

used device in gait analysis. Also we give a brief information about the smartwatch

application that we developed to collect the related sensor data.

A smartwatch is a wearable computing device designed to be worn on a wrist.

Similar to the smartphones, smartwatches have touchscreens, the range of capabilities

of these devices include mobile applications, WiFi/Bluetooth connectivity, GPS inter-

face. Smartwatches come readily equipped with accelerometer, gyroscope, barometer,

heart rate monitor, pedometer, magnetometer, light and ultraviolet sensors.

3.1. Samsung Gear Series

In the late 2014, the first smartwatch of Samsung Galaxy Gear S series is released

to the market. It is a standalone wearable device providing 3G, Wi-Fi and Bluetooth

connectivity aiming to replace the use of smartphones for the duration of dynamic

activities, such as running and driving. After the release of Gear S, the family is

expanded with Gear S2 in late 2015 and Gear S3 in late 2016. In this study, we use

the second device of the series which is Samsung Galaxy Gear S2.

Gear S2 is light and easy to use, as shown in Figure 3.1. The Gear S2 is equipped

with a 3-axis accelerometer and gyroscope, a magnetometer, light and ultraviolet sen-

sors and a barometer, a pedometer and a-GPS. It runs on Tizen wearable operating

system and is programmed with JavaScript. Tizen wearable applications are actually

dynamic web pages and the data collection from the sensors can only be set to be event

driven, in contrast to Tizen’s mobile environment, where the sampling rate for each

sensor can be set with predefined periods.
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Figure 3.1: Samsung Gear S2 [2]

3.2. Gear S2 Application

Our Gear S application is based on Tizen version 2.3, which allows user developed

Gear S applications to run only when the watch screen is on. This also means that the

sensor data can only be collected when the screen is on. Gear S turns off the screen

within the ‘Screen timeout’ period set in the system settings to conserve energy, as the

screen is one of the most energy consuming components on the watch.

The documentation for Tizen 2.3 states that an application can be run as a system

service, but the compiler only succeeds only when the OS flag is reduced to 2.2.

Tizen also incorporates a gesture recognition on which the screen is turned on au-

tomatically, usually with a wrist up gesture mimicking a user’s arm movement with the

aim of looking at a wrist worn clock. Our feasibility tests ranging over several months

have shown that this feature cannot be used for reliable persistent data collection.

Accordingly, we designed our application to wake up, i.e. turn on the screen

when desired and turn it off back again, in order to collect data at a desired time and

duration. Our Gear S app incorporates an input screen, as shown in Figure 3.2, that

aims to collect and present the current data recording. The application is furthermore

configurable remotely from our data collection server. The set of active sensors, the

wake-up periods, the notification types and statuses can all be set without requiring

user intervention.
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Figure 3.2: User interface of the application to observe current measures.

If the application collects data continuously, the battery runs out in approxi-

mately 3 hours. Continuous data collection is an important factor to observe and

analyze everything in detail but for a full day data collection without recharging the

smartwatch, we add another data collection mechanism which optimizes the battery

consumption. To that end, we implemented a duty cycled data collection mechanism,

where the sensors are turned on and off on a predefined schedule. The data is sampled

when the sensors are tuned on for a certain period of time on regular intervals. For

the remaining time, the sensors are put back into sleep in order to conserve energy. A

duty-cycled recording with 1 minute and a 10 minutes of sleep prolongs the battery

runtime from 3 to 12 hours.

3.3. EXL Measurement Unit

EXLs3 sensor unit in Figure 3.3 is made to be used as a wearable device to measure

body movements. EXLs3 is an inertial sensor which includes 3-axis accelerometer, 3-

axis gyroscope, 3-axis magnetometer and a Bluetooth connection to send the collected

data to a computer [43]. The adjustable sampling rate of the unit can go up to 200

Hz. The unit is also equipped with 1 GB flash memory for data storage.
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Figure 3.3: EXLs3 inertial measurement unit.

3.4. Comparison of Gear S and EXL Sensor

To ensure that the usage of a smartwatch instead of an inertial measurement unit

is acceptable, we carry out some experiments using both devices at the same time and

analyze the collected data on the parallel. The sampling rate of Gear S2 accelerometer

is 20 Hz on the average while the EXL sensor has a capability to collect data up to

200 Hz. We set the sampling rate of the EXL sensor to 100 Hz for comparison which

is a typical value used in the experiments.

We perform some daily life activities while wearing Gear S and EXL sensor unit

on the same wrist to see how well Gear S and EXL sensor units record acceleration

data. The data recordings for the activities of raising the arm in Figure 3.4 and taking

and putting an object multiple times in Figure 3.5 can be seen. As observed from the

visualization of signals gathered from Gear S2 and EXL, both devices are capable of

catching crucial patterns of the movements.
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Figure 3.4: Comparison of Gear S and EXL while raising the arm multiple times.

Figure 3.5: Comparison of Gear S and EXL while taking and putting an object

multiple times.
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4. SMARTWATCH BASED GAIT ANALYSIS SYSTEM

In this part, general information about data collection procedure, preprocessing

operations including the signal filtering and determining the step windows using the

peak detection algorithm is explained. After the detection of step events, feature

extraction and selection procedures are applied. Then, the data is analyzed to fit a

regression model. The flow chart for the system design is presented in Figure 4.1.

Figure 4.1: System design for gait analysis with smartwatches.
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4.1. Data Collection

Patterns of acceleration signal differ according to the placements of the sensor

unit. In order to improve the performance of the gait analysis system, it is usually

mounted on foot or leg because these positions are directly related with the gait cycle

[44]. However, since our aim is to examine the convenience of a hand-held device which

is smartwatch in this work for gait analysis, we use two Samsung Gear S2 smartwatches

mounted on the both wrists of subjects.

The data is collected from 26 healthy participants 11 female and 15 male ages

range from 23 to 58 in hospital settings. Table 4.1 gives the general information about

the all subjects who attended the experiments. The data collection is held along an

instrumented pathway of 5 m during the gait analysis of a clinician. Subjects are

asked to walk on this gait way and return back to the starting position, i.e., the

distance covered is 10 m for each person. For the ground truth, clinician’s assessment

supported by a camera based reference system is used.

The sampling frequency of smartwatches is around 20 Hz. To detect the walking

part easily from the raw data, subjects are asked to clap 3 times before and after the

gait analysis. The data is collected from available sensors of the smartwatch which are

the acceleration data with the effect of gravity removed and the gyroscope data.

4.2. Data Preprocessing

4.2.1. Filtering

The main goal of this phase is to remove the noise from the raw data to reach more

accurate results in the next phases. Within this scope 1st-order low-pass Butterworth

filter with a cutoff frequency of 3 Hz, which, for data sampled at 20 Hz, corresponds to

0.3π rad/sample is used to filter the raw accelerometer sensor data. In Figure 4.2 and

Figure 4.3, the acceleration magnitude is shown before and after applying the low-pass

filter.
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Table 4.1: Information about the subjects.

ID Gender Age Height (m)
Average

Step Size (cm)

Dominant

Hand

1 Male 54 1.81 59.9 Right

2 Female 27 1.66 61.3 Right

3 Male 23 1.67 62.5 Right

4 Female 51 1.55 57.2 Right

5 Male 58 1.71 68.1 Left

6 Female 28 1.56 52.2 Right

7 Female 32 1.64 55.4 Right

8 Male 36 1.75 62.7 Right

9 Male 51 1.79 77.9 Right

10 Male 32 1.70 53.8 Right

11 Male 43 1.82 62.3 Left

12 Male 45 1.70 59.6 Right

13 Female 53 1.75 64.3 Right

14 Female 30 1.55 63.5 Right

15 Male 25 1.80 56.9 Right

16 Female 28 1.68 70.8 Right

17 Male 33 1.71 58.6 Right

18 Male 36 1.75 62.4 Right

19 Female 28 1.56 53.3 Right

20 Female 28 1.64 50.6 Right

21 Male 55 1.75 55.2 Right

22 Female 49 1.71 68.9 Right

23 Female 43 1.74 55.7 Right

24 Male 25 1.77 57.1 Right

25 Male 24 1.87 53.8 Right

26 Male 24 1.71 60.5 Right
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Figure 4.2: Raw acceleration magnitude data.

Figure 4.3: Low-pass filtered acceleration magnitude data.
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4.2.2. Step Event Detection

Arm swing during the human gait produces periodic peaks in the signal recorded

by the accelerometer mounted on the wrist. The analysis of the accelerometer signal

in the time domain enables to capture this periodicity. By exploiting this fact, gait

events is usually detected by using a peak detection algorithm [28,45]. Hidden Markov

models (HMM) are also used for this task and reach good accuracy [46].

When the sensors are mounted on the foot of a subject, the step detection is

applied easily by detecting zero-velocity periods corresponding to the stance phase

of the foot. Since the inertial sensors are located on the wrists in our study, zero-

velocity periods cannot be observed. However, biomechanical studies have shown that

foot motion and swinging of the arm have a synchronization [47]. With the help of

this relation between arm and foot movements, step events are detected by analyzing

periodic arm movements of subjects.

After extracting the gait analysis signals from inertial measurements and filter-

ing, a peak detection algorithm is used to determine gait cycles, i.e., steps from the

magnitude of the accelerometer signal. Since the analysis includes a turning phase,

there is a part which the periodic subsequent valley appearance distorted. These parts

are separated for the turning phase. Also similar to the related works, since the first

and last few steps have different characteristics in terms of dynamics of the gait pro-

cess, these steps are excluded for the data analysis part. As a consequence, 242 step

windows are acquired to analyze in the next phases of the study. Examples for the

detected step windows and the turning phase is shown in Figure 4.4

4.2.3. Feature Extraction

To perform analysis with various machine learning techniques a set of features

should be extracted. The collected data includes signals from accelerometer and gy-

roscope sensors in three axes X, Y, and Z. Since we are interested in spatio-temporal

gait parameters for each cycle one by one, the feature extraction procedure is applied
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Figure 4.4: Detected step windows and turning phase in acceleration magnitude

signal.

to each step window detected as explained in 4.2.2.

Since the magnitude of acceleration or gyroscope signal is a robust feature of the

step and not to be affected by the orientation of the sensor unit, the magnitude is

calculated as follows before starting the feature extraction.

magnitude =
√
x2 + y2 + z2

The following features have been identified for the regression process:

• Minimum and maximum values for each axes X, Y, Z, and magnitude.

• Mean and variance values for each axes X, Y, Z, and magnitude.

• Energy of signal using FFT transform of the signal.

• Step frequency calculated by computing the inverse of step duration
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During the data collection the subjects wore smartwatches in each wrists and we

extract all features for both hands. As a result of the feature extraction process, we

gather 35 features for each hand and 70 features in total.

4.2.4. Feature Selection

The feature selection has an important effect in the regression process and per-

formance of the designed model. To improve the performance of regression models,

irrelevant and redundant features have to be eliminated as much as possible. In the

analysis part, since we try to fit a regression model to predict gait parameters includ-

ing step length, swing time and stance time, features are separately selected for these

output parameters.

4.2.4.1. Stepwise Feature Selection. In stepwise feature selection, all features extracted

are consecutively added or removed during linear regression model fitting. To make a

decision on adding or removing a feature, thresholds are determined by the user [48].

The process of determining the final optimal model is also called as forward and back-

ward stepwise regression. Importance of each feature is represented by the p-values,

and aforementioned thresholds used for including and excluding features are determined

according to these p-values.

Average p-values for the selected features in our feature domain are presented

for each parameter: step length, swing time and stance time in Tables 4.2, 4.3, and

4.4. Smaller p-value means the relevant feature is more significant. For the step

length estimation, 13 features out of the 70 features are selected as shown in Table

4.2. For swing and stance times, the numbers of the selected features are six and four

respectively as seen in Tables 4.3 and 4.4.

When we analyze the extracted features with the stepwise feature selection algo-

rithm, for the step length estimation data gathered from the dominant hand which is

the right one for all subjects except the two of them and their features are more sig-
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nificant. Also it can be asserted by analyzing gyroscope related features’ p-values, this

sensor data have more impact on calculating gait related metrics. The step frequency

which is the inverse of the duration of step event has a significant effect on time related

gait parameters including swing time and stance time.

Table 4.2: Selected features for step length estimation with stepwise feature selection

and corresponding p-Values.

Feature p-value

Min of Acc X for Left 2.226× 10−2

Max of Acc X for Left 1.2964× 10−1

Std of Acc X for Left 1.547× 10−4

Max of Gyro Z for Left 6.068× 10−5

Step Frequency 0.17112

Max of Acc X for Right 3.9107× 10−2

Mean of Acc X for Right 2.6307× 10−2

Max of Acc Y for Right 0.2232

Std of Acc Z for Right 5.228× 10−5

Mean of Gyro X for Right 8.272× 10−3

Min of Gyro Y for Right 3.025× 10−10

Mean of Gyro Y for Right 4.081× 10−5

Std of Gyro Mag for Right 2.226× 10−3

4.2.4.2. Neighborhood Component Analysis. Neighborhood Component Analysis is

an algorithm which resembles the k-nearest-neighbor (KNN) technique to select fea-

tures with the aim of maximizing the prediction accuracy of regression [49]. This

algorithm learns a distance metric by maximizing the leave-one-out cross validation

technique.
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Table 4.3: Selected features for stance time estimation with stepwise feature selection

and corresponding p-Values.

Feature p-value

Max of Acc Y for Left 2.435× 10−2

Energy of Acc Mag for Left 6.422× 10−6

Step Frequency 5.869× 10−11

Min of Gyro X for Right 1.219× 10−3

Max of Gyro Z for Right 4.081× 10−5

Std of Gyro Mag for Right 1.919× 10−8

Table 4.4: Selected features for swing time estimation with stepwise feature selection

and corresponding p-Values.

Feature p-value

Max of Acc Y for Left 5.522× 10−4

Min of Gyro Z for Left 4.866× 10−3

Step Frequency 1.621× 10−5

Max of Gyro Z for Right 8.837× 10−3
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Parameters of a neighborhood component analysis (NCA), i.e., feature weights

to be used in the analysis calculated for the step length are presented in Table 4.5.

Table 4.5: Selected features for step length estimation with neighborhood component

analysis and feature weights.

Feature Weight

Max of Acc X for Left 5.88

Mean of Acc X for Left 3.14

Max of Acc Y for Left 5.89

Mean of Acc Y for Left 2.29

Mean of Gyro X for Left 4.87

Min of Gyro Y for Left 4.60

Max of Gyro Y for Left 1.04

Mean of Gyro Y for Left 5.82

Mean of Gyro Z for Left 6.96

Energy of Gyro Mag Left 3.25

Min of Gyro X for Right 4.57

Max of Gyro Y for Right 2.53

Mean of Gyro Z for Right 5.49

Energy of Acc Mag Right 5.69

Energy of Gyro Mag Right 2.89
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5. ANALYSIS AND RESULTS

In this part of the thesis, various regression algorithms are tested and reported

to estimate ground truth data for gait parameters mainly step length, swing time and

stance time using features extracted and selected in Sections 4.2.3, 4.2.4 and raw sensor

data for each step window. Since the system shows better performance with the selected

feature set which is acquired by using the stepwise feature selection algorithm, we will

use this set to present the results of the analyses for the selected features. Firstly, we try

to fit feature data on four different regression models including Linear Regression (LR),

Gaussian Process Regression (GPR), Support Vector Machine (SVM) regression and

Regression Tree. Secondly, models based on a neural network architecture consisting of

Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM)

are experimented to estimate the gait metrics.

General information about the exploited regression models, architectures, exper-

iments held to find the three main gait parameters and their results are presented in

the following sections. Overview of the analysis procedure can be seen in Figure 5.1.

5.1. Machine Learning Models

Machine learning is a set of algorithms for learning applications to make predic-

tions more accurately without being explicitly programmed but by exploiting example

data [50]. In this section, results for the regression models consisting of Linear Re-

gression (LR), Gaussian Process Regression (GPR), Support Vector Machine (SVM)

regression and Regression Tree are presented.

We try to fit the data with selected features and also with all features to see the

effect of feature selection. Since our data is limited as 242 step windows, we try to

analyze the model with 5-fold-cross-validation. In 5-fold-cross-validation, the data is

partitioned into five folds, and for each fold, the model is trained with the out-of-fold

data. After the training, the performance of the model is assessed using the in-fold
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Figure 5.1: System design for gait analysis with smartwatches.
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data.

Mean Squared Error (MSE), Mean Absolute Error (MAE), R-Squared Error and

Root Mean Squared Error (RMSE) are the metrics used to validate and compare the

models. Brief information about the used error metrics is also given in this section.

• Mean Squared Error (MSE): It measures the averaged squared error between the

targeted value and the prediction by calculating the squared difference between

them. It is defined by the following equation where ŷi is the model’s prediction:

MSE =
1

N
ΣN

i=1

(
yi − ŷi

)2
• Root Mean Squared Error (RMSE): It is the square root of MSE. The square root

helps to make scale of the errors to be the same as the scale of actual values. It

is calculated as:

RMSE =

√
1

N
ΣN

i=1

(
yi − ŷi

)2
• Mean Absolute Error (MAE): In this metric, the error is calculated as a mean

of absolute differences between the target values and the estimations. The MAE

is a linear score indicating weighted average error of all the pairs of output and

prediction mathematically, it is calculated using this formula:

MAE =
1

N
ΣN

i=1|yi − ŷi|2

• R Squared (R2) Error: The R2 also known as coefficient of determination, is

another metric used in evaluating a model. The main advantage of R2 is being

scale free and not depending on the range of target values, it always takes values

between −∞ and 1. Negative values of R2 means the model is worse than the
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estimated mean. The equation of the metric is given below.

R2 =
MSE(model)

MSE(baseline)

The MSE of the baseline is defined as:

MSE(baseline) =
1

N
ΣN

i=1(yi − ȳi)

where the ȳi means the average of the observed yi. Values close to 1 means that

the model performs well and the error is close to zero.

5.1.1. Linear Regression

Linear regression is a method to find linear relationship between response and

one or more predictors. Models are easy to interpret and fast in making predictions.

Equations expressing the relationship between the target and a set of predictors indicate

whether an empirical relationship exists between variables or not [51].

We try to fit our featured data to estimate the step length, swing and stance

times determined by the clinician during the gait analysis.

• Step Length: The results of the LR model are presented in Table 5.1. The RMSE

value is found as 7.77 cm for the step length with all features while the RMSE

of the model with the selected features is calculated as 5.68 cm. R2 value for

the selected feature set is 0.28. This value is larger than the result of all feature

set. It means that the model with the selected features works better for the step

length estimation.

• Swing Time: The results of the LR model with all and the selected features set

are presented in Table 5.2. The RMSE value for predicting swing time with all

features is found as 8.77x102 sec while it is calculated as 5.02x102 sec with the

selected feature set. It can be concluded that the model performs better with the
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Table 5.1: Results of Linear Regression model for Step Length (cm) with all and

selected features.

LR RMSE R-Squared MSE MAE

All Features 7.77 -0.35 60.41 5.85

Selected Features 5.68 0.28 32.22 4.50

selected features.

Table 5.2: Results of Linear Regression model for Swing Time (sec) with all and

selected features.

LR RMSE R-Squared MSE MAE

All Features 8.77× 10−2 -1.15 7.70× 10−3 5.63× 10−2

Selected Features 5.02× 10−2 0.30 2.52× 10−3 4.05× 10−2

• Stance Time: For this metric, the results are shown in Table 5.3. Similar to

the other two metrics, the performance of the model with the selected features is

better for the stance time estimation. The RMSE value with all features is found

as 12.65x102 sec while it is calculated as 9.33x102 sec with the selected feature

set.

Table 5.3: Results of Linear Regression model for Stance Time (sec) with all and

selected features.

LR RMSE R-Squared MSE MAE

All Features 12.65× 10−2 -0.16 15.99× 10−3 9.46× 10−2

Selected Features 9.33× 10−2 0.37 8.71× 10−3 6.78× 10−2
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5.1.2. Gaussian Process Regression

Gaussian process regression (GPR) models are kernel based probabilistic models.

They broaden multivariate Gaussian distributions to infinite dimensions. GPR is a non-

parametric regression model such that the original data is used as a pier for creating a

regression function as different from the parametric models in which the training data

may be discarded after regression weights are obtained [52]. Estimations are held by

comparing the distance between the training data points and test data point. Non-

parametric models assume that data points which have the similar output values are

close to each other in the data space. In this part of analysis, we create a GPR regressor

with an exponential kernel function.

• Step Length: The results of the GPR model are presented in Table 5.4. The

RMSE value is found as 5.53 cm for the step length with all features while the

RMSE of the model with the selected features is calculated as 5.29 cm. The

difference between the all and the selected feature sets is not that significant as

in the LR model experiments. The R2 value for the selected feature set is 0.37.

This value is larger than the R2 value of all feature set and the R2 value of the

previous model. It can be asserted that the GPR model with the selected features

works better for the step length estimation.

Table 5.4: Results of Gaussian Process Regression model for Step Length with all and

selected features.

GPR RMSE R-Squared MSE MAE

All Features 5.53 0.32 30.56 4.28

Selected Features 5.29 0.37 28.03 4.02

• Swing Time: The results of the GPR model with all and the selected features set

are presented in Table 5.5. The RMSE value for predicting swing time with all

features is found as 4.80x102 sec while it is calculated as 4.89x102 sec with the
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selected feature set. For the stance time estimation, the model performs slightly

better with all features.

Table 5.5: Results of Gaussian Process Regression model for Swing Time (sec) with

all and selected features.

GPR RMSE R-Squared MSE MAE

All Features 4.80× 10−2 0.36 2.31× 10−3 3.87× 10−2

Selected Features 4.89× 10−2 0.33 2.39× 10−3 3.96× 10−2

• Stance Time: For this metric, the results are shown in Table 5.6. Similar to the

step length estimation results, the performance of the model with the selected

features is better for the stance time estimation. The RMSE value with all

features is found as 9.24x102 sec while it is calculated as 8.78x102 sec with the

selected feature set. The GPR model shows better performance than the previous

LR model for stance time prediction.

Table 5.6: Results of Gaussian Process Regression model for Stance Time (sec) with

all and selected features.

GPR RMSE R-Squared MSE MAE

All Features 9.24× 10−2 0.38 8.54× 10−3 6.80× 10−2

Selected Features 8.78× 10−2 0.44 7.71× 10−3 6.57× 10−2

5.1.3. SVM Regression

Support Vector Machine (SVM) models are very popular tools in machine learning

for both classification and regression. They are also non-parametric similar to the GPR

mentioned in the previous subsection and depend on kernel functions. They are mainly

based on trying to find hyperplanes helping to predict the continuous target value while
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maximizing the margin and minimizing the error [53]. We try different kernel functions

and observed that the Gaussian kernel function gives the best prediction results.

• Step Length: The results of the SVM model are presented in Table 5.7 for the step

length estimation. The RMSE value is found as 5.79 cm for the step length with

all features while the RMSE of the model with the selected features is calculated

as 5.46 cm. The difference between the all and the selected feature sets is not

quite big similar to the GPR model but the system shows better performance

with the selected features. The R2 value for the selected feature set is 0.33. This

value is found as 0.25 for the SVM model with all feature set. Depending on the

R2 values, we can say that using the selected features gives better performance

for predicting the step length.

Table 5.7: Results of SVM Regression model for Step Length with all and selected

features.

SVM RMSE R-Squared MSE MAE

All Features 5.79 0.25 33.56 4.55

Selected Features 5.46 0.33 29.85 4.23

• Swing Time: The results of the SVM model with all and the selected features set

are presented in Table 5.8. The RMSE value for predicting swing time with all

features is found as 4.98x102 sec while it is calculated as 5.11x102 sec with the

selected feature set. For the stance time estimation, the model performs slightly

better with using all features. Comparing the previous GPR model, the results

are close to each other but the performance of the GPR model is better.

• Stance Time: For this metric, the results are shown in Table 5.9. Similar to the

step length estimation results, the performance of the model with the selected

features is better for the stance time estimation. The RMSE value with all

features is found as 9.78x102 sec while it is calculated as 9.18x102 sec with the

selected feature set. The SVM model shows similar performance with the GPR
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Table 5.8: Results of SVM Regression model for Swing Time (sec) with all and

selected features.

SVM RMSE R-Squared MSE MAE

All Features 4.98× 10−2 0.31 2.48× 10−3 4.01× 10−2

Selected Features 5.11× 10−2 0.27 2.60× 10−3 4.11× 10−2

model for stance time estimation but the latter one works better. The R2 value

for the selected feature set is 0.39 while it is calculated as 0.30 for all features. It

also shows that the model fits the data in a better way with the selected features.

Table 5.9: Results of SVM Regression model for Stance Time (sec) with all and

selected features.

SVM RMSE R-Squared MSE MAE

All Features 9.78× 10−2 0.30 9.57× 10−3 6.82× 10−2

Selected Features 9.18× 10−2 0.39 8.42× 10−3 6.61× 10−2

5.1.4. Tree Regression

The tree is the kind of a nonlinear predictive model in machine learning with two

varieties which are regression tree and classification tree. Prediction trees basically

create a tree structure to make use of recursive partitions to represent data partitions.

In this technique, leaf nodes contain the actual data points and internal nodes repre-

sent the decision architecture. Since the mechanism is convenient to understand and

interpret, the structure is widespread in the machine learning field [54].

We create a coarse tree with the minimum leaf size 36 to fit our featured data to
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estimate step length, swing time and stance time metrics.

• Step Length: The results of the Tree Regression model are presented in Table 5.10

for the step length estimation. The RMSE value is found as 6.23 cm for the step

length with all features while the RMSE of the model with the selected features is

calculated as 6.58 cm. As different to the previous models’ performance on step

length prediction, tree model shows better performance with all features. The R2

value also shows the tree regression model works better with the all feature set.

It is calculated as 0.13 for all features while it is 0.03 for the selected feature set.

Table 5.10: Results of Tree Regression model for Step Length with all and selected

features.

Tree Regression RMSE R-Squared MSE MAE

All Features 6.23 0.13 38.91 4.92

Selected Features 6.58 0.03 43.27 5.19

• Swing Time: The results of the TR model with all and the selected features set

are presented in Table 5.11. The RMSE value for predicting swing time with all

features is found as 5.71x102 sec while it is calculated as 5.56x102 sec with the

selected feature set. For the stance time estimation, the model performs slightly

better with using the selected features.

Table 5.11: Results of Tree Regression model for Swing Time (sec) with all and

selected features.

Tree Regression RMSE R-Squared MSE MAE

All Features 5.71× 10−2 0.09 3.26× 10−3 4.72× 10−2

Selected Features 5.56× 10−2 0.14 3.09× 10−3 4.62× 10−2
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• Stance Time: For this metric, the results are shown in Table 5.12. Similar to the

swing time estimation results, the performance of the model with the selected

features is better for the stance time estimation. The RMSE value with all

features is found as 11.52x102 sec while it is calculated as 10.69x102 sec with

the selected feature set. The R2 value for the selected feature set is 0.17 while

it is calculated as 0.03 for all features. It also shows that the model fits the

data better with the selected features. However, TR model shows the worst

performance when we compare it with previous three models for all metrics.

Table 5.12: Results of Tree Regression model for Stance Time (sec) with all and

selected features.

Tree Regression RMSE R-Squared MSE MAE

All Features 11.52× 10−2 0.03 13.27× 10−3 8.87× 10−2

Selected Features 10.69× 10−2 0.17 11.42× 10−3 8.09× 10−2

5.1.5. Discussion

All models are tested to fit the extracted features with ground truth data. We use

two different feature sets during experiments including all features and selected features.

Comparing all regression models experimented, it is observed that the Gaussian Process

Regression (GPR) model gives the best results for all three gait parameters step length,

swing time and stance time. For all three metrics, response plots including predicted

and true data points, and plots of predicted vs. actual data points for the GPR model

is presented in Figures 5.2,5.3, and 5.4. In these figures, it can be seen that the system

has difficulty on predicting the high value outlier data points. Generally for each of

the three metrics, the model predict lower values for these high value outliers. Another

critic observation is that models give better results with selected features meaning that

the feature selection algorithm improves the performance.
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Since the RMSE metric has the same scale as true values, we first examine its

values. For the step length, as it can be seen from Table 5.13 GPR model’s RMSE value

is calculated as 5.29 cm, it means that we can estimate the step length of subjects with

approximately 5.29 cm error. The highest value for R2 metric which is 0.37 belongs to

the GPR model reminding that R2 values close to 1 means more success in prediction.

In MSE and MAE metrics, similar to the RMSE, the minimum error values belong

to the GPR model. The second most successful model is SVM and its error values

are closer to the GPR values when compared with the other two models. Tree model

performs worse than the other models. According to our tests, we say that the tree

model is not appropriate to estimate the step length gait parameter with the selected

feature set.

Table 5.13: Results of All Regression models for Step Length (cm) with selected

features.

Model RMSE R-Squared MSE MAE

LR 5.68 0.28 32.22 4.50

GPR 5.29 0.37 28.03 4.02

SVM 5.46 0.33 29.85 4.23

TR 6.58 0.03 43.27 5.19

Other gait parameters which are swing time and stance time, we get very similar

results to the step length metric as presented in Table 5.14 and Table 5.15. GPR is

the most successful model for both gait metrics with minimum RMSE scores which

are 4.89 × 10−2 and 8.78 × 10−3 respectively. The system explicitly estimates swing

time better, by analyzing this consequence it can be asserted that the hand-held device

is more convenient to measure the swing time than the stance time. Regression tree

again has the worst performance for predicting both gait parameters.
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(a) Response plot for step lengths. (b) Predicted vs. Actual step lengths.

Figure 5.2: Response and Correlation plots of the GPR model for step length

estimation with selected features.

(a) Response plot for swing time. (b) Predicted vs. Actual swing time.

Figure 5.3: Response and Correlation plots of the GPR model for swing time

estimation with selected features.
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(a) Response plot for stance time. (b) Predicted vs. Actual stance time.

Figure 5.4: Response and Correlation plots of the GPR model for stance time

estimation with selected features.

Table 5.14: Results of All Regression models for Swing Time (sec) with selected

features.

Model RMSE R-Squared MSE MAE

LR 5.02× 10−2 0.30 2.52× 10−3 4.05× 10−2

GPR 4.89× 10−2 0.33 2.39× 10−3 3.96× 10−2

SVM 5.11× 10−2 0.27 2.60× 10−3 4.11× 10−2

TR 5.56× 10−2 0.14 3.09× 10−3 4.62× 10−2
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Table 5.15: Results of All Regression models for Stance Time (sec) with selected

features.

Model RMSE R-Squared MSE MAE

LR 9.33× 10−2 0.37 8.71× 10−3 6.78× 10−2

GPR 8.78× 10−2 0.44 7.71× 10−3 6.57× 10−2

SVM 9.18× 10−2 0.39 8.42× 10−3 6.61× 10−2

TR 10.69× 10−2 0.17 11.42× 10−3 8.09× 10−2

5.2. Artificial Neural Network Models

In today’s world, neural networks become one of the most popular machine learn-

ing algorithms. Artificial Neural Networks (ANN) are the systems inspired by the bio-

logical neural networks that enable computational devices to learn from observational

data [55]. ANN systems work without being programmed explicitly with any condition

specific to the task, they learn to perform assignments based on examples.

ANN consists of input and output layers, and hidden layers between them. Units

in the hidden layer transform the data coming from the input layer into a specific

data format depending on the application that the output layer can use. In this way,

the system learns the complex patterns of the input and will be able to solve similar

transforming problems without knowing the target.

Neural networks have various types of algorithms. In this study, we exploit from

two different versions of ANN which are Convolutional Neural Networks (CNN) and

Long Short-Term Memory Network (LSTM).

Input data format is the same for both CNN and LSTM models. Raw input data

from smartwatch sensors located on both wrists is used as a matrix. For each step
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window extracted, acceleration and gyroscope sensor data is available for all three axes

X, Y, and Z. Content for the rows of input matrix is as given below.

• Acceleration data in X, Y, Z axes from left hand.

• Gyroscope data in X, Y, Z axes from left hand.

• Acceleration data in X, Y, Z axes from right hand.

• Gyroscope data in X, Y, Z axes from right hand.

Since the sampling frequency of the watch is 20 Hz, these 12 input features are

measured 20 times in a second. We create an input matrix for each and every step

window. It means that the number of columns depends on the length or duration

of a step and change from step to step. The variance in the column dimension of the

input reveals some problems in training and testing mentioned models. However, useful

techniques from the literature are exploited to overcome such difficulties.

Moreover, we separate the data into three parts 60% for training, 20% for vali-

dation and 20% for testing. Since our data is limited, we run the algorithm and train

systems five times and each time data is separated randomly into three parts. Results

are reported as the average of five trials and tests.

5.2.1. Convolutional Neural Networks

A convolutional neural network (CNN) is a type of artificial neural network to

learn a task from data. CNN is used mostly in the areas including image processing

and natural language processing. A CNN also consists of input, output layers, and one

or multiple hidden layers between them. The hidden layers generally include a convo-

lutional layer, an activation function layer, i.e., ReLU, a pooling layer, a normalization

layer and a fully connected layer [56]. In this part of the experiments, we create a

CNN for regression of gait parameters step length, swing time and stance time by us-

ing the raw sensor data coming from accelerometer and gyroscope of the smartwatches

mounted on both hands. As mentioned in the introduction of this section, our input

data consists of the matrix including raw sensor data for each step. A CNN takes in-
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puts in which all have the same dimensions both vertically and horizontally. However,

the length of each step or the number of columns in our input matrices is not the same

for all of them. Therefore, we apply zero-padding to the inputs which have less than

18 columns. Padding is performed as adding zero-valued columns to both right and

left side of the input matrix to reach 18 columns as in Figure 5.5. As a result of this

operation, each input matrix has dimensions of [12 18].

Figure 5.5: Applying zero-padding to the input matrix.

The general architecture of the created CNN can be seen in Figure 5.6. The

number of the layers including the hidden layers which are convolution, batch normal-

ization and activation and also the flow of the CNN architecture is shown in Figure 5.7

while the details for the layers of the network are presented in Figure 5.16.

We normalize each input column to a length of 1 to improve the performance

of the network for estimation of the gait parameters. To give information about the

training progress of the CNN regression model, we plot one run of training process

for the step length as an example in Figure 5.8. Each run has 30 epochs, the initial

learning rate is 0.001 and it drops to 0.0001 after the 20th epoch. After the 10th epoch,

the model almost converges to minimum RMSE value and it starts to decrease slower

until the end of training process. The final RMSE value is found as 7.46 × 10−2 m

which equals to 7.46 cm for this run.
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Table 5.16: Details for the layers of CNN architecture used in training to estimate

gait parameters.
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Figure 5.6: CNN architecture for regression used in training to estimate gait

parameters.

Metrics used to validate the model consist of Mean Squared Error (MSE), Mean

Absolute Error (MAE), R-Squared Error and Root Mean Squared Error (RMSE) simi-

lar to the previous analysis in Section 5.1. Average values of the error metrics calculated

by five runs of the algorithm with randomly partitioned data are presented in Table

5.17.

Table 5.17: CNN regression model results on estimating Step Length (cm), Swing

Time (sec), and Stance Time (sec).

Gait Metric RMSE R-Squared MSE MAE

Step Length 7.25 -0.19 52.56 7.28

Swing Time 7.34× 10−2 -0.77 5.8× 10−3 7.62× 10−2

Stance Time 11.5× 10−2 0.02 14.8× 10−3 12.17× 10−2

5.2.2. Long Short-Term Memory Network

Long short-term memory (LSTM) is another popular neural network type, it is

based on the Recursive Neural Network architecture [57]. Different from the other

types of neural networks, this architecture has feedback connections which enable to
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Figure 5.7: Number of layers and the flow of the CNN architecture for regression used

in training to estimate gait parameters.
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Figure 5.8: Training progress for step length estimation with CNN regression model.

learn the data consist of sequences in an efficient way. Since we have time series data,

we decided to train an LSTM model to estimate the relevant gait parameters using

raw sensor data.

Our input consists of 242 sequences/step windows of dimension 12 of varying

length. During training, the data should be split into mini batches and the length of

each sequence in the batch should be the same. Similar to the preprocessing phase

of the CNN model to prepare the input data, we applied padding to improve the

network performance. However, this time, we sort the data according to the lengths

of sequences as in Figure 5.9 and apply padding such that mini batches have the same

sequence length.

During training, by default, the software splits the training data into mini-batches

and pads the sequences so that they have the same length. Too much padding can have

a negative impact on the network performance. To prevent the training process from

adding too much padding, the training data can be sorted according to the sequence

length, and a mini-batch size can be chosen so that sequences in a mini-batch have a

similar length. Figure 5.9 shows the sorted sequences before applying padding.
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Figure 5.9: Sorted step sequences according to the length of step window.

The general architecture of the LSTM model can be seen in Figure 5.10. There

is one hidden layer consists of 20 LSTM units while the input dimension is 12. The

number of the layers in the network and the details of them are presented in Table

5.18.

Table 5.18: Details for the layers of LSTM architecture used in training to estimate

gait parameters.

We again split the data into three parts 60% for training, 20% for validation and

20% for testing and try to create a model and test it five times with randomly selected

partitions. Similar to the CNN model, each input column is normalized to a length of

1 to improve the performance of the network for estimation of the gait metrics. One
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Figure 5.10: LSTM architecture for regression used in training to estimate gait

parameters.

of the five runs of the training is plotted for the step length metric in Figure 5.11.

Each run has 30 epochs, the learning rate is 0.001. After the 10th epoch, the model

converges to minimum RMSE value and it starts to decrease slower until the end of

training process.

To give information about the training progress of the LSTM regression model,

we plot one run of training process for the step length as an example in Figure 5.11.

Each run has 20 epochs, the learning rate is 0.001. After the 10th epoch, the model

almost converges to minimum RMSE value and it starts to decrease slower until the

end of training process, for this run it is calculated as 5.63× 10−2 m which is 5.63 cm.

Average values of the error metrics used to validate the model including MSE,

MAE, R2 error and RMSE calculated from five times running of the algorithm with

randomly partitioned data is presented in Table 5.19.
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Figure 5.11: Training progress for step length estimation with LSTM regression

model.

Table 5.19: LSTM regression model results on estimating Step Length (cm), Swing

Time (sec), and Stance Time (sec).

Gait Metric RMSE R-Squared MSE MAE

Step Length 6.87 -0.11 47.19 7.0

Swing Time 6.56× 10−2 -0.21 4.3× 10−3 6.56× 10−2

Stance Time 15.16× 10−2 -0.58 24.5× 10−3 15.65× 10−2
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5.2.3. Discussion

We experimented two neural network models CNN and LSTM to train a system

able to predict the gait parameters. Input of the networks contains raw sensor data

with 12 rows of features.

For the gait metrics including the step length and the swing time, the LSTM

architecture gives better results by evaluating RMSE values as seen in Tables 5.20

and 5.21, i.e., LSTM can predict a step length with error 6.87 cm. Similarly other

three metrics R2, MSE and MAE also show that the performance of LSTM is more

preferable.

However, when we evaluate the models in terms of the stance time estimation,

the CNN has better performance. In Table 5.22, it can be observed that the CNN have

the minimum value of error in all error metrics.

On the other hand, comparing the performance of the experimented machine

learning (ML) algorithms for regression in Section 5.1 and neural network architectures

CNN and LSTM, it can be asserted that all regression models LR, GPR, SVM and TR

performs better in estimating all relevant gait parameters. The GPR model is almost

twice as successful as ANN models for all gait metrics prediction. However, such a

difference may result from the different measurement and evaluation techniques. In

ML models, 5-fold-cross validation is used to measure the success of the system, on

the other hand, we randomly shuffle the dataset and split it into three parts five times

and take average of these five runs. Another reason for the variation of success in ML

models and NN models can be the input set. Remembering Section 5.1 we exploited the

feature set extracted and selected from raw data of each step window for ML models.

However, in NN models input data consists of raw sensor data itself. Using the selected

feature set may be more advantageous in terms of predicting gait metrics from hand-

held sensor data. On the other hand, using the raw data needs fewer operations for

preprocessing and may be advantageous in terms of the time spent. Moreover, the

neural network architectures generally require a large amount of data for training but
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we have limited data. The performance of the networks can be improved by collecting

more data in terms of the number of subjects and the duration of the gait analysis.

Table 5.20: Results for both CNN and LSTM regression models on estimating Step

Length (cm).

Model RMSE R-Squared MSE MAE

CNN 7.25 -0.19 52.56 7.28

LSTM 6.87 -0.11 47.19 7.0

Table 5.21: Results for both CNN and LSTM regression models on estimating Swing

Time (sec).

Model RMSE R-Squared MSE MAE

CNN 7.34× 10−2 -0.77 5.8× 10−3 7.62× 10−2

LSTM 6.56× 10−2 -0.21 4.3× 10−3 6.56× 10−2

To compare all the traditional regression models and the neural network models,

in Table 5.23, the results for the RMSE values are presented for each gait parameter:

step length, swing time and stance time. As seen from the table, the GPR model gives

the best results for the estimation of all metrics. It is also observed that the traditional

regression models performs better than the neural network models. Probably, the main

reason for this situation is that the amount of data is not sufficient to train a deep

learning model.



55

Table 5.22: Results for both CNN and LSTM regression models on estimating Stance

Time (sec).

Model RMSE R-Squared MSE MAE

CNN 11.5× 10−2 0.02 14.8× 10−3 12.17× 10−2

LSTM 15.16× 10−2 -0.58 24.5× 10−3 15.65× 10−2

Table 5.23: Comparison of all regression models depending on RMSE value for

estimating Step Length (cm), Swing Time (sec), and Stance Time (sec).

Model Step Length (cm) Swing Time (sec) Stance Time (sec)

LR 5.68 5.02× 10−2 9.33× 10−2

GPR 5.29 4.89× 10−2 8.78× 10−2

SVM 5.46 5.11× 10−2 9.18× 10−2

TR 6.58 5.56× 10−2 10.69× 10−2

CNN 7.25 7.34× 10−2 11.5× 10−2

LSTM 6.87 6.56× 10−2 15.16× 10−2
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5.3. Comparative Evaluation of Single and Double Smartwatch Based

Systems

In this study, we use two smartwatches, one for each hand, during the data

collection. However, in terms of the unobtrusiveness of the proposed system, using the

two watches may be disadvantageous. To test the capability of the system with one

smartwatch, we try to estimate the gait parameters with using the sensor data only

coming from the smartwatch worn on the dominant hand of the subjects. We use the

extracted and selected features belong to the dominant hand of each participant and

evaluate the performance of the system.

The GPR model which gives the best results for the estimation of each gait

parameter is used to compare the single and double smartwatch usages and the per-

formance of these configurations are experimented for the three gait parameters. The

results of the comparison is presented in Table 5.24. When we evaluate the outputs of

the comparison, it can be said that the double smartwatch system is more successful

than the single smartwatch based system in predicting the three gait parameters: step

length, swing and stance times. However, the difference between the performances of

the two systems is not quite big. Therefore, depending on the purpose of the applica-

tion, the single smartwatch based system may be preferred and the higher error rate

of the system can be tolerated for the sake of unobtrusiveness.
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Table 5.24: Comparative evaluation of single and double smartwatch based systems

on the GPR model.

Single or Double Gait Metric RMSE

Single Step Length 6.11 cm

Double Step Length 5.29 cm

Single Swing Time 5.44× 10−2 s

Double Swing Time 4.89× 10−2 s

Single Stance Time 13.10× 10−2 s

Double Stance Time 8.78× 10−2 s
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6. CONCLUSION

In this study, different from the most of related works on focusing gait analysis, we

examine the convenience of using a wrist-worn device which is smartwatch to perform

gait analysis. Basic gait metrics including step length, swing time and stance time

which enable to analyze main characteristics of the gait are tried to be extracted from

the data collected using a smartwatch.

The data is collected from 26 healthy participants from different ages and gender

in clinical settings. Subjects wore smartwatches on both hands during the analysis,

the data is collected from two sensors embedded in the smartwatch accelerometer and

gyroscope. The data is preprocessed and by detecting step windows, we try to extract

relevant gait parameters for each step and compare them with our ground truth data

coming from clinician’s assessment.

In the vast majority of the gait analysis studies, sensor measurement units are

located on the foot or leg, since the lower body placement is more sensitive to gait

phases. However, we use a wrist-mounted device which is a smartwatch and it restricts

us to use domain knowledge that may assist the inferences. Therefore, the main chal-

lenge of the study is the sensor placement. However, despite we have limited resources

on collecting data in terms of the amount of data and number of the subjects, our gait

analysis with a smartwatch gives promising results. Even if the results cannot reach

the accuracy of the state of the art works using foot mounted sensors, for a wrist-worn

device, they are encouraging for the extended future studies.

Unobtrusiveness and comfortability are the main advantages of the proposed gait

analysis system. Thanks to these important features, gait analysis can be held in

both indoor and outdoor environments conveniently. The proposed system gives a

valuable opportunity to monitor the gait of subjects continuously without needing any

clinical equipments and hospital settings. This convenience is quite critical especially

for the people with neurological or orthopedic disorders in terms of the diagnosis of
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abnormality in a gait cycle which is a very important factor to check their course of

disease.

In summary, smartwatches are quite promising devices for gait analysis and ex-

tracting main gait related parameters. Thanks to the high level of comfort they present,

smartwatches can be used conveniently for gait analysis during the daily life. The pro-

posed system can be improved in terms of the accuracy and the number of the gait

metrics evaluated by collecting more data. The number of participants and the total

distance walked on the instrumented pathway for each subject may be increased dur-

ing the gait analysis. This will provide more data to train the existing models better.

Especially for the neural network models, increasing the amount of data may have a

significant improvement on estimation of the gait parameters. In this study, we tried

to predict the three main gait parameters: step length, swing and stance times. In the

future, further metrics also can be added to the gait analysis with a smartwatch, i.e.,

number of turning steps, duration of the turning phase, cadence, gait asymmetry, and

velocity.
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