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Boğaziçi University

2019



ii

FAST NOx PREDICTION METHODOLOGY VIA 1D THERMODYNAMICAL

TOOLS

APPROVED BY:

Assoc. Prof. Hasan Bedir . . . . . . . . . . . . . . . . . . .

(Thesis Supervisor)

Prof. Ahmet Erhan Aksoylu . . . . . . . . . . . . . . . . . . .

Prof. Hakan Ertürk . . . . . . . . . . . . . . . . . . .

Assist. Prof. Osman Akın Kutlar . . . . . . . . . . . . . . . . . . .

Assist. Prof. Hikmet Aslan . . . . . . . . . . . . . . . . . . .

DATE OF APPROVAL: 22.05.2019



iii

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Assoc. Prof.

Hasan Bedir for his continuous support during my PhD study and his patience, moti-

vation, and immense knowledge. His kind guidance helped me in all the time of the

study and writing of this thesis. I could not have imagined that I can accomplish this

PhD study without his leadership.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Ersoylu, Prof. Ertürk, Assist. Prof. Kutlar and Assist. Prof. Aslan for their kindness,

insightful comments and encouragement.

I want to thank my parents Semra and Muhammet, to my brothers Evrim and

Anıl; for encouraging me to go further.

Finally, I must express my very profound gratitude to my lovely wife Fatma for

providing me with unfailing support and continuous encouragement throughout my

years of study and through the process of researching and writing this thesis. This

accomplishment would not have been possible without her and our lovely daughter

Mira’s support.

This thesis is dedicated to memories of my beloved grandmother and grandfather:

Şerife and Hüseyin Okgerman.



iv

ABSTRACT

FAST NOx PREDICTION METHODOLOGY VIA 1D

THERMODYNAMICAL TOOLS

Accurate modelling of Nitrogen Oxide, soot, CO and UHC emissions from diesel

engines plays a crucial role during the development phases of powertrain systems due

to increasingly more strict emission legislation. Undoubtedly, generating accurate and

robust methods of emission prediction will serve to global optimization of engine sys-

tems at very early stages of engine development. Engine component selection, accurate

prediction of specific fuel consumption and defining the correct EGR strategy (low and

mid-high) can only be achieved via reliable and fast NOx emission prediction. There

are many possible ways of emission prediction in literature such as 3D, stochastic re-

actor, semi-empirical, phenomenological models and neural networks. However, these

prediction methods either need excessive test data or simulation duration.

On the other hand, using 1D simulation tools is a faster way of emission predic-

tion but has low accuracy. In this study, it is aimed to improve a fast and accurate

NOx emission prediction methodology by utilizing 1D Models generated in GT-Suite c©

software. Two different heavy-duty diesel engines with two different combustion mod-

els are modelled and correlated to test data. A NOx emission prediction methodology

is developed in 9L heavy-duty diesel engine model and experimented with the 12.7

L heavy-duty diesel engine model. In both studies, extended Zeldovich mechanism

outputs included in the software is tuned via embedding calibration multiplier maps,

depending on different engine operating parameters. Comparison of simulation results

with the use of varying NOx calibration multiplier maps against test data, shows that

the developed methodology can be used to predict NOx values with high speed and

accuracy.
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ÖZET

BİR BOYUTLU TERMODİNAMİK MODELLEME İLE NOx

EMİSYON TAHMİNİ METODOLOJİSİNİN

GELİŞTİRİLMESİ

Dizel motorlarda Nitrojen Oksit, kurum, CO ve UHC emisyonlarının doğru

modellenmesi güç aktarım sistemlerinin geliştirme süreçlerinde günden güne sıkılaşan

emisyon regülasyonları sebebiyle büyük önem arzetmektedir. Hiç kuşkusuz, yüksek

doğrulukta ve gürbüz emisyon tahmini metotlarının geliştirilmesi çok erken geliştirme

safhalarında motor sistemlerinin global optimizasyonunun önünü açacaktır. Motor

komponentlerinin doğru seçimi, özgül yakıt tüketimi hesabı ve doğru EGR stratejisinin

belirlenmesi (düşük ve orta-yüksek) ancak NOx emisyonlarının doğru ve hızlı tahmini

ile gerçekleşebilir. Literatürde 3D, stokastik reaktör, yarı empirik, fenomenolojik mod-

eller ve sinir ağları gibi birçok emisyon tahmin metodolojisi bulunmaktadır. Fakat, bu

yöntemler ya çok fazla data gerektirir ya da simülasyon süreleri oldukça yüksektir.

Diğer bir taraftan, 1D simülasyon programları emisyon tahmini için hızlı fakat

doğruluğu düşük bir alternatiftir. Bu çalışma kapsamında, hızlı ve doğru NOx emisyon

tahmini metodolojisinin GT-Suite c© programında hazırlanan 1D Modeller yardımı ile

geliştirilmesi hedeflenmiştir. İki farklı yanma modeline sahip iki farklı ağır yük ticari

araç dizel motoru modellenmiş ve test datasına korale edilmiştir. NOx emisyon tah-

min metodolojisi öncelikle 9L ağır yük dizel motorda geliştirilmiş, akabinde 12.7L

ağır yük dizel motor üzerinde de denenmiştir. Her iki çalışmada da; extended Zel-

dovich denklem çıktıları, farklı performans parametrelerine bağlı kalibrasyon çarpan

haritaları ile ayarlanmıştır. Bu şekilde elde edilen simülasyon sonuçlarının test data-

ları ile karşılaştırılması; geliştirilen metodolojinin NOx emisyonlarının yüksek hız ve

doğrulukta tahmini için kullanılabileceğini göstermektedir.
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1. INTRODUCTION

Progressively more stringent legislative measures aiming to reduce the levels of

many emissions such as unburned hydrocarbons, soot, and oxides of nitrogen (NOx)

generates increasing attention to the environmental impact of long haul trucks. Fur-

thermore, carbon dioxide (CO2) emissions have come into focus due to concerns about

their relationship with global warming. Figure 1.1 shows the contribution of CO2

emissions originated from heavy-duty vehicles (HDVs).

Figure 1.1. Distribution of total direct CO2 emissions in the EU for 2015 [1]

On May 17, 2018, the European Union (EU) declared a regulatory proposal

regarding CO2 emissions reduction. Figure 1.2 shows the EU proposal. The plan

which is valid for new HDVs sold in the European Union aims 15% reduction in CO2

emission by 2025 and 30% reduction by 2030; from 2019 baseline [1]. An open-source, C

based, multipurpose, publicly available object-oriented computer code, Vehicle Energy

Consumption Calculation Tool (VECTO) is developed to follow the reduction process.

According to the scheme, OEMs will report their fleet average CO2 emissions in 2019

via VECTO. In 2025 and 2030; Original Equipment Manufacturers (OEM) will report

their fleet average CO2 emissions again [6]. Failing to reduce the emissions by the

targeted amount, OEMs will have to pay severe penalties for each 1% difference from

the reduction target.

Besides; it is expected to that Euro7 emission regulations will be in effect starting

from 2024. Forecasts on Euro7 emission regulations are showing that NOx emission
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Figure 1.2. Illustration of EU Commission proposal- March 2018 [2]

targets will be decreasing by approximately 30%. These two facts are making OEMs

focus on emission reduction techniques.

Higher efficiency is the reason why diesel engines have lower CO2 emissions com-

pared to gasoline engines. However, diesel engines suffer from higher NOx emissions

due to their higher compression ratio and consequently higher in-cylinder temperatures,

which is resulting as higher NOx production.

Reducing diesel engine emissions is challenging due to the inherent trade-off be-

tween lowering NOx output and improving fuel economy. Conditions which help ensure

good fuel economy and complete combustion will typically lead to higher in-cylinder

temperatures, which, unfortunately, creates better conditions for the oxidation of nitro-

gen, thus increasing NOx output. Exhaust gas recirculation (EGR) and engine cooling

may reduce the rate of NOx formation, while but in return, carbon monoxide (CO)

production may increase. Retarding the injection timing is also a common strategy [7].

Global optimization is one of the critical topics that OEMs are currently working

on. The primary target of global optimization is ensuring engine operation at optimum

specific fuel consumption and NOx trade-off. Also, patterns of emissions caused by

fluctuations in the temperature of the combustion chamber, changes in the air-fuel

ratio, and fuel injection rate are receiving increasing attention.
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Determination of global optimum conditions via tests is a very costly process

(sensors, fuel, engineer/room allocation costs, etc.). Also, to reduce the probability

of mechanical failures of an engine during a test, tests are generally performed within

mechanical/calibration limits or already investigated calibration set point boundaries.

On the other hand, it is possible to perform computer simulations covering full

range of engine operating conditions. Simulation tools make it easier to examine the

global optimum conditions without encountering any physical test problems, and some

of these tools have a significantly lower cost.

Detailed chemistry calculations via three dimensional computational fluid dy-

namics (3D CFD) simulations, 1D-stochastic reactor models or use of full data-driven

methods (such as neural networks) are the most apparent ways of NOx emission pre-

diction. However, these solutions either need excessive data or very long simulation

duration.

One dimensional (1D) thermodynamic models can also be used for NOx emission

prediction. In 1D thermodynamic simulations, it is possible to model an engine with

all accessories such as EGR cooler, inter-cooler, turbine, compressor, air-box, etc. [3],

[8]. Simulation duration is significantly lower than the other options since Navier-

Stokes and energy equations are simplified to a sigle dimension. Although these tools

are handy to perform torque and power predictions for both full load and part load

conditions, they cannot provide accurate predictions for NOx emissions at different

operating points. This is primarily due to the lack of examination of detailed chemical

kinetics in 1D engine models. In this study, an investigation of a new methodology for

fast NOx emission prediction via the use of 1D Engine Models is performed.
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2. LITERATURE SURVEY

Diesel emission prediction is one of the most significant problems of automotive

scientists. Detailed chemistry calculations via 3D CFD models, 1D-stochastic reactor

model couplings and artificial neural network (ANN) based models are the most obvious

ways of diesel emission prediction. Some of the studies in the literature are mentioned

below.

2.1. 3D CFD Simulations

Shi et al. [9] worked on a 3D CFD simulation of a direct-injection diesel engine

and used Hiroyasu-Kadota averaged-reaction-rate soot model for soot emission calcu-

lations. Via model calculations, they have shown that post-injection of fuel reduces

soot production.

The objective of the study conducted by Almeida et al. [10] was to create a model

which predict of the NOx and soot and to improve the engine design on combustion

aspects. A 1D-3D CFD coupled analysis was generated and calibrated with data from

engine dynamometer tests. The 1D analysis provided the boundary conditions of the

CFD model. They have shown that both NOx and soot calculations of the model

are in good correlation with the test data gathered from 3.2 L compression ignition

(CI) turbocharged engine and that the coupling could successfully predict the emission

trends in 93% of the cases.

Kim et al. [11] studied combustion and emission characteristics of a direct-injection

(DI) engine under various operating conditions. For NOx emission prediction, they used

the extended Zeldovich mechanism. They have shown that NOx emission increases with

the increase in injected fuel mass. They have also demonstrated that it is possible to

decrease NOx emission via low-temperature combustion and retarded injection timing.
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2.2. Stochastic Reactor Models

Apart from 3D CFD based emission prediction methodologies, there are studies in

the literature which include the use of 1D engine modelling tools and stochastic reactor

models. Amit Bhave et al. [12] studied combustion in a six-cylinder 16 L truck engine,

operating in homogeneous charge compression ignition (HCCI) conditions. They used

a stochastic reactor model (SRM) to take chemistry of combustion process into account

in between intake valve close, IVC to exhaust valve open, EVO times. Equi-weighted

Monte Carlo particle method was used to solve probability density function (PDF)

based transport equation. The 1D model passed the in-cylinder pressure, temperature

and internal EGR rate values to SRM as initial values. SRM then was used to simulate

the combustion in engine cylinder from IVC to EVO. It was shown that the model in-

cylinder pressure curves were in good correlation with dynamometer data and there

was an excellent agreement between model predictions and measurements of CO, HC,

and NOx emissions.

Andrew Smallbone et al. [13] worked on modelling a DI diesel engine. They cou-

pled 1D model and SRM and focused on virtual engine optimization and intelligent

design of experiments. They correlated the engine model against 46 steady state op-

erating points by taking the in-cylinder pressure and emission outputs into account.

EGR rate, boost pressure, and injection timing were the primary reference parame-

ters. By using the correlated model, they performed 968 simulations to examine the

local in-cylinder temperature, equivalence ratio, and exhaust emissions. They identi-

fied optimum operational conditions by taking limitations on regulated emissions into

consideration.

Maurya et al. [14] performed a detailed study to generate an approach for exami-

nation of combustion and emission characteristics of a 7.8 L diesel engine. They utilized

SRM and 3D CFD software (STAR-CD). Experimental data were used to validate the

SRM model, and parametric analysis of dual fuel engine was performed for different

engine speed, EGR rate and the premixing ratio of the fuels. The results showed that

the simulation and experimental data were in good agreement.
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Jochim et al. [15] worked on multi-zone modelling to capture premixed charge

compression ignition (PCCI) diesel engine combustion characteristics. They firstly

made a comparison of the multi-zone model with 3D CFD simulation outputs; then

they performed another comparison with test data. Calculations showed that the

simulation duration of multi-zone models is significantly smaller than 3D CFD. In the

experiments, they collected test data at 105 different operating conditions including

variations of the start of injection, injected fuel mass and EGR rate in a four-cylinder

diesel engine. They have illustrated that NO and unburned hydrocarbons (UHC)

prediction of CFD simulations ware in good correlation with the test data and the

multi-zone model trends are the same with test data.

Wang et al. [16] utilized reduced chemical reaction mechanisms to model combus-

tion and emission characteristics of hydrocarbon fuels. They generated an n-heptane

mechanism in which a detailed poly-aromatic hydrocarbon (PAH) mechanism is embed-

ded. The final version of the mechanism included 349 reactions and 76 species. Shock

tube experiments and test-bed engine data were used to validate the mechanism. They

calculated combustion characteristics and soot emissions of n-butanol, n-heptane and

diesel fuel. Soot emission trend was well captured, and the predicted NOx emissions

were in good agreement with experimental data.

Paul et al. [17] explored the radiative heat transfer effects on NOx and soot emis-

sions, energy distribution in the combustion chamber and heat losses in a heavy-duty

diesel engine with CFD. Different combinations of turbulent combustion models, spec-

tral radiation property models and radiative heat transfer (RTE) equation solvers were

examined. Engine operating conditions were varied by load and EGR rate percent-

ages. Combustion chamber mean temperature values change in 50-100 K range with

the consideration of radiation, but with a minimal effect on engine emissions. It was

mentioned that radiative effects would be more dominant in bigger scale engines such

as ones for a locomotive or marine applications.

Aubagnac-Karkar et al. [18] focused on the development of a soot emission pre-

diction capability.
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They coupled a sectional soot model and IFP-C3D RANS CFD code. Soot and

combustion model outputs were compared with test data including two different op-

erating points (2200 and 4000 rpm) with different EGR rate, injection pressure and

injection duration values. They concluded that the proposed model predicts the soot

volume fraction and distribution with reasonable accuracy.

Duvvuri et al. [19] studied on soot particle size prediction in both heavy-duty

(Scania 12.7 L) and light-duty (GM 1.9 L) diesel engines. They used a sectional Con-

verge model (45 degrees for heavy-duty and 60 degrees for light-duty diesel engine).

SAGE detailed kinetics model with a multizone approach was preferred for the simu-

lations. Qualitative trends of soot particle number density predicted showed a good

match with the experimental results for both types of engines.

2.3. Phenomenological Models

Phenomenological and semi-empirical models are other alternative emission pre-

diction methods. Rajkumar et al. [20] investigated the use of phenomenological models

to predict NOx and soot emissions of Ford DV3 common rail diesel injection (CRDI)

engine at different engine speed and load conditions. Their multizone model included

modules such as spray growth, fuel-air mixing, evaporation, ignition, combustion, and

emissions (NOx and soot). NOx predictions were based on the Zeldovich mecha-

nism. Soot predictions were performed via Fusco (for soot formation) and Nagle and

Strickland-Constable (for soot oxidation) models. Results showed that the maximum

deviation of predicted NOx emission values from measurements was 10%.

Rakopoulos et al. [21] studied the effect of EGR on combustion and emissions in

a diesel engine. They performed tests on a single-cylinder engine at different engine

speed, load and EGR rates. They also developed a two-zone phenomenological com-

bustion model. No root mean square error, RMSE, values were given in the study, but

the crank angle based comparison of model results and test data at the different start

of injection times showed that the model outputs were in good correlation with the

test data.
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Provataris et al. [22] worked on a semi-empirical, two-zone model to generate

a methodology for NOx prediction. The developed model used geometrical data of

cylinder and experimentally measured combustion rate for the calculation of tailpipe

NOx emissions. The extended Zeldovich mechanism was employed. Provataris et al.

used the model for two different engines: 6.37 L heavy-duty diesel engine and 2.15 L

passenger car engine. The calculations were made for an engine speed range of 1400-

2200 rpm and a load range of 20% to 100%. Heavy-duty diesel engine NOx emission

prediction mean relative error was 18%. They reported that the calculation time of

the model was lower in comparison to other phenomenological models [23].

Finesso et al. [24] focused on prediction of NOx emission in a light-duty diesel

engine. They performed experiments at 123 different engine speeds and loads, and

also completed an EGR rate sweep in the test environment. They created a predictive

combustion model which includes six different sub-models for calculating: chemical

energy release, in-cylinder pressure, friction loss, pumping loss, in-cylinder temperature

and NOx emission. The NOx emission model was a semi-empirical correlation which

was a function of total injected fuel quantity, engine speed, intake oxygen concentration,

injection pressure, crank angle for 50% of fuel mass is burnt (MFB50), and burned gas

temperature evaluated at MFB50. MFB50 was calculated via the heat release model.

They reported that when compared to experimental data engine out steady state NOx

emission R2 value was 0.96.

Finesso et al. [25] performed another study and predicted NOx emission via a

semi-empirical model in diesel engines. They assumed that NOx molar formation rate

is an exponential function of the burned gas temperature. They reported that the NO

mass per cycle mainly depends on the mass of nitrogen and oxygen available in the

diffusion flame region. They investigated the effect of maximum in-cylinder tempera-

ture, especially after the main injection and showed the correlation between maximum

in-cylinder temperature with NOx formation. They used maximum in-cylinder tem-

perature, injected fuel quantity, equivalence ratio, engine speed and injection pressure

as parameters of NOx emission modelling.
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2.4. Artificial Neural Networks (ANN)

Use of ANN employing engine performance parameters is another way of predict-

ing emissions. Pennycott et al. [26] utilized an ANN model to predict CO2 emission of

a 2.4 L, four-cylinder diesel engine. They employed engine speed, engine torque, start

time of injection, air mass flow rate, rail pressure and oil temperature values as the

ANN parameters. They showed that it is possible to use ANN for accurate emission

prediction. Although this study was not focusing on NOx prediction, it is a successful

example of emission prediction.

Traver et al. [27] explored the feasibility of using variables such as brake mean

effective pressure (BMEP), gross mean effective pressure (GMEP) to predict emission

values of a diesel engine. They performed instrumentation on a 7.3 L V8 diesel engine to

measure and record engine speed, fuel injection pulse width, injection timing, manifold

air pressure values. They calculated BMEP, GMEP at steady state conditions over full

speed and load test matrix. They performed model correlations on the data gathered at

64 different operating points. They tested the generated ANN over FTP (Federal Test

Procedure) cycle data. Results showed that there was a considerable success in NOx

and CO2 predictions. Traver et al. also showed that ANN prepared with steady-state

data would be sufficient to perform emission prediction at transient conditions.

Brahma et al. [28] worked on empirical regression based ANN model to predict

transient NOx to develop the capability of transient optimization. They used unsteady

data for the model generation. They argued that transient emissions and some in-

dependent engine parameters (such as fuel flow rate) differ from their corresponding

steady-state values. They showed the effect of sensor lags and transport delays on

unsteady test data usage. They obtained proper matching between experimental data

and predictions.

Liu et al. [29] studied ANN to predict emissions of a compressed natural gas

(CN)G/diesel dual fuel engine. They used 100 points gathered at different operating

conditions for model generation and 20 points for verification. Generated neural net-
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work maps mainly based on the quantity of main and pilot injections and injection

timing parameters. They stated that the simulated results are in good agreement with

the test data. They showed that increasing the amount of fuel injection leads to a

reduction in CO emission and an increase in NOx emission due to higher in-cylinder

temperature values.

Zhang et al. [30] generated an ANN model which uses torque, speed, oil tempera-

ture, the start of injection (SOI), EGR rate and rail pressure. They collected emission

data from a 2L, four-cylinder diesel engine. They used both hot and cold drive cycles

to generate neural networks and assess them. Model outputs were within ± 20% error

margin of dynamometer test data.

Shailaja et al. [31] developed an ANN to predict diesel engine NOx, CO, and HC

emissions. They practised a feedforward network and Levenberg-Marquardt algorithm.

They collected the experimental data in a single cylinder, four stroke and variable com-

pression ratio diesel engine at different operating conditions by adjusting compression

ratio, injection time, injection pressure and load. They conducted 320 experiments.

Out of these 320 data sets, 85% is used for model training, and 15% is employed for

testing. A strong correlation (R2 is 0.99) to experimental data was reported.

Saez et al. [32] studied emission prediction of a diesel engine fueled with animal fat

using ANN. They conducted the study with a 2.0L 140 hp, Euro 4, turbocharged diesel

engine. Main input variables of the neural network were vehicle speed, acceleration,

engine speed and torque, air inlet temperature, boost pressure, mass air flow and fuel

consumption. They reported that when compared to the testing data set; model NOx

and CO2 emission prediction R2 value is 0.78.

Niu et al. [33] focused on the performance comparison of ANN and support vector

machine (SVM) in a marine diesel engine application. They created two different

models with the same sampling data which includes 25 different operating points.

Rail pressure, injection timing, charge pressure and charge temperature parameters

are selected as the primary input variable in ANN generation. Besides, a nonlinear
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regression function was created for SVM. Via these models, they have performed model

vs test data comparison for brake specific fuel consumption (BSFC), NOx and soot

emission values. They showed that, although SVM model can find the global optimum,

the ANN model can only detect local minima in some cases. Soot and NOx emission

predictions of the models were in good correlation to test data.

Bhowmik et al. [34] investigated the usage of an ANN model for performance and

emission prediction of a diesel engine in which adulterated diesel fuel is used. They

used 70% of the test data to train the model, 30% of the test data for validation and

test. Brake thermal efficiency, brake specific fuel consumption, NOx, UHC and CO

emissions were the main outputs of the ANN model. They showed that the model

could be developed with minimal data requirement and it is useful in the prediction of

main engine performance outputs.

Nikzadfara et al. [35] worked on a model based calibration methodology. A cou-

pled thermodynamical and ANN model was developed. In the ANN model, inlet air

pressure, inlet air temperature, engine speed, rail pressure, the mass of injected fuel,

the mass of pilot injection, CA at main injection, pilot retard, EGR rate and exhaust

pressure parameters were used as the primary inputs. Aspirated air, torque, exhaust

temperature, maximum combustion temperature, maximum combustion pressure, soot

and NOx emission values were the main outputs. They utilized from a genetic algo-

rithm which was optimizing a cost function including the effect of BSFC, brake torque,

NOx and soot emissions. The genetic algorithm runs included 500 generations with

a population size of 50. Torque, NOx and soot emissions and BSFC comparisons of

coupled model and the test data were in good agreement. They stated that the de-

veloped methodology lowers required time, cost and overall complexity that may be

encountered in calibration development.

Lotfan et al. [36] focused on the coupling of an ANN model and non-dominated

sorting genetic algorithm II (NSGA-II). They aimed to predict both CO and NOx

emissions. They selected engine speed, power, intake temperature, fuel flow rate and

air mass flow parameter as the main controllable. The black box engine model was
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created by using 400 sets of experimental data. Then, model outputs were compared

with test data. It was shown that correlation factors for CO and NOx emissions are

0.9963 and 0.9953, respectively.

Burke et al. [37] worked on modelling of diesel NOx, CO2, CO, UHC emissions

using the parametric Volterra series of a 2.0 L diesel engine. Results showed that

RMSE values of NOx emissions and CO2 emissions are 6.8% and 6.6% respectively.

As can be seen from the studies mentioned above, 3D CFD, semi-empirical, phe-

nomenological, reaction kinetics, and artificial neural networks are preferred for NOx

emission prediction. The models mentioned can be ordered with their computational

time requirement as thermodynamical models, phenomenological models, reaction ki-

netics based models and 3D CFD models. The thermodynamical models have the

lowest computational time required for calculation [14], [38] and 3D CFD models have

the highest. For example, with 1D based models; the duration required for collecting

data at ten different engine speed and 20 different load points is approximately a couple

of hours on a desktop workstation. On the other hand, via 3D CFD or SRM models;

the duration needed for the same operation may be a week or even higher. Besides the

complexity level of these methods increase in the same order. 1D thermodynamical

models have the lowest complexity [14], [38]. Using a single cylinder thermodynam-

ical model rather than a detailed model (six-cylinders) can even further reduce both

complexity and computational costs.

Furthermore, the minimum data requirement for thermodynamical model genera-

tion and correlation is lower in comparison to other models. For example; the artificial

neural network based emission prediction methods are generally highly dependant on

test data for creating the maps that are used for emission prediction. This condi-

tion makes artificial neural network model use at early stages of engine development

infeasible.

However, thermodynamical models are physical-based models. It is possible to

generate the thermodynamical models at early stages of engine development and cor-
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relate with single cylinder test or 3D CFD data collected at a few operating points.

Then, it is possible to predict the engine performance outputs for full engine speed and

load range.

Thermodynamical models can be used for various engine operation modes such

as HCCI, PCCI, engine types CI, SI, and fuels such as liquified natural gas (LNG),

biodiesel, etc. with high accuracy. Although 1D-Stochastic reactor model coupling

studies offer promising accuracy at different operating points; this accuracy range is

generally restricted with HCCI or SI operation modes.

If a robust and accurate method is developed for emission prediction via 1D

thermodynamical model, generic engine models can be modified and used at early

development stages as well. In this thesis, the focus is on an alternative way of emission

prediction via thermodynamical models. Emission prediction capability of correlated

1D engine models is investigated to develop a fast and accurate methodology of emission

prediction.

In this thesis; a new methodology is developed in order to enable fast and accurate

NOx emission prediction via an alternative way: 1D Thermodynamical Models. The

methodology developed within the scope of this thesis is proven that;

• Engine performance parameters that cannot be measured in actual tests can be

used to increase prediction accuracy.

• The methodology is effective even at very early stages of engine development.

• The methodology does not require excessive test data.

• Accuracy is very high.

• The methodology is independent from engine volume, power or combustion char-

acteristics.
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3. THEORETICAL BACKGROUND

Available 1D engine simulation tools offer an advanced understanding of internal

combustion engines. That’s why 1D engine simulation software programs are increasing

their popularity in many studies on engine performance, cooling system, lubrication

system, acoustics and electrification since they reduce the size of optimization space in

these problems via providing fast and accurate simulation results. AVL Boost, Ricardo

Wave and GT-Suite of Gamma Technologies are some examples of today’s most popular

thermodynamical analyses tools.

In this thesis, GT-Suite tools such as GT-Power and Gem-3D are used. GT-

Power is mainly used for engine performance model generation and simulations. This

tool solves unsteady conservation equations in one dimension. On the other hand, Gem-

3D tool is used for converting three dimensional CAD geometries into one-dimensional

models.

There are many significant advantages of 1D thermodynamical models such as:

• It is a cost-effective solution since the simulation duration of thermodynamic

tools are significantly lower in comparison with 3D simulations, stochastic reactor

model or phenomenological models.

• It is possible to use these models for multi-purposes such as engine performance

development studies, thermal management based projects, acoustics or electrifi-

cation studies.

• It is possible to lower actual dynamometer tests via correlated engine performance

models.

• These models are able to run real-time. Hence, it is poosible to couple them with

Hardware in the Loop (HIL) systems.

Many OEMs are preferring these codes to perform engine performance simulations

to cover some critical studies such as:
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• Engine performance target setting

• Fuel consumption and emission analyzes

• Valve timing analyzes

• EGR capability

• High altitude simulations

• Component selection

• Intake or exhaust system geometrical design

• Engine brake simulations

• Technology evaluation at the early stages of engine development

3.1. Theory of 1D Simulations

1D simulations are mainly based on the assumption that the axial velocity com-

ponent is much larger than the velocity components in the cross-sectional plane. The

governing equations for 1D simulation are continuity, momentum and energy equations.

3.1.1. Governing Equations

In GT-Suite, the whole system is discretized to small volume elements by dividing

each flow split or pipe elements to different subsections. It connects these volumes via

creating boundaries. Then; simplified continuity, momentum and energy equations are

solved simultaneously. Total internal energy, density and mass flow are the critical

outputs. In these calculations, all quantities are calculated via averaging through the

flow direction. Calculations are mainly based on staggered grid configuration, shown in

3.1. In this configuration, scalar variables such as pressure, total enthalpy, temperature,

density, total internal energy and species concentrations are calculated at the centre

of the volume. On the other hand velocity, mass flux are computed at each boundary.

The conservation equations for each control volume are shown in Equations 3.1, 3.2

and 3.3.
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Figure 3.1. The volume elements evaluation points [3]

3.1.1.1. Continuity.

dm

dt
=

∑
boundaries

ṁ (3.1)

3.1.1.2. Momentum.

dṁ

dt
=

dpA+
∑

boundaries

(ṁu)− 4Cf
1
2
ρu|u|dxA

D
−Kp

(
1
2
ρu|u|

)
A

dx
(3.2)

3.1.1.3. Energy.

d(me)

dt
= p

dV

dt
+

∑
boundaries

(ṁH)− hAs(Tfluid − Twall) (3.3)

3.1.2. Time Step Calculation

The flow solution is carried out by integration of the conservation equations in

both space and time. This integration is either implicit or explicit [3].

3.1.3. Explicit Method

The initial solution variables in the explicit method are internal energy, mass flow

rate and density. The values of mass flow, density and internal energy at each new
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time step are calculated based on the conservation equations.

In the explicit method, values from the previous time step are used for computing

the right-hand side of the equations. This allows the value at the new time to be

calculated by integration of that derivative over the time step by yielding the derivative

of the primary variables. The time step must be limited to fulfill the Courant condition

to guarantee numerical stability.

This method is not generally preferred for relatively long simulations since small

time steps are required. But capturing the extremes of the flow characteristics espe-

cially for highly unsteady flow would be the most suitable case for explicit method. To

obtain more accurate predictions of pressure pulsations encountered in fuel injection

systems or engine air flow is smooth with this method. Some system analyses such

as lubrication, injection, or hydraulic system simulations work well with the explicit

method. For example, cooling analyses do not require a detailed calculation of pressure

pulsations. So cooling system simulations are generally accomplished with the implicit

flow solver.

At each time step, the pressure and temperature are calculated in the following

way [3]:

• Mass and energy in the volume are calculated via continuity and energy equations

• The density is calculated by using the calculated volume and mass.

• To define density and energy as a function of pressure and temperature, the equa-

tions of state is defined for each species. Iterations on pressure and temperature

are initiated and proceeded until they satisfy the density and energy already

calculated for this time step.

3.1.4. Implicit Method

Mass flow, pressure, and total enthalpy are the primary solution variables in the

implicit method. The energy equation is written in terms of enthalpy. This method
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calculates the values of all sub-volumes at the new time step concurrently, by iteratively

determining a non-linear system of algebraic equations. Implicit method is beneficial

for fluid systems in which high-frequency pressure fluctuations are not of interest (i.e.

cooling systems). Besides, this approach is useful if simulation durations are significant

since it enables proceeding with large time steps. It is critical to note that using

relatively large steps with a stable solution exceeds the CPU cost of an iterative solution

for each step. Since implicit method provides a significant advantage in terms of speed;

it may be preferred only in simulations that satisfy both of the following criteria [3]:

• Insignificant wave dynamics exist in the system, or accurate calculation of wave

dynamics is unnecessary.

• The highest Mach number in the system is smaller than 0.3.

3.1.5. Discretization

Discretization is performed to split the large parts into smaller sections. Dis-

cretization aims to enhance the accuracy of the calculations.

3.2. Pipes

To model pipe objects, CAD data of these components are needed. Via using

Gem-3D tool embedded in GT-Suite, it is possible to discretize the pipes into small

tubes. Pipe templates varying with respect to geometrical features are available in

GT-Suite library. It is essential to correctly set the friction multiplier, heat-transfer

multiplier, and the pressure loss coefficients for effects of other geometry. These data

are generally gathered from suppliers. The length and cross-sectional area of the pipe

should be conserved [3].

Generally encountered flow related losses can be listed as below:

• Expansion losses

• Narrowing losses
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• Pipe surface friction losses

• Geometrical losses

• System elements losses

3.2.1. Friction Losses

By using the surface roughness of the walls and Reynolds number, it is possible

to calculate the flow losses due to friction. The friction factor of smooth walls is given

by:

Cf =
16

ReD
in laminar region, ReD < 2000 (3.4)

Cf =
0.08

Re0.25D

in turbulent region, ReD > 4000 (3.5)

with a transitional region in between. When the wall surface is rough, and the flow is

not laminar, the value of the friction coefficient is the larger coefficient calculated via

equations 3.4 and and can be represented with Nikuradse’s formula below:

Cf,rough =
0.25

((2 log10(
1
2
D
h

)) + 1.74)2
(3.6)

3.2.2. Pressure Losses

Bends or irregular cross-sections can result in pressure losses throughout the pipe.

In pipe objects, there are pressure loss coefficients that can be used as forward or reverse

pressure loss coefficients of pipe object. The pressure loss coefficient Kp is defined as:

Kp =
p1 − p2
1
2
ρV 2

1

(3.7)
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3.2.3. Heat Transfer

Heat transfer coefficients can be used to model the heat transfer from fluids

inside of pipes and flow split to their walls. The heat transfer coefficient is estimated

at every time step by using the wall surface roughness, the velocity of the fluid and the

thermophysical properties. The heat transfer coefficient of smooth pipes is computed

by using the Colburn analogy.

hg =
Cf

2
ρUeffCpPr

−( 2
3
) (3.8)

Surface roughness is one of the critical parameters on heat transfer coefficient.

For rough pipes, the heat transfer coefficient is calculated by using the equations and

[3].

hg,rough = hg

(Cf,rough

Cf

)n
(3.9)

n = 0.68Pr0.215 (3.10)

Internal heat transfer coefficient, the predicted fluid temperature, and the inner

wall temperature values are used to perform total heat transfer calculation. Wall

temperature is the critical part of heat transfer calculation. It is both possible to use

an already defined value to fix the wall temperature or make the model perform the

calculations automatically [3].

3.3. Wall Thermal Solution

Pipe and flowsplit wall temperatures will be calculated for the case that the ”Cal-

culated Wall Temperature option” is chosen. The internal heat transfer, the external

heat transfer, the thermal capacitance of the walls, and the initial wall temperature
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entered by the user are the main parameters that are used for pipe and flow split wall

temperature calculations. Besides, by entering the required data in the ’WallThermal-

Boundary’ and ’WallThermalProperty’ reference object describing forced convection,

free convection, and radiation; it is possible to calculate the external heat transfer

which occurs from outside of the pipe walls to the environment. Typical values for the

external convection heat transfer coefficient are 5-20 W/m2K (for free convection of

air) [3].

3.4. Flow Connections

Links between different components are obtained via connection objects. These

connections are planes at which the momentum equation is solved to estimate the mass

flow and velocity.

Flow discharge coefficients must be entered in both directions for orifices, valves,

throttles and ball valves. These discharge coefficients are mainly originated from the

isentropic relations. For gases, discharge coefficients may be calculated by using fol-

lowing equations:

ṁ = AeffρisUis = CDARρisUis (3.11)

ρis = ρ0(Pr)
1
γ (3.12)

Uis =
√
RT0{

2γ

γ − 1
[1− P

γ−1
γ

r ]}
1
2 (3.13)

Cf =
4Aeff

πD2
(3.14)
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CD =
Aeff

πDL
(3.15)

3.5. Heat Transfer In Cylinder

Following equation is mainly used for calculating the heat transfer between com-

bustion chamber surfaces in the cylinder and the gas.

Q = hA(Tfluid − Tsurface) (3.16)

Heat transfer is calculated between each fluid and heat exchanger structure by

taking the effects of the wall thermal capacitance into consideration.

dTwall

dt
=
QM+QS

ρV Cp

=
(hA∆T )M + (hA∆T )S

ρV Cp

(3.17)

Equation 3.17 is used to calculate the temperature of the structure from a balance of

the heat transfer rates between the structure and two fluids [3].

Heat transfer coefficient is calculated from Woschni formulation as below [3]:

h = D−0.2P 0.8
c T−0.53

c (C1Upiston

[
1 + 2

(VUDP

VC

)2
IMEP−0.2

]0.8
(3.18)

where C1 is the calculated value from piston mean velocity and gas velocity with the

following equation:

C1 = 2.28 + 0.308
Cu

Upiston

(3.19)

Hence; it is possible to calculate the heat transfer between piston, engine block

and liner structures. In order to perform a proper computations below parameters
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need to be entered to the model [39].

• Heat capacity of the materials

• Surface thickness

• Surface area for heat transfer

• Engine oil temperature

• Cooling water temperature

3.6. Combustion and Emissions

3.6.1. Combustion

Combustion is simply the fast chemical combination of a substance with oxygen,

resulting as the generation of heat and light. It occurs via the transfer of a determined

amount of unburned fuel mass and air along with the affiliated enthalpy from an un-

burned zone to a burned zone in the cylinder. The main result is the release of the

chemical energy in the fuel-air mixture. Combustion model simulates the amount of

energy generated during combustion [4].

3.6.2. Burn Rate

During the combustion process, fuel and air molecules are transferred to the

burned zone from the unburned zone and begin to engage in the chemical reactions.

Burned rate represents the rate of the process. In other words, it is the instantaneous

rate of fuel consumption within the cylinder combustion process. The combustion rate

is controlled by the burn rate [4].

3.6.3. Heat Release Rate

During the combustion, the energy stored in the fuel molecules is released in

the cylinder as thermal energy. The instantaneous rate of this process is the so-called

heat release rate. This quantity deviates from the burn rate since the fuel-air mixture
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entering the equilibrium equations does not break down spontaneously into its final

products of combustion [3], [39].

3.6.4. Combustion Models

In 1D models, it is possible to model diesel combustion in various ways. These

can be listed as :

3.6.4.1. Imposed Heat Release Rate. By using the measured in-cylinder pressure curves,

it is possible to generate heat release rates. One can prefer embedding these heat re-

lease rates directly to the engine model. The main drawback of this methodology is;

the integrated heat release rates will only represent one operating mode with one set of

calibration set points. For the case that user needs to work with different calibration

set points, the embedded heat release rate values will differ from reality.

3.6.4.2. Diesel Wiebe Model Generation. Alternatively it may be preferred to gener-

ate a semi-predictive combustion model by utilizing from Wiebe function concept.

W = 1− exp
(
− AWI

( θ

BDUR

)(WEXP+1))
(3.20)

Equation 3.20 represents the main diesel Wiebe formula [3] which consists of three main

parts. The first parameter is the crank angle for %50 fuel burned, the second one is the

calculated duration between the crank angles valid for %10 and %90 burned of fuel, and

the third one is the exponential value of Wiebe curve. In GT-Suite this combustion

model is represented by nine different parameters to increase the accuracy. These

parameters are ignition delay, premixed fraction, tail fraction, premixed duration, main

duration, tail duration, premixed exponent, main exponent and tail exponent. A set

of parameters which provides results in good agreement with tests is needed.

3.6.4.3. DI-Pulse Model Generation. As final alternative DI-Pulse models can be uti-

lized. DI-Pulse is a predictive combustion model generated for modelling different in-
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jection strategies. DI-Pulse predictive combustion model mainly represents the diesel

combustion phases. These phases are ignition delay (the difference between the start

of injection and the start of combustion), premixed combustion (rapid combustion

period), diffusion controlled combustion and late combustion (combustion of poorly

distributed fuel particles). DI-Pulse mainly calculates these four critical regions of

combustion. To perform the evaluation, DI-Pulse models need energising time, rail

pressure and injected quantity maps for the injector. These maps are generally gath-

ered from suppliers. Details of this model are in Section 5.1.

3.7. Engine Friction and Auxiliary Loads

In 1D Models, an empirically derived model which states that total engine friction

is a function of peak cylinder pressure, mean piston speed, and mean piston speed

squared, is in use. Equations 3.21 and 3.22 are showing the formulas used for engine

friction calculation.

FMEP = C + (PF PFP) + (MPSF MPS) + (MPSFF MPS2) (3.21)

Piston Speed = 2*S*RPM/60 (3.22)

3.8. Indicated, Gross and Pumping Mean Effective Pressure Calculations

The mean effective pressure (MEP) is a valuable comparative engine performance

measure and is achieved by dividing the work done per cycle by the cylinder(s) total

displaced volume per cycle. It is the assumed pressure, which is considered to be acting

on the piston during the power stroke. There are other critical engine performance

related terms such as Gross Mean Effective Pressure (GMEP), Pumping Mean Effective

Pressure (PMEP), Indicated Mean Effective Pressure (IMEP), Brake Mean Effective

Pressure (BMEP) and Friction Mean Effective Pressure (FMEP); which are derived by

the use of MEP definition.
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Gross mean effective pressure (GMEP) and pumping mean effective pressure

(PMEP) values represent positive and negative work of PV diagram; respectively. In-

dicated mean effective pressure (IMEP) is the net work of cylinder. Friction mean

effective pressure (FMEP) is the theoretical mean effective pressure needed to over-

come engine friction. It can be also considered as mean effective pressure lost due to

friction. As a last parameter, brake mean effective pressure (BMEP) is the mean effec-

tive pressure computed from the dynamometer power (torque). The relation between

these parameters are:

GMEP + PMEP = IMEP (3.23)

IMEP - FMEP = BMEP (3.24)

3.9. Turbines and Compressors

It is possible to model turbine and compressor performance by utilizing from

supplier based performance maps. These maps mainly consist of a series of performance

data points, each of which describes the operating condition by speed, pressure ratio,

mass flow rate, and thermodynamic efficiency. For the case that the speed and either

the mass flow or pressure ratio are known, the efficiency, pressure ratio and the mass

flow rate can be calculated via these maps. A representative turbocharger map is shown

in Figure 3.2. The pressure ratio (PR) and the turbocharger speed are calculated at

each time step. The mass flow rate and efficiency are then looked up in the table and

imposed in the solution. The mass flow rate from the map lookup is then forced as a

flow boundary on the volumes near to the turbine/compressor. By using the change in

enthalpy across the turbine and compressor, the imposed outlet temperature value is

calculated. The enthalpy difference, and consequently the power produced/consumed

by turbines/compressors, are derived from the efficiency as follows [3]:
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Compressor :

hout = hin + ∆hs
1

ηs
(3.25)

P = ṁ(hin − hout) (3.26)

∆hs = cpTtot,in(PR
γ−1
γ − 1) (3.27)

Turbine :

hout = hin −∆hsηs (3.28)

P = ṁ(hin − hout) (3.29)

∆hs = cpTtot,in(1− PR
1−γ
γ ) (3.30)

Total temperature is:

Ttot,in = Tin +
u2in
2cp

(3.31)

The fluctuation of the mass flow rates can be encountered in compressors. This is

mainly originated from the briefly crossed stall or surge line or because of the flat speed

lines. This condition results as significant changes in mass flow rate even though only
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Figure 3.2. Example turbocharger map: efficiency map vs PR and speed [3]

small changes in pressure ratio is encountered. To reduce the magnitude of any extreme

fluctuations in the compressor mass flow rate, the code has a damping mechanism

(representing the physical damping nature of the air mass and momentum inside the

compressor).

3.10. 1D Model Generation

In this section, geometrical properties of a 1D engine model, dynamometer cor-

relation parameters, and general correlation steps will be mentioned.

3.10.1. Geometrical Composition of 1D Model

All 1D Model generation studies must be initiated with CAD data evaluation.

Model geometry needs to be transferred from 3D Geometry. To do this, Gem3D tool

embedded in Gt-Suite can be used. This tool can open CAD files and enables slicing,

meshing, and discretization of any components such as pipes, flow splits, junctions,

manifolds, etc. Selection of the cutting planes is critical since they represent the dis-
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cretization of the components. Figure 3.3 is a representative illustration of the process.

Figure 3.3. Discreatization of 3D geometry to 1D model [3]

3.10.2. Main Modeling inputs

There are many critical data that must be gathered before engine performance

model generation. These data will be used as the main inputs of the model. Most

crucial ones are listed as below:

• Engine type as SI or DI

• Cylinder unit

• Stroke number for one cycle

• Ignition sequence

• Friction (Chenn-Flyn) parameters

• Valve radius

• Valve Opening

• Valve Timing and Flow Coefficients

• Cylinder stroke, radius, and compression ratio

• Reference conditions of engine simulation

• Length and radius of pipes

• Surface roughness

• Heat transfer parameters

• Heat transfer and friction coefficients

• Wall temperature

• Discretization length

• Initial conditions
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• Pressure loss coefficient

1D Engine performance models include all systems such as;

• Low pressure intake system: pipes, air filter

• Compressor

• High pressure intake system: pipes, charge air cooler geometry and throttle

• Intake Manifold

• Cylinders, cranktrain

• Exhaust Manifold

• Turbine

• Aftertreatment System (ATS)

3.10.3. Dynamometer Data

After creating the model, the very first step is to perform the correlation of the

model to test data. To accomplish this goal, dynamometer tests must be completed.

In these tests, below-listed channels must be gathered via proper sensors.

• Engine rpm

• Engine power

• In-cylinder pressure curve

• Specific fuel consumption

• Air mass flow

• Fuel mass flow

• Pressure and temperature of inlet and exhaust manifolds

• Cooling water and oil temperature

• Compressor and turbine inlet and outlet pressure and temperature

• Turbocharger shaftspeed

• Charge air cooler inlet and outlet pressure and temperature

• Throttle inlet and outlet pressure and temperature
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• EGR cooler inlet and outlet pressure and temperature

• Peak firing pressure (PFP)

• NOx, soot emissions

• Main, plot, post start of injection timings and quantities.

• Rail Pressure

• EGR Rate calculation

The examination of dynamometer data is crucial since in many cases some prob-

lems such as leakages, automatization failures, sensor failures and engineer based errors

exist. To eliminate issues mentioned above, test data may be compared with previous

calibration data or with another similar engine’s test data.

After completing the initial diagnostics of the test data, the model correlation

step can be initiated. To proceed in model correlation, 1D engine performance model

simulations must use the dynamometer calibration set points. Then the comparison of

previously mentioned channels needs to be performed. If the model results are in good

agreement with error bands derived from dynamometer data; model correlation process

is successfully accomplished. In this thesis, two different heavy-duty diesel engine

models are generated. Correlations both engine models are performed to dynamometer

test data. Error band has been defined for pressure measurements as ± 3%, mass flow

measurements as ± 3%, and power as ± 3%. Mean effective pressure values are defined

as ± 3%.

3.10.4. 1D Engine Model Correlation

After generating a 1D engine performance model, correlation studies can be ini-

tiated via tracing five main correlation steps. These steps can be summarized as air

inlet, charge air system, exhaust system, base engine model and full model correlation.

3.10.4.1. Air Inlet System Correlation. Low-pressure air inlet system correlation is

critical since it derives the compressor inlet boundary conditions. In the correlation of
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the system, the main goal is to correlate the pressure drop at the desired air mass flow

rate. Target values are generally calculated with the data obtained from suppliers or 3D

CFD analyses. Once the target pressure drop is set for a constant air mass flow; then the

first correlation step can be initiated. Sub-model starting with air inlet to compressor

inlet is generated. Inlet boundary conditions for this sub-model is ambient pressure

and temperature. Outlet boundary conditions are compressor inlet temperature and

air mass flow. By arranging the diameter of one of the selected nozzles, the pressure

drop across the system is correlated to pre-defined targets.

3.10.4.2. Charge Air Cooler System Correlation. Charge temperature increases after

the compression process in compressor. However, to increase the amount of fresh air

charge within the cylinders, lower charge temperature values are needed. Charge air

cooler or intercooler systems are in-use to fulfill that purpose. As it was mentioned

in the Section 3.10.4.1, the main goal is to correlate the pressure drop at the desired

air mass flow rate. The target value for the correlation is calculated by using both

charge air cooler supplier data and 3D CFD pressure loss analyses for the surrounding

pipes and junctions. Once the target is set for the whole system, a sub-model must be

created for the correlation. Inlet boundary conditions for this sub-model is compressor

outlet pressure and air mass flow. Outlet boundary conditions are charge air cooler

outlet pressure and temperature. By tuning the diameter of one of the selected nozzles,

the pressure drop across the system is correlated to pre-defined targets.

3.10.4.3. Exhaust System Correlation. Exhaust system modelling is the other correla-

tion step of engine model. Exhaust systems pressure drop vs exhaust mass flow target

point is generally created by adding the pressure drop values of the aftertreatment sys-

tem components such as diesel oxidation catalyst (DOC), selective catalytic reduction

(SCR) and diesel particulate filter (DPF) systems. These pressure drop values are gen-

erally gathered from suppliers, separately. Once the target pressure drop value is set,

the sub-model generation is performed. Inlet boundary conditions for this sub-model

is turbine outlet temperature and exhaust mass flow. Outlet boundary conditions are

ambient temperature and pressure. By tuning the diameter value of a selected nozzle,



33

the pressure drop correlation of the whole system can be accomplished. In exhaust

system submodels, modelling the main system components such as DOC, SCR and

DPF is not an obligation. It is possible to proceed by only tuning the pressure drop

effects of these systems to reduce the model complexity and simulation durations.

3.10.4.4. Base Engine Correlation. As it is mentioned above, the sub-section model

correlation studies are mainly for tuning the pressure drop of these systems to the

pre-defined targets. However, the base engine correlation primarily focuses on both

combustion and air mass flow correlation. To accomplish this goal, a base engine sub-

model must be generated. Inlet boundary conditions for this sub-model is intercooler

outlet pressure and temperature. Outlet boundary conditions are turbine inlet pressure

and temperature. In the correlation of the base engine sub-model, main combustion

parameters can be tuned to obtain targeted brake torque and exhaust manifold temper-

ature values. Besides; if the valve timing, model geometry and the used set points (such

as intercooler outlet pressure and temperature) are correctly set, then it is expected to

obtain the air mass flow in good agreement with test data.

3.10.4.5. Full Engine Correlation. After performing the correlation of models men-

tioned above, it is possible to integrate them all to create the full engine performance

model. In the entire engine model generation, turbine and compressor objects are also

integrated with the subsystems mentioned above. The full model must be run with the

dynamometer set points such as boost pressure target, air mass flow target, injected

fuel quantity and timings. Then, the final comparison of the full model outputs with

the dynamometer test data must be done.

It is important to emphasize that, in many cases, users may select to proceed

with full engine model correlation only. It is also possible to generate the full model

and perform all of the correlation steps mentioned above on the full model rather than

different sub-models. After creating the full engine performance model, it is possible

to fulfill the pressure drop targets by the aid of different PID control mechanisms

providing the correct nozzle diameters. Hence, the correlation of the model can be



34

performed with less effort. The only complexity is to find out the correct P and I gains

for PID control mechanisms.
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4. 9L HEAVY-DUTY DIESEL ENGINE STUDIES

4.1. 1D Engine Model and Calibration

Thermodynamical engine model of a 9L heavy-duty diesel engine is generated in

GT-Suite software by using CAD geometries valid for intake and exhaust manifolds,

intake and exhaust system piping, and also critical inputs such as valve timings, firing

order, turbocharger, charge air cooler, and EGR cooler performance data. All of the

required data was mentioned in Subsections 3.10.2 and 3.10.3. Table 4.1 shows the

specifications of the heavy-duty diesel engine used for methodology development.

Table 4.1. 9L HD diesel engine specifications

Parameter Value

Volume 9L

Max Power 330 PS

Compression ratio 16.5:1

Bore 130 mm

Stroke 160 mm

Number of Cylinders 6

Injection System Common Rail

Injection System Pressure 1800 bar

Direct Injection Diesel Wiebe Model (EngCylCombDIWiebe) is used for com-

bustion modelling [40]. This function imposes the burn rate for direct injection diesel

engines using nine parameter Wiebe function. These parameters are ignition delay,

premixed fraction, tail fraction, premixed duration, main duration, tail duration, pre-

mixed exponent, main exponent and tail exponent. To ensure that these parameters

are correctly set for different operation conditions critical engine performance output

values such as; peak firing pressure values, turbine inlet temperature and brake torque

values should be thoroughly compared with test data. Besides, the comparison of in-
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cylinder pressure curves between model and test data is a necessity. Correlation of

above-listed performance outputs should be within accepted margins to use a thermo-

dynamical model for further studies.

Diesel Wiebe combustion model is valid for direct injection engines. This model

typically uses a single injection time corresponding to the main injection and does not

consider pilot and post-injection processes. However, the amount of fuel delivered is

the total quantity of fuel in all of the injections. The experimentally measured start of

injection (SOI) values hence cannot be used in 1D engine model directly. It is essential

to find out the engine model representative start of injection values by correlating the

thermodynamical model to test data.

The primary inputs of the thermodynamical model are air mass flow target (to

define EGR rate), boost pressure and temperature, injected total fuel quantity, engine

speed and maximum in-cylinder pressure. Air mass flow rate values are targeted in the

model via using a PID controller which adjusts EGR valve position. To secure that

the correct EGR rate is achieved in the model; boost and turbine inlet pressure, and

temperature values should have a good correlation with test data.

Fuel loop is a naming convention used in dynamometer testing. A fuel loop test

requires data collection at engine speed and load values spanning the full operation

range (0% to 100%). In this section of the study, three different fuel loop data are

gathered in dynamometer tests.

The primary goal is to collect sufficient data covering different feedgas (engine

out) NOx levels for methodology generation and validation. It is aimed to investigate

the accuracy of the methodology with the same hardware and at same engine speed

and torque values but at different operating conditions such as air flow, boost pressure,

turbine inlet temperature, and hence different emission outputs. Collecting the fuel

loop data at different boost temperature values served explicitly to this purpose. Table

4.2 shows the boost temperature values of the three different fuel loop data sets mea-

sured in the dynamometer tests. In each of these three experiments, data are collected
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at 140 different operating points corresponding to 10% intervals of engine load at dif-

ferent speeds. Figure 4.1 shows the operating locations used in the measurements of

fuel loops. Same operating points are used for all three fuel loop. The y-axis represents

the brake torque values non-dimensionalized with maximum brake torque value.

Table 4.2. Fuel loop data sets

Test Data: Boost Temperature Number of Points

Fuel Loop 1 30 oC 140

Fuel Loop 2 40 oC 140

Fuel Loop 3 50 oC 140
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Figure 4.1. Fuel loop points

Fuel loop 1 is used for model correlation. Figures 4.2-4.11 show the comparison

between model predictions and the test measurements under full load conditions.

Figures 4.2,4.3, 4.4, 4.5 and 4.6 show that non-dimensional IMEP, GMEP, BMEP,

PMEP and FMEP are mostly within ± 3% accuracy band indicating that accuracy of

combustion and friction models is quite good. The main contribution of PMEP is the

difference between turbine inlet pressure and boost pressure. Increase in this difference

results as an increase in pumping losses. In this study, the fuel loop correlation was

performed with high accuracy in both turbine inlet pressure and boost pressure. Hence,

for any operating condition, the thermodynamic model calculates the pumping losses
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accurately.

Generally, thermodynamical models need some efficiency or mass flow multipliers

to ensure a good correlation of compressor outlet temperature and turbine inlet pres-

sure values. This condition is mainly a result of miscalculated heat transfer or ignored

friction values during turbocharger map generation in a turbocharger test bench. To

keep the model outputs in alignment with dynamometer test bench data, efficiency

multipliers (located in the thermodynamic model’s turbocharger objects) can be used.

Figure 4.7 and 4.8 show that compressor outlet pressure and compressor outlet temper-

ature values lay within the acceptable ± 3% and ± 10 oC accuracy bands respectively.

Figure 4.9 and 4.10 show that turbine inlet pressure and turbine inlet temperature val-

ues are also within the acceptable ± 3% and ± 50 oC accuracy bands respectively. In

this study use of such efficiency multipliers are not needed and compressor and turbine

maps successfully cover the real test conditions, including heat transfer, friction, etc.

Figure 4.11 shows that model in-cylinder pressure values are also in good corre-

lation with test data. The peak firing pressure outputs of the model are mostly within

±2.5 bar difference range.
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Figure 4.2. Full load correlation comparison: BMEP
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Figure 4.3. Full load correlation comparison: GMEP

Figure 4.4. Full load correlation comparison: PMEP
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Figure 4.5. Full load correlation comparison: FMEP

Figure 4.6. Full load correlation comparison: IMEP
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Figure 4.7. Full load correlation comparison: compressor outlet pressure

Figure 4.8. Full load correlation comparison: compressor outlet temperature
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Figure 4.9. Full load correlation comparison: turbine inlet pressure
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Figure 4.11. In-cylinder pressure curve comparisons at different operating points
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Figure 4.12 shows NOx emission measurements for three different fuel loops.

Nondimensional contour plots are generated by dividing the measured values by the

maximum NOx measured value. HORIBA PG-250 multi-gas portable analyzer is used

to gather NOx emissions data. Technical specification of the device is showing that the

measurement accuracy for NOx emission is ± 1%. Repeatability of HORIBA device

is ± 0.5% with respect to a reference point. Fuel Loop 3, which is the loop with the

highest boost temperature shows the highest NOx emissions. Maximum NOx values

are encountered near the full load range, especially in the 1200-1600 rpm range in all

of these fuel loops.

4.2. NOx Model and Calibration

In the proposed method, the NOx emissions are calculated by using the extended

Zeldovich mechanism embedded in the GT-Suite based thermodynamical model. Table

4.3 shows the reactions representing the extended Zeldovich mechanism and their rate

equations. All reactions are two-way reactions and the rates shown in Table 4.3 are the

forward reaction rates. Use of equilibrium constant and the forward reaction rate gives

the reverse reaction rates. To tune the model NOx emission outputs to experimental

data, it is possible to employ a calibration multiplier which modifies the net rate of

formation.

Table 4.3. Extended Zeldovich mechanism reactions [3]

Reaction Forward Reaction Rate Unit

N2 + O = NO + N k1 = 1.8 108e−38370/T m3gmol−1sec−1

N + O2 = NO + O k2 = 1.8 104Te−4680/T m3gmol−1sec−1

N + OH = NO + H k3 = 7.1 107Te−450/T m3gmol−1sec−1

Once the model run with Fuel Loop 1 inputs, NOx outputs of the model are

compared with test data, the ratio between the model NOx and dynamometer NOx

values is called calibration multiplier. To enhance the models NOx emission prediction

accuracy, these multipliers can be utilized via generating suitable multidimensional
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Figure 4.12. NOx emission comparison of different fuel loops
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look-up tables. The inputs of these multidimensional look-up tables are different en-

gine performance parameters such as turbine inlet temperature, injected fuel quantity,

engine speed, etc. The only output is the NOx calibration multiplier. By utilizing from

the ”Multidimensional Table Look-up Using Scattered Data” object embedded into

GT-Suite, it is possible to generate and use different maps providing NOx calibration

multipliers. Use of these maps enables accurate NOx prediction with low computa-

tional resources. For example, it is possible to generate the NOx prediction for 100

points within only 30 minutes on a PC with an i7 CPU.

In the below studies, the aim is to find out the best engine performance parameters

for map generation. Hence, emission model is correlated by calculating the calibration

multipliers that provide ± 2% accuracy in comparison with experimental results for

each point in Fuel Loop 1.

Once the NOx calibration multipliers generated by using Fuel Loop 1 and mapped

via the use of different engine performance parameters; Fuel Loops 2 and 3 are run to

see the NOx prediction accuracy of the generated maps. These two fuel loops are not

used for map generation. They are only used for measuring the prediction capability

of the different maps.

So, the main steps of the correlation methodology can be summarized as listed

below:

(i) Generate engine model by using 3D CAD geometry, valve lifts, discharge coeffi-

cients, etc.

(ii) Perform fuel loop correlation of engine model to test data.

(iii) Compare the model NOx output and corresponding dynamometer data to calcu-

late NOx calibration multipliers for each case.

(iv) Generate maps of NOx calibration multipliers using different engine performance

parameters as inputs.

(v) Use different test data to evaluate the effectiveness of the generated maps. Com-

pare the results of different maps regarding emission prediction accuracy.
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(vi) Select the map with the highest accuracy.

It is shown in this study that, these methodological steps are valid independently

of the engine volume and power. One can use the same steps with a different engine,

as well.

4.3. NOx Calibration Multiplier Maps

To enhance the NOx prediction accuracy of the model, the selection of proper

map parameters has critical importance. Various parameters such as RPM, load, EGR

rate etc. are used for NOx calibration multiplier map generation by utilizing data of

Fuel Loop 1. This section includes the selection of input parameters used for the map

generation and the resulting NOx emission prediction accuracy obtained for fuel loops

2 and 3.

Independent variables such as test injection pressure, pilot and post-injection

timing and quantities are not used as primary inputs since these parameters are not

variables of Diesel Wiebe; the current combustion model. Air mass flow rate target

(to define EGR rate), boost pressure and temperature, injected total fuel quantity,

engine speed and maximum in-cylinder pressure values are the prime inputs in mod-

els including Diesel Wiebe combustion model. Utilising injection pressure, pilot and

post-injection timing and quantities as direct inputs require the use of a predictive

combustion tool, like DI-Pulse. However, in DI-Pulse; user needs detailed information

(such as injector pulse widths, etc.) which are generally confidential for injector sup-

pliers. In this section, the methodology is generated without any need for such kind of

data. Heat release rates which are created by using Diesel Wiebe include the effect of

these parameters.

Sixteen different maps are generated by the use of eleven different parameters

which are engine speed (RPM), engine load (Load), EGR rate, turbine inlet tempera-

ture (TTURI), peak firing pressure (PFP), in-cylinder maximum temperature (TMax),

fuel flow rate, CA50, fuel-air ratio, EGR rate and rail pressure.
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To evaluate the effectiveness of different maps, two different methodologies are

employed:

(i) Pie charts showing the residencies of NOx emission prediction results are exam-

ined.

(ii) Non-dimensional Root Mean Square (nRMSE) values are calculated.

For the nRMSE calculations, below equations are used:

Error(%) = 100
NOx,model − NOx,test

NOx,test

(4.1)

Also, non-dimensional root mean square error (nRMSE) values are calculated

via Equations 4.2 and 4.3. RMSE values are non-dimensionalized to obtain proper

comparison of accuracy results between different engine variants.

RMSE (ppm) =

√
1

n
Σn

i=1

(
NOx,test − NOx,model

)2
(4.2)

nRMSE (%) = 100
RMSE

NOx,max − NOx,min

(4.3)

Engine speed is selected as the first parameter since it mainly represents the air

flow capability, friction and pumping losses which indirectly affect the NOx emission

formation. Besides, in the literature there are many studies using engine speed param-

eter for NOx emission prediction [41], [42], [43]. EGR flow is also chosen since EGR

flow is one of the main parameters showing a significant trend on NOx formation.

Hence, engine speed and the EGR flow parameters are selected as the initial input

parameters used in the production of the first NOx calibration multiplier map. Once

the map is created with the outputs of fuel loop 1, fuel loops 2 and 3 are run with this
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map to see the NOx prediction capability.

Figure 4.13 shows the distribution of the points. In x-axis non-dimensional dy-

namometer NOx data, in y-axis non-dimensional model NOx values exist. Each black

points seen in Figure 4.13 belongs to one of the operating points. Maximum NOx value

is used for the non-dimensionalization. The black line is a linear line representing the

equation: x=y. Dashed lines are representing 10% and -10% variances with respect to

the linear line. These dashed lines are used in order to obtain a clear understanding

for distribution of the operating points. Calculated nRMSE is approximately 17%.
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Figure 4.13. Model vs. test data comparison: MAP1= f(RPM, EGR Flow)
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Flow)

Figure 4.14 represents the results shown in pie charts. Left hand side and right

hand side graphs are showing the model and test data difference values in delta and

percentage; respectively. As it is seen in the figure, 29% of total points are within 0-25
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ppm delta error band, and 47% of total points are within 0-15% error band.

It seems that the EGR flow parameter does not show the expected trend for NOx

prediction. One possible reason is the lack of EGR flow measurements in dynamometer

tests. Since experimentally measured EGR flow data are not available, the values are

generated via the thermodynamic models. Air mass flow rate values are targeted, and

EGR valve position is changed to reach the targeted air mass flow rates. So, EGR flow

values calculated from the thermodynamic model may represent significant differences

with respect to actual values. That may also be the explanation about the slight change

in NOx prediction of Map 9 regarding Map 8 that will be mentioned below.

In the second map, load parameter is also considered as an input parameter.

Load represents the operating condition of an engine at certain engine speed. Like

engine speed parameter, load is also selected as the primary input of emission based

prediction neural networks in many studies [41], [44]. Because it directly represents all

of the operating variables of an engine; not only injected flow, start of injection etc.

but also friction and pumping losses, as well.

The distribution of the points can be viewed in Figures 4.15. nRMSE of this map

is approximately 14%. As Figure 4.16 shows, 30% of total points lay between 0-25

ppm delta error band, and 49% of total points prevailed between 0-15% error band.

Although the use of the engine load as an additional input gave slightly better results,

the map is not still sufficiently accurate.

Since NOx emissions are the primary function of in-cylinder temperature and

combustion characteristics, it is decided to use turbine inlet temperature as one of

the inputs for the map generation. The turbine inlet temperature is critical in engine

combustion. It mainly depends on fuel/air equivalence ratio, injection timing and

engine speed. All these parameters have significant effects on combustion. Generally,

at the same operating point, higher efficiency results in lower turbine inlet temperature

and higher NOx formation.
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Figure 4.15. Model vs. test data comparison: MAP 2= f(RPM, Load, EGR Flow)
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On the contrary, lower combustion efficiency results in higher turbine inlet tem-

perature and lower NOx formation. Turbine inlet temperature, engine load, and EGR

flow are parameters for the third map. Figure 4.17 shows that this map did only pro-

vide a small difference in the accuracy of the predictions, and nRMSE, which is 21%,

is still too high. The distribution of the points is expressed with pie charts in Figure

4.18.
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Figure 4.17. Model vs. test data comparison: MAP 3= f(TTURI, Load, EGR Flow)
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Figure 4.18. Model vs. test data comparison in pie charts: MAP 3= f (TTURI, Load,

EGR Flow)

In the fourth map, maximum in-cylinder pressure, in other words, peak firing

pressure (PFP) is added to the previous map. It is known that the maximum in-

cylinder pressure value is an essential result of in-cylinder combustion. The maximum

value of in-cylinder pressure has grand importance and effect on in-cylinder maximum

temperature values and hence on NOx emissions. Combustion at higher speed results

in higher in-cylinder maximum temperature and pressure values. Higher in-cylinder
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temperature values mostly result in higher NOx formation. At the same operating

point, lower maximum in-cylinder pressure values are encountered as a result of re-

tarded combustion which means lower peak firing pressure, temperature and higher

exhaust temperature. So, like in-cylinder maximum temperature, peak firing pressure

values can also be selected for a better NOx prediction.

nRMSE of the fourth map is better than the previous one: 19%. The distribution

of the points is shown in Figure 4.19. As a result of the fourth map; 35% of total points

lay between 0-25 ppm delta error band, and 55% of total points couched between 0-15%

error bands (Figure 4.20). Hence, almost 5% enhancement is obtained on both delta

and percentage differences.
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Figure 4.19. Model vs. test data comparison: MAP 4= f(TTURI, Load, EGR Flow,

PFP)
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A fifth map is generated by employing turbine inlet temperature and engine

load only to understand the particular impact of PFP. Accuracy is lowered for this

map proving that PFP is an essential parameter for NOx prediction. nRMSE remains

almost the same: 19%. The comparison of the points can be seen in Figure 4.21. Figure

4.22 is also showing the distribution of the error in both delta and percentage forms.
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Figure 4.21. Model vs. test data comparison: MAP 5= f(TTURI, Load)
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Figure 4.22. Model vs. test data comparison in pie charts: MAP 5= f (TTURI, Load)

The sixth map includes turbine inlet temperature and maximum in-cylinder tem-

perature parameters. In this map; the effect of maximum in-cylinder temperature

is investigated. It is evident that there is a strong correlation between in-cylinder

maximum temperature and NOx formation. In-cylinder maximum temperature is a

significant parameter on NOx prediction since higher in-cylinder maximum temper-

ature values result as higher NOx formation. Although in dynamometer tests, it is

generally not possible or costly to collect in-cylinder maximum temperature values,

with a correlated thermodynamic model, it is possible to calculate it and use for NOx
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emission prediction.

It is found that some NOx calibration multipliers remain at very high values

(approximately 7 to 10). As a result, these relatively high values are reducing the

interpolation accuracy at the neighbour load-speed points. These high calibration

multipliers, which are so-called outliers, are calculated at points that dynamometer

test values are more than three times of model NOx values. The number of these points

are insignificant (approximately 1.5% of total map points), and their values are much

different than their neighbouring points. Since there is no trend about the physical

condition, these outliers are most probably encountered as a result of measurement

errors (such as HORIBA device or measurement duration related) in the dynamometer

tests. In the mapping process, these outliers are eliminated to increase accuracy.

It is essential to note that, the same investigation is performed for the previous

maps as well. However, the effect of outliers was not as decisive as they are in this

case. So outliers were not eliminated in the earlier maps.

Although the sixth map only includes turbine inlet temperature and maximum in-

cylinder temperature values, better accuracy with respect to previous maps is obtained.

nRMSE is significantly improved: 7.6%. Results can be seen in Figure 4.23. Also,

Figure 4.24 shows that 33% of total points lay between 0-25 ppm delta error band,

and 57% of total points lay between 0-15% error band. These results show that the

in-cylinder maximum temperature has critical importance for emission prediction.

Since the main contributors of the NOx emissions are in-cylinder temperature

and pressure values, the seventh map is generated based on these two parameters and

turbine inlet temperature. nRMSE slightly increases to 8.6%. The distribution of the

points can be seen in Figure 4.25. As it is shown in Figure 4.26 39% of total points lay

between 0-25 ppm delta error band and 60% of total points lay between 0-15% error

band.
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Figure 4.23. Model vs. test data comparison: MAP 6= f(TTURI, TMax) Without
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The load parameter is added to Map 7 parameters to generate Map 8. It is found

that adding load parameter for mapping has a slight improvement on NOx emission

prediction. Accuracy is enhanced and nRMSE decreases in comparison with the previ-

ous map: 7.8%. Figure 4.27 represents the comparison between the dynamometer test

data and model outputs. In Figure nRMSE slightly increases to 8.6%. The distribution

of the points can be seen in Figure 4.28 error distribution can be seen.
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Figure 4.25. Model vs. test data comparison: MAP 7= f(TTURI, TMax, PFP)
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Figure 4.26. Model vs. test data comparison in pie charts: MAP 7= f (TTURI,

TMax, PFP)

EGR flow parameter is added to Map 9 to enhance accuracy. However, a slight

decrease in accuracy is encountered. This situation is mainly because of the non-

linearity of EGR flow values and calculation errors encountered in the dynamometer

test. nRMSE slightly decreases to 8.9%. The comparison can be seen in Figure 4.29.

Besides, as it seen in Figure 4.30 41% of total points lay between 0-25 ppm delta error

band and 62% of total points lay between 0-15% error band.
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Figure 4.27. Model vs. test data comparison: MAP 8= f(TTURI, TMax, PFP, Load)
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Figure 4.28. Model vs. test data comparison in pie charts: MAP 8= f (TTURI,

TMax, PFP, Load)
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Figure 4.29. Model vs. test data comparison: MAP 9= f(TTURI, TMax, PFP, Load,

EGR Flow)
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Figure 4.30. Model vs. test data comparison in pie charts: MAP 9= f (TTURI,

TMax, PFP, Load, EGR Flow))

Hence, it is decided to eliminate the EGR flow from the map and introduce fuel

flow rate to increase the accuracy. Similar to the load parameter, injected total fuel

quantity is a direct representative of CO2 emission. Injected total fuel quantity is also

defining the air-to-fuel ratio for constant air mass flow rate, and it directly affects the

combustion. As a result of higher injected fuel quantity, higher engine operating loads

are obtained at a particular engine speed resulting in higher NOx emissions.

In Figure 4.31, the correlation between test and model outputs can be examined.

The regression graph shows that the model outputs seem to be in good correlation

with dynamometer test results. nRMSE of this map is the best among all, which

is 5.7%. Besides, as it is seen in Figure 4.32, 52% of total points lay between 0-25

ppm delta error band, and 74% of total points couched between 0-15% error band.

These results are showing that these five parameters: turbine inlet temperature, peak

firing pressure and temperature, engine load, and total injected fuel mass flow are the

foremost parameters to be used for NOx prediction.

Map 11 includes the effect of the CA50 parameter. CA50 is one of the critical

parameters which is characterizing the combustion phasing. It is the crank angle

position where 50% of the total heat release occurs. In this map, the turbine inlet

temperature parameter is replaced with CA50 since it shows the combustion location

and represents the premixed phase characteristics. It is found that the nRMSE is 5.8%

which is similar to the Map 10 results. This result has proven that the CA50 can also
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Figure 4.31. Model vs. test data comparison: MAP 10= f(TTURI, TMax, PFP,

Load, Fuel Flow)
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be used for the NOx emission prediction. Figure 4.33 shows the distribution of the

points. Figure 4.34 shows that 53% of total points lay between 0-25 ppm delta error

band, and 76% of total points couched between 0-15% error band.
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Figure 4.33. Model vs. test data comparison: MAP 11= f(CA50, TMax, PFP, Load,

Fuel Flow)
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Figure 4.34. Model vs. test data comparison in pie charts: MAP 11= f (CA50,

TMax, PFP, Load, Fuel Flow))

It is clear that the fuel flow parameter used in Map 10 is not a normalized

parameter and may lead to some troubles when trying to generalize the model. Instead,

it is replaced by the Fuel-Air equivalence ratio in Map 12, which is linked to the fuel

flow but expressed in a normalized way. This state would have a clear advantage when

trying to generalize the model (i.e. to use the same already calibrated model for another

engine). nRMSE value of this map is 6.2%. Figure 4.35 shows the variance between

model and test values. Figure 4.36 shows that 47% of total points lay between 0-25

ppm delta error band, and 70% of total points couched between 0-15% error band.
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Figure 4.35. Model vs. test data comparison: MAP 12= f(TTURI, TMax, PFP,

Load, Fuel-Air Ratio)
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In the previous maps, EGR flow was directly used. However, the EGR rate may

be a better NOx emission prediction parameter since, in reality, the EGR rate is the

most significant parameter that can be used for NOx control. EGR rate is calculated

in the engine model via Equation 4.4:

EGR Rate (%) = 100
EGR Flow

EGR Flow + Air Mass Flow
(4.4)

Map 13 includes CA50, in-cylinder maximum temperature, load, Fuel-Air equiv-

alence ratio and EGR rate as parameters. nRMSE value of this map is 7.2% which

shows that using the model EGR rate output as a map parameter provides acceptable

NOx prediction accuracy. The result is represented in Figure 4.37. Besides as it is seen

in Figure 4.38 48% of total points lay between 0-25 ppm delta error band, and 66% of

total points couched between 0-15% error band.
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Figure 4.37. Model vs. test data comparison: MAP 13= f(CA50, TMax, EGR Rate,

Load, Fuel-Air Ratio)

The last parameter taken into account in this section is the rail pressure param-

eter. The rail pressure is an input quantity in the engine tests. As it was mentioned

previously, the current combustion model cannot use the rail pressure parameter as

an input. In other words, model outputs do not change when different rail pressure

values are imposed on the model. But its use as a NOx emission prediction parameter

is still possible within the scope of this methodology. To do this, the rail pressure data
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Figure 4.38. Model vs. test data comparison in pie charts: MAP 13= f (CA50,

TMax, EGR Rate, Load, Fuel-Air Ratio))

collected from Fuel Loop 1 is used as a parameter in Map 14. The map also includes

CA50, in-cylinder maximum temperature, load and fuel-air equivalence ratio param-

eters. Model is run with Fuel Loop 2 and 3 set points, also adding the rail pressure

values collected from test data. nRMSE value of this map is 6.1%. This result shows

the importance of the rail pressure parameter in NOx prediction. The distribution of

the points can be seen in Figure 4.39. Figure 4.40 shows that 55% of total points lay

between 0-25 ppm delta error band, and 77% of total points couched between 0-15%

error band.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
o

n
-D

im
. 

M
o

d
e

l 
N

O
x

 (
-)

Non-Dim. Dynamometer NOx (-)

MAP 14

Figure 4.39. Model vs. test data comparison: MAP 14= f(CA50, TMax, Rail

Pressure, Load, Fuel-Air Ratio)

In the fifteenth map; CA50, in-cylinder maximum temperature, EGR rate, rail

pressure and fuel-air equivalence ratio parameters are used. nRMSE value of this map
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Figure 4.40. Model vs. test data comparison in pie charts: MAP 14= f (CA50,

TMax, Rail Pressure, Load, Fuel-Air Ratio))

is 6.6%. The distribution of the points can be seen in Figure 4.41. Figure 4.36 shows

that 42% of total points lay between 0-25 ppm delta error band, and 66% of total

points couched between 0-15% error band.
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Figure 4.41. Model vs. test data comparison: MAP 15= f(CA50, TMax, EGR Rate,

Rail Pressure, Fuel-Air Ratio)

In the last map; turbine inlet temperature, fuel flow, peak firing pressure and

temperature parameters are used. nRMSE value of this map is 6.6%. Figure 4.43

represents the differences between dynamometer and model outputs. Figure 4.44 shows

that 54% of total points lay between 0-25 ppm delta error band, and 76% of total points

couched between 0-15% error band. All of the maps and their parameters are listed in

Table 4.46.
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Figure 4.42. Model vs. test data comparison in pie charts: MAP 15= f (CA50,

TMax, EGR Rate, Rail Pressure, Fuel-Air Ratio))
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Figure 4.43. Model vs. test data comparison: MAP 16= f(TTURI, TMax, PFP, Fuel

Flow)
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Figure 4.44. Model vs. test data comparison in pie charts: MAP 16= f (TTURI,

TMax, PFP, Fuel Flow))
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In Figure 4.45, accuracy values of different maps are shown. nRMSE comparison

of different maps is shown in Figure 4.46. Maps 10-16 generate the best nRMSE values.

This condition shows that turbine inlet temperature, maximum in-cylinder tempera-

ture, maximum in-cylinder pressure, fuel flow, CA50, fuel-air equivalence ratio, EGR

rate and rail pressure parameters are the most critical emission prediction parameters.

Comparison of Map 10 and Map 16 shows that load is not a crucial parameter in

emission prediction. Among these parameters, it is also known that EGR rate and rail

pressure are some of the essential parameters for NOx emission control during engine

calibration.

Table 4.4. 9L HD diesel engine maps and parameters

MAPS Parameters nRMSE

MAP 1 f(RPM, EGR Flow) 16.8%

MAP 2 f(RPM, Load, EGR Flow) 14.3%

MAP 3 f(TTURI, Load, EGR Flow) 21.3%

MAP 4 f(TTURI, Load, EGR Flow, PFP) 19.1%

MAP 5 f(TTURI, Load) 19.0%

MAP 6 f(TTURI, TMax) Without Outliers 7.6%

MAP 7 f(TTURI, TMax, PFP) 8.6%

MAP 8 f(TTURI, TMax, PFP, Load) 7.9%

MAP 9 f(TTURI, TMax, PFP, Load, EGR Flow) 8.9%

MAP 10 f(TTURI, TMax, PFP, Load, Fuel Flow) 5.6%

MAP 11 f(CA50, TMax, PFP, Load, Fuel Flow) 5.8%

MAP 12 f(TTURI, TMax, PFP, Load, Fuel-Air Ratio) 6.2%

MAP 13 f(CA50, TMax, EGR Rate, Load, Fuel-Air Ratio) 7.2%

MAP 14 f(CA50, TMax, Rail Pressure, Load, Fuel-Air Ratio) 6.1%

MAP 15 f(CA50, TMax, EGR Rate, Rail Pressure, Fuel-Air Ratio) 6.6%

MAP 16 f(TTURI, TMax, PFP, Fuel Flow) 5.4%
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Figure 4.45. Model vs test data comparison of sixteen different maps
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4.4. Methodology Results In A Different Engine

For a further understanding of the effectiveness of the methodology, another

heavy-duty engine is used to proceed. Important parameters for the chosen engine

are as listed in Table 4.5. This table shows the main aspects of the heavy-duty diesel

engine used for the methodology trial.

First of all, a thermodynamic engine model is generated in a commercial software

using CAD geometry for intake, exhaust manifolds, intake and exhaust system piping,

and critical inputs such as valve timings, firing order, turbocharger, charge air cooler,

EGR cooler performance data.

Table 4.5. 12.7L engine specifications

Parameter Value

Volume 12.7 L

Max Power 480 PS

Compression ratio 16.5:1

Bore 160 mm

Stroke 215 mm

Number of cylinders 6

Injection system Common rail

Injection system pressure 2500 bar

Then, as it is in the 9L engine studies, fuel loop data correlation is performed.

Diesel wiebe combustion model is used. Brake power, brake torque, air to fuel ratio,

air mass flow and fuel mass flow values have good correlation with dynamometer test

data.

The developed methodology is performed with the same steps after completing

the correlation. A fuel loop data set with 173 points in total is used for this study.

33% (56 Points) are used for NOx calibration multiplier multidimensional look-up table
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generation, and the remaining 67% (117 Points) is kept for methodology examination.
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Figure 4.47. Model vs test data comparison - regression chart

Figure 4.47 illustrates that dynamometer data and model results have quite good

correlation, which is even slightly better than the 9L engine comparison. Besides,

non-dimensional RMSE value, in this case, is 5.1%. These results are showing that

the methodology can be used for different engines with different volumes, successfully.

This condition is mainly because the two engines are both representing heavy-duty

diesel characteristics.

The methodological steps represented in this study apply to all heavy-duty diesel

engine variants with different cylinder volume or power. As it was summarized above,

by using the methodological steps developed in this study; it is possible to find out

most effective parameters on feedgas NOx formation once the thermodynamical model

is created and correlated to test data.

For the case that an entirely new concept engine will be developed, NOx prediction

maps generated with similar engine properties (displacement, power, torque, etc.) may

be used. But, the accuracy of the methodology most probably would be lower due to the

lack of actual test data for model correlation. However, the necessary data for method

application may be generated from a few 3D CFD simulations or single-cylinder engine

tests at very early stages of engine development stage when an actual engine does not

exist. Hence, it would be possible to direct hardware selection studies by considering
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the NOx emission outputs.
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5. 12.7L HEAVY-DUTY DIESEL ENGINE STUDIES

In Chapter 4, the fast and accurate methodology development studies for emis-

sion prediction was explained. The effectiveness of the method is also examined with

another heavy-duty diesel engine model: 12.7L. In this chapter, the effect of another

combustion model so-called DI-Pulse is investigated.

5.1. Predictive Combustion Model: DI-Pulse

In this study, a predictive combustion model so-called DI-Pulse is used for com-

bustion modelling. DI-Pulse is a predictive combustion model generated for modelling

different injection strategies. It can be utilized for desktop calibration development

studies to lower or to eliminate actual test workload.

DI-Pulse predictive combustion model mainly represents the diesel combustion

phases. These phases are ignition delay, premixed combustion, diffusion controlled

combustion and late combustion. These periods can be summarized as follows [45], [4]:

• Ignition Delay: It represents the difference between the start of injection and the

start of combustion. It consists of two different sections which are the physical

delay and chemical delay. The physical delay represents the duration in which the

fuel atomization and vaporization occur. Besides, an increase in mixture temper-

ature is encountered in this region. The chemical delay represents the duration

between the initiation of chemical reaction conditions and ignition. Ignition delay

is a critical parameter in diesel combustion since, higher the ignition delay, higher

pressure values are encountered during the premixed combustion phase.

• Premixed Combustion: In this period rapid combustion occurs since the injected

fuel is already mixed with air within the previous combustion period: ignition

delay. Pressure increase mostly depends on the injected fuel quantity, spray

optimization and swirl/tumble characteristics of the combustion chamber.

• Diffusion Controlled Combustion: In this period of diesel combustion; the pres-
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sure and temperature values within the cylinder are already at high values. As

a result, any fuel that is injected to cylinders rapidly burns. Most important

control parameter at that section of diesel combustion is injected fuel quantity.

• Late Combustion: In this phase; combustion of poorly distributed fuel particles

occurs.

The DI-Pulse combustion models include three different zones [45] in which the

cylinder volume is divided into three different thermodynamic sections to capture the

main diesel combustion phases. These sections are called; main unburnt zone, spray

unburnt zone and spray burnt zone. Each zone has temperature values. The first zone

includes the trapped masses at intake valve closing (IVC). The second and third zones

include a mixture of fuel and gases which have been entrained during the injection

event and the burnt combustion products; respectively.

DI-Pulse mainly calculates the four critical regions of combustion: entrainment,

ignition delay, premixed combustion and diffusion combustion. To perform the evalu-

ation, DI-Pulse models need energising time, rail pressure and injected quantity maps

for the injector. These maps are generally gathered from suppliers. In Appendix B,

detailed information about the implemention of injector maps is given.

The second step for DI-Pulse model correlation is to calculate the model param-

eters representing the main four sections of diesel combustion. The primary inputs

of the model are, exhaust gas recirculation rate, boost pressure and temperature, in-

jected total fuel quantity, engine speed and maximum in-cylinder pressure. Air mass

flow rate depends strongly on the boost and turbine inlet pressure, and temperature

values. Cylinder pressure values are the primary data for the correlation of heat release

rate in the thermodynamic model.

One set fuel loop data and one set Design of Experiment (DOE) data are gathered

in dynamometer tests. A fuel loop test is executed via collecting data at engine speed

and load values spanning the full operation range (0% to 100%). In the fuel loop

experiment data, data are collected at 193 different operating points corresponding to
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Table 5.1. 12.7L HD diesel engine data sets

Data Type Number of Points

Fuel Loop 1 193

DOE Data 940

10% intervals of engine load at different speeds.
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Figure 5.1. Fuel loop points

The main aim was to collect enough data covering different feed gas NOx levels for

methodology verification. Table 5.1 shows the number of operating points included by

both fuel loop and DOE data sets. In each of these three experiments, data are collected

at 193 different operating points corresponding to 10% intervals of engine speed and full

and partial loads. Blue points in Figure 5.1 are representing the operating points used

in the measurements of fuel loops. Besides; Figure 5.2 is representing the scattered

DOE points. In this DOE study, rail pressure, start of injection, boost pressure and

air mass flow set points are also varies at each points.

Model correlation is performed by completing the optimization via GT-Suite Ad-

vanced Optimizer, which is a module highly capable for optimization studies. Aim

was to find out the best set of entrainment, ignition delay, premixed and diffusion rate

parameters. 27 different operating points are selected for DI-Pulse model correlation.
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Figure 5.2. DOE points

These points are represented as red points in Figure 5.1. GT-Suite model is run in

GT-Suite Advanced Optimizer to find out the optimum DI-Pulse combustion model

parameters. The tool uses a non-dominated sorting genetic algorithm (NSGA-III) as

the main algorithm.

NSGA-III is a Pareto optimization method which can be effectively used for

solving problems having multiple objectives (three or more). This algorithm mainly

utilizes a set of reference points to enhance the diversity of the Pareto points used

during the optimization. Hence, it ensures that the points evenly distributed across

the physical space even if there are many objectives. The current study includes 850

designs. Details of an GT-Suite optimization process is mentioned in Appendix C.

Combustion parameters, optimization range of these parameters and the optimum

values are listed in table 5.2.

Fuel loop data are used for model correlation. Figures 5.3, 5.4, 5.5, 5.6, 5.7, 5.8,

5.9 and 5.10 show the full load comparison between model predictions and the test

measurements. Brake torque and brake power values calculated with the model has ±

3% accuracy, BMEP and PMEP calculations are within ± 3% accuracy, temperature

predictions at the intake have ± 5 oC accuracy, and predictions at the exhaust have ±
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Table 5.2. 12.7L HD diesel engine DI-Pulse parameter optimization

Optimization Range Optimization Results

Entrainment 0.80-2.90 1.27420

Ignition Delay 0.10-1.90 0.38318

Premixed Comb. 0.01-2.90 0.58996

Diffusion Comb. 0.10-1.90 1.45170

50 oC accuracy. Pressure values in both compressor outlet and turbine inlet are within

± 3% accuracy range.

HORIBA PG-250 multi-gas portable analyzer is again used to gather NOx emis-

sions data. Technical specification of the device is showing that the measurement

accuracy for NOx emission is under ± 1% error margin.
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Figure 5.3. Full load correlation comparison: brake power

The main aim was to collect enough data covering different feed gas NOx levels

for methodology generation and validation. Table 4.2 shows the number of operating

points included by both fuel loop and DOE data sets. Blue points in Figure 5.1 are



77

Engine Speed [RPM]

800 1000 1200 1400 1600 1800 2000

B
ra

k
e

 T
o

rq
u

e
 [
-]

0.400

0.500

0.600

0.700

0.800

0.900

1.000

1.100

Brake Torque

Dyno +3% Dyno -3% Model

Figure 5.4. Full load correlation comparison: brake torque
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Figure 5.5. Full load correlation comparison: BMEP
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Figure 5.6. Full load correlation comparison: PMEP
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Figure 5.7. Full load correlation comparison: compressor outlet pressure
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Figure 5.9. Full load correlation comparison: turbine inlet temperature
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Figure 5.10. Full load correlation comparison: turbine inlet temperature

representing the operating points used in the measurements of fuel loops.

5.2. NOx Model and Calibration

In this section of the study; extended Zeldovich Mechanism embedded in GT-

Suite is used like in Section 4.2.

As the first step, half of DOE points (438 points) are separated for the model

correlation. These points can be seen in Figure 5.11 with red triangles. This half of the

DOE is so-called DOE Part 1 data. Once the model run with DOE Part 1 data inputs,

NOx outputs of the model are compared with test data. The ratio between the Model

NOx and dynamometer NOx is so-called Calibration Multiplier. By utilizing from

the ”Multidimensional Table Look-up Using Scattered Data” object embedded into

GT-Suite, it is possible to generate and use different maps providing NOx Calibration

Multipliers. The inputs of these multidimensional look-up tables are the main engine

performance parameters such as boost pressure, injected fuel quantity, engine speed,

etc. and the only output is NOx Calibration Multiplier.



81

600 1100 1600 2100

N
o

n
-D

im
. 

B
ra

k
e

 T
o

rq
u

e
 (

-)

Engine Speed (rpm)

DOE Operating Points

Full Load Curve

Remaining Points

Part 1 Points

Figure 5.11. DOE part 1 points

These multipliers can be integrated to already embedded extended Zeldovich

mechanism in the software for each case. Hence, it is possible to enhance model NOx

prediction accuracy. In the below-mentioned studies, the aim was to find out the best

parameters to be used in NOx calibration multiplier multidimensional look-up tables

for enhanced emission prediction accuracy.

To do that, the emission model is correlated by defining the calibration multipliers

that provide ± 2% accuracy with respect to experimental results for each point in DOE

Part 1 data. The calibration multipliers are the main parameters which enable the use

of fast NOx prediction methodology. These maps are multidimensional look-up tables

based on different parameters such as fuel quantity, EGR rate etc. as the input and

NOx calibration multiplier as the output.

Once the NOx calibration multipliers generated via using DOE Part 1 data are

transferred into different multidimensional look-up tables; remaining DOE data, so-

called DOE Part 2 and fuel loop data are run to see the NOx prediction accuracy of

the generated maps. These two data sets are the ones that were not used for the map

generation, so they are used for measuring the prediction capability of the different

maps. Error in NOx predictions are calculated via again Equations 4.1, 4.2 and 4.3.

The main steps of the correlation methodology mentioned in Section 4.2 is directly

used.
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5.3. NOx Calibration Multiplier Maps

Selection of input parameters for the map generation is critical to obtain a map

with accurate NOx prediction capability. In this study; thirteen different maps are

generated by the use of ten different parameters which are crank angle at maximum

pressure, rail pressure, main injection timing (SOI), calculated EGR Rate, turbine

inlet temperature (TTURI), peak firing pressure (PFP), in-cylinder maximum tem-

perature (TMax), fuel flow, rail pressure, CA50 and Fuel-Air ratio. The primary goal

was to collect the NOx prediction accuracy of different maps and find out the best

engine performance parameters in NOx prediction. In this section, the selection of

input parameters used for the map generation and the resulting map predictions are

explained.

Turbine inlet temperature is selected as the first parameter of Map 1. The turbine

inlet temperature is one of the most critical resultants of combustion behaviour of the

engine. It represents the combustion speed. Generally, at the same operating point,

higher combustion efficiency results as lower turbine inlet temperature and higher NOx

formation. In contrary; lower combustion efficiency results as higher turbine inlet

temperature and lower NOx formation. Hence, turbine inlet temperature and NOx

formation have generally a good trend.

High in-cylinder pressure values are results of the in-cylinder combustion. As it

is already mentioned in Section 5.3, combustion at higher speed results as higher in-

cylinder maximum temperature and pressure values. Higher in-cylinder temperature

mostly results as higher NOx formation. At same operating point; lower maximum in-

cylinder pressure values are encountered as combustion is retarded which means lower

peak firing pressure & temperature and higher exhaust temperature. So, as in-cylinder

maximum temperature; in-cylinder pressure values can also be selected for a better

NOx prediction. That’s why the maximum in-cylinder pressure parameter is chosen as

the second parameter of Map 1.
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Besides; there is a strong correlation between in-cylinder maximum temperature

and NOx formation. In-cylinder maximum temperature is a reliable parameter on NOx

prediction since; higher in-cylinder temperature values result as higher NOx formation.

In dynamometer tests, it is generally not possible or too expensive to collect in-cylinder

maximum temperature values. However, with a correlated thermodynamical model; it

is possible to utilize from this output for NOx emission prediction studies.

Last but not least; fuel flow is a direct representative of CO2 emission. But, since

injected total fuel quantity is also defining the air-to-fuel ratio for constant air mass flow

rate, it directly affects the combustion. As a result of higher injected fuel quantity,

higher engine operating loads are obtained at a particular engine speed resulting as

higher NOx emissions.

As a result, these four parameters: turbine inlet temperature, maximum in-

cylinder pressure, maximum in-cylinder temperature and fuel flow are selected as the

input parameters of the first NOx Calibration Multiplier map. These are the same

parameters with the map providing best accuracy in studies mentioned in Section 5.3.

Once the map is created with the outputs of DOE Part 1 data, model is run with

this map to understand the NOx prediction capability. Results are shown in Figure

5.12. Maximum NOx value is used for the non-dimensionalization. The black line is

a linear line representing the equation: x=y. Dashed lines are representing 10% and

-10% variances with respect to the linear line. These dashed lines are used in order to

obtain a clear understanding for distribution of the operating points. R2 is 0.9046 and

nRMSE is approximately 5.1%. As it was mentioned in Section 4.4, same map was used

with different test data and combustion model. But the result is almost the same. This

condition shows that, if the model correlation is well enough, NOx prediction accuracy

does not vary significantly as a function of used test data or combustion model. But,

it is important to emphasize that use of predictive combustion models have a critical

advantage: ability to use some further parameters such as pilot, main, post injection

quantity & timings and rail pressure as the model input. It is possible to use these

parameters as the model inputs in predictive combustion models.
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Figure 5.12. Model vs. test data comparison: MAP 1= f (TTURI, TMax, PFP, Fuel

Flow Rate)

In the second map; rail pressure is also considered as an additional input pa-

rameter to enhance the accuracy. As it is known, higher injection pressure results as

improved fuel atomization generating fine fuel droplets. Smaller fuel droplets evaporate

at an accelerated rate with respect to bigger fuel droplets. This event mainly results in

rapid fuel-air mixing and shorter injection durations. Shorter injection durations en-

able retarded injection and emission control [41]. All of these events have a substantial

effect on NOx and soot generation. It is known that for the same BMEP, higher rail

pressure values generally result as higher in-cylinder temperature and pressure values

and hence higher NOx formation. However, as it is seen in the results; using rail pres-

sure in combination with the other parameters did not improve the nRMSE. Results

are shown in Figure 5.13. R2 is 0.8912 and nRMSE is approximately 5.66%.

In the third map, the elimination of the rail pressure parameter follows the ad-

dition of EGR Rate parameter into the map. EGR Rate is selected for further exami-

nation since the rate of EGR Flow is one of the main parameters showing a significant

trend in NOx formation. However, since the dynamometer tests are not accomplished

with a flowmeter in the EGR side to measure EGR Rates; current values are generated

via the thermodynamical model. Air mass flow values are targeted, and EGR Valve

position is changed to get target Air Mass Flow rates. So, EGR Rate values calculated

from the thermodynamical model may represent some differences with respect to ac-
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Figure 5.13. Model vs. test data comparison: MAP 2= f (TTURI, TMax, PFP, Fuel

Flow Rate, Rail Pressure)

tual values. That may be the explanation about the slight change in NOx prediction

of Map 3 in comparison with Map 1. Results are shown in Figure 5.14. R2 is 0.9194

and nRMSE is approximately 4.64%.
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Figure 5.14. Model vs. test data comparison: MAP 3= f (TTURI, TMax, PFP, Fuel

Flow Rate, EGR Rate)

In the fourth map, the effect of using another parameter: crank angle at maximum

pressure is investigated. This parameter is another vital parameter having significant

importance similar to in-cylinder maximum temperature and pressure values. Perform-

ing emission control via retarded or advanced fuel injection is possible. By controlling

the fuel injection timing, it is possible to adjust the combustion rate to fulfill emission



86

regulation requirements. CA at maximum pressure is, therefore, another key parame-

ter that would have good correlation with soot and NOx prediction [42]. Results are

shown in Figure 5.15. R2 is 0.9016 and nRMSE is approximately 5.55%.
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Figure 5.15. Model vs. test data comparison: MAP 4= f (TTURI, TMax, PFP, Fuel

Flow Rate, CA at Maximum Pressure)

To understand the particular impact of EGR Rate in further detail, a new map

is generated via using the function of the EGR Rate rather than the turbine inlet

temperature parameter. So, the fifth map is created by using the parameters: EGR

Rate, TMax, PFP, Fuel Flow and CA at maximum pressure. Results are shown in

Figure 5.16. R2 is 0.9397 and nRMSE is approximately 4.12%.
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Figure 5.16. Model vs. test data comparison: MAP 5= f (EGR Rate, TMax, PFP,

Fuel Flow Rate, CA at Maximum Pressure)
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In the sixth map rail pressure (bar) is used rather than maximum in-cylinder

pressure. It seems that the nRMSE is lower with respect to all previous maps. Results

are shown in Figure 5.17. R2 is 0.9416 and nRMSE is approximately 3.95%.
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Figure 5.17. Model vs. test data comparison: MAP 6= f (EGR Rate, TMax, Rail

Pressure, Fuel Flow Rate, CA at Maximum Pressure)

In the seventh map, main start of injection is used as another parameter. As it is

known, start of injection is one of the critical parameters in emission control. Retarded

or advanced combustion can be obtained via simply adjusting the start of injection.

Besides, start of injection parameter has a direct influence on fuel burn 50 value, which

represents the crank angle in which 50% of total injected fuel is consumed. Results are

shown in Figure 5.18. R2 is 0.9320 and nRMSE is approximately 4.23%.

In the eight map, EGR rate, maximum in-cylinder temperature, maximum in-

cylinder pressure, rail pressure and the crank angle at maximum pressure parameters

are used. Fuel flow parameter is eliminated. However, nRMSE values are worse re-

garding to previous results. This condition is showing the critical importance of fuel

flow parameter on emission prediction studies. Figure 5.19 represents the results. R2

is 0.8677 and nRMSE is approximately 6.47%.

In the ninth map, CA50, TMax, PFP and Rail Pressure parameters are used. In

this map, the effect of the CA50 parameter is taken into account since it shows the

combustion location and represents the premixed phase characteristics. Results are
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Figure 5.18. Model vs. test data comparison: MAP 7= f (EGR Rate, TMax, Main

Injection Timing, Fuel Flow Rate, CA at Maximum Pressure)
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Figure 5.19. Model vs. test data comparison: MAP 8= f (EGR Rate, TMax, PFP,

Rail Pressure, CA at Maximum Pressure)
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shown in Figure 5.20. R2 is 0.8936 and nRMSE is approximately 5.81%. This result

has proven that the CA50 can also be used for the NOx emission prediction.
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Figure 5.20. Model vs. test data comparison: MAP 9= f (CA50, TMax, PFP, Rail

Pressure)

In the tenth map, TTURI, TMax, PFP and Fuel-Air Ratio parameters are used.

It is evident that the fuel flow parameter used in Maps 1 to 7 is not a normalized

parameter and may lead to some troubles when trying to generalize the model. Instead,

it is replaced by the fuel-air equivalence ratio in Map 12, which is linked to the fuel

flow but expressed in a normalized way. This status would have a clear advantage

when trying to generalize the model (i.e. to use the same already calibrated model

for another engine). Results are shown in Figure 5.21. R2 is 0.9097 and nRMSE is

approximately 4.89%.

In the eleventh map, CA50, TMax, EGR rate and fuel-air equivalence ratio pa-

rameters are used. Results are demonstrated in Figure 5.22. R2 is 0.9343 and nRMSE

is approximately 4.17% which a quite good accuracy value.

In the twelfth map, EGR rate parameter is replaced with rail pressure. CA50,

TMax, rail pressure and Fuel-Air Ratio parameters are used in this map. Results

can be seen in Figure 5.23. R2 is 0.9150 and nRMSE is approximately 4.81%, which

is showing that these parameters can also be used for emission prediction capability

enhancement.



90

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
o

n
-D

im
. 

M
o

d
e

l 
N

O
x

 (
-)

Non-Dim. Dynamometer NOx (-)

MAP 10

Figure 5.21. Model vs. test data comparison: MAP 10= f (TTURI, TMax, PFP,

Fuel-Air Ratio)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N
o

n
-D

im
. 

M
o

d
e

l 
N

O
x

 (
-)

Non-Dim. Dynamometer NOx (-)

MAP 11

Figure 5.22. Model vs. test data comparison: MAP 11= f (CA50, TMax, EGR Rate,

Fuel-Air Ratio)
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Figure 5.23. Model vs. test data comparison: MAP 12= f (CA50, TMax, Rail

Pressure, Fuel-Air Ratio)

In the last map, CA50, TMax, EGR rate, TMax and rail pressure parameters are

used. General trends of the model and test outputs can also be seen in Figure 5.24.

As it is seen in these regression graphs, model outputs seem to be in good correlation

with dynamometer outputs. R2 is 0.9382 and nRMSE is approximately 4.06%. The

accuracy of this map is the best considering all thirteen maps.
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Figure 5.24. Model vs. test data comparison: MAP 13= f (CA50, TMax, EGR Rate,

Rail Pressure)

All of the maps and parameters used in 12.7L HD diesel engine studies are sum-

marized in Table 4.5. Non-dimensional RMSE comparison of these maps is shown in

Figure 5.25. As it is seen in the graph, Maps 5, 6, 7, 11 and 13 have the highest NOx
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emission prediction accuracies. Turbine inlet temperature, maximum in-cylinder tem-

perature, maximum in-cylinder pressure, load, fuel flow, CA50, Fuel-Air Ratio, EGR

rate and rail pressure parameters are the most critical emission prediction parameters.

Best accuracy ( nRMSE of 3.95 %) is obtained via Map 6 which consists of five different

parameters: EGR rate, TMax, rail pressure, fuel flow and CA at PFP.

Table 5.3. 12.7L maps and parameters

MAPS Parameters nRMSE

MAP 1 f(TTURI, TMax, PFP, Fuel Flow) 5.1%

MAP 2 f(TTURI, TMax, PFP, Fuel Flow, Rail Pressure) 6.0%

MAP 3 f(TTURI, TMax, PFP, Fuel Flow, EGR Rate) 4.6%

MAP 4 f(TTURI, TMax, PFP, Fuel Flow, CA at PFP) 5.6%

MAP 5 f(EGR Rate, TMax, PFP, Fuel Flow, CA at PFP) 4.1%

MAP 6 f(EGR Rate, TMax, Rail Pres., Fuel Flow, CA at PFP) 3.9%

MAP 7 f(EGR Rate, TMax, Main SOI, Fuel Flow, CA at PFP) 4.2%

MAP 8 f(EGR Rate, TMax, PFP, Rail Pres., CA at PFP) 6.5%

MAP 9 f(CA50, TMax, PFP, Fuel Flow) 5.8%

MAP 10 f(TTURI, TMax, PFP, Fuel-Air Ratio) 4.9%

MAP 11 f(CA50, TMax, EGR Rate, Fuel-Air Ratio) 4.2%

MAP 12 f(CA50, TMax, Rail Pres., Fuel-Air Ratio) 4.8%

MAP 13 f(CA50, TMax, EGR Rate, Rail Pres., Fuel-Air Ratio) 4.1%

Table 5.3 is showing that the Maps 5, 6, 7, 11, 12 and 13 are providing the lower

nRMSE values. Lowest nRMSE value obtained within this section of the manuscript

is 3.9% and obtained via the use of Map 6. EGR Rate, Tmax, Fuel-Air Ratio, CA @

PFP, Main SOI, Rail Pressure and CA50 are the most critical parameters.
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Figure 5.25. Non-dimensional RMSE values of thirteen different maps

5.4. Soot Model and Calibration

5.4.1. Hiroyasu Model

Hiroyasu et al. [46] developed a set of models for direct-injection diesel engines to

predict, engine performance and emissions. They divided the spray into small packages

to model the combustion process. The package includes many fine droplets and a small

volume of air, just after the fuel injection. After the injection of the package from the

nozzle, air entrainment into the package occurs, and evaporation of fuel droplets is

initiated. The small package includes three different species: liquid fuel, vaporized fuel

and air. Ignition occurs in the gaseous mixture just after the injection. Ignition process

results with the immediate expansion of the package. Then, evaporation of the fuel

droplets occurs, and fresh air entrains into the package. Mixing of vaporized fuel with

both combustion products and fresh air is encountered. Spray continues to burn.

The formation rate is calculated by assuming a first-order reaction of vaporized

fuel, ms [47]:

dmsf

dt
= Afmsp

0.5 exp

[
−Esf

RT

]
(5.1)
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The soot oxidation can be calculated via considering a second order reaction

between soot and oxygen.

dmso

dt
= Aoms

pO2

p
p1.5 exp

(
−Eso

RT

)
(5.2)

where Esf=1.25 104 kcal/kmol, Eso=1.40 104 kcal/kmol. Agreement between the cal-

culated smoke and the soot measurement in the exhaust gas can be determined with

the constants Af and Ao.

The net rate of change of soot is determined by:

dms

dt
=
dmsf

dt
− dmso

dt
(5.3)

5.4.2. Nagle and Strickland (NSC) Model

Oxidation experiments of carbon graphite in an O2 environment over a range of

partial pressure constitutes the basis of the NSC oxidation model. In the model, three

reactions, rates of which depend on the surface chemistry involving less reactive B

sites and more reactive A sites facilitate the carbon oxidation [48], [47]. The chemical

reactions of the NSC model are:

A + O2 ↔ A + 2CO

B + O2 ↔ A + 2CO (5.4)

A ↔ B

and the soot oxidation rate is given by:

dmso

dt
=

MC

ρsds
msw (5.5)
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where ρs is the soot density (2.0 g/cm3), and ds is the soot diameter (4.5×10−9 m) and

MC is the carbon molecular weight (12 g/mole). Net reaction rate w in Equation 5.5

is

w =

(
kApO2

1 + kZpO2

)
x+ kBpO2(1− x) (5.6)

where pO2 is the oxygen partial pressure in atm. The proportion, x, of A sites is given

by:

x =
pO2

pO2 + (kT/kB)
(5.7)

Table 5.4 shows the rate constants used in the NSC soot oxidation model.

Table 5.4. Rate constants for NSC soot oxidation model

Parameter Rate Constant Units

kA 20 exp(-15100/T) g-C/cm2.s.atm

kB 4.46×10−3 exp(-7640/T) g-C/cm2.s.atm

kT 1.51×105 exp(-48800/T) g-C/cm2.s.atm−1

kZ 20 exp(-15100/T) g-C/cm2.s.atm

5.5. Soot Emission Model Calibration

In the emission model calibration about 10% (n = 90 points) of all test points

shown in Figure 5.1 and Figure 5.11 are used. The test data include 940 DOE points

and 193 fuel loop point. The remaining 1043 points are used to check the accuracy

of the soot emission model. In the calibration process two parameters ”Soot Burnup

Multiplier” and ”Soot Oxidation Multiplier” needs to be selected. Initial runs show

that in the selection it is sufficient to cover ”Soot Burnup Multiplier” range of 4 to 9

and ”Soot Oxidation Multiplier” range of 4 to 8. A parameter step value of 1 is adapted

for both parameters and model is run for (6x5) combinations of the parameters. The



96

soot emission prediction error and the root mean square error are defined as:

Error(%) = 100
ms,model −ms,test

ms,test

(5.8)

RMSE =

√
1

n
Σn

i=1

(
ms,test −ms,model

)2
(5.9)

nRMSE (%) = 100

(
RMSE

ms,max −ms,min

)
(5.10)

5.6. Soot Emission Model Results

Figure 5.26 and 5.27 show contour plots of nRMSE as a function of Soot Forma-

tion and Soot Burn-up multipliers both with Hiroyasu and NSC models. Error values

are smaller with Hiroyasu model, and use of Hiroyasu model is more accurate in soot

emission prediction related studies performed via thermodynamical models. Research

conducted in [31] showed the NSC oxidation model gave higher values of peak soot con-

centration compared to Hiroyasu model. The underlying reason is that the oxidation

rate is dependent on partial pressure of oxygen molecules which is lowered in engine

like conditions. It is calculated that for Hiroyasu model the best parameter values are

8 and 7 for Soot Burn-up and Soot Formation multipliers, respectively.

Rest of the DOE data and fuel loop points are run with the chosen Soot Burn-up

and Soot Formation multipliers to check the accuracy of the predictions with Hiroyasu

model. Figure 5.28 shows the correlation of the model predictions with the test results.

The nRMSE of the model is 7.6%. Use of the same multipliers with NSC model results

nRMSE value of 15.4%.
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Figure 5.26. nRMSE contours as a function of soot formation and soot burn-up

multipliers- Hiroyasu model
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6. APPLICATION AREAS OF THE METHODOLOGY

Developed methodology can also be used for different purposes. Some these areas

are summarized as below:

• Virtual calibration of engines

• Hardware selection studies

• High altitude calibration Studies

• Technology selection studies

• Coupling with calibration Tools

• Spontaneous test data diagnostics

Details of these areas are given below.

6.1. Virtual Engine Calibration

As mentioned in Chapter 1; difficulties in fulfilling the emission regulation require-

ments incrementally increase every year. However, there is a sharp trade-off between

meeting the emission regulation requirements and satisfying the customers better fuel

economy. To ensure that the products satisfy both aspects; a detailed study on the

calibration parameters of the engine operating points needs to be carried on. However,

obtaining the optimum set points in dynamometer is not a cost and time effective

solution. OEMs generally prefer utilizing simulation environment. In this chapter,

an effective way of predicting the calibration set points is represented. The developed

methodology is used for calibration development in a virtual (thermodynamical model)

environment. Virtual engine calibration means generating all calibration set points via

virtual product, not in a real test environment.

To ensure that the problem is successfully solved for a product; engine calibration

should be performed at the optimum point of NOx vs BSFC trade-off. The main reasons

are summarized below:



100

(i) Engine should satisfy the customer needs via providing low fuel consumption

values.

(ii) Engine emissions such as NOx, soot, CO, etc. must be within limits defined by

emission regulations.

(iii) An engine that is calibrated at only minimum BSFC would most probably oper-

ate with high NOx emissions. However, although the NOx emissions are within

the emission regulation limits, there is another critical parameter that needs to

be taken into consideration: urea consumption. It is obvious that higher the

feedgas (cylinder out) NOx emissions, higher the urea consumption. To convert

the extreme feedgas NOx values, higher amounts of urea should be injected in

the aftertreatment system to facilitate the SCR reactions with NOx.

As a natural consequence of above-listed facts; detecting the optimum engine

calibration points is one of the most critical engineering problems. A mostly encoun-

tered way of finding out the optimum calibration is to perform specific tests in the

dynamometer environment.

In the dynamometer studies; the below steps are generally traced:

• A real driving emission or homologation cycle is selected.

• Test data is collected at that specific cycle by imposing representative engine

speed and brake torque.

• Maximum fuel residency points are detected.

• DOEs are designed via changing most critical calibration parameters such as

boost pressure target, air mass flow target, start of injection, etc.

• DOEs are run with approximately 60-80 points.

• DOE points that are not violating the calibration limits such as compressor outlet

temperature, turbine inlet temperature, shaft speed, peak firing pressure limit are

selected.

• Mathematical models are generated via using remaining DOE points.

• Optimum emission points are calculated via the mathematical models.
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However, performing such kind as examinations results as very high engineering

effort including engineering costs (engineer and dynamometer room allocations), test

failures, consumed fuel amount, etc. In this section of the study, the use of the predic-

tive combustion models for optimum calibration generation studies is investigated.

To understand the applicability of the methodology; optimum calibration points

are collected by tracing the above-listed points. Five different operating points (cases)

are selected for examination. These points are selected by examining a real driving

cycle data and can be seen in Table Figure 6.1 and Figure 6.1.

Table 6.1. Desktop calibration development : optimization results

Case Number Engine Speed (rpm) Load %

Case 1 1000 30

Case 2 1200 10

Case 3 1200 70

Case 4 1600 45

Case 5 1800 80

Case #1

Case #3

Case #2

Case #4

Case #5

1000 1200 1400 1600 1800

In
cr

e
m

e
n

ts
 (

2
0

0
 N

m
)

Engine Speed (rpm)

Brake Torque

Torque Curve

Operating Points

Figure 6.1. Selected operating points

In these five different points; seperate optimization studies are performed. In

these optimization studies; GT-Suite Advanced Direct Optimizer tool is used. The
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tool uses a non-dominated sorting genetic algorithm (NSGA-III) as the main algorithm.

Details of an GT-Suite optimization process can be found in Appendix C.

In these designs in-cylinder pressure, compressor outlet temperature, turbine inlet

temperature, shaft speed limitations are used as the main factors. All these limitations

are obtained from suppliers as a result of durability specific concerns. DOE design

parameters and optimization ranges are shown in Table 6.2.

Table 6.2. Desktop calibration development : design space

Parameter Range

SOI (CA) -20-0

Rack (-) 0.3-1.0

EGR Valve Pos. (%) 0-45

Figures 6.2, 6.3, 6.4, 6.5 and 6.6 are showing the SOI, rack position and EGR

valve position values for all 850 different designs. Circles are representing the values

used in each design. As it is seen in the graphs, values converge to a specific output

since the optimum value is already obtained.

In these optimization studies, the primary objective is to minimize the Total

Operating Cost (TOC). TOC for heavy-duty vehicles includes different items such as:

• Fuel Consumption

• Urea Consumption

• Truck Cab & trailer costs

• Driver salary

• Repair & maintanence costs

• Insurance

• Tires

• Permits,licenses and tools.

• Fuel taxes
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• Driver needs: coffee, etc.

In this study, the first two items which are fuel and urea consumption values are

taken into consideration. Optimization studies mainly focus on lowering these values

by using the below equation:

TOC =

(
NOx.CF.UP

ρUrea

)
+

(
BSFC.FP

ρFuel

)
(6.1)

where; CF is Convertion Factor: 2.008 (2.008 unit urea is needed to convert one

unit NOx. UP and FP are Urea Price and Fuel Price, respectively. ρUrea=1.0930 g/cm
3

and ρDiesel=0.835 g/cm
3
.

Figures 6.2, 6.3, 6.4, 6.5 and 6.6 are representing the main start of injection (SOI),

rack position and EGR valve position. Black circles are representing the actual value

of these parameter for each design numbers. Values of these parameters vary in all

designs. It seems that all these values converge to a single value after approximately

500 designs.

Table 6.3 shows the optimization results of the parameters used in the design

space. As it is seen in the optimization results, different SOI and rack positions are

encountered in the cases. However, the EGR valve opening position is almost the

same: at a fully open position. Main reasons for these conditions can be summarized

as below:

• Start of injection optimization mainly searches the optimum location of BSFC.

It is known that advancing the start of injection with respect to a reference point

-especially at operating points near to full load-, increases the PFP. However,

retarding SOI would result in lower PFP values. The optimum location of SOI

mostly varies as a result of engine speed and load conditions. At full load or high
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Figure 6.2. Optimization results for case 1
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Figure 6.3. Optimization results for case 2
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Figure 6.4. Optimization results for case 3
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Figure 6.5. Optimization results for case 4
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load, high engine speed points; advancing SOI up to PFP limitations would lower

BSFC values. Figure 6.12 also proves that at higher engine speed & load points

higher PFP values are the most optimum operating conditions. At lower engine

speed, SOI values which make the engine operate near to the PFP limits are not

desired due to lowered combustion efficiency values.

• Rack positions vary as a function of engine speed and load conditions. In very

low load conditions such as Case 2, maximum rack position (1.0) is needed to

lower boost pressure values and hence pumping losses as it viewed in Figure 6.11.

In other cases, rack position locates at the optimum of the trade-off for increasing

the boost pressure and lowering the pumping losses.

• In each of the cases EGR valve position is at the limitation: 45 % since lowering

the TOC needs lower NOx emissions. Optimizations are trying to maximize the

EGR rate to reduce NOx emissions.

Table 6.3. Desktop calibration development : optimization results

Case # Model SOI (CA) Model Rack (-) Model EGR Valve Pos. (%)

Case 1 -5.0 0.44 45

Case 2 -10.1 0.99 45

Case 3 -9.67 0.49 45

Case 4 -12.0 0.79 45

Case 5 -14.35 0.86 45

Figures 6.7, 6.8 are representing the TOC results of different cases concerning

design number. It is important to note that the TOC is non-dimensionalized with the

maximum value of all cases.

Figures 6.9, 6.10 and 6.11 are representing the most critical comparisons between

test and model results since these three parameters are generating the basis of cali-

bration at a specific operating point. In other words, to perform a test at a particular

point, an engineer needs to clarify the boost pressure target, air mass flow target and
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Figure 6.7. Non-dim. TOC optimization results: cases 1-2-3
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start of injection values. These graphs are showing that analytical methods can be

used for rapid and accurate detection of these three parameters. These three figures

are showing that the predictive model results are in excellent correlation with test data.

Main SOI values are predicted in ± 2 CA error margin, air mass flow target is predicted

witin ± 500 mg/stroke error margin and boost pressure target is predicted within ±

0.4 bar error margin.
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Figure 6.9. Start of injection comparison: test vs model
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Figure 6.10. Air mass flow comparison: test vs model

Figure 6.12 shows the correlation between the test and model peak firing pressure

values are good.

Besides; Figures 6.13, 6.15, 6.14 and 6.16 are proving that the results obtained via

analytical optimization are in good correlation with the test reciprocals. PFP values
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Figure 6.12. Peak firing pressure comparison: test vs model
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obtained at the end of optimization are within ± 9 bar error margin. Turbocharger

shaft speed values are within ± 15 krpm error margin. Turbine inlet temperature, com-

pressor outlet temperature adn turbine outlet temperature results of the optimizations

are within ± 20, ± 10 ◦C and ± 30 ◦C error margins, respectively.
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Figure 6.13. Turbocharger shaftspeed comparison: test vs model
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Figure 6.14. Turbine inlet temperature comparison: test vs model

Figure 6.17 represents that the NOx outputs obtained via desktop calibration are

very similar to the test results. Results are within the error margin of ± 2 g/kWh.

Last but not least; BSFC comparison of the methodology results with test data

is investigated. As it is seen in 6.18, both results are in perfect correlation. Results are

within the error margin of ± 5 g/kWh.
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Figure 6.15. Compressor outlet temperature comparison: test vs model
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Figure 6.16. Turbine outlet temperature comparison: test vs model
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Figure 6.18. Brake specific fuel consumption comparison: test vs model

These outputs are showing that predictive combustion models can successfully

be used for performing virtual calibration. After considering the above-listed results,

it would be appropriate to say that; by using the developed methodology, it is easy to

eliminate the risks of test failures; dynamometer room/test engineer allocation prob-

lems and consumed fuel costs, etc. Furthermore, since it is possible to perform DOE

with a higher set of points with respect to test studies; optimum points can be rapidly

and accurately detected.

6.2. Hardware Selection Studies

One of the challenging problems in automotive is to select the correct compo-

nents for the first time within the project scope and boundaries. Many elements such

as turbocharger, injector, charge air cooler, EGR cooler must be selected at the early

stages of engine development in which there is no actual engine to test. For the case

that the selected component does not fit to the project targets such as fuel economy,

acoustics, emissions, etc.; then a new hardware selection is needed which mostly ends

with delay in project timings. A first-time true hardware selection process can only

be obtained if accurately predicted emission outputs with the selected hardware are

taken into consideration. However, via the developed methodology; component selec-

tion can be performed at the early engine development stages of the project without

encountering any problems.
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For example, turbocharger matching studies can be completed by using this

methodology. Selection can be performed by a detailed investigation of BSFC vs NOx

trade-off curves for different turbochargers. Figures 6.19, 6.20 and 6.21 are showing

the main trends generated with 12.7L HD diesel engine at single engine speed point:

1400 rpm by varying air mass flow set points and hence EGR Rate. It is important to

note that, all of the variables shown in these figures are non-dimensionalized via using

the maximum value at that specific engine speed.

As it is seen in Figure 6.19, BSFC decreases by the increased EGR rate val-

ues. This is a normal condition since increasing the EGR rate can only be obtained

by multiplying the difference between turbine inlet pressure and boost pressure; which

means higher pumping losses. Besides, higher EGR rates would result as lower combus-

tion efficiency and hence higher BSFC values. Figure 6.20 shows the variance of NOx

emissions as a function of the EGR rate. Increase in EGR rate results as lower NOx

emissions, as expected. 6.21 simply represents the trade-off between BSFC vs NOx.

These lines can be increased by applying the same steps with different turbochargers.

Hence, it would be easy to see which turbocharger enables better optimum point.
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Figure 6.19. BSFC vs EGR rate

It is possible to select the maximum fuel residency points and perform the same

sweeps to obtain a proper comparison between different turbochargers. It is obvious

that selection of turbocharger would be much easier and accurate with respect to
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Figure 6.20. NOx vs EGR rate
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conventional methods which only include the BSFC aspect, not also the emissions.

6.3. High Altitude Calibration Studies

High altitude performance and calibration of an engine is a problematic condition

due to several reasons:

• Higher the altitude, lower the ambient pressure and temperature values. It is too

complex and expensive to perform high altitude tests in dynamometer environ-

ment. So, high altitude tests need real high altitude conditions to collect data

(Figure 6.22).

• High altitude tests can only be accomplished at limited time zones of the year to

perform the tests at desired temperature range.

• Actual vehicle tests can easily end with failure due to vehicle, sensor or engineer

based errors.

• A high altitude test generally lasts for three weeks.

Figure 6.22. High altitude conditions

It is also possible to use the methodology for virtual calibration at high altitude

conditions. Before the trip, it is possible to perform a detailed DOE by varying main

calibration parameters such as SOI, air mass flow set point, boost pressure set point,

injected fuel quantity and rail pressure. Hence, it would be possible to find out the most

effective calibration set points at high altitude pressure and temperature conditions.
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6.4. Technology Selection Studies

As it is mentioned in section 6.1, it is possible to find out the best engine perfor-

mance parameters and calibration set points which can be used in minimizing the TOC

output. As a natural result of this capability, the methodology can also be used for

evaluation of different technologies such as variable valve timing, variable compression

ratio, miller cycle, electronic controlled turbocharger, belt started generator; etc.

6.5. Coupling With Calibration Tools

The methodology outputs can be used to generate mathematical regression mod-

els via using ASCMO or Matlab based codes. Hence, it would be possible to model all

design space that can be used for further examinations. Besides, it is possible to couple

these models with Hardware in the Loop (HIL) systems (Figure 6.23) to perform real

time simulations.

Figure 6.23. HIL and model integration

6.6. Test Data Diagnostics

These models can also be used for test data diagnostics; during the test or just

after the test. Via performing simultaneous simulations with the same set points, it

is possible to directly diagnose if the test data is ok or not. Hence, one can easily
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detect any test specific problems such as peak firing pressure sensor errors, pressure,

temperature sensor related errors, leakages in pipings or surge in a compressor.

Figure 6.24. Test data diagnostics via thermodynamical models
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7. SUMMARY AND CONCLUSIONS

Nowadays, more and more stringent emission regulations are encountered in whole

regions of the world. As a natural result, engine performance development studies

mostly focus on emission reduction. Nitrogen oxide, soot, CO and UHC emissions are

the most critical diesel engine emissions. As a result, there are many studies in liter-

ature focusing on emission prediction. Undoubtedly, the development of accurate and

robust emission prediction methodologies is a must especially for the early stage of en-

gine performance development studies. Engine component selection, accurate, specific

fuel consumption prediction and defining the correct EGR strategy (low and mid-high)

can only be achieved via accurate and fast NOx emission prediction. However, the

current emission prediction methodologies such as; 3D combustion, stochastic reactor,

semi-empirical, phenomenological models and neural networks need either an excessive

amount of data or simulation duration which means high license costs.

In this study; a fast, agile and accurate methodology for NOx emission prediction

that can be used at all stages of engine development is developed.

In Chapter 4, a 9 L 380 PS heavy-duty diesel engine model is generated and cor-

related with fuel loop data which includes whole engine speed range with 10% load in-

crements. Diesel wiebe combustion model is preferred. Extended Zeldovich mechanism

is used in GT-Suite for NOx emission calculation. NOx emission output correlation to

test data is completed via using NOx calibration multiplier maps. Most critical maps

& parameters with high NOx emission prediction accuracy are investigated. Sixteen

different maps are generated, and model NOx prediction results are compared with two

separate fuel loop data. Lowest nRMSE value obtained in 9L HD diesel engine studies

is 5.7%.

Results show that peak firing pressure and in-cylinder maximum temperature

are the most critical parameters for NOx emission prediction. Turbine inlet tempera-

ture, fuel flow, CA50, EGR rate and fuel-air equivalence ratio are the other important
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parameters that can be used in NOx calibration multiplier map generation.

Furthermore, to understand the robustness of the developed methodology; an-

other heavy-duty engine data are also used. In the Chapter 5; a 12.7 L heavy-duty

diesel engine model is created, and model correlation is performed via using a fuel

loop and a DOE test data. As the main difference from the previous section, a pre-

dictive combustion model, so-called DI-Pulse is used. DI-Pulse enables the use of

critical calibration parameters such as pilot, main, post injection timing & quantities

and rail pressure. Same methodological steps are accomplished, and 13 different maps

are created. turbine inlet temperature, maximum in-cylinder temperature, maximum

in-cylinder pressure, load, fuel flow, CA50, F/A equivalence ratio, EGR rate and rail

pressure parameters are detected as the most critical emission prediction parameters.

Best accuracy is obtained via the use of five of these parameters which are; CA50,

TMax, EGR rate, rail pressure and F/A equivalence Ratio. In the 12.7 L diesel engine

study lowest nRMSE value between dynamometer and model NOx outputs is 3.96%.

These accuracy results are showing that the developed methodology is competitive

with the other NOx emission prediction modelling strategies mentioned previously in

the Chapter 2.

It is evident that, fulfilling the emission regulation requirements incrementally

increase every year. To ensure that the products meet both the regulative obligations

and customer needs; a detailed study on the virtual calibration of the engine operating

points is completed. In Chapter 6.1, virtual calibration generation study is performed

via a 12.7L heavy-duty diesel engine model in which the developed methodology is

used. Five different operating points are selected for the evaluation. Optimization

simulations are run in all of these five points, and the results are compared with test

data. It is proven that the model and test outputs are in good correlation which means

that the developed methodology can be successfully used for virtual calibration devel-

opment. Undoubtedly; the need for actual tests will significantly reduce via virtual

calibration.
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As it is mentioned in Chapter 6; the developed methodology can be used for many

further complex studies. Hardware selection, high altitude calibration, technology

selection, calibration tool couplings and spontaneous test data diagnostics are some of

the possible areas in which utilizing from the developed methodology is feasible.

Hence, this study has shown that; if the minimum data requirement is satisfied

via dynamometer tests, global optimization can be done in the simulation environment

without any further tests. Furthermore, since thermodynamical models are physically

based, the demonstrated methodology can be used at the very early stages of engine

development in which no actual engine or test data exist. Undoubtedly, this will

provide both a cheaper and faster solution for global optimization and component

selection studies.

Last but not least, traditional emission prediction methodologies require signif-

icantly high simulation duration (almost 3-4 days per operating point on a typical

workstation PC). However, this methodology enables accurate NOx prediction with

very low CPU time. For example, it is possible to generate the NOx prediction for 100

points in 30 minutes. Using a single cylinder thermodynamical model rather than a

detailed model (six-cylinders) may even further decrease the required computational

effort. Taking the points that are mentioned above into consideration, it is possible

to state that the methodology presented in this thesis document can be used as a fast

and reliable tool for NOx prediction at any phase of engine development.

As the future study, soot and CO prediction accuracies can be developed further

by also comparing with different test data. Besides, for NOx prediction accuracy

improvement; effect of varying DI-Pulse predictive combustion model parameters with

respect to engine operating points can also be investigated.
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APPENDIX A: DI-PULSE CO PREDICTIONS

Carbon monoxide (CO) is a bland, odourless and toxic air pollutant. It is mainly

a result of the incomplete combustion of carbon-containing fuels. Partially burned fuel

is the leading resource for carbon monoxide. Carbon monoxide occurs mostly if there

is not enough oxygen exist during the combustion process. Oxygen-starved conditions

will result in incomplete combustion. Since the combustion takes place in an oxygen-

starved environment, carbon atoms may create a bond with only one oxygen atom

rather than two which is required for CO2 generation.

If the air/fuel ratio values are lower than the stoichiometric ratio, lack of oxygen

will be encountered in the combustion zone. Some special operating conditions such

as warm-up, cold operation or regeneration may result with higher CO emission gen-

eration. Besides, high fuel pressure or leaky injectors are some other possible reasons

for high CO concentrations.

There are two crucial phenomena [4] which decide on both CO and HC concen-

tration during the combustion process. These are; overleaning and undermixing.

• Overleaning / Overmixing: A distribution in the fuel-air equivalence ratio across

the fuel sprays develops just after the injected fuel advances into the cylinder. In

that period, there is an increase in the amount of fuel that is mixed leaner than

the lean combustion limit. The equivalence ratio distribution in the fuel spray at

the time of ignition can be seen in Figure A.1. Ignition occurs in the slightly lean

region of stoichiometric region of the spray core (especially in swirling flow) since

the fuel has spent the most time within combustible limits. Lean burn means

the burning of fuel with an excess of air in an internal combustion engine. The

magnitude of the unburned HC from these overlean regions will depend on the

amount of fuel injected during the ignition delay, the mixing rate with air during

this period, and the extent to which prevailing cylinder conditions are conducive

to autoignition.
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• Undermixing: If the fuel leaves the injector nozzle at a low velocity or excess fuel

enters the cylinder under overfueling conditions; slow or under mixing with air

can be identified. This condition also has a significant impact on CO and HC

emissions.

Figure A.1. Schematic of diesel engine fuel spray showing equivalence ratio (φ)

contours at the of ignition [4]

In summary, there are two major causes of HC emissions in diesel engines under

normal operating conditions:

• Fuel mixed to leaner than the lean combustion limit during the delay period;

• Undermixing of fuel which leaves the fuel injector nozzle at low velocity, late in

the combustion process.

DI-Pulse states that CO emissions can be mainly attributed to partial oxidation of

unburned hydrocarbons. Overmixing primarily occurs for lower load operating points

where the ignition delay can be quite large (especially for early pilot injections). For

these conditions, ‘Overmixing Rate Multiplier’ parameter can be used to tune the

amount of unburned HC emissions from overmixing. At ignition, this overmixed fuel

is set aside and one of the following can occur:

• The fuel can be re-entrained by another injection pulse
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• The fuel can be partially oxidized to CO, H2, H2O, etc.

• The fuel can exit the cylinder at EVO contributing to HC emissions

Besides; ‘Partial Oxidation Rate Multiplier’ parameter can also be used to control

how much overmixed fuel is partially oxidized to CO.

As a results, it is expected that increasing the ‘Overmixing Rate Multiplier’

will lead to increased HC emissions, primarily at low loads. Increasing the ‘Partial

Oxidation Rate Multiplier’ will reduce the HC emissions and increase the CO emissions.

In order to understand the CO emission prediction capability of the model, DOE

points are run with different Partial Oxidation Rate Multiplier and Overmixing Rate

Multiplier values. The range of these parameters are summarized in Table A.1.

Table A.1. CO model constants optimization

Parameter DOE Range DOE Results

Partial Oxidation Rate Multi. 1-5 5

Overmixing Rate Multi. 1-5 5

Results are shown in Figure A.2 as the contour plot of nRMSE values. It is

detected that the maximum accuracy that can be obtained via correlated DI-Pulse

model is about 15.81%.
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Figure A.2. CO Model: nRMSE contours as a function of partial oxidation rate and

overmixing rate multipliers



135

APPENDIX B: INJECTOR MAP IMPLEMENTATION IN

DI-PULSE

Predictive combustion models require some further data to initiate the simula-

tions. These can be listed as:

• Specification the injected fuel such as density, the heat of vaporization, absolute

entropy at 25 C, thermal conductivity etc.

• Injected fuel temperature

• Nozzle hole diameter

• Number of holes per nozzle

• Nozzle discharge coefficient

• Pilot injection mass and timing

• Main injection mass and timing

• Post-injection mass and timing

• Injection rate map

All of the above-listed items can be obtained from dynamometer data, but injec-

tion rate maps. These maps include data with very high confidentiality. That’s why it

is hard to acquire these maps from the suppliers.

These injection rate maps are three-dimensional maps including injection mass

flow rate (g/sec) as a function of rail pressure (bar) and energizing time (microsec-

onds). Figure B.1 represents different injection mass flow rate patterns as a function

of energizing time and rail pressure [5].
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Figure B.1. Representative injection maps [5]
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APPENDIX C: ADVANCED OPTIMIZER TOOL IN

GT-SUITE

There is still a huge need for multi-objective optimization especially in automotive

studies. NSGA-III is the successor to the well-known genetic algorithm NSGA-II and

is optimized for multi-objective Pareto optimization. The algorithm is created in the

open-source, Java-based environment. The main variance between these two algorithms

is that NSGA-III utilizes from a set of reference points to maintain the diversity of the

Pareto points during the search. Hence, although the objective number is very large,

it would be possible to obtain very even distribution of Pareto points within the all

objective space [49].

This genetic algorithm is generally recommended for problems including three

or more factors; for multi-modal or non-linear problems. The most critical inputs of

the algorithm are population size and the number of generations. The optimizer runs

a total number of designs calculated by multiplication of these two parameters. The

optimizer stops only if all of the designs are run in a simulation environment.

In order to initiate an optimization study in GT-Suite; below steps must be

traced:

• Number of objectives must be selected. If there is only one objective to achieve,

the user can select ”Single Objective”. If there is more than one objective than

it is important to select ”Multi-objective (Pareto)”.

• Case handling must be selected. It is both possible to optimize each case inde-

pendently or via case sweeps.

• Objective must be selected. For example, minimizing BSFC is an objective.

BSFC must be selected as the objective parameter.

• Population size and number of generations must be selected.

• Factor that will be used to fulfill the optimization must be selected. For example,
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the start of injection, rack position and EGR valve position are the main variables

that were used in TOC optimization study. Upper and lower limits must be

defined. Optimization space will be created within this range.

• Constraints must be defined. For example, if an optimization study is performed

without taking the main calibration limits such as turbine inlet temperature,

compressor outlet temperature, shaft speed, peak firing pressure, air-to-fuel ratio;

then the optimum solution may violate one of these limitations.


