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ABSTRACT

THE DETERMINATION OF TREATMENT PLANS FOR
VOLUMETRIC MODULATED ARC THERAPY

Volumetric modulated arc therapy is the state-of-the-art technique for external
radiation therapy treatment, where radiation can be delivered continuously during the
rotation of the linear accelerator’s gantry. This property makes this technique power-
ful in obtaining high conformal plans requiring short treatment times. However, the
multileaf collimator system shapes the radiation beam continuously, thus the resulting
apertures are interdependent due to leaf motion limitations, which makes treatment
planning hard. In this thesis, we first propose two mixed integer linear programming
formulations minimizing total radiation delivered to the patient subject to the geo-
metrical and clinical requirements. Then, we develop exact solution algorithms that
combine Benders decomposition with certain acceleration strategies and implement
branch-and-price method where pricing subproblem is decomposable by rows of mul-
tileaf collimator and can be solved as a shortest path problem. We investigate their
performance on a large set of test instances obtained from an anonymous real prostate
cancer data. The computational results reveal that they are efficient and outperform
a widely used commercial solver. In particular, branch-and-price implementation is
capable to find optimal solutions for larger problem instances. However, they cannot
provide realistic plans for real clinical problems because of their large size. In order
to address this issue, we develop a two-phase column generation based heuristic that
tunes the parameters of dose-volume requirements and yields an automated treatment
planning environment, which does not require any human intervention. We test its
performance on real prostate data sets and compare the quality of the generated plans
with those obtained by a widely used commercial treatment planning system. Results
show that it can obtain medically acceptable plans requiring significantly less radiation

in reasonable computation times.
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OZET

HACIMSEL YOGUNLUK AYARLI ARK SAGALTIMI
PLANLARININ BELIRLENMESI

Hacimsel yogunluk ayarl ark sagaltimi, dogrusal hizlandirici kizagi hasta etrafin-
da donerken 1g1n1n kesintisiz olarak génderilebildigi digsal radyasyon terapisinde yakin
zamanda geligtirilen bir tekniktir. Bu ozellik bu teknigi kisa sagaltim siirelerine gereksi-
nim duyan yiiksek uygunlukta planlarin elde edilmesinde giiclii kilmaktadir. Fakat, ¢ok
yaprakli yonlendirici radyasyon 1ginini kesintisiz olarak bi¢cimlendirir, bu nedenle elde
edilen agikliklar yaprak hareket kisitlamalar: nedeniyle birbirine bagimhidir ve sagaltim
planlamas1 zorlagir. Bu tezde, ilk olarak geometrik kisitlamalar1 ve sagaltima iligkin
gereksinimleri saglayarak hastaya iletilen toplam radyasyon miktarini en aza indiren
iki karigik-tamsayili dogrusal programlama gosterimi onerilmistir. Daha sonra Benders
ayrigtirma yonteminin belirli hizlandirma yaklagimlariyla birlestirildigi ve ederlendirme
probleminin ayrigtirilarak en kisa yol problemi olarak ¢oziildiigii dal-eder algoritmalar
geligtirilmistir. Bu algoritmalarin bagsarimlar:r anonim bir prostat verisinden tiiretilmis
¢ok sayida ornek tizerinde degerlendirildi. Bilgisayisal deneylerin sonuglar1 yaygin
olarak kullanilan ticari bir eniyileme ¢oziiciisinden daha iyi sonuglar veren etkin algo-
ritmalar olduklarim ortaya koymaktadir. Ozellikle, dal-eder uygulamas: daha biiyiik
boyutlu problemler i¢in eniyi ¢oziimler elde edebilmektedir. Yine de klinik boyuttaki
problemler icin kabul edilebilir sagaltim planlari elde etmek olanakli degildir. Bu ne-
denle, doz-hacim gereksinimlerine iligkin parametreleri ayarlayabilen ve karigma gerek-
tirmeyen bir otomatik sagaltim ortami sunan iki agamali siitun tiiretme temelli sezgisel
bir algoritma gelistirilmistir. Gergek prostat verileri kullanilarak bu algoritma ile elde
edilen planlarm kalitesi yaygin olarak kullanilan bir ticari sagaltim planlama dizgesince
elde edilenlerle kargilagtirilmigtir. Karsilagtirma sonuclari sezgisel kullanildiginda daha
az radyasyona gereksinim duyan, klinik olarak kabul edilebilir planlar elde edilebildigini

gostermektedir.
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1. INTRODUCTION

Oncology is the medical practice dealing with cancerous tumors, including their
origin, development, diagnosis, treatment, and prevention. The most common types of
cancer treatments are surgery, chemotherapy, and radiation therapy. Surgery excises
the tumor from the body if cancer has not metastasized or only small parts of the body
are cancerous. Chemotherapy is the drug treatment where anti-cancer drugs are used
to kill cancer cells. In radiation therapy high energy radiation is used to treat cancer.

Each of these treatment methods may be applied alone or in combination.

Radiation therapy, or radiotherapy, sends high-energy particles or waves on to
cancerous tissues in order to damage the deoxyribonucleic acid (DNA) of cancer cells,
which destroys their ability to reproduce. Radiation can also harm healthy cells, which
can repair themselves unless they are exposed to doses beyond their tolerance limits.
However, if healthy cells are given high amount of radiation they may not repair them-
selves and other medical problems, such as organ destruction, may occur. Hence, the
success of the treatment depends on the ability to deliver the proper amount of radia-
tion to the malignant region while sparing healthy tissues so that they are exposed a

minimal amount of radiation.

External-beam radiation and internal radiation therapy (brachytherapy) are two
modes of radiotherapy. In the former one, radiation beams are generated outside the
patient and delivered to the tumor; on the other hand radiation sources like implants
or liquids are placed inside the patient’s body in the latter. Three-Dimensional Confor-
mal Radiation Therapy (3D-CRT), Image Guided Radiation Therapy (IGRT), Intensity
Modulated Radiation Therapy (IMRT), Tomotherapy, and Volumetric Modulated Arc
Therapy (VMAT) are being tested and applied forms of external-beam radiation ther-
apy. A linear accelerator (see Figure is the most commonly used medical device,
where the patient lies on a moveable treatment couch. The gantry of the linear ac-
celerator can rotate around the patient and delivers high-energy beams from different

angles by keeping the cancer volume on the target.



_ | Gantry

Couch

Figure 1.1. A linear accelerator [1].

IMRT and VMAT are two commonly used external-beam radiation therapy tech-
niques. In both of them, the gantry of the linear accelerator is equipped with a multileaf
collimator (MLC) system, which consists of a number of parallel metal leaf pairs. The
leaves can move horizontally and shape the opening that the radiation beam passes
through. Namely, they can block some fraction of the beam (see Figure . In this
way, the conformity of dose distribution to the planning target volume (PTV), which is
tumor plus some margin, and normal tissue sparing is much superior compared to ear-
lier techniques |7]. However, IMRT and VMAT requires higher amount of radiation (in
monitor units, MUs) to deliver a given fraction size compared with 3D-CRT [8,|9]. The

Figure 1.2. (a) A shaped beam [2], (b) A multileaf collimator system [3].



increase in MUs increases the risk of secondary radiation-induced malignancies [10].
Although IMRT has been used very extensively in radiation therapy since 1990s [11],
VMAT is the state-of-the-art technology. In VMAT, the gantry of the linear accelerator
rotates around the body along one or more arcs and delivers radiation continuously.
The leaves of MLC system move and shape the beam, and also, dose rate and gantry
speed can change simultaneously during the rotation of the gantry. These features
of VMAT enable it to produce radiation therapy plans having high conformal dose
distributions and requiring less radiation compared to IMRT [7,8]. Also, radiation
delivery times of the resulting plans become significantly shorter [12/13]. On the other
hand, there are typically only a few discrete angles (5-9) in IMRT plans [14] (see Figure
1.3)). Furthermore, the linear accelerator stops delivering radiation while moving its
gantry between different beam angles (or control points) in both dynamic (sliding win-
dow technique) and static (step-and-shoot technique) types of IMRT, and during the
change of MLC shapes at a beam angle in the latter one [11]. In addition to the clinical
benefits of delivering less radiation to the patient, there are several other advantages
of short treatments. The discomfort of patients and the risk of negative effects that
may result from patient movements decrease. Also, it is possible to treat more people

since resource utilization becomes more efficient [13].

Figure 1.3. (a) IMRT [4], (b) VMAT [5].

The main advantage of VMAT is the ability to deliver radiation continuously,

however, this causes a very thin slicing of the gantry’s rotational arc at considerably



many control points in VMAT planning. As a consequence, adjacent control points
become very close and that makes them interdependent with respect to the movement
of MLC leaves. Then, the determination of radiation dose, gantry speed and their con-
trol become harder; and this directly effects the structure of the related mathematical
optimization models. First of all, the number of decision variables increases not only
for dealing with the controllability issues, but also for linearizing the nonlinearities that
the radiation dose related dependencies introduce. These unique characteristic of the
technique makes VMAT planning a challenging issue in radiation therapy compared to
IMRT planning. As a result, most of the models in the literature are not comprehensive
enough to take all aspects of VMAT treatment into account due to the increasing com-
putational difficulty. The few existing mathematical optimization formulations either
do not include hard constraints for many of the radiation dose related dependencies,

or these constraints are relaxed in order to obtain solvable relaxed formulations.

In order to close this gap, we develop two new mixed integer linear programming
(MILP) formulations for VMAT planning that include all radiation dose requirements
as hard constraints as well as mechanical limitations of the linear accelerator and MLC
system. The models proposed so far, generally minimize dose deviations from the pre-
scribed limits and represent two different treatment plans with similar dose deviations
but different total MUs as equivalent; they just do not distinguish between the plans
with respect to their radiation requirements. Also, when the total deviation of a treat-
ment plan is not zero, it is not guaranteed that the resulting plan is feasible according
to the dose constraints [15]. Therefore, it is not possible to benefit from VMAT’s whole
potential in radiation treatment if one of these models is used to determine optimal
treatment plans. To this end, we focus on finding the VMAT plans that are not only
feasible with respect to the clinical prescriptions, but also require less radiation, by
formulating the objective function of our MILP models to minimize the total radiation

amount (in MUs) delivered to the patient.

Moreover, there is another gap in the literature of VMAT planning. The solution
approaches proposed so far are heuristic algorithms, since the models underlying VM AT

planning problem are large and hard to solve. To the best of our knowledge there is



not an exact solution algorithm for the determination of optimal VMAT plans. We
believe it is important to focus on developing exact optimization algorithms and make
progress in this research direction in order to reveal the potential of this technique
better. In this dissertation, we develop two different exact solution approaches that
we believe they will be pioneering ones in this field. The VMAT planning problem
has a natural tendency to decompose into two interacting parts. One of them deals
with the geometry of the equipment while the other determines the right amount of
radiation dose of the treatment region. Based on this observation we propose an exact
solution algorithm using Benders decomposition (in Chapter . The idea is to keep
binary variables in the master problem and solve a linear programming subproblem
to generate cuts. We improve the naive implementation of Benders decomposition by
applying certain acceleration strategies. We test their performances on a large set
of test instances derived from a real prostate cancer data set provided by Craft et
al. |16,|17], and compare the computational results with those obtained by using a
MILP solver. As given in Chapter [§]the improved Benders algorithms outperforms the

MILP solver especially for large instances.

Afterward, we observe that reversing the order of decomposition and considering
a subproblem including the binary variables may have been more advantageous since
the problem itself can be decomposed into shortest path subproblems. In fact this gives
birth to branch-and-price (BP) algorithms explained in Chapter [} As can be observed
from the computational results in Chapter [§| one of them performs significantly better
than the best Benders decomposition algorithm, and can compute optimal treatment

plans minimizing total radiation for considerably larger instances.

To the best of our knowledge, our exact solution algorithms are the first attempts
to solve exactly a VMAT planning model in which all VMAT’s treatment related con-
straints are forced to be satisfied. However, they are not capable of solving clinical
problems including all structures. Finally, in Chapter [7| we develop a two-phase heuris-
tic, which is based on column generation formulations developed in Chapter [6], We test
the performance of the heuristic on real cancer patients data sets provided by Istanbul

University Oncology Institute, which is one of the largest and oldest cancer centers in



Turkey, and make clinical comparisons with the plans obtained by the institute’s staff.
The computational results show that the new heuristic is capable of finding clinically
acceptable plans with less MUs and does not need any intervention such as modifying
the parameters of the plan and re-optimizing, which is the common practice in the

radiation therapy planning departments.

The rest of this dissertation is organized as follows. In the next chapter, we
describe some basic concepts that arise in external-beam radiation therapy planning
in order to facilitate the follow-up of the forthcoming chapters. We provide the related
literature review concentrating on the optimization methods for IMRT and VMAT
planning in Chapter [3] In Chapter [ we define the VMAT planning problem and
present our mathematical formulations. We continue by explaining the exact solution
algorithms in Chapter 5] and Chapter [6], and two-phase heuristic in Chapter [7] Chapter
presents the computational results for the Benders decomposition and BP algorithms
and compare them with a MILP solver’s. Also, we make clinical comparison of the plans
obtained by our heuristic algorithm with the actual ones obtained in Istanbul University
Oncology Institute. Finally, we give a brief summary to conclude the dissertation and

point out the potential future research direction, in Chapter [0



2. BASIC CONCEPTS

External-beam radiation therapy process starts with the determination of tumors
and surrounding normal structures after the diagnosis of the patient with cancer. Then
a treatment that satisfies radiation dose prescriptions as well as mechanical limitations
of the linear accelerator and MLC system is planned by a medical physicist and/or an
experienced dosimetrist. The plan is delivered in a specific number of identical sessions,

which is called fractionation and the number of fractions mainly depends on the tumor

type.

Treatment plans had been prepared manually until more sophisticated techniques
were developed in parallel with technological advances. There are two main categories
of planning approaches: forward and inverse planning. Forward planning is a trial
and error approach where the parameters such as beam angles, MLC segments and
radiation intensities are fixed and the dose distribution of the resulting plan is calcu-
lated. If treatment prescriptions are not satisfied, then the parameters are updated
until a reasonable plan is obtained. Simulation is one of the methods used for forward
planning. Nevertheless, this approach is inadequate to reflect the capabilities of the
new advanced technologies. However, inverse planning is an automated planning ap-
proach that provides plans with better dose distributions and shorter treatment times
as compared to forward planning. It requires optimization tools, hence, operations
researchers and mathematical programmers are interested in the radiation treatment
planning [11]. In Figure the difference between these two planning approaches is

illustrated [18]. We consider inverse planning approach in this dissertation.

From the point of operations research, a radiation therapy treatment plan actually
answers the following questions: where to deliver radiation?; how to deliver radiation?;
and how much radiation to deliver?. To answer these questions the radiation treatment
planning problem should be formulated according to the solution technique that will be
applied. In IMRT planning, there are a few number of beam angles, or control points,

that irradiation occurs and they are usually determined by the experienced dosimetrist
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Figure 2.1. (a) Forward planning, (b) Inverse planning.

in advance. However, in VMAT planning, the continuous rotation of the gantry on
a co-planar arc is generally discretized and it is assumed that radiation is delivered
from a large number of equally spaced control points. (Since the couch of the linear
accelerator can move, it is also possible to deliver radiation on a non-coplanar arc).
Therefore, the answer to the first question is the location of the control points where

the radiation delivery occurs.

The answers of the last two questions in IMRT planning are related to finding
a fluence map at each one of the control points and to realizing them into a number
of deliverable radiation beams. A fluence map is represented by a two-dimensional
nonnegative matrix that gives the radiation intensity profile (see the left-most matrix
on Figure . An opening where the radiation beam passes through is formed by the
leaves of MLC at a control point and called as an aperture. A two-dimensional binary
matrix is commonly used to represent an aperture, namely the opening is discretized
into a number of beamlets. The number of rows of this matrix equals to the number of
parallel leaf pairs on the MLC system. If a beamlet belongs to the open area, namely if
it is exposed, than it takes value 1 and if it is blocked by the leaves of the MLC, then it
is 0. In Figure [2.3| an aperture and its binary matrix representation are illustrated for
an MLC system that has five leaf pairs (rows), and the leaf openings are decomposed

into five columns. Due to the mechanical limitations of the linear accelerators, it is



only possible to deliver the radiation profile described by a fluence map using a number
of apertures. In other words, in IMRT planning, a fluence map at a control point is
realized by a weighted sum of a number of apertures (see Figure . The weight of
an aperture represents the amount of radiation dose (in MU) that is delivered through
this aperture. On the other hand, in VMAT planning, it is assumed that there is only
one aperture at each control point. Therefore, to answer the second question, it is

necessary to determine the shape of the apertures at all control points.

Figure 2.2. Decomposition of a fluence map into two apertures.

Figure 2.3. An aperture and its binary matrix representation.

There are some mechanical limitations of MLC systems that should be incor-
porated into the planning. For example, the leaves have to satisfy some properties
depending on the type of the system. The most common one, almost all MLC sys-
tems must satisfy, is called the consecutive ones property. There can be at most one
open beamlet chain in a row of an aperture, since MLC systems are made up of metal

leaves. In Figure the aperture on the left side satisfies the consecutive ones prop-
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erty, however, the third row of the aperture on the right side violates the property since
there are two open beamlet chains. Another property that some MLC systems must
satisfy is connectedness, which requires that there is at most one open hole where the
radiation passes through. The aperture on the left side on Figure does not satisfy

connectedness since there are two disjoint open holes. Finally, some MLC systems does

Fd F

Figure 2.4. Consecutive ones property.

not allow the interdigitation of leaves, namely the left (or right) leaf at a row cannot
touch the bottom or top right (or left) leaf. The third and fourth rows of the aperture
on the right side on Figure[2.5| coincide; and that makes it infeasible according to MLC
systems that does not allow interdigitation. We refer the reader to the study of Goren

and Tagkin for details of other possible properties of various MLC systems.

H

Figure 2.5. Connectedness and interdigitation.

In the dynamic version of IMRT the leaves of MLC system move and change
the shape of the beam at a control point in order to obtain the desired fluence map.
Similarly, in VMAT, during the rotation of the gantry the leaves also move and change

the shape of the beam. However, there is a limitation on the speed of this movement.
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Figure 2.6. A sample VMAT treatment.

The maximum distance that a leaf can move per second depends on the technical
characteristics of the linear accelerator. Similarly, the speed of the gantry and dose
rate are limited from above and below, and there is a close relationship between them as
well as MLC leaf movement. If the gantry rotates with high speed then the maximum
radiation dose is less at a control point. Also, the apertures of neighboring control
points are similar, since the leaves cannot move so much (or vice versa). Hence, at
each control point the amount of MU has to be determined in order to answer the
third question in VMAT planning. Figure [2.6]illustrates a simplified VMAT plan with

few control points.

The geometric properties and mechanical limitations of the equipment used in
the treatment are explained so far. The primary aim of the radiation therapy is to
deliver enough radiation to tumor while protecting surrounding healthy tissues. For
this purpose, the oncologist determines the location of the tumor and prescribes the
radiation amounts that is delivered to the patient. There are three main volumes to be
considered in the radiation therapy: gross tumor volume (GTV), clinical target volume
(CTV), and planning target volume (PTV). The GTV is the primary tumor, which is
visible and easily identifiable part of the malignant growth. The CTV contains the GTV

and subclinical microscopic malignant lesions. The PTV surrounds the CTV and a
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margin to account uncertainties in planning or delivery; it is considered in the treatment
planning optimization [20] (see Figure[2.7). We use the terms PTV and target volume
(TV) interchangeably in the rest of the dissertation. The oncologist contours the
cancerous PTVs and surrounding organs at risk (OARs) on the computed tomography
(CT) scans of the patient and prescribes the radiation doses best conforming to PTVs
and OARs. There may be more than one PTV with different dose requirements as well

as OAR depending on the cancer type and patient’s anatomy.

Figure 2.7. GTV, CTV, PTV.

The treatment prescriptions for a PTV require that the full or a partial volume of
the PTV must absorb a predetermined amount of radiation. Also, there are tolerance
dose limits for OARs. A specified partial volume of the organ must absorb below
them. Dose-volume histograms (DVHs) are the most commonly used tools to evaluate
the resulting dose distributions and the quality of a treatment plan. A DVH is a two-
dimensional graph showing the fractional volume of a structure and the minimum dose
absorbed by that volume. In Figure DVHs illustrate the dose distributions of a
PTV and OAR. For example, 60% of OAR absorbs at least 33 Gray (Gy) radiation. In
other words, the maximum radiation dose that 40% of OAR absorbs is 33 Gy. Similarly,
100% of PTV absorbs around 71 Gy radiation.

In order to calculate dose distributions on the structures, the body of the pa-
tient is discretized into small cubes called vozels (see Figure for an example) us-
ing CT scans. Moreover, dose calculation algorithms such as Pencil Beam Algorithm

(PBA) [21] or Analytical Anisotropic Algorithm (AAA) [22] are used to calculate dose
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contribution of a beamlet to a voxel when it is delivered one unit of radiation from.

Namely, they calculate the amount of absorbed radiation dose (Gy) per MU. These

amounts are used as input in optimization models and called dose-influence matrices.

Figure 2.9. A voxel resolution of a head [6].
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3. LITERATURE REVIEW

The studies in the literature developed for VMAT planning are mostly related
to IMRT planning methods. Hence, in this chapter, we start by giving a brief ex-
planation about IMRT planning phases referring to some representative publications,
which makes easier to explain the algorithms developed for VMAT planning. Then,
we continue by giving a detailed literature review on VMAT planning. Our aim is
to develop a planning system which gives optimum treatment plans, thus we mostly
take into account the studies trying to improve the treatment planning environment

by operations research techniques.

3.1. Intensity Modulated Radiation Therapy Planning

There are three main phases in IMRT planning, which can be solved either se-
quentially or combining two of the phases. The first phase deals with the beam angle
optimization (BAO) problem (or geometry problem): the number and orientation of
beam angles (or control points) for irradiation are determined, which is mostly done
by a medical physicist or dosimetrist in practice based on experience. There are also
studies where a function is defined to determine the quality of a set of directions and
this function is optimized in order to find the best set [23]. After determining the beam
angles, a fluence map is obtained for each one of them in the second phase, which is
called the fluence map optimization (FMO) problem (or intensity problem) [14,24,25].
As we mentioned in Chapter [2], a fluence map denotes the radiation intensity profile to
be delivered through a given beam angle and can be represented by a two-dimensional
nonnegative matrix. It is possible to formulate the FMO problem as a convex optimiza-
tion problem; hence, it can be solved efficiently using one of the existing algorithms [26].
The third phase in IMRT planning is MLC leaf sequencing (MLS) problem (or real-
ization problem), where a given fluence map is decomposed into a number of disjoint
apertures and corresponding radiation intensities. In other words, a nonnegative ma-
trix is re-expressed as a linear combination of binary matrices with positive weights. All

of the binary matrices should satisfy the properties of the MLC system. During the de-
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composition of a fluence map, total radiation delivery time (i.e. beam on time) and/or
the total number of apertures (i.e. total machine setups) are minimized [7,27-33]. The
problem of minimizing total delivery time, which is the time that the radiation delivery
is on, consists of the minimization of the sum of the individual intensities determined
for each aperture, and it is polynomially solvable. However, in the cardinality problem
the total number of apertures is minimized and this problem is shown to be strongly

NP-hard [34).

Each one of these three phases can be handled independently and solved sequen-
tially, however, there are also studies that consider two consecutive phases simultane-
ously. For instance, the first two phases, BAO and FMO, can be considered together
and solved as a monolithic non-convex optimization problem to determine the beam
angles and fluence maps simultaneously [35,36]. There are also studies that directly
optimize a number of apertures with intensities for each one of the determined beam
angles. In other words, they solve the second and the third phases, FMO and MLS,
simultaneously instead of finding a fluence map first and then decomposing it into a
number of deliverable apertures [37-42]. This problem is called direct aperture opti-
mization (DAQO) problem. Column generation is one of the frequently used approaches
where apertures are generated as new columns [38-42]. The general framework of the
algorithms proposed in these studies is to start with an empty set of apertures and
add apertures to the plan iteratively. The pricing subproblem yields the most promis-
ing feasible aperture in order to introduce it to the master problem, which determines
optimum weights of the apertures generated and added to the treatment plan so far.
In particular, Romeijn et al. [38] formulate a large-scale convex programming problem
and solve their problem exactly, where they generate one or more promising apertures
in each iteration by solving a network flow similar to the one in [30]. They modify the
network model in order to make it possible to solve the DAO problem where the MLC
system requires connected apertures. Men et al. [40] consider the MLC systems that
allow only rectangular apertures, and solve the pricing subproblem by a polynomial
time algorithm similar to the ones in [30,38]. We refer the interested readers to the

comprehensive survey of Ehrgott et al. [11] for more details on IMRT planning.
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3.2. Volumetric Modulated Arc Therapy Planning

VMAT is not the first radiation treatment technique that benefits from the flex-
ibility a rotating gantry introduces in order to obtain treatment plans with higher
quality. Yu [43] proposed the rotational IMRT called Intensity Modulated Arc Ther-
apy (IMAT) in 1995; but the clinical implementations remained very limited until Otto
suggested VMAT in 2008. In VMAT, the gantry speed and the dose rate as well as
the beam shape can vary during rotation. The linear accelerator can deliver radiation
continuously to the patient’s body, and thus in treatment planning it is commonly as-
sumed that there is a large number of equally spaced control points in order to discretize
this continuous radiation delivery. At each control point there is only one aperture;
however, the apertures at two adjacent control points are interconnected. This is be-
cause there are limitations on the motion of the MLC leaves during rotation. Thus,
the VMAT planning problem cannot be decomposed into a number of subproblems
that can be solved independently. As a result, designing a VMAT plan is significantly
harder compared to IMRT planning. Even when the total time to complete a tour is
fixed, the resulting problem is a large-scale nonconvex optimization problem. These
characteristics make VMAT planning a challenging task, which requires much more

computational effort than IMRT planning [16].

Studies on VMAT planning can be classified into two groups. The members of
the first group use a two-step approach that, in the first step, determines an optimal
IMRT plan consisting of a number of fluence maps at evenly spaced control points.
Then these fluence maps are converted into a deliverable VMAT plan using an arc-
sequencing method in the second step. On the other hand, the studies in the second
group directly optimize the leaf positions and radiation intensities of the apertures
and are called DAO methods similar to the ones one can face in the IMRT planning
literature. Our solution methods given in Chapter [5| — Chapter [7] fall into this group.

We explain the studies in these two groups separately in the following subsections.
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3.2.1. Two-step Approaches

Two-step approaches convert an idealized IMRT plan consisting of fluence maps
at both coarse [44-46] and dense [16,47,48] sampling of control points into a deliverable
VMAT plan. In the first step, a FMO problem is solved and intensity profiles are
obtained. In the second step, an arc-sequencing method is used to convert the fluence
maps into feasible apertures that satisfy MLC leaf limitations. Hence, these two-step

approaches are also called arc-sequencing methods.

In one of the earliest work, Luan et al. [44] solve a shortest path problem to
find %k deliverable arcs from a number of continuous intensity patterns for equally
spaced control points (typically with 10°-spacing). Each one of the fluence maps is
decomposed into a number of apertures which realize the corresponding intensity map.
Then, by selecting exactly one aperture from the generated ones at each control point,
a deliverable arc is constituted. Namely, a treatment arc consists of relatively small
number of control points. Finally, they obtain & different treatment arcs, since IMAT
is not flexible as VMAT and the realization of the fluence intensity maps requires more
than one arc, which causes long treatment times. The algorithm proposed by Wang et
al. [45] solves a shortest path problem similar to the one in [44], however, they generate
a single-arc plan by displacing the generated apertures onto the neighbor control points.
It is assumed in both of these studies that the MLC system allows leaf interdigitation.
A similar mechanism is used in the arc-sequencing algorithm of Cao et al. [46] to
obtain a single-arc plan, where they reduce the number of apertures per control point
to 2-6. They optimize the apertures directly in an IMRT plan using a direct machine
parameter optimization method. A simulated annealing-based algorithm is used as an

arc sequencer to obtain deliverable arcs.

Note that converting an IMRT plan that consists of a small number of control
points may cause a deterioration in the quality of the dose distribution of the resulting
VMAT plan. Since VMAT planning problem has its own constraints on the MLC’s
movement, which must be considered during arc-sequencing. Some of the studies first

obtain an “ideal” IMRT plan including a large number of control points, and then
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coarsen this plan to reduce delivery time by maintaining dose distribution quality. Craft
et al. |[16] propose an algorithm called VMERGE;, that obtains a fine sample IMRT plan
for 180 equally spaced beam angles in the first step by solving a convex multicriteria
optimization problem. However, this ideal plan is obtained by disregarding treatment
time. It is observed that the fluence maps of neighbor beam angles are similar, thus
in the second step, the ideal plan is transformed into a deliverable VMAT plan by
merging similar fluence maps iteratively as long as the dose distribution quality is
maintained. The resulting maps are sequenced and delivered over the corresponding
arc segment. In short, their algorithm starts with a finely sampled plan, and this plan
is coarsened to reduce the delivery time. Then, Salari et al. [47] propose an improved
form of VMERGE algorithm where a merging problem is formulated as a discrete bi-
criteria optimization problem using a network flow model. In another extended version
of VMERGE, optimal partial-arc plans are generated automatically [48]. They use
the same iterative fluence map merging and sequencing algorithm given in [16] to find
a plan for each partial-arc and select the best one with minimum treatment time.
This new algorithm is called PMERGE, and computational experiments show that the
treatment time of a plan obtained by PMERGE is lower than the ones obtained by
VMERGE. However, there may be a large number of partial-arcs and this may increase

the computation time.

3.2.2. Direct Aperture Optimization Methods

The studies of the second group optimize the beam shapes (i.e. aperture shapes
or leaf positions) and beam intensities at all control points simultaneously. Therefore,
MLC constraints and delivery time are considered during plan optimization, which
makes the problem harder to solve. The solution methods proposed in the literature
are generally heuristic algorithms. One of the earliest algorithm is introduced by Earl et
al. [49] in 2003 for IMAT technology, which starts with a number of apertures at equally
spaced control points with 10°-spacing. Each one of the apertures fits to the beam’s
eye view (BEV) of the target seen from the linear accelerator at the corresponding

control point. Then, simulated annealing method is used to optimize the leaf positions
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and intensities of the initial apertures. Since, it is not possible to vary dose rate
(or gantry speed) in IMAT, more than one overlapping arcs are required to realize
a plan with acceptable dose distribution. The work by Otto [12] is the first study
on VMAT planning, which is commercialized under trade name Rapid Arc (Varian
Medical Systems, Palo Alto, CA, USA). The proposed method starts with a relatively
coarse sampling of the control points and they are increased progressively according to
a schedule. The aperture shape of a newly added control point is determined by linear
interpolation of the existing apertures at adjacent control points, and its radiation
intensity is calculated using a linear function of the adjacent intensities. Each time a
new control point is added to the plan, a number of simulated annealing iterations are
conducted. At each iteration, one of the existing control points is randomly selected,
and the current dose intensity or the position of a leaf is changed. If the new aperture is
feasible and there is an improvement in the objective function, then the new solution is
accepted. Yan et al. [50] propose a similar heuristic algorithm that starts with a coarse
sampling of the control points and uses a progressive sampling strategy to find the
final VMAT plan. Bzdusek et al. [51] and Bedford [52] propose a three-step method,
where they initially apply a two-step approach similar to the one explained in the
previous section to find a good starting point for their DAO methods. Namely, they
find initial apertures at the first two steps; then they refine them in the third step where
aperture shapes and intensities are decision variables. The algorithm in [51], which
is commercialized under trade name Pinnacle SmartArc (Philips Medical Systems,
Madison, WI, USA), decompose a set of fluence maps obtained at equally spaced
control points with 24°-spacing into a number of apertures. Then, for each one of the
control points only 2 apertures are selected and distributed over the arc. They refine
the resulting arc by a local gradient based algorithm at the third step. Christiansen et
al. [53] modify this algorithm in order to make the continuous aperture dose calculation
possible. In Chapter [7| we introduce a two-phase heuristic that has similarities with
these three-step approaches. In the first phase we find an initial treatment arc in two
steps, where in the first step instead of solving a standard FMO problem we solve a
linear programming model based on one of our optimization models. It finds a number

of fluence maps with additional properties (e.g. the intensities of beamlets are bounded
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from above by the maximum deliverable radiation intensity at the corresponding control
point) for a subset of predefined control points. Then, in the second step we perform
an arc sequencing heuristic to obtain apertures from these fluence maps. In the second

phase of our algorithm we improve this initial treatment arc using column generation.

There are other studies in the literature that use column generation method in
their DAO heuristic algorithms. Men et al. [54] formulate a large-scale convex pro-
gramming model in which the cost function consists of quadratic one-sided voxel-based
penalties and a penalty-based soft constraint for the maximum dose rate variation lim-
itation. They start with an empty set of apertures and generate one aperture for an
unoccupied control point at each iteration, which is compatible with the previously
generated ones with respect to the maximum leaf motion speed. Then, the dose in-
tensities of all generated apertures are optimized in the master problem by means of
the gradient projection method [55]. They do not consider the dose rate limitation
at control points, which is unrealistic according to capabilities of the existing linear
accelerators, and Peng et al. [13] improve this solution approach in their new column
generation based greedy heuristic that also takes into account dose rate and gantry
speed limitations. In a recent study, Mahnam et al. [56] develop a large-scale nonlin-
ear integer programming model that has a quadratic voxel-based least square penalty
function as an objective function similar to the one in [13]. They also propose a column
generation based heuristic that generates a set of sequential apertures as a new col-
umn by solving the pricing subproblems formulated as shortest path problems. They
assume that the MLC system has only consecutive ones property, hence the apertures
that form a partial arc can be decomposed into rows and can be handled independently.
Namely, they find as many partial row arcs as the number of rows in the MLC system;
then their union yields the aperture set in the partial arc. Then, they integrate DVH
criteria into their column generation algorithm in [57]. We use a similar approach in our
BP algorithms and also column generation heuristic given in Chapter [6] and Chapter
[7, and formulate the pricing subproblems as network optimization problems on acyclic
networks using the key point of decomposing the partial treatment arcs into rows and
generating them separately. However, we generate rows of a full treatment arc and do

not need any post-optimization.
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Papp and Unkelbach [26] enforce unidirectional leaf motion over an arc segment,
and determine the apertures by solving a sequence of convex optimization problems.
They assume that gantry speed and dose rate are constant during rotation. Peng et
al. |58] also propose a heuristic approach to solve VMAT with constant gantry speed
and dose rate. On the other hand, Hoegele et al. [59] optimize leaf motion by utilizing
a priori knowledge about the type of the leaf motion pattern during the radiation
delivery. We also assume that the gantry rotates around the patient at a constant

speed, however, there is not such an assumption on dose rate.

The studies of Gozbasi [60], Akartunali et al. [15], and Song et al. [61] are the
first works that formulate MILP models for the VMAT planning problem in which
an aperture and radiation intensity are optimized at each control point subject to
a part of the clinical requirements. In [60] and [61] some of the treatment related
constraints are relaxed and they are tried to be satisfied in the objective function (i.e.
by minimizing total deviation from the prescribed doses or minimizing the weighted
sum of the average dose on critical structures, etc.). On the other hand, Akartunali
et al. [15] embed the treatment requirements, except the partial volume constraints
of TVs, to their mathematical model as hard constraints, and they try to maximize
total number of target voxels that absorbs at least the prescribed amount of radiation.
They make the first step towards the development of exact methods, however, they
finally suggest heuristics to obtain good feasible treatment plans, which are clinically
acceptable as well. We develop two MILP formulations for VMAT planning, which
are explained in Chapter [dl They consider all mechanical limitations of the linear
accelerator and MLC system as well as dose requirements of treatment. They are
also different form the formulations introduced to the literature with respect to the
objective function as well as the definition of the MLC leaves and the corresponding
constraints. We develop algorithms (in Chapter [5| and Chapter @ to solve one of these
comprehensive VMAT planning models, which are the first exact solution algorithms

proposed to the literature to the best of our knowledge.

For more detail about rotational therapy planning we recommend the studies

of Unkelbach et al. [62] that reviews the mathematical optimization methods used in
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VMAT planning and Cedric and Tang [63] that reviews mainly IMAT studies from
a clinical point of view. Also, there is a recent comprehensive review of Breedveld
et al. |64] that describes the use of multi-criteria optimization and decision-making
methods in radiation therapy as well as clinical details of treatment. Finally, in this
dissertation we consider co-planar treatment arc as the studies reviewed so far. However
there are also studies in the literature that optimize VMAT plans for non-coplanar

geometries obtained by couch rotation [65./66].

3.2.3. Problem Sizes

The mathematical models proposed for VMAT planning have been relatively
simple until the last few years. Typically, they do not include dose distribution re-
strictions as hard constraints. These constraints are forced to be satisfied by means of
penalty terms added to the objective function. It is also highlighted in [15] that these
studies can solve clinical size problems since they use such an objective function to
reach feasibility. Thus, a plan obtained by solving such a model is not guaranteed to
be clinically acceptable unless the value of the corresponding objective terms become
zero. |13]/54,56}61] are examples of such studies, where it is possible to consider the
instances with more structures and large number of voxels. However, the resulting

plans do not guarantee the satisfaction of dose-volume restrictions.

Men et al. [54] test their algorithm on ten clinical cases with a beamlet size of 1
x 1 cm? and voxel size of 2.5 mm3. However, they indicate that for unspecified tissues
outside the TV and OARs they increase the voxel size in each dimension by a factor
of two to reduce the optimization problem size. Total number of voxels varies in each
cases and ranges from 28 931 to 74 438. Peng et al. [13] test their algorithm, which
is an extension of the one proposed in [54], on 5 real prostate cancer data sets. They
also use a down-sampled voxel grid: they select one grid point for every two voxels
along each one of the three dimensions in critical structures, and one grid point for
every four voxels along each one of the three dimensions in unspecified tissues. The
resulting data sets has a total number of voxels varying between 9 602 and 13 769.

They also increase voxel sizes and use a lower resolution (4 x 4 x 2.5 mm?), and use
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1 x 1 cm? beamlets. Song et al. [61] use two data sets provided by the open source
platform CERR on MATLAB. For prostate case they consider TV and 4 OARs. They
sample one voxel out of every two voxels in OAR structures to reduce total number
of voxels, however they do not report the actual voxel numbers. Finally, Mahnam et
al. [56] use CORT prostate dataset provided by Craft et al. [17], which we use also in
the computational experiments for the algorithms provided in Chapter |5 and Chapter
6l and apply a clustering algorithm to sample down the voxels. They indicate that 5%
of OAR voxels and 15% of target voxels are included in their optimization model. They
consider both of the TVs and 4 OARs (rectum, bladder, left and right femoral heads).
As a result, there are approximately 3 500 voxels in their experiments. On the other
hand, the mathematical model of Akartunal et al. [15], which is the closest one to ours,
since they introduce all treatment requirements except the partial volume constraints of
TVs to their mathematical model as hard constraints. They maximize total number of
voxels absorbing radiation at least the prescribed amount. They are not able to access
to an in-house dose deposition coefficient calculation software, and they generate their
test instances by themselves. There are 33 instances differing from each other according
to the total number of voxels, MLC dimensions, and other parameters (voxel numbers
are varying between 216 and 15 625, but the maximum number of control points is
16 in these instances). They also generate 7 extra large instances in order to test one
of their Guided Variable Neighborhood Search heuristic. Their integer programming
based exact algorithms are not able to solve these extra large instances. To give more
detail, there is only one instance with 180 control points and a MLC size of 10 x 10
with 6 750 voxels. All other instances have either less voxels and control points, or the

dimension of the MLC system is small.
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4. PROBLEM DEFINITON AND FORMULATIONS|

In this chapter we explain two different MILP models we have developed for
VMAT planning. They are called as VMATP-1 and VMATP-2, respectively. The pro-
posed models directly optimize the aperture shape and dose intensity at each control
point while satisfying dose prescriptions and mechanical limitations of the linear ac-
celerator and the MLC system. The objective is to minimize total radiation intensity
during treatment in both models. The main difference between them stems from the
definition of the decision variables related to the leaf pairs of the MLC system. This
distinction also requires other modifications in the mathematical models. First we start
by explaining VMATP-1 step by step and then continue by giving the differences of
VMATP-2.

A VMAT plan must satisfy both radiation therapy dose prescriptions and me-
chanical limitations of the linear accelerator and the MLC system. Our first model
VMATP-1 consists of the constraints related to these requirements and minimizes the
total radiation dose delivered during the treatment. First, we discretize continuous
radiation delivery by assuming that there is a large number of evenly spaced control
points (i.e. 180) on a co-planar rotational arc. VMATP-1 determines the aperture
shape and the amount of radiation to be delivered at each of the control points. Com-
mon parameters and decision variables used to formulate both models are summarized
in Table [4.1] and Table [£.2] respectively. We list the additional variables of VMATP-1
in Table 3]

A two-dimensional m X n matrix represents an aperture at a control point. The
number of MLC leaf pairs, and thus the number of rows is m and the number of
columns is n. We introduce a number of nonnegative integer variables and binary
variables to form each one of these matrices. For each row ¢ at control point k two
nonnegative integer variables [;; and r;, define positions of the left and right leaves,

respectively. There are also n binary variables for each row 4 at control point £, and

L An earlier version of this chapter appears in [67].
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Table 4.1. Common parameters of VMATP-1 and VMATP-2.

Parameter Definition

i Index for an MLC row (i=1,...,m).
J Index for an MLC column (j=0,...,n+1), 0 and n+1 are home positions of the left
and the right leaves, respectively.
k Index for a control point (k=1,...,K).
t Index for a target volume (TV) (¢t=1,...,T).
0 Index for an organ at risk (OAR) volume (0=1,...,0).
c Index for a partial volume constraint of OAR o (c=1,...,C,) or TV ¢t (¢=1,...,C}).
v Index for a voxel in a volume.
VIV Set of voxels in TV ¢.
Vv Set of all voxels in all TVs, VIV = tfjl VIV,
VOAR Set of voxels in OAR volume o.
VOAR Set of all voxels in all OAR volumes, VOAE = LOJl VOAR,
1% Set of all voxels, V = VTV U VOAR,
LtV Lower bound on the amount of radiation dose absorbed by a target voxel in TV ¢
(in Gy).
utv Upper bound on the amount of radiation dose absorbed by target voxel in TV ¢
(in Gy).
UQAR Tolerance radiation dose amount of the cth partial volume constraint of OAR vol-
ume o (in Gy).
die The cth prescribed dose for TV ¢ (in Gy).
Dijiko Dose influence matrix (in Gy/MU).
) The maximum allowable distance (in beamlet) that a leaf can move between two
consecutive control points.
alV The minimum ratio of voxels in TV ¢ that receive radiation at least the prescribed
dose dye.
QAR The minimum ratio of voxels in OAR volume o that receive radiation at most the
tolerance dose UQAE.
Lme Lower bound on radiation dose intensity at a control point (in MU).

um Upper bound on radiation dose intensity at a control point (in MU).
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Table 4.2. Common decision variables of VMATP-1 and VMATP-2.

Variable

Definition

Zijk

Binary variable, 1 if the jth beamlet of row ¢ at control point k is open, 0

otherwise (j=1,...,n).

muy Nonnegative continuous variable, radiation dose intensity (in MU) at control
point k.

dy Nonnegative continuous variable, the total amount of radiation dose absorbed
by voxel v (in Gy).

Ak Nonnegative continuous variable, radiation dose intensity (in MU) delivered
from the jth beamlet of row ¢ at control point k.

v Continuous variable used in constraint , the radiation dose absorbed
by the ((1-aLY)|V,TV|)th voxel in TV ¢ receiving the lowest radiation.

OAR Continuous variable used in constraint (4.26)), the radiation dose absorbed
by the ((1-a2A%)|V.OAR|)th voxel in OAR volume o receiving the highest
radiation.

Ticw Nonnegative continuous variable for the surplus of the value £1" by the dose
received by voxel v in TV t.

Yocv Nonnegative continuous variable for the surplus of the value fOOCAR by the
dose received by voxel v in OAR o.

Table 4.3. Additional variables of VMATP-1.
Variable Definition

ik Nonnegative integer variable, the position of the left leaf (i.e. the rightmost
beamlet closed by the left leaf on row i at control point k).

Tik Nonnegative integer variable, the position of the right leaf (i.e. the leftmost

beamlet closed by the right leaf on row i at control point k).
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Figure 4.1. An aperture and its decision variables.

the binary variable z;;; represents the beamlet j at this row and takes value of 1 if it
is open. Only the beamlets between the leaf pairs are open. In Figure an aperture
consisting of five leaf pairs (m = 5) and five columns (n = 5) at control point k is
illustrated with corresponding decision variables. Note that at row 3 the right leaf is
at its home position and takes value n+ 1 = 6, and at row 5 the left leaf is at its home

position and takes value 0.

The first mechanical constraint is associated with the MLC system. In a row of
an aperture there can be at most one open beamlet chain, which is called consecutive
ones property that must be satisfied by almost all MLC systems. We only consider this
property and introduce the following constraints similar to the studies both in VMAT
planning (e.g. [15]) and IMRT planning (e.g. [29]) in order to satisfy it:

e — L > 1 i=1,.. mk=1,. K (4.1)

Tik — JZije > 1 i=1,....m;5=1,....nk=1,...,K (4.2)

(n+1—7)zi+lx<n i=1,...m;j=1,....mk=1,...,K (4.3)

Tik—lik—izijk:1 i=1,...mk=1,... K (4.4)
j=1

le Z7 % r € ZTF,; (4.5)

z € {0, 1}k, (4.6)
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For a given row 7 at control point k£, Constraint prevents the left and right
leaves from overlapping. Constraint — Constraint force all z;j, variables
associated with the open beamlets between the left and right leaves to be 1. Also, as
a consequence of these constraints, the left leaf can be between 0 and n and the right
leaf can be between 1 and n 4+ 1. Note that we remove constraint in chapters @

and [7] since it is noticed that this constraint is redundant.

Another mechanical limitation of the MLC system, which is generally taken into
account in VMAT studies (e.g. [15,61]), is that during the rotation of the gantry,
between two adjacent control points of the arc, a leaf cannot move more than a certain
distance, depending on the speed of the gantry. Namely, the aperture shapes at two
adjacent control points must be similar. We introduce the following constraints to

formulate similarities:

liges1) — L <0 1=1,....m;k=1,..., K —1 (4.7)
liw = g1y <0 i=1,...m;k=1,..., K —1 (4.8)
Titkt1) — Tik <0 i=1,...mk=1...,K—1 (4.9)
Fik = Tiesn) <0 i=1,...mk=1,... K—1. (4.10)

These constraints restrict the leaves to move no more than § beamlets between control
points k£ and k£ 4+ 1. To sum up, as the speed of the gantry increases the amount of ¢§

decreases and the apertures at the adjacent control points become similar.

We have explained the geometry constraints — that generate a feasible
aperture for each control point so far. Now, we continue by introducing radiation deliv-
ery and treatment constraints. During the rotation of the gantry, the linear accelerator
delivers radiation continuously to the patient’s body through the aperture formed by
the MLC. We assume that the radiation delivery is realized at the control points only
and lasts for a certain time. This is reasonable, because not only the effect of radia-

tion but also the apertures at adjacent control points are similar due to the similarity

constraints (4.7)—(4.10)). In addition to the aperture shape, VMATP-1 determines the
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radiation dose intensity at each control point. Note that there is a relation between the
dose rate of the linear accelerator and radiation dose intensity. The dose rate is in MU
per unit time, and the dose intensity at a control point is a function of the dose rate
and gantry rotation speed (i.e. if the gantry is slow then it is possible to deliver more
radiation). Dose rate and intensity may change at control points. However, they must
be within the mechanical limits of the linear accelerator, which also depends on the
rotation speed. Also, we assume that the speed of the gantry is constant. We introduce
a nonnegative continuous variable muy to represent the radiation dose intensity at each

control point k. We also introduce constraints

muy > L™ = 1, . . 5 (4.11)
muy, < U™ k=1,....K (4.12)
mu € RY, (4.13)

where parameters L™ and U™" are calculated by considering dose rate limits and

gantry speed.

A VMAT plan should also satisfy the clinical requirements, which are prescribed
by the oncologists, depending on the tumor’s type and patient’s anatomy. Generally,
two types of constraints are defined for a given target: partial volume constraints and
full volume constraints. For an OAR, only partial volume constraints are prescribed.
For example, a partial volume constraint defined for a TV forces that at least 95% of
the volume must absorb radiation at least as the prescribed dose. The coverage rate
becomes 100% in a full volume constraint: 100% of the volume must absorb radiation
within the prescribed bounds. The body of the patient is discretized into voxels in order
to be able to formulate these restrictions. The amount of radiation (d,) absorbed by

each voxel v is calculated using equality

n

K m
dv — Z Z Z Dijkvzijkmuk =0 veV = VTV U VOAR. (414)

k=1 i=1 j=1
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Note that V is the set of all voxels, namely it is the union of all TVs (VIV) and
OARs (VO4E) . Note also that (4.14)) includes nonlinear terms created by the product of
binary variables z with the continuous variables mu. We use the linearization method
introduced by Mccormick in 1976 [68], which eventually forms the convex envelop of
general bilinear terms, to linearize constraint . We introduce auxiliary variable

a;jr, for each beamlet to represent its radiation intensity and obtain

d, — i Xm: En: Dijroaije =0 v eV =V yyos (4.15)
k=1 i=1 j=1

agms< U™ 9 i=1,....m;j=1,....mk=1,...,K (4.16)

aiji > mug — U™ (1 — 2z;55) i=1,....m;j=1,....nk=1,..., K (4.17)

aijr < muy t=1,...myj=1,....nk=1..., K (4.18)

d e R (4.19)

a € R7E, (4.20)

The radiation passes through only the open beamlets, thus Constraint (4.16)) — Con-
straint (4.18]) force a;;, to take value of muy if associated beamlet is open, and 0

otherwise.

Now it is possible to include the clinical requirements using the total absorbed
radiation dose amounts of voxels. Similar to [14] and [60], we use Conditional Value-
at-Risk (CVaR) approach, which was originally developed by Rockafellar et al. in
2000 [69] for portfolio optimization, to formulate partial volume constraints. For each

TV t the following partial volume constraints are introduced:

Z;V_ — TV Z xtcvzdtc t=1,....,T;c=1,...,C (4'21)
(1—al)|VIV|
veV IV

Ty > ELY —d, t=1,...,T;c=1,...,Chvoe VIV (4.22)

< R%Zl Ct‘v;TV\; £TV c REGACr, (4.23)
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The average dose of the (1-alY)|V;'V| voxels receiving the lowest dose in TV ¢,
namely the lower mean tail dose at level oLV is forced to be at least the prescription
dose. In other words, at least al.”|V,'V| voxels absorb radiation more than or equal to
dy.. Note that, there may be more than one partial volume restriction for a TV (or an
OAR), hence we introduce ¢ index to the model that indicates the cth partial volume

constraint. Furthermore, there are full volume constraints for each TV:

d, > LIV t=1,...,T;ve V!V (4.24)

d, <UM t=1,...,T;ve V!, (4.25)

which ensure that each voxel in TV ¢ receives radiation within its prescribed limits.

There are only partial volume constraints for OAR volumes in VMATP. Similar

to the ones defined for TVs we introduce the following inequalities for each OAR:

OAR OAR — P
. aOAR oA > Yoo SUZM 0=1,...,0;c=1,....C, (4.26)

vEVOAR

yocvzdv_ QAR 0:1,...,0;021,...700;

oc

€ VOAR (4.27)
o
y € RE GO, ot ¢ g5 (129

The average dose of the (1-aQAF)|V.O4E| voxels absorbing the highest doses in OAR o,

OAR is forced to be at most its tolerance dose

namely the upper mean tail dose at level o
limit UZ4E. To give more detail about CVaR approach as discussed in [24], continuous
variable €942 in constraint (4.26]) is a bound on the upper value-at-risk (VaR) at

level &OAR

, which is the smallest dose level with the property that no more than
100(1 — a2 % of OAR o receives a larger dose. Also, the left hand side of constraint
is the upper a9A%-CVaR, which is the mean of all doses that exceed the upper
a?cAR—VaR. The variable y,e, is the surplus of the value (947 by the dose received by

voxel v in OAR o. Furthermore, if constraint (4.26) is satisfied as an equality in an

optimal solution then £94% equals to the VaR corresponding to that constraint. For
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more detail about CVaR method we refer the reader to the study of Romeijn et al. [14]
where it is applied for developing a linear-programming-based approach to solve FMO

problem in IMRT planning. Finally, the objective function

K
min Z muy, (4.29)
k=1

minimizes total radiation intensity (in MU) the patient receives during his/her treat-
ment. VMATP-1 finds an optimal plan minimizing total dose intensity among all

feasible treatment plans.

We have explained VMATP-1 model so far and continue by explaining the second
model, which we call VMATP-2. The parameters in Table[4.1}and decision variables in
Table [£.2] are used to formulate VMATP-2. There are also additional decision variables
to define the position of the leaves of MLC, which are summarized Table [£.4]

Table 4.4. Additional variables of VMATP-2.

Variable Definition

Lijk Binary variable used to represent the position of the left leaf; it is set to 1
if jth beamlet is the rightmost closed one on row ¢ at control point k.
Tijk Binary variable used to represent the position of the right leaf; it is set to 1

if jth beamlet is the leftmost closed one on row ¢ at control point k.

Similar to [60,61], we introduce two binary variables for each beamlet on a given
row; l;; variable is related to the left leaf and r;;;, is related to the right leaf. For a
given row ¢ at control point k£ exactly one [, variable takes value 1. Similarly, exactly
one r;;;, variable is forced to be 1. For example, the left leaf on the first row of the
aperture illustrated in Figure blocks the first 3 beamlets, namely the rightmost
closed beamlet is the third one. Therefore, only l;3;, equals to 1 and the remaining ones

are set to 0 (l11x = liog = liar = lisx = 0).
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VMATP-2:
K
min Zmuk (14.29))
k=1
s.t.
[@6), (@10 — @13), @15) — (@28),
» =1 i=1,....mk=1,....K (4.30)
§=0
n+1
> rgpp=1 i=1,....mk=1,....K (4.31)
j=1
J J
ZTZ(PJrl)k lepk<0 =1, 7m>j:07 ,’I’L7k’:1, 7K
p=0 p=0
(4.32)
min(n,j+94)
lij(k-‘rl)_ Z lzpkgo 12177m7]:07an7
p=maz(0,j—0)
k=1, K -1 (4.33)
min(n+1,5+9)
Tij(k+1) — Z rikaO izl,...,m;jzl,...,n+1;
p=max(1,j—0)
k=1, K—1 (4.34)
J—1 J
zijk—Zlipk—l—Zripk:O 1=1,....m;y=1,... n;k=1,... K
p=0 p=1
(4.35)
1€ {O, 1}m><(n+1)>(K;
r € {0, 1} (XK (4.36)

Constraint satisfies that there is exactly one rightmost closed beamlet, which
defines the position of the left leaf. The similar constraint for the right leaf is and
there can be exactly one leftmost closed beamlet. In order to prevent the overlapping
of the leaf pairs is introduced to the model. Constraint and Constraint
limit the leaf motion during rotation: a leaf can move at most 6 beamlets. As
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in VMATP-1 model, we need to enforce z;;;, variables to be 1 if the corresponding
beamlets are open and (4.35)) satisfies this requirement. It also satisfies the consecutive
ones property of the apertures. The last constraint (4.36)) are the binary restrictions

for the new variables.

Observe that VMATP formulations are different according to the geometric part
of the problem where the apertures are determined at each control point and the leaf
motion limitations are controlled. The remaining part, which finds radiation intensities
and satisfies the clinical requirements are exactly the same. In VMATP-1, we define
two nonnegative integer variables in order to determine the positions of the leaves (i.e.
one for each of the left and right leaf). However, a binary variable is introduced for
each one of the beamlet and also for the home positions of the leaves in VMATP-2
formulation. Thus, in VMATP-1 total number of nonnegative integer variables to define
the position of the leaves is 2 x m x K, on the other hand, there are 2 x (n+1) x m x K
binary variables in VMATP-2. Moreover, total number of constraints to satisfy the
leaf motion limitations in VMATP-2 is ”T“ times larger than the ones in VMATP-
1. Observe that there are 4 x m x (K — 1) such constraints in VMATP-1 and this
number increases to 2 X (n+ 1) x m x (K — 1) in VMATP-2. Also, we observe that
Constraint is redundant in VMATP-1 and removed in Chapter @ Thus, there
are also m x K additional constraints in VMATP-2. As shown in the computational
experiments in Section (8.2 where we evaluate the formulations on a large number of
test instances, VMATP-1 performs better than VMATP-2 especially for large instances,
which is not surprising. As the size of the test instances increases total number of these
decision variables and constraints remain the same. However, the problems becomes
easily intractable. Also, as explained in Chapter [0]in detail, the geometry part of the
problem is decomposed into m subproblems and solved as shortest path problems. It
can be observed that defining nonnegative integer variables for the left and right leaves

is more suitable to formulate the geometry part as a network model.

In particular, the definition of the positions of the leaves using nonnegative integer
variables is a new approach in literature. Namely, VMATP-1 also differs from the

existing formulations with respect to these decision variables and associated constraints.
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5. SOLUTION METHODS: BENDERS DECOMPOSITION
ALGORITHMS?

Benders decomposition was proposed by Benders in 1962 |71], and has been widely
used in the solution of large-scale mathematical optimization problems. It is particu-
larly effective for solving problems having a subset of variables that are complicating
in the sense that the problem becomes significantly easier to solve if such complicating
variables are fixed. Its ability to exploit the structure of the problem and distribute
the overall computational work are key facts behind the many successful applications

of Benders decomposition [72].

In fact, the nature of the radiotherapy is very suitable from this perspective since
the variables used to shape the apertures in order to determine the geometry of the
beam, are integer valued and the variables used to determine the prescribed dose re-
quirements are continuous. Once the geometry variables are fixed, the geometry of the
apertures are set and the resulting linear program (LP) can be solved to determine
optimal beam intensities subject to dose inequalities. As can be observed, this parti-
tioning strategy of the variables is also possible for our MILP formulation VMATP-1.
Because, only the variables that form apertures are integer valued. In this chapter, we
use Benders decomposition and develop efficient solution algorithms after improving

its naive form by means of computational strategies.

5.1. Benders Reformulation

We identify the binary integer variables z, which represent the beamlets of the
apertures, as the complicating variables in our model. If they are fixed, namely if we
know the shape of each aperture at each control point, the dose constraints do not in-
clude integer variables. Using this observation we decompose the original problem into

a relaxed master problem and a subproblem. The relaxed master problem produces

2An earlier version of this chapter appears in |70].



36

a feasible aperture at each control point; and the subproblem calculates the optimum
intensity for each one of them, namely the optimum radiation dose that the linear ac-
celerator delivers at each control point while considering the feasibility of the treatment

plan with respect to the clinical requirements.

Given a vector z that denotes values assigned to z variables, the subproblem

SP(z) and its dual DSP(z) can be formulated as

SP ()
K
min Zmuk (4.29)
k=1
s.t.
K m n
Z Z Z ijkvQijk = veV = VTV U VOAR (7Tv) 415
k=1 =1 j=1
air < U™ 2y 1=1,..m;3=1,...,n;
k=1,...K (Bix)  (5.1)
aijkzmuk—Um“(l—él-jk) izl,...m;jzl,...,n;
k=1,...K (B3 (5.2)
Qjjle < MUy i=1,..m;j=1,...,m;
k=1,...K (Bi) (@18
TV _ w>dye t=1,...T;c=1,....C h 4.21
te (1—a |VTV| ;th = Wt ) € ) )y “t (tc) ( )
xtcvzg;f];‘/_dq) t:17...,T;C:1,...,Ct;
CS ‘/tTV (Ttlcv) 422
d, > LTV t=1,...,T;ve VIV (er,) (&.24)

deUtTV tzla"'aT;’Ue‘/tTV (Q?v)

,..|>.
[\
=



OAR OAR . _ )
oc T (1— aOAR )[VOAE] D Yo SUZM 0=1,...0;
’UGVOAR
c=1,...,.C, (62)
yocvzdv_ OOCAR 021, -aO;C 17- '700;
muy, > L™ k=1,....K (1)
muy, < U™ k=1,...,K (12)
(4.13]), (4.19) — (4.20)), (4.23)), (4.28),
and
DSP (z):
K m n T Ct
ax D > Y U™ (=Bl + Gige = DB + YD Ot
k=1 i=1 j=1 t=1 c=1
T o C, K
+ Z Z LTV 1 UTV 2 ZZQgCUOOCAR + (Lmulullc _ Umului)
t=1 vthTV o=1 c=1 k=1
s.t.
7TU+7'tlcv+e}v—et2U§O t=1,....T;c=1,...,C
ve VY (dv)
Ty = Toey < 0 0=1,...,0;c=1,...,Cy;
v E ‘/OOAR (dv)
= Dijrmo = Bl + Bl — Bl <0 di=1,... mij=1,...n;
veV
k = 1, . ,K (aijk)
_Z (’L2]k_ ?jk)+ﬂllc_ui§1 k=1,...,K (muy)
i=1 j=1
— 02 + Z 72, =0 o=1,...,0;c=1,...,C, (£94%)
veEVOAR
0. — > Thy=0 t=1,....T;c=1,...,C, (€Y
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N (1_aOOCA1R>“/;OAR’930+TOQCU <0 o=1,...,0;c=1,...,Cy;

ve VIR (Yoe) (5.10)
- (1_a£%/)|‘/ItTvletlc+Ttlcu <0 t=1,...,T;c=1,...,Cy

veV! (e0) (5.11)

= R'Vl,ﬁl c RTXnXK;B2 c RTanK;
T (@]
/63 c RTXnXK; 01 c R%t:l Ct; 02 c R§0:1 CO;
O

1 TV OAR
Cy|V, 1 Co|Vy
Tl 6 th71 t| t |; T2 E R2071 O‘ |.

9

€ € RLVTV'; € c R‘fw‘;ul e RE; p? e RE. (5.12)

Extreme points and extreme directions of the dual polyhedron are used to con-
struct Benders reformulation of the original problem. Suppose that A and €2 denote
the set of extreme points and the set of extreme directions of the dual polyhedron,

respectively. We further define

n

K m
F(B'.5%,0,6% e &t pu®) =3 > > U™ (—ziguBl + (zie — DB+

k=1 i=1 j=1
T C T Co K
Z Z etlcatc + Z Z (LZVG%U - UtTVG?U) - Z Z echo(ZAR + Z(Lmuﬂ“}c - Umu:ui)
t=1 c=1 t=1 peyTV o=1 c=1 k=1

and the Benders reformulation of VMATP-1 becomes

min 7 (5.13)
s.t.
_@m
F(BY, 32,0, 6% ¢, &, ut, u?) < 1y 882 6" 6% € € pul pute A (5.14)
F(BY,82,6',6% €', &, ', u?) <0 B'.8° 6" 6% e pul uen (5.15)
n > 0. (5.16)

We introduce a new variable 1 representing the total radiation intensity, which is the

objective function of the subproblem. Since 0 is a feasible solution of the dual problem,
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the lower bound (LB) of 7 is set to 0. Constraint (4.1))-Constraint determine
a feasible aperture shape for each control point. Constraint are Benders opti-
mality cuts and Constraint are Benders feasibility cuts and they all represent
the subproblem. In the naive form of Benders decomposition, all Benders cuts are
relaxed initially and the resulting relaxed master problem (RMP) is solved iteratively.
In each iteration either an optimality cut or feasibility cut is added to the RMP, which

is re-solved until the stopping condition is satisfied.

Our preliminary results show that the naive form is inferior according to the
computation time and solution quality. The most important reason of the time con-
sumption is that in each iteration RMP is solved from scratch after adding a new
inequality (i.e. a new Benders cut). Even though solving RMP optimally and gener-
ating a cut for the optimal solution may yield stronger cuts, solution time increases as
the number of Benders cuts, and thus the size of RMP, increases. Another drawback
of the naive implementation is that the LB improves very slowly. A feasible solution
for the whole problem may not be obtained within a reasonable amount of time, since
the number of feasible RMP solutions, namely feasible MLC combinations according

to aperture shape (i.e. geometry) constraints, is very large.

5.2. Algorithmic and Modeling Improvements

5.2.1. Valid Inequalities

In the Benders reformulation the objective function is removed since it
belongs to the subproblem. Also, initial LB of the master objective value is set to zero
since 0 is a trivial feasible solution of the dual problem. This causes a large optimality
gap at the beginning, which slowly becomes smaller as Benders cuts are added. To
address this issue, we aim to discard some of the master solutions that are infeasible
for the whole problem. We observe that, if a master solution (an aperture per control
point) does not have enough capacity to deliver enough radiation such that each voxel
of TV t absorbs at least LIV amount of radiation, this solution cannot be feasible for

the whole problem. Hence, we can eliminate such solutions at the beginning by adding
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inequalities

m n

K
Z Z ZijkDijkamu > L?V t=1,... ,T; v eV, (517)

k=1 i=1 j=1

to the RMP. Recall that the parameter U™" is the maximum radiation intensity that
linear accelerator can deliver at a control point. However, according to our preliminary
experiments, we note that the improvement due to these valid inequalities is not sig-
nificant. Thus, we introduce to RMP new surrogate decision variables (a continuous
variable a per beamlet and a continuous variable mu per control point), and related
constraints similar to those in the whole problem. As a result, we add the following

inequalities instead:

aijre < U™z i=1,....m;j=1,....mk=1,..., K (5.18)
i < Mg, 1=1,...m73=1....nk=1... K (5.19)
K m n
ZzzaijkDijkv > L;;FV t=1,....Tyv eV, (520)
k=1 i=1 j=1
K
n = Zmuk- (5.21)
k=1

Note that constraints and are similar to the linearization constraints
and in the VMATP, however is relaxed. The addition of inequalities
to RMP guarantees that in any master solution each target voxel absorbs radiation no
less than the prescribed lower bound. Benders optimality cuts ensure that 7 is at least
as large as the objective function value of DSP for a given master solution, namely
the minimum total radiation dose intensity in a feasible treatment. Constraint
is valid, and it improves the LB effectively, since the minimum total radiation dose is
found considering only target voxels in this extended master problem, and this amount
can be at most the minimum total radiation dose calculated by solving DSP. Finally, we
do not have to add constraint set anymore, since it is replaced by , which is
tighter. These extensions make the master problem harder to solve. However, according

to our preliminary observations, they significantly improve the LB and performance



41

of the Benders decomposition algorithm as a consequence. Thus, in the final form of
the method we add Constraint —Constraint to the master problem. These
inequalities contain some information about the original objective function that we
project out, and cuts some of the master solutions that are not feasible for the whole

treatment.
5.2.2. Strong Benders Cuts

Stronger Benders cuts may improve the LB faster and help for the rapid con-
vergence to optimality. For the optimization problem minyey yer{w : f(u) + yg(u) <
w,u € U} the cut w > f(uy) + yg(u;) (is stronger than) and dominates the cut
w > f(ug) +yg(ua), if f(uy) +yg(u) > f(uz) + yg(uz),y € Y and there is at least
one y € Y which makes this inequality strict. A cut is called strong or pareto-optimal
if it is not dominated by any other cut [73]. Note that it is possible to generate mul-
tiple Benders optimality cuts for a given master problem solution, because DSP may
have alternative optimal solutions. Van Roy [74] indicates that a cut derived from a
particular dual optimal solution is strong if it is not dominated by a cut derived from
any other dual optimal solution, and presents a two-phase approach to strengthen a

Benders cut. We apply this approach to our problem. Observe that given a master

1
ijk

solution z, the value of dual variable with zero coefficient does not have any impact
on the optimum objective value of DSP. Hence, we can modify 52-1jk without changing
the value of the objective function 1) when Z;;;, = 0. We can modify 5i2jk similarly
when Z;;, = 1. Note that feasibility must be maintained during these modifications.
Let & be the index set of all beamlets at all control points, namely the set of all (7, j, k)
index combinations. Also let 2 C Z be the index set of beamlets where 2;;;, = 0 and
Z1 C Z be the index set of beamlets where Z;;; = 1 in the master solution z. First,
we solve DSP and find an optimal dual solution. Then, dual variables are fixed at their

optimal values except B' and B? with zero coefficients in the optimal objective, and

B°. Namely, we determine new values of Bl (i,5,k) € 25, and B, (i, 5,k) € 27 by
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solving the following reduced DSP (RDSP)
K m
max Y > > (A — B) (5.22)

s.t.

A~ 1 2 3 . L .
- E Dijrotty = Bl + Bl — B <0 i=1,....omyj=1,....n;

veV
k=1,... K (5.23)
>N B -8B i<l k=1,... K (5.24)
i=1 j=1
i = Ailjk (i,j,k) € 4 (5.25)
i2jk; = Az‘2jk (1,7, k) € 2% (5.26)
B e R g2 e R, g7 € RTE (5.27)

In other words, we lift some of the z variables in the associated Benders cut without
changing the objective function of DSP or violating the feasibility. Therefore, we obtain
a strong Benders cut (as shown in Appendix, since none of the cuts derived from an
alternative optimal solution dominates (or is stronger than) this resulting one [74}/75].
It is worth noting that, in these studies, after setting permanent dual variables to their
optimal values, the remaining problem can be decomposed into subproblems and solved
efficiently. Unfortunately, this is not possible in our case. Constraints do not
allow such decomposition. There exist other studies in the literature considering the

use of strong cuts in Benders decomposition [764[77].

5.2.3. Minimal Infeasible Subsystems and New Benders Cut Selection Strat-

egy

We observe that it can take a long time to generate a feasibility cut during the
initial iterations for large problem instances. There is a relatively new approach in the

literature for generating Benders cuts [78] and stronger combinatorial cuts |79,80]. Ac-
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cording to this approach it is possible to determine unbounded directions of a problem
using an alternative polyhedron that is bounded. Fischetti et al. [78] show that Benders
subproblem can be converted into a pure feasibility problem, and that it is possible
to obtain both feasibility and optimality cuts solving an alternative problem derived
from this extended subproblem. Given a master solution (z,7), the pure feasibility

subproblem (PFSP) becomes

PFSP (2,7):
K
Zmuk < (7o) (5.28)
k=1
(1) - @0, @), 61) - 62, @1 - @9,

where 7 is the dual variable associated with ([5.28). Observe that if (2, ) is feasible for
PFSP, then it is optimal for VMATP-1 problem. Thus, a violated cut can be generated
if and only if PFSP is infeasible, or equivalently, if its dual problem is unbounded. The
dual of PFSP (DPFSP) can be written as

DPFSP (2,7):

K m n T Ct
max 303 S U i = D+ DS O+ D Y (Ve
k=1 i=1 j=1 t=1 c=1 t=1 vevTV
o G, K
UTVGtv Z Z ech(gAR + Z(Lmu:u’llg - Umuﬂz) - 7077 (529)
o=1 c=1 k=1
s.t.
_ZZ gk zyk: +:uk Mz_ﬂ-ﬂgo kzl,,K (530)
=1 j=1
mo € Ry (5.31)

B9 - B8, B-8) - (12

Note that 0 is the trivial solution of DPFSP. Therefore, for a given master solu-
tion (z,7) if PFSP is infeasible, then associated DPFSP is unbounded. Given a ray
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Lol A2 Al A2 Al A2 Al ~2 A . .
(7,8, ,,6 0' 0 1,72 & € pt, p?, 7o) of DPFSP the associated cut is

3

K m T G T
Z Z Z Umu(—ZijkBiljk + (2ijk — zgkz Z Z _tc + Z Z LTV 1
t=1 c=1

k=1 i=1 j=1 t=1 UEVTV
O C, K

UMVeE,) = > D UM+ (L™, — U™ i) — Fon < 0. (5.32)
o=1 c=1 k=1

Furthermore, the unbounded objective function is set to 1 for normalization as done

by Gleeson and Ryan [81], and

K n T C
Z Z Z Umu Zzgkﬂmk = (Zzgk l]k + Z Z 9 dtc =+ Z Z LTVGtU
k=1 i=1 j= t=1 c=1 t=1 vEVTV
o G K
TR 5 ST T ZLES 3 1 S 539
o=1 c=1 k=1

— (5.6), — (.12), (5.30) — (5.31)

is the resulting alternative polyhedron. The alternative problem (AP)

AP (3, 7)
min 7 (5.34)

s.t.

— (5.6), - (.12), (5.30) — (5.31), (5.33)

minimizes 7y over this polyhedron and we solve AP instead of DSP in Benders itera-
tions to generate Benders cuts. Fischetti et al. [78] state that when the objective of this
problem is to minimize only 7 then the original Benders’ dual problem (DSP) arises.
They also state that a feasibility cut or an optimality cut is generated depending on the
optimal value of my: 7y = 0 implies a feasibility cut since DSP(z) is unbounded. Ob-

Coal 22 23 a1 22 1 o 1 a9 1 o .
serve that an optimal solution (7,3 ,8,3,0 ,0 7', 7 €. & i', ji*, 79 = 0) of AP

that satisfies constraints ([5.30) and (/5.33)) provides an unbounded direction for DSP(z).
It can be shown that for any A > 0, (A7, A8, AB",AB°, A8, AO° A+, A#2, A&, A&,

Ap', Afr?) remains feasible for DSP(2) (since constraint ((5.7) remains feasible in ad-
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dition to other constraints of DSP(z)) and objective value becomes A. If 75 > 0 then
(7t /70, B' /70, B" [7t0, B /70,0 |70, [0, 1 )70, 72 [0, € [0, €2 [0, f1 [0, 12 /70 i anl
optimal solution for DSP(z) with optimal objective value 1/7 + 7. Observe that we
can derive a feasible solution for DSP(z) from each one of the feasible solutions of
AP(z,n) where Ty > 0 dividing this solution by 7y. The optimal (minimum) objective
value of AP(z,7) is 7o, hence we reach an optimal solution with maximum objective
value of DSP(z). Additionally, we can solve RDSP using this optimal solution and

generate pareto-optimal cuts.
5.2.4. Combinatorial Benders Cut

Combinatorial Benders decomposition is an extension of traditional Benders de-
composition method, where the problem is again decomposed into a master integer
program and a linear programming subproblem. Rahmaniani et al. [72] explain the
difference between the two methods and state that combinatorial Benders decompo-
sition does not use the dual information to generate cuts. The master problem is a
binary integer programming problem (BIP) and when the subproblem is infeasible a

combinatorial Benders cut similar to (5.35]) is derived and used as a feasibility cut.

Assume that for a given feasible master solution z, it is not possible to find a
feasible treatment, which means the subproblem is infeasible. In this case, another valid
inequality may be generated according to the following observation: the subproblem
may be infeasible with respect to partial volume constraints f associated
with a TV, — associated with an OAR, or both. For these cases, to repair
infeasibility, we should do at least one of the following: open at least one of the closed
beamlets, close at least one of the open beamlets, or both. Furthermore, the candidate
beamlet (Z;;,) to open or close must have positive effect on at least one voxel. Namely,
the entries of the D matrix must be “strictly” positive for at least one v (otherwise,
they will be all zero for a specific combination of 7, j, k and hence can be removed). Let
Z C Z be the index set of the beamlets having strictly positive effect on at least one

voxel, namely % = {(i,7,k) : Dijr, > 0,v € V}. Hence, we can add the combinatorial
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cut

Szt Y, L=z =1 (5.35)

Zi5=0 Zijr=1

to the RMP each time an infeasible solution is obtained.

This cut is not tight according to our preliminary results obtained on random
samples. Thus, as in the study of Tagkin and Cevik [80], we find a minimal infeasible
system (MIS) of the subproblem when an infeasible solution is detected. Gleeson and
Ryan [81] show that there is one-to-one correspondence between MISs of an infeasible
linear system and the supports of vertices of the related alternative polyhedron. Thus,
solving AP instead of the original dual problem not only provides Benders cuts, but
also detects an MIS each time 7 is found to be zero. Let Z* C % be the index set of
the beamlets that are associated with the MIS corresponding to z. The cut is
revised so that it only has z variables in & N Z°*:

S apwt Y (l—zg) > 1 (5.36)

2;6=0 2ip=1

(i, k)esNZL™ (i.j.k)EeINZ™
In the final version of our Benders decomposition algorithm, each time a Benders
feasibility cut is added to the master problem we also add a constraint of type .
The resulting Benders algorithm including the improvement strategies explained so far
is given in Figure [5.1] within the dotted frames. We refer to this algorithm as Improved

Benders Algorithm 1.

In addition to these strategies, we also use a single branch-and-bound tree, which
has received widespread attention in the literature recently [77,80]. Even though it is
not proved theoretically that using this strategy outperforms the naive form, practical
results reveal its superiority. In the naive form, each time a Benders cut is added to
RMP it is solved from scratch. This makes Benders decomposition more and more

expensive as the number of cuts increases. Instead, we solve RMP using only one
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branch-and-bound tree benefiting from the solver’s callback mechanism. In our imple-
mentation each time a new incumbent is found a new Benders cut is generated and

added to RMP or otherwise the incumbent is accepted.

We observe an important difference in the implementation of the new cut selection
strategy explained in Section[5.2.3] In the naive form of Benders decomposition, if RMP
returns a solution (z, 1) which is found to be feasible for SP, an optimality cut is added
to RMP and the upper bound (UB) of the entire algorithm is updated. Thus, if the
same solution is chosen by RMP for the second time with the updated objective value
(z,7), the LB and the UB of the problem are equal. The reason is that RMP is solved
to optimality in each iteration and its optimal objective value always provides a LB for
the whole problem. Therefore, when PFSP becomes feasible, AP becomes infeasible,
the optimality gap becomes zero and the algorithm stops. On the other hand, in the
callback implementation when an incumbent solution (z,7) is obtained for the first
time, which is found to be feasible for SP also, similarly an optimality cut is added to
RMP. However, an incumbent solution does not provide a LB for the whole problem,
if it is not optimal, as in the naive implementation; but if it is returned one more
time, it is certain that the current UB in the branch-and-bound is higher than the
objective value of this solution. Otherwise, the associated search node of the branch-
and-bound tree would have been pruned. Re-obtaining an incumbent solution means
that the callback can accept it and update the UB. In summary if PFSP is feasible,
AP is infeasible, then the algorithm does not stop and continues until the optimality

gap falls below a certain level.

5.2.5. A Relaxation of the Model

According to the results of the algorithm obtained by implementing the improve-
ment strategies explained so far we can say that the LB is not strong. In order to
alleviate this problem we strengthen the LB using a Lagrangean relaxation approach.
We dualize the complicating constraints and in VMATP-1 with nonneg-

mxnxK
RJr

ative multipliers u € and g € RTX”XK to obtain the Lagrangean subproblem
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(LSP)

K m
min Z muy + Z Z (Ui (@i — U™ 2i51) + Gijie (U™ — @i + mug + U™ 2451))

>
Il
—
e
Il
—
.
Il
—
<
—

(5.37)

s.t.

— (#13), (@.15), [{.18) — (£.29).

It defines a valid dual bound on VMATP-1 for given &1 and g vectors. In gen-
eral the best dual bound is obtained by solving the Lagrangean dual problem (LD):
maxy g>0 LSP(u,g). LD is a max-min problem and one of the most popular method
to solve this problem is the subgradient algorithm [82], in which at each iteration
dual multipliers u and g are updated and the resulting LSP (1, g) problem is solved.
According to our preliminary analysis LSP(0,0) provides very strong lower bounds.
Therefore, we just solve VMATP-1 after relaxing constraints and , which
is clearly equivalent to LSP(0,0), and use the optimal value as a LB. We note that in
this case, it is possible to also remove geometry constraints — from LSP(0,0)
problem since they do not have any contribution to the objective function. As a result,

we obtain the following relaxation of VMATP-1:

RVMATP:
K

min Z mug (14.29))
k=1

s.t.

(@11) — (E13), {@.15), (.18) — [@-23).

Note that RVMATP is an LP model. As we also discuss in Section [8.3] the LB ob-
tained solving this relaxation is remarkably stronger and improves the optimality gap.
However, since we relax the geometry constraints, it is not possible to obtain the exact

information about the aperture shapes. Hence, the LB obtained by this relaxed model
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can only be used to calculate the optimality gap. Nevertheless, the optimal solution of
RVMATP gives the radiation dose intensity at each of the control points, given these
radiation intensities we can try to determine a feasible solution for the LP relaxation
of VMATP-1 (LPVMATP). If LPVMATP is feasible for the given radiation intensities,
we have enough information about the aperture shapes (i.e. values for z variables) to
generate a cut. Notice that these z variables can be fractional; but still given frac-
tional z values, we solve DSP to obtain optimality cut , which we add to RMP
at the beginning of the callback implementation. The fractional z vector changes the
objective function of DSP only and gives another extreme point in its feasible region.
The optimality cut obtained using this extreme point is valid for the LP relaxation of
RMP, thus it is also valid for RMP. We call the resulting algorithm as Improved Ben-
ders Algorithm 2, which we illustrate in Figure by appending the steps remaining

outside the dotted frames.
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Solve RVMATP
RVMATPOpt= Y4, muy

i

Solve LPVMATP (i)

to obtain z

!

Solve DSP(z) and add

Feasible?
optimality cut (5.14) to RMP

Solve RMP with con-

straints (5.18)—(5.21))

Optimal solution is
(2,1,£,7) and LB=7

Solve AP (z,1))

1
Result ? infeasible Solve SP(z)
optimal UB=min {UB, # + 1/#}
) > 0 *
Gap=100*(UB- Optimal
0 maX{LB,RVMATPOpt})/UB solution
Ty = ~
(z,1,F, mu)
Add Benders feasibility Yes

cut (5.15) and combina-
torial cut (5.36) to RMP

No
Add pareto-optimal

cut to RMP
o + ............................................................. .

Figure 5.1. Improved Benders decomposition algorithms.
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6. SOLUTION METHODS: BRANCH-AND-PRICE
ALGORITHMS?

In this chapter we develop branch-and-price (BP) algorithms to solve VMATP-
1 model. BP is the adaptation of column generation for the exact solution of integer
programming problems. At each node of the branch-and-bound tree, column generation
is used to solve linear programming relaxation of the reformulation. It is successfully
applied to different integer programming problems such as routing, scheduling, and
set partitioning problems. Efficiency of the method depends heavily on the problem
structure and it is implementation dependent. There is a number of algorithmic issues
that occur during implementation, and the proposed algorithms for solving these issues
require problem specific solution approaches. In Liibbecke [84] a general framework
of the method and common algorithmic issues that practitioners may encounter are
explained in detail. In addition, Vanderbeck [85] and Desaulniers [86] present a number
of different types of problems that BP methods have been applied. To the best of our
knowledge, we apply BP method to solve VMAT planning problem for the first time.
In the following sections we provide implementation details of the method as well as

solution approaches for the problems that we encounter.

6.1. Column Generation Formulations

Optimal solution of VMATP-1 model yields a feasible VMAT plan with minimum
MUs consisting of a feasible treatment arc (i.e. K sequential apertures, each for one of
the control points, satisfying the consecutive ones property and leaf motion limitations)
and radiation intensity mu; delivered to the patient body through the corresponding
aperture at control point k. Figure illustrates a treatment arc consisting of only

three equally spaced control points.

3An earlier version of this chapter appears in [83)].
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Figure 6.1. A treatment arc consisting of 3 control points, 3 rows and 3 columns.

We observe that it is possible to reformulate VMATP-1 in such a way that each
feasible treatment arc is considered as a column. Let Z = {z!,2% ...,z ...,2%!} be
the bounded set of all feasible treatment arcs (i.e. z° = {Z;;, € {0,1}, i=1,...,m;j =
1,...,n;k=1,...,K}). When we only consider the consecutive ones property and if
we assume that there are no leaf motion limitations between consecutive control points,
then total number of feasible treatment arcs | Z| equals to (3(n + 1)(n + 2))Km, which is
very large. Row ¢ of the MLC system must satisfy consecutive ones property at control
point k£ and k+1, and also must satisfy the maximum leaf motion limitations. Thus, row
1 at control points k and k41 are dependent. However, there is no dependency between
row ¢ and other rows at any control point k. As a result, the rows of a treatment arc
are independent. We can decompose a treatment arc into m treatment row arcs, and
it is possible to consider each feasible treatment row arc for each row 7 as a column.

Let Z; = {z},z? z§

gy biy ey by

|Zi
T

.,z; '} be the bounded set of all feasible treatment row arcs

for row i satisfying consecutive ones property and leaf motion limitations (zf = {2{;, €
{0,1}, j=1,...,n;k=1,...,K}). As known from integer programming theory it is
possible to express a bounded set Z; = {z; € {0,1}"X A € RP"X h € R? : Az < h}
equivalently as {b; € {0, 1}1%! : SVl pege  S™Zlpe — 11 where 22 € {0,1}"K e =
1,...|Z;| are the feasible solutions of Z;. Here, binary variable b¢ indicates whether

the feasible row arc z¢ is selected (bf = 1) or not (b = 0). Thus, it is possible to
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. . Z; A
represent binary variable z;; as ZL:l bs z¢

i 25k Then, the resulting treatment row arc

based reformulation of VMATP-1, in other words, the master problem (MP) can be

written as

MP:
K

min Z mas (14.29)
k=1

s.t.

@11) — @13), @15), [@.18) — ([@.28),

|Zi
e=1
|Zi
= agi+ U™ Db 2 0 P=mij =1 k=1, K
e=1
(6.2)
|Z|
i —mug — U™ W25, > U™ i=1,...mij=1,...nk=1.. K
e=1
(6.3)
b e {0, 1} == 14l (6.4)

where the convexity constraints ensure that exactly one feasible treatment row
arc is selected for each row 7. Note that constraints and are replaced with
constraints and as explained above in detail. Therefore, constraints ,
and guarantee that the radiation intensity of each beamlet a;;, equals muy,
when this beamlet is open, and 0 if it is closed. We solve the linear programming re-
laxation of MP (MLP) by column generation. Moreover, we introduce one nonnegative

artificial variable (¢LV or ¢QAF) for each one of the constraints (4.21]) and (4.26) to

C

allow deviations. We penalize positive deviations in the objective function. Then the

resulting modified master linear problem, which we continue to call as MLP, becomes
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MLP:
T C o G,

min Zmuk DD DL ALTAR P i (6.5)
t=1 c=1 o=1 c=1

s.t.

@.11) — (4.13)), (4.15)), (4.18) — (4.20),
(4.22)) — (@.25)), (#.27) — (4.28), —(6.3),

| Z]
be:l 1=1,...m (\:)  (6.1)
e=1
1
TV ‘
T AT 2, et 2 (=1,
VTV
Czl,...70t (66)
OAR OAR _ [JOAR  _ )
oc T 1= aOAR )[V.OAR] 2 Yoo — Poe < U, o=1,...0;
'UGVOAR
c=1,...0, (6.7)
T
¢TV € R§t:1 c (6.8)
O
9" e Ry, 69)

OAR

where 7LV and v94% are large penalty costs for deviations in the cth partial volume

constraints of TVs t and OAR o, respectively.

We use same dual variables put, u2?, w, 33, 71, €', €2, 72, 31, 32,0, 62 for the con-
straints (4.11), (.12), [.15), [@.18), (4.22), (4.24), (4.25), (27), (6-2), (6.3), (6.6),
, respectively, which are also used to formulate DSP model in Section . Also,
dual variables A are used for constraint to obtain following dual MLP (DMLP)
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DMLP:
max Z)\ —Um“;Z uil ;ﬁiiztlg dtc+;v§v (LTVel — UV )

- Z Z 0o Us " + i(ﬂm‘ﬂi — U™ 13) (6.11)
s.t. o -

n K
A,+Umuzz e B <0 =1 .mie=1,..,|Z| (&)  (6.12)
7=1 k=1

0L <~LY t=1,...T;c=1,...,C, (6.13)
62 < AOAR o=1,...0;¢=1,...,C, (6.14)
AeR™ (6.15)

G4 - 612

Note that if we do not consider leaf motion limitations then total number of feasible
treatment row arcs for each row is (3(n+ 1)(n + 2))K. Hence, total number of feasible
treatment row arcs is m (3(n + 1)(n + 2))K, which is still very large, and the refor-
mulated problem is not tractable due to the exponential number of columns. We can
solve MLP by column generation starting with a restricted MLP (RMLP) model, which
includes a subset of feasible row arcs Z? for each row. We iteratively search for new
promising row arcs (columns for RMLP) by solving m pricing subproblems (PSPs).

Then, we change the new columns with negative reduced cost with the current ones.

RMLP:
T C

min Zmuk_‘_zz,ygqub +ZZ OAR OAR "
t=1 c=1 o=1 c=1

s.t.

(@.11) — (4.13)), (4.15)), (4.18) — (4.20),
(4.22) — (4.25)), (4.27) — (4.28), — (6.9).
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1Z9|
Zb6_1 i=1,...,m (6.16)
129
— aij + U™ A >0 i=1,...omj=1,....mk=1... K
e=1
(6.17)
1Z|
aijk_muk—UmqufAfjk >-U™ i=1,....m;j=1,....n;k=1,...,K
e=1
(6.18)
b € RE= %1 (6.19)
Let >\Z, 6 S and Bmk be an optimal dual solution associated with constraints (|6.16))—

(6.18). Then we have m subproblems (pricing subproblems (PSPs)) one for each row:

PSPiZ

min — \; — Umuzz ik — wk )Zijk (6.20)

k=1 j=1
s.t.
ik — JZijk > 1 j=1,...,n; k=1,....K (6.21)
(n+1—7)zi+lx <n j=1,....,n; k=1,....K (6.22)
rik—lik—izijkzl k=1,....K (6.23)
j=1
Ligker) — lix < 6 k=1, K—1 (6.24)
Lk — Liggsn) < 0 k=1, K-1 (6.25)
Fithst) — Tip <0 k=1, K—1 (6.26)
ik — Ti(kt1) < 0 k=1,.... K—1 (6.27)
1€ Z%; r e ZY; z € {0,1}K, (6.28)

Note that Constraint ((6.21)-Constraint (6.28]) are similar to Constraint (4.2))-Constraint
(4.10) in Chapter , and generate a feasible treatment row arc for row ¢. Note also that

there is not a constraint similar to Constraint (4.1f), which is omitted because of being
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redundant. Observe that all feasible treatment row arcs for each row ¢ must satisfy con-
straint (6.12)) in DMLP. When we start with RMLP that includes a subset of treatment
row arcs (columns) for each row 4, then the corresponding dual problem includes only
the constraints corresponding to these columns. The remaining constraints associated
with the columns which are not generated are relaxed at an iteration. The objective
function checks whether there is a violated constraint of row ¢ and finds the one
with the maximum violation. In our algorithm, we solve the modified version of the
master problem (MP), which includes the new decision variables to allow deviation in
CVaR constraints, by BP method. At each node of the branch-and-bound tree column
generation is used to solve MLP. Each time after solving RMLP, we solve m PSPs
separately and introduce a new treatment row arc of row ¢ to RMLP only if its reduced
cost is negative. On the other hand, if optimal objective value of each PSP; yields
nonnegative reduced cost, then the column generation iterations stop. Simply, we are
at an optimal solution of the MLP. If all b variables are integer at the optimality (and
also deviations are zero) then we have also an optimal solution of MP and VMATP-1.
However, if at least one of them is fractional then we continue with branching and solve

the modified restricted models by column generation at the new branches.

6.2. Generating Columns by Solving Shortest Path Problems

We observe in our preliminary experiments that solving PSPs by using a com-
mercial MIP solver is inefficient. The variation of computation time between iterations
is high, and it may take too long to generate a column at some iterations. Thus we for-
mulate the pricing subproblems as shortest path problems similar to [56], |[60] and [30].
We explain the shortest path problem formulation of PSP on a small example. Figure
illustrates the network representation of PSP for the first row of the problem given
in Figure [6.1] There are only three control points (K = 3) and three beamlets in a
row (n = 3). Note that the home positions of the leaves are j = 0 and j = 4 for the
left and right leaves, respectively. The beamlets that are blocked by the leaves are
dark gray, and open beamlets are shown as white rectangles. There are two additional

nodes in the figure: start and finish nodes. For each one of the control points there are
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Figure 6.2. Network representation of PSP, for the first row of the treatment arc

given in Figure (K =3,n=23).

(”H)QM = 10 different leaf configurations. For example, the leaf configurations at the

top of the figure represent that both leaves are at their home positions and all beamlets
are open. Observe that at a control point there are four different combinations of the
leaves for closing all beamlets, since the left and the right leaves may be adjacent in
four different ways. Moreover, it is assumed that the leaves can move at most one
beamlet between consecutive control points (i.e. § = 1). The leaf configurations at
each one of the control points represent the nodes. Also, an arc between two nodes
at two adjacent control points indicate that the maximum leaf movement limitations
are satisfied, namely these two consecutive leaf configurations are compatible. If the
new position of each one of the left and right leaves at the next control point is in its
allowable range then there is an arc. Thus, the arcs in the graph represent feasible

movements. Observe that the direction of the arcs point the rotation direction of the
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Figure 6.3. The treatment row arc obtained in Figure (6.2

gantry and there are no arcs between any two nodes at the same control point. The
costs of an arc that connects two nodes at control points k and k& + 1 is computed
as —Um™ Z;ZJ:II (BLy — B%;). The cost of an arc that connects a node at the last
control point K and the finish node is —U™* Zij;ll( Aile — Aij), and the cost of an
arc between the start node and a node at the first control point is zero. Our aim is to
find a path from the start node to the finish node with minimum cost. To sum up, we
obtain a directed, acyclic and layered graph consisting of K layers which correspond

(n+1)(n+2

to K control points. In each layer there are 5 ) nodes. If we assume that there

are no leaf motion limitations between adjacent control points then the total number
of arcs in the graph will be (]il;n(n +1)%(n + 2)> + (n + 1)(n + 2). We solve this
problem using dynamic programming and the UB for the complexity of the algorithm
is O(Kn?), which is a polynomial. The optimal solution of this problem yields one of
the treatment row arcs with minimum reduced cost and if its reduced cost is negative,
then we add this resulting column to RMLP. For example, the shortest path given in
Figure[6.2) with solid lines indicates the treatment row arc illustrated in Figure [6.3] At
the first control point the left leaf is at its home position and the right leaf blocks the
second and third beamlets. Only the first beamlet is open. During the movement of the
gantry from the first control point to the second one, the left leaf moves one beamlet
to the right and blocks the first beamlet. On the other hand, the right leaf moves one
beamlet to the right and opens the second beamlet. Finally, during the travel of the
gantry from the second control point to the last one, the left leaf returns to its home

position and stops blocking the first beamlet. However, the right beamlet does not

move, and only the last beamlet is blocked. The reduced cost of this shortest path is
equal to —A; — U™ ((51111 — Bti1) + (Blag — Bias) + (Blis — Biis + Biog — 5%23))
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The study of Boland et al. [30] is one of the leading papers that uses network
models in radiation therapy planning. They use their network model in their column
generation approach to solve MLS problem, which is the last phase of IMRT planning.
They decompose a given fluence map into a number of feasible apertures with radiation
intensities. They design their network in such a way that each layer corresponds to
a leaf pair. Therefore, there are as many layers as the number of rows of the fluence
map. At each layer the nodes represent the potential positions of the left and right
leaves satisfying the consecutive ones property. There are arcs between two nodes
at two adjacent layers if the leaf configurations at these rows satisfy interdigitation
constraints. Hence, a path in the network corresponds to an aperture, which is feasible
with respect to the consecutive ones property and interdigitation constraints. Mahnam
et al. [56] use a similar approach to generate a set of sequential apertures in VMAT
planning. They consider that a full treatment arc (i.e. a 360°-arc) consists of a number
of sequential partial arcs with the same length (i.e. there are 18 20°-arcs in a full
arc). Also, each of these partial arcs includes a number of equally spaced apertures
(i.e. 10 apertures with 2°-spacing at a 20°-arc). They can generate a partial arc, row
by row, using a network model since they consider only the consecutive ones property.
In their network model, the number of layers equals to the number of apertures in a
partial arc and the nodes represents the leaf configurations, which is similar to the
model of Boland et al. [30]. On the other hand, there is an arc between two nodes
at two consecutive layers if the corresponding leaf configurations satisfy leaf motion
limitations. After solving m subproblems by a shortest path algorithm, they take the
union of the resulting partial row arcs to obtain a partial arc. Also, they need to
join a number of partial arcs to obtain a full treatment arc, which necessitates a post-
optimization (i.e. the intersection points of adjacent partial arcs may be incompatible
due to leaf motion limitations). In our study, pricing subproblem generates a full row
arc, which is feasible with respect to leaf motion limitations. Hence, we do not need any
post-processing operation. Another difference is that the union of m row arcs yields a
feasible full treatment arc. Finally, our network design is similar to the one proposed in
Gozbast [60], which is used to solve VMAT planning problem in a two-stage heuristic

approach. They generate a feasible full treatment arc in the first stage where the costs
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of the arcs are calculated using a beamlet scoring algorithm. In the second stage, they

find radiation intensity of each one of the apertures in the treatment arc.

6.3. Branching

At the root node of the branch-and-bound tree if the optimal values of all bf
variables are integral then we are at an optimal solution of the problem. Otherwise,
we apply branching and solve the resulting restricted linear programming model at
each one of the branch-and-bound tree nodes. It is important to find a branching
strategy that prevents regenerating columns that are previously prohibited. Also, the
columns generated so far must be divided into two groups and it must be possible to
modify the PSP so that generating infeasible columns due to the branching constraints
is prevented. It is known that applying the ordinary variable branching (dichotomized
branching on a b$ variable with fractional value) is not efficient [87]. Instead, we branch
on the original variables of VMATP-1; a beamlet with a fractional Z;;, value. Observe
that if the optimal solution of MLP at a node is not integer then for at least one row
¢ there must be at least two fractional 0 variables. Thus, there must be at least one
beamlet with fractional Z;;, value. Observe that when there are two fractional variables
b} and b7 in the current solution with columns z} and z?, respectively, then there must
be at least one beamlet (i, 7, k) having value 1 in exactly one of these columns. As a

2

232 becomes fractional. In our branching rule we choose one of

s plsl
result, 2, = b; 2, + 0; 275,

these fractional beamlets as the branching variable using a simple search mechanism.
2 (i, Bigh
2 g
2ijk>0
if there is at least one fractional beamlet, then this ratio is strictly between 0 and

For each control point k we first calculate the following ratio: . Observe that

1, and the corresponding aperture becomes fractional. Note that if all beamlets of
an aperture at a control point take only 0 or 1 value, then we do not consider this
control point. For each control point k& with fractional aperture, we calculate the value
2 (i,5) Figk
(i) !
21‘jk>0
on the beamlet at this control point that is fractional and closest to 1. Thus, we seek a

T, = muy . Then we select the one with the highest T, value and branch

beamlet belonging to an aperture having high radiation intensity and low fractionality.

Let us denote the selected beamlet by z;;,. We then obtain two child nodes: at one
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Figure 6.4. Branching rule.

of them beamlet (7,7, k) is open and at the other one it is closed. We illustrate the

branching rule in Figure |6.4

In the first child node, we remove the respective arcs in the PSP;’s network model
that connect the nodes at control point £ — 1 to the nodes at control point k£ where
the beamlet (7,7, k) is closed. Also, we set b variables to 0 if the value of beamlet
(4,7, k) is 0 in the corresponding column. In the second child node, we remove all arcs
that connect the nodes at control point £ — 1 to the nodes at control point k& where
the beamlet (i, 7, k) is open. Also we set all b variables to 0 if beamlet (i, j, k) takes
value 1 in the corresponding columns. Note that, at each branching we use only one
beamlet (i, 7, k) that belongs to one row (ith row), thus we partition only the columns
associated with row . Furthermore, at each node the PSPs are modified taking into

account all branching decisions leading to the current node.
6.4. Initial Set of Columns

We generate m initial columns at the beginning of the BP algorithm by solving

the following model

K
min Z mug (14.29))
k=1

s.t.

[T2) — @13), (E.16), (T.18), ([@.20),

Z Z ZaijkDijkv > L?V t= 1, c. ,T, v E ‘/tTV, 520
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which includes all geometry constraints and valid inequalities and . We
observe that if a treatment arc consists of K apertures unable to deliver enough radi-
ation to satisfy lower limits of voxels in each TV, then this treatment arc cannot yield
a feasible solution for VMATP-1. In other words, a treatment arc must satisfy that
each target voxel absorbs radiation at least the prescribed lower limit (i.e. LTV). Thus,
we generate the initial set of m columns by considering this observation and avoiding
such infeasible treatment arcs. Optimal solution of the model given above yields K
aperture shapes, namely all z;;; values. Hence, for each row ¢ we obtain a treatment
row arc and use them to construct initial RMLP model. The initial treatment arc
can yield a feasible solution for VM ATP-1, namely the resulting RMLP may provide
a solution that satisfies all prescription radiation doses. As a result, we obtain an UB
since we start with only one column for each row and all b; values are 1 (i = 1,...,m).

However, this is not always the case, and to resolve this problem we add one artifi-

cial variable (¢LV, $9AF) for each one of the constraints and (6.7), and penalize
them in the objective function. We keep these artificial variables at all nodes of the
branch-and-bound tree and the infeasibility of RMLP is almost completely removed.
Note that there are also full volume constraints in RMLP associated with target voxels
(constraints and ) The initial columns generated by the formulation given
above guarantee that constraints are satisfied at root node. However, RMLP
may not satisfy constraints , or at successor nodes it may be infeasible due to
the branching constraints that cause absence of relevant columns to satisfy constraints
(4.24]). This case is rarely encountered, yet we resort to Farkas Pricing as explained

by Liibbecke [84] in detail. Also, the details of initialization using artificial variables is

explained by Vanderbeck [85].
6.5. Lower Bounds

Column generation methods often suffer from the tailing off effect: at initial
iterations a near optimal solution is reached quickly but in the following iterations the
improvement in the objective value becomes very small and the algorithm terminates

in very long time [88]. We also experience this effect; it takes very long to prove
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optimality and terminate column generation iterations at each node of the branch-
and-bound tree. As a remedy, we adapt and solve at each node the RVMATP model
given in Section [5.2.5] which is a relaxation of VMATP-1 model and does not include
geometry constraints. If it is possible, we update the LB of the current search node.
Note that, since we branch on z;;, variables and in each branch we set one of them
to 0 or 1, it is possible to adjust RVMATP by setting each one of the a,j, variables
associated with the branching decisions that leads to the current node to either mu; or
0. Moreover, during the column generation iterations, we update the LB if the optimal
value of RMLP and sum of the optimal values of all PSPs is larger than the current LB.
Finally, we use depth-first search as node selection strategy. The flow of the resulting

algorithm, which we call Branch-and-price (BP) Algorithm 1, is given in Figure .

6.6. Algorithmic Improvements

We modify BP Algorithm 1 and obtain two enhancements, which we call BP
Algorithm 2 and BP Algorithm 3. In BP Algorithm 2, at root node before branching,
we solve the resulting restricted MP including columns generated so far as a MILP

model. We update UB if the resulting solution is better than the incumbent.

According to the preliminary experiments we observe that the necessary time to
solve the model given in Section [6.4] which generates the initial columns, increases as
the size of the problem becomes larger. Moreover, it becomes impossible to solve it
optimally within the given time limit. Thus, we simplify this part of the algorithm in
BP Algorithm 3. The initial columns are generated by solving a different model that

consists of only the geometry constraints and a different objective function:

k=1 i=1 j=1

s.t.

[ - @)
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An optimal solution of this model gives a full treatment arc with maximum total
number of open beamlets that satisfies geometry constraints. Similar to BP Algorithm
2, a better feasible solution for VMATP-1 is sought at the root node. Instead of
generating all promising columns before branching, each subproblem is solved only

once and the resulting restricted MP is solved as a MILP model.
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7. TWO-PHASE HEURISTIC [

VMATP-1 model optimizes simultaneously aperture shapes and radiation inten-
sities at control points. It includes CVaR constraints for partial volume restrictions of
all structures, and all treatment dose prescriptions are satisfied by the constraints as a
result. In short, VMATP-1 seeks an optimal VMAT plan with minimum MUs, which
is capable to handle many aspects of the complex decision process behind VMAT plan-
ning. However, this makes it computationally very difficult to solve exactly in order to
generate optimal plans for realistic clinical cases with many OARs. In this chapter we
try to address this issue and propose an efficient two-phase heuristic using the algo-
rithmic ideas, such as column generation, we employ in Chapter [0] for the development

of a BP exact solution algorithm.

In the first phase, we generate an initial full treatment arc using a two-step
approach and calibrate the right hand side values of the CVaR constraints, simultane-
ously. In the second phase, we improve the initial treatment plan obtained in the first
phase using column generation that we explain all necessary derivations in Chapter
[6] such as the reformulation of VMATP-1, and pricing subproblem (PSP) formulation
and solution by a shortest path algorithm. We test our heuristic on real prostate cancer
patient cases provided by Istanbul University Oncology Institute. The results of the

computational experiments and clinical comparisons are provided in Section [8.5]

7.1. Phase 1: Initial Column Generation

At the beginning there is exactly one column (one row arc) for each row i in
the initial column pool to formulate RMLP. Their union yields a full treatment arc
consisting of K apertures (one aperture per control point). We apply a simple heuristic
consisting of two steps to generate these initial columns. At the first step a number of
fluence maps with additional properties are generated by solving a linear programming

model, and in the second step using a simple fluence map conversion algorithm a full

4An earlier version of this chapter is under revision at Physics in Medicine and Biology.
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treatment arc, which yields a column per each row, is constructed. These two steps
constitute the first phase of our two-phase heuristic. This initial full arc is modified in
the second phase during the column generation iterations in order to obtain a better

treatment plan, so it is very important to start with good columns.

7.1.1. Step 1: Fluence Map Generation

The LP model that we solve in the first step is derived from VMATP-1 and
includes only a subset of the original control points and constraints. Note that, as
in this study, K is generally taken 180 in VMAT planning studies (i.e. 180 equally
spaced beam angles with 2°-spacing). The LP model, namely the modified VMATP-1
(M-VMATP) includes 45 control points with 8°-spacing. We let K denote this subset
of control points. We introduce one artificial variable for each CVaR constraint of
all OARs to M-VMATP, and penalize the positive deviations in the objective func-
tion. We allow these deviations not only because M-VMATP includes only a subset
of control points but also because at the beginning CVaR constraints consisting of the
original tolerance doses are very tight. Thus, finding a treatment plan which satisfies

all treatment dose prescriptions is not easy. M-VMATP is formulated as follows:

M-VMATP:
o G,
min Z ma, + Z Z YOAR GOAR (7.1)
kEK o=1 c=1
s.t.

(E19), ([321) — ([E.25),

_77

i < mauy i=1,....m; j=1,....,n; ke K (7.2)

o= > > Digwain=0  veV (7.3)
i=1 =1 ek

muy > L™ ke K (7.4)

muy, < U™ ke K (7.5)
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mu € Rl a e RTIEL (7.6)
Solving this modified model has similarities with FMO in IMRT planning. M-
VMATP finds a number of fluence maps for some of the control points in K, which
we denote as K. Notice that K C K c K. However, ?, the set of control points
with positive intensities, is not determined in advance; M-VMATP model finds it.
Also, the intensities of the beamlets of a fluence map are bounded from above with
radiation intensity at this control point (muy). Observe that if there is no beamlet
with positive intensity at control point & then muy value will be 0, since total radiation
intensity is minimized in the objective function. Furthermore, in this step, in addition
to generating fluence maps we also tune the parameters US4® of CVaR constraints of
OARs to obtain more reasonable feasible treatment plans. In a loop, we increase the

tolerance dose UCAR

oo by a small value if the difference between the radiation dose that

the corresponding volume of OAR o receives and the original tolerance dose is at least
a certain amount, and resolve M-VMATP model until there remains no parameter to
increase. At the end of this loop, if there is a CVaR constraint with positive deviation
we increase its right hand side parameter by the amount of deviation. We use the

resulting tuned parameters throughout the entire algorithm.
7.1.2. Tuning of CVaR Constraints

The main advantage of using CVaR constraints is that it allows modeling of dose-
volume requirements as linear inequalities. However, we observe that CVaR constraints
with original parameters are very conservative and it is challenging to apply this ap-
proach in radiation therapy planning, which is also indicated in [24] and [89]. Let us
consider a CVaR constraint defined for an OAR. It forces the average dose in the upper
tail of the dose distribution of the OAR to be at most its tolerance dose. However,
it is sufficient that the left end (i.e. VaR) of the tail does not exceed this tolerance
dose [89]. In order to alleviate this problem we tune the right hand side values, i.e.
UZAR of the CVaR constraints of OARs. We change these parameters in such a way

that the resulting ones continue to produce treatment plans satisfying clinical prescrip-
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tion doses. In particular, we solve M-VMATP and check whether the VaR values are
too small than the corresponding bounds; if they are, we update the right hand sides
of the constraints. In each iteration we do this operation for all OARs, after that we
resolve M-VMATP. We continue until there is no CVaR constraint that we can update.
The pseudo code of this parameter tuning procedure is given in Figure [7.1] Note that
it is not appropriate to use the same right hand side values for all patients due to the
anatomical differences between them. Thus, it is convenient to use such an adaptive

procedure for tuning the right hand side values for each patient.

€1, €9, counter = 0
while true do
update and solve M-VMATP
for each o in OARs and ¢ in C, do
if (AR < UOAR _ ¢) then
UOAR ( [JOAR | ,
counter < counter+1
end if
end for
if counter = 0 then
break
else
counter = 0
end if
end while
for each o in OARs and ¢ in C, do
if p94% > 0 then
UOAR  [JOAR | 4OAR
end if

end for

Figure 7.1. CVaR parameter tuning.
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7.1.3. Step 2: Conversion Algorithm

In the second step we derive a number of apertures (at most three) from each one
of the fluence maps obtained in the first step using a conversion algorithm. Clearly, in
a fluence map, the beamlets with positive radiation intensity do not have to satisfy the
consecutive ones property, also their intensities may differ from each other. We assume
that all beamlets with positive intensity are open. Our conversion algorithm seeks at
most three feasible apertures to cover the open beamlets as much as possible. If all
open beamlets of all rows are consecutive in a fluence map at control point k, then we
generate only one aperture and fix it at k. If there are at most two open beamlet chains
at each row than we generate two different apertures and sequence them on to control
points k and k + 2. Otherwise, if there are rows with more than two open beamlet
chains than we generate three different apertures and sequence them on to control
points on to k, k 4+ 1, and k + 2. There are two important details in the generation
of these apertures. First, an aperture must be compatible with the fixed ones at the
adjacent control points. Namely, the leaf motion limitations must be satisfied. If a
row of an aperture is not compatible with the adjacent ones we close all beamlets in
this row. The second point is that we first fix the aperture at k, and then k + 2. If
there is a third aperture, finally we fix it at k£ + 1. After sequencing all apertures on
to a subset of K, we fill the missing control points in such a way that the number of
open beamlets in the resulting arc is maximum. Namely, we open all the beamlets as
long as they are compatible with the ones at fixed apertures. Thus, we obtain a full
treatment arc (consisting of K sequential apertures) to construct RMLP. The pseudo

code of this conversion algorithm is given in Figure [7.2]

The first two rows of Figure illustrates the conversion of a fluence map at
the fifth control point (gantry angle 8°) into three apertures and their sequencing.
The fluence map is decomposed into three apertures. The rows of the aperture at
k=5 are the first consecutive beamlet chains from the left part of the fluence map. If
there is more than one open beamlet chain at any row then we need another aperture
to complete the fluence map. The aperture at control point 7 consists of the first

open beamlet chains of the rows from the right. Finally, at control point 6, there is
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Input: a number of fluence maps
Output: a full treatment arc
for fluence map at control point k£ € K do
forrowi=1,...,m do
if all beamlets with positive intensity are consecutive then
generate a row with one open beamlet chain and if it is compatible with the
previous control points in K then fix it at row ¢ at control point &, else close all
beamlets
else
generate a row including the first open beamlet chain from the left and if it is
compatible with the previous control points in K then fix it at row ¢ at control
point k, else close all beamlets; and generate a row including the first open
beamlet chain from the right and if it is compatible with previous control points
in K then fix it at row 7 at control point k + 2, else close all beamlets
end if
end for
end for
for fluence map at control point k € X do
forrowi=1,...,m do
if there are more than two positive beamlet chains then
generate a row including the second open beamlet chain from the left and if it is
compatible with control points k and k + 2 then fix it at row ¢ of control point
k+1
end if
end for
if at least one row is fixed at control point k + 1 then
find compatible apertures for control point k + 1 with minimum number of open
beamlets
end if
end for
find compatible apertures with maximum open beamlets for the control points without

any fixed rows

Figure 7.2. Conversion Algorithm.
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Figure 7.3. Initial treatment arc generation.

an aperture with one beamlet at the second row, since there are three open beamlet
chains at the second row of the fluence map. Also, there is an open beamlet at the
third row in order to make the apertures at control points 5 and 6 compatible (i.e.
satisfying leaf motion limitations). At the last row of the figure, the part of the full

treatment arc between 8° and 16° is shown where § = 2.

7.2. Phase 2: Improvement of the Existing Treatment Plan by Column

Generation

Generally, as in the root node of the BP algorithms in Section [6] in each iteration
of the column generation method a new promising column is obtained and added to the
master problem, which is then solved with a larger column pool. At the optimality of
MLP, if all decision variables associated with the columns are integer then an optimal
solution of the original integer programming problem is obtained. However, this is a
rare situation and generally optimal values of these variables are fractional, which does

not provide a feasible solution for the original model.
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In order to resolve this problem, at the beginning we generate only one column
for each row i for the initial column pool. Hence, there is only one b} variable for
each row and at the optimality of the initial RMLP they are set to 1. Namely, the
first optimal solution yields a full treatment arc that is feasible in terms of geometry
constraints of the MLLC system and the linear accelerator. Moreover, each time a new
promising row arc is generated we replace the current one with this new arc to ensure
that there remains exactly one column for each row i in the column pool (i.e. the size
of the column pool for each row | Z?| = 1). Note that replacing an existing column with
a new one may worsen the objective function value. The reason is that the new column
is not guaranteed to improve the objective function value in the absence of the existing
set of columns. We employ a specialized column generation strategy to ensure that
the objective function value does not worsen in subsequent iterations of our algorithm.
We first observe that often a subset of control points has positive radiation intensity
(i.e. mug > 0) in an optimal solution of RMLP, whereas radiation intensity values
associated with the remaining control points are zero. Based on this observation, our
column generation strategy ensures that leaf positions corresponding to control points
having muy > 0 are kept constant between successive iterations. This strategy ensures
that the previous solution stays feasible with respect to the new set of columns, and
therefore the objective function value does not deteriorate in successive iterations. For
this reason, each time after solving RLMP, we modify each one of m PSPs in such
a way that the leaf positions at the control points with positive radiation intensities
remain the same as the positions in the previously generated column. We fix the leaf
positions at the corresponding control points by removing the other nodes representing
the other leaf configurations when we solve the associated PSP. In each iteration we

update the additional constraints that are necessary for fixing the leaf positions.

To summarize, the new two-phase heuristic starts by generating initial columns
to construct RMLP in the first phase that includes two steps: solving M-VMATP to
obtain a number of fluence maps, and generating a full treatment arc from these fluence
maps by applying the conversion algorithm. Initially there is only one column for each
row ¢ at RMLP, and they are improved during the column generation iterations in the

second phase. The flow diagram of the resulting heuristic is given in Figure [7.4]
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Figure 7.4. Flow diagram of the VMAT planning heuristic.
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8. COMPUTATIONAL EXPERIMENTS

In this chapter we give the computational experiments for the evaluation of
VMATP models as well as the performance of the algorithms that we have explained in
the previous chapters. As can be seen easily there are two different test environments.
The first one, is used to compare VMATP models introduced in Chapter [4, and to test
the performance of Benders decomposition and BP algorithms explained respectively
in Chapter [5] and Chapter [6] The second test environment includes nine real prostate
data sets used in the computational experiments for the two-phase column generation

based heuristic.

8.1. Test Environments

8.1.1. The First Test Environment

We use a real data set belonging to an anonymous prostate cancer patient pro-
vided by Craft et al. [90] in common optimization for radiation therapy (CORT)
datasets [17] in order to evaluate VMATP formulations, and to test Benders decompo-
sition and BP algorithms, respectively. In this section we define the test bed and the

treatment parameters that we use in the computational experiments.

The dose influence matrices for 180 equally spaced control points (i.e. K = 180) in
units of Gy per MU are provided in the original prostate data set. There are 690,373

3 containing 9 defined structures and the remaining part of the

voxels of size 3 mm
body. The defined structures include 2 planning target volumes (PTV68 and PTV56)
with different prescription doses and 5 OARs (rectum, bladder, penile bulb (PB), left
femoral head, right femoral head). Since the original problem is intractable due to its
size, we reduce the size of the problem by randomly selecting a number of voxels from
cach one of the structures as listed in Table [8.1] and Table [8.2] Also, we reduce total

number of structures by assuming that there is only one OAR (union of five OARs) and

we consider only PTV68. Note that Table 8.1 and Table [8.2] only contain number of
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voxels in the structures we consider in the computational experiments. As an example,
600 voxels are selected from PTV68 to form an instance with 1301 voxels, and the
remaining ones are selected from the OARs (120 voxels from rectum, 240 voxels from
bladder, 101 voxels from penile bulb, and 120 voxels from each one of the femoral
heads). We derive 18 data sets with different total voxel sizes, where each data set
has 5 instances generated using a different random number sequence (i.e. there are 90
instances in total). Initially, we generate the first 45 instances (including 9 data sets
with 22 voxels to 1301 voxels) and use them to evaluate two VMATP formulations.
Then we increase the size of the data sets to 11 (i.e. 55 instances in total) while testing
the performance of the Benders decomposition algorithms. Finally, we enlarge the test
bed by adding 7 new data sets including new, larger 35 instances, and use them to test
the performance of the BP algorithms. We divide the data sets into four groups: small
(with 22-220 voxels), medium (with 660-1701 voxels), large (with 1901-2901 voxels),
and very large (with 3401 and 4501 voxels). Note that we randomly select voxels from

the OARs, and they do not belong to any intersection of the structures.

Table 8.1. Small and medium data sets.

Structure Voxel Small Medium

PTV68 6770 10 20 30 40 100 300 400 500 600 700 800
Rectum 1764 2 4 6 8 20 60 80 100 120 140 160
Bladder 11596 4 8 12 16 40 120 160 200 240 280 320
PB 101 2 4 6 8 20 60 80 100 101 101 101
Lt F 5857 2 4 6 8 20 60 80 100 120 140 160
Rt F 5974 2 4 6 8 20 60 80 100 120 140 160

TOTAL 32062 22 44 66 88 220 660 880 1100 1301 1501 1701

In the real data set there are 25 404 beamlets with size 1 cm?. In VMAT planning,
the continuous dose delivery is discretized over a finite number of control points and it
is assumed that radiation delivery only occurs at the control points. This assumption is
reasonable when there is a large number of control points with typically 2°-spacing [54,
56]. Moreover, Otto |12] indicates that poor sampling of control points and MLC leaf

positions can degrade the plan accuracy. Thus, this results in unacceptable dosimetric
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error. Hence, beamlet grid and control points are kept as they are in the original
data set. There are no dose absorption values for the beamlets that do not belong to
beam’s eye view (BEV) at control points; hence we assume that they are closed during
the rotation. Also, we assume that the MLC system has 13 rows and 16 columns
(m = 13,n = 16), since this size is enough to cover all beamlets having dose absorption

information. The data sets and a detailed description file are publicly available on our

website [91].
Table 8.2. Large and very large data sets.
Structure Voxel Large Very Large
PTV68 6770 900 1000 1100 1300 1500 1650 2200
Rectum 1764 180 200 220 240 260 330 440
Bladder 11596 360 400 440 480 520 660 880
PB 101 101 101 101 101 101 101 101
Lt F 5857 180 200 220 240 260 330 440
Rt F 5974 180 200 220 240 260 330 440
TOTAL 32062 1901 2101 2301 2601 2901 3401 4501

In all computational experiments we assume that there is only one co-planar arc
in VMAT treatment and the gantry completes a tour in 3 minutes with constant speed.
The maximum dose rate of a typical linear accelerator is approximately 600 MUs per
minute, which we also use in our experiments. There are 180 control points, and thus
at each one of them the gantry delivers radiation for at most 1 second. As a result the
maximum radiation dose intensity U™" is set to 10 MUs. A leaf can approximately
move 2.5 cm per second at maximum, thus we assume that the value of § is 2, namely
a leaf can move at most two beamlets between consecutive control points. There are
one PTV and one OAR in the experiments and each one has only one partial volume
constraint. Namely, T" and O parameters, and also C; and C, parameters equal to
1. afAf and of) are set to 0.40 and 0.95, respectively. It is assumed that there
are 34 fractions in the treatment and in each one the prescribed dose for PTV68 dyy

is 2 Gy (i.e. 68 Gy in total). Upper and lower bounds on the amount of radiation
dose absorbed by a voxel in PTV68, ULV and LTV, are set to 2.14 Gy and 1.9 Gy
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per fraction, respectively (i.e. total values for 34 fractions are 72.76 Gy and 64.6 Gy).
Finally the tolerance dose for OAR UZ4% is set to 1.47 Gy per fraction (i.e. 50 Gy in
total).

8.1.2. The Second Test Environment

We generate VMAT plans by solving our two-phase column generation based
heuristic algorithm, which is given in Chapter [7, for nine prostate cancer patients
treated in Istanbul University Oncology Institute. The institute is one of the largest
and oldest cancer research centers in Turkey, and an average of 5,000 new patients apply
annually, and 60,000 patients are called for follow-up and control. Every day around
120-150 patients undergo radiotherapy and 90-100 patients receive chemotherapy. They
provided us a number of CT images with 2.5 mm spacing and a radiation therapy
(RT) structure set of each one of the patients in digital imaging and communications
in medicine (DICOM) format [92]. There are two PTVs with different prescription
doses (75.6 Gy and 56 Gy in 36 fractions, respectively) and 5 OARs (rectum, bladder,
penile bulb, left and right femoral heads) in each case (i.e. T'=2 and O = 5).

Istanbul University Oncology Institute currently uses a commercial software called
Varian Eclipse Treatment Planning System (TPS) v.15.6 [93] that uses AAA algo-
rithm [22], which is embedded into the TPS, to calculate the dose-influence matrices.
It is not possible to export these matrices, hence we compute them for a 6 megavolt
(MV) photon energy using an open-source radiation TPS called matRad [94]. We set
the voxel resolution to 5 mm? and bixel resolution to 1 cm? during the DICOM import
in matRad. We list total number of voxels in each structure of all patients in Table
B.3] It uses a singular value decomposed pencil beam algorithm to accomplish photon
dose calculation [95]. The couch angle is selected 0° for all patients and dose-influence
matrices are computed for 180 evenly spaced control points with 2°-spacing are com-
puted. Then, we scale the dose-influence matrices in such a way that the absorbed
dose of 1 ¢cGy/MU is delivered at 100 cm source-to-axis distance (SAD) at 5 cm depth
with field size 10 cm x 10 cm. Thus, we divide original dose-influence matrices by the

parameter 100 to obtain Gy/MU values. In other words, they are scaled such that a
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weight of 1 is equivalent to 100 MU. We also validate this scaling parameter on a water
equivalent phantom provided by Istanbul University Oncology Institute. In Appendix
dose calculation steps in matRad and the details of validation process are provided.
Note that, matRad’s dose calculation is restricted to the projection of the target onto
the BEV at each control point. Thus, for each case, we determine the smallest MLC
system size (i.e. value of m and n in Table that includes all beamlets in the

matrices provided by matRad.

Table 8.3. Properties of the prostate cancer data sets.

Number of voxels of size 5 mm?

Patient m n PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F TOTAL
P1 11 13 890 676 436 2836 58 1559 1476 7931
P2 9 13 1127 230 743 1567 20 923 953 5563
P3 9 13 1000 218 886 1915 53 1728 1791 7591
P4 9 13 889 407 736 2026 51 1653 1610 7372
P5 8 13 1056 346 632 755 90 2025 1845 6749
P66 12 9 1198 383 1035 4649 43 1300 1255 9863
p7 8 11 606 157 402 2911 67 1428 1495 7066
P8 9 9 699 213 757 4814 34 1827 1774 10118
P9 10 13 1971 219 753 1209 36 1630 1684 7502

Istanbul University Oncology Institute uses Varian’s RapidArc technology to de-
liver VMAT plans. The MLC system of the linear accelerator consists of 120 leaves,
which are 0.5 cm thick at the isocenter for the central 20 cm, and 1 cm in the outer
2 x 10 cm. The maximum leaf speed is 2.5 cm/second and the dose rate can be 0-600
MU /minute. We set the associated parameters in our algorithm alignment with these
properties of the system. We assume that the gantry rotates at a constant rate and
completes a tour in 6 minutes. There is single co-planar treatment arc, thus delivery
time of each plan is 6 minutes. The gantry moves from one control point to the consec-
utive one in 2 seconds, thus we set 6 = 5 beamlets. Moreover, the maximum radiation
intensity is 20 MUs since it is assumed that the radiation delivery lasts 2 seconds at a

control point.
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Table lists all structure dose constraints used for prostate radiation therapy
optimization at Istanbul University Oncology Institute in accordance with the recom-
mendation of Buyyounouski et al. [96]. There are two partial volume constraints for
each one of rectum and bladder (i.e. C, parameter is 2 for each one of these OARs), and
for the remaining structures there is only one constraint (i.e. C; parameter for target
volumes and C, parameter for the remaining OARs is set to 1). We should note that
there are conflicting dose-volume constraint suggestions for the penile bulb (PB) in the
literature. First, Buyyounouski et al. [96] determine the dose prescription for PB as
Dgg0 < 15 Gy based on [97], where they study the effect of dose restrictions for erectile
tissues on prostate coverage and rectal sparing and are able to limit the PB Dggg to 15
Gy in 80% of men. Emami [98] and Roach III et al. |[99] explain that it is prudent to
keep the mean dose to entire or 95% of the volume at most 50 Gy, respectively, to avoid
erectile dysfunction. It is stated in [99] that it may also be careful to limit the Dy
and Dggy to 70 Gy and 50 Gy, respectively, without compromising planning target
volume coverage. On the other hand as reported in [100], PB dose is not associated
with erectile dysfunction. Moreover, the oncologists and medical physicists at Istanbul
University Oncology Institute indicate that the dose prescription Dygy < 15 Gy for PB
is very tight, and it is possible to approve a treatment plan when it does not satisfy this
constraint unless the deviation from 15 Gy is excessive. We use the constraints given
in Table and aim to deliver 75.6 Gy in 36 fractions (2.1 Gy per fraction). Table
B.4] also includes the corresponding ratios of all volumes used to formulate VMATP-1
model. Also, the values of dy, and U24% are set to the dose amounts prescribed for
one fraction. As for the remaining parameters, lower and upper bound dose limits for
PTV75.6 are selected as to 84 Gy (2.334 Gy per fraction) and 67 Gy (1.861 Gy per
fraction), respectively. Also, we set the upper bound dose limit for PTV56 to 72 Gy
(2 Gy per fraction).

Finally, a TV t may invade an OAR o, namely there may be a set of voxels in
an OAR o which also belong to a TV. In such a case the overlap region is considered
to belong to the TV ¢ and the CVaR constraint is reformulated for the rest of OAR o.

However, the entire OAR must satisfy the associated dose constraint according to the

OAR

o ¢ parameter in the CVaR constraint as described

clinical guidelines, so we adjust «
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Table 8.4. Dose-volume constraints used at Istanbul University Oncology Institute.

Structure D,y* Dose (in 36 fractions) Ratio of volume
PTV75.6  Dgsy 75.6 Gy oV =0.95
R-PTV56 Dgsy 56 Gy otV =0.95
Rectum D359 <40 Gy oA = 0.65
D17y, < 65 Gy QA =0.83
Bladder — Dso < 40 Gy a9 = 0.50
D5t < 65 Gy Q@M = 0.75
PB Do, <15 Gy QA = 0.10
Lt F Dygy < 50 Gy QA = 0.90
Rt F D1 < 50 Gy a9 =0.90

D,y ™ : the minimum dose received by x% of the structure.

in [24] to meet this requirement. Let R-OAR stands for the rest of the corresponding
OAR, then we use

poar (1 — QOAR)[OAR| _ |7OAR\ {/R-OAR|
Xoc = |V R-OAR| ;
o

instead of a9A%. Clearly, if the set of voxels belonging also a TV is not empty, i.e.
|VOARN WVE-OAR| £ () then aff OAF > qOAR (je. the resulting ratio o 942 yields a
tighter constraint). Also, if af OAR|VE-OAR| yoxels satisfy the dose constraint in R-
OAR then a9A%|VO4E| voxels of the entire OAR also satisfy the constraint. Similarly,
if a voxel belongs to more than one TV, it is considered only in the one with the highest
prescription dose. Data sets provided by Istanbul University Oncology Institute include
the rest of a structure if there is an intersection with this structure and a PTV. The
rest of the structure is obtained by subtracting all voxels in the PTV with a margin of

2-3 mm.

8.2. Evaluation of the Formulations

We implement VMATP-1 and VMATP-2 models in Python 2.7 programming

language |101] and use Gurobi 6.5 solver [102] running on a computer with Windows
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Server 2012 R2 Standard 64-bit PC having 2.00 GHz Intel Xeon CPU, 46 GB RAM.
We set time limit to 1800 seconds for both models and only one thread is used in
computations.

Table 8.5. Summary of the computational results for VMATP formulations.

VMATP-1 VMATP-2

SAMPLE GAP CPU §S/T O/T GAP CPU S/T O/T
22 000 618 5/5 5/5 000 3775 5/5  5/5
44 000 659 5/5 5/5 0.00 4079 5/5  5/5
66 004 5010 5/5  4/5 002 8975 5/5  4/5
88 000 1181 5/5 5/5 000 6461 5/5  5/5
220 0.00 12240 5/5  4/5 0.00 1036.6 5/5  4/5
660  20.00 1656.3 4/5  4/5 100 1800  0/5  0/5
880  60.03 1800 2/5  0/5 100 1800  0/5  0/5
1100  80.00 1675.7 1/5  1/5 100 1800 0/5  0/5
1301 100 1800 0/5  0/5 100 1800  0/5  0/5

Avg/Sum 29.90 989.2 32/45 28/45  44.45 1174.0 25/45 23/45

In Table we give the summary of the computational results that includes
average optimality gaps (%), central processing unit (CPU) times (seconds), total
number of instances that the corresponding model can find a feasible solution (S/T)
and can solve optimally (O/T) out of total instances. There are 9 data sets including
45 instances with at most 1301 voxels. Note that 0 is a valid LB for the objective
function, total MUs of the treatment, since the amount of radiation intensity at each
control point is nonnegative. Similarly, 1800 MUs is a valid UB since the radiation
intensity at a control point can be at most 10 MUs. Whenever a method can find
neither a feasible solution nor a LB for an instance, we calculate the optimality gap as
100% using these bounds. Detailed results including lower and upper bounds (in MU),
optimality gap (%) and CPU time (in second) of each instance can be found in Table
8.6l

According to the average results, both models can provide an UB for all instances

in small size data sets (with 22-220 voxels) and they can solve 23 out of 25 instances
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optimally in 1800 seconds. For the larger data sets VMATP-1 outperforms VMATP-2
in all performance measures. It can find an UB for 7 out of 20 instances (i.e. it solves
5 out of 7 instances optimally), however VMATP-2 cannot provide a feasible solution
for any of these instances. Since our aim is to increase the problem sizes and develop

an algorithm that can solve clinical size of problems, we develop solution algorithms

for VMATP-1 model.

8.3. Computational Results for Benders Decomposition Algorithms

We implement all Benders decomposition algorithms and VMATP-1 model in
Python 2.7 programming language [101] and use Gurobi 6.5 solver |102] running on a
computer with Windows Server 2012 R2 Standard 64-bit PC with 2.00 GHz Intel Xeon
CPU, 46 GB RAM. We solve VMATP-1 model by Gurobi, naive Benders algorithm,
and the two improved Benders algorithms for all instances in small and medium size
data sets. We set the CPU time limit to 3600 seconds in all experiments and execute
all algorithms on one thread in order to keep the conditions the same and to be able to
compare the performances of them. We change the default method for the RVMATP
and AP models in improved Benders algorithms and solve them by the barrier algorithm
[103]. Also we set the “MIPFocus” parameter value of the master model in all Benders
algorithms to 3 to focus on the bound. We execute Gurobi solver with the default

settings and do not perform any parameter tuning while solving VMATP-1.

Table [8.7| summarizes the computational results; it includes the average optimal-
ity gap (%) and the average CPU time (in second) of five instances of each size. Similar
to the results in Table in previous section, the column with title “S/T” and “O/T”
show the number of instances that the corresponding method finds a feasible solution
and solves optimally out of total instances, respectively. Also, we set the optimality
gap to 100% whenever a method can find neither a feasible solution nor a LB for an
instance. In addition, whenever a method cannot provide an UB for a test instance
we calculate the optimality gap by setting its UB to 1800. Note that the UB on the
objective value is 1800 MUs since total number of control points is 180 and it is possi-

ble to send 10 MUs radiation at each one of them. Detailed results including bounds,
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optimality gap and CPU time of each instance can be found in Table [8.§]

According to the results naive Benders decomposition fails in both performance
measures compared to others. It can only find a feasible solution with high total radia-
tion for some instances. For all instances the LB remains at zero level, which results in
100% optimality gap. On the other hand, Gurobi outperforms naive and improved Ben-
ders algorithms in both performance measures when the size of instances are small (i.e.
total number of voxels is less than or equal to 220). Note that the difference between
the average optimality gaps obtained by Gurobi and Improved Benders Algorithm 2
is not significant. As the problem size increases Gurobi cannot find a feasible solution
for some of the instances within the given time limit. For example, it can compute a
feasible solution only two out of five instances having 880 voxels to optimality, but it
can neither find a feasible solution nor a LB for the remaining three instances. On the
other hand, improved Benders algorithms can find feasible solutions with small aver-
age optimality gaps (3.12% and 3.23%, respectively) for all instances, which indicates
that a high-quality plan is found for each one of them. Furthermore, for only one of
them (out of five) with size 1501 voxels, the improved Benders algorithms cannot find

a feasible solution.

When we compare improved Benders algorithms, we observe that finding a better
LB by solving the relaxation (RVMATP) and also introducing the initial optimality cut
derived from an optimal solution of LPVMATP improves the performance of Benders
algorithm. The CPU times are similar and neither one outperforms the other. However,
optimality gaps decrease in almost all problems in the Improved Benders Algorithm
2. For instance, the average gap is 13.59% for the problem having 1701 voxels and
decreases down to 0.49%. The reason is that in almost all instances the LB is close to
the optimal objective value in the Improved Benders Algorithm 2. Also, it can provide
feasible solutions that are very close to the optimal value for almost all large problems,
but still it cannot solve them optimally within the time limit. Nevertheless, we can
conclude that Improved Benders Algorithm 2 is capable of finding good treatment

plans even for large problem instances.
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8.4. Computational Results for Branch-and-price Algorithms

We implement BP algorithms and Improved Benders Algorithm 2, which is the
best performing algorithm of Chapter [5| as shown in Section [B.3] in Python 2.7 pro-
gramming language [101] and use Gurobi 8.0 as the MILP solver [104]. All tests are
carried out on a 64-bit PC with 3.20 GHz Intel(R) Core(TM) i5-6500 CPU and 8 GB
of RAM. We solve VMATP-1 model by Gurobi 8.0 [104], BP algorithms and Improved
Benders Algorithm 2 using all instances in all data sets (i.e. 90 instances in total) in
order to compare the performance of the proposed BP algorithms with the others. We
set 3600 seconds as CPU time limit and use one thread in all executions of all algo-
rithms. In the BP algorithms, RVMATP model is solved using the barrier method [103]
at the root node and then its method is changed to dual simplex in the descendant
search nodes. We solve RMLP using primal simplex in order to warm start from the
last basis after adding a new column. Also, there is a threshold on the reduced cost for
the new generated columns. If the reduced cost is not below —0.05 we do not add the
corresponding column to RMLP. We keep the parameter tuning of Improved Benders
Algorithm 2 as explained at the beginning of Section [8.3] We do not perform any other

parameter tuning for the Gurobi solver and keep parameters at their default settings.

We give the summary of the computational results that includes average optimal-
ity gaps (%), CPU times (seconds), total number of instances that the corresponding
method can find a feasible solution (S/T) and can solve optimally (O/T) out of to-
tal instances in Table 8.9, We calculate the optimality gap of an instance as 100%
whenever an algorithm cannot provide lower and upper bounds. Also, we accept the
UB 1800 MUs in the optimality gap calculation when only a LB is provided. In Table
the computational results that include lower and upper bounds for each one of

the instances are provided.

We partition data sets into four groups: small (with 22-220 voxels), medium (with
660-1701 voxels), large (with 1901-2901 voxels), and very large (with 3401 and 4501
voxels). The results on small data sets (with at most 220 voxels) show that Gurobi,

Improved Benders Algorithm 2, BP Algorithm 2 and BP Algorithm 3 can solve almost
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all of the instances optimally in short CPU times. BP Algorithm 1 cannot find a
feasible solution for one instance having size 220 within time limit. Gurobi performs
better than all of the BP algorithms and Improved Benders Algorithm 2 with respect to
the average optimality gaps in all small data sets and also with respect to the average
CPU times in data sets with 22, 44, and 66 voxels. In particular, Gurobi can solve
all instances optimally except 66-5 and 220-5. BP algorithms and Improved Benders

Algorithm 2 cannot solve these instances and also some other instances optimally.

As the size of the problem increases, Gurobi starts failing to solve some instances
within time limit. It cannot provide neither an UB nor a LB for 9 out of 30 instances of
medium size (having total number of voxels between 660-1701), and can only provide
a LB for 2 out of 30 instances. It solves 18 out of the remaining 19 medium size
instances optimally in relatively longer CPU times. On the other hand, all of the
new BP algorithms perform better than Gurobi in both performance measures (only
the average optimality gaps of data sets with 660 and 1100 voxels are worse in BP
Algorithm 1, and also the average optimality gap of data set with 660 voxels is slightly
worse in BP Algorithm 2). They can find a feasible solution for all of the medium
size instances. Moreover, BP Algorithm 1, BP Algorithm 2, and BP Algorithm 3 can
respectively solve 20, 26, and 29 instances optimally. BP Algorithm 2 cannot solve only
4 instances (660-1, 660-2, 1301-1 and 1301-2), and BP Algorithm 3 cannot solve only
one instance (1301-2) optimally. Also, the resulting optimality gaps of these instances
are very small (at most 0.02%). Improved Benders Algorithm 2 can also find a feasible
solution for all of the medium size instances except 1701-2. The optimality gaps are
below 1% in almost all cases (except 660-3, 880-1 and 1100-5), however the number of
instances that it can solve optimally is only three. In particular, the smallest average
CPU times and optimality gaps are obtained by BP Algorithm 3. As a result, BP

Algorithm 3 outperforms the other ones for medium size instances.

The results of large problems (with 1901-2901 voxels) are also similar to the results
of medium size problems. Gurobi can solve only 2 out of 25 instances optimally within
time limit, and for 22 instances it can neither provide an UB nor a LB, for the remaining

one instance it can only provide a LB. On the other hand, BP Algorithm 3 solves all
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of the instances optimally within less than half of the time limit. The other two BP
algorithms can also provide an UB for almost all of the instances. BP Algorithm 1 and
BP Algorithm 2 cannot provide a feasible solution respectively for 3 and 1 instance
within time limit. The number of instances that these algorithms can solve optimally
is 17 and 20, respectively. Also, the optimality gaps of the problems, which are not
solved optimally, are below 1% in almost all instances. Improved Benders Algorithm 2
can find a feasible solution for 20 instances, but it can solve only one of them optimally.
Finally, BP Algorithm 3 outperforms other algorithms in both performance measures

with significant differences.

In addition to these three groups of data sets, we generate and solve two larger
data sets with 3401 and 4501 voxels to be able to make the difference between algo-
rithms clearer and observe the limits of BP Algorithm 3. Gurobi fails to find lower
and upper bounds for all instances. BP Algorithm 1 and BP Algorithm 2 both find a
feasible solution for 5 and 4 out of 10 instances, and they can solve 3 and 2 instances
optimally, respectively. On the other hand, BP Algorithm 3 solves 8 instances to opti-
mally. It can only provide a LB for each one of the remaining two instances. Improved
Benders Algorithm 2 can solve 4 out of 10 instances with small optimality gaps (below

1%), but it cannot solve any of the instances optimally.

In overall, BP Algorithm 3 can solve 83 out of 90 instances optimally, and for
the remaining 5 instances it can provide very small optimality gaps. (i.e. below 0.1%
except instance 22-5). However, Gurobi fails to provide upper and lower bounds for
almost half of the instances (i.e. 41 out of 90) within time limit. Also, it cannot provide
an UB for other 3 instances. It only solves 43 instances optimally and 3 instances with
small optimality gaps. If we check the average CPU times and optimality gaps, BP
Algorithm 3 outperforms all other methods in both performance measures in almost
all data sets (except with 22, 44 and 66 voxels). The last row of Table 8.9 shows that
the minimum average optimality gap of all instances is 1.93%, the minimum average
CPU time is 1021.6 seconds, the maximum total number of instances with a feasible
solution is 88, and the maximum number of instances that are solved optimally is 83,

which are all obtained by BP Algorithm 3.
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8.5. Computational Results for the Two-Phase Heuristic

We implement the heuristic in Python 2.7 programming language [101] and use
Gurobi 8.0 as the MILP solver [104]. All tests are carried out on a 64-bit PC with 3.20
GHz Intel(R) Core(TM) i5-6500 CPU and 8 GB of RAM. We set the number of threads
of Gurobi solver to 4. In CVaR parameter tuning operation we set €; to 0.10 and €5 to
0.03. We keep the parameter tuning of column generation as in BP algorithms, which

are explained at the beginning of Section [8.4]

In Istanbul University Oncology Institute, the VMAT plans of all patients are
optimized using two full arcs on older versions of Eclipse TPS (v.8.9 and v.15.1, [93])
using 6 MV photon beams. In Table total MUs and dosimetric results of all
plans are provided. According to these results all VMAT plans satisfy all dose-volume
constraints given in Table (except the plan of patient 6, since it does not satisfy the
first dose-volume constraint of rectum, which requires Dy35 < 40 Gy). Total radiation
dose (sum of MUs of two arcs) of plans varies between 570 and 743 MUs with average
633.9 MUs. Table provides dosimetric results of VMAT plans obtained by our
column generation based heuristic algorithm. Almost all plans are optimized within
20 minutes (1200 seconds) with an average of 1020 seconds. It takes a little longer
to optimize plan 3 and plan 6 (1227 and 1782 seconds, respectively). We first note
that total radiation intensity decreases in almost all plans significantly (except plan
5). The amount of radiation dose varies between 366 and 689 MUs with an average
of 494.4 MUs. The maximum reduction occurs for the plan of patient 7, which is 363
MUs (48.9%). The average decrease of all plans is approximately 139.5 MUs and the
average percentage of reduction is 22.0%. By assuming that the dose-influence matrices
obtained by AAA algorithm [22] and by the singular value decomposed pencil beam
algorithm [95] used in matRad are sufficiently close, we can say that our proposed

model and solution algorithm can find high quality plans requiring less radiation.

We observe that the first dose-volume constraint of rectum is not satisfied in

the plans of three patients (patient 1, 6 and 8). However, the maximum deviation



Table 8.11. Dosimetric results of the VMAT plans obtained by Eclipse.

101

PTV75.6 R-PTV56 Rectum

Bladder

PB LtF RtF

Patient MU  Dgsy Dosy D35y D17 Dsow Das% Doow Dio% Diox
P1 091 76.6 56.9 39.9 509 329 426 10.7 26.5 25.8
P2 275 75.8 56.2 389 529 31.7 573 10.5 381 37.0
P3 743 76.4 56.5 342 487 220 579 86 22.0 184
P4 659 76.8 o7.1 372 54.1 30.7 553 14.1 35.0 342
P5 661 75.9 56.5 384 56.7 377 635 6.0 37.8 378
P6 270 76.1 56.8 41.2 53.7 16.2 264 144 36.2 329
pP7 667 76.2 56.9 377 488 55 149 53 248 275
P8 625 76.4 56.6 33.8 491 45 16.8 11.1 26.0 30.8
P9 614 76.0 56.7 388 552 306 628 80 349 394

Avg. 633.9

Table 8.12. Dosimetric results of the VMAT plans obtained by two-phase heuristic.

PTV75.6 R-PTV56 Rectum

Bladder

PB LtF RtF

Patient MU  Dgsy Dosy D35y D17 Dsow Dasw Doow Dioz Diox
P1 526 76.7 57.3 42.0 51.0 272 46.3 243 409 439
P2 561 7.2 56.8 38.1 53.7 36.5 63.3 25.1 343 335
P3 380 76.4 56.9 36.1 50.8 34.7 64.6 12.1 423 37.3
P4 5923 77.1 57.2 372 489 342 643 142 451 48.0
P5 689 76.2 58.2 389 575 39.1 646 6.7 41.1 435
P6 424 77.8 57.3 41.0 578 74 278 204 46.2 458
pP7 366 76.2 o7.1 383 509 33 169 74 351 36.1
P8 509 77.8 58.0 424 61.3 6.4 258 274 265 225
P9 472 75.9 57.1 349 540 378 645 128 46.7 46.8

Avg. 4944
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from the tolerance dose, which is 40 Gy, is 2.4 Gy. Note also that if we decrease the
radiation intensities at all control points by the same ratio without violating partial
volume constraints of PTVs, then the resulting deviations will be less. For example, in
plan 6 it is possible to reduce the radiation intensities at all control points to 97.73%
of the original intensities. Therefore, 95% of R-PTV56 will receive 56 Gy and 95% of
PTV75.6 will receive 76 Gy. The resulting plan almost satisfies all dose constraints
of rectum (Dgs5 will be 40.07 Gy). By this way total MUs of the plan also decreases
by around 9.6 MUs. Similarly, we can adjust plan 1 and plan 8, and reduce the Dgzs
of rectum to 41.4 Gy and 41.2 Gy, respectively. We should be careful when we are
shifting the plans, since it will reduce also the minimum dose to PTVs and increase the
risk of occurring cold spots. Moreover, in four out of nine plans (patient 1, 2, 6, and
8) Dggo of PB is more than 15 Gy (the maximum is 27.4 Gy), which are acceptable
according to the oncologists and medical physicists at Istanbul University Oncology
Institute and also other dose prescription recommendations (for example to limit Dy
and Dggg of PB to 70 Gy and 50 Gy, respectively) in the literature. Thus, we can
say that the heuristic is capable to obtain high-quality VMAT plans with significantly
fewer MUs in clinically reasonable times. In general, DVHs are used to evaluate the
quality of a treatment plan. For a given structure, a DVH specifies the percentage of
its volume that absorbs at least a certain amount of dose. We calculate DVHs of PTVs
and OARs and compare them to the clinical guidelines and also to the ones obtained
in the institute. We provide DVHs of all patients obtained by our algorithm and by
Eclipse in Figure — Figure [8.18| sequentially.

Finally, VMAT plans are made by the experienced dosimetrists in treatment plan-
ning departments. The planning process involves various manual interventions such as
adapting planning objectives and constraints according to the individual anatomy of
the patient. For example, shape and size of the tumor(s), and location of organs at risk
are some of the anatomical properties that play an important role in the manual ad-
justments of the parameters, which influence the plan quality. Namely, the dosimetrists
try to guide the treatment planning system towards a favorable plan by modifying op-
timization parameters. Thus, this manual process necessitates additional optimization

steps and extra time, and also the quality of the final plan depends on the skills and
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Figure 8.1. DVHs of the plan of patient 1 obtained by two-phase heuristic.
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Figure 8.2. DVHs of the plan of patient 1 obtained by Eclipse v.15.1.
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Figure 8.3. DVHs of the plan of patient 2 obtained by two-phase heuristic.
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Figure 8.4. DVHs of the plan of patient 2 obtained by Eclipse v.15.1.
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Figure 8.5. DVHs of the plan of patient 3 obtained by two-phase heuristic.
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Figure 8.6. DVHs of the plan of patient 3 obtained by Eclipse v.15.1.
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Figure 8.7. DVHs of the plan of patient 4 obtained by two-phase heuristic.
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Figure 8.8. DVHs of the plan of patient 4 obtained by Eclipse v.15.1.
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Figure 8.9. DVHs of the plan of patient 5 obtained by two-phase heuristic.
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Figure 8.10. DVHs of the plan of patient 5 obtained by Eclipse v.15.1.
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Figure 8.11. DVHs of the plan of patient 6 obtained by two-phase heuristic.
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Figure 8.12. DVHs of the plan of patient 6 obtained by Eclipse v.15.1.
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Figure 8.13. DVHs of the plan of patient 7 obtained by two-phase heuristic.
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Figure 8.14. DVHs of the plan of patient 7 obtained by Eclipse v.15.1.
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Figure 8.15. DVHs of the plan of patient 8 obtained by two-phase heuristic.
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Figure 8.17. DVHs of the plan of patient 9 obtained by two-phase heuristic.
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Figure 8.18. DVHs of the plan of patient 9 obtained by Eclipse v.15.1.
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experience of the dosimetrist as well as the complexity of the case and time allocated
for planning. The VMAT plans whose dosimetric results are shown in Table [8.11] are
obtained and adjusted by an experienced dosimetrist via a manual process as explained
above. In the original data sets there are some additional structures (e.g. a subset of
rectum) for which the dosimetrist defines additional constraints (in 7 out of 9 plans)
to ensure that the related received radiation amounts fall into approvable limits. How-
ever, we do not use such an additional structure and/or additional dose-constraint in
our algorithm, which automatically adjusts parameters for each patient and does not

require any expert guidance.

8.5.1. The Effect of Initial Columns

We analyze the effect of starting with initial columns generated from the flu-
ence maps obtained by solving M-VMATP model. We generate VMAT plans for all
patients using two different set of initial columns: the columns generated from a full
treatment arc with maximum number of open beamlets and from a randomly gener-
ated full treatment arc. These new initial columns are also feasible with respect to
the MLC constraints (i.e. satisfying the consecutive ones property and the leaf motion
limitations). Also, random columns are generated from a treatment plan satisfying
the full volume constraints of all target voxels, which is obtained by solving a model
including all geometric constrains and also full volume constraints. In Table and
Table[8.14] we give the dosimetric results of the plans obtained by starting with columns
having maximum number of open beamlets and with randomly generated ones, respec-
tively. According to the results, none of the plans obtained using new initial columns
are clinically acceptable. The average CPU time and total radiation decrease to 548.4
seconds and 347.2 MUs in the plans initial columns with maximum number of open
beamlets. The average of total radiation of the plans with randomly generated columns
slightly decreases to 469.9 MUs, however the average CPU time increases. These re-
sults show that starting with initial columns generated from the fluence maps improves

the performance of the algorithm in terms of clinical dose requirements.
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Table 8.13. Dosimetric results for the initial columns with maximum open beamlets.

PTV75.6 R-PTV56 Rectum Bladder PB LtF RtF

Ptnt CPU MU  Dgsy Dosy  Dssy D17 Dsow Da2s% Doz D10z Dio%
P1 569 346 71.7 65.2 62.0 67.7 39.7 50.7 31.2 489 484
P2 621 331 69.6 63.3 97.7 64.6 41.0 68.1 42.1 53.6 555
P3 427 343 71.3 66.4 50.6 66.6 34.3 684 22.1 552 54.0
P4 545 341 71.8 63.6 59.2 66.8 355 65.6 34.1 52.0 50.2
P5 491 355 74.1 59.6 62.7 70.0 64.6 72.2 6.5 46.2  49.2
P6 646 370 74.0 66.0 42.7 589 30.3 43.2 25.0 487 494
P7 286 361 74.2 62.9 49.5 61.2 3.2 147 7.3 59.2  47.3
P8 284 356 71.6 64.1 35.8 64.1 4.3 409 38.6 48.2 476
P9 1067 322 68.2 64.9 53.0 65.6 494 65.3 19.2 48.1 45.8

Avg. 548.4 347.2

Table 8.14. Dosimetric results for randomly generated initial columns.

PTV75.6 R-PTV56 Rectum Bladder PB LtF RtF

Ptnt CPU MU  Dgsy Dosy  Dssy D17 Dsow Da2s% Do Diow Diow
P1 1555 466 75.4 56.8 50.6 57.6 31.5 54.0 26.3 41.0 44.0
P2 1580 488 72.4 96.7 409 53.2 303 644 295 520 533
P3 1369 474 76.5 56.9 35.3 49.5 174 64.6 12.2 452 57.6
P4 1385 477 76.5 56.8 46.3 53.7 32.8 63.5 14.0 43.1 49.3
P5 1505 494 76.2 56.7 51.5 61.5 50.7 674 6.5 45.8 34.8
P6 2559 427 77.5 58.1 42.9 58.6 9.1 28.2 19.1 48.0 427
P7 868 423 76.4 57.1 43.4 51.2 3.1 13.1 6.2 35.7 47.3
P8 1214 475 77.9 57.3 42.3 61.2 4.6 23.0 19.1 333 43.1
P9 1829 505 73.5 57.7 42.9 543 396 63.1 134 453 45.9

Avg. 1540.4 469.9
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8.5.2. The Effect of Parameter Tuning

We repeat the computational experiments for all patients without CVaR param-
eter tuning operation. In Table [8.15] we provide the dosimetric results, and CPU time
and MUs of the plans. According to the results the average CPU time decreases by
130.4 seconds as compared the original ones provided in Table which is consistent
with our expectation. However, CPU time of the plans for patient 1 and patient 8 in-
creases. Since, the necessary time for the second phase (the column generation phase)
differ when CVaR tuning operation is not applied. The average MUs of the plans
increases by 76.4 MUs, which is also expected, since CVaR constraints are tighter.
All partial volume constraints of OARs in all plans are satisfied (due to tighter CVaR
constraints). However, there are 3 plans (patient 2, patient 4 and patient 5) where
the partial volume constraints of PTV75.6 are not satisfied. To sum, tuning the right
hand side parameters of CVaR constraints makes the resulting plans more reasonable
without compromising OAR’s partial volume constraints. Also, all PTV constraints
are satisfied with fewer MUs (there is a decrease around 13.3%). In detail, the average

necessary time for tuning operation is 138.5 seconds, which is not very long.

Table 8.15. Dosimetric results of the VMAT plans without CVaR tuning operation.

PTV75.6 R-PTV56 Rectum Bladder PB LtF RtF
Ptnt CPU MU  Dgsy Dosy  Dssy D17 Dsow Da2s% Deo% Dio% Diow
P1 1232 633 76.6 57.8 35.1 456 21.2 416 20.1 39.7 472
P2 556 623 74.3 56.7 284 46.1 26.3 55.7 23.8 43.8 40.3
P3 854 513 75.8 56.8 26.4 419 13.0 46.2 5.9 42.8 384
P4 832 683 75.0 57.5 28.2 445 19.6 46.8 8.1 38.1 36.6
P5 713 708 4.7 58.6 334 bH47 378 625 5.0 389 429
P6 1405 452 77.5 7.7 26.3 44.1 8.6 23.1 19.1 46.8 47.2
P7 658 439 76.2 956.5 25.6 41.1 3.1 129 4.6 40.6  45.3
P8 744 526 78.0 56.8 18.4 45.3 4.0 184 155 47.0 353
P9 1014 560 76.2 58.6 27.8 48.6 29.6 56.6 9.2 45.7  46.5
Avg. 889.8 570.8
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8.5.3. Comparing the Performance of Two-Phase Heuristic with Exact So-

lution Algorithms

We solve all instances, which are explained in the first test environment section
(Section and used in the computational experiments of the exact solution algo-
rithms (in Chapter [5] and Chapter [6]), by two-phase heuristic. The first phase of the
heuristic tunes the tolerance doses of OARs in CVaR constraints, thus we perform the
computational experiments for both cases: without tuning operation and with tuning
operation. In Table we give the average results of all samples. Note that we do
not obtain a LB when we solve an instance by two-phase heuristic, thus we use the
best available LB (i.e. the maximum of LBs obtained by Gurobi, Benders and BP
algorithms) in order to calculate optimality gaps. In Table we provide the best
LB for each instance. Note also that when we perform tuning operation the tolerance
dose of OAR may be increased, namely the problem may be simplified, thus the LB
of the resulting model may be decreased. Nevertheless, we give the average approxi-
mated optimality gaps in Table using the same best LB. In Table [8.17] for each
instance, we provide UB and CPU time obtained by the heuristic without and with
tuning operation. There are also optimality GAPs for the heuristic without tuning
operation. According to the results CPU times of all instances remarkably decrease.
In both cases, the average CPU time is around three minutes (182.6 and 170.8 seconds
for the computational experiments without tuning and with tuning operation, respec-
tively). Two-phase heuristic can find a feasible solution with small optimality gap for
all instances in both cases, however they can solve only 3 and 8 out of 90 instances
optimally. We should note that partial volume constraint of OAR is satisfied for each
instance when tuning operation is applied (D%‘OR ranges from 1.50 Gy and 23.6 Gy,

where the treatment prescriptions is D%g‘OR =50 Gy).



Table 8.16. Summary of the computational results of CORT dataset.

Without CVaR tuning With CVaR tuning
SAMPLE GAP CPU §S/T O/T GAP* CPU S/T O**/T
22 3.09 30.1 5/5 0/5 286 289 5/5 0/5
44 0.30 29.0 5/5 0/5 046 293 5/5 0/5
66 469 316 5/5 0/5 475 397 5/5 0/5
88 3.61 49.7 5/5 0/5 238 47.7 5/5 0/5
220 4.01 318 5/5 0/5 248 396 5/5 0/5
660 0.04 536 5/5 0/5 0.05 56.1 5/5 1/5
880 0.07 668 5/5 1/5 0.09 680 5/5 1/5
1100 0.06 79.0 5/5 1/5 0.06 90.3 5/5 2/5
1301 0.16 96.6 5/5 0/5 0.08 1128 5/5 0/5
1501 0.18 120.6 5/5 0/5 0.12 1271 5/5 1/5
1701 0.18 131.6 5/5 0/5 0.07 1548 5/5 1/5
1901 0.15 184.2 5/5 0/5 0.12 1540 5/5 0/5
2101 0.05 203.0 5/5 0/5 0.03 170.5 5/5 1/5
2301 0.09 2471 5/5 0/5 0.04 2302 5/5 0/5
2601 0.15 2889 5/5 0/5 0.21 2418 5/5 0/5
2901 0.12 346.1 5/5 0/5 0.08 3251 5/5 0/5
3401 0.05 4849 5/5 1/5 0.06 417.7 5/5 1/5
4501 0.10 812.,5 5/5 0/5 0.07 7412 5/5 0/5
Avg/Sum 0.95 182.6 55/55 3/55 0.78 170.8 55/55 8/55

Note: Cells marked with * are calculated using the best LB, thus

they are approximated GAPs. Also, in the cells marked with **

the same best LBs are considered.
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9. CONCLUSIONS

In this dissertation we studied volumetric modulated arc therapy (VMAT) plan-
ning, which is an important but difficult problem in cancer treatment. There are four
main parts including two mixed integer linear programming formulations for VMAT
planning, which minimize total amount of radiation delivered to the patient subject
to geometric and clinical requirements, two exact solution methods in order to find

optimal VMAT plans and one heuristic to generate plans for clinical size of problems.

In VMAT technique, radiation can be delivered continuously, and the leaves of
the MLC system can move and shape the beam during the rotation of the gantry.
Therefore, it is possible to obtain high conformal plans in terms of dose distributions
requiring less treatment time, which makes the technique one of the widely applied
method in external radiation therapy treatment. However, finding high quality VMAT
plans is a challenging issue. The apertures composed by the multileaf collimator (MLC)
leaves are interdependent, since there is a leaf motion limitation depending on the
mechanical properties of the equipment. Namely, the apertures at two adjacent control
points in a VMAT plan must be compatible. This makes VMAT planning problem
impossible to decompose into independent smaller problems; it must be considered
as a whole in contrast with the preceding technology intensity modulated radiation
therapy (IMRT). It is challenging to develop good formulations and efficient methods
that solve the problem exactly and find good treatment plans. For these reasons
the formulations proposed in the literature are not comprehensive enough to include
all aspects of the method. They generally relax the dose requirements and try to
satisfy them in the objective function by solving a heuristic method. To the best
of our knowledge, our mixed integer linear programming models are the first ones
in the literature that take into account all requirements related to treatment as well
as mechanical properties of the equipment. The formulations differ from each other
with respect to the definitions of the leaf positions and each of them includes partial
dose-volume requirements as Conditional Value-at-Risk (CVaR) constraints. Moreover,

IMRT and VMAT techniques are capable to find high conformal radiation therapy
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plans, however they increase the total radiation sent to patient’s body during the
treatment as compared to the previous techniques, which increase the integral body
dose and the risk of secondary malignancy. Thus, the objective of the formulations is
to find a solution that delivers as little radiation as possible to the patient, which is

new in the VMAT planning literature.

The problem has mainly two parts to decide: the positions of the leaves and the
amount of radiation intensity at each one of the control points. Using this observation
we decompose the problem into two subproblems in order to develop Benders decom-
position algorithms. In the master problem the positions of the leaves are obtained
and they are given to the subproblem as input where the dose intensities are deter-
mined subject to the clinical requirements. We modify the naive form of the method
by applying a number of acceleration strategies and obtained two improved Benders
algorithms. In the BP algorithms we reformulate the problem in reverse and introduce
each feasible treatment row arc for each MLC row as a variable of the reformulated
model. We solve the linear programming relaxation of the reformulated model us-
ing column generation at each node of the branch-and-bound tree. For each pricing
subproblem, a network model was developed and solved using dynamic programming
in polynomial time. We test the performance of the exact solution algorithms on a
large set of test instances derived from an anonymous prostate dataset [17]. Note that
there are other studies that use the same dataset in VMAT planning within a differ-
ent settings [56),(105,/106]. They all provide treatment plans satisfying different set of
constraints and minimizing or maximizing different objective functions, which makes
them incomparable. According to the computational results, Benders algorithms and
BP algorithms outperform Gurobi solver especially for large instances. In particular,
BP algorithms are more efficient than the improved Benders algorithms. We should
also note that it is possible to solve real size problems including only one target volume
and one OAR with the current version of our algorithms. For the first time, however,
the exact solution algorithms have been proposed to solve a comprehensive mixed linear
integer programming model for the VMAT planning problem. Although the problem
involves the challenges to be overcome, such an attempt is important and valuable in

that it demonstrates these difficulties and creates ground for the future contributions



122

that may further improve VMAT treatment.

Finally, we propose a two-phase column-generation heuristic, which produces
treatment plans in a single call without any human intervention. This is in contrast
with the commonly used software systems, which often require multiple iterations of
modifications in parameters and re-run. Our heuristic can find high quality VMAT
plans for problems with clinically adequate voxel and bixel (beamlet) resolution. In
the first phase of the algorithm we generate an initial plan by solving a relaxed model,
which is derived from the original model and gives a number of fluence maps. Then we
convert these fluence maps into deliverable apertures and sequence them on an arc by
applying a simple sequencing operation. In the second phase, we improve the initial
solution by column generation iterations. Use of CVaR constraints is not widespread
in VMAT planning due to their conservatism. The proposed heuristic includes an
automated strategy to tune the parameters of these constraints in order to make them
usable without degrading quality of plans. We test our algorithm on nine real prostate
patient data and compare the resulting VMAT plans with the ones obtained by an
expert dosimetrist on Eclipse [93] in one of the major oncology institutes of Turkey.
Our model includes dose-volume constraints of all critical organs and two planning
target volumes, parallel to clinical application. The results show that our heuristic is
capable to find treatment plans of high quality with respect to clinical dose-volume

criteria and requiring fewer MUs in clinically acceptable time.

Potential future research directions include extending the proposed algorithms
in order to involve some other properties such as connectedness and disallowing inter-
digitation of the leaves that may be imposed by some of the MLC systems. Also, we
assume that the gantry of the linear accelerator rotates at a constant speed, which can
be relaxed by introducing additional variables and linearizing the potential resulting
nonlinearities. Finally, the formulations and algorithms may be adapted for other ra-
diation therapy modalities such as Tomotherapy and CyberKnife as in [15], and also
for other new technologies such as the intensity modulated proton therapy whose op-
timization demands very large data sets since it is highly sensitive to uncertainties, or

four-dimensional radiation therapy that includes the temporal changes in the patient’s
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anatomy while planning the treatment.
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APPENDIX A: STRONG BENDERS CUT

Let’s (ﬁ',ﬂl,ﬂz,Bl,Bz,Bg) be the optimal solution of RDSP(ﬁ,ﬂl,ﬂ2,Bl,B2).

Note that Bl for (i,7,k) € 247 equals to ﬁl, and BQ for (i,7,k) € 24 equals to ,32.
Namely, only 8" for (i, ], k) € 2, B for (i,j, k) € 2 and B’ for all (4, j, k) may be

different from the optimal solution of RDSP. Let’s assume that the Benders optimal-
4 g a1 a2 A1 22 a1 A2
ity cuts f(8'.8°,0,6,&".& 4", i°) <pand f(B,8,6,07,& & il 47) < n are

derived from the optimal solution of RDSP and DSP, respectively. There are two cases:

(i)

Bl < Bl for all (¢,7,k) € 2, and ,82 < BZ for all (i,7,k) € 1.

In this case, it is trivial that the following inequality

A1 A2 A1 -1 52 Al ~2 1 .9 .1 .
f(B,8,0,0 ¢ & pt p®) < f(B8',8%,0,6 &, & n' i?) (A.1)

is satisfied for all master solutions (z). Since,

-um Z(z‘,j,k)ezo ZijkBiljk+Umu Z(i,j,k)eZl (Zijk_l)gz?jk < -=-um Z(z‘,j,k)ezo zijkgiljk+
ymu Z(i, ke 2, (Zijk — 1)ijk is ensured when there are z;;;, variables take value 1
in (i,7,k) € 2 and/or take value 0 in (4,7, k) € 2. Note that, the remaining
parts of the functions where dual variables take the same value are exactly same
in both cuts.

For at least one (i,7,k) € 2 B}]k > B}jk and/or for at least one (i,7,k) € 24
_z'2jk‘ > Bfgk

Hence, the inequality may not be satisfied for some of the master solu-
tions in this case, but f(31,62,91,92,é17é2,[1,1,ﬂ2) < 7 can not dominate the
new cut f(Bl,BZ, él, 92, e, & ', (1*) < 1. Because, there must be at least one
other (i,j,k) € 2 or (i,j,k) € 21 that satisfies 3}, < B}Jk or B2, < ijk
Since the objective function of RDSP minimizes the sum of 8 and B2. There-
fore, there are other master solutions that satisfy f(Bl, 32, 91, 92, e e nt, [1,2) <
f(Bl,BQ,91,92,él,éQ,ﬂl,ﬂz) is ensured. We can conclude that the new cut
f(Bl,BQ,él,éQ,él,éz,ﬂl,[f)) < 7 is not dominated, namely it is strong (or

pareto-optimal among the cuts of alternative optimal solutions of DSP(z).



138

APPENDIX B: DOSE CALCUTATION BY matRad

matRad is a multi-modality radiation treatment planning system written
in MATLAB [107], and supports IMRT planning for photons, scanned protons, and
scanned carbon ions at clinically adequate resolution. It is freely available online and

has been developed to contribute to educational and research activities.

Figure B.1. matRadGUI.

The first step is to import DICOM images with radiation therapy (RT) structure
files into the matRadGUI interface shown in Figure [B.I] After selecting the voxel res-
olution, they must be converted into a .mat file, which can be opened in madRadGUI.
This .mat file should be opened, and then, the couch angle, the beam angles to calcu-
late dose-influence matrices are selected. It is possible to enter more than one beam
angle (e.g. 024 6). Also, PTV and OARs must be introduced and the corresponding
objective functions with priority weights and other parameters such as gantry location,
energy type etc. must be specified. Finally, dose influence matrices, which include dose
contributions to each voxel from each beamlet/pencil beam at unit intensity, can be

calculated and saved as .mat file.
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We scale the dose-influence matrices in such a way that the absorbed dose of
1 ¢cGy/MU (i.e. 0.01 Gy/MU) is delivered at 100 cm SAD at 5 cm depth with field
size 10 cm x 10 cm similar to the calibration used at Istanbul University Oncology
Institute. We use a solid water phantom CT data which is provided by the institute.
We execute a simulation using this phantom, in which we define a 10 cm x 10 cm target
volume at 100 cm SAD whose center is passing through the isoline. Also we contour
a small volume at 5 cm depth at the center. Then, we validate in Eclipse that 0.01
Gy is absorbed by this volume when 1 MU radiation is delivered. The necessary setup
is illustrated in Figure (SSD stands for source-to-surface distance). We calculate

SAD=100cm{  SSD=95cm |

10 em x 10 cm

Figure B.2. SAD setup.

dose-influence matrices for this volume defined on phantom in matRad also. For each
one of the voxels, especially for the ones at the center, these values are very close to 1
(i.e. 1 Gy), which means 100 MUs radiation is delivered. Thus, we divide the original

dose-influence matrices 100 to obtain Gy/MU values.
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In order to validate this scaling parameter, we also check the depth dose curves

obtained by Eclipse (Figure |B.3)) and also matRad (Figure |B.4]) and observe that they
are consistent.

Figure B.3. Depth dose curves obtained in Eclipse
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Figure B.4. Depth dose curves obtained in matRad.
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