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ABSTRACT

THE DETERMINATION OF TREATMENT PLANS FOR

VOLUMETRIC MODULATED ARC THERAPY

Volumetric modulated arc therapy is the state-of-the-art technique for external

radiation therapy treatment, where radiation can be delivered continuously during the

rotation of the linear accelerator’s gantry. This property makes this technique power-

ful in obtaining high conformal plans requiring short treatment times. However, the

multileaf collimator system shapes the radiation beam continuously, thus the resulting

apertures are interdependent due to leaf motion limitations, which makes treatment

planning hard. In this thesis, we first propose two mixed integer linear programming

formulations minimizing total radiation delivered to the patient subject to the geo-

metrical and clinical requirements. Then, we develop exact solution algorithms that

combine Benders decomposition with certain acceleration strategies and implement

branch-and-price method where pricing subproblem is decomposable by rows of mul-

tileaf collimator and can be solved as a shortest path problem. We investigate their

performance on a large set of test instances obtained from an anonymous real prostate

cancer data. The computational results reveal that they are efficient and outperform

a widely used commercial solver. In particular, branch-and-price implementation is

capable to find optimal solutions for larger problem instances. However, they cannot

provide realistic plans for real clinical problems because of their large size. In order

to address this issue, we develop a two-phase column generation based heuristic that

tunes the parameters of dose-volume requirements and yields an automated treatment

planning environment, which does not require any human intervention. We test its

performance on real prostate data sets and compare the quality of the generated plans

with those obtained by a widely used commercial treatment planning system. Results

show that it can obtain medically acceptable plans requiring significantly less radiation

in reasonable computation times.
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ÖZET

HACİMSEL YOĞUNLUK AYARLI ARK SAĞALTIMI

PLANLARININ BELİRLENMESİ

Hacimsel yoğunluk ayarlı ark sağaltımı, doğrusal hızlandırıcı kızağı hasta etrafın-

da dönerken ışının kesintisiz olarak gönderilebildiği dışsal radyasyon terapisinde yakın

zamanda geliştirilen bir tekniktir. Bu özellik bu tekniği kısa sağaltım sürelerine gereksi-

nim duyan yüksek uygunlukta planların elde edilmesinde güçlü kılmaktadır. Fakat, çok

yapraklı yönlendirici radyasyon ışınını kesintisiz olarak biçimlendirir, bu nedenle elde

edilen açıklıklar yaprak hareket kısıtlamaları nedeniyle birbirine bağımlıdır ve sağaltım

planlaması zorlaşır. Bu tezde, ilk olarak geometrik kısıtlamaları ve sağaltıma ilişkin

gereksinimleri sağlayarak hastaya iletilen toplam radyasyon miktarını en aza indiren

iki karışık-tamsayılı doğrusal programlama gösterimi önerilmiştir. Daha sonra Benders

ayrıştırma yönteminin belirli hızlandırma yaklaşımlarıyla birleştirildiği ve ederlendirme

probleminin ayrıştırılarak en kısa yol problemi olarak çözüldüğü dal-eder algoritmaları

geliştirilmiştir. Bu algoritmaların başarımları anonim bir prostat verisinden türetilmiş

çok sayıda örnek üzerinde değerlendirildi. Bilgisayısal deneylerin sonuçları yaygın

olarak kullanılan ticari bir eniyileme çözücüsünden daha iyi sonuçlar veren etkin algo-

ritmalar olduklarını ortaya koymaktadır. Özellikle, dal-eder uygulaması daha büyük

boyutlu problemler için eniyi çözümler elde edebilmektedir. Yine de klinik boyuttaki

problemler için kabul edilebilir sağaltım planları elde etmek olanaklı değildir. Bu ne-

denle, doz-hacim gereksinimlerine ilişkin parametreleri ayarlayabilen ve karışma gerek-

tirmeyen bir otomatik sağaltım ortamı sunan iki aşamalı sütun türetme temelli sezgisel

bir algoritma geliştirilmiştir. Gerçek prostat verileri kullanılarak bu algoritma ile elde

edilen planların kalitesi yaygın olarak kullanılan bir ticari sağaltım planlama dizgesince

elde edilenlerle karşılaştırılmıştır. Karşılaştırma sonuçları sezgisel kullanıldığında daha

az radyasyona gereksinim duyan, klinik olarak kabul edilebilir planlar elde edilebildiğini

göstermektedir.
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xvii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2. BASIC CONCEPTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1. Intensity Modulated Radiation Therapy Planning . . . . . . . . . . . . 14

3.2. Volumetric Modulated Arc Therapy Planning . . . . . . . . . . . . . . 16

3.2.1. Two-step Approaches . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2. Direct Aperture Optimization Methods . . . . . . . . . . . . . . 18

3.2.3. Problem Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4. PROBLEM DEFINITON AND FORMULATIONS . . . . . . . . . . . . . . 24

5. SOLUTION METHODS: BENDERS DECOMPOSITION ALGORITHMS . 35

5.1. Benders Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2. Algorithmic and Modeling Improvements . . . . . . . . . . . . . . . . . 39

5.2.1. Valid Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2.2. Strong Benders Cuts . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2.3. Minimal Infeasible Subsystems and New Benders Cut Selection

Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.4. Combinatorial Benders Cut . . . . . . . . . . . . . . . . . . . . 45

5.2.5. A Relaxation of the Model . . . . . . . . . . . . . . . . . . . . . 47

6. SOLUTION METHODS: BRANCH-AND-PRICE ALGORITHMS . . . . . 51

6.1. Column Generation Formulations . . . . . . . . . . . . . . . . . . . . . 51

6.2. Generating Columns by Solving Shortest Path Problems . . . . . . . . 57

6.3. Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



viii

6.4. Initial Set of Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.5. Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6. Algorithmic Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 64

7. TWO-PHASE HEURISTIC . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1. Phase 1: Initial Column Generation . . . . . . . . . . . . . . . . . . . . 67

7.1.1. Step 1: Fluence Map Generation . . . . . . . . . . . . . . . . . 68

7.1.2. Tuning of CVaR Constraints . . . . . . . . . . . . . . . . . . . . 69

7.1.3. Step 2: Conversion Algorithm . . . . . . . . . . . . . . . . . . . 71

7.2. Phase 2: Improvement of the Existing Treatment Plan by Column Gen-

eration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8. COMPUTATIONAL EXPERIMENTS . . . . . . . . . . . . . . . . . . . . . 76

8.1. Test Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8.1.1. The First Test Environment . . . . . . . . . . . . . . . . . . . . 76

8.1.2. The Second Test Environment . . . . . . . . . . . . . . . . . . . 79

8.2. Evaluation of the Formulations . . . . . . . . . . . . . . . . . . . . . . 82

8.3. Computational Results for Benders Decomposition Algorithms . . . . . 84

8.4. Computational Results for Branch-and-price Algorithms . . . . . . . . 91

8.5. Computational Results for the Two-Phase Heuristic . . . . . . . . . . . 100

8.5.1. The Effect of Initial Columns . . . . . . . . . . . . . . . . . . . 112

8.5.2. The Effect of Parameter Tuning . . . . . . . . . . . . . . . . . . 114

8.5.3. Comparing the Performance of Two-Phase Heuristic with Exact

Solution Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 115

9. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

APPENDIX A: STRONG BENDERS CUT . . . . . . . . . . . . . . . . . . . 137

APPENDIX B: DOSE CALCUTATION BY matRad . . . . . . . . . . . . . . 138



ix

LIST OF FIGURES

Figure 1.1. A linear accelerator [1]. . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2. (a) A shaped beam [2], (b) A multileaf collimator system [3]. . . . 2

Figure 1.3. (a) IMRT [4], (b) VMAT [5]. . . . . . . . . . . . . . . . . . . . . . 3

Figure 2.1. (a) Forward planning, (b) Inverse planning. . . . . . . . . . . . . . 8

Figure 2.2. Decomposition of a fluence map into two apertures. . . . . . . . . 9

Figure 2.3. An aperture and its binary matrix representation. . . . . . . . . . 9

Figure 2.4. Consecutive ones property. . . . . . . . . . . . . . . . . . . . . . . 10

Figure 2.5. Connectedness and interdigitation. . . . . . . . . . . . . . . . . . . 10

Figure 2.6. A sample VMAT treatment. . . . . . . . . . . . . . . . . . . . . . 11

Figure 2.7. GTV, CTV, PTV. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.8. DVHs for a PTV and an OAR. . . . . . . . . . . . . . . . . . . . . 13

Figure 2.9. A voxel resolution of a head [6]. . . . . . . . . . . . . . . . . . . . 13

Figure 4.1. An aperture and its decision variables. . . . . . . . . . . . . . . . 27

Figure 5.1. Improved Benders decomposition algorithms. . . . . . . . . . . . . 50



x

Figure 6.1. A treatment arc consisting of 3 control points, 3 rows and 3 columns. 52

Figure 6.2. Network representation of PSP1 for the first row of the treatment

arc given in Figure 6.1 (K = 3, n = 3). . . . . . . . . . . . . . . . 58

Figure 6.3. The treatment row arc obtained in Figure 6.2. . . . . . . . . . . . 59

Figure 6.4. Branching rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 6.5. Branch-and-Price Algorithm 1. . . . . . . . . . . . . . . . . . . . . 65

Figure 7.1. CVaR parameter tuning. . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 7.2. Conversion Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 7.3. Initial treatment arc generation. . . . . . . . . . . . . . . . . . . . 73

Figure 7.4. Flow diagram of the VMAT planning heuristic. . . . . . . . . . . . 75

Figure 8.1. DVHs of the plan of patient 1 obtained by two-phase heuristic. . . 103

Figure 8.2. DVHs of the plan of patient 1 obtained by Eclipse v.15.1. . . . . . 103

Figure 8.3. DVHs of the plan of patient 2 obtained by two-phase heuristic. . . 104

Figure 8.4. DVHs of the plan of patient 2 obtained by Eclipse v.15.1. . . . . . 104

Figure 8.5. DVHs of the plan of patient 3 obtained by two-phase heuristic. . . 105

Figure 8.6. DVHs of the plan of patient 3 obtained by Eclipse v.15.1. . . . . . 105



xi

Figure 8.7. DVHs of the plan of patient 4 obtained by two-phase heuristic. . . 106

Figure 8.8. DVHs of the plan of patient 4 obtained by Eclipse v.15.1. . . . . . 106

Figure 8.9. DVHs of the plan of patient 5 obtained by two-phase heuristic. . . 107

Figure 8.10. DVHs of the plan of patient 5 obtained by Eclipse v.15.1. . . . . . 107

Figure 8.11. DVHs of the plan of patient 6 obtained by two-phase heuristic. . . 108

Figure 8.12. DVHs of the plan of patient 6 obtained by Eclipse v.15.1. . . . . . 108

Figure 8.13. DVHs of the plan of patient 7 obtained by two-phase heuristic. . . 109

Figure 8.14. DVHs of the plan of patient 7 obtained by Eclipse v.15.1. . . . . . 109

Figure 8.15. DVHs of the plan of patient 8 obtained by two-phase heuristic. . . 110

Figure 8.16. DVHs of the plan of patient 8 obtained by Eclipse v.15.1. . . . . . 110

Figure 8.17. DVHs of the plan of patient 9 obtained by two-phase heuristic. . . 111

Figure 8.18. DVHs of the plan of patient 9 obtained by Eclipse v.15.1. . . . . . 111

Figure B.1. matRadGUI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Figure B.2. SAD setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Figure B.3. Depth dose curves obtained in Eclipse. . . . . . . . . . . . . . . . 140

Figure B.4. Depth dose curves obtained in matRad. . . . . . . . . . . . . . . . 140



xii

LIST OF TABLES

Table 4.1. Common parameters of VMATP-1 and VMATP-2. . . . . . . . . . 25

Table 4.2. Common decision variables of VMATP-1 and VMATP-2. . . . . . 26

Table 4.3. Additional variables of VMATP-1. . . . . . . . . . . . . . . . . . . 26

Table 4.4. Additional variables of VMATP-2. . . . . . . . . . . . . . . . . . . 32

Table 8.1. Small and medium data sets. . . . . . . . . . . . . . . . . . . . . . 77

Table 8.2. Large and very large data sets. . . . . . . . . . . . . . . . . . . . . 78

Table 8.3. Properties of the prostate cancer data sets. . . . . . . . . . . . . . 80

Table 8.4. Dose-volume constraints used at Istanbul University Oncology In-

stitute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Table 8.5. Summary of the computational results for VMATP formulations. . 83

Table 8.6. Detailed results for VMATP formulations. . . . . . . . . . . . . . . 86

Table 8.7. Summary of the computational results for Gurobi solver and Ben-

ders decomposition algorithms. . . . . . . . . . . . . . . . . . . . . 87

Table 8.8. Detailed results for Benders decomposition algorithms. . . . . . . . 88

Table 8.9. Summary of the computational results of BP algorithms. . . . . . . 94

Table 8.10. Detailed computational results of BP Algorithms. . . . . . . . . . . 95



xiii

Table 8.11. Dosimetric results of the VMAT plans obtained by Eclipse. . . . . 101

Table 8.12. Dosimetric results of the VMAT plans obtained by two-phase heuris-

tic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 8.13. Dosimetric results for the initial columns with maximum open beam-

lets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

Table 8.14. Dosimetric results for randomly generated initial columns. . . . . . 113

Table 8.15. Dosimetric results of the VMAT plans without CVaR tuning oper-

ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Table 8.16. Summary of the computational results of CORT dataset. . . . . . 116

Table 8.17. Detailed computational results of CORT dataset. . . . . . . . . . . 117



xiv

LIST OF SYMBOLS

aijk nonnegative continuous variable, radiation dose intensity of

the jth beamlet of row i at control point k

bei binary variable, it is set to 1 if the feasible row arc zei is

selected

Co total number of partial volume constraints of OAR o

Ct total number of partial volume constraints of TV t

D dose-influence matrix

dtc the cth prescribed dose for TV t

dv nonnegative continuous variable, radiation dose absorbed by

voxel v

gijk nonnegative dual multiplier used in LSP

I index set of the beamlets having strictly positive effect on at

least one voxel

K total number of control points (k = 1, ..., K)

K subset of K

K subset of K

lik nonnegative integer variable used to represent the position of

the left leaf on row i at control point k

lijk binary variable used to represent the position of the left leaf

on row i at control point k

Lmu lower bound on radiation dose intensity at a control point

LTVt lower bound on the amount of radiation dose absorbed by a

target voxel in TV t

m total number of rows of an aperture (i = 1, ...,m)

muk nonnegative continuous variable, radiation dose intensity at

control point k

n total number of columns of an aperture (j = 1, ..., n)

O total number of OARs (o = 1, ..., O)

rik nonnegative integer variable used to represent the position of

the right leaf on row i at control point k



xv

rijk binary variable used to represent the position of the right leaf

on row i at control point k

T total number of TVs (t = 1, ..., T )

uijk nonnegative dual multiplier used in LSP

Umu upper bound on radiation dose intensity at a control point

UTV
t upper bound on the amount of radiation dose absorbed by

target a voxel in TV t

V set of all voxels

V OAR
o set of voxels in OAR o

V OAR set of all voxels in all OARs

V TV
t set of voxels in TV t

V TV set of all voxels in all TVs

xtcv nonnegative continuous variable, the surplus of the value ξTVtc

by the dose received by voxel v in TV t

yocv nonnegative continuous variable, the surplus of the value ξOARoc

by the dose received by voxel v in OAR o

zijk binary variable, 1 if the jth beamlet of row i at control point

k is open, 0 otherwise (j=1,...,n)

Zi set of all feasible treatment row arcs for row i

Z index set of all beamlets at all control points

Z0 index set of closed beamlets

Z1 index set of open beamlets

Z ∗ index set of the beamlets that are associated with an MIS

αOARoc minimum ratio of voxels in OAR o that receive radiation at

most the tolerance dose UOAR
oc

αTVtc minimum ratio of voxels in TV t that receive radiation at least

the prescribed dose dtc

γOARoc penalty cost for deviation in the cth partial volume constraints

OAR o

γTVtc penalty cost for deviation in the cth partial volume constraints

of TVs t



xvi

δ maximum allowable distance (in beamlet) a leaf can move

between two consecutive control points

∆ set of extreme points of DSP

ε a small number

η represents the total radiation intensity

ξTVtc continuous variable, radiation dose absorbed by the ((1-

αTVtc )|V TV
t |)th voxel in TV t receiving the lowest radiation

ξOARoc continuous variable, radiation dose absorbed by the ((1-

αOARoc )|V OAR
o |)th voxel in OAR volume o receiving the highest

radiation

Υk fractionality of an aperture at control point k

φTVtc nonnegative continuous variable, deviation in the cth partial

volume constraints of TVs t

φOARoc nonnegative continuous variable, deviation in the cth partial

volume constraints OAR o

Ω set of extreme directions of DSP



xvii

LIST OF ACRONYMS/ABBREVIATIONS

3D-CRT Three-Dimensional Conformal Radiation Therapy

AAA Analytical Anisotropic Algorithm

AP Alternative Problem

BAO Beam Angle Optimization

BEV Beam’s Eye View

BIP Binary Integer Programming

BP Branch-and-price

CPU Central Processing Unit

CT Computed Tomography

CTV Clinical Target Volume

CVaR Conditional Value-at-Risk

DAO Direct Aperture Optimization

DICOM Digital Imaging and Communications in Medicine

DMLP Dual Master Linear Problem

DNA Deoxyribonucleic Acid

DPFSP Dual Pure Feasibility Subproblem

DSP Dual Subproblem

DVH Dose-Volume Histogram

FMO Fluence Map Optimization

GTV Gross Tumor Volume

Gy Gray

IGRT Image Guided Radiation Therapy

IMAT Intensity Modulated Arc Therapy

IMRT Intensity Modulated Radiation Therapy

LB Lower Bound

LD Lagrangean Dual

LP Linear Program

LPVMATP Linear Programming Relaxation of VMATP



xviii

LSP Lagrangean Subproblem

MILP Mixed Integer Linear Programming

MIS Minimal Infeasible System

MLC Multileaf Collimator

MLP Master Linear Problem

MLS Multileaf Collimator Leaf Sequencing

MP Master Problem

MU Monitor Unit

MV Megavolt

M-VMATP Modified VMATP

OAR Organ At Risk

PB Penile Bulb

PBA Pencil Beam Algorithm

PFSP Pure Feasibility Subproblem

PSP Pricing Subproblem

PTV Planning Target Volume

RDSP Reduced Dual Subproblem

RMLP Restricted Master Linear Problem

RMP Relaxed Master Problem

R-OAR Rest of Organ At Risk

RVMATP Relaxation of VMATP

SAD Source-to-axis Distance

SP Subproblem

SSD Source-to-surface Distance

TPS Treatment Planning System

TV Target Volume

UB Upper Bound

VaR Value-at-Risk

VMAT Volumetric Modulated Arc Therapy

VMATP Volumetric Modulated Arc Therapy Planning



1

1. INTRODUCTION

Oncology is the medical practice dealing with cancerous tumors, including their

origin, development, diagnosis, treatment, and prevention. The most common types of

cancer treatments are surgery, chemotherapy, and radiation therapy. Surgery excises

the tumor from the body if cancer has not metastasized or only small parts of the body

are cancerous. Chemotherapy is the drug treatment where anti-cancer drugs are used

to kill cancer cells. In radiation therapy high energy radiation is used to treat cancer.

Each of these treatment methods may be applied alone or in combination.

Radiation therapy, or radiotherapy, sends high-energy particles or waves on to

cancerous tissues in order to damage the deoxyribonucleic acid (DNA) of cancer cells,

which destroys their ability to reproduce. Radiation can also harm healthy cells, which

can repair themselves unless they are exposed to doses beyond their tolerance limits.

However, if healthy cells are given high amount of radiation they may not repair them-

selves and other medical problems, such as organ destruction, may occur. Hence, the

success of the treatment depends on the ability to deliver the proper amount of radia-

tion to the malignant region while sparing healthy tissues so that they are exposed a

minimal amount of radiation.

External-beam radiation and internal radiation therapy (brachytherapy) are two

modes of radiotherapy. In the former one, radiation beams are generated outside the

patient and delivered to the tumor; on the other hand radiation sources like implants

or liquids are placed inside the patient’s body in the latter. Three-Dimensional Confor-

mal Radiation Therapy (3D-CRT), Image Guided Radiation Therapy (IGRT), Intensity

Modulated Radiation Therapy (IMRT), Tomotherapy, and Volumetric Modulated Arc

Therapy (VMAT) are being tested and applied forms of external-beam radiation ther-

apy. A linear accelerator (see Figure 1.1) is the most commonly used medical device,

where the patient lies on a moveable treatment couch. The gantry of the linear ac-

celerator can rotate around the patient and delivers high-energy beams from different

angles by keeping the cancer volume on the target.
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Figure 1.1. A linear accelerator [1].

IMRT and VMAT are two commonly used external-beam radiation therapy tech-

niques. In both of them, the gantry of the linear accelerator is equipped with a multileaf

collimator (MLC) system, which consists of a number of parallel metal leaf pairs. The

leaves can move horizontally and shape the opening that the radiation beam passes

through. Namely, they can block some fraction of the beam (see Figure 1.2). In this

way, the conformity of dose distribution to the planning target volume (PTV), which is

tumor plus some margin, and normal tissue sparing is much superior compared to ear-

lier techniques [7]. However, IMRT and VMAT requires higher amount of radiation (in

monitor units, MUs) to deliver a given fraction size compared with 3D-CRT [8,9]. The

Figure 1.2. (a) A shaped beam [2], (b) A multileaf collimator system [3].
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increase in MUs increases the risk of secondary radiation-induced malignancies [10].

Although IMRT has been used very extensively in radiation therapy since 1990s [11],

VMAT is the state-of-the-art technology. In VMAT, the gantry of the linear accelerator

rotates around the body along one or more arcs and delivers radiation continuously.

The leaves of MLC system move and shape the beam, and also, dose rate and gantry

speed can change simultaneously during the rotation of the gantry. These features

of VMAT enable it to produce radiation therapy plans having high conformal dose

distributions and requiring less radiation compared to IMRT [7, 8]. Also, radiation

delivery times of the resulting plans become significantly shorter [12,13]. On the other

hand, there are typically only a few discrete angles (5-9) in IMRT plans [14] (see Figure

1.3). Furthermore, the linear accelerator stops delivering radiation while moving its

gantry between different beam angles (or control points) in both dynamic (sliding win-

dow technique) and static (step-and-shoot technique) types of IMRT, and during the

change of MLC shapes at a beam angle in the latter one [11]. In addition to the clinical

benefits of delivering less radiation to the patient, there are several other advantages

of short treatments. The discomfort of patients and the risk of negative effects that

may result from patient movements decrease. Also, it is possible to treat more people

since resource utilization becomes more efficient [13].

Figure 1.3. (a) IMRT [4], (b) VMAT [5].

The main advantage of VMAT is the ability to deliver radiation continuously,

however, this causes a very thin slicing of the gantry’s rotational arc at considerably
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many control points in VMAT planning. As a consequence, adjacent control points

become very close and that makes them interdependent with respect to the movement

of MLC leaves. Then, the determination of radiation dose, gantry speed and their con-

trol become harder; and this directly effects the structure of the related mathematical

optimization models. First of all, the number of decision variables increases not only

for dealing with the controllability issues, but also for linearizing the nonlinearities that

the radiation dose related dependencies introduce. These unique characteristic of the

technique makes VMAT planning a challenging issue in radiation therapy compared to

IMRT planning. As a result, most of the models in the literature are not comprehensive

enough to take all aspects of VMAT treatment into account due to the increasing com-

putational difficulty. The few existing mathematical optimization formulations either

do not include hard constraints for many of the radiation dose related dependencies,

or these constraints are relaxed in order to obtain solvable relaxed formulations.

In order to close this gap, we develop two new mixed integer linear programming

(MILP) formulations for VMAT planning that include all radiation dose requirements

as hard constraints as well as mechanical limitations of the linear accelerator and MLC

system. The models proposed so far, generally minimize dose deviations from the pre-

scribed limits and represent two different treatment plans with similar dose deviations

but different total MUs as equivalent; they just do not distinguish between the plans

with respect to their radiation requirements. Also, when the total deviation of a treat-

ment plan is not zero, it is not guaranteed that the resulting plan is feasible according

to the dose constraints [15]. Therefore, it is not possible to benefit from VMAT’s whole

potential in radiation treatment if one of these models is used to determine optimal

treatment plans. To this end, we focus on finding the VMAT plans that are not only

feasible with respect to the clinical prescriptions, but also require less radiation, by

formulating the objective function of our MILP models to minimize the total radiation

amount (in MUs) delivered to the patient.

Moreover, there is another gap in the literature of VMAT planning. The solution

approaches proposed so far are heuristic algorithms, since the models underlying VMAT

planning problem are large and hard to solve. To the best of our knowledge there is
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not an exact solution algorithm for the determination of optimal VMAT plans. We

believe it is important to focus on developing exact optimization algorithms and make

progress in this research direction in order to reveal the potential of this technique

better. In this dissertation, we develop two different exact solution approaches that

we believe they will be pioneering ones in this field. The VMAT planning problem

has a natural tendency to decompose into two interacting parts. One of them deals

with the geometry of the equipment while the other determines the right amount of

radiation dose of the treatment region. Based on this observation we propose an exact

solution algorithm using Benders decomposition (in Chapter 5). The idea is to keep

binary variables in the master problem and solve a linear programming subproblem

to generate cuts. We improve the naive implementation of Benders decomposition by

applying certain acceleration strategies. We test their performances on a large set

of test instances derived from a real prostate cancer data set provided by Craft et

al. [16, 17], and compare the computational results with those obtained by using a

MILP solver. As given in Chapter 8 the improved Benders algorithms outperforms the

MILP solver especially for large instances.

Afterward, we observe that reversing the order of decomposition and considering

a subproblem including the binary variables may have been more advantageous since

the problem itself can be decomposed into shortest path subproblems. In fact this gives

birth to branch-and-price (BP) algorithms explained in Chapter 6. As can be observed

from the computational results in Chapter 8 one of them performs significantly better

than the best Benders decomposition algorithm, and can compute optimal treatment

plans minimizing total radiation for considerably larger instances.

To the best of our knowledge, our exact solution algorithms are the first attempts

to solve exactly a VMAT planning model in which all VMAT’s treatment related con-

straints are forced to be satisfied. However, they are not capable of solving clinical

problems including all structures. Finally, in Chapter 7 we develop a two-phase heuris-

tic, which is based on column generation formulations developed in Chapter 6. We test

the performance of the heuristic on real cancer patients data sets provided by Istanbul

University Oncology Institute, which is one of the largest and oldest cancer centers in
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Turkey, and make clinical comparisons with the plans obtained by the institute’s staff.

The computational results show that the new heuristic is capable of finding clinically

acceptable plans with less MUs and does not need any intervention such as modifying

the parameters of the plan and re-optimizing, which is the common practice in the

radiation therapy planning departments.

The rest of this dissertation is organized as follows. In the next chapter, we

describe some basic concepts that arise in external-beam radiation therapy planning

in order to facilitate the follow-up of the forthcoming chapters. We provide the related

literature review concentrating on the optimization methods for IMRT and VMAT

planning in Chapter 3. In Chapter 4, we define the VMAT planning problem and

present our mathematical formulations. We continue by explaining the exact solution

algorithms in Chapter 5 and Chapter 6, and two-phase heuristic in Chapter 7. Chapter

8 presents the computational results for the Benders decomposition and BP algorithms

and compare them with a MILP solver’s. Also, we make clinical comparison of the plans

obtained by our heuristic algorithm with the actual ones obtained in Istanbul University

Oncology Institute. Finally, we give a brief summary to conclude the dissertation and

point out the potential future research direction, in Chapter 9.
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2. BASIC CONCEPTS

External-beam radiation therapy process starts with the determination of tumors

and surrounding normal structures after the diagnosis of the patient with cancer. Then

a treatment that satisfies radiation dose prescriptions as well as mechanical limitations

of the linear accelerator and MLC system is planned by a medical physicist and/or an

experienced dosimetrist. The plan is delivered in a specific number of identical sessions,

which is called fractionation and the number of fractions mainly depends on the tumor

type.

Treatment plans had been prepared manually until more sophisticated techniques

were developed in parallel with technological advances. There are two main categories

of planning approaches: forward and inverse planning. Forward planning is a trial

and error approach where the parameters such as beam angles, MLC segments and

radiation intensities are fixed and the dose distribution of the resulting plan is calcu-

lated. If treatment prescriptions are not satisfied, then the parameters are updated

until a reasonable plan is obtained. Simulation is one of the methods used for forward

planning. Nevertheless, this approach is inadequate to reflect the capabilities of the

new advanced technologies. However, inverse planning is an automated planning ap-

proach that provides plans with better dose distributions and shorter treatment times

as compared to forward planning. It requires optimization tools, hence, operations

researchers and mathematical programmers are interested in the radiation treatment

planning [11]. In Figure 2.1 the difference between these two planning approaches is

illustrated [18]. We consider inverse planning approach in this dissertation.

From the point of operations research, a radiation therapy treatment plan actually

answers the following questions: where to deliver radiation?; how to deliver radiation?;

and how much radiation to deliver?. To answer these questions the radiation treatment

planning problem should be formulated according to the solution technique that will be

applied. In IMRT planning, there are a few number of beam angles, or control points,

that irradiation occurs and they are usually determined by the experienced dosimetrist
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Figure 2.1. (a) Forward planning, (b) Inverse planning.

in advance. However, in VMAT planning, the continuous rotation of the gantry on

a co-planar arc is generally discretized and it is assumed that radiation is delivered

from a large number of equally spaced control points. (Since the couch of the linear

accelerator can move, it is also possible to deliver radiation on a non-coplanar arc).

Therefore, the answer to the first question is the location of the control points where

the radiation delivery occurs.

The answers of the last two questions in IMRT planning are related to finding

a fluence map at each one of the control points and to realizing them into a number

of deliverable radiation beams. A fluence map is represented by a two-dimensional

nonnegative matrix that gives the radiation intensity profile (see the left-most matrix

on Figure 2.2). An opening where the radiation beam passes through is formed by the

leaves of MLC at a control point and called as an aperture. A two-dimensional binary

matrix is commonly used to represent an aperture, namely the opening is discretized

into a number of beamlets. The number of rows of this matrix equals to the number of

parallel leaf pairs on the MLC system. If a beamlet belongs to the open area, namely if

it is exposed, than it takes value 1 and if it is blocked by the leaves of the MLC, then it

is 0. In Figure 2.3 an aperture and its binary matrix representation are illustrated for

an MLC system that has five leaf pairs (rows), and the leaf openings are decomposed

into five columns. Due to the mechanical limitations of the linear accelerators, it is
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only possible to deliver the radiation profile described by a fluence map using a number

of apertures. In other words, in IMRT planning, a fluence map at a control point is

realized by a weighted sum of a number of apertures (see Figure 2.2). The weight of

an aperture represents the amount of radiation dose (in MU) that is delivered through

this aperture. On the other hand, in VMAT planning, it is assumed that there is only

one aperture at each control point. Therefore, to answer the second question, it is

necessary to determine the shape of the apertures at all control points.

Figure 2.2. Decomposition of a fluence map into two apertures.

Figure 2.3. An aperture and its binary matrix representation.

There are some mechanical limitations of MLC systems that should be incor-

porated into the planning. For example, the leaves have to satisfy some properties

depending on the type of the system. The most common one, almost all MLC sys-

tems must satisfy, is called the consecutive ones property. There can be at most one

open beamlet chain in a row of an aperture, since MLC systems are made up of metal

leaves. In Figure 2.4, the aperture on the left side satisfies the consecutive ones prop-
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erty, however, the third row of the aperture on the right side violates the property since

there are two open beamlet chains. Another property that some MLC systems must

satisfy is connectedness, which requires that there is at most one open hole where the

radiation passes through. The aperture on the left side on Figure 2.5 does not satisfy

connectedness since there are two disjoint open holes. Finally, some MLC systems does

Figure 2.4. Consecutive ones property.

not allow the interdigitation of leaves, namely the left (or right) leaf at a row cannot

touch the bottom or top right (or left) leaf. The third and fourth rows of the aperture

on the right side on Figure 2.5 coincide; and that makes it infeasible according to MLC

systems that does not allow interdigitation. We refer the reader to the study of Gören

and Taşkın [19] for details of other possible properties of various MLC systems.

Figure 2.5. Connectedness and interdigitation.

In the dynamic version of IMRT the leaves of MLC system move and change

the shape of the beam at a control point in order to obtain the desired fluence map.

Similarly, in VMAT, during the rotation of the gantry the leaves also move and change

the shape of the beam. However, there is a limitation on the speed of this movement.
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Figure 2.6. A sample VMAT treatment.

The maximum distance that a leaf can move per second depends on the technical

characteristics of the linear accelerator. Similarly, the speed of the gantry and dose

rate are limited from above and below, and there is a close relationship between them as

well as MLC leaf movement. If the gantry rotates with high speed then the maximum

radiation dose is less at a control point. Also, the apertures of neighboring control

points are similar, since the leaves cannot move so much (or vice versa). Hence, at

each control point the amount of MU has to be determined in order to answer the

third question in VMAT planning. Figure 2.6 illustrates a simplified VMAT plan with

few control points.

The geometric properties and mechanical limitations of the equipment used in

the treatment are explained so far. The primary aim of the radiation therapy is to

deliver enough radiation to tumor while protecting surrounding healthy tissues. For

this purpose, the oncologist determines the location of the tumor and prescribes the

radiation amounts that is delivered to the patient. There are three main volumes to be

considered in the radiation therapy: gross tumor volume (GTV), clinical target volume

(CTV), and planning target volume (PTV). The GTV is the primary tumor, which is

visible and easily identifiable part of the malignant growth. The CTV contains the GTV

and subclinical microscopic malignant lesions. The PTV surrounds the CTV and a
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margin to account uncertainties in planning or delivery; it is considered in the treatment

planning optimization [20] (see Figure 2.7). We use the terms PTV and target volume

(TV) interchangeably in the rest of the dissertation. The oncologist contours the

cancerous PTVs and surrounding organs at risk (OARs) on the computed tomography

(CT) scans of the patient and prescribes the radiation doses best conforming to PTVs

and OARs. There may be more than one PTV with different dose requirements as well

as OAR depending on the cancer type and patient’s anatomy.

Figure 2.7. GTV, CTV, PTV.

The treatment prescriptions for a PTV require that the full or a partial volume of

the PTV must absorb a predetermined amount of radiation. Also, there are tolerance

dose limits for OARs. A specified partial volume of the organ must absorb below

them. Dose-volume histograms (DVHs) are the most commonly used tools to evaluate

the resulting dose distributions and the quality of a treatment plan. A DVH is a two-

dimensional graph showing the fractional volume of a structure and the minimum dose

absorbed by that volume. In Figure 2.8 DVHs illustrate the dose distributions of a

PTV and OAR. For example, 60% of OAR absorbs at least 33 Gray (Gy) radiation. In

other words, the maximum radiation dose that 40% of OAR absorbs is 33 Gy. Similarly,

100% of PTV absorbs around 71 Gy radiation.

In order to calculate dose distributions on the structures, the body of the pa-

tient is discretized into small cubes called voxels (see Figure 2.9 for an example) us-

ing CT scans. Moreover, dose calculation algorithms such as Pencil Beam Algorithm

(PBA) [21] or Analytical Anisotropic Algorithm (AAA) [22] are used to calculate dose
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Figure 2.8. DVHs for a PTV and an OAR.

contribution of a beamlet to a voxel when it is delivered one unit of radiation from.

Namely, they calculate the amount of absorbed radiation dose (Gy) per MU. These

amounts are used as input in optimization models and called dose-influence matrices.

Figure 2.9. A voxel resolution of a head [6].
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3. LITERATURE REVIEW

The studies in the literature developed for VMAT planning are mostly related

to IMRT planning methods. Hence, in this chapter, we start by giving a brief ex-

planation about IMRT planning phases referring to some representative publications,

which makes easier to explain the algorithms developed for VMAT planning. Then,

we continue by giving a detailed literature review on VMAT planning. Our aim is

to develop a planning system which gives optimum treatment plans, thus we mostly

take into account the studies trying to improve the treatment planning environment

by operations research techniques.

3.1. Intensity Modulated Radiation Therapy Planning

There are three main phases in IMRT planning, which can be solved either se-

quentially or combining two of the phases. The first phase deals with the beam angle

optimization (BAO) problem (or geometry problem): the number and orientation of

beam angles (or control points) for irradiation are determined, which is mostly done

by a medical physicist or dosimetrist in practice based on experience. There are also

studies where a function is defined to determine the quality of a set of directions and

this function is optimized in order to find the best set [23]. After determining the beam

angles, a fluence map is obtained for each one of them in the second phase, which is

called the fluence map optimization (FMO) problem (or intensity problem) [14,24,25].

As we mentioned in Chapter 2, a fluence map denotes the radiation intensity profile to

be delivered through a given beam angle and can be represented by a two-dimensional

nonnegative matrix. It is possible to formulate the FMO problem as a convex optimiza-

tion problem; hence, it can be solved efficiently using one of the existing algorithms [26].

The third phase in IMRT planning is MLC leaf sequencing (MLS) problem (or real-

ization problem), where a given fluence map is decomposed into a number of disjoint

apertures and corresponding radiation intensities. In other words, a nonnegative ma-

trix is re-expressed as a linear combination of binary matrices with positive weights. All

of the binary matrices should satisfy the properties of the MLC system. During the de-
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composition of a fluence map, total radiation delivery time (i.e. beam on time) and/or

the total number of apertures (i.e. total machine setups) are minimized [7,27–33]. The

problem of minimizing total delivery time, which is the time that the radiation delivery

is on, consists of the minimization of the sum of the individual intensities determined

for each aperture, and it is polynomially solvable. However, in the cardinality problem

the total number of apertures is minimized and this problem is shown to be strongly

NP-hard [34].

Each one of these three phases can be handled independently and solved sequen-

tially, however, there are also studies that consider two consecutive phases simultane-

ously. For instance, the first two phases, BAO and FMO, can be considered together

and solved as a monolithic non-convex optimization problem to determine the beam

angles and fluence maps simultaneously [35, 36]. There are also studies that directly

optimize a number of apertures with intensities for each one of the determined beam

angles. In other words, they solve the second and the third phases, FMO and MLS,

simultaneously instead of finding a fluence map first and then decomposing it into a

number of deliverable apertures [37–42]. This problem is called direct aperture opti-

mization (DAO) problem. Column generation is one of the frequently used approaches

where apertures are generated as new columns [38–42]. The general framework of the

algorithms proposed in these studies is to start with an empty set of apertures and

add apertures to the plan iteratively. The pricing subproblem yields the most promis-

ing feasible aperture in order to introduce it to the master problem, which determines

optimum weights of the apertures generated and added to the treatment plan so far.

In particular, Romeijn et al. [38] formulate a large-scale convex programming problem

and solve their problem exactly, where they generate one or more promising apertures

in each iteration by solving a network flow similar to the one in [30]. They modify the

network model in order to make it possible to solve the DAO problem where the MLC

system requires connected apertures. Men et al. [40] consider the MLC systems that

allow only rectangular apertures, and solve the pricing subproblem by a polynomial

time algorithm similar to the ones in [30, 38]. We refer the interested readers to the

comprehensive survey of Ehrgott et al. [11] for more details on IMRT planning.
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3.2. Volumetric Modulated Arc Therapy Planning

VMAT is not the first radiation treatment technique that benefits from the flex-

ibility a rotating gantry introduces in order to obtain treatment plans with higher

quality. Yu [43] proposed the rotational IMRT called Intensity Modulated Arc Ther-

apy (IMAT) in 1995; but the clinical implementations remained very limited until Otto

suggested VMAT in 2008. In VMAT, the gantry speed and the dose rate as well as

the beam shape can vary during rotation. The linear accelerator can deliver radiation

continuously to the patient’s body, and thus in treatment planning it is commonly as-

sumed that there is a large number of equally spaced control points in order to discretize

this continuous radiation delivery. At each control point there is only one aperture;

however, the apertures at two adjacent control points are interconnected. This is be-

cause there are limitations on the motion of the MLC leaves during rotation. Thus,

the VMAT planning problem cannot be decomposed into a number of subproblems

that can be solved independently. As a result, designing a VMAT plan is significantly

harder compared to IMRT planning. Even when the total time to complete a tour is

fixed, the resulting problem is a large-scale nonconvex optimization problem. These

characteristics make VMAT planning a challenging task, which requires much more

computational effort than IMRT planning [16].

Studies on VMAT planning can be classified into two groups. The members of

the first group use a two-step approach that, in the first step, determines an optimal

IMRT plan consisting of a number of fluence maps at evenly spaced control points.

Then these fluence maps are converted into a deliverable VMAT plan using an arc-

sequencing method in the second step. On the other hand, the studies in the second

group directly optimize the leaf positions and radiation intensities of the apertures

and are called DAO methods similar to the ones one can face in the IMRT planning

literature. Our solution methods given in Chapter 5 – Chapter 7 fall into this group.

We explain the studies in these two groups separately in the following subsections.
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3.2.1. Two-step Approaches

Two-step approaches convert an idealized IMRT plan consisting of fluence maps

at both coarse [44–46] and dense [16,47,48] sampling of control points into a deliverable

VMAT plan. In the first step, a FMO problem is solved and intensity profiles are

obtained. In the second step, an arc-sequencing method is used to convert the fluence

maps into feasible apertures that satisfy MLC leaf limitations. Hence, these two-step

approaches are also called arc-sequencing methods.

In one of the earliest work, Luan et al. [44] solve a shortest path problem to

find k deliverable arcs from a number of continuous intensity patterns for equally

spaced control points (typically with 10◦-spacing). Each one of the fluence maps is

decomposed into a number of apertures which realize the corresponding intensity map.

Then, by selecting exactly one aperture from the generated ones at each control point,

a deliverable arc is constituted. Namely, a treatment arc consists of relatively small

number of control points. Finally, they obtain k different treatment arcs, since IMAT

is not flexible as VMAT and the realization of the fluence intensity maps requires more

than one arc, which causes long treatment times. The algorithm proposed by Wang et

al. [45] solves a shortest path problem similar to the one in [44], however, they generate

a single-arc plan by displacing the generated apertures onto the neighbor control points.

It is assumed in both of these studies that the MLC system allows leaf interdigitation.

A similar mechanism is used in the arc-sequencing algorithm of Cao et al. [46] to

obtain a single-arc plan, where they reduce the number of apertures per control point

to 2-6. They optimize the apertures directly in an IMRT plan using a direct machine

parameter optimization method. A simulated annealing-based algorithm is used as an

arc sequencer to obtain deliverable arcs.

Note that converting an IMRT plan that consists of a small number of control

points may cause a deterioration in the quality of the dose distribution of the resulting

VMAT plan. Since VMAT planning problem has its own constraints on the MLC’s

movement, which must be considered during arc-sequencing. Some of the studies first

obtain an “ideal” IMRT plan including a large number of control points, and then
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coarsen this plan to reduce delivery time by maintaining dose distribution quality. Craft

et al. [16] propose an algorithm called VMERGE, that obtains a fine sample IMRT plan

for 180 equally spaced beam angles in the first step by solving a convex multicriteria

optimization problem. However, this ideal plan is obtained by disregarding treatment

time. It is observed that the fluence maps of neighbor beam angles are similar, thus

in the second step, the ideal plan is transformed into a deliverable VMAT plan by

merging similar fluence maps iteratively as long as the dose distribution quality is

maintained. The resulting maps are sequenced and delivered over the corresponding

arc segment. In short, their algorithm starts with a finely sampled plan, and this plan

is coarsened to reduce the delivery time. Then, Salari et al. [47] propose an improved

form of VMERGE algorithm where a merging problem is formulated as a discrete bi-

criteria optimization problem using a network flow model. In another extended version

of VMERGE, optimal partial-arc plans are generated automatically [48]. They use

the same iterative fluence map merging and sequencing algorithm given in [16] to find

a plan for each partial-arc and select the best one with minimum treatment time.

This new algorithm is called PMERGE, and computational experiments show that the

treatment time of a plan obtained by PMERGE is lower than the ones obtained by

VMERGE. However, there may be a large number of partial-arcs and this may increase

the computation time.

3.2.2. Direct Aperture Optimization Methods

The studies of the second group optimize the beam shapes (i.e. aperture shapes

or leaf positions) and beam intensities at all control points simultaneously. Therefore,

MLC constraints and delivery time are considered during plan optimization, which

makes the problem harder to solve. The solution methods proposed in the literature

are generally heuristic algorithms. One of the earliest algorithm is introduced by Earl et

al. [49] in 2003 for IMAT technology, which starts with a number of apertures at equally

spaced control points with 10◦-spacing. Each one of the apertures fits to the beam’s

eye view (BEV) of the target seen from the linear accelerator at the corresponding

control point. Then, simulated annealing method is used to optimize the leaf positions
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and intensities of the initial apertures. Since, it is not possible to vary dose rate

(or gantry speed) in IMAT, more than one overlapping arcs are required to realize

a plan with acceptable dose distribution. The work by Otto [12] is the first study

on VMAT planning, which is commercialized under trade name Rapid Arc (Varian

Medical Systems, Palo Alto, CA, USA). The proposed method starts with a relatively

coarse sampling of the control points and they are increased progressively according to

a schedule. The aperture shape of a newly added control point is determined by linear

interpolation of the existing apertures at adjacent control points, and its radiation

intensity is calculated using a linear function of the adjacent intensities. Each time a

new control point is added to the plan, a number of simulated annealing iterations are

conducted. At each iteration, one of the existing control points is randomly selected,

and the current dose intensity or the position of a leaf is changed. If the new aperture is

feasible and there is an improvement in the objective function, then the new solution is

accepted. Yan et al. [50] propose a similar heuristic algorithm that starts with a coarse

sampling of the control points and uses a progressive sampling strategy to find the

final VMAT plan. Bzdusek et al. [51] and Bedford [52] propose a three-step method,

where they initially apply a two-step approach similar to the one explained in the

previous section to find a good starting point for their DAO methods. Namely, they

find initial apertures at the first two steps; then they refine them in the third step where

aperture shapes and intensities are decision variables. The algorithm in [51], which

is commercialized under trade name Pinnacle SmartArc (Philips Medical Systems,

Madison, WI, USA), decompose a set of fluence maps obtained at equally spaced

control points with 24◦-spacing into a number of apertures. Then, for each one of the

control points only 2 apertures are selected and distributed over the arc. They refine

the resulting arc by a local gradient based algorithm at the third step. Christiansen et

al. [53] modify this algorithm in order to make the continuous aperture dose calculation

possible. In Chapter 7 we introduce a two-phase heuristic that has similarities with

these three-step approaches. In the first phase we find an initial treatment arc in two

steps, where in the first step instead of solving a standard FMO problem we solve a

linear programming model based on one of our optimization models. It finds a number

of fluence maps with additional properties (e.g. the intensities of beamlets are bounded
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from above by the maximum deliverable radiation intensity at the corresponding control

point) for a subset of predefined control points. Then, in the second step we perform

an arc sequencing heuristic to obtain apertures from these fluence maps. In the second

phase of our algorithm we improve this initial treatment arc using column generation.

There are other studies in the literature that use column generation method in

their DAO heuristic algorithms. Men et al. [54] formulate a large-scale convex pro-

gramming model in which the cost function consists of quadratic one-sided voxel-based

penalties and a penalty-based soft constraint for the maximum dose rate variation lim-

itation. They start with an empty set of apertures and generate one aperture for an

unoccupied control point at each iteration, which is compatible with the previously

generated ones with respect to the maximum leaf motion speed. Then, the dose in-

tensities of all generated apertures are optimized in the master problem by means of

the gradient projection method [55]. They do not consider the dose rate limitation

at control points, which is unrealistic according to capabilities of the existing linear

accelerators, and Peng et al. [13] improve this solution approach in their new column

generation based greedy heuristic that also takes into account dose rate and gantry

speed limitations. In a recent study, Mahnam et al. [56] develop a large-scale nonlin-

ear integer programming model that has a quadratic voxel-based least square penalty

function as an objective function similar to the one in [13]. They also propose a column

generation based heuristic that generates a set of sequential apertures as a new col-

umn by solving the pricing subproblems formulated as shortest path problems. They

assume that the MLC system has only consecutive ones property, hence the apertures

that form a partial arc can be decomposed into rows and can be handled independently.

Namely, they find as many partial row arcs as the number of rows in the MLC system;

then their union yields the aperture set in the partial arc. Then, they integrate DVH

criteria into their column generation algorithm in [57]. We use a similar approach in our

BP algorithms and also column generation heuristic given in Chapter 6 and Chapter

7, and formulate the pricing subproblems as network optimization problems on acyclic

networks using the key point of decomposing the partial treatment arcs into rows and

generating them separately. However, we generate rows of a full treatment arc and do

not need any post-optimization.
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Papp and Unkelbach [26] enforce unidirectional leaf motion over an arc segment,

and determine the apertures by solving a sequence of convex optimization problems.

They assume that gantry speed and dose rate are constant during rotation. Peng et

al. [58] also propose a heuristic approach to solve VMAT with constant gantry speed

and dose rate. On the other hand, Hoegele et al. [59] optimize leaf motion by utilizing

a priori knowledge about the type of the leaf motion pattern during the radiation

delivery. We also assume that the gantry rotates around the patient at a constant

speed, however, there is not such an assumption on dose rate.

The studies of Gozbasi [60], Akartunali et al. [15], and Song et al. [61] are the

first works that formulate MILP models for the VMAT planning problem in which

an aperture and radiation intensity are optimized at each control point subject to

a part of the clinical requirements. In [60] and [61] some of the treatment related

constraints are relaxed and they are tried to be satisfied in the objective function (i.e.

by minimizing total deviation from the prescribed doses or minimizing the weighted

sum of the average dose on critical structures, etc.). On the other hand, Akartunali

et al. [15] embed the treatment requirements, except the partial volume constraints

of TVs, to their mathematical model as hard constraints, and they try to maximize

total number of target voxels that absorbs at least the prescribed amount of radiation.

They make the first step towards the development of exact methods, however, they

finally suggest heuristics to obtain good feasible treatment plans, which are clinically

acceptable as well. We develop two MILP formulations for VMAT planning, which

are explained in Chapter 4. They consider all mechanical limitations of the linear

accelerator and MLC system as well as dose requirements of treatment. They are

also different form the formulations introduced to the literature with respect to the

objective function as well as the definition of the MLC leaves and the corresponding

constraints. We develop algorithms (in Chapter 5 and Chapter 6) to solve one of these

comprehensive VMAT planning models, which are the first exact solution algorithms

proposed to the literature to the best of our knowledge.

For more detail about rotational therapy planning we recommend the studies

of Unkelbach et al. [62] that reviews the mathematical optimization methods used in
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VMAT planning and Cedric and Tang [63] that reviews mainly IMAT studies from

a clinical point of view. Also, there is a recent comprehensive review of Breedveld

et al. [64] that describes the use of multi-criteria optimization and decision-making

methods in radiation therapy as well as clinical details of treatment. Finally, in this

dissertation we consider co-planar treatment arc as the studies reviewed so far. However

there are also studies in the literature that optimize VMAT plans for non-coplanar

geometries obtained by couch rotation [65,66].

3.2.3. Problem Sizes

The mathematical models proposed for VMAT planning have been relatively

simple until the last few years. Typically, they do not include dose distribution re-

strictions as hard constraints. These constraints are forced to be satisfied by means of

penalty terms added to the objective function. It is also highlighted in [15] that these

studies can solve clinical size problems since they use such an objective function to

reach feasibility. Thus, a plan obtained by solving such a model is not guaranteed to

be clinically acceptable unless the value of the corresponding objective terms become

zero. [13, 54, 56, 61] are examples of such studies, where it is possible to consider the

instances with more structures and large number of voxels. However, the resulting

plans do not guarantee the satisfaction of dose-volume restrictions.

Men et al. [54] test their algorithm on ten clinical cases with a beamlet size of 1

× 1 cm2 and voxel size of 2.5 mm3. However, they indicate that for unspecified tissues

outside the TV and OARs they increase the voxel size in each dimension by a factor

of two to reduce the optimization problem size. Total number of voxels varies in each

cases and ranges from 28 931 to 74 438. Peng et al. [13] test their algorithm, which

is an extension of the one proposed in [54], on 5 real prostate cancer data sets. They

also use a down-sampled voxel grid: they select one grid point for every two voxels

along each one of the three dimensions in critical structures, and one grid point for

every four voxels along each one of the three dimensions in unspecified tissues. The

resulting data sets has a total number of voxels varying between 9 602 and 13 769.

They also increase voxel sizes and use a lower resolution (4 × 4 × 2.5 mm3), and use
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1 × 1 cm2 beamlets. Song et al. [61] use two data sets provided by the open source

platform CERR on MATLAB. For prostate case they consider TV and 4 OARs. They

sample one voxel out of every two voxels in OAR structures to reduce total number

of voxels, however they do not report the actual voxel numbers. Finally, Mahnam et

al. [56] use CORT prostate dataset provided by Craft et al. [17], which we use also in

the computational experiments for the algorithms provided in Chapter 5 and Chapter

6, and apply a clustering algorithm to sample down the voxels. They indicate that 5%

of OAR voxels and 15% of target voxels are included in their optimization model. They

consider both of the TVs and 4 OARs (rectum, bladder, left and right femoral heads).

As a result, there are approximately 3 500 voxels in their experiments. On the other

hand, the mathematical model of Akartunalı et al. [15], which is the closest one to ours,

since they introduce all treatment requirements except the partial volume constraints of

TVs to their mathematical model as hard constraints. They maximize total number of

voxels absorbing radiation at least the prescribed amount. They are not able to access

to an in-house dose deposition coefficient calculation software, and they generate their

test instances by themselves. There are 33 instances differing from each other according

to the total number of voxels, MLC dimensions, and other parameters (voxel numbers

are varying between 216 and 15 625, but the maximum number of control points is

16 in these instances). They also generate 7 extra large instances in order to test one

of their Guided Variable Neighborhood Search heuristic. Their integer programming

based exact algorithms are not able to solve these extra large instances. To give more

detail, there is only one instance with 180 control points and a MLC size of 10 × 10

with 6 750 voxels. All other instances have either less voxels and control points, or the

dimension of the MLC system is small.
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4. PROBLEM DEFINITON AND FORMULATIONS1

In this chapter we explain two different MILP models we have developed for

VMAT planning. They are called as VMATP-1 and VMATP-2, respectively. The pro-

posed models directly optimize the aperture shape and dose intensity at each control

point while satisfying dose prescriptions and mechanical limitations of the linear ac-

celerator and the MLC system. The objective is to minimize total radiation intensity

during treatment in both models. The main difference between them stems from the

definition of the decision variables related to the leaf pairs of the MLC system. This

distinction also requires other modifications in the mathematical models. First we start

by explaining VMATP-1 step by step and then continue by giving the differences of

VMATP-2.

A VMAT plan must satisfy both radiation therapy dose prescriptions and me-

chanical limitations of the linear accelerator and the MLC system. Our first model

VMATP-1 consists of the constraints related to these requirements and minimizes the

total radiation dose delivered during the treatment. First, we discretize continuous

radiation delivery by assuming that there is a large number of evenly spaced control

points (i.e. 180) on a co-planar rotational arc. VMATP-1 determines the aperture

shape and the amount of radiation to be delivered at each of the control points. Com-

mon parameters and decision variables used to formulate both models are summarized

in Table 4.1 and Table 4.2, respectively. We list the additional variables of VMATP-1

in Table 4.3.

A two-dimensional m× n matrix represents an aperture at a control point. The

number of MLC leaf pairs, and thus the number of rows is m and the number of

columns is n. We introduce a number of nonnegative integer variables and binary

variables to form each one of these matrices. For each row i at control point k two

nonnegative integer variables lik and rik define positions of the left and right leaves,

respectively. There are also n binary variables for each row i at control point k, and

1An earlier version of this chapter appears in [67].
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Table 4.1. Common parameters of VMATP-1 and VMATP-2.

Parameter Definition

i Index for an MLC row (i=1,...,m).

j Index for an MLC column (j=0,...,n+1), 0 and n+1 are home positions of the left

and the right leaves, respectively.

k Index for a control point (k=1,...,K).

t Index for a target volume (TV) (t=1,...,T ).

o Index for an organ at risk (OAR) volume (o=1,...,O).

c Index for a partial volume constraint of OAR o (c=1,...,Co) or TV t (c=1,...,Ct).

v Index for a voxel in a volume.

V TV
t Set of voxels in TV t.

V TV Set of all voxels in all TVs, V TV =
T⋃

t=1
V TV
t .

V OAR
o Set of voxels in OAR volume o.

V OAR Set of all voxels in all OAR volumes, V OAR =
O⋃

o=1
V OAR
o .

V Set of all voxels, V = V TV ∪ V OAR.

LTV
t Lower bound on the amount of radiation dose absorbed by a target voxel in TV t

(in Gy).

UTV
t Upper bound on the amount of radiation dose absorbed by target voxel in TV t

(in Gy).

UOAR
oc Tolerance radiation dose amount of the cth partial volume constraint of OAR vol-

ume o (in Gy).

dtc The cth prescribed dose for TV t (in Gy).

Dijkv Dose influence matrix (in Gy/MU).

δ The maximum allowable distance (in beamlet) that a leaf can move between two

consecutive control points.

αTV
tc The minimum ratio of voxels in TV t that receive radiation at least the prescribed

dose dtc.

αOAR
oc The minimum ratio of voxels in OAR volume o that receive radiation at most the

tolerance dose UOAR
oc .

Lmu Lower bound on radiation dose intensity at a control point (in MU).

Umu Upper bound on radiation dose intensity at a control point (in MU).
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Table 4.2. Common decision variables of VMATP-1 and VMATP-2.

Variable Definition

zijk Binary variable, 1 if the jth beamlet of row i at control point k is open, 0

otherwise (j=1,...,n).

muk Nonnegative continuous variable, radiation dose intensity (in MU) at control

point k.

dv Nonnegative continuous variable, the total amount of radiation dose absorbed

by voxel v (in Gy).

aijk Nonnegative continuous variable, radiation dose intensity (in MU) delivered

from the jth beamlet of row i at control point k.

ξTVtc Continuous variable used in constraint (4.21), the radiation dose absorbed

by the ((1-αTVtc )|V TV
t |)th voxel in TV t receiving the lowest radiation.

ξOARoc Continuous variable used in constraint (4.26), the radiation dose absorbed

by the ((1-αOARoc )|V OAR
o |)th voxel in OAR volume o receiving the highest

radiation.

xtcv Nonnegative continuous variable for the surplus of the value ξTVtc by the dose

received by voxel v in TV t.

yocv Nonnegative continuous variable for the surplus of the value ξOARoc by the

dose received by voxel v in OAR o.

Table 4.3. Additional variables of VMATP-1.

Variable Definition

lik Nonnegative integer variable, the position of the left leaf (i.e. the rightmost

beamlet closed by the left leaf on row i at control point k).

rik Nonnegative integer variable, the position of the right leaf (i.e. the leftmost

beamlet closed by the right leaf on row i at control point k).
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Figure 4.1. An aperture and its decision variables.

the binary variable zijk represents the beamlet j at this row and takes value of 1 if it

is open. Only the beamlets between the leaf pairs are open. In Figure 4.1 an aperture

consisting of five leaf pairs (m = 5) and five columns (n = 5) at control point k is

illustrated with corresponding decision variables. Note that at row 3 the right leaf is

at its home position and takes value n+ 1 = 6, and at row 5 the left leaf is at its home

position and takes value 0.

The first mechanical constraint is associated with the MLC system. In a row of

an aperture there can be at most one open beamlet chain, which is called consecutive

ones property that must be satisfied by almost all MLC systems. We only consider this

property and introduce the following constraints similar to the studies both in VMAT

planning (e.g. [15]) and IMRT planning (e.g. [29]) in order to satisfy it:

rik − lik ≥ 1 i = 1, . . . ,m; k = 1, . . . , K (4.1)

rik − jzijk ≥ 1 i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (4.2)

(n+ 1− j)zijk + lik ≤ n i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (4.3)

rik − lik −
n∑
j=1

zijk = 1 i = 1, . . . ,m; k = 1, . . . , K (4.4)

l ∈ Zm×K+ ; r ∈ Zm×K+ ; (4.5)

z ∈ {0, 1}m×n×K . (4.6)
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For a given row i at control point k, Constraint (4.1) prevents the left and right

leaves from overlapping. Constraint (4.2)– Constraint (4.4) force all zijk variables

associated with the open beamlets between the left and right leaves to be 1. Also, as

a consequence of these constraints, the left leaf can be between 0 and n and the right

leaf can be between 1 and n + 1. Note that we remove constraint (4.1) in chapters 6

and 7, since it is noticed that this constraint is redundant.

Another mechanical limitation of the MLC system, which is generally taken into

account in VMAT studies (e.g. [15, 61]), is that during the rotation of the gantry,

between two adjacent control points of the arc, a leaf cannot move more than a certain

distance, depending on the speed of the gantry. Namely, the aperture shapes at two

adjacent control points must be similar. We introduce the following constraints to

formulate similarities:

li(k+1) − lik ≤ δ i = 1, . . . ,m; k = 1, . . . , K − 1 (4.7)

lik − li(k+1) ≤ δ i = 1, . . . ,m; k = 1, . . . , K − 1 (4.8)

ri(k+1) − rik ≤ δ i = 1, . . . ,m; k = 1, . . . , K − 1 (4.9)

rik − ri(k+1) ≤ δ i = 1, . . . ,m; k = 1, . . . , K − 1. (4.10)

These constraints restrict the leaves to move no more than δ beamlets between control

points k and k + 1. To sum up, as the speed of the gantry increases the amount of δ

decreases and the apertures at the adjacent control points become similar.

We have explained the geometry constraints (4.1)–(4.10) that generate a feasible

aperture for each control point so far. Now, we continue by introducing radiation deliv-

ery and treatment constraints. During the rotation of the gantry, the linear accelerator

delivers radiation continuously to the patient’s body through the aperture formed by

the MLC. We assume that the radiation delivery is realized at the control points only

and lasts for a certain time. This is reasonable, because not only the effect of radia-

tion but also the apertures at adjacent control points are similar due to the similarity

constraints (4.7)–(4.10). In addition to the aperture shape, VMATP-1 determines the



29

radiation dose intensity at each control point. Note that there is a relation between the

dose rate of the linear accelerator and radiation dose intensity. The dose rate is in MU

per unit time, and the dose intensity at a control point is a function of the dose rate

and gantry rotation speed (i.e. if the gantry is slow then it is possible to deliver more

radiation). Dose rate and intensity may change at control points. However, they must

be within the mechanical limits of the linear accelerator, which also depends on the

rotation speed. Also, we assume that the speed of the gantry is constant. We introduce

a nonnegative continuous variable muk to represent the radiation dose intensity at each

control point k. We also introduce constraints

muk ≥ Lmu k = 1, . . . , K (4.11)

muk ≤ Umu k = 1, . . . , K (4.12)

mu ∈ RK
+ , (4.13)

where parameters Lmu and Umu are calculated by considering dose rate limits and

gantry speed.

A VMAT plan should also satisfy the clinical requirements, which are prescribed

by the oncologists, depending on the tumor’s type and patient’s anatomy. Generally,

two types of constraints are defined for a given target: partial volume constraints and

full volume constraints. For an OAR, only partial volume constraints are prescribed.

For example, a partial volume constraint defined for a TV forces that at least 95% of

the volume must absorb radiation at least as the prescribed dose. The coverage rate

becomes 100% in a full volume constraint: 100% of the volume must absorb radiation

within the prescribed bounds. The body of the patient is discretized into voxels in order

to be able to formulate these restrictions. The amount of radiation (dv) absorbed by

each voxel v is calculated using equality

dv −
K∑
k=1

m∑
i=1

n∑
j=1

Dijkvzijkmuk = 0 v ∈ V = V TV ∪ V OAR. (4.14)
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Note that V is the set of all voxels, namely it is the union of all TVs (V TV ) and

OARs (V OAR). Note also that (4.14) includes nonlinear terms created by the product of

binary variables z with the continuous variables mu. We use the linearization method

introduced by Mccormick in 1976 [68], which eventually forms the convex envelop of

general bilinear terms, to linearize constraint (4.14). We introduce auxiliary variable

aijk for each beamlet to represent its radiation intensity and obtain

dv −
K∑
k=1

m∑
i=1

n∑
j=1

Dijkvaijk = 0 v ∈ V = V TV ∪ V OAR (4.15)

aijk ≤ Umuzijk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (4.16)

aijk ≥ muk − Umu(1− zijk) i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (4.17)

aijk ≤ muk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (4.18)

d ∈ R|V |+ (4.19)

a ∈ Rm×n×K
+ . (4.20)

The radiation passes through only the open beamlets, thus Constraint (4.16) – Con-

straint (4.18) force aijk to take value of muk if associated beamlet is open, and 0

otherwise.

Now it is possible to include the clinical requirements using the total absorbed

radiation dose amounts of voxels. Similar to [14] and [60], we use Conditional Value-

at-Risk (CVaR) approach, which was originally developed by Rockafellar et al. in

2000 [69] for portfolio optimization, to formulate partial volume constraints. For each

TV t the following partial volume constraints are introduced:

ξTVtc −
1

(1− αTVtc )|V TV
t |

∑
v∈V TV

t

xtcv ≥ dtc t = 1, . . . , T ; c = 1, . . . , Ct (4.21)

xtcv ≥ ξTVtc − dv t = 1, . . . , T ; c = 1, . . . , Ct; v ∈ V TV
t (4.22)

x ∈ R
∑T

t=1 Ct|V TV
t |

+ ; ξTV ∈ R
∑T

t=1 Ct . (4.23)
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The average dose of the (1-αTVtc )|V TV
t | voxels receiving the lowest dose in TV t,

namely the lower mean tail dose at level αTVtc is forced to be at least the prescription

dose. In other words, at least αTVtc |V TV
t | voxels absorb radiation more than or equal to

dtc. Note that, there may be more than one partial volume restriction for a TV (or an

OAR), hence we introduce c index to the model that indicates the cth partial volume

constraint. Furthermore, there are full volume constraints for each TV:

dv ≥ LTVt t = 1, . . . , T ; v ∈ V TV
t (4.24)

dv ≤ UTV
t t = 1, . . . , T ; v ∈ V TV

t , (4.25)

which ensure that each voxel in TV t receives radiation within its prescribed limits.

There are only partial volume constraints for OAR volumes in VMATP. Similar

to the ones defined for TVs we introduce the following inequalities for each OAR:

ξOARoc +
1

(1− αOARoc )|V OAR
o |

∑
v∈V OAR

o

yocv ≤ UOAR
oc o = 1, . . . , O; c = 1, . . . , Co (4.26)

yocv ≥ dv − ξOARoc o = 1, . . . , O; c = 1, . . . , Co;

v ∈ V OAR
o (4.27)

y ∈ R
∑O

o=1 Co|V OAR
o |

+ ; ξOAR ∈ R
∑O

o=1 Co . (4.28)

The average dose of the (1-αOARoc )|V OAR
o | voxels absorbing the highest doses in OAR o,

namely the upper mean tail dose at level αOARoc is forced to be at most its tolerance dose

limit UOAR
oc . To give more detail about CVaR approach as discussed in [24], continuous

variable ξOARoc in constraint (4.26) is a bound on the upper value-at-risk (VaR) at

level αOARoc , which is the smallest dose level with the property that no more than

100(1−αOARoc )% of OAR o receives a larger dose. Also, the left hand side of constraint

(4.26) is the upper αOARoc -CVaR, which is the mean of all doses that exceed the upper

αOARoc -VaR. The variable yocv is the surplus of the value ξOARoc by the dose received by

voxel v in OAR o. Furthermore, if constraint (4.26) is satisfied as an equality in an

optimal solution then ξOARoc equals to the VaR corresponding to that constraint. For
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more detail about CVaR method we refer the reader to the study of Romeijn et al. [14]

where it is applied for developing a linear-programming-based approach to solve FMO

problem in IMRT planning. Finally, the objective function

min
K∑
k=1

muk (4.29)

minimizes total radiation intensity (in MU) the patient receives during his/her treat-

ment. VMATP-1 finds an optimal plan minimizing total dose intensity among all

feasible treatment plans.

We have explained VMATP-1 model so far and continue by explaining the second

model, which we call VMATP-2. The parameters in Table 4.1 and decision variables in

Table 4.2 are used to formulate VMATP-2. There are also additional decision variables

to define the position of the leaves of MLC, which are summarized Table 4.4.

Table 4.4. Additional variables of VMATP-2.

Variable Definition

lijk Binary variable used to represent the position of the left leaf; it is set to 1

if jth beamlet is the rightmost closed one on row i at control point k.

rijk Binary variable used to represent the position of the right leaf; it is set to 1

if jth beamlet is the leftmost closed one on row i at control point k.

Similar to [60,61], we introduce two binary variables for each beamlet on a given

row; lijk variable is related to the left leaf and rijk is related to the right leaf. For a

given row i at control point k exactly one lijk variable takes value 1. Similarly, exactly

one rijk variable is forced to be 1. For example, the left leaf on the first row of the

aperture illustrated in Figure 4.1 blocks the first 3 beamlets, namely the rightmost

closed beamlet is the third one. Therefore, only l13k equals to 1 and the remaining ones

are set to 0 (l11k = l12k = l14k = l15k = 0).
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VMATP-2:

min
K∑
k=1

muk (4.29)

s.t.

(4.6), (4.11)− (4.13), (4.15)− (4.28),

n∑
j=0

lijk = 1 i = 1, . . . ,m; k = 1, . . . , K (4.30)

n+1∑
j=1

rijk = 1 i = 1, . . . ,m; k = 1, . . . , K (4.31)

j∑
p=0

ri(p+1)k −
j∑

p=0

lipk ≤ 0 i = 1, . . . ,m; j = 0, . . . , n; k = 1, . . . , K

(4.32)

lij(k+1) −
min(n,j+δ)∑

p=max(0,j−δ)

lipk ≤ 0 i = 1, . . . ,m; j = 0, . . . , n;

k = 1, . . . , K − 1 (4.33)

rij(k+1) −
min(n+1,j+δ)∑
p=max(1,j−δ)

ripk ≤ 0 i = 1, . . . ,m; j = 1, . . . , n+ 1;

k = 1, . . . , K − 1 (4.34)

zijk −
j−1∑
p=0

lipk +

j∑
p=1

ripk = 0 i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K

(4.35)

l ∈ {0, 1}m×(n+1)×K ;

r ∈ {0, 1}m×(n+1)×K . (4.36)

Constraint (4.30) satisfies that there is exactly one rightmost closed beamlet, which

defines the position of the left leaf. The similar constraint for the right leaf is (4.31) and

there can be exactly one leftmost closed beamlet. In order to prevent the overlapping

of the leaf pairs (4.32) is introduced to the model. Constraint (4.33) and Constraint

(4.34) limit the leaf motion during rotation: a leaf can move at most δ beamlets. As
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in VMATP-1 model, we need to enforce zijk variables to be 1 if the corresponding

beamlets are open and (4.35) satisfies this requirement. It also satisfies the consecutive

ones property of the apertures. The last constraint (4.36) are the binary restrictions

for the new variables.

Observe that VMATP formulations are different according to the geometric part

of the problem where the apertures are determined at each control point and the leaf

motion limitations are controlled. The remaining part, which finds radiation intensities

and satisfies the clinical requirements are exactly the same. In VMATP-1, we define

two nonnegative integer variables in order to determine the positions of the leaves (i.e.

one for each of the left and right leaf). However, a binary variable is introduced for

each one of the beamlet and also for the home positions of the leaves in VMATP-2

formulation. Thus, in VMATP-1 total number of nonnegative integer variables to define

the position of the leaves is 2×m×K, on the other hand, there are 2×(n+1)×m×K

binary variables in VMATP-2. Moreover, total number of constraints to satisfy the

leaf motion limitations in VMATP-2 is n+1
2

times larger than the ones in VMATP-

1. Observe that there are 4 × m × (K − 1) such constraints in VMATP-1 and this

number increases to 2 × (n + 1) ×m × (K − 1) in VMATP-2. Also, we observe that

Constraint (4.1) is redundant in VMATP-1 and removed in Chapter 6. Thus, there

are also m ×K additional constraints in VMATP-2. As shown in the computational

experiments in Section 8.2, where we evaluate the formulations on a large number of

test instances, VMATP-1 performs better than VMATP-2 especially for large instances,

which is not surprising. As the size of the test instances increases total number of these

decision variables and constraints remain the same. However, the problems becomes

easily intractable. Also, as explained in Chapter 6 in detail, the geometry part of the

problem is decomposed into m subproblems and solved as shortest path problems. It

can be observed that defining nonnegative integer variables for the left and right leaves

is more suitable to formulate the geometry part as a network model.

In particular, the definition of the positions of the leaves using nonnegative integer

variables is a new approach in literature. Namely, VMATP-1 also differs from the

existing formulations with respect to these decision variables and associated constraints.
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5. SOLUTION METHODS: BENDERS DECOMPOSITION

ALGORITHMS2

Benders decomposition was proposed by Benders in 1962 [71], and has been widely

used in the solution of large-scale mathematical optimization problems. It is particu-

larly effective for solving problems having a subset of variables that are complicating

in the sense that the problem becomes significantly easier to solve if such complicating

variables are fixed. Its ability to exploit the structure of the problem and distribute

the overall computational work are key facts behind the many successful applications

of Benders decomposition [72].

In fact, the nature of the radiotherapy is very suitable from this perspective since

the variables used to shape the apertures in order to determine the geometry of the

beam, are integer valued and the variables used to determine the prescribed dose re-

quirements are continuous. Once the geometry variables are fixed, the geometry of the

apertures are set and the resulting linear program (LP) can be solved to determine

optimal beam intensities subject to dose inequalities. As can be observed, this parti-

tioning strategy of the variables is also possible for our MILP formulation VMATP-1.

Because, only the variables that form apertures are integer valued. In this chapter, we

use Benders decomposition and develop efficient solution algorithms after improving

its naive form by means of computational strategies.

5.1. Benders Reformulation

We identify the binary integer variables z, which represent the beamlets of the

apertures, as the complicating variables in our model. If they are fixed, namely if we

know the shape of each aperture at each control point, the dose constraints do not in-

clude integer variables. Using this observation we decompose the original problem into

a relaxed master problem and a subproblem. The relaxed master problem produces

2An earlier version of this chapter appears in [70].
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a feasible aperture at each control point; and the subproblem calculates the optimum

intensity for each one of them, namely the optimum radiation dose that the linear ac-

celerator delivers at each control point while considering the feasibility of the treatment

plan with respect to the clinical requirements.

Given a vector ẑ that denotes values assigned to z variables, the subproblem

SP(ẑ) and its dual DSP(ẑ) can be formulated as

SP (ẑ):

min
K∑
k=1

muk (4.29)

s.t.

dv −
K∑
k=1

m∑
i=1

n∑
j=1

Dijkvaijk = 0 v ∈ V = V TV ∪ V OAR (πv) (4.15)

aijk ≤ Umuẑijk i = 1, . . .m; j = 1, . . . , n;

k = 1, . . . K (β1
ijk) (5.1)

aijk ≥ muk − Umu(1− ẑijk) i = 1, . . .m; j = 1, . . . , n;

k = 1, . . . K (β2
ijk) (5.2)

aijk ≤ muk i = 1, . . .m; j = 1, . . . , n;

k = 1, . . . K (β3
ijk) (4.18)

ξTVtc −
1

(1− αTVtc )|V TV
t |

∑
v∈V TV

t

xtcv ≥ dtc t = 1, . . . T ; c = 1, . . . , Ct (θ1tc) (4.21)

xtcv ≥ ξTVtc − dv t = 1, . . . , T ; c = 1, . . . , Ct;

v ∈ V TV
t (τ 1tcv) (4.22)

dv ≥ LTVt t = 1, . . . , T ; v ∈ V TV
t (ε1tv) (4.24)

dv ≤ UTV
t t = 1, . . . , T ; v ∈ V TV

t (ε2tv) (4.25)
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ξOARoc +
1

(1− αOARoc )|V OAR
o |

∑
v∈V OAR

o

yocv ≤ UOAR
oc o = 1, . . . O;

c = 1, . . . , Co (θ2oc) (4.26)

yocv ≥ dv − ξOARoc o = 1, . . . , O; c = 1, . . . , Co;

v ∈ V OAR
o (τ 2ocv) (4.27)

muk ≥ Lmu k = 1, . . . , K (µ1
k) (4.11)

muk ≤ Umu k = 1, . . . , K (µ2
k) (4.12)

(4.13), (4.19)− (4.20), (4.23), (4.28),

and

DSP (ẑ):

max
K∑
k=1

m∑
i=1

n∑
j=1

Umu(−ẑijkβ1
ijk + (ẑijk − 1)β2

ijk) +
T∑
t=1

Ct∑
c=1

θ1tcdtc (5.3)

+
T∑
t=1

∑
v∈V TV

t

(LTVt ε1tv − UTV
t ε2tv)−

O∑
o=1

Co∑
c=1

θ2ocU
OAR
oc +

K∑
k=1

(Lmuµ1
k − Umuµ2

k)

s.t.

πv + τ 1tcv + ε1tv − ε2tv ≤ 0 t = 1, . . . , T ; c = 1, . . . , Ct;

v ∈ V TV
t (dv) (5.4)

πv − τ 2ocv ≤ 0 o = 1, . . . , O; c = 1, . . . , Co;

v ∈ V OAR
o (dv) (5.5)

−
∑
v∈V

Dijkvπv − β1
ijk + β2

ijk − β3
ijk ≤ 0 i = 1, . . . ,m; j = 1, . . . , n;

k = 1, . . . , K (aijk) (5.6)

−
m∑
i=1

n∑
j=1

(β2
ijk − β3

ijk) + µ1
k − µ2

k ≤ 1 k = 1, . . . , K (muk) (5.7)

− θ2oc +
∑

v∈V OAR
o

τ 2ocv = 0 o = 1, . . . , O; c = 1, . . . , Co (ξOARoc ) (5.8)

θ1tc −
∑

v∈V TV
t

τ 1tcv = 0 t = 1, . . . , T ; c = 1, . . . , Ct (ξTVtc ) (5.9)



38

− 1

(1− αOARoc )|V OAR
o |

θ2oc + τ 2ocv ≤ 0 o = 1, . . . , O; c = 1, . . . , Co;

v ∈ V OAR
o (yocv) (5.10)

− 1

(1− αTVtc )|V TV
t |

θ1tc + τ 1tcv ≤ 0 t = 1, . . . , T ; c = 1, . . . , Ct;

v ∈ V TV
t (xtcv) (5.11)

π ∈ R|V |;β1 ∈ Rm×n×K
+ ;β2 ∈ Rm×n×K

+ ;

β3 ∈ Rm×n×K
+ ;θ1 ∈ R

∑T
t=1 Ct

+ ;θ2 ∈ R
∑O

o=1 Co

+ ;

τ 1 ∈ R
∑T

t=1 Ct|V TV
t |

+ ; τ 2 ∈ R
∑O

o=1 Co|V OAR
o |

+ ;

ε1 ∈ R|V
TV |

+ ; ε2 ∈ R|V
TV |

+ ;µ1 ∈ RK
+ ;µ2 ∈ RK

+ . (5.12)

Extreme points and extreme directions of the dual polyhedron are used to con-

struct Benders reformulation of the original problem. Suppose that ∆ and Ω denote

the set of extreme points and the set of extreme directions of the dual polyhedron,

respectively. We further define

f(β1,β2,θ1,θ2, ε1, ε2,µ1,µ2) =
K∑
k=1

m∑
i=1

n∑
j=1

Umu(−zijkβ1
ijk + (zijk − 1)β2

ijk)+

T∑
t=1

Ct∑
c=1

θ1tcdtc +
T∑
t=1

∑
v∈V TV

t

(LTVt ε1tv − UTV
t ε2tv)−

O∑
o=1

Co∑
c=1

θ2ocU
OAR
oc +

K∑
k=1

(Lmuµ1
k − Umuµ2

k)

and the Benders reformulation of VMATP-1 becomes

min η (5.13)

s.t.

(4.1)− (4.10),

f(β1,β2,θ1,θ2, ε1, ε2,µ1,µ2) ≤ η β1,β2,θ1,θ2, ε1, ε2,µ1,µ2 ∈ ∆ (5.14)

f(β1,β2,θ1,θ2, ε1, ε2,µ1,µ2) ≤ 0 β1,β2,θ1,θ2, ε1, ε2,µ1,µ2 ∈ Ω (5.15)

η ≥ 0. (5.16)

We introduce a new variable η representing the total radiation intensity, which is the

objective function of the subproblem. Since 0 is a feasible solution of the dual problem,
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the lower bound (LB) of η is set to 0. Constraint (4.1)–Constraint (4.10) determine

a feasible aperture shape for each control point. Constraint (5.14) are Benders opti-

mality cuts and Constraint (5.15) are Benders feasibility cuts and they all represent

the subproblem. In the naive form of Benders decomposition, all Benders cuts are

relaxed initially and the resulting relaxed master problem (RMP) is solved iteratively.

In each iteration either an optimality cut or feasibility cut is added to the RMP, which

is re-solved until the stopping condition is satisfied.

Our preliminary results show that the naive form is inferior according to the

computation time and solution quality. The most important reason of the time con-

sumption is that in each iteration RMP is solved from scratch after adding a new

inequality (i.e. a new Benders cut). Even though solving RMP optimally and gener-

ating a cut for the optimal solution may yield stronger cuts, solution time increases as

the number of Benders cuts, and thus the size of RMP, increases. Another drawback

of the naive implementation is that the LB improves very slowly. A feasible solution

for the whole problem may not be obtained within a reasonable amount of time, since

the number of feasible RMP solutions, namely feasible MLC combinations according

to aperture shape (i.e. geometry) constraints, is very large.

5.2. Algorithmic and Modeling Improvements

5.2.1. Valid Inequalities

In the Benders reformulation the objective function (4.29) is removed since it

belongs to the subproblem. Also, initial LB of the master objective value is set to zero

since 0 is a trivial feasible solution of the dual problem. This causes a large optimality

gap at the beginning, which slowly becomes smaller as Benders cuts are added. To

address this issue, we aim to discard some of the master solutions that are infeasible

for the whole problem. We observe that, if a master solution (an aperture per control

point) does not have enough capacity to deliver enough radiation such that each voxel

of TV t absorbs at least LTVt amount of radiation, this solution cannot be feasible for

the whole problem. Hence, we can eliminate such solutions at the beginning by adding
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inequalities

K∑
k=1

m∑
i=1

n∑
j=1

zijkDijkvU
mu ≥ LTVt t = 1, . . . , T ; v ∈ Vt (5.17)

to the RMP. Recall that the parameter Umu is the maximum radiation intensity that

linear accelerator can deliver at a control point. However, according to our preliminary

experiments, we note that the improvement due to these valid inequalities is not sig-

nificant. Thus, we introduce to RMP new surrogate decision variables (a continuous

variable a per beamlet and a continuous variable mu per control point), and related

constraints similar to those in the whole problem. As a result, we add the following

inequalities instead:

aijk ≤ Umuzijk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (5.18)

aijk ≤ muk i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K (5.19)

K∑
k=1

m∑
i=1

n∑
j=1

aijkDijkv ≥ LTVt t = 1, . . . , T ; v ∈ Vt (5.20)

η ≥
K∑
k=1

muk. (5.21)

Note that constraints (5.18) and (5.19) are similar to the linearization constraints (4.16)

and (4.18) in the VMATP, however (4.17) is relaxed. The addition of inequalities (5.20)

to RMP guarantees that in any master solution each target voxel absorbs radiation no

less than the prescribed lower bound. Benders optimality cuts ensure that η is at least

as large as the objective function value of DSP for a given master solution, namely

the minimum total radiation dose intensity in a feasible treatment. Constraint (5.21)

is valid, and it improves the LB effectively, since the minimum total radiation dose is

found considering only target voxels in this extended master problem, and this amount

can be at most the minimum total radiation dose calculated by solving DSP. Finally, we

do not have to add constraint set (5.17) anymore, since it is replaced by (5.20), which is

tighter. These extensions make the master problem harder to solve. However, according

to our preliminary observations, they significantly improve the LB and performance
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of the Benders decomposition algorithm as a consequence. Thus, in the final form of

the method we add Constraint (5.18)–Constraint(5.21) to the master problem. These

inequalities contain some information about the original objective function that we

project out, and cuts some of the master solutions that are not feasible for the whole

treatment.

5.2.2. Strong Benders Cuts

Stronger Benders cuts may improve the LB faster and help for the rapid con-

vergence to optimality. For the optimization problem miny∈Y,w∈R{w : f(u) + yg(u) ≤

w,u ∈ U} the cut w ≥ f(u1) + yg(u1) (is stronger than) and dominates the cut

w ≥ f(u2) + yg(u2), if f(u1) + yg(u1) ≥ f(u2) + yg(u2),y ∈ Y and there is at least

one y ∈ Y which makes this inequality strict. A cut is called strong or pareto-optimal

if it is not dominated by any other cut [73]. Note that it is possible to generate mul-

tiple Benders optimality cuts for a given master problem solution, because DSP may

have alternative optimal solutions. Van Roy [74] indicates that a cut derived from a

particular dual optimal solution is strong if it is not dominated by a cut derived from

any other dual optimal solution, and presents a two-phase approach to strengthen a

Benders cut. We apply this approach to our problem. Observe that given a master

solution ẑ, the value of dual variable β1
ijk with zero coefficient does not have any impact

on the optimum objective value of DSP. Hence, we can modify β1
ijk without changing

the value of the objective function (5.3) when ẑijk = 0. We can modify β2
ijk similarly

when ẑijk = 1. Note that feasibility must be maintained during these modifications.

Let Z be the index set of all beamlets at all control points, namely the set of all (i, j, k)

index combinations. Also let Z0 ⊆ Z be the index set of beamlets where ẑijk = 0 and

Z1 ⊆ Z be the index set of beamlets where ẑijk = 1 in the master solution ẑ. First,

we solve DSP and find an optimal dual solution. Then, dual variables are fixed at their

optimal values except β1 and β2 with zero coefficients in the optimal objective, and

β3. Namely, we determine new values of β1
ijk, (i, j, k) ∈ Z0, and β2

ijk, (i, j, k) ∈ Z1 by
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solving the following reduced DSP (RDSP)

RDSP (π̂, µ̂1, µ̂2, β̂
1
, β̂

2
):

max
K∑
k=1

m∑
i=1

n∑
j=1

(−β1
ijk − β2

ijk) (5.22)

s.t.

−
∑
v∈V

Dijkvπ̂v − β1
ijk + β2

ijk − β3
ijk ≤ 0 i = 1, . . . ,m; j = 1, . . . , n;

k = 1, . . . , K (5.23)

−
m∑
i=1

n∑
j=1

(β2
ijk − β3

ijk) + µ̂1
k − µ̂2

k ≤ 1 k = 1, . . . , K (5.24)

β1
ijk = β̂1

ijk (i, j, k) ∈ Z1 (5.25)

β2
ijk = β̂2

ijk (i, j, k) ∈ Z0 (5.26)

β1 ∈ Rmn|K|
+ ;β2 ∈ Rmn|K|

+ ;β3 ∈ RmnK
+ . (5.27)

In other words, we lift some of the z variables in the associated Benders cut without

changing the objective function of DSP or violating the feasibility. Therefore, we obtain

a strong Benders cut (as shown in Appendix A), since none of the cuts derived from an

alternative optimal solution dominates (or is stronger than) this resulting one [74,75].

It is worth noting that, in these studies, after setting permanent dual variables to their

optimal values, the remaining problem can be decomposed into subproblems and solved

efficiently. Unfortunately, this is not possible in our case. Constraints (5.24) do not

allow such decomposition. There exist other studies in the literature considering the

use of strong cuts in Benders decomposition [76,77].

5.2.3. Minimal Infeasible Subsystems and New Benders Cut Selection Strat-

egy

We observe that it can take a long time to generate a feasibility cut during the

initial iterations for large problem instances. There is a relatively new approach in the

literature for generating Benders cuts [78] and stronger combinatorial cuts [79,80]. Ac-
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cording to this approach it is possible to determine unbounded directions of a problem

using an alternative polyhedron that is bounded. Fischetti et al. [78] show that Benders

subproblem can be converted into a pure feasibility problem, and that it is possible

to obtain both feasibility and optimality cuts solving an alternative problem derived

from this extended subproblem. Given a master solution (ẑ, η̂), the pure feasibility

subproblem (PFSP) becomes

PFSP (ẑ, η̂):

K∑
k=1

muk ≤ η̂ (π0) (5.28)

(4.11)− (4.13), (4.15), (5.1)− (5.2), (4.18)− (4.28),

where π0 is the dual variable associated with (5.28). Observe that if (ẑ, η̂) is feasible for

PFSP, then it is optimal for VMATP-1 problem. Thus, a violated cut can be generated

if and only if PFSP is infeasible, or equivalently, if its dual problem is unbounded. The

dual of PFSP (DPFSP) can be written as

DPFSP (ẑ, η̂):

max
K∑
k=1

m∑
i=1

n∑
j=1

Umu(−ẑijkβ1
ijk + (ẑijk − 1)β2

ijk) +
T∑
t=1

Ct∑
c=1

θ1tcdtc +
T∑
t=1

∑
v∈V TV

t

(LTVt ε1tv−

UTV
t ε2tv)−

O∑
o=1

Co∑
c=1

θ2ocU
OAR
oc +

K∑
k=1

(Lmuµ1
k − Umuµ2

k)− π0η̂ (5.29)

s.t.

−
m∑
i=1

n∑
j=1

(β2
ijk − β3

ijk) + µ1
k − µ2

k − π0 ≤ 0 k = 1, . . . , K (5.30)

π0 ∈ R+ (5.31)

(5.4)− (5.6), (5.8)− (5.12).

Note that 0 is the trivial solution of DPFSP. Therefore, for a given master solu-

tion (ẑ, η̂) if PFSP is infeasible, then associated DPFSP is unbounded. Given a ray
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(π̂, β̂
1
, β̂

2
, β̂

3
, θ̂

1
, θ̂

2
, τ̂ 1, τ̂ 2, ε̂1, ε̂2, µ̂1, µ̂2, π̂0) of DPFSP the associated cut is

K∑
k=1

m∑
i=1

n∑
j=1

Umu(−zijkβ̂1
ijk + (zijk − 1)β̂2

ijk) +
T∑
t=1

Ct∑
c=1

θ̂1tcdtc +
T∑
t=1

∑
v∈V TV

t

(LTVt ε̂1tv−

UTV
t ε̂2tv)−

O∑
o=1

Co∑
c=1

θ̂2ocU
OAR
oc +

K∑
k=1

(Lmuµ̂1
k − Umuµ̂2

k)− π̂0η ≤ 0. (5.32)

Furthermore, the unbounded objective function is set to 1 for normalization as done

by Gleeson and Ryan [81], and

K∑
k=1

m∑
i=1

n∑
j=1

Umu(−ẑijkβ1
ijk + (ẑijk − 1)β2

ijk) +
T∑
t=1

Ct∑
c=1

θ1tcdtc +
T∑
t=1

∑
v∈V TV

t

(LTVt ε1tv−

UTV
t ε2tv)−

O∑
o=1

Co∑
c=1

θ2ocU
OAR
oc +

K∑
k=1

(Lmuµ1
k − Umuµ2

k)− π0η̂ = 1 (5.33)

(5.4)− (5.6), (5.8)− (5.12), (5.30)− (5.31)

is the resulting alternative polyhedron. The alternative problem (AP)

AP (ẑ, η̂):

min π0 (5.34)

s.t.

(5.4)− (5.6), (5.8)− (5.12), (5.30)− (5.31), (5.33)

minimizes π0 over this polyhedron and we solve AP instead of DSP in Benders itera-

tions to generate Benders cuts. Fischetti et al. [78] state that when the objective of this

problem is to minimize only π0 then the original Benders’ dual problem (DSP) arises.

They also state that a feasibility cut or an optimality cut is generated depending on the

optimal value of π0: π̂0 = 0 implies a feasibility cut since DSP(ẑ) is unbounded. Ob-

serve that an optimal solution (π̂, β̂
1
, β̂

2
, β̂

3
, θ̂

1
, θ̂

2
, τ̂ 1, τ̂ 2, ε̂1, ε̂2, µ̂1, µ̂2, π̂0 = 0) of AP

that satisfies constraints (5.30) and (5.33) provides an unbounded direction for DSP(ẑ).

It can be shown that for any Λ > 0, (Λπ̂,Λβ̂
1
,Λβ̂

2
,Λβ̂

3
,Λθ̂

1
,Λθ̂

2
,Λτ̂ 1,Λτ̂ 2,Λε̂1,Λε̂2,

Λµ̂1,Λµ̂2) remains feasible for DSP(ẑ) (since constraint (5.7) remains feasible in ad-
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dition to other constraints of DSP(ẑ)) and objective value becomes Λ. If π̂0 > 0 then

(π̂/π̂0, β̂
1
/π̂0, β̂

2
/π̂0, β̂

3
/π̂0, θ̂

1
/π̂0, θ̂

2
/π̂0, τ̂

1/π̂0, τ̂
2/π̂0, ε̂

1/π̂0, ε̂
2/π̂0, µ̂

1/π̂0, µ̂
2/π̂0) is an

optimal solution for DSP(ẑ) with optimal objective value 1/π̂0 + η̂. Observe that we

can derive a feasible solution for DSP(ẑ) from each one of the feasible solutions of

AP(ẑ, η̂) where π̄0 > 0 dividing this solution by π̄0. The optimal (minimum) objective

value of AP(ẑ, η̂) is π̂0, hence we reach an optimal solution with maximum objective

value of DSP(ẑ). Additionally, we can solve RDSP using this optimal solution and

generate pareto-optimal cuts.

5.2.4. Combinatorial Benders Cut

Combinatorial Benders decomposition is an extension of traditional Benders de-

composition method, where the problem is again decomposed into a master integer

program and a linear programming subproblem. Rahmaniani et al. [72] explain the

difference between the two methods and state that combinatorial Benders decompo-

sition does not use the dual information to generate cuts. The master problem is a

binary integer programming problem (BIP) and when the subproblem is infeasible a

combinatorial Benders cut similar to (5.35) is derived and used as a feasibility cut.

Assume that for a given feasible master solution ẑ, it is not possible to find a

feasible treatment, which means the subproblem is infeasible. In this case, another valid

inequality may be generated according to the following observation: the subproblem

may be infeasible with respect to partial volume constraints (4.21)–(4.22) associated

with a TV, (4.26)–(4.27) associated with an OAR, or both. For these cases, to repair

infeasibility, we should do at least one of the following: open at least one of the closed

beamlets, close at least one of the open beamlets, or both. Furthermore, the candidate

beamlet (ẑijk) to open or close must have positive effect on at least one voxel. Namely,

the entries of the D matrix must be “strictly” positive for at least one v (otherwise,

they will be all zero for a specific combination of i, j, k and hence can be removed). Let

I ⊆ Z be the index set of the beamlets having strictly positive effect on at least one

voxel, namely I = {(i, j, k) : Dijkv > 0, v ∈ V }. Hence, we can add the combinatorial
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cut

∑
ẑijk=0

(i,j,k)∈I

zijk +
∑
ẑijk=1

(i,j,k)∈I

(1− zijk) ≥ 1. (5.35)

to the RMP each time an infeasible solution is obtained.

This cut is not tight according to our preliminary results obtained on random

samples. Thus, as in the study of Taşkın and Çevik [80], we find a minimal infeasible

system (MIS) of the subproblem when an infeasible solution is detected. Gleeson and

Ryan [81] show that there is one-to-one correspondence between MISs of an infeasible

linear system and the supports of vertices of the related alternative polyhedron. Thus,

solving AP instead of the original dual problem not only provides Benders cuts, but

also detects an MIS each time π0 is found to be zero. Let Z ∗ ⊆ Z be the index set of

the beamlets that are associated with the MIS corresponding to ẑ. The cut (5.35) is

revised so that it only has z variables in I ∩Z ∗:

∑
ẑijk=0

(i,j,k)∈I∩Z ∗

zijk +
∑
ẑijk=1

(i,j,k)∈I∩Z ∗

(1− zijk) ≥ 1. (5.36)

In the final version of our Benders decomposition algorithm, each time a Benders

feasibility cut is added to the master problem we also add a constraint of type (5.36).

The resulting Benders algorithm including the improvement strategies explained so far

is given in Figure 5.1 within the dotted frames. We refer to this algorithm as Improved

Benders Algorithm 1.

In addition to these strategies, we also use a single branch-and-bound tree, which

has received widespread attention in the literature recently [77, 80]. Even though it is

not proved theoretically that using this strategy outperforms the naive form, practical

results reveal its superiority. In the naive form, each time a Benders cut is added to

RMP it is solved from scratch. This makes Benders decomposition more and more

expensive as the number of cuts increases. Instead, we solve RMP using only one
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branch-and-bound tree benefiting from the solver’s callback mechanism. In our imple-

mentation each time a new incumbent is found a new Benders cut is generated and

added to RMP or otherwise the incumbent is accepted.

We observe an important difference in the implementation of the new cut selection

strategy explained in Section 5.2.3. In the naive form of Benders decomposition, if RMP

returns a solution (ẑ, η̂) which is found to be feasible for SP, an optimality cut is added

to RMP and the upper bound (UB) of the entire algorithm is updated. Thus, if the

same solution is chosen by RMP for the second time with the updated objective value

(ẑ, η̄), the LB and the UB of the problem are equal. The reason is that RMP is solved

to optimality in each iteration and its optimal objective value always provides a LB for

the whole problem. Therefore, when PFSP becomes feasible, AP becomes infeasible,

the optimality gap becomes zero and the algorithm stops. On the other hand, in the

callback implementation when an incumbent solution (ẑ, η̂) is obtained for the first

time, which is found to be feasible for SP also, similarly an optimality cut is added to

RMP. However, an incumbent solution does not provide a LB for the whole problem,

if it is not optimal, as in the naive implementation; but if it is returned one more

time, it is certain that the current UB in the branch-and-bound is higher than the

objective value of this solution. Otherwise, the associated search node of the branch-

and-bound tree would have been pruned. Re-obtaining an incumbent solution means

that the callback can accept it and update the UB. In summary if PFSP is feasible,

AP is infeasible, then the algorithm does not stop and continues until the optimality

gap falls below a certain level.

5.2.5. A Relaxation of the Model

According to the results of the algorithm obtained by implementing the improve-

ment strategies explained so far we can say that the LB is not strong. In order to

alleviate this problem we strengthen the LB using a Lagrangean relaxation approach.

We dualize the complicating constraints (4.16) and (4.17) in VMATP-1 with nonneg-

ative multipliers u ∈ Rm×n×K
+ and g ∈ Rm×n×K

+ to obtain the Lagrangean subproblem



48

(LSP)

LSP(û, ĝ):

min
K∑
k=1

muk +
K∑
k=1

m∑
i=1

n∑
j=1

(ûijk(aijk − Umuzijk) + ĝijk(−Umu − aijk +muk + Umuzijk))

(5.37)

s.t.

(4.1)− (4.13), (4.15), (4.18)− (4.28).

It defines a valid dual bound on VMATP-1 for given û and ĝ vectors. In gen-

eral the best dual bound is obtained by solving the Lagrangean dual problem (LD):

maxu,g≥0 LSP(u,g). LD is a max-min problem and one of the most popular method

to solve this problem is the subgradient algorithm [82], in which at each iteration

dual multipliers u and g are updated and the resulting LSP(û, ĝ) problem is solved.

According to our preliminary analysis LSP(0,0) provides very strong lower bounds.

Therefore, we just solve VMATP-1 after relaxing constraints (4.16) and (4.17), which

is clearly equivalent to LSP(0,0), and use the optimal value as a LB. We note that in

this case, it is possible to also remove geometry constraints (4.1)-(4.10) from LSP(0,0)

problem since they do not have any contribution to the objective function. As a result,

we obtain the following relaxation of VMATP-1:

RVMATP:

min
K∑
k=1

muk (4.29)

s.t.

(4.11)− (4.13), (4.15), (4.18)− (4.28).

Note that RVMATP is an LP model. As we also discuss in Section 8.3, the LB ob-

tained solving this relaxation is remarkably stronger and improves the optimality gap.

However, since we relax the geometry constraints, it is not possible to obtain the exact

information about the aperture shapes. Hence, the LB obtained by this relaxed model
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can only be used to calculate the optimality gap. Nevertheless, the optimal solution of

RVMATP gives the radiation dose intensity at each of the control points, given these

radiation intensities we can try to determine a feasible solution for the LP relaxation

of VMATP-1 (LPVMATP). If LPVMATP is feasible for the given radiation intensities,

we have enough information about the aperture shapes (i.e. values for ẑ variables) to

generate a cut. Notice that these ẑ variables can be fractional; but still given frac-

tional ẑ values, we solve DSP to obtain optimality cut (5.14), which we add to RMP

at the beginning of the callback implementation. The fractional ẑ vector changes the

objective function of DSP only and gives another extreme point in its feasible region.

The optimality cut obtained using this extreme point is valid for the LP relaxation of

RMP, thus it is also valid for RMP. We call the resulting algorithm as Improved Ben-

ders Algorithm 2, which we illustrate in Figure 5.1 by appending the steps remaining

outside the dotted frames.
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Start

(UB=∞, LB=0)

Solve RVMATP

RVMATPOpt=
∑K

k=1 m̂uk

Solve LPVMATP(m̂u)

to obtain ẑ

Feasible?
Solve DSP(ẑ) and add

optimality cut (5.14) to RMP

Solve RMP with con-

straints (5.18)–(5.21)

Optimal solution is

(ẑ, l̂, r̂, η̂) and LB=η̂

Solve AP (ẑ, η̂)

Result ?

π0?

Solve SP(ẑ)

Optimal

solution

(ẑ, l̂, r̂, m̂u)

UB=min {UB, η̂ + 1/π̂0}

Gap=100*(UB-

max{LB,RVMATPOpt})/UB

Gap < ε?

Add pareto-optimal

cut (5.14) to RMP

Add Benders feasibility

cut (5.15) and combina-

torial cut (5.36) to RMP

Yes

No

infeasible

optimal

π0 > 0

No

Yes

π0 = 0

Figure 5.1. Improved Benders decomposition algorithms.
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6. SOLUTION METHODS: BRANCH-AND-PRICE

ALGORITHMS3

In this chapter we develop branch-and-price (BP) algorithms to solve VMATP-

1 model. BP is the adaptation of column generation for the exact solution of integer

programming problems. At each node of the branch-and-bound tree, column generation

is used to solve linear programming relaxation of the reformulation. It is successfully

applied to different integer programming problems such as routing, scheduling, and

set partitioning problems. Efficiency of the method depends heavily on the problem

structure and it is implementation dependent. There is a number of algorithmic issues

that occur during implementation, and the proposed algorithms for solving these issues

require problem specific solution approaches. In Lübbecke [84] a general framework

of the method and common algorithmic issues that practitioners may encounter are

explained in detail. In addition, Vanderbeck [85] and Desaulniers [86] present a number

of different types of problems that BP methods have been applied. To the best of our

knowledge, we apply BP method to solve VMAT planning problem for the first time.

In the following sections we provide implementation details of the method as well as

solution approaches for the problems that we encounter.

6.1. Column Generation Formulations

Optimal solution of VMATP-1 model yields a feasible VMAT plan with minimum

MUs consisting of a feasible treatment arc (i.e. K sequential apertures, each for one of

the control points, satisfying the consecutive ones property and leaf motion limitations)

and radiation intensity muk delivered to the patient body through the corresponding

aperture at control point k. Figure 6.1 illustrates a treatment arc consisting of only

three equally spaced control points.

3An earlier version of this chapter appears in [83].
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Figure 6.1. A treatment arc consisting of 3 control points, 3 rows and 3 columns.

We observe that it is possible to reformulate VMATP-1 in such a way that each

feasible treatment arc is considered as a column. Let Z = {z1, z2, . . . , ze, . . . , z|Z|} be

the bounded set of all feasible treatment arcs (i.e. ze = {ẑeijk ∈ {0, 1}, i = 1, . . . ,m; j =

1, . . . , n; k = 1, . . . , K}). When we only consider the consecutive ones property and if

we assume that there are no leaf motion limitations between consecutive control points,

then total number of feasible treatment arcs |Z| equals to
(
1
2
(n+ 1)(n+ 2)

)Km
, which is

very large. Row i of the MLC system must satisfy consecutive ones property at control

point k and k+1, and also must satisfy the maximum leaf motion limitations. Thus, row

i at control points k and k+1 are dependent. However, there is no dependency between

row i and other rows at any control point k. As a result, the rows of a treatment arc

are independent. We can decompose a treatment arc into m treatment row arcs, and

it is possible to consider each feasible treatment row arc for each row i as a column.

Let Zi = {z1
i , z

2
i , . . . , z

e
i , . . . , z

|Zi|
i } be the bounded set of all feasible treatment row arcs

for row i satisfying consecutive ones property and leaf motion limitations (zei = {ẑeijk ∈

{0, 1}, j = 1, . . . , n; k = 1, . . . , K}). As known from integer programming theory it is

possible to express a bounded set Zi = {zi ∈ {0, 1}nK ,A ∈ Rp×nK ,h ∈ Rp : Az ≤ h}

equivalently as {bi ∈ {0, 1}|Zi| :
∑|Zi|

e=1 b
e
iz
e
i ,
∑|Zi|

e=1 b
e
i = 1}, where zei ∈ {0, 1}nK e =

1, . . . |Zi| are the feasible solutions of Zi. Here, binary variable bei indicates whether

the feasible row arc zei is selected (bei = 1) or not (bei = 0). Thus, it is possible to
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represent binary variable zijk as
∑|Zi|

e=1 b
e
i ẑ
e
ijk. Then, the resulting treatment row arc

based reformulation of VMATP-1, in other words, the master problem (MP) can be

written as

MP:

min
K∑
k=1

muk (4.29)

s.t.

(4.11)− (4.13), (4.15), (4.18)− (4.28),

|Zi|∑
e=1

bei = 1 i = 1, . . . ,m (6.1)

− aijk + Umu

|Zi|∑
e=1

bei ẑ
e
ijk ≥ 0 i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K

(6.2)

aijk −muk − Umu

|Zi|∑
e=1

bei ẑ
e
ijk ≥ −Umu i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K

(6.3)

b ∈ {0, 1}
∑m

i=1 |Zi|, (6.4)

where the convexity constraints (6.1) ensure that exactly one feasible treatment row

arc is selected for each row i. Note that constraints (4.16) and (4.17) are replaced with

constraints (6.2) and (6.3) as explained above in detail. Therefore, constraints (6.2),

(6.3) and (4.18) guarantee that the radiation intensity of each beamlet aijk equals muk

when this beamlet is open, and 0 if it is closed. We solve the linear programming re-

laxation of MP (MLP) by column generation. Moreover, we introduce one nonnegative

artificial variable (φTVtc or φOARoc ) for each one of the constraints (4.21) and (4.26) to

allow deviations. We penalize positive deviations in the objective function. Then the

resulting modified master linear problem, which we continue to call as MLP, becomes
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MLP:

min
K∑
k=1

muk +
T∑
t=1

Ct∑
c=1

γTVtc φTVtc +
O∑
o=1

Co∑
c=1

γOARoc φOARoc (6.5)

s.t.

(4.11)− (4.13), (4.15), (4.18)− (4.20),

(4.22)− (4.25), (4.27)− (4.28), (6.2)− (6.3),

|Zi|∑
e=1

bei = 1 i = 1, . . .m (λi) (6.1)

ξTVtc −
1

(1− αTVtc )|V TV
t |

∑
v∈V TV

t

xtcv + φTVtc ≥ dtc t = 1, . . . T ;

c = 1, . . . , Ct (6.6)

ξOARoc +
1

(1− αOARoc )|V OAR
o |

∑
v∈V OAR

o

yocv − φOARoc ≤ UOAR
oc o = 1, . . . O;

c = 1, . . . Co (6.7)

φTV ∈ R
∑T

t=1 Ct

+ , (6.8)

φOAR ∈ R
∑O

o=1 Co

+ , (6.9)

b ∈ R
∑m

i=1 |Zi|
+ , (6.10)

where γTVtc and γOARoc are large penalty costs for deviations in the cth partial volume

constraints of TVs t and OAR o, respectively.

We use same dual variables µ1,µ2,π,β3, τ 1, ε1, ε2, τ 2,β1,β2,θ1,θ2 for the con-

straints (4.11), (4.12), (4.15), (4.18), (4.22), (4.24), (4.25), (4.27), (6.2), (6.3), (6.6),

(6.7), respectively, which are also used to formulate DSP model in Section 5.1. Also,

dual variables λ are used for constraint (6.1) to obtain following dual MLP (DMLP)
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DMLP:

max
m∑
i=1

λi − Umu

K∑
k=1

m∑
i=1

n∑
j=1

β2
ijk +

T∑
t=1

Ct∑
c=1

θ1tcdtc +
T∑
t=1

∑
v∈V TV

t

(LTVt ε1tv − UTV
t ε2tv)

−
O∑
o=1

Co∑
c=1

θ2ocU
OAR
oc +

K∑
k=1

(Lmuµ1
k − Umuµ2

k) (6.11)

s.t.

λi + Umu

n∑
j=1

K∑
k=1

(β1
ijk − β2

ijk)ẑ
e
ijk ≤ 0 i = 1, . . .m; e = 1, ..., |Zi| (bei ) (6.12)

θ1tc ≤ γTVtc t = 1, . . . T ; c = 1, . . . , Ct (6.13)

θ2oc ≤ γOARoc o = 1, . . . O; c = 1, . . . , Co (6.14)

λ ∈ Rm (6.15)

(5.4)− (5.12).

Note that if we do not consider leaf motion limitations then total number of feasible

treatment row arcs for each row is
(
1
2
(n+ 1)(n+ 2)

)K
. Hence, total number of feasible

treatment row arcs is m
(
1
2
(n+ 1)(n+ 2)

)K
, which is still very large, and the refor-

mulated problem is not tractable due to the exponential number of columns. We can

solve MLP by column generation starting with a restricted MLP (RMLP) model, which

includes a subset of feasible row arcs Z0
i for each row. We iteratively search for new

promising row arcs (columns for RMLP) by solving m pricing subproblems (PSPs).

Then, we change the new columns with negative reduced cost with the current ones.

RMLP:

min
K∑
k=1

muk +
T∑
t=1

Ct∑
c=1

γTVtc φTVtc +
O∑
o=1

Co∑
c=1

γOARoc φOARoc (6.5)

s.t.

(4.11)− (4.13), (4.15), (4.18)− (4.20),

(4.22)− (4.25), (4.27)− (4.28), (6.6)− (6.9),
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|Z0
i |∑

e=1

bei = 1 i = 1, . . . ,m (6.16)

− aijk + Umu

|Z0
i |∑

e=1

bei ẑ
e
ijk ≥ 0 i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K

(6.17)

aijk −muk − Umu

|Z0
i |∑

e=1

bei ẑ
e
ijk ≥ −Umu i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , K

(6.18)

b ∈ R
∑m

i=1 |Z0
i |

+ . (6.19)

Let λ̂i, β̂
1
ijk and β̂2

ijk be an optimal dual solution associated with constraints (6.16)–

(6.18). Then we have m subproblems (pricing subproblems (PSPs)) one for each row:

PSPi:

min − λ̂i − Umu

K∑
k=1

n∑
j=1

(β̂1
ijk − β̂2

ijk)zijk (6.20)

s.t.

rik − jzijk ≥ 1 j = 1, . . . , n; k = 1, . . . , K (6.21)

(n+ 1− j)zijk + lik ≤ n j = 1, . . . , n; k = 1, . . . , K (6.22)

rik − lik −
n∑
j=1

zijk = 1 k = 1, . . . , K (6.23)

li(k+1) − lik ≤ δ k = 1, . . . , K − 1 (6.24)

lik − li(k+1) ≤ δ k = 1, . . . , K − 1 (6.25)

ri(k+1) − rik ≤ δ k = 1, . . . , K − 1 (6.26)

rik − ri(k+1) ≤ δ k = 1, . . . , K − 1 (6.27)

l ∈ ZK+ ; r ∈ ZK+ ; z ∈ {0, 1}n×K . (6.28)

Note that Constraint (6.21)–Constraint (6.28) are similar to Constraint (4.2)–Constraint

(4.10) in Chapter 4, and generate a feasible treatment row arc for row i. Note also that

there is not a constraint similar to Constraint (4.1), which is omitted because of being
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redundant. Observe that all feasible treatment row arcs for each row i must satisfy con-

straint (6.12) in DMLP. When we start with RMLP that includes a subset of treatment

row arcs (columns) for each row i, then the corresponding dual problem includes only

the constraints corresponding to these columns. The remaining constraints associated

with the columns which are not generated are relaxed at an iteration. The objective

function (6.20) checks whether there is a violated constraint of row i and finds the one

with the maximum violation. In our algorithm, we solve the modified version of the

master problem (MP), which includes the new decision variables to allow deviation in

CVaR constraints, by BP method. At each node of the branch-and-bound tree column

generation is used to solve MLP. Each time after solving RMLP, we solve m PSPs

separately and introduce a new treatment row arc of row i to RMLP only if its reduced

cost is negative. On the other hand, if optimal objective value of each PSPi yields

nonnegative reduced cost, then the column generation iterations stop. Simply, we are

at an optimal solution of the MLP. If all bei variables are integer at the optimality (and

also deviations are zero) then we have also an optimal solution of MP and VMATP-1.

However, if at least one of them is fractional then we continue with branching and solve

the modified restricted models by column generation at the new branches.

6.2. Generating Columns by Solving Shortest Path Problems

We observe in our preliminary experiments that solving PSPs by using a com-

mercial MIP solver is inefficient. The variation of computation time between iterations

is high, and it may take too long to generate a column at some iterations. Thus we for-

mulate the pricing subproblems as shortest path problems similar to [56], [60] and [30].

We explain the shortest path problem formulation of PSP on a small example. Figure

6.2 illustrates the network representation of PSP1 for the first row of the problem given

in Figure 6.1. There are only three control points (K = 3) and three beamlets in a

row (n = 3). Note that the home positions of the leaves are j = 0 and j = 4 for the

left and right leaves, respectively. The beamlets that are blocked by the leaves are

dark gray, and open beamlets are shown as white rectangles. There are two additional

nodes in the figure: start and finish nodes. For each one of the control points there are
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Figure 6.2. Network representation of PSP1 for the first row of the treatment arc

given in Figure 6.1 (K = 3, n = 3).

(n+1)(n+2)
2

= 10 different leaf configurations. For example, the leaf configurations at the

top of the figure represent that both leaves are at their home positions and all beamlets

are open. Observe that at a control point there are four different combinations of the

leaves for closing all beamlets, since the left and the right leaves may be adjacent in

four different ways. Moreover, it is assumed that the leaves can move at most one

beamlet between consecutive control points (i.e. δ = 1). The leaf configurations at

each one of the control points represent the nodes. Also, an arc between two nodes

at two adjacent control points indicate that the maximum leaf movement limitations

are satisfied, namely these two consecutive leaf configurations are compatible. If the

new position of each one of the left and right leaves at the next control point is in its

allowable range then there is an arc. Thus, the arcs in the graph represent feasible

movements. Observe that the direction of the arcs point the rotation direction of the
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Figure 6.3. The treatment row arc obtained in Figure 6.2.

gantry and there are no arcs between any two nodes at the same control point. The

costs of an arc that connects two nodes at control points k and k + 1 is computed

as −Umu
∑j=r−1

j=l+1 (β̂1
ijk − β̂2

ijk). The cost of an arc that connects a node at the last

control point K and the finish node is −Umu
∑j=r−1

j=l+1 (β̂1
ijK − β̂2

ijK), and the cost of an

arc between the start node and a node at the first control point is zero. Our aim is to

find a path from the start node to the finish node with minimum cost. To sum up, we

obtain a directed, acyclic and layered graph consisting of K layers which correspond

to K control points. In each layer there are (n+1)(n+2)
2

nodes. If we assume that there

are no leaf motion limitations between adjacent control points then the total number

of arcs in the graph will be (K−1)
4

(n + 1)2(n + 2)2 + (n + 1)(n + 2). We solve this

problem using dynamic programming and the UB for the complexity of the algorithm

is O(Kn4), which is a polynomial. The optimal solution of this problem yields one of

the treatment row arcs with minimum reduced cost and if its reduced cost is negative,

then we add this resulting column to RMLP. For example, the shortest path given in

Figure 6.2 with solid lines indicates the treatment row arc illustrated in Figure 6.3. At

the first control point the left leaf is at its home position and the right leaf blocks the

second and third beamlets. Only the first beamlet is open. During the movement of the

gantry from the first control point to the second one, the left leaf moves one beamlet

to the right and blocks the first beamlet. On the other hand, the right leaf moves one

beamlet to the right and opens the second beamlet. Finally, during the travel of the

gantry from the second control point to the last one, the left leaf returns to its home

position and stops blocking the first beamlet. However, the right beamlet does not

move, and only the last beamlet is blocked. The reduced cost of this shortest path is

equal to −λ̂1 − Umu
(

(β̂1
111 − β̂2

111) + (β̂1
122 − β̂2

122) + (β̂1
113 − β̂2

113 + β̂1
123 − β̂2

123)
)

.
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The study of Boland et al. [30] is one of the leading papers that uses network

models in radiation therapy planning. They use their network model in their column

generation approach to solve MLS problem, which is the last phase of IMRT planning.

They decompose a given fluence map into a number of feasible apertures with radiation

intensities. They design their network in such a way that each layer corresponds to

a leaf pair. Therefore, there are as many layers as the number of rows of the fluence

map. At each layer the nodes represent the potential positions of the left and right

leaves satisfying the consecutive ones property. There are arcs between two nodes

at two adjacent layers if the leaf configurations at these rows satisfy interdigitation

constraints. Hence, a path in the network corresponds to an aperture, which is feasible

with respect to the consecutive ones property and interdigitation constraints. Mahnam

et al. [56] use a similar approach to generate a set of sequential apertures in VMAT

planning. They consider that a full treatment arc (i.e. a 360◦-arc) consists of a number

of sequential partial arcs with the same length (i.e. there are 18 20◦-arcs in a full

arc). Also, each of these partial arcs includes a number of equally spaced apertures

(i.e. 10 apertures with 2◦-spacing at a 20◦-arc). They can generate a partial arc, row

by row, using a network model since they consider only the consecutive ones property.

In their network model, the number of layers equals to the number of apertures in a

partial arc and the nodes represents the leaf configurations, which is similar to the

model of Boland et al. [30]. On the other hand, there is an arc between two nodes

at two consecutive layers if the corresponding leaf configurations satisfy leaf motion

limitations. After solving m subproblems by a shortest path algorithm, they take the

union of the resulting partial row arcs to obtain a partial arc. Also, they need to

join a number of partial arcs to obtain a full treatment arc, which necessitates a post-

optimization (i.e. the intersection points of adjacent partial arcs may be incompatible

due to leaf motion limitations). In our study, pricing subproblem generates a full row

arc, which is feasible with respect to leaf motion limitations. Hence, we do not need any

post-processing operation. Another difference is that the union of m row arcs yields a

feasible full treatment arc. Finally, our network design is similar to the one proposed in

Gözbaşı [60], which is used to solve VMAT planning problem in a two-stage heuristic

approach. They generate a feasible full treatment arc in the first stage where the costs
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of the arcs are calculated using a beamlet scoring algorithm. In the second stage, they

find radiation intensity of each one of the apertures in the treatment arc.

6.3. Branching

At the root node of the branch-and-bound tree if the optimal values of all bei

variables are integral then we are at an optimal solution of the problem. Otherwise,

we apply branching and solve the resulting restricted linear programming model at

each one of the branch-and-bound tree nodes. It is important to find a branching

strategy that prevents regenerating columns that are previously prohibited. Also, the

columns generated so far must be divided into two groups and it must be possible to

modify the PSP so that generating infeasible columns due to the branching constraints

is prevented. It is known that applying the ordinary variable branching (dichotomized

branching on a bei variable with fractional value) is not efficient [87]. Instead, we branch

on the original variables of VMATP-1; a beamlet with a fractional ẑijk value. Observe

that if the optimal solution of MLP at a node is not integer then for at least one row

i there must be at least two fractional bei variables. Thus, there must be at least one

beamlet with fractional ẑijk value. Observe that when there are two fractional variables

b1i and b2i in the current solution with columns z1
i and z2

i , respectively, then there must

be at least one beamlet (i, j, k) having value 1 in exactly one of these columns. As a

result, ẑijk = b1i ẑ
1
ijk + b2i ẑ

2
ijk becomes fractional. In our branching rule we choose one of

these fractional beamlets as the branching variable using a simple search mechanism.

For each control point k we first calculate the following ratio:
∑

(i,j) ẑijk∑
(i,j)
ẑijk>0

1
. Observe that

if there is at least one fractional beamlet, then this ratio is strictly between 0 and

1, and the corresponding aperture becomes fractional. Note that if all beamlets of

an aperture at a control point take only 0 or 1 value, then we do not consider this

control point. For each control point k with fractional aperture, we calculate the value

Υk = m̂uk

∑
(i,j) ẑijk∑
(i,j)
ẑijk>0

1

. Then we select the one with the highest Υk value and branch

on the beamlet at this control point that is fractional and closest to 1. Thus, we seek a

beamlet belonging to an aperture having high radiation intensity and low fractionality.

Let us denote the selected beamlet by zijk. We then obtain two child nodes: at one
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Figure 6.4. Branching rule.

of them beamlet (i, j, k) is open and at the other one it is closed. We illustrate the

branching rule in Figure 6.4.

In the first child node, we remove the respective arcs in the PSPi’s network model

that connect the nodes at control point k − 1 to the nodes at control point k where

the beamlet (i, j, k) is closed. Also, we set bei variables to 0 if the value of beamlet

(i, j, k) is 0 in the corresponding column. In the second child node, we remove all arcs

that connect the nodes at control point k − 1 to the nodes at control point k where

the beamlet (i, j, k) is open. Also we set all bei variables to 0 if beamlet (i, j, k) takes

value 1 in the corresponding columns. Note that, at each branching we use only one

beamlet (i, j, k) that belongs to one row (ith row), thus we partition only the columns

associated with row i. Furthermore, at each node the PSPs are modified taking into

account all branching decisions leading to the current node.

6.4. Initial Set of Columns

We generate m initial columns at the beginning of the BP algorithm by solving

the following model

min
K∑
k=1

muk (4.29)

s.t.

(4.2)− (4.13), (4.16), (4.18), (4.20),

K∑
k=1

m∑
i=1

n∑
j=1

aijkDijkv ≥ LTVt t = 1, . . . , T ; v ∈ V TV
t , (5.20)
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which includes all geometry constraints and valid inequalities (4.16) and (4.18). We

observe that if a treatment arc consists of K apertures unable to deliver enough radi-

ation to satisfy lower limits of voxels in each TV, then this treatment arc cannot yield

a feasible solution for VMATP-1. In other words, a treatment arc must satisfy that

each target voxel absorbs radiation at least the prescribed lower limit (i.e. LTVt ). Thus,

we generate the initial set of m columns by considering this observation and avoiding

such infeasible treatment arcs. Optimal solution of the model given above yields K

aperture shapes, namely all zijk values. Hence, for each row i we obtain a treatment

row arc and use them to construct initial RMLP model. The initial treatment arc

can yield a feasible solution for VMATP-1, namely the resulting RMLP may provide

a solution that satisfies all prescription radiation doses. As a result, we obtain an UB

since we start with only one column for each row and all b1i values are 1 (i = 1, ...,m).

However, this is not always the case, and to resolve this problem we add one artifi-

cial variable (φTVtc , φOARoc ) for each one of the constraints (6.6) and (6.7), and penalize

them in the objective function. We keep these artificial variables at all nodes of the

branch-and-bound tree and the infeasibility of RMLP is almost completely removed.

Note that there are also full volume constraints in RMLP associated with target voxels

(constraints (4.24) and (4.25)). The initial columns generated by the formulation given

above guarantee that constraints (4.24) are satisfied at root node. However, RMLP

may not satisfy constraints (4.25), or at successor nodes it may be infeasible due to

the branching constraints that cause absence of relevant columns to satisfy constraints

(4.24). This case is rarely encountered, yet we resort to Farkas Pricing as explained

by Lübbecke [84] in detail. Also, the details of initialization using artificial variables is

explained by Vanderbeck [85].

6.5. Lower Bounds

Column generation methods often suffer from the tailing off effect : at initial

iterations a near optimal solution is reached quickly but in the following iterations the

improvement in the objective value becomes very small and the algorithm terminates

in very long time [88]. We also experience this effect; it takes very long to prove
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optimality and terminate column generation iterations at each node of the branch-

and-bound tree. As a remedy, we adapt and solve at each node the RVMATP model

given in Section 5.2.5, which is a relaxation of VMATP-1 model and does not include

geometry constraints. If it is possible, we update the LB of the current search node.

Note that, since we branch on zijk variables and in each branch we set one of them

to 0 or 1, it is possible to adjust RVMATP by setting each one of the aijk variables

associated with the branching decisions that leads to the current node to either muk or

0. Moreover, during the column generation iterations, we update the LB if the optimal

value of RMLP and sum of the optimal values of all PSPs is larger than the current LB.

Finally, we use depth-first search as node selection strategy. The flow of the resulting

algorithm, which we call Branch-and-price (BP) Algorithm 1, is given in Figure 6.5.

6.6. Algorithmic Improvements

We modify BP Algorithm 1 and obtain two enhancements, which we call BP

Algorithm 2 and BP Algorithm 3. In BP Algorithm 2, at root node before branching,

we solve the resulting restricted MP including columns generated so far as a MILP

model. We update UB if the resulting solution is better than the incumbent.

According to the preliminary experiments we observe that the necessary time to

solve the model given in Section 6.4, which generates the initial columns, increases as

the size of the problem becomes larger. Moreover, it becomes impossible to solve it

optimally within the given time limit. Thus, we simplify this part of the algorithm in

BP Algorithm 3. The initial columns are generated by solving a different model that

consists of only the geometry constraints and a different objective function:

max
K∑
k=1

m∑
i=1

n∑
j=1

zijk (6.29)

s.t.

(4.2)− (4.10).
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Figure 6.5. Branch-and-Price Algorithm 1.
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An optimal solution of this model gives a full treatment arc with maximum total

number of open beamlets that satisfies geometry constraints. Similar to BP Algorithm

2, a better feasible solution for VMATP-1 is sought at the root node. Instead of

generating all promising columns before branching, each subproblem is solved only

once and the resulting restricted MP is solved as a MILP model.
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7. TWO-PHASE HEURISTIC 4

VMATP-1 model optimizes simultaneously aperture shapes and radiation inten-

sities at control points. It includes CVaR constraints for partial volume restrictions of

all structures, and all treatment dose prescriptions are satisfied by the constraints as a

result. In short, VMATP-1 seeks an optimal VMAT plan with minimum MUs, which

is capable to handle many aspects of the complex decision process behind VMAT plan-

ning. However, this makes it computationally very difficult to solve exactly in order to

generate optimal plans for realistic clinical cases with many OARs. In this chapter we

try to address this issue and propose an efficient two-phase heuristic using the algo-

rithmic ideas, such as column generation, we employ in Chapter 6 for the development

of a BP exact solution algorithm.

In the first phase, we generate an initial full treatment arc using a two-step

approach and calibrate the right hand side values of the CVaR constraints, simultane-

ously. In the second phase, we improve the initial treatment plan obtained in the first

phase using column generation that we explain all necessary derivations in Chapter

6 such as the reformulation of VMATP-1, and pricing subproblem (PSP) formulation

and solution by a shortest path algorithm. We test our heuristic on real prostate cancer

patient cases provided by Istanbul University Oncology Institute. The results of the

computational experiments and clinical comparisons are provided in Section 8.5.

7.1. Phase 1: Initial Column Generation

At the beginning there is exactly one column (one row arc) for each row i in

the initial column pool to formulate RMLP. Their union yields a full treatment arc

consisting of K apertures (one aperture per control point). We apply a simple heuristic

consisting of two steps to generate these initial columns. At the first step a number of

fluence maps with additional properties are generated by solving a linear programming

model, and in the second step using a simple fluence map conversion algorithm a full

4An earlier version of this chapter is under revision at Physics in Medicine and Biology.
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treatment arc, which yields a column per each row, is constructed. These two steps

constitute the first phase of our two-phase heuristic. This initial full arc is modified in

the second phase during the column generation iterations in order to obtain a better

treatment plan, so it is very important to start with good columns.

7.1.1. Step 1: Fluence Map Generation

The LP model that we solve in the first step is derived from VMATP-1 and

includes only a subset of the original control points and constraints. Note that, as

in this study, K is generally taken 180 in VMAT planning studies (i.e. 180 equally

spaced beam angles with 2◦-spacing). The LP model, namely the modified VMATP-1

(M-VMATP) includes 45 control points with 8◦-spacing. We let K denote this subset

of control points. We introduce one artificial variable for each CVaR constraint of

all OARs to M-VMATP, and penalize the positive deviations in the objective func-

tion. We allow these deviations not only because M-VMATP includes only a subset

of control points but also because at the beginning CVaR constraints consisting of the

original tolerance doses are very tight. Thus, finding a treatment plan which satisfies

all treatment dose prescriptions is not easy. M-VMATP is formulated as follows:

M-VMATP:

min
∑
k∈K

muk +
O∑
o=1

Co∑
c=1

γOARoc φOARoc (7.1)

s.t.

(4.19), (4.21)− (4.25),

(4.27)− (4.28), (6.7), (6.9)

aijk ≤ muk i = 1, . . . ,m; j = 1, . . . , n; k ∈ K (7.2)

dv −
m∑
i=1

n∑
j=1

∑
k∈K

Dijkvaijk = 0 v ∈ V (7.3)

muk ≥ Lmu k ∈ K (7.4)

muk ≤ Umu k ∈ K (7.5)
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mu ∈ R|K|+ ; a ∈ Rm×n×|K|
+ . (7.6)

Solving this modified model has similarities with FMO in IMRT planning. M-

VMATP finds a number of fluence maps for some of the control points in K, which

we denote as K. Notice that K ⊆ K ⊂ K. However, K, the set of control points

with positive intensities, is not determined in advance; M-VMATP model finds it.

Also, the intensities of the beamlets of a fluence map are bounded from above with

radiation intensity at this control point (muk). Observe that if there is no beamlet

with positive intensity at control point k then muk value will be 0, since total radiation

intensity is minimized in the objective function. Furthermore, in this step, in addition

to generating fluence maps we also tune the parameters UOAR
oc of CVaR constraints of

OARs to obtain more reasonable feasible treatment plans. In a loop, we increase the

tolerance dose UOAR
oc by a small value if the difference between the radiation dose that

the corresponding volume of OAR o receives and the original tolerance dose is at least

a certain amount, and resolve M-VMATP model until there remains no parameter to

increase. At the end of this loop, if there is a CVaR constraint with positive deviation

we increase its right hand side parameter by the amount of deviation. We use the

resulting tuned parameters throughout the entire algorithm.

7.1.2. Tuning of CVaR Constraints

The main advantage of using CVaR constraints is that it allows modeling of dose-

volume requirements as linear inequalities. However, we observe that CVaR constraints

with original parameters are very conservative and it is challenging to apply this ap-

proach in radiation therapy planning, which is also indicated in [24] and [89]. Let us

consider a CVaR constraint defined for an OAR. It forces the average dose in the upper

tail of the dose distribution of the OAR to be at most its tolerance dose. However,

it is sufficient that the left end (i.e. VaR) of the tail does not exceed this tolerance

dose [89]. In order to alleviate this problem we tune the right hand side values, i.e.

UOAR
oc of the CVaR constraints of OARs. We change these parameters in such a way

that the resulting ones continue to produce treatment plans satisfying clinical prescrip-



70

tion doses. In particular, we solve M-VMATP and check whether the VaR values are

too small than the corresponding bounds; if they are, we update the right hand sides

of the constraints. In each iteration we do this operation for all OARs, after that we

resolve M-VMATP. We continue until there is no CVaR constraint that we can update.

The pseudo code of this parameter tuning procedure is given in Figure 7.1. Note that

it is not appropriate to use the same right hand side values for all patients due to the

anatomical differences between them. Thus, it is convenient to use such an adaptive

procedure for tuning the right hand side values for each patient.

ε1, ε2, counter = 0

while true do

update and solve M-VMATP

for each o in OARs and c in Co do

if ξOARoc < UOAR
oc − ε1 then

UOAR
oc ← UOAR

oc + ε2

counter ← counter+1

end if

end for

if counter = 0 then

break

else

counter = 0

end if

end while

for each o in OARs and c in Co do

if φOARoc > 0 then

UOAR
oc ← UOAR

oc + φOARoc

end if

end for

Figure 7.1. CVaR parameter tuning.
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7.1.3. Step 2: Conversion Algorithm

In the second step we derive a number of apertures (at most three) from each one

of the fluence maps obtained in the first step using a conversion algorithm. Clearly, in

a fluence map, the beamlets with positive radiation intensity do not have to satisfy the

consecutive ones property, also their intensities may differ from each other. We assume

that all beamlets with positive intensity are open. Our conversion algorithm seeks at

most three feasible apertures to cover the open beamlets as much as possible. If all

open beamlets of all rows are consecutive in a fluence map at control point k, then we

generate only one aperture and fix it at k. If there are at most two open beamlet chains

at each row than we generate two different apertures and sequence them on to control

points k and k + 2. Otherwise, if there are rows with more than two open beamlet

chains than we generate three different apertures and sequence them on to control

points on to k, k + 1, and k + 2. There are two important details in the generation

of these apertures. First, an aperture must be compatible with the fixed ones at the

adjacent control points. Namely, the leaf motion limitations must be satisfied. If a

row of an aperture is not compatible with the adjacent ones we close all beamlets in

this row. The second point is that we first fix the aperture at k, and then k + 2. If

there is a third aperture, finally we fix it at k + 1. After sequencing all apertures on

to a subset of K, we fill the missing control points in such a way that the number of

open beamlets in the resulting arc is maximum. Namely, we open all the beamlets as

long as they are compatible with the ones at fixed apertures. Thus, we obtain a full

treatment arc (consisting of K sequential apertures) to construct RMLP. The pseudo

code of this conversion algorithm is given in Figure 7.2.

The first two rows of Figure 7.3 illustrates the conversion of a fluence map at

the fifth control point (gantry angle 8◦) into three apertures and their sequencing.

The fluence map is decomposed into three apertures. The rows of the aperture at

k=5 are the first consecutive beamlet chains from the left part of the fluence map. If

there is more than one open beamlet chain at any row then we need another aperture

to complete the fluence map. The aperture at control point 7 consists of the first

open beamlet chains of the rows from the right. Finally, at control point 6, there is
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Input: a number of fluence maps

Output: a full treatment arc

for fluence map at control point k ∈ K do

for row i = 1, . . . ,m do

if all beamlets with positive intensity are consecutive then

generate a row with one open beamlet chain and if it is compatible with the

previous control points in K then fix it at row i at control point k, else close all

beamlets

else

generate a row including the first open beamlet chain from the left and if it is

compatible with the previous control points in K then fix it at row i at control

point k, else close all beamlets; and generate a row including the first open

beamlet chain from the right and if it is compatible with previous control points

in K then fix it at row i at control point k + 2, else close all beamlets

end if

end for

end for

for fluence map at control point k ∈ K do

for row i = 1, . . . ,m do

if there are more than two positive beamlet chains then

generate a row including the second open beamlet chain from the left and if it is

compatible with control points k and k + 2 then fix it at row i of control point

k + 1

end if

end for

if at least one row is fixed at control point k + 1 then

find compatible apertures for control point k + 1 with minimum number of open

beamlets

end if

end for

find compatible apertures with maximum open beamlets for the control points without

any fixed rows

Figure 7.2. Conversion Algorithm.
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Figure 7.3. Initial treatment arc generation.

an aperture with one beamlet at the second row, since there are three open beamlet

chains at the second row of the fluence map. Also, there is an open beamlet at the

third row in order to make the apertures at control points 5 and 6 compatible (i.e.

satisfying leaf motion limitations). At the last row of the figure, the part of the full

treatment arc between 8◦ and 16◦ is shown where δ = 2.

7.2. Phase 2: Improvement of the Existing Treatment Plan by Column

Generation

Generally, as in the root node of the BP algorithms in Section 6, in each iteration

of the column generation method a new promising column is obtained and added to the

master problem, which is then solved with a larger column pool. At the optimality of

MLP, if all decision variables associated with the columns are integer then an optimal

solution of the original integer programming problem is obtained. However, this is a

rare situation and generally optimal values of these variables are fractional, which does

not provide a feasible solution for the original model.
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In order to resolve this problem, at the beginning we generate only one column

for each row i for the initial column pool. Hence, there is only one b1i variable for

each row and at the optimality of the initial RMLP they are set to 1. Namely, the

first optimal solution yields a full treatment arc that is feasible in terms of geometry

constraints of the MLC system and the linear accelerator. Moreover, each time a new

promising row arc is generated we replace the current one with this new arc to ensure

that there remains exactly one column for each row i in the column pool (i.e. the size

of the column pool for each row |Z0
i | = 1). Note that replacing an existing column with

a new one may worsen the objective function value. The reason is that the new column

is not guaranteed to improve the objective function value in the absence of the existing

set of columns. We employ a specialized column generation strategy to ensure that

the objective function value does not worsen in subsequent iterations of our algorithm.

We first observe that often a subset of control points has positive radiation intensity

(i.e. muk > 0) in an optimal solution of RMLP, whereas radiation intensity values

associated with the remaining control points are zero. Based on this observation, our

column generation strategy ensures that leaf positions corresponding to control points

having muk > 0 are kept constant between successive iterations. This strategy ensures

that the previous solution stays feasible with respect to the new set of columns, and

therefore the objective function value does not deteriorate in successive iterations. For

this reason, each time after solving RLMP, we modify each one of m PSPs in such

a way that the leaf positions at the control points with positive radiation intensities

remain the same as the positions in the previously generated column. We fix the leaf

positions at the corresponding control points by removing the other nodes representing

the other leaf configurations when we solve the associated PSP. In each iteration we

update the additional constraints that are necessary for fixing the leaf positions.

To summarize, the new two-phase heuristic starts by generating initial columns

to construct RMLP in the first phase that includes two steps: solving M-VMATP to

obtain a number of fluence maps, and generating a full treatment arc from these fluence

maps by applying the conversion algorithm. Initially there is only one column for each

row i at RMLP, and they are improved during the column generation iterations in the

second phase. The flow diagram of the resulting heuristic is given in Figure 7.4.
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Figure 7.4. Flow diagram of the VMAT planning heuristic.
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8. COMPUTATIONAL EXPERIMENTS

In this chapter we give the computational experiments for the evaluation of

VMATP models as well as the performance of the algorithms that we have explained in

the previous chapters. As can be seen easily there are two different test environments.

The first one, is used to compare VMATP models introduced in Chapter 4, and to test

the performance of Benders decomposition and BP algorithms explained respectively

in Chapter 5 and Chapter 6. The second test environment includes nine real prostate

data sets used in the computational experiments for the two-phase column generation

based heuristic.

8.1. Test Environments

8.1.1. The First Test Environment

We use a real data set belonging to an anonymous prostate cancer patient pro-

vided by Craft et al. [90] in common optimization for radiation therapy (CORT)

datasets [17] in order to evaluate VMATP formulations, and to test Benders decompo-

sition and BP algorithms, respectively. In this section we define the test bed and the

treatment parameters that we use in the computational experiments.

The dose influence matrices for 180 equally spaced control points (i.e. K = 180) in

units of Gy per MU are provided in the original prostate data set. There are 690,373

voxels of size 3 mm3 containing 9 defined structures and the remaining part of the

body. The defined structures include 2 planning target volumes (PTV68 and PTV56)

with different prescription doses and 5 OARs (rectum, bladder, penile bulb (PB), left

femoral head, right femoral head). Since the original problem is intractable due to its

size, we reduce the size of the problem by randomly selecting a number of voxels from

each one of the structures as listed in Table 8.1 and Table 8.2. Also, we reduce total

number of structures by assuming that there is only one OAR (union of five OARs) and

we consider only PTV68. Note that Table 8.1 and Table 8.2 only contain number of
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voxels in the structures we consider in the computational experiments. As an example,

600 voxels are selected from PTV68 to form an instance with 1301 voxels, and the

remaining ones are selected from the OARs (120 voxels from rectum, 240 voxels from

bladder, 101 voxels from penile bulb, and 120 voxels from each one of the femoral

heads). We derive 18 data sets with different total voxel sizes, where each data set

has 5 instances generated using a different random number sequence (i.e. there are 90

instances in total). Initially, we generate the first 45 instances (including 9 data sets

with 22 voxels to 1301 voxels) and use them to evaluate two VMATP formulations.

Then we increase the size of the data sets to 11 (i.e. 55 instances in total) while testing

the performance of the Benders decomposition algorithms. Finally, we enlarge the test

bed by adding 7 new data sets including new, larger 35 instances, and use them to test

the performance of the BP algorithms. We divide the data sets into four groups: small

(with 22-220 voxels), medium (with 660-1701 voxels), large (with 1901-2901 voxels),

and very large (with 3401 and 4501 voxels). Note that we randomly select voxels from

the OARs, and they do not belong to any intersection of the structures.

Table 8.1. Small and medium data sets.

Structure Voxel Small Medium

PTV68 6770 10 20 30 40 100 300 400 500 600 700 800

Rectum 1764 2 4 6 8 20 60 80 100 120 140 160

Bladder 11596 4 8 12 16 40 120 160 200 240 280 320

PB 101 2 4 6 8 20 60 80 100 101 101 101

Lt F 5857 2 4 6 8 20 60 80 100 120 140 160

Rt F 5974 2 4 6 8 20 60 80 100 120 140 160

TOTAL 32062 22 44 66 88 220 660 880 1100 1301 1501 1701

In the real data set there are 25 404 beamlets with size 1 cm2. In VMAT planning,

the continuous dose delivery is discretized over a finite number of control points and it

is assumed that radiation delivery only occurs at the control points. This assumption is

reasonable when there is a large number of control points with typically 2◦-spacing [54,

56]. Moreover, Otto [12] indicates that poor sampling of control points and MLC leaf

positions can degrade the plan accuracy. Thus, this results in unacceptable dosimetric
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error. Hence, beamlet grid and control points are kept as they are in the original

data set. There are no dose absorption values for the beamlets that do not belong to

beam’s eye view (BEV) at control points; hence we assume that they are closed during

the rotation. Also, we assume that the MLC system has 13 rows and 16 columns

(m = 13, n = 16), since this size is enough to cover all beamlets having dose absorption

information. The data sets and a detailed description file are publicly available on our

website [91].

Table 8.2. Large and very large data sets.

Structure Voxel Large Very Large

PTV68 6770 900 1000 1100 1300 1500 1650 2200

Rectum 1764 180 200 220 240 260 330 440

Bladder 11596 360 400 440 480 520 660 880

PB 101 101 101 101 101 101 101 101

Lt F 5857 180 200 220 240 260 330 440

Rt F 5974 180 200 220 240 260 330 440

TOTAL 32062 1901 2101 2301 2601 2901 3401 4501

In all computational experiments we assume that there is only one co-planar arc

in VMAT treatment and the gantry completes a tour in 3 minutes with constant speed.

The maximum dose rate of a typical linear accelerator is approximately 600 MUs per

minute, which we also use in our experiments. There are 180 control points, and thus

at each one of them the gantry delivers radiation for at most 1 second. As a result the

maximum radiation dose intensity Umu is set to 10 MUs. A leaf can approximately

move 2.5 cm per second at maximum, thus we assume that the value of δ is 2, namely

a leaf can move at most two beamlets between consecutive control points. There are

one PTV and one OAR in the experiments and each one has only one partial volume

constraint. Namely, T and O parameters, and also Ct and Co parameters equal to

1. αOAR11 and αTV11 are set to 0.40 and 0.95, respectively. It is assumed that there

are 34 fractions in the treatment and in each one the prescribed dose for PTV68 d11

is 2 Gy (i.e. 68 Gy in total). Upper and lower bounds on the amount of radiation

dose absorbed by a voxel in PTV68, UTV
1 and LTV1 , are set to 2.14 Gy and 1.9 Gy
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per fraction, respectively (i.e. total values for 34 fractions are 72.76 Gy and 64.6 Gy).

Finally the tolerance dose for OAR UOAR
11 is set to 1.47 Gy per fraction (i.e. 50 Gy in

total).

8.1.2. The Second Test Environment

We generate VMAT plans by solving our two-phase column generation based

heuristic algorithm, which is given in Chapter 7, for nine prostate cancer patients

treated in Istanbul University Oncology Institute. The institute is one of the largest

and oldest cancer research centers in Turkey, and an average of 5,000 new patients apply

annually, and 60,000 patients are called for follow-up and control. Every day around

120-150 patients undergo radiotherapy and 90-100 patients receive chemotherapy. They

provided us a number of CT images with 2.5 mm spacing and a radiation therapy

(RT) structure set of each one of the patients in digital imaging and communications

in medicine (DICOM) format [92]. There are two PTVs with different prescription

doses (75.6 Gy and 56 Gy in 36 fractions, respectively) and 5 OARs (rectum, bladder,

penile bulb, left and right femoral heads) in each case (i.e. T = 2 and O = 5).

Istanbul University Oncology Institute currently uses a commercial software called

Varian Eclipse Treatment Planning System (TPS) v.15.6 [93] that uses AAA algo-

rithm [22], which is embedded into the TPS, to calculate the dose-influence matrices.

It is not possible to export these matrices, hence we compute them for a 6 megavolt

(MV) photon energy using an open-source radiation TPS called matRad [94]. We set

the voxel resolution to 5 mm3 and bixel resolution to 1 cm2 during the DICOM import

in matRad. We list total number of voxels in each structure of all patients in Table

8.3. It uses a singular value decomposed pencil beam algorithm to accomplish photon

dose calculation [95]. The couch angle is selected 0◦ for all patients and dose-influence

matrices are computed for 180 evenly spaced control points with 2◦-spacing are com-

puted. Then, we scale the dose-influence matrices in such a way that the absorbed

dose of 1 cGy/MU is delivered at 100 cm source-to-axis distance (SAD) at 5 cm depth

with field size 10 cm × 10 cm. Thus, we divide original dose-influence matrices by the

parameter 100 to obtain Gy/MU values. In other words, they are scaled such that a



80

weight of 1 is equivalent to 100 MU. We also validate this scaling parameter on a water

equivalent phantom provided by Istanbul University Oncology Institute. In Appendix

B dose calculation steps in matRad and the details of validation process are provided.

Note that, matRad’s dose calculation is restricted to the projection of the target onto

the BEV at each control point. Thus, for each case, we determine the smallest MLC

system size (i.e. value of m and n in Table 8.3) that includes all beamlets in the

matrices provided by matRad.

Table 8.3. Properties of the prostate cancer data sets.

Number of voxels of size 5 mm3

Patient m n PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F TOTAL

P1 11 13 890 676 436 2836 58 1559 1476 7931

P2 9 13 1127 230 743 1567 20 923 953 5563

P3 9 13 1000 218 886 1915 53 1728 1791 7591

P4 9 13 889 407 736 2026 51 1653 1610 7372

P5 8 13 1056 346 632 755 90 2025 1845 6749

P6 12 9 1198 383 1035 4649 43 1300 1255 9863

P7 8 11 606 157 402 2911 67 1428 1495 7066

P8 9 9 699 213 757 4814 34 1827 1774 10118

P9 10 13 1971 219 753 1209 36 1630 1684 7502

Istanbul University Oncology Institute uses Varian’s RapidArc technology to de-

liver VMAT plans. The MLC system of the linear accelerator consists of 120 leaves,

which are 0.5 cm thick at the isocenter for the central 20 cm, and 1 cm in the outer

2× 10 cm. The maximum leaf speed is 2.5 cm/second and the dose rate can be 0-600

MU/minute. We set the associated parameters in our algorithm alignment with these

properties of the system. We assume that the gantry rotates at a constant rate and

completes a tour in 6 minutes. There is single co-planar treatment arc, thus delivery

time of each plan is 6 minutes. The gantry moves from one control point to the consec-

utive one in 2 seconds, thus we set δ = 5 beamlets. Moreover, the maximum radiation

intensity is 20 MUs since it is assumed that the radiation delivery lasts 2 seconds at a

control point.
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Table 8.4 lists all structure dose constraints used for prostate radiation therapy

optimization at Istanbul University Oncology Institute in accordance with the recom-

mendation of Buyyounouski et al. [96]. There are two partial volume constraints for

each one of rectum and bladder (i.e. Co parameter is 2 for each one of these OARs), and

for the remaining structures there is only one constraint (i.e. Ct parameter for target

volumes and Co parameter for the remaining OARs is set to 1). We should note that

there are conflicting dose-volume constraint suggestions for the penile bulb (PB) in the

literature. First, Buyyounouski et al. [96] determine the dose prescription for PB as

D%90 ≤ 15 Gy based on [97], where they study the effect of dose restrictions for erectile

tissues on prostate coverage and rectal sparing and are able to limit the PB D%90 to 15

Gy in 80% of men. Emami [98] and Roach III et al. [99] explain that it is prudent to

keep the mean dose to entire or 95% of the volume at most 50 Gy, respectively, to avoid

erectile dysfunction. It is stated in [99] that it may also be careful to limit the D%70

and D%90 to 70 Gy and 50 Gy, respectively, without compromising planning target

volume coverage. On the other hand as reported in [100], PB dose is not associated

with erectile dysfunction. Moreover, the oncologists and medical physicists at Istanbul

University Oncology Institute indicate that the dose prescription D%90 ≤ 15 Gy for PB

is very tight, and it is possible to approve a treatment plan when it does not satisfy this

constraint unless the deviation from 15 Gy is excessive. We use the constraints given

in Table 8.4 and aim to deliver 75.6 Gy in 36 fractions (2.1 Gy per fraction). Table

8.4 also includes the corresponding ratios of all volumes used to formulate VMATP-1

model. Also, the values of dtc and UOAR
oc are set to the dose amounts prescribed for

one fraction. As for the remaining parameters, lower and upper bound dose limits for

PTV75.6 are selected as to 84 Gy (2.334 Gy per fraction) and 67 Gy (1.861 Gy per

fraction), respectively. Also, we set the upper bound dose limit for PTV56 to 72 Gy

(2 Gy per fraction).

Finally, a TV t may invade an OAR o, namely there may be a set of voxels in

an OAR o which also belong to a TV. In such a case the overlap region is considered

to belong to the TV t and the CVaR constraint is reformulated for the rest of OAR o.

However, the entire OAR must satisfy the associated dose constraint according to the

clinical guidelines, so we adjust αOARoc parameter in the CVaR constraint as described
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Table 8.4. Dose-volume constraints used at Istanbul University Oncology Institute.

Structure Dx%
∗ Dose (in 36 fractions) Ratio of volume

PTV75.6 D95% 75.6 Gy αPTV11 = 0.95

R-PTV56 D95% 56 Gy αPTV21 = 0.95

Rectum D35% ≤ 40 Gy αOAR11 = 0.65

D17% ≤ 65 Gy αOAR12 = 0.83

Bladder D50% ≤ 40 Gy αOAR21 = 0.50

D25% ≤ 65 Gy αOAR22 = 0.75

PB D90% ≤ 15 Gy αOAR31 = 0.10

Lt F D10% ≤ 50 Gy αOAR41 = 0.90

Rt F D10% ≤ 50 Gy αOAR51 = 0.90

Dx%
∗ : the minimum dose received by x% of the structure.

in [24] to meet this requirement. Let R-OAR stands for the rest of the corresponding

OAR, then we use

αR−OARoc = 1− (1− αOARoc )|V OAR
o | − |V OAR

o \ V R−OAR
o |

|V R−OAR
o |

,

instead of αOARoc . Clearly, if the set of voxels belonging also a TV is not empty, i.e.

|V OAR
o \ V R−OAR

o | 6= 0, then αR−OARoc > αOARoc (i.e. the resulting ratio αR−OARoc yields a

tighter constraint). Also, if αR−OARoc |V R−OAR
o | voxels satisfy the dose constraint in R-

OAR then αOARoc |V OAR
o | voxels of the entire OAR also satisfy the constraint. Similarly,

if a voxel belongs to more than one TV, it is considered only in the one with the highest

prescription dose. Data sets provided by Istanbul University Oncology Institute include

the rest of a structure if there is an intersection with this structure and a PTV. The

rest of the structure is obtained by subtracting all voxels in the PTV with a margin of

2-3 mm.

8.2. Evaluation of the Formulations

We implement VMATP-1 and VMATP-2 models in Python 2.7 programming

language [101] and use Gurobi 6.5 solver [102] running on a computer with Windows
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Server 2012 R2 Standard 64-bit PC having 2.00 GHz Intel Xeon CPU, 46 GB RAM.

We set time limit to 1800 seconds for both models and only one thread is used in

computations.

Table 8.5. Summary of the computational results for VMATP formulations.

VMATP-1 VMATP-2

SAMPLE GAP CPU S/T O/T GAP CPU S/T O/T

22 0.00 61.8 5/5 5/5 0.00 377.5 5/5 5/5

44 0.00 65.9 5/5 5/5 0.00 407.9 5/5 5/5

66 0.04 501.0 5/5 4/5 0.02 897.5 5/5 4/5

88 0.00 118.1 5/5 5/5 0.00 646.1 5/5 5/5

220 0.00 1224.0 5/5 4/5 0.00 1036.6 5/5 4/5

660 20.00 1656.3 4/5 4/5 100 1800 0/5 0/5

880 60.03 1800 2/5 0/5 100 1800 0/5 0/5

1100 80.00 1675.7 1/5 1/5 100 1800 0/5 0/5

1301 100 1800 0/5 0/5 100 1800 0/5 0/5

Avg/Sum 29.90 989.2 32/45 28/45 44.45 1174.0 25/45 23/45

In Table 8.5 we give the summary of the computational results that includes

average optimality gaps (%), central processing unit (CPU) times (seconds), total

number of instances that the corresponding model can find a feasible solution (S/T)

and can solve optimally (O/T) out of total instances. There are 9 data sets including

45 instances with at most 1301 voxels. Note that 0 is a valid LB for the objective

function, total MUs of the treatment, since the amount of radiation intensity at each

control point is nonnegative. Similarly, 1800 MUs is a valid UB since the radiation

intensity at a control point can be at most 10 MUs. Whenever a method can find

neither a feasible solution nor a LB for an instance, we calculate the optimality gap as

100% using these bounds. Detailed results including lower and upper bounds (in MU),

optimality gap (%) and CPU time (in second) of each instance can be found in Table

8.6.

According to the average results, both models can provide an UB for all instances

in small size data sets (with 22-220 voxels) and they can solve 23 out of 25 instances
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optimally in 1800 seconds. For the larger data sets VMATP-1 outperforms VMATP-2

in all performance measures. It can find an UB for 7 out of 20 instances (i.e. it solves

5 out of 7 instances optimally), however VMATP-2 cannot provide a feasible solution

for any of these instances. Since our aim is to increase the problem sizes and develop

an algorithm that can solve clinical size of problems, we develop solution algorithms

for VMATP-1 model.

8.3. Computational Results for Benders Decomposition Algorithms

We implement all Benders decomposition algorithms and VMATP-1 model in

Python 2.7 programming language [101] and use Gurobi 6.5 solver [102] running on a

computer with Windows Server 2012 R2 Standard 64-bit PC with 2.00 GHz Intel Xeon

CPU, 46 GB RAM. We solve VMATP-1 model by Gurobi, naive Benders algorithm,

and the two improved Benders algorithms for all instances in small and medium size

data sets. We set the CPU time limit to 3600 seconds in all experiments and execute

all algorithms on one thread in order to keep the conditions the same and to be able to

compare the performances of them. We change the default method for the RVMATP

and AP models in improved Benders algorithms and solve them by the barrier algorithm

[103]. Also we set the “MIPFocus” parameter value of the master model in all Benders

algorithms to 3 to focus on the bound. We execute Gurobi solver with the default

settings and do not perform any parameter tuning while solving VMATP-1.

Table 8.7 summarizes the computational results; it includes the average optimal-

ity gap (%) and the average CPU time (in second) of five instances of each size. Similar

to the results in Table 8.5 in previous section, the column with title “S/T” and “O/T”

show the number of instances that the corresponding method finds a feasible solution

and solves optimally out of total instances, respectively. Also, we set the optimality

gap to 100% whenever a method can find neither a feasible solution nor a LB for an

instance. In addition, whenever a method cannot provide an UB for a test instance

we calculate the optimality gap by setting its UB to 1800. Note that the UB on the

objective value is 1800 MUs since total number of control points is 180 and it is possi-

ble to send 10 MUs radiation at each one of them. Detailed results including bounds,
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optimality gap and CPU time of each instance can be found in Table 8.8.

According to the results naive Benders decomposition fails in both performance

measures compared to others. It can only find a feasible solution with high total radia-

tion for some instances. For all instances the LB remains at zero level, which results in

100% optimality gap. On the other hand, Gurobi outperforms naive and improved Ben-

ders algorithms in both performance measures when the size of instances are small (i.e.

total number of voxels is less than or equal to 220). Note that the difference between

the average optimality gaps obtained by Gurobi and Improved Benders Algorithm 2

is not significant. As the problem size increases Gurobi cannot find a feasible solution

for some of the instances within the given time limit. For example, it can compute a

feasible solution only two out of five instances having 880 voxels to optimality, but it

can neither find a feasible solution nor a LB for the remaining three instances. On the

other hand, improved Benders algorithms can find feasible solutions with small aver-

age optimality gaps (3.12% and 3.23%, respectively) for all instances, which indicates

that a high-quality plan is found for each one of them. Furthermore, for only one of

them (out of five) with size 1501 voxels, the improved Benders algorithms cannot find

a feasible solution.

When we compare improved Benders algorithms, we observe that finding a better

LB by solving the relaxation (RVMATP) and also introducing the initial optimality cut

derived from an optimal solution of LPVMATP improves the performance of Benders

algorithm. The CPU times are similar and neither one outperforms the other. However,

optimality gaps decrease in almost all problems in the Improved Benders Algorithm

2. For instance, the average gap is 13.59% for the problem having 1701 voxels and

decreases down to 0.49%. The reason is that in almost all instances the LB is close to

the optimal objective value in the Improved Benders Algorithm 2. Also, it can provide

feasible solutions that are very close to the optimal value for almost all large problems,

but still it cannot solve them optimally within the time limit. Nevertheless, we can

conclude that Improved Benders Algorithm 2 is capable of finding good treatment

plans even for large problem instances.
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8.4. Computational Results for Branch-and-price Algorithms

We implement BP algorithms and Improved Benders Algorithm 2, which is the

best performing algorithm of Chapter 5 as shown in Section 8.3, in Python 2.7 pro-

gramming language [101] and use Gurobi 8.0 as the MILP solver [104]. All tests are

carried out on a 64-bit PC with 3.20 GHz Intel(R) Core(TM) i5-6500 CPU and 8 GB

of RAM. We solve VMATP-1 model by Gurobi 8.0 [104], BP algorithms and Improved

Benders Algorithm 2 using all instances in all data sets (i.e. 90 instances in total) in

order to compare the performance of the proposed BP algorithms with the others. We

set 3600 seconds as CPU time limit and use one thread in all executions of all algo-

rithms. In the BP algorithms, RVMATP model is solved using the barrier method [103]

at the root node and then its method is changed to dual simplex in the descendant

search nodes. We solve RMLP using primal simplex in order to warm start from the

last basis after adding a new column. Also, there is a threshold on the reduced cost for

the new generated columns. If the reduced cost is not below −0.05 we do not add the

corresponding column to RMLP. We keep the parameter tuning of Improved Benders

Algorithm 2 as explained at the beginning of Section 8.3. We do not perform any other

parameter tuning for the Gurobi solver and keep parameters at their default settings.

We give the summary of the computational results that includes average optimal-

ity gaps (%), CPU times (seconds), total number of instances that the corresponding

method can find a feasible solution (S/T) and can solve optimally (O/T) out of to-

tal instances in Table 8.9. We calculate the optimality gap of an instance as 100%

whenever an algorithm cannot provide lower and upper bounds. Also, we accept the

UB 1800 MUs in the optimality gap calculation when only a LB is provided. In Table

8.10 the computational results that include lower and upper bounds for each one of

the instances are provided.

We partition data sets into four groups: small (with 22-220 voxels), medium (with

660-1701 voxels), large (with 1901-2901 voxels), and very large (with 3401 and 4501

voxels). The results on small data sets (with at most 220 voxels) show that Gurobi,

Improved Benders Algorithm 2, BP Algorithm 2 and BP Algorithm 3 can solve almost
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all of the instances optimally in short CPU times. BP Algorithm 1 cannot find a

feasible solution for one instance having size 220 within time limit. Gurobi performs

better than all of the BP algorithms and Improved Benders Algorithm 2 with respect to

the average optimality gaps in all small data sets and also with respect to the average

CPU times in data sets with 22, 44, and 66 voxels. In particular, Gurobi can solve

all instances optimally except 66-5 and 220-5. BP algorithms and Improved Benders

Algorithm 2 cannot solve these instances and also some other instances optimally.

As the size of the problem increases, Gurobi starts failing to solve some instances

within time limit. It cannot provide neither an UB nor a LB for 9 out of 30 instances of

medium size (having total number of voxels between 660-1701), and can only provide

a LB for 2 out of 30 instances. It solves 18 out of the remaining 19 medium size

instances optimally in relatively longer CPU times. On the other hand, all of the

new BP algorithms perform better than Gurobi in both performance measures (only

the average optimality gaps of data sets with 660 and 1100 voxels are worse in BP

Algorithm 1, and also the average optimality gap of data set with 660 voxels is slightly

worse in BP Algorithm 2). They can find a feasible solution for all of the medium

size instances. Moreover, BP Algorithm 1, BP Algorithm 2, and BP Algorithm 3 can

respectively solve 20, 26, and 29 instances optimally. BP Algorithm 2 cannot solve only

4 instances (660-1, 660-2, 1301-1 and 1301-2), and BP Algorithm 3 cannot solve only

one instance (1301-2) optimally. Also, the resulting optimality gaps of these instances

are very small (at most 0.02%). Improved Benders Algorithm 2 can also find a feasible

solution for all of the medium size instances except 1701-2. The optimality gaps are

below 1% in almost all cases (except 660-3, 880-1 and 1100-5), however the number of

instances that it can solve optimally is only three. In particular, the smallest average

CPU times and optimality gaps are obtained by BP Algorithm 3. As a result, BP

Algorithm 3 outperforms the other ones for medium size instances.

The results of large problems (with 1901-2901 voxels) are also similar to the results

of medium size problems. Gurobi can solve only 2 out of 25 instances optimally within

time limit, and for 22 instances it can neither provide an UB nor a LB, for the remaining

one instance it can only provide a LB. On the other hand, BP Algorithm 3 solves all
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of the instances optimally within less than half of the time limit. The other two BP

algorithms can also provide an UB for almost all of the instances. BP Algorithm 1 and

BP Algorithm 2 cannot provide a feasible solution respectively for 3 and 1 instance

within time limit. The number of instances that these algorithms can solve optimally

is 17 and 20, respectively. Also, the optimality gaps of the problems, which are not

solved optimally, are below 1% in almost all instances. Improved Benders Algorithm 2

can find a feasible solution for 20 instances, but it can solve only one of them optimally.

Finally, BP Algorithm 3 outperforms other algorithms in both performance measures

with significant differences.

In addition to these three groups of data sets, we generate and solve two larger

data sets with 3401 and 4501 voxels to be able to make the difference between algo-

rithms clearer and observe the limits of BP Algorithm 3. Gurobi fails to find lower

and upper bounds for all instances. BP Algorithm 1 and BP Algorithm 2 both find a

feasible solution for 5 and 4 out of 10 instances, and they can solve 3 and 2 instances

optimally, respectively. On the other hand, BP Algorithm 3 solves 8 instances to opti-

mally. It can only provide a LB for each one of the remaining two instances. Improved

Benders Algorithm 2 can solve 4 out of 10 instances with small optimality gaps (below

1%), but it cannot solve any of the instances optimally.

In overall, BP Algorithm 3 can solve 83 out of 90 instances optimally, and for

the remaining 5 instances it can provide very small optimality gaps. (i.e. below 0.1%

except instance 22-5). However, Gurobi fails to provide upper and lower bounds for

almost half of the instances (i.e. 41 out of 90) within time limit. Also, it cannot provide

an UB for other 3 instances. It only solves 43 instances optimally and 3 instances with

small optimality gaps. If we check the average CPU times and optimality gaps, BP

Algorithm 3 outperforms all other methods in both performance measures in almost

all data sets (except with 22, 44 and 66 voxels). The last row of Table 8.9 shows that

the minimum average optimality gap of all instances is 1.93%, the minimum average

CPU time is 1021.6 seconds, the maximum total number of instances with a feasible

solution is 88, and the maximum number of instances that are solved optimally is 83,

which are all obtained by BP Algorithm 3.
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8.5. Computational Results for the Two-Phase Heuristic

We implement the heuristic in Python 2.7 programming language [101] and use

Gurobi 8.0 as the MILP solver [104]. All tests are carried out on a 64-bit PC with 3.20

GHz Intel(R) Core(TM) i5-6500 CPU and 8 GB of RAM. We set the number of threads

of Gurobi solver to 4. In CVaR parameter tuning operation we set ε1 to 0.10 and ε2 to

0.03. We keep the parameter tuning of column generation as in BP algorithms, which

are explained at the beginning of Section 8.4.

In Istanbul University Oncology Institute, the VMAT plans of all patients are

optimized using two full arcs on older versions of Eclipse TPS (v.8.9 and v.15.1, [93])

using 6 MV photon beams. In Table 8.11 total MUs and dosimetric results of all

plans are provided. According to these results all VMAT plans satisfy all dose-volume

constraints given in Table 8.4 (except the plan of patient 6, since it does not satisfy the

first dose-volume constraint of rectum, which requires D%35 ≤ 40 Gy). Total radiation

dose (sum of MUs of two arcs) of plans varies between 570 and 743 MUs with average

633.9 MUs. Table 8.12 provides dosimetric results of VMAT plans obtained by our

column generation based heuristic algorithm. Almost all plans are optimized within

20 minutes (1200 seconds) with an average of 1020 seconds. It takes a little longer

to optimize plan 3 and plan 6 (1227 and 1782 seconds, respectively). We first note

that total radiation intensity decreases in almost all plans significantly (except plan

5). The amount of radiation dose varies between 366 and 689 MUs with an average

of 494.4 MUs. The maximum reduction occurs for the plan of patient 7, which is 363

MUs (48.9%). The average decrease of all plans is approximately 139.5 MUs and the

average percentage of reduction is 22.0%. By assuming that the dose-influence matrices

obtained by AAA algorithm [22] and by the singular value decomposed pencil beam

algorithm [95] used in matRad are sufficiently close, we can say that our proposed

model and solution algorithm can find high quality plans requiring less radiation.

We observe that the first dose-volume constraint of rectum is not satisfied in

the plans of three patients (patient 1, 6 and 8). However, the maximum deviation
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Table 8.11. Dosimetric results of the VMAT plans obtained by Eclipse.

PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F

Patient MU D95% D95% D35% D17% D50% D25% D90% D10% D10%

P1 591 76.6 56.9 39.9 50.9 32.9 42.6 10.7 26.5 25.8

P2 575 75.8 56.2 38.9 52.9 31.7 57.3 10.5 38.1 37.0

P3 743 76.4 56.5 34.2 48.7 22.0 57.9 8.6 22.0 18.4

P4 659 76.8 57.1 37.2 54.1 30.7 55.3 14.1 35.0 34.2

P5 661 75.9 56.5 38.4 56.7 37.7 63.5 6.0 37.8 37.8

P6 570 76.1 56.8 41.2 53.7 16.2 26.4 14.4 36.2 32.9

P7 667 76.2 56.9 37.7 48.8 5.5 14.9 5.3 24.8 27.5

P8 625 76.4 56.6 33.8 49.1 4.5 16.8 11.1 26.0 30.8

P9 614 76.0 56.7 38.8 55.2 30.6 62.8 8.0 34.9 39.4

Avg. 633.9

Table 8.12. Dosimetric results of the VMAT plans obtained by two-phase heuristic.

PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F

Patient MU D95% D95% D35% D17% D50% D25% D90% D10% D10%

P1 526 76.7 57.3 42.0 51.0 27.2 46.3 24.3 40.9 43.9

P2 561 77.2 56.8 38.1 53.7 36.5 63.3 25.1 34.3 33.5

P3 380 76.4 56.9 36.1 50.8 34.7 64.6 12.1 42.3 37.3

P4 523 77.1 57.2 37.2 48.9 34.2 64.3 14.2 45.1 48.0

P5 689 76.2 58.2 38.9 57.5 39.1 64.6 6.7 41.1 43.5

P6 424 77.8 57.3 41.0 57.8 7.4 27.8 20.4 46.2 45.8

P7 366 76.2 57.1 38.3 50.9 3.3 16.9 7.4 35.1 36.1

P8 509 77.8 58.0 42.4 61.3 6.4 25.8 27.4 26.5 22.5

P9 472 75.9 57.1 34.9 54.0 37.8 64.5 12.8 46.7 46.8

Avg. 494.4
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from the tolerance dose, which is 40 Gy, is 2.4 Gy. Note also that if we decrease the

radiation intensities at all control points by the same ratio without violating partial

volume constraints of PTVs, then the resulting deviations will be less. For example, in

plan 6 it is possible to reduce the radiation intensities at all control points to 97.73%

of the original intensities. Therefore, 95% of R-PTV56 will receive 56 Gy and 95% of

PTV75.6 will receive 76 Gy. The resulting plan almost satisfies all dose constraints

of rectum (D%35 will be 40.07 Gy). By this way total MUs of the plan also decreases

by around 9.6 MUs. Similarly, we can adjust plan 1 and plan 8, and reduce the D%35

of rectum to 41.4 Gy and 41.2 Gy, respectively. We should be careful when we are

shifting the plans, since it will reduce also the minimum dose to PTVs and increase the

risk of occurring cold spots. Moreover, in four out of nine plans (patient 1, 2, 6, and

8) D%90 of PB is more than 15 Gy (the maximum is 27.4 Gy), which are acceptable

according to the oncologists and medical physicists at Istanbul University Oncology

Institute and also other dose prescription recommendations (for example to limit D%70

and D%90 of PB to 70 Gy and 50 Gy, respectively) in the literature. Thus, we can

say that the heuristic is capable to obtain high-quality VMAT plans with significantly

fewer MUs in clinically reasonable times. In general, DVHs are used to evaluate the

quality of a treatment plan. For a given structure, a DVH specifies the percentage of

its volume that absorbs at least a certain amount of dose. We calculate DVHs of PTVs

and OARs and compare them to the clinical guidelines and also to the ones obtained

in the institute. We provide DVHs of all patients obtained by our algorithm and by

Eclipse in Figure 8.1 – Figure 8.18 sequentially.

Finally, VMAT plans are made by the experienced dosimetrists in treatment plan-

ning departments. The planning process involves various manual interventions such as

adapting planning objectives and constraints according to the individual anatomy of

the patient. For example, shape and size of the tumor(s), and location of organs at risk

are some of the anatomical properties that play an important role in the manual ad-

justments of the parameters, which influence the plan quality. Namely, the dosimetrists

try to guide the treatment planning system towards a favorable plan by modifying op-

timization parameters. Thus, this manual process necessitates additional optimization

steps and extra time, and also the quality of the final plan depends on the skills and
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Figure 8.1. DVHs of the plan of patient 1 obtained by two-phase heuristic.

Figure 8.2. DVHs of the plan of patient 1 obtained by Eclipse v.15.1.
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Figure 8.3. DVHs of the plan of patient 2 obtained by two-phase heuristic.

Figure 8.4. DVHs of the plan of patient 2 obtained by Eclipse v.15.1.
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Figure 8.5. DVHs of the plan of patient 3 obtained by two-phase heuristic.

Figure 8.6. DVHs of the plan of patient 3 obtained by Eclipse v.15.1.
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Figure 8.7. DVHs of the plan of patient 4 obtained by two-phase heuristic.

Figure 8.8. DVHs of the plan of patient 4 obtained by Eclipse v.15.1.
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Figure 8.9. DVHs of the plan of patient 5 obtained by two-phase heuristic.

Figure 8.10. DVHs of the plan of patient 5 obtained by Eclipse v.15.1.
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Figure 8.11. DVHs of the plan of patient 6 obtained by two-phase heuristic.

Figure 8.12. DVHs of the plan of patient 6 obtained by Eclipse v.15.1.
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Figure 8.13. DVHs of the plan of patient 7 obtained by two-phase heuristic.

Figure 8.14. DVHs of the plan of patient 7 obtained by Eclipse v.15.1.
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Figure 8.15. DVHs of the plan of patient 8 obtained by two-phase heuristic.

Figure 8.16. DVHs of the plan of patient 8 obtained by Eclipse v.15.1.
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Figure 8.17. DVHs of the plan of patient 9 obtained by two-phase heuristic.

Figure 8.18. DVHs of the plan of patient 9 obtained by Eclipse v.15.1.
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experience of the dosimetrist as well as the complexity of the case and time allocated

for planning. The VMAT plans whose dosimetric results are shown in Table 8.11 are

obtained and adjusted by an experienced dosimetrist via a manual process as explained

above. In the original data sets there are some additional structures (e.g. a subset of

rectum) for which the dosimetrist defines additional constraints (in 7 out of 9 plans)

to ensure that the related received radiation amounts fall into approvable limits. How-

ever, we do not use such an additional structure and/or additional dose-constraint in

our algorithm, which automatically adjusts parameters for each patient and does not

require any expert guidance.

8.5.1. The Effect of Initial Columns

We analyze the effect of starting with initial columns generated from the flu-

ence maps obtained by solving M-VMATP model. We generate VMAT plans for all

patients using two different set of initial columns: the columns generated from a full

treatment arc with maximum number of open beamlets and from a randomly gener-

ated full treatment arc. These new initial columns are also feasible with respect to

the MLC constraints (i.e. satisfying the consecutive ones property and the leaf motion

limitations). Also, random columns are generated from a treatment plan satisfying

the full volume constraints of all target voxels, which is obtained by solving a model

including all geometric constrains and also full volume constraints. In Table 8.13 and

Table 8.14 we give the dosimetric results of the plans obtained by starting with columns

having maximum number of open beamlets and with randomly generated ones, respec-

tively. According to the results, none of the plans obtained using new initial columns

are clinically acceptable. The average CPU time and total radiation decrease to 548.4

seconds and 347.2 MUs in the plans initial columns with maximum number of open

beamlets. The average of total radiation of the plans with randomly generated columns

slightly decreases to 469.9 MUs, however the average CPU time increases. These re-

sults show that starting with initial columns generated from the fluence maps improves

the performance of the algorithm in terms of clinical dose requirements.
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Table 8.13. Dosimetric results for the initial columns with maximum open beamlets.

PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F

Ptnt CPU MU D95% D95% D35% D17% D50% D25% D90% D10% D10%

P1 569 346 71.7 65.2 62.0 67.7 39.7 50.7 31.2 48.9 48.4

P2 621 331 69.6 63.3 57.7 64.6 41.0 68.1 42.1 53.6 55.5

P3 427 343 71.3 66.4 50.6 66.6 34.3 68.4 22.1 55.2 54.0

P4 545 341 71.8 63.6 59.2 66.8 35.5 65.6 34.1 52.0 50.2

P5 491 355 74.1 59.6 62.7 70.0 64.6 72.2 6.5 46.2 49.2

P6 646 370 74.0 66.0 42.7 58.9 30.3 43.2 25.0 48.7 49.4

P7 286 361 74.2 62.9 49.5 61.2 3.2 14.7 7.3 59.2 47.3

P8 284 356 71.6 64.1 35.8 64.1 4.3 40.9 38.6 48.2 47.6

P9 1067 322 68.2 64.9 53.0 65.6 49.4 65.3 19.2 48.1 45.8

Avg. 548.4 347.2

Table 8.14. Dosimetric results for randomly generated initial columns.

PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F

Ptnt CPU MU D95% D95% D35% D17% D50% D25% D90% D10% D10%

P1 1555 466 75.4 56.8 50.6 57.6 31.5 54.0 26.3 41.0 44.0

P2 1580 488 72.4 56.7 40.9 53.2 30.3 64.4 29.5 52.0 53.3

P3 1369 474 76.5 56.9 35.3 49.5 17.4 64.6 12.2 45.2 57.6

P4 1385 477 76.5 56.8 46.3 53.7 32.8 63.5 14.0 43.1 49.3

P5 1505 494 76.2 56.7 51.5 61.5 50.7 67.4 6.5 45.8 34.8

P6 2559 427 77.5 58.1 42.9 58.6 9.1 28.2 19.1 48.0 42.7

P7 868 423 76.4 57.1 43.4 51.2 3.1 13.1 6.2 35.7 47.3

P8 1214 475 77.9 57.3 42.3 61.2 4.6 23.0 19.1 33.3 43.1

P9 1829 505 73.5 57.7 42.9 54.3 39.6 63.1 13.4 45.3 45.9

Avg. 1540.4 469.9
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8.5.2. The Effect of Parameter Tuning

We repeat the computational experiments for all patients without CVaR param-

eter tuning operation. In Table 8.15, we provide the dosimetric results, and CPU time

and MUs of the plans. According to the results the average CPU time decreases by

130.4 seconds as compared the original ones provided in Table 8.12, which is consistent

with our expectation. However, CPU time of the plans for patient 1 and patient 8 in-

creases. Since, the necessary time for the second phase (the column generation phase)

differ when CVaR tuning operation is not applied. The average MUs of the plans

increases by 76.4 MUs, which is also expected, since CVaR constraints are tighter.

All partial volume constraints of OARs in all plans are satisfied (due to tighter CVaR

constraints). However, there are 3 plans (patient 2, patient 4 and patient 5) where

the partial volume constraints of PTV75.6 are not satisfied. To sum, tuning the right

hand side parameters of CVaR constraints makes the resulting plans more reasonable

without compromising OAR’s partial volume constraints. Also, all PTV constraints

are satisfied with fewer MUs (there is a decrease around 13.3%). In detail, the average

necessary time for tuning operation is 138.5 seconds, which is not very long.

Table 8.15. Dosimetric results of the VMAT plans without CVaR tuning operation.

PTV75.6 R-PTV56 Rectum Bladder PB Lt F Rt F

Ptnt CPU MU D95% D95% D35% D17% D50% D25% D90% D10% D10%

P1 1232 633 76.6 57.8 35.1 45.6 21.2 41.6 20.1 39.7 47.2

P2 556 623 74.3 56.7 28.4 46.1 26.3 55.7 23.8 43.8 40.3

P3 854 513 75.8 56.8 26.4 41.9 13.0 46.2 5.9 42.8 38.4

P4 832 683 75.0 57.5 28.2 44.5 19.6 46.8 8.1 38.1 36.6

P5 713 708 74.7 58.6 33.4 54.7 37.8 62.5 5.0 38.9 42.9

P6 1405 452 77.5 57.7 26.3 44.1 8.6 23.1 19.1 46.8 47.2

P7 658 439 76.2 56.5 25.6 41.1 3.1 12.9 4.6 40.6 45.3

P8 744 526 78.0 56.8 18.4 45.3 4.0 18.4 15.5 47.0 35.3

P9 1014 560 76.2 58.6 27.8 48.6 29.6 56.6 9.2 45.7 46.5

Avg. 889.8 570.8
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8.5.3. Comparing the Performance of Two-Phase Heuristic with Exact So-

lution Algorithms

We solve all instances, which are explained in the first test environment section

(Section 8.1.1) and used in the computational experiments of the exact solution algo-

rithms (in Chapter 5 and Chapter 6), by two-phase heuristic. The first phase of the

heuristic tunes the tolerance doses of OARs in CVaR constraints, thus we perform the

computational experiments for both cases: without tuning operation and with tuning

operation. In Table 8.16 we give the average results of all samples. Note that we do

not obtain a LB when we solve an instance by two-phase heuristic, thus we use the

best available LB (i.e. the maximum of LBs obtained by Gurobi, Benders and BP

algorithms) in order to calculate optimality gaps. In Table 8.17 we provide the best

LB for each instance. Note also that when we perform tuning operation the tolerance

dose of OAR may be increased, namely the problem may be simplified, thus the LB

of the resulting model may be decreased. Nevertheless, we give the average approxi-

mated optimality gaps in Table 8.16 using the same best LB. In Table 8.17, for each

instance, we provide UB and CPU time obtained by the heuristic without and with

tuning operation. There are also optimality GAPs for the heuristic without tuning

operation. According to the results CPU times of all instances remarkably decrease.

In both cases, the average CPU time is around three minutes (182.6 and 170.8 seconds

for the computational experiments without tuning and with tuning operation, respec-

tively). Two-phase heuristic can find a feasible solution with small optimality gap for

all instances in both cases, however they can solve only 3 and 8 out of 90 instances

optimally. We should note that partial volume constraint of OAR is satisfied for each

instance when tuning operation is applied (DOAR
%60 ranges from 1.50 Gy and 23.6 Gy,

where the treatment prescriptions is DOAR
%60 = 50 Gy).
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Table 8.16. Summary of the computational results of CORT dataset.

Without CVaR tuning With CVaR tuning

SAMPLE GAP CPU S/T O/T GAP* CPU S/T O**/T

22 3.09 30.1 5/5 0/5 2.86 28.9 5/5 0/5

44 0.30 29.0 5/5 0/5 0.46 29.3 5/5 0/5

66 4.69 31.6 5/5 0/5 4.75 39.7 5/5 0/5

88 3.61 49.7 5/5 0/5 2.38 47.7 5/5 0/5

220 4.01 31.8 5/5 0/5 2.48 39.6 5/5 0/5

660 0.04 53.6 5/5 0/5 0.05 56.1 5/5 1/5

880 0.07 66.8 5/5 1/5 0.09 68.0 5/5 1/5

1100 0.06 79.0 5/5 1/5 0.06 90.3 5/5 2/5

1301 0.16 96.6 5/5 0/5 0.08 112.8 5/5 0/5

1501 0.18 120.6 5/5 0/5 0.12 127.1 5/5 1/5

1701 0.18 131.6 5/5 0/5 0.07 154.8 5/5 1/5

1901 0.15 184.2 5/5 0/5 0.12 154.0 5/5 0/5

2101 0.05 203.0 5/5 0/5 0.03 170.5 5/5 1/5

2301 0.09 247.1 5/5 0/5 0.04 230.2 5/5 0/5

2601 0.15 288.9 5/5 0/5 0.21 241.8 5/5 0/5

2901 0.12 346.1 5/5 0/5 0.08 325.1 5/5 0/5

3401 0.05 484.9 5/5 1/5 0.06 417.7 5/5 1/5

4501 0.10 812.5 5/5 0/5 0.07 741.2 5/5 0/5

Avg/Sum 0.95 182.6 55/55 3/55 0.78 170.8 55/55 8/55

Note: Cells marked with * are calculated using the best LB, thus

they are approximated GAPs. Also, in the cells marked with **

the same best LBs are considered.
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9. CONCLUSIONS

In this dissertation we studied volumetric modulated arc therapy (VMAT) plan-

ning, which is an important but difficult problem in cancer treatment. There are four

main parts including two mixed integer linear programming formulations for VMAT

planning, which minimize total amount of radiation delivered to the patient subject

to geometric and clinical requirements, two exact solution methods in order to find

optimal VMAT plans and one heuristic to generate plans for clinical size of problems.

In VMAT technique, radiation can be delivered continuously, and the leaves of

the MLC system can move and shape the beam during the rotation of the gantry.

Therefore, it is possible to obtain high conformal plans in terms of dose distributions

requiring less treatment time, which makes the technique one of the widely applied

method in external radiation therapy treatment. However, finding high quality VMAT

plans is a challenging issue. The apertures composed by the multileaf collimator (MLC)

leaves are interdependent, since there is a leaf motion limitation depending on the

mechanical properties of the equipment. Namely, the apertures at two adjacent control

points in a VMAT plan must be compatible. This makes VMAT planning problem

impossible to decompose into independent smaller problems; it must be considered

as a whole in contrast with the preceding technology intensity modulated radiation

therapy (IMRT). It is challenging to develop good formulations and efficient methods

that solve the problem exactly and find good treatment plans. For these reasons

the formulations proposed in the literature are not comprehensive enough to include

all aspects of the method. They generally relax the dose requirements and try to

satisfy them in the objective function by solving a heuristic method. To the best

of our knowledge, our mixed integer linear programming models are the first ones

in the literature that take into account all requirements related to treatment as well

as mechanical properties of the equipment. The formulations differ from each other

with respect to the definitions of the leaf positions and each of them includes partial

dose-volume requirements as Conditional Value-at-Risk (CVaR) constraints. Moreover,

IMRT and VMAT techniques are capable to find high conformal radiation therapy
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plans, however they increase the total radiation sent to patient’s body during the

treatment as compared to the previous techniques, which increase the integral body

dose and the risk of secondary malignancy. Thus, the objective of the formulations is

to find a solution that delivers as little radiation as possible to the patient, which is

new in the VMAT planning literature.

The problem has mainly two parts to decide: the positions of the leaves and the

amount of radiation intensity at each one of the control points. Using this observation

we decompose the problem into two subproblems in order to develop Benders decom-

position algorithms. In the master problem the positions of the leaves are obtained

and they are given to the subproblem as input where the dose intensities are deter-

mined subject to the clinical requirements. We modify the naive form of the method

by applying a number of acceleration strategies and obtained two improved Benders

algorithms. In the BP algorithms we reformulate the problem in reverse and introduce

each feasible treatment row arc for each MLC row as a variable of the reformulated

model. We solve the linear programming relaxation of the reformulated model us-

ing column generation at each node of the branch-and-bound tree. For each pricing

subproblem, a network model was developed and solved using dynamic programming

in polynomial time. We test the performance of the exact solution algorithms on a

large set of test instances derived from an anonymous prostate dataset [17]. Note that

there are other studies that use the same dataset in VMAT planning within a differ-

ent settings [56, 105, 106]. They all provide treatment plans satisfying different set of

constraints and minimizing or maximizing different objective functions, which makes

them incomparable. According to the computational results, Benders algorithms and

BP algorithms outperform Gurobi solver especially for large instances. In particular,

BP algorithms are more efficient than the improved Benders algorithms. We should

also note that it is possible to solve real size problems including only one target volume

and one OAR with the current version of our algorithms. For the first time, however,

the exact solution algorithms have been proposed to solve a comprehensive mixed linear

integer programming model for the VMAT planning problem. Although the problem

involves the challenges to be overcome, such an attempt is important and valuable in

that it demonstrates these difficulties and creates ground for the future contributions



122

that may further improve VMAT treatment.

Finally, we propose a two-phase column-generation heuristic, which produces

treatment plans in a single call without any human intervention. This is in contrast

with the commonly used software systems, which often require multiple iterations of

modifications in parameters and re-run. Our heuristic can find high quality VMAT

plans for problems with clinically adequate voxel and bixel (beamlet) resolution. In

the first phase of the algorithm we generate an initial plan by solving a relaxed model,

which is derived from the original model and gives a number of fluence maps. Then we

convert these fluence maps into deliverable apertures and sequence them on an arc by

applying a simple sequencing operation. In the second phase, we improve the initial

solution by column generation iterations. Use of CVaR constraints is not widespread

in VMAT planning due to their conservatism. The proposed heuristic includes an

automated strategy to tune the parameters of these constraints in order to make them

usable without degrading quality of plans. We test our algorithm on nine real prostate

patient data and compare the resulting VMAT plans with the ones obtained by an

expert dosimetrist on Eclipse [93] in one of the major oncology institutes of Turkey.

Our model includes dose-volume constraints of all critical organs and two planning

target volumes, parallel to clinical application. The results show that our heuristic is

capable to find treatment plans of high quality with respect to clinical dose-volume

criteria and requiring fewer MUs in clinically acceptable time.

Potential future research directions include extending the proposed algorithms

in order to involve some other properties such as connectedness and disallowing inter-

digitation of the leaves that may be imposed by some of the MLC systems. Also, we

assume that the gantry of the linear accelerator rotates at a constant speed, which can

be relaxed by introducing additional variables and linearizing the potential resulting

nonlinearities. Finally, the formulations and algorithms may be adapted for other ra-

diation therapy modalities such as Tomotherapy and CyberKnife as in [15], and also

for other new technologies such as the intensity modulated proton therapy whose op-

timization demands very large data sets since it is highly sensitive to uncertainties, or

four-dimensional radiation therapy that includes the temporal changes in the patient’s
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anatomy while planning the treatment.
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75. Üster, H. and H. Agrahari, “A Benders decomposition approach for a distribution

network design problem with consolidation and capacity considerations”, Opera-

tions Research Letters , Vol. 39, No. 2, pp. 138–143, 2011.

76. Adulyasak, Y., J.-F. Cordeau and R. Jans, “Benders Decomposition for Produc-

tion Routing Under Demand Uncertainty”, Operations Research, Vol. 63, No. 4,

pp. 851–867, 2015.

77. Lin, S., Benders Decomposition and an IP-Based Heuristic for Selecting IMRT

Treatment Beam Angles , Master’s Thesis, The University of Texas at Austin,

2014.

78. Fischetti, M., D. Salvagnin and A. Zanette, “A note on the selection of Benders’

cuts”, Mathematical Programming , Vol. 124, No. 1-2, pp. 175–182, 2010.

79. Codato, G. and M. Fischetti, “Combinatorial Benders’ cuts for mixed-integer

linear programming”, Operations Research, Vol. 54, No. 4, pp. 756–766, 2006.
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APPENDIX A: STRONG BENDERS CUT

Let’s (π̂, µ̂1, µ̂2, β̄
1
, β̄

2
, β̄

3
) be the optimal solution of RDSP(π̂, µ̂1, µ̂2, β̂

1
, β̂

2
).

Note that β̄
1

for (i, j, k) ∈ Z1 equals to β̂
1
, and β̄

2
for (i, j, k) ∈ Z0 equals to β̂
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Hence, the inequality (A.1) may not be satisfied for some of the master solu-
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pareto-optimal among the cuts of alternative optimal solutions of DSP(ẑ).
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APPENDIX B: DOSE CALCUTATION BY matRad

matRad [94] is a multi-modality radiation treatment planning system written

in MATLAB [107], and supports IMRT planning for photons, scanned protons, and

scanned carbon ions at clinically adequate resolution. It is freely available online and

has been developed to contribute to educational and research activities.

Figure B.1. matRadGUI.

The first step is to import DICOM images with radiation therapy (RT) structure

files into the matRadGUI interface shown in Figure B.1. After selecting the voxel res-

olution, they must be converted into a .mat file, which can be opened in madRadGUI.

This .mat file should be opened, and then, the couch angle, the beam angles to calcu-

late dose-influence matrices are selected. It is possible to enter more than one beam

angle (e.g. 0 2 4 6). Also, PTV and OARs must be introduced and the corresponding

objective functions with priority weights and other parameters such as gantry location,

energy type etc. must be specified. Finally, dose influence matrices, which include dose

contributions to each voxel from each beamlet/pencil beam at unit intensity, can be

calculated and saved as .mat file.
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We scale the dose-influence matrices in such a way that the absorbed dose of

1 cGy/MU (i.e. 0.01 Gy/MU) is delivered at 100 cm SAD at 5 cm depth with field

size 10 cm × 10 cm similar to the calibration used at Istanbul University Oncology

Institute. We use a solid water phantom CT data which is provided by the institute.

We execute a simulation using this phantom, in which we define a 10 cm x 10 cm target

volume at 100 cm SAD whose center is passing through the isoline. Also we contour

a small volume at 5 cm depth at the center. Then, we validate in Eclipse that 0.01

Gy is absorbed by this volume when 1 MU radiation is delivered. The necessary setup

is illustrated in Figure B.2. (SSD stands for source-to-surface distance). We calculate

Figure B.2. SAD setup.

dose-influence matrices for this volume defined on phantom in matRad also. For each

one of the voxels, especially for the ones at the center, these values are very close to 1

(i.e. 1 Gy), which means 100 MUs radiation is delivered. Thus, we divide the original

dose-influence matrices 100 to obtain Gy/MU values.
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In order to validate this scaling parameter, we also check the depth dose curves

obtained by Eclipse (Figure B.3) and also matRad (Figure B.4) and observe that they

are consistent.

Figure B.3. Depth dose curves obtained in Eclipse.

Figure B.4. Depth dose curves obtained in matRad.
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