
MULTIVARIATE PRODUCT DEMAND FORECASTING WITH NEURAL

NETWORKS

by
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ABSTRACT

MULTIVARIATE PRODUCT DEMAND FORECASTING

WITH NEURAL NETWORKS

In retail, there are plenty of use cases that would benefit from predicting the

future amount of product sales. Those use cases include cash flow management, cam-

paign execution and inventory planning, all of which are the crucial components for

the success of any retail business. Quantitative time series analysis is widely applied

for predicting the product demand. It includes a set of well-established methods from

statistics and econometrics. However, their capabilities are constrained by certain as-

sumptions and they require careful statistical treatment on the data before the appli-

cation. Artificial Neural Networks are powerful class of machine learning models which

have shown outstanding success on the unstructured data. We proposed five different

mathematical formulations to prepare and select hierarchical multivariate time series

data to feed into a Long-Short Term Memory network. We referred to the formulations

(or “schemes”) as (1) Uni, (2) Uni-Store, (3) Uni-Product-Pcc, (4) Uni-Product-Mi, (5)

Multi-Store. Each of them groups the product sales signals in multiple stores according

to various association criteria to forecast the sales amounts. In the experiments, the

mutual information (3) and correlation (4) based schemes demonstrated poor perfor-

mance presumably due to the small number of selected products. Uni scheme produced

the models that resulted in the minimum loss. The Multi-Store scheme produced the

models that can be trained approximately three times faster than than that of the

other schemes. Its average forecast error was not significantly higher than that of the

Uni scheme.
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ÖZET

YAPAY SİNİR AĞLARI İLE ÇOK DEĞİŞKENLİ ÜRÜN

TALEP TAHMİNİ

Perakendecilikte, ürün satışlarının gelecekteki miktarını tahmin etmenin fayda

sağlayacağı birçok senaryo vardır. Bunlar, her biri perakende sektöründe başarı

için çok önemli olan nakit akışı yönetimi, kampanya yürütme ve envanter planlama

gibi süreçleri içermektedir. Nicel zaman serisi analizi, ürün talebini tahmin etmek

için yaygın olarak uygulanmaktadır. Nicel analizler, istatistik ve ekonometriden ge-

len bir dizi yerleşik yöntem içermektedir. Ancak, yeterlilikleri belirli varsayımlarla

sınırlandırılmıştır ve uygulanmadan önce veriler üzerinde dikkatli şekilde bir takım

istatistiksel işlemleri gerektirmektedir. Yapay Sinir Ağları, yapılandırılmamış verilerde

olağanüstü başarı gösteren güçlü bir yapay öğrenme modeli sınıfıdır. Bu çalışmada,

Uzun-Kısa Süreli Bellek ağına girdi olarak verilecek hiyerarşik çok değişkenli za-

man serisi verilerini hazırlamak ve seçmek için beş farklı matematiksel formülasyon

önerdik. Formülasyonları (veya “şemalar”) sırasıyla; (1) Uni, (2) Uni-Store, (3)

Uni-Product-Pcc, (4) Uni-Product-Mi, (5) Multi-Store olarak adlandırdık. Her biri,

satışların miktarını tahmin etmek için çeşitli ilişkilendirme kriterlerine göre birden

çok mağazadaki ürünün satış sinyallerini gruplandırmaktadır. Deneylerde, karşılıklı

bilgi (3) ve korelasyon (4) temelli şemalar muhtemelen seçilen ürünlerin miktarının az

olmasından dolayı düşük performans gösterdi. Uni şeması asgari tahmin hatası veren

modelleri ortaya çıkardı. Multi-Store şeması, diğer şemalardan yaklaşık üç kat daha

hızlı eğitilebilen modeller ortaya çıkardı. Bu şemanın ortalama tahmin hatası Uni

şemasınınkinden önemli ölçüde yüksek çıkmadı.
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1. INTRODUCTION

Time series analysis is used in a wide range of fields including the climate studies,

agriculture, transportation engineering, medicine, stock markets and retail. Predict-

ing seasonal crop production contributes to economic planning and establishing global

food security [1]. In transportation engineering, analyzing the historical data lets the

engineers respond traffic congestion [2] and lets the commuters choose their daily route.

In medicine, tracing EEG signals in seconds is a vital indicator of whether a patient is

having a seizure or not [3]. Stock prices change daily, hourly or even within millisec-

onds depending on the market dynamics [4]. Forecasting the stocks can bring direct

monetary return. Demand forecasting is extensively applied in particular use cases of

retail business, for example, making purchasing decisions, budget planning, staffing,

marketing campaigns and advertising [5]. Moreover, meeting the customer demand on

time is crucial for a merchant since failing to do so is equivalent to abandoning certain

income from products. Perhaps more severely, it would cause customer dissatisfaction

and increase the risk of customer turnover [6]. Thus, one goal of a merchant is to make

sure the available collection of products is no less than their respective demand at any

time. On the other hand, keeping the products in a stockroom incurs various mainte-

nance costs, staff cost and logistic costs. Products which belong in specific categories

such as food are easily perishable and must be sold before their expiration date [7, 8].

Another goal of a merchant is, therefore, to avoid redundant stock of items. In this

light of trade-off, the ability to forecast demand for items is valuable for inventory

planning as well as managing cash flow.

There are quantitative methods which include a large set of statistical models

and machine learning models for demand forecasting. On the other hand, qualitative

methods are helpful for the same task when there is lack of available historical data.

One popular qualitative method called Delphi Method [9], which is based on expert

opinions. Quantitative methods are likely to outperform qualitative methods as the

historical data grows. In addition, they are convenient for automation of large systems.

Consider the following scenario; a retailer wants to monitor the transaction data of
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thousands of products and receive alerts when there is a high probability of stockout for

particular item. If the retailer can accomplish this in short periods and with acceptable

forecast performance, it gains a significant competitive advantage over the rivals. This

task is infeasible for a group of people regardless of their experience, because there

are excessive amount of items to perform forecasts. Still, considering the capability

of modern computer infrastructure, it is possible to implement a system which would

accomplish the task in the previous scenario. Therefore, another advantage of the

quantitative approach is that we can programmatically apply elaborate methods to

deal with massive datasets and build automated tools for decision making.
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2. RELATED WORK

2.1. Statistical Models

Time series data (or “signal”) consist of several components. The most prominent

components examined in analyses are trend, seasonality, cyclical component, and noise.

Trend is a relatively long-term increase or decrease in the time series data. A trend

component of a signal can be linear or non-linear. The direction of trend can change

throughout the time. Seasonality is the regular fluctuations which occur in fixed and

known period of time. The periods can be days, months, years, etc. Cyclical component

also represents the repeated fluctuations; but its period is not fixed and on average it

is greater than the seasonality period. Noise (or “irregular component”) represents

random, irregular effects. In Figure 2.1, the time series decomposition for daily sales

data is displayed. Between day-40 and day-60 the observed sale amounts (Observed)

suddenly increase and decrease. The changes are reflected on the trend in a smoother

manner. Retail sales data is likely to show strong weekly patterns. In the seasonality

plot, there is a noticeable valley-like structure, which suggests that certain days in a

week are preferred over the other days. Residual errors are what is left when subtracting

trend and seasonality from the observed data. Note that this decompositon example

does not consider the cyclical component.

In order to characterize the statistical properties of time series data, many mod-

eling techniques exist in the literature. A well-known class of statistical techniques for

modeling the magnitude of time series is Autoregressive Model (AR). It is a regression

model that uses the linear combinations of the previous observations, also known as

lagged variables to predict an output variable [10]. Autocorrelation plots are com-

monly used to depict the dependency between the lagged variables. Figure 2.2 shows

an example autocorrelation plot. Each variable is corelated (see Section 3.1.1 for the

correlation formula) with the previous observations’ lagged values to some degree. The

y-axis is the degree of a relationship with an observation in a time series with obser-

vations at previous time steps. The AR model assumes that the time series data is
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Figure 2.1. Decomposition plot of a product sale amount signal over 100 days

Figure 2.2. Autocorrelation plot of a product sale amount signal over 100 days



5

stationary. A stationary process has constant mean, variance and autocorrelation over

time. Time series with trends or seasonality are non-stationary. Differencing, logging

or log-differencing are the example techniques to clean a time series data from trend

and seasonality. Log-based techniques are rather successful for the exponentially grow-

ing data than the linear data. One property of log-differencing is the symmetry. For

example, if one days’ log difference is 0.1 and the next days’ log difference is -0.1, it

makes the value return to initial point. However, without log-differencing 10% increase

and 10% decrease does not bring the value to the initial value. Figure 2.3 shows the

frequency of the sale amounts of the product in the previous figures. 2.3(a), Figure is

the distribution obtained from the original signal which is similar to decaying expo-

nential distribution. In Figure 2.3(b), having differenced the signal, the distribution of

the frequencies looks similar to a left-skewed Gaussian distribution.

(a) Original signal (b) Differenced signal

Figure 2.3. Frequency of values in a product sale amount signal over 100 days

The two extensions of the AR model are Autoregressive Integrated Moving Av-

erage (or “ARIMA”) [5] and Seasonal Autoregressive Integrated Moving Average (or

“SARIMA”) [2] models. ARIMA introduces initial differencing step to make the time

series stationary. Secondly, it dynamically uses the residuals to correct the forecasts.

A residual is the difference between the predicted and the observed value of a variable.

The assumption is that the residuals in the regression model hold valuable information

about the underlying process which generates the data. SARIMA further supports the
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seasonal component. In addition, Autoregressive Conditional Heteroskedasticity (or

“ARCH”) [11] and its generalized variant “GARCH” [12] are used for modeling the

volatility which is degree of variation in time series data. It is extensively applied in

stock markets because people are especially interested in the returns (i.e. the money

made or loss) due to the changes in a stock rather than the value of the stock itself.

Overall, the statistical models require lots of empirical observation and pre-processing

on the time series data.

2.2. Artificial Neural Networks

Artificial Neural Networks (or “ANNs”) allow flexible ways of estimating complex

relationships between variables. They have gained popularity in recent years due to

their outstanding success on complex tasks on unstructured data, particularly; image

recognition, voice recognition and machine translation. They are inspired by the struc-

ture of biological neural networks in the brain that “learns” by experience without the

need for programming. An ANN consists of the connected group of nodes (or “neu-

rons”), each of which has associated weights and represents a function. In simple terms,

a node takes the outputs of its predecessor nodes and outputs the weighted average of

them followed by a transformation called activation function. Then the output is fed

into the next group of nodes. Together, they can express very complex functions that

can simulate the human brain. Indeed, by universal approximation theorem, an ANN

can express any function under mild assumptions [13].

The activation functions are used to transform the range of the output value of

a node and contribute the expressive power of the ANNs. Some of the most common

activation functions are the sigmoid function, hyperbolic tangent function, softmax

function and rectifier unit function. A sigmoid function has a typical “s-shaped” curve,

which is also called a sigmoid curve. Equation of the sigmoid (σ) function is:

σ(x) =
1

1 + e−x
(2.1)
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Hyperbolic tangent function is a member of hyperbolic functions which share the prop-

erties of the trigonometric functions. Exponential definition of the hyperbolic tangent

(tanh) function is:

tanh(x) =
ex − e−x

ex + e−x
(2.2)

Softmax is a useful function for multi-label classification problems. It essentially turns

the real-valued vectors into probabilities so that their sum will be one. Softmax is

defined by the formula:

fi(~xxx) =
exi∑J
j=1 e

xi
, where i = 1, . . . , J (2.3)

Rectified Linear Unit or (“ReLu”) is a commonly preferred activation function that has

drawn attention upon the study of Hinton et al. [14]. ReLU deals with overfitting by

introducing sparsity into the network. The other main advantage of ReLU is the rela-

tively low likelihood of vanishing/exploding gradients while training the network (see

Section 2.2.1 for the details). It is also less computationally expensive than sigmoid,

tanh and softmax because it involves simpler mathematical operations. The equation

of ReLU is:

f(x) =

0 if x < 0

x, otherwise

(2.4)

Preliminary architecture for neural networks are Multilayer Perceptrons (MLPs).

They contain sequential layers of variable-sized nodes. Each member of the layer takes

the previous layers’s inputs and delivers its outputs to the nodes in the next layer. The

first layer of MLP is referred to as the input layer and the last layer of MLP is referred

to as the output layer. Then, any layer in between input and output layers is called

the hidden layer. As the names suggest, the input layer takes the input data and the

output layer outputs the target variable(s). In a classification problem, each node i
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in the output layer represents the probability that an instance belongs to the class i.

Then the node giving the maximum value determines the class of the sample.

In a univariate regression problem, the output layer consists of only one node

and the activation function is the identity function f(x) = x. In other words, the

activation function of the final node is simply omitted to get a real number. As in

many other machine learning models, a loss function is defined. The objective is then

to minimize the loss function by updating the weights of each node using gradients.

The backpropagation algorithm proposed by Hinton [15] solves this problem by making

forward and backward passes. There are several methods to optimize the stochastic

gradient update process and one of the most effective optimizer is the Adam optimizer

[16].

There is a plethora of methods proposed to combine the neural network units in

the literature [17,18]. The most popular architectures other than MLPs can be classified

in two main groups, these are the Convolutional Neural Networks and Recurrent Neural

Networks. Recurrent Neural Networks are used for sequential data such as audio signals

and [19] and convolutional neural networks are used for multidimensional data such as

images [20]. In the following section, we briefly review the sequential neural network

architecture and its extension called the Long-Short Term Memory [21] that we used

in our study.

2.2.1. Recurrent Neural Networks

Recurrent Neural Networks (or “RNNs”) are powerful model for sequential data.

It includes an internal state that acts as a sort of “memory” for the model. Unlike

MLPs, the data is fed sequentially into the RNNs step by step; and the output in each

step depends on the internal state received from the previous step. In that way, the

decision for the current output is affected by the data seen so far. It implicitly creates

the dependence assumption between the input variables, so that the order of the input

variables matters. For instance, knowing the order of a sentence increases the chance
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for predicting the next word. Given a sequence

x = (xxx1,xxx2, ...,xxxT ) (2.5)

RNN returns an output

y = (yyy1, yyy2, ..., yyyT ) (2.6)

The equation of RNN is:

hhht =

r
rr if t = 0

φ(WWW (h)xxxt +UUU (h)hhht−1 + bbb(h)) if t > 0

(2.7)

yyyt = ρ(UUU (y)hhht + bbb(y)) (2.8)

where xxxt ∈ Re×1 is the input vector at time t; yyyt ∈ Rf×1 is the output vector at time

t; hhht ∈ Rd×1 is the hidden state vector at time t; WWW (h) ∈ Rd×e, UUU (h) ∈ Rd×d and

UUU (y) ∈ Rf×d are the weight matrices; bbb(h) ∈ Rd×1, bbb(y) ∈ Rf×1 are the bias term vectors;

φ and ρ can be any activation function applied element-wise. Generally nonlinear

activation functions are preferred. rrr is initialized to any random vector. Nevertheless,

it is suggested that configuring rrr as a learnable parameter similar to the weights would

improve the performance of RNNs [22]. They are able to handle variable sized input

sequences and inherently deep since the hidden state is propagated forward throughout

time. Thus, each step can be imagined as a hidden layer. Indeed, a RNN can simulate

any turing machine by having rational number weights [23]. Figure 2.4 shows the RNN

diagram.

A slightly modified version of backpropagation algorithm is used to train RNNs.

Because of the hidden state, the gradients are determined by the calculations from

both the current step and the previous steps. Thus, to calculate the gradient at step
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Figure 2.4. RNN diagram, folded and unfolded over time. Vectors are represented by

solid rectangles

t, the algorithm backpropagates t− 1 steps until the first step an sums each gradient.

The algorithm is called Backpropagation Through Time (BPTT). Although BPTT is

an elegant way to learn the sequential data, there is one significant drawback called

exploding/vanishing gradients. Specifically, the gradients of the network’s output with

respect to the parameters in the early layers gets remarkably large or small. The

problem is fundamental with gradient based learning methods including the backprop-

agation algorithm. It is related to certain activation functions and becomes more prob-

lematic as the depth (i.e., number of hidden layers) of the model increase. Therefore,

RNNs for long sequences are likely to suffer from this problem.

One remedy for vanishing gradient problem is using rectified linear unit activation

function. ReLU introduces sparse regularization effect on the network. The other

approach is to use extended structures of RNNs; such as Gated Recurrent Unit [24]

and Long-Short Term Memory. In the next section we go over the Long-Short Term

Memory and explain how it solves the vanishing/exploding gradient problem.
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2.2.2. Long-Short Term Memory

Long-Short Term Memory (or “LSTM”) networks are introduced by Hochreiter

& Schmidhuber [21]; and now they are widely used in sequence learning applications.

Similar to vanilla RNN, LSTM also have a chain-like structure, and each element of

the chain is called a cell. A cell is the abstraction of several connected nodes. Also,

two cells are connected by not only the hidden state, but also another vector called the

“cell state”. Specifically, a cell at step t, takes the hidden state and cell state from the

cell at step t − 1, does calculations and then feeds its hidden state and cell state into

the cell at step t+ 1. Inside an LSTM cell, there are several gates. A gate is simply a

layer of neural network nodes with an activation function. Gates act as regulators of

the information flow within the cell. In the original paper, the LSTM cell contained

input gate iiit, and output gate ooot and memory gate ccct. Gers et al. [25] introduced the

forget gate fff t into LSTM architecture enabling the cell reset certain part of its own

content once it is no longer needed. The equations for this variant of LSTM are:

iiit = σ(WWW (i)xxxt +UUU (i)hhht−1 + bbb(i))

fff t = σ(WWW (f)xxxt +UUU (f)hhht−1 + bbb(f))

ooot = σ(WWW (o)xxxt +UUU (o)hhht−1 + bbb(o))

gggt = tanh(WWW (g)xxxt +UUU (g)hhht−1 + bbb(g))

ccct = iiit � gggt + fff t � ccct−1

hhht = ooot � tanh(ccct)

(2.9)

where iiit, fff t, ooot, gggt, ccct, hhht, bbbt ∈ Rd×1; xxxt ∈ Re×1 is the input vector at time t hhht ∈ Rd×1

is the hidden state at time t; WWW (.) ∈ Rd×e and UUU (.) ∈ Rd×d are the weight matrices;

gggt is the intermediate memory gate, bbb(.) is the bias vector; tanh and σ are element-

wise hyperbolic tangent sigmoid functions, respectively; and � is the element-wise

multiplication operator. We remark that in some articles, the gate gggt is not given a

name and implicitly appear in the formula of ccct. The LSTM diagram is in Figure 2.5.
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Figure 2.5. LSTM diagram, folded and unfolded over time. Vectors are represented

by solid rectangles

Although the equations for an LSTM cell seem tangled, the progress within the

network can be imagined as follows: In parallel, gggt computes a new memory about

xxxt and iiit computes whether xxxt matters. After that, they combine outcomes by multi-

plying them. In the meantime, fff t computes whether the past cell’s memory matters

to compute current cell. Its outcome is combined with the combination of gggt & iiit by

adding this time. The result is ccct, and this is delivered to the cell in next step. Besides,

one copy of ccct is created to be further used in the cell. Finally, in the meantime, ooot

calculates what parts of the memory ccct should be exposed as the output hhht in the fol-

lowing way: tanh is applied to the previously created copy of ccct, the result is multiplied

by ooot. Thus hhht is obtained. Note that hhht is both exposed as the output and fed as the

input for the next cell. Therefore, the output and the hidden state refers to the same

thing in this context. An acute reader may notice that the terms “gate” and “vector”

have been used interchangeably. A gate either refers to the abstractions for specific set

of operations in a cell; or the vectors that result from those operations. For example,

when we state “iiit is multiplied”, it is a vector. But when we state “iiit calculates”, “iiit” is
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actually the set of operations that output the vector iiit. In summary, LSTM deals with

the vanishing/exploding gradient problem through the gates regulating the informa-

tion flow. If a piece of information is regarded as important by gates, its corresponding

second derivative is sustained in the next states and vice versa.
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3. PRELIMINARIES

In the following sections we provide details about the building blocks for our

proposed feature selection framework.

3.1. Measures of Association

We use two association measurements in our formulas. The first is the correlation

coefficient and the second is Mutual information.

3.1.1. Correlation

The correlation coefficient is a statistical measure that calculates the strength

of the relationship between two random variables. Although the term defines any

statistical relationship, it commonly refers to a measure for linear association between

the two variables. The most familiar one is the Pearson correlation coefficient [26],

which is defined as:

rxy =
sxy
sxsy

=

∑N
n=1(xn − x̄)(yn − ȳ)

N − 1√∑N
n=1(xn − x̄)2

N − 1

√∑N
n=1(yn − ȳ)2

N − 1

=

∑N
n=1(xn − x̄)(yn − ȳ)√∑N

n=1(xn − x̄)2
√∑N

n=1(yn − ȳ)2
(3.1)

on a sample data xxx = (x1, x2, . . . , xN) and yyy = (y1, y2, . . . , yN), where sxy is the

sample covariance between xxx and yyy; sx is the sample standard deviation of xxx and sy is

the sample standard deviation of yyy.
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The range of the correlation coefficient rxy is [−1, 1]. This measures the strength

and direction of a linear relationship between two variables. The extreme values −1

or 1 imply that there is a perfect linear relationship between xxx and yyy, i.e. all the data

points (xn, yn) lie on a line. rxy = 1 implies that data points are on a line and yn

increases while xn increases. rxy = -1 implies that yn decreases while xn increases. rxy

= 0 implies that there is no linear correlation between xxx and yyy. When either of the

standard deviations are zero, the correlation is undefined according to the formula. For

instance, the points lying on a horizontal or a vertical line on the xy-plane has undefined

correlation coefficient. If the variables are independent, Pearson’s correlation coefficient

is 0, but the converse is not true since the it only identifies linear dependencies between

them.

3.1.2. Mutual Information

The mutual information (MI) is a measure for dependence between two random

variables. It is and defined as:

I(X;Y ) =
∑
x,y

P (x, y)log
P (x, y)

P (x)P (y) (3.2)

where X and Y are two random variables; P (X, Y ) is the joint distribution of X and

Y ; P (X) is the marginal distribution of X and P (Y ) is the marginal distribution

of Y . The range of mutual information is [0,∞). It is equal to zero if and only

if two random variables are independent, and higher I implies higher dependency.

Mutual information is heavily studied in information theory and probability theory.

Contrary to Pearson’s correlation coefficient, it can detect non-linear relationships as

well as linear relationships. Nonetheless, neither of them is more powerful than the

other, since they describe different traits of the association between two variables. MI

quantifies it via joint distribution of the variables whereas the correlation quantifies

it via the products of the variables. Mutual information requires the estimation of

the probability distributions on sample data. The estimator function we adopted in

this study is a non-parametric approach based on entropy estimation from k-nearest
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neighbors distances as described in [27]. To estimate I(xxx;yyy) on the sample data

xxx = (x1, x2, . . . , xN)

yyy = (y1, y2, . . . , yN)
(3.3)

the algorithm computes a number In for each data point (xn, yn), based on its nearest-

neighbors on the y-axis. Computation of In is as follows: First, the kth-closest neighbor

to point n on y-axis in the set

N = {(xn′ , yn′) | n′ ∈ {0, 1, . . . , N} ∧ xn′ = xn} (3.4)

is chosen. Let the subscript for this point be k. Then, let dn = |yk − yn| and define

M = {(xn′ , yn′) | n′ ∈ {0, 1, . . . , N} ∧ |yn′ − yn| ≤ dn} (3.5)

Let pn = |N | and qn = |M|. Then In is calculated as:

In = ψ(N)− ψ(pn)− ψ(qn) + ψ(k) (3.6)

where ψ(.) is the digamma function [28]. Finally, MI is estimated by taking the average

of In over all points n:

I(xxx;yyy) ≈ 〈In〉 = ψ(N)− 〈ψ(pn)〉 − 〈ψ(qn)〉+ ψ(k) (3.7)

In our implementation we choose k=3.

3.2. Backtesting

In time series forecasting, backtesting is the method for evaluating the out-of-

sample performance of a model. Since time series data includes temporal components

that depend on each other, shuffling the data as in K-Fold cross test would cause
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the loss of information contained in the sequential structure. Backtesting splits the

data into chunks without changing the sequence. In each step, increasingly, a model

is trained with the concatenation of chunks from the beginning and the residuals are

calculated on the next consecutive chunk. Mean of the residuals obtained from those

models are considered as the model’s test error.

Given timepoints (x1, . . . , xN) and the number of steps S < N ; at each step

i ∈ {1, . . . , S}, the timepoints used for training are (x1, . . . , xa) and the timepoints

used for test are (xa+1, . . . , xa+c) , where

a = i× c+ r (3.8)

c =

⌊
N

S + 1

⌋
(3.9)

r = N mod (S + 1) (3.10)

In other words, c is the chunk size and in each time step, the number of training points

increase by a factor of c. r is the shift amount which allows conveniently reaching

to the last timepoint N at the end of step S. The special case S = N − 1 is called

walk-forward validation, which provides the most robust evaluation. The drawback of

walk-forward validation is the infeasibility to scale for large models.
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4. SIGNAL SELECTION FORMULATIONS

Our work draws inspiration from time series forecasting and recurrent neural

network models. In crude terms, each model used in this study has an LSTM layer

which sequentially takes a set of lagged observations as feature vectors in the recurrent

steps. The problem is predicting one-step ahead values of multiple time series of

product sales in different stores with minimum error. Initially, we define the following

variables:

• P : Number of products.

• S: Number of stores.

• T : Number of observed timepoints.

• L: Number of lagged observations.

• N : Number of samples.

• U : Number of features.

• V : Number of targets, i.e, V > 1 is multivariate.

• p ∈ {1, 2, . . . , P}: Product index.

• s ∈ {1, 2, . . . , S}: Store index.

• t ∈ {1, 2, . . . , T, . . . }: Observed & unobserved timestep index for sales.

• n ∈ {1, 2, . . . , N}: Sample index.

• l ∈ {1, 2, . . . , L}: LSTM step index.

• apst ∈ R≥0: The amount of product p sold in store s at time t.

• aaaTps ∈ RT
≥0: (aps1, aps2, . . . , apsT ), signal (i.e., time series data) for p,s

• xxx(n)l ∈ RU : Input vector to step l of LSTM for sample n.

• x(n) ∈ RL×U : (xxx
(n)
1 ,xxx

(n)
2 , . . . ,xxx

(n)
L ): Input matrix for sample n.

• yyy(n) ∈ RV : Target for sample n.

For notational convenience, we assume that the sales amount is zero before a

product is listed in a store by a retailer. The number of samples to be created depends

on the number of observed timepoints along with the choice of lagged observations,

precisely, N(T, L) = T − L. A simple idea could be to train a model with all the
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available signals rather than a single signal in order to forecast apst correctly. In this

scenario, assuming we don’t use any additional features, we would have P × S × L

features. For the real-world applications generally, S×P � T , which implies P ×S×

L� N . For instance, as of April 2019, the number of products listed on Amazon.com

is 119.9 million [29]. Thus, one caveat is that there are inadequate number of samples

and a model can easily overfit if one wants to train it with the lagged observations of

all signals. We formulated various feature selection and engineering schemes to build

xxx
(i)
l and yyy(i). These are: (1) Uni, (2) Uni-Store, (3) Uni-Product-Pcc, (4) Uni-Product-

Mi, (5) Multi-Store. In each of the schemes, previous L observations of particular set

of signals are used as the features for each target variable. In schemes (1)-(4), for

each pair (p, s), a separate univariate model Mps whose target variable represents apst

is constructed, thus V = 1 and the number of resulting models is S × P in each of

those individual scheme. In (5), for each product p, a separate multivariate model Mp

whose target variables represent {ap1t, ap2t, . . . , apSt} is constructed, thus V = S and

the number of resulting models is P . In the rest of the paper, we use respective scheme

names to identify models that are trained via the scheme. For example a model that

is trained according to “Uni” scheme is called as “Uni-model”.

4.1. Uni

For a product p and store s and the model Mps, the element of xxx
(n)
l is:

apsτ (4.1)

and the element of yyy(n) is:

apsυ (4.2)

where

τ(n, l) = n+ l − 1 (4.3)



20

υ(n, L) = n+ L (4.4)

The definition of τ and υ will remain the same in the rest of the paper and their

arguments are omitted for brevity. Our choice of xxx
(n)
l and yyy(n) implies that U = 1

and V = 1. Essentially, to predict the future value of the signal, we use the previous

values of the same signal. Note that this is the same set of features used in the vanilla

autoregressive model; only its shape is adjusted for the LSTM structure and there are

multiple models, each of which corresponds to a particular signal. This formulation is

constructed as the preliminary for next schemes.

4.2. Uni-Store

For a product p and store s and the model Mps, the elements of xxx
(n)
l are comprised

by:

X = {aps′τ | s′ ∈ {1, 2, . . . , S}} (4.5)

The element of yyy(n) is:

apsυ (4.6)

This scheme provides the model with the overall sales of product p to predict the

product sales of p in a single store. There are many latent factors that affect the number

of sales of products independent from a single store; such as television commercial,

epidemic, tax increase by government or the factors related to the retailer company

itself. Hence, a change in the sales of a product in some stores might point the way

to the change (presumably in the same direction) in sales of the product in other

stores. We expect the model to capture the structure of any “change” and improve the

prediction performance. This time our choice of xxx
(n)
l and yyy(n) implies that U = S and

V = 1.
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4.3. Uni-Product-Pcc

For a product p and store s and the model Mps, the elements of xxx
(n)
l are comprised

by:

X =

{
ap′sτ | p′ ∈ arg max

P ′⊆{1,...,P},|P ′|=h

∑
ρ∈P ′

r(aaaTρs, aaa
T
ps)

}
(4.7)

The element of yyy(n) is:

apsυ (4.8)

where r is the sample Pearson correlation coefficient in Eq. 3.1 between variables aaaTρs

and aaaTps. In this scheme, the formula contains the time series of different products in the

same store. The main motivation is that certain group of products are bought together.

Unlike the Market Basket Analysis, we are not interested in explicitly discovering the

association rules between products. Besides, we are dealing with temporal data and

the association rules might vary through time. Our assumption is that the machine

learning model can make use of these relations to improve prediction performance.

Nevertheless, using the time series data of all the products in a single store can still

lead to overfitting as L × P > N in practice. The remedy is to limit the number

signals. Along with the signal of product p in store s itself, we pick the top h related

products sold in s to be used in feature engineering. In this scheme, the the criterion

for relatedness is the F1 score. Our choice of xxx
(n)
l and yyy(n) implies that U = h and

V = 1.
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4.4. Uni-Product-Mi

For a product p and store s and the model Mps, the elements of xxx
(n)
l are comprised

by:

X =

{
ap′sτ | p′ ∈ arg max

P ′⊆{1,...,P},|P ′|=h

∑
ρ∈P ′

I(aaaTρs, aaa
T
ps)

}
(4.9)

where I is is the Mutual Information score in Eq. 3.7. The element of yyy(n) is:

apsυ (4.10)

The main idea of this formulation is the same as in Uni-Product-Pcc. The only dif-

ference is that the relatedness criterion between two signals is the mutual information

instead of the Pearson correlation coefficient. Unlike the Pearson correlation coeffi-

cient, the mutual information criterion is able to capture non-linear relations between

the data. Therefore, applying this scheme into the feature selection pipeline before

feeding the features into a neural network might reduce the feature dimension while

keeping the informative features that Pearson correlation ignores.

4.5. Multi-Store

For a product p and the model Mp, the elements of xxx
(n)
l are comprised by:

X = {aps′τ | s′ ∈ {1, 2, . . . , S}} (4.11)

The elements of yyy(n) are comprised by:

Y = {aps′υ | s′ ∈ {1, 2, . . . , S}} (4.12)

In this scheme, similar to Uni-Store approach, we used the signals for the sale of

product p in every individual store. Here, the target variables are also selected from
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the same set of signals, therefore, U = S and V = S.
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5. EXPERIMENTS AND RESULTS

In the experiments, we used Keras Deep Learning library [30] for implementing

the neural network models. The model of choice for each experiment is an LSTM model

followed by a Dense layer. The activation function of a neuron in the dense layer is

simply the identity function to output real-valued numbers for regression. Each LSTM

model has latent dimension 10, and trained with Adam optimizer. The loss function

is mean absolute error (or “MAE” in the plots). The number epochs is set to 50 with

early stopping. This analysis is performed on Google Cloud Platform [31]. The virtual

machine is chosen as BASIC scale tier, which has a single worker instance with CPU

and no accelerators. This tier is suitable for experimenting with new models using

small datasets. On this machine, models are created and removed and the experiment

results are saved on the fly.

We applied our proposed methodologies into Migros Online product sales data

between years 2014-2019. A trial run in the experiment setup is defined as a complete

training and evaluation of models for each store, product, scheme and backtesting

step. Specifically, in a single trial, 2500 models are created for each of the Uni schemes

and 500 models are created for the Multi-Store scheme; summing up a total of 10500

models for the single trial. Note that a Multi-Store scheme handles the prediction of

5 variables unlike the univariate schemes, therefore, the resulting number of models is

500 instead of 2500. Without assortments (see below), we made two trial runs. Then,

with assortments, we made two trial runs. Consequently, 42000 models are trained

and evaluated in this experiment. Index of the time series data was originally in unix

timestamps; and then we re-sampled it daily, so that the timepoints represent the sales

amounts in days. We selected T as 356×5 = 1825. Due to calendar-day variations, we

truncated a few days from the dataset to achieve exactly 1825 timepoints. A random

set of 50 products and 5 stores are chosen, that is, P = 50 and S = 5 and the number

of signals is 250. Each sample represents the lagged observations for 9 days, i.e. L = 9

and the resulted number of samples is N = 1816.
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For the sake of robust evaluations of the model performances, we applied 10-step

backtesting on each signal. Since unit of the sales data is either in grams or pieces,

the magnitude of the signals varied significantly. Generally, apst differs by three orders

of magnitude for a product in grams and product in pieces. This variation would not

allow a fair comparison between the model losses, therefore we min-max scaled apst so

that the maximum value of a signal is transformed into 1 whereas the minimum value of

the signal is transformed into 0 and the rest of the values are between 0 and 1, ∀p, s. In

addition, scaling allows speeding up the training process of gradient based algorithms.

We both scaled the train and test data according to the minimum and maximum values

of the training data in order to avoid “data leakage”, that is, presenting any information

obtained from the test data to the model for training. Unless otherwise stated, mean

values in the experiments include all the respective backtesting steps.

Regarding the formulations in section 5, we considered including particular as-

sortments. The assortments are any kind of extra features that we add on top of the

defined features in the schemes. Formally, we prepared a new set of features and took

the union of this and X for each xxx
(n)
l . The assorments we selected in this experiment

include one-hot encodings of day of the week (7 features), one-hot-encodings of month

of the year (12 features), and one-hot-encodings of nine holidays and one no-holiday

(10 features), summing up a total of 29 extra feture dimensions. We refer to the trials

with assortment features as “assortment-mode” trial and refer to the trials without

assortment features as “plain-mode” trial. In the Uni-Product-Mi & Uni-Product-Pcc

models, we selected top 10 signals among 50 signals according to the association crite-

ria, so that h = 10.

In Figure 5.1 and 5.2, training and test losses of models decrease as the backtesting

steps increase. Since in each step, the models use more timepoints than they use in

the previous step, we conclude that the models indeed learn better with more samples.

There are two more observations. Firstly, the training losses are below the test losses

by a narrow margin. Secondly, the training losses and the test losses converge as

the backtesting steps increase. Therefore, the in-sample and out-of-sample errors get

desirably close as we use more samples for training.
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(a) Plain Mode (b) Assortment Mode

Figure 5.1. Mean training errors as a function of backtesting steps

(a) Plain Mode (b) Assortment Mode

Figure 5.2. Mean test errors as a function of backtesting steps
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Figures 5.3 and 5.4 summarize the average train and test errors in two trials &

two modes. All of the corresponding results from the first trial and the second trial are

very close. Only the Uni-Product-Mi differs between trials considerably. In addition,

the highest difference between the training and test loss belongs to the Uni-Product-Mi.

This suggests that the Uni-Product-Mi models are more likely to overfit than the other

models. It is followed by Uni-Product-Pcc, therefore the worst performing schemes on

average are the ones using other product signals.

Without exception, every one of the models in the plain-mode has lower training

and test losses than their respective models in the assortment-mode. Additionally, the

gap between training and test loss is higher in the assortment-mode. This addresses

the ovefitting due to the redundancy of the selected assortments.

In the assortment mode, the best performing model on average is the Multi-Store

followed by the Uni by a considerable margin. Hence, the Multi-Store model is more

robust to the overfitting that is caused by the assortments. In the plain mode, the

best performing model on average is the Uni followed by the Multi-Store by a narrow

margin. The Multi-Store outperforms the Uni-Store approach in the two modes. Note

that both of the models use the same set of features, only their target variables differ.

We conclude that the multivariate model is more capable at capturing the relationships

between the signals than the univariate models with the same set of features.

Each plot in Figures 5.5 - 5.7 represents the average values obtained from two

trials & two modes. Figure 5.5 shows the average losses of models on all stores. A

dot represents the average of the 2 × 50 × 10 values. Interquartile ranges of Uni-

Product-Mi is noticeably the largest; and that of Uni-Product-Pcc is slightly larger

than the rest. Figure 5.6 shows the average losses of models on all products. A dot

represents the average losses of the 2× 5× 10 values. All the interquartile ranges are

approximately 0.05. Figure 5.7 shows the averages of models on all signals. Particularly,

a dot represents the average of the 2 × 10 values. All the interquartile ranges are

approximately between 0.06 and 0.07.
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(a) Plain Mode (b) Assortment Mode

Figure 5.3. Mean training errors

(a) Plain Mode (b) Assortment Mode

Figure 5.4. Mean test errors
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All the median values are close to the mean values in Figure 5.4. In the boxplots,

the maxiumum values of all points are similar in the two modes, however, their mini-

mum values are shifted by some amount. It also supports the conclusion drawn from

Figure 5.4(b) that the assortments led to overfitting. There are some zero values in the

plain-mode. The minimum values are never zero in the assortment-mode. Points with

zero errors are obtained from the constant signals, i.e. their values are always the same

number regardless of the time. These signals are likely to come from the zero-selling

products. The distribution of the points are similar; however the values are shifted by

some amount. All the minimum, maximum numbers and quartiles are shifted similar

to the mean values from the previous figures. Except for the Uni-Product-Mi model,

the outliers are close to the maximum values.

(a) Plain Mode (b) Assortment Mode

Figure 5.5. Mean test errors on each store

Figure 5.8 demonstrates the percentages of how many of the times each scheme

resulted in the best performing model on the signals. For each signal we determined

which model gave the minimum test loss. Then we counted those models. This is done

for all the trials. The average of two trials are calculated for each modes, respectively.

Finally, the numbers are converted into percentages. The results on the pie chart are

consistent with the previous figures. Multi-Store is the best model on most of the

times and on average its loss is also the smallest in the assortment-mode. Uni is the

best model in most of the times in the plain-mode and on average its loss is also the
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(a) Plain Mode (b) Assortment Mode

Figure 5.6. Mean test errors on each product

(a) Plain Mode (b) Assortment Mode

Figure 5.7. Mean test errors on each (store, product) pair
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smallest in the plain-mode. In addititon, consistent with figure 5.4(b), the percentage

of Multi-Store is considerably more than the rest of the models in assortment-mode.

The percentage of Uni is the highest and it is followed by Multi-Store in the Plain-

Mode. Similar to the mean values, the difference between the percentages of Uni model

and Multi-Store model are close in the plain-mode. The orders of the worst performing

three schemes are the same between two modes.

Figure 5.9 shows that the average training speed of the Multi-Store scheme is

approximately three times faster than that of the other schemes. Instead of creating

multiple models and using the same set of features to predict a different target, Multi-

Store handles it at once with a single model. Although the Multi-Store model has more

weight parameters to be updated during training than the other models in our exper-

iments, building and training multiple models created more overhead. Consequently,

the experiments show that there is a training speed versus prediction performance

trade-off between the Multi-Store and the Uni scheme.
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(a) Plain Mode (b) Assortment Mode

Figure 5.8. Percentages of the best performing schemes on individual signals

Figure 5.9. Average wall-clock training times of the models in each scheme.
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6. CONCLUSION

In this paper, we have proposed five mathematical formulations for hierarchi-

cal signals that represent the product sales amounts in multiple stores. The formulas

allowed rigorous feature selection and engineering schemes for univariate and multi-

variate forecasting regarding certain association criteria between the signals. We have

applied the formulations on Migros Online sales data and observed that the Uni and

Multi-Store are the two best performing models. Although the latter produced slightly

greater test loss than the former, its training speed is approximately three times faster

than that of the other models. Instead of training and deploying a new model for pre-

dicting each signal; one model for a group of signals by compromising the prediction

performance to a certain extent would be preferable in the practical applications. Two

possible explanations for the poor performances of Uni-Product-Pcc and Uni-Product-

Mi schemes are the deficiency of samples or excess of h. However, more intriguing

cause is the small number product subset. As explained above, we have selected 50

random products, and selected signals among 50 signals of products within a store.

However, the entire dataset have thousands of products. Therefore there is a signifi-

cant probability of finding signals with higher scores outside of the set. In other words,

the selected signals according to the association criteria were not informative enough

and have led to overfitting. A thorough experiment setup should consider selecting the

associated signals among the all products within a store. A more thorough experiment

would even select signals from the entire dataset. As a final remark, feature selection

and engineering process constitutes the majority of the work in the real-world machine

learning problems. We have standardized it for the multivariate demand forecasting on

LSTM, thus made the reproducibility of the experiments straightforward. Different ex-

periments can be automated by regarding the number of multivariate features, lagged

observations, associated product signals and the store ids as the hyperparameters and

the models can be easily optimized.
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