
NETWORK FLOWS WITH CONFLICT CONSTRAINTS

by

Zeynep Şuvak

B.S., Industrial Engineering, Boğaziçi University, 2010

M.S., Industrial Engineering, Boğaziçi University, 2013

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Industrial Engineering

Boğaziçi University

2019

ii

NETWORK FLOWS WITH CONFLICT CONSTRAINTS

APPROVED BY:

Prof. İ. Kuban Altınel

(Thesis Supervisor)

Prof. Necati Aras

(Thesis Co-supervisor)

Prof. Ümit Bilge

Prof. Temel Öncan

Prof. Z. Caner Taşkın

Assist. Prof. Hande Küçükaydın

DATE OF APPROVAL: 21.06.2019

iii

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Prof İ. Kuban

Altınel and co-advisor Prof Necati Aras for their invaluable guidance and motivation

throughout my graduate study. Their inspiring suggestions have always illuminated

my way and this work would not be completed without their significant contributions.

Beyond working together, I feel really fortunate to know them because I see them as

two role models with immense academic knowledge and supportive attitude as mentors.

I am very grateful to Prof. Temel Öncan and Prof Z. Caner Taşkın for the

contributions they made in the progress of my research and the hard questions which

incented me to widen my research from various perspectives. Besides, I would like to

thank to the rest of my thesis committee: Prof. Ümit Bilge and Assist. Prof. Hande

Küçükaydın for their insightful comments and encouragement.

I also gratefully acknowledge the partial support of TÜBİTAK (The Scientific and

Technological Research Council of Turkey) under the grant no: 213M441 for the com-

pletion of this thesis. Moreover, I would like to acknowledge Düzce University for the

concerned and understanding attitude all this time and the support of ÖYP (Teaching

Staff Training Program) conducted by YÖK (The Council of Higher Education).

I am also very thankful to my friends and work fellows for the great times we had

together during my graduate study. No words can be found to express my feelings for

my family. My mother and my father have always been by my side whenever I need

their affection and support. I feel as the luckiest person to have my husband, Vedat.

You have always been considerate and encouraging in all circumstances. My lovely

daughter Mehtap, I hope you will always be proud of your mother because this is the

strongest motivation I have for the times we are apart. Your presence, as a whole,

made it possible, thank you.

iv

ABSTRACT

NETWORK FLOWS WITH CONFLICT CONSTRAINTS

It is a commonly used approach to model real life problems as network flow prob-

lems and they appear in a wide range of areas including telecommunication, wireless

networks, transportation, healthcare and scheduling. Our focus in this thesis is on an

extension of network flow problems with conflict constraints that prevent the simul-

taneous usage of some arc pairs to send flow. We particularly concentrate on four of

them: the minimum cost noncrossing flow problem on layered networks, the minimum

cost flow problem with conflicts, the maximum flow problem with conflicts and the

assignment problem with conflicts. The minimum cost noncrossing flow problem on

layered networks, which emerges from the quay crane scheduling problem in container

terminals, is proven to be NP -hard. Further complexity results including the strong

NP -hardness and the non-existence of polynomial time approximation algorithm for

the the minimum cost flow problem with conflicts on general networks are also pro-

vided. Moreover, polynomially solvable special cases for the minimum cost noncrossing

flow problem on layered networks and the assignment problem with conflicts, which is

known to be NP -hard, are explored. Similarly, the conditions which limit the number

of feasible solutions with a polynomial number are indicated for the minimum cost

flow problem with conflicts and the maximum flow problem with conflicts taking ad-

vantage of the conflict graph representation. Alternative mathematical representations

for these problems are developed. Pre-optimization procedures to reduce the problem

size and to find an initial feasible solution are defined. Exact solution algorithms in-

cluding a branch-and-bound algorithm enriched with the subroutines that exploit the

special structure of the considered problem, an improved Russian doll search algorithm

and a Benders decomposition with strengthened cuts are proposed. The methods are

tested on a large set of test instances and they are shown to be superior than solving

the underlying mathematical formulations with a commercial optimization solver.

v

ÖZET

ÇATIŞMA KISITLI AĞ AKIŞLARI

Telekomünikasyon, kablosuz ağlar, taşımacılık, tıp ve sağlık hizmetleri, çizelgeleme

gibi alanlarda karşımıza çıkan birçok problemi ağ akış problemleri olarak modellemek

yaygın bir yaklaşımdır. Bu tez bağlamında odaklanılan ise, ağ akış problemlerinin be-

lirli okların aynı anda akış taşımasını engelleyen çatışma kısıtlı uzantısıdır. Ele alınan

problemlerin bazıları daha önceden yazında var olan, bazıları da ilk defa bu tezde

çalışılmış katmanlı ağlarda en küçük maliyetli kesişmeyen akış problemi, çatışma kısıtlı

en küçük maliyetli akış problemi, çatışma kısıtlı en büyük akış problemi ve çatışma

kısıtlı atama problemidir. Konteyner limanlarında kıyı vinci çizelgeleme problemini

modellemek için ortaya çıkan katmanlı ağlarda en küçük maliyetli kesişmeyen akış

probleminin NP -zor olduğu kanıtlanmıştır. Çatışma kısıtlı en küçük maliyetli akış

probleminin güçlü NP -zorluğu ve polinom zamanlı yakınlaştırma algoritmasının bu-

lunmazlığı gibi karmaşıklık çözümleme sonuçlarına da ulaşılmıştır. Ayrıca, katmanlı

ağlarda en küçük maliyetli kesişmeyen akış problemi ve çatışma kısıtlı atama problemi

için polinom zamanda çözülebilen özel durumlar açıklanmıştır. Benzer şekilde, çatışma

kısıtlı en küçük maliyetli akış problemi ve çatışma kısıtlı en büyük akış problemi için

olurlu çözüm sayısını polinom bir sayıyla sınırlayan durumlar çatışma çizgesinden fay-

dalanılarak işaret edilmiştir. Tüm problemler için çeşitli matematiksel gösterimler

elde edilmiştir. Hızlı bir biçimde problem boyutunu küçülten ve olurlu bir çözüm

bulan eniyileme öncesi işlemler önerilmiştir. Eldeki problemin özel yapısını kullanan

etkili alt yordamlarla zenginleştirilmiş dal-sınır algoritması, yenilikçi yaklaşımlarla iy-

ileştirilmiş matruşka araması ve güçlü kesiler kullanan Benders ayrıştırması gibi kesin

çözüm yöntemleri geliştirlmiştir. Algoritmalar geniş bir örnek problem kümesi üzerinde

denenmiş ve başarımlarının matematiksel gösterimlerini bir ticari eniyileme yazılımı ile

çözmekten daha iyi olduğu sonucuna varılmıştır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . x

LIST OF TABLES . xii

LIST OF SYMBOLS . xv

LIST OF ACRONYMS/ABBREVIATIONS . xviii

1. INTRODUCTION . 1

1.1. Motivation . 2

1.2. Organization and Contributions . 4

2. BASIC CONCEPTS AND NOTATION . 8

2.1. Graphs . 8

2.2. Networks and Flows . 11

2.2.1. General Networks . 11

2.2.2. Layered Networks . 13

2.3. Classical Network Flow Problems . 15

2.3.1. Minimum Cost Flow Problem 15

2.3.2. Maximum Flow Problem . 16

2.3.3. Minimum Cut Problem . 17

2.3.4. Assignment Problem . 19

2.3.5. Other Problems . 20

2.4. Conflict Notion . 21

2.4.1. Conflict Graph . 22

2.4.2. Conflict Formulations . 23

3. LITERATURE REVIEW . 25

3.1. Complexity Results . 26

3.2. Exact Solution Approaches . 27

3.3. Heuristics . 29

3.4. Applications . 29

vii

4. PROBLEM DEFINITIONS AND FORMULATIONS 31

4.1. Minimum Cost Noncrossing Flow Problem 31

4.1.1. Flow Scheduling with Spatial Constraints 31

4.1.2. Problem Representation . 37

4.2. Minimum Cost Flow Problem with Conflicts 39

4.3. Maximum Flow Problem with Conflicts 40

4.4. Assignment Problem with Conflicts . 41

4.5. Alternative Formulations . 45

4.5.1. Weak Formulations . 45

4.5.2. Clique Formulations . 45

4.5.3. Combinatorial Optimization Problem Formulations 47

5. COMPLEXITY ANALYSIS . 51

5.1. The Difficulty of the Minimum Cost Noncrossing Flow Problem 51

5.2. The Difficulty of the Minimum Cost Flow Problem with Conflicts . . . 62

5.3. The difficulty of the Maximum Flow Problem with Conflicts and the

Assignment Problem with Conflicts . 64

5.4. A Polynomially Solvable Special Case for the Minimum Cost Noncrossing

Flow Problem . 65

5.5. A Polynomially Solvable Special Case for the Bipartite Noncrossing

Matching Problem . 70

6. PRE-OPTIMIZATION PROCEDURES . 75

6.1. Reducing the Number of Crossings on Layered Networks 75

6.2. Preprocessing on General Networks . 81

6.3. Probing . 83

6.4. Finding Initial Solutions . 83

6.4.1. Diving Heuristics . 83

6.4.2. Local Search Based Heuristic 85

7. BENDERS DECOMPOSITION ALGORITHM 88

7.1. Strong Connectivity Cuts . 91

7.2. Strong Benders Cuts . 93

7.3. Valid Inequalities and Initial Upper Bound 95

viii

7.4. Benders Decomposition for the Other Formulations 96

7.5. Implementation . 97

8. BRANCH-AND-BOUND ALGORITHM . 99

8.1. Branching Rules for Division . 100

8.1.1. Conflicting Pair Branching . 100

8.1.2. Conflicting Arc Branching . 101

8.1.3. Conflicting Arc Pair Branching 101

8.1.4. Clique Branching . 101

8.2. Penalty Calculation . 104

8.2.1. Penalties from Basic Spanning Tree 105

8.2.2. Penalties from the Solution of the Hungarian Algorithm 108

8.2.3. Pruning by Penalties . 108

8.2.4. Pegging . 109

8.3. Branching Variable Selection . 110

8.4. Subproblem Selection . 111

8.5. Algorithms to Solve Relaxed Problems 111

8.6. Local Preprocessing . 112

9. RUSSIAN DOLL SEARCH ALGORITHM 117

9.1. Description of the Algorithm . 117

9.2. Candidate Set Generation . 119

9.3. Dynamic Candidate Set Approach . 120

10. EXPERIMENTS AND RESULTS . 124

10.1. Computational Study for the Minimum Cost Noncrossing Flow Problem 124

10.1.1. Test Environment . 124

10.1.2. Formulations and Relaxations 125

10.1.3. The Effect of Preprocessing . 125

10.2. Computational Study for the Minimum Cost Flow Problem with Conflicts129

10.2.1. Test Environment . 129

10.2.2. The Effect of Preprocessing and Probing 130

10.2.3. The Effect of Diving . 131

10.2.4. Performance Assessment of the New Exact Solution Methods . . 132

ix

10.2.4.1. Most Effective Branching Rule 132

10.2.4.2. The Efficiency of the New Methods 134

10.2.5. The Effect of Local Procedures 136

10.3. Computational Study for the Maximum Flow Problem with Conflicts . 137

10.3.1. Test Environment . 137

10.3.2. The Effect of the Formulation 138

10.3.3. The Comparison of Different Benders Decomposition Implemen-

tations . 139

10.3.4. Improvements for the Benders Decomposition Algorithm 141

10.3.5. Efficiency of the Exact Algorithms 142

10.3.6. Effect of Instance Size on the Performance 144

10.4. Computational Study for the Assignment Problem with Conflicts . . . 146

10.4.1. Test Environment . 146

10.4.2. The Effect of the Formulations 147

10.4.3. The Effect of the Branching Rules 148

10.4.4. The Effect of the Subproblem Selection Rules 150

10.4.5. The Effect of the Initial Upper Bound 150

10.4.6. The Effect of Probing . 151

10.4.7. The Effect of Pegging . 151

11. CONCLUSIONS . 161

11.1. The Minimum Cost Noncrossing Flow Problem 161

11.2. The Minimum Cost Flow Problem with Conflicts 161

11.3. The Maximum Flow Problem with Conflicts 162

11.4. The Assignment Problem with Conflicts 162

11.5. Potential Future Research . 163

REFERENCES . 164

APPENDIX A: APPENDICES . 176

A.1. Detailed Computational Results for the Minimum Cost Flow Problem

with Conflicts . 176

A.2. Detailed Computational Results for the Maximum Flow Problem with

Conflicts . 182

x

LIST OF FIGURES

Figure 1.1. The Port of Colombo, Sri Lanka [1] 3

Figure 2.1. A minimal dominating set which is not a maximal stable set. . . . 9

Figure 2.2. Two ways to express a flow in a network 12

Figure 2.3. A layered network with L layers 14

Figure 2.4. Two ways to express a flow in a layered network 15

Figure 2.5. An s-t cut. 18

Figure 4.1. Sample berth allocations and quay crane assignments for four vessels 32

Figure 4.2. A layered network describing the situation given in Figure 4.1 . . 33

Figure 4.3. The layered network appropriate for a minimum cost network flow

formulation of the example given in Figure 4.1 and Figure 4.2 . . . 36

Figure 4.4. Greedy heuristic to find a subset of K 46

Figure 5.1. Noncrossing paths corresponding to an SPP instance 54

Figure 5.2. Six possible crossings . 67

Figure 5.3. Two possible corrections . 69

Figure 5.4. Matchings . 70

xi

Figure 5.5. Crane assignments . 72

Figure 5.6. A conflict . 73

Figure 6.1. Preprocessing for MCNFP . 80

Figure 6.2. Preprocessing for MCFPC . 82

Figure 6.3. Probing for MCFPC . 84

Figure 6.4. Diving heuristic . 86

Figure 7.1. MFPC Benders Decomposition . 98

Figure 8.1. Greedy heuristic to determine a maximal cardinality clique 103

Figure 8.2. Local preprocessing . 114

Figure 8.3. Branch-and-bound Algorithm for MCFPC and APC 115

Figure 8.4. Branch-and-bound Algorithm for MFPC 116

Figure 9.1. RDS Algorithm for MCFPC . 122

xii

LIST OF TABLES

Table 10.1. Properties of the generated test instances. 126

Table 10.2. Formulations and relaxations. 127

Table 10.3. The effect of preprocessing. 128

Table 10.4. Average percentage of deleted arcs: the effect of arc density 131

Table 10.5. Average percentage of deleted arcs: the effect of conflict density. . 131

Table 10.6. Mean CPU time spent by the diving heuristic 132

Table 10.7. Solution performance of different methods: total number of solved

instances and LBdevi values . 134

Table 10.8. The effect of the number of vertices 135

Table 10.9. The number of optimally solved instances aggregated over p and d

values . 135

Table 10.10. Average CPU times in seconds . 136

Table 10.11. Number of optimally solved instances in 1 hour 139

Table 10.12. Average number of generated cuts and average CPU times 140

Table 10.13. The number of optimally solved instances for different versions of

Benders Decomposition . 141

xiii

Table 10.14. Solution performance of different methods 143

Table 10.15. The effect of the number of vertices 144

Table 10.16. The effect of the arc density . 145

Table 10.17. The effect of the conflict density 145

Table 10.18. Comparison of CPLEXW and BB for d = 0.3 146

Table 10.19. Performance of the formulations and the RDS algorithm. 153

Table 10.20. Performance of the straightforward branching rules 154

Table 10.21. Performance of the clique branching rules 155

Table 10.22. Performance of the subproblem selection rules 156

Table 10.23. Performance of the conflicting pair selection rules 157

Table 10.24. The effect of the initial upper bound on the performance of the BB

algorithm . 158

Table 10.25. The effect of the probing on the performance of the BB algorithm . 159

Table 10.26. The effect of the pegging on the performance of the BB algorithm 160

Table A.1. Properties of the test instances and the upper bounds given by the

diving heuristics. 177

Table A.2. CPU times of algorithms. 178

xiv

Table A.3. Number of solved subproblems to find an optimal solution within 1

hour time limit. 179

Table A.4. Upper and lower bounds in 1 hour time limit for instances 1-40. . . 180

Table A.5. Upper and lower bounds in 1 hour time limit for instances 41 - 80. 181

Table A.6. Properties of the test instances. 183

Table A.7. CPLEX CPU times (in seconds) for weak (CPLEXW), strong (CPLEXS)

and clique (CPLEXK) formulations. 184

Table A.8. CPU times (in seconds) for different implementations of Benders

decomposition for instances 1-80. 185

Table A.9. CPU times (in seconds) for different implementations of Benders

decomposition for instances 81-160. 186

Table A.10. CPU times (in seconds) of exact solution algorithms to solve MFPC.187

Table A.11. Upper and lower bounds for instances 1-80. 188

Table A.12. Upper and lower bounds for instances 81-160. 189

xv

LIST OF SYMBOLS

A(N) Arc set of network N

Al(l+1)(N) The set of arcs (i, j) having i in layer l and j in layer l + 1

APCK The clique formulation of APC

APCS The strong formulation of APC

APCW The weak formulation of APC

APC(t) The subproblem of APC at node t of the BB tree

AP(t) The AP relaxation at node t of the BB tree

bi Supply/demand of vertex i

C The conflict graph

cij Cost of sending one unit of flow along arc (i, j)

cij The reduced cost of arc (i, j) or edge {i, j}

Cl The candidate set at level l of RDS

dG(v) Degree of vertex v of graph G

E(G) Edge set of graph G

Fl The free vertex set at level l of RDS

fij Flow amount on arc (i, j)

G Graph

G Complement of graph G

G[W] The subgraph of G induced by vertex set W ⊂ V (G)

I The partial independent set kept during RDS

K The family of maximal cliques of the conflict graph C

lij Lower bound on the flow along arc (i, j)

MC A minimum capacity cut

MCFPCK The clique formulation of MCFPC

MCFPCS The strong formulation of MCFPC

MCFPCW The weak formulation of MCFPC

MCFPC(t) The subproblem of MCFPC at node t of the BB tree

MCFP(t) The MCFP relaxation at node t of the BB tree

xvi

MCNFPK The clique formulation of MCNFP

MCNFPS The strong formulation of MCNFP

MCNFPW The weak formulation of MCNFP

MFPCK The clique formulation of MFPC

MFPCS The strong formulation of MFPC

MFPCW The weak formulation of MFPC

MFPC(t) The subproblem of MFPC at node t of the BB tree

MFP(t) The MFP relaxation at node t of the BB tree

m Number of arcs in network N

n Number of vertices in network N

nl The cardinality of vertex set in layer l of a layered network

N Network

NG(v) The set of adjacent vertices of vertex v ∈ V (G)

NG(v) The subset V (G)\(NG(v) ∪ {v})

pnij The penalty of deleting an arc (i, j) or edge {i, j}

Sij The arcs cross with arc (i, j)

Sl A maximal stable set which is a subset of Fl

s Source vertex

t Sink vertex

U The summation of flow upper bounds over (i, j) ∈ A(N)

uij Flow upper bound on arc (i, j)

V (G) Vertex set of graph G

V (N) Vertex set of network N

V +(N) Subset of transshipment supply vertices

V −(N) Subset of transshipment demand vertices

V ±(N) Subset of pure transshipment vertices

Vl(N) The set of vertices in layer l of a layered network

v Value of flow sent form the source vertex to the sink vertex

w(W) The sum of the weights of the vertices in subset W

xij Binary variable associated to arc (i, j) or edge {i, j} which is

set to one if it is selected, and zero otherwise

xvii

z A global upper bound for the optimal objective value

z A global lower bound for the optimal objective value

z(t) The upper bound obtained from the relaxed problem at node

t of the BB tree

z(t) The lower bound obtained from the relaxed problem at node

t of the BB tree

z(.) The objective value of a feasible solution

δC(i, j) The conflict list of arc (i, j) or edge {i, j}

δG(v) The subset of edges incident with vertex v ∈ V (G)

µij The dual variable assigned to flow capacity constraint of arc

(i, j)

πi The dual variable assigned to flow balance constraint of vertex

i

xviii

LIST OF ACRONYMS/ABBREVIATIONS

AP Assignment Problem

APC Assignment Problem with Conflicts

BAP Berth Allocation Problem

BB Branch-and-Bound

BD Benders Decomposition

BFS Breadth First Search

BIP Binary Integer Programming Problem

BPPC Bin Packing Problem with Conflicts

DFS Depth First Search

DSP Dual of the Subproblem of Benders Decomposition

KPC Knapsack Problem with Conflicts

LLB Largest Lower Bound

LP Linear Programming Problem

MCFP Minimum Cost Flow Problem

MCFPC Minimum Cost Flow Problem with Conflicts

MCNFP Minimum Cost Noncrossing Flow Problem on Layered Net-

works

MCNFP-RC Minimum Cost Noncrossing Flow Problem on Layered Net-

works with Restricted Cost

MCP Minimum Capacity Cut Problem

MCPMPC Minimum Cost Perfect Matching Problem with Conflicts

MFP Maximum Flow Problem

MFPC Maximum Flow Problem with Conflicts

MILP Mixed Integer Linear Programming Problem

MKP Maximum Clique Problem

MMPC Maximum Matching Problem with Conflicts

MP Master Problem of Benders Decomposition

MSP Maximum Stable Set Problem

MSTPC Minimum Spanning Tree Problem with Conflicts

xix

MWKP Maximum Weight Clique Problem

MWSP Maximum Weight Stable Set Problem

QCAP Quay Crane Assignment Problem

QCSP Quay Crane Scheduling Problem

RDS Russian Doll Search

SLB Smallest Lower Bound

SP Subproblem of Benders Decomposition

SPP Set Partitioning Problem

SPPC Shortest Path Problem with Conflicts

TPC Transportation Problem with Conflicts

1

1. INTRODUCTION

Many systems or structures encountered in daily life can be represented as net-

works of interconnecting objects. Power networks to distribute electricity, telecommu-

nication/internet networks to ensure data stream, highway or rail networks to provide

means of transportation, supply chain or distribution networks in manufacturing, social

networks to model the acquaintance between people or biological networks to exam-

ine the interaction across species in terms of food-webs or disease spread are some

examples.

Network flow problems involve transmitting goods, materials, data, messages,

money, passengers, etc. across a network. Flow is the general name for all items

transferred along the links between the nodes of the network because their properties

are similar to those of water flowing through pipes. Although various cases in many

disciplines can be modeled as network flow problems, some are self-evident which are

called physical networks while some are less obvious. The problems of second type,

as we observe in scheduling applications, usually do not seem to involve flows at first

glance.

As examples of the classical network flow problems, the minimum cost flow prob-

lem and its variant, the fixed charge network flow problem in which a fixed set-up cost

is incurred whenever a flow is sent along an arc, the maximum flow problem and the

shortest path problem, which can be considered as complementary since the first one

excludes arc capacities and the other ignores unit costs of sending flow, the transporta-

tion and the assignment problems, which are special cases of the minimum cost flow

problem can be listed.

In addition to the original network flow problems, their extensions are also studied

before. The classical network flow problems mentioned above except the fixed charge

network flow problem can be solved in a time polynomially bounded in the size of prob-

lem parameters but the addition of complicating side constraints make these problems

2

NP -hard. Multi-commodity flow problems where the cost, demand and supply pa-

rameters are commodity dependent but the flow capacities are the common resources

utilized by all commodities are the most known extensions [2, 3]. Other examples are

the time-constrained flow, which is limited by not only arc capacities but also the time

windows needed to traverse that arc [4], and the budget-constrained flow where the

total cost cannot exceed a given budget [5]. Similarly, we can talk about generalized

flows which are eroded to some extent at the visited vertices [6, 7] or path-constrained

flow in which the flow is either split at most k paths or not split at all [8, 9]. In this

thesis, we study another extension of network flow problems where some arcs are in-

compatible with each other. In other words, we analyze the case where at most one of

the incompatible arcs is allowed to carry flow in a feasible solution.

1.1. Motivation

Network flows subject to conflict constraints preventing simultaneous usage of

some arc pairs is first appeared in container terminals [10, 11]. A container terminal

is a facility where the containerized cargo is loaded to vessels, unloaded from them,

transferred to trucks or trains to be delivered to inland destinations and stored until the

execution time of the next scheduled operation arrives. Due to the increased volume of

containerized transshipment in recent years, the optimization problems arising within

a container port are extensively studied in the operations research literature. Since

investing to resources such as berths, i.e. quay spaces where vessels are loaded and

unloaded, cranes, transportation vehicles and handling equipment is very costly; the

efficient utilization of the available instruments gains importance to meet the growing

demand. One of the most popular problems observed in the quayside of the terminal

is the berth allocation problem (BAP) in which we allocate a berth segment and a

service time interval to each arriving vessel. Containers are unloaded from vessels by

quay cranes and placed onto trucks, while containers are loaded to vessels following the

reverse process. Quay cranes can move along the quayside usually on a rail system.

The quay crane assignment problem (QCAP) deals with assigning the number of quay

cranes to berthed vessels and the quay crane scheduling problem (QCSP) determines

particular cranes which serve them along a planning horizon. Each quay crane is

3

Figure 1.1. The Port of Colombo, Sri Lanka [1]

either assigned to a vessel or waits in the spaces between them. The position of

cranes changes whenever a vessel arrival or departure occurs, they remain unchanged

otherwise. Given the assigned berths and number of assigned cranes to each arriving

vessel in the planning horizon, scheduling of specific quay cranes can be modeled as

the minimum cost flow problem in which the aim is to minimize the total set-up and

operation cost that stems from crane displacements. Since, quay cranes cannot cross

over each other, a schedule that requires crossing crane movements are unacceptable.

Therefore, the minimum cost noncrossing flow problem on layered networks (MCNFP)

where the flow represents the crane movements across different service locations is

born [12].

In the course of time, the physical meaning of crossing is abstracted to the notion

of conflict and the general networks are considered instead of special layered struc-

tures. After gaining insights about the nature and the exact solution methods for the

minimum cost flow problem with conflicts (MCFPC) [13], we also study the maximum

flow problem with conflicts (MFPC) [14] and the assignment problem with conflicts

(APC) [15], which can be considered as the special forms of MCFPC.

4

1.2. Organization and Contributions

As mentioned before, network flow problems arise in both physical networks where

the flow of items are evident and in scheduling applications such as the quay crane

scheduling problem (QCSP) described earlier. Depending on the context of the prob-

lem, extra restrictions might be imposed in addition to the existing flow conservation

constraints. When QCSP is modeled as a network flow problem, it is observed that the

usage of some pairs of arcs, namely the crossing ones, leads to an infeasible schedule

violating the physical constraint that a quay crane cannot cross over another. Although

the concept of conflicting arcs appeared previously in different problems, network flow

problems with conflicting arc pairs are not studied thoroughly. This thesis aims to fill

this gap and provide a comprehensive analysis of network flow problems in the exis-

tence of incompatible, conflicting arcs. Some of the studied problems in this thesis are

newly defined while the others are introduced previously.

The notations and definitions that seem necessary for a better understanding of

the remaining part of the thesis are given in Chapter 2. The mathematical represen-

tations of the ordinary flow problems and the relation between these formulations are

also presented. A formal definition of flow and an introductory section about conflict

notion, which is the main concern of this study, can be found there. In Chapter 3,

a broad review of the literature about the problems with conflicting variables, which

we consider as the most related works to ours are given. The review is summarized

under four main subtitles. The works examining the complexity and polynomially solv-

able special cases, and the ones proposing exact solution algorithms and heuristics are

grouped separately. We give brief explanations about these theoretical and algorithmic

approaches and we present the examples of real-life applications of the problems with

conflict constraints, as well.

First of all, the minimum cost noncrossing flow problem on layered networks

(MCNFP) which is not studied before is introduced. This problem is defined on a

layered network in which the arcs exist between two consecutive layers only in forward

direction. The flows that cross each other with respect to a special embedding of ver-

5

tices within each layer are not allowed and the least cost distribution of the available

supply is searched so that the demand requirements are satisfied subject to finite arc

flow bounds. We first prove that this problem is NP -hard by reducing from the set

partitioning problem (SPP) to an intermediate problem that is followed by another

instance reduction from the introduced intermediate problem to MCNFP. The con-

ditions which make the problem polynomially solvable are described in detail and a

procedure for obtaining a noncrossing flow from a given crossing flow is found under

these conditions. In addition to the mixed integer linear programming formulations

(MILP), a preprocessing method for eliminating the nonpromising arcs is proposed.

This method primarily relies on the special structure of the layered network.

Secondly, the minimum cost flow problem with conflicts (MCFPC) is considered.

It is a generalized version of MCNFP where we work with arbitrary graphs instead of

layered networks and conflicting arcs instead of crossing ones. The conflicting arcs do

not necessarily represent physical incompatibility with respect to a particular embed-

ding which is the case for MCNFP. Every arc of the network is defined with a list of

conflicting arcs with itself. Some arcs might have an empty list. The reason behind a

conflict might change depending on the context of the problem. Here, conflict is con-

sidered as an abstract notion. That is exactly the reason why the developed solution

methods to solve MCFPC is valid for MCNFP. After showing that MCFPC is strongly

NP -hard by reducing from the maximum flow problem with conflicts (MFPC), which

is known to be strongly NP -hard [16], further complexity analysis is carried out regard-

ing the existence of polynomial time approximation algorithms for a class of instances

with certain property. MCFPC is formulated using alternative MILPs - weak, strong

and clique versions - and modeled as a combinatorial optimization problem benefiting

from the conflict graph representation. Pre-optimization procedures that enable us to

find a quick feasible solution and reduce the problem size by deleting the arcs causing

infeasibility when they have positive flow on it, are described. Besides, two exact so-

lution algorithms, branch-and-bound (BB) and Russian doll search (RDS) algorithms,

are developed to solve middle sized instances. Penalty calculation techniques exploit-

ing the spanning tree structures corresponding basic feasible solutions and pegging

operation are introduced for strong branching strategies. As opposed to the ordinary

6

RDS algorithm, dynamic candidate set approach is proposed in order to make it faster.

The success of the algorithms stems from the use of sophisticated subroutines as well

as the polynomial time algorithms to solve the emerging subproblems. In chapter 10,

the results of the computational experiments are analyzed in detail to understand the

effect of each pre-optimization procedure.

Next, we focus on MFPC, a particular version of MCFPC where there is no cost

associated with flows on arcs, but another auxiliary variable which is the value of flow

from a source node to a sink node is introduced. The objective is to maximize this

value without considering costs. This problem is proven to be strongly NP -hard in [16].

The previously proposed BB and RDS algorithms to solve MCFPC are modified and

similar algorithms are developed to solve MFPC. Moreover, MFPC has an appropriate

structure for obtaining a successful Benders decomposition implementation. First, the

dual problem of the Benders subproblem has always a finite optimum and this prevents

addition of Benders feasibility cuts. Working with only optimality cuts shortens the

expected solution times. Furthermore, we introduce strengthened Benders cuts and

connectivity cuts which prevent producing disconnected subnetworks. Also, we add

valid inequalities and try Benders decomposition with three different MILP formula-

tions.

Finally, the assignment problem with conflicts (APC) is studied. This problem is

a special version of MCFPC defined on a graph with equally sized bipartition subsets of

the vertices and the flow is bounded by one unit. It is also shown to be NP -hard [17].

We describe a polynomially solvable special case for APC, and propose a BB algorithm

with five different branching rules, and an RDS algorithm for its solution. Since this

is a particular version of MCFPC, penalties, pegged variables and the reduced costs of

arcs with respect to an optimal solution of a relaxed subproblem are calculated from

the optimal solution of the ordinary assignment problem. A local search based heuristic

is employed to start with a finite upper bound and a probing scheme to eliminate arcs

is presented.

7

In Chapter 4, definitions and all mathematical formulations are given for the

problems. Chapter 5 includes the complexity analysis of MCNFP and MCFPC, and

describes the polynomially solvable special cases for MCNFP and APC. The prepro-

cessing methods, the heuristics which find initial feasible solutions for the considered

problems are provided in Chapter 6. In Chapter 7, the Benders decomposition algo-

rithm developed for MFPC is given. Chapters 8 and 9 include BB and RDS algorithms,

respectively, which are proposed to solve MCFPC, MFPC and APC. The results of the

carried out experiments are summarized in Chapter 10. Finally, the concluding remarks

are provided in Chapter 11.

8

2. BASIC CONCEPTS AND NOTATION

We begin by introducing the basic terminology and the conventional notation

used in graph and network flow theory and continue with the definitions which are

essential for full comprehension of this thesis. One can refer to [6, 18, 19] for further

information.

2.1. Graphs

We let G = (V (G), E(G)) denote a graph with vertex set V (G) and edge set

E(G). We assume that all graphs in this work are finite and simple (i.e. no loop, no

parallel edges). The complement of a graph G is the graph G = (V (G), E(G)), where

V (G) = V (G) and E(G) = {{u, v} 6∈ E(G) : u, v ∈ V (G), u 6= v}. For W ⊆ V (G),

the set δG(W) ⊆ E(G) and γG(W) ⊆ E(G) are respectively the sets of edges with one

endpoint in W and both endpoints in W respectively. Hence, δG({v}) for v ∈ V (G),

which we simply denote as δG(v), is the subset of edges incident with vertex v ∈ V (G).

Clearly, the degree of vertex v of graph G is dG(v) = |δG(v)|. For W ⊆ V (G), the

subgraph of G induced by W is G[W] = (W, {W ×W} ∩ E(G)) (i.e. G[W] has W as

its vertex set and two vertices are adjacent in G[W] if and only if they are adjacent

in G). The set of all neighbors of a vertex v ∈ V (G), excluding v itself, is denoted as

NG(v), and its set of non-neighbors (i.e. the subset V (G)\(NG(v)∪{v})) is denoted as

NG(v). The edge density of a graph is the number of edges divided by the maximum

possible number of edges.

A stable set (vertex packing, independent set) of a graph is any subset S ⊆ V (G)

such that all vertices in S are mutually nonadjacent. A stable set is maximal if it is

not a proper subset of any other stable set. The maximum stable set problem (MSP)

is to find a stable set of maximum cardinality. The maximum value is the stability

number of G denoted as α(G). We may assign weights to the vertices of a graph G; for

our purpose the weights are assumed to be nonnegative rational numbers. For every

W ⊆ V (G), the weight of w(W) is the sum of the weights of its vertices, w(∅) = 0.

9

The maximum weight stable set problem (MWSP) is to find a stable set S of G with

weight w(S) maximum among all stable sets of G. The maximum value is denoted as

αw(G). Both MSP and MWSP are NP -Complete problems [20].

A clique K = (V (K), E(K)) is a complete subgraph of G. A clique is maximal

if it is not a proper subset of any other clique. Cliques of G are stable sets of G. So,

the problems MSP and MWSP on G are equivalent to the maximum clique problem

(MKP) and maximum weight clique problem (MWKP) on G and vice versa. The size

of a maximum clique and total weight of a maximum weight clique in G are denoted as

ω(G) and ωw(G). A clique cover of a graph G is a collection of cliques Kj j = 1, 2, . . . , k

such that V (G) = ∪kj=1V (Kj). The smallest value of k for G is denoted as φ(G). Clique

covers of G provide an upper bound on its stability number, i. e. α(G) ≤ φ(G) ≤ k. A

split graph is a graph in which the vertices can be split into a clique and a stable set.

A vertex subset S ⊆ V (G) is a dominating set of G if S ∪NG(S) = V (G), where

NG(S) consists of the neighbors of the vertices in S, i.e. NG(S) = (∪v∈SNG(v))\S. A

dominating set S is minimal if no proper subset of S is a dominating set. As can be

observed easily, in any graph G, every maximal stable set is a minimal dominating set;

but the reverse is not always true: one can find a minimal dominating set which is not

a maximal stable set. In Figure 2.1, the vertex set {4, 6} is a minimal dominating set

since the subset obtained by deleting neither 4 nor 6 gives a dominating set. It does

not form a stable set, clearly.

Figure 2.1. A minimal dominating set which is not a maximal stable set.

10

A tree is a connected graph that contains no cycle. If a tree contains exactly

n − 1 arcs, then it is called spanning tree because the tree touches all vertices of the

given graph G. Every two nodes of a tree are connected through a unique path.

A matching in G is a set of selected edges satisfying that every vertex in V (G)

is incident to at most one edge in this set. A matching is maximal if the addition of

one more edge violates the matching property. If each vertex is incident to exactly one

edge in a matching, then it is called a perfect matching. This means that every vertex

is matched with another one.

A given graph G can be represented as an intersection graph of axis-parallel boxes

where each vertex is represented with a box and the boxes intersect if and only if there

exists an edge in G connecting the corresponding vertices. The boxicity of a graph G

is the minimum dimension that allows representing G as an intersection graph of these

boxes. In other words, G cannot be represented as the intersection of boxes with a

lower dimension than its boxicity.

A subset W ⊆ V (G) is said to be s-plex if the degree of each vertex in G[W]

is at least |W | − s. Notice that, the subset with s-plex property is equivalent to a

clique, when s = 1. Another relevant property is s-defective clique defined on a simple

graph G. For a given integer s, a subset W ⊆ V (G) is called an s-defective clique if

it contains at least
(|W |

2

)
−s edges. In other words, at most s edges are missing from

a clique in an s-defective clique. An s-plex or s-defective clique is maximal if it is

not strictly contained in any other s-plex or s-defective clique. On a given graph, the

maximum s-plex and the maximum s-defective clique problems aim to find an s-plex

and an s-defective clique with the maximum cardinality, respectively.

Given a subset S ⊆ V (G), suppose that the induced subpgraph G[S] has a graph

property η. η is said to be hereditary if the deletion of any subset of vertices from

S does not violate η on the remaining graph [21]. Stable set, clique, s-plex and s-

defective properties can be mentioned as the examples of hereditary graph property.

For example, any subgraph of a clique of a graph G is another clique of G.

11

A chordal graph is a simple graph whose cycles with length of at least four

contains a chord. Since the maximum length of a cycle in a chordal graph is equal to

three, it is also named as triangulated graph The treewidth of a graph G is one less

than the size of the largest clique in the chordal graph containing G with the smallest

clique number, i.e. the cardinality of the maximum clique. If the treewidth of a graph

is bounded by some number k, then it is also called partial k-tree. An interval graph

is an undirected graph constituted from intervals represented by vertices which are

connected by an edge if and only if the intervals intersect. If it is possible to obtain

an embedding of the vertices of a graph on a plane so that an edge intersect with

another edge only at their endpoints, then this graph is a planar graph. A cograph is

characterized by the property that two vertices of any induced subgraph of a cograph

is connected by a path of length at most three. Given a graph G with vertex weights,

G is called threshold graph if, for every edge, the sum of the weights of its endpoints

is as large as some given threshold number. A chain graph is a type of graph where

both directed arcs and undirected edges are allowed without no directed cycle.

2.2. Networks and Flows

Networks are directed graphs on which flow problems are defined. This section

is devoted to describe the necessary parameters to solve the considered network flow

problems, give the useful notations and show the possible ways of representing flow on

both general and layered networks.

2.2.1. General Networks

Let N = (V (N), A(N)) be a network consisting of vertices V (N) and arcs A(N)

with |V (N)| = n and |A(N)| = m. Two of the vertices are different from the others:

the source s has only outarcs and the sink t has only inarcs. The source and the

sink either exist naturally in the original network or can be added as a supersource by

aggregating the vertices with supplies and a supersink by combining the vertices with

demands. Each arc (i, j) ∈ A(N) has an associated unit flow cost cij, a capacity uij

that denotes the maximum amount of flow allowed on the arc and a lower bound lij

12

denoting the minimum amount of flow an arc must have. Each vertex i ∈ V (N) has a

number bi representing its supply/demand. If bi > 0, vertex i is a transshipment supply

vertex, if bi < 0 vertex i is a transshipment demand vertex with a demand of −bi, and

if bi = 0, vertex i is a pure transshipment vertex. In other words, vertex set V (N) can

be expressed as V (N) = {s, t}∪V +(N)∪V −(N)∪V ±(N), where V +(N), V −(N) and

V ±(N) are respectively the subsets of transshipment supply, transshipment demand,

and pure transshipment vertices. We assume that
∑n

i=1 bi = 0, and 0 = lij ≤ uij for

all (i, j) ∈ A(N) and satisfy sufficient conditions for the existence of a feasible flow [6].

The function f : A(N) → R is the flow function and associates the variable fij with

arc (i, j). Note that a flow f is feasible if it satisfies the flow balance equalities at the

vertices, lower bounds and capacity restrictions on the arcs.

s t

3
2

3

4

1

2
2

1

1

5

3
4

9

4

6 -6

(a) Arc flow

s t

2 2

3
2

2

s t

41

3

3

3

s t

1

4

2

1

1

1

1

(b) Flow paths of an equivalent path and cir-

cuit flow

4

2

1

4 4

4

3

4

1

1

1

1

(c) Flow circuits of an equivalent path and cir-

cuit flow

Figure 2.2. Two ways to express a flow in a network

13

Traditionally, network flow problems can be formulated by either defining flows

on arcs (i.e. arc flow), or directed paths and circuits (i.e. path and circuit flow). This

is a consequence of the flow decomposition theorem [19], which eventually enables the

(unique) representation of a path and circuit flow as nonnegative arc flow, and (not

necessarily unique) representation of a nonnegative arc flow as a path and circuit flow.

An example is provided in Figure 2.2. In Figure 2.2(a), we observe that a flow of 6 units

is sent from s to t and the flow values carried by each arc are shown. Alternatively, this

flow from s to t can be represented as the union of 3 different path flows and 2 circuit

flows, as shown in Figure 2.2(b) and Figure 2.2(c). Although a different composition of

directed paths and circuits can be obtained from the given arc flow, notice that there

is always a flow path connecting a source vertex to a sink vertex.

2.2.2. Layered Networks

Layered graphs and networks provide effective modeling tools for the solution of

some difficult combinatorial optimization problems, as recently detailed and classified

in [22]. They are often encountered in container terminals, especially when the temporal

allocation of the quay cranes to load/unload the berthed vessels according to their

technical properties [11,23], and when the scheduling of trains through the stations on

the same railroad lines is targeted.

One of the studied problems in this thesis, namely the minimum cost noncrossing

flow problem is defined on layered networks. A new parameter set that incorporates

the layer information and other problem specific features are introduced. Let N =

(V (N), A(N)) be a layered network consisting of L layers defined by the sets V (N) of

vertices and A(N) of arcs. We define Vl(N) as the set of vertices of layer l, and nl its

cardinality (i.e. nl = |Vl(N)|, l = 1, 2, . . . , L), and assume that V1(N) = {s}, VL(N) =

{t}, V (N) = ∪Ll=1Vl(N), n1 = nL = 1 and n = |V (N)| =
∑L

l=1 nl. s has only outarcs

and t has only inarcs. Any arc (i, j) ∈ A(N) of the network is forward (i.e. tail is closer

to s in the number of arcs). There are neither backward arcs, nor arcs connecting two

vertices at the same layer. If we let Al(l+1)(N) be the set of arcs (i, j) having i ∈ Vl(N)

and j ∈ Vl+1(N), then A(N) = ∪L−1
l=1 Al(l+1)(N). We also assume that Al(l+1)(N)

14

consists of all possible arcs with tail in Vl(N) and heads in Vl+1(N); i.e. Al(l+1)(N) =

{(i, j) : i ∈ Vl(N), j ∈ Vl+1(N)}. We consider a particular embedding of the network

for vertex labeling: the vertices are located on the intersection points of a grid where

the vertical lines represent the layers and numbered from 1 to nl at layer l starting from

the bottom to the top. The described layered network structure is illustrated in Figure

2.3. Recall that the vertex set V (N) can be expressed as V (N) = {s, t} ∪ V +(N) ∪

s

1

2

nl

1

2

nl+1

t

Layer l Layer l+1

i j

Layer 1 Layer 2 Layer L-1 Layer L

Figure 2.3. A layered network with L layers

V −(N) ∪ V ±(N), where V +(N), V −(N) and V ±(N) are respectively the subsets of

transshipment supply, transshipment demand, and pure transshipment vertices at layer

l. Similarly, for every level l, Vl(N) = V −l (N)∪V +
l (N)∪V ±l (N), where V +

l (N), V −l (N)

and V ±l (N) denoting the subsets of transshipment supply, transshipment demand and

pure transshipment vertices of layer l. Clearly, V −1 (N) = V ±1 (N) = ∅, V +
1 (N) =

V1(N) = {s}, and V +
L (N) = V ±L (N) = ∅, V −L (N) = VL(N) = {t}. We assume that∑L

l=1

∑
i∈Vl(N) bi = 0, and lij = 0 ≤ uij for all (i, j) ∈ A(N) and they satisfy sufficient

conditions for the existence of a feasible flow [6].

Given a flow defined on the arcs of a layered network, flow decomposition does

not result in any circuits because of the (directed) layered structure of the network.

As backward arcs, i.e from layer l + 1 to l, or arcs between the vertices of the same

layer are not allowed, the layered networks are circuit-free. Therefore, the arc flow can

15

be represented only as a path flow, and vice versa. Figure 2.4 provides an example for

this particular situation.

s t

7
5

2

1

2

2
2

1

4

3

4

6

11

-2

2

-11

1

-1

(a) Arc flow

s t

1

2

3

3

3
s t

2
2

2
2

2

s t

11

2

2

2

s
t

2

1

2

2

2

s

2

2

t

1

2

t

11

1

1

11

1

(b) An equivalent path flow

Figure 2.4. Two ways to express a flow in a layered network

2.3. Classical Network Flow Problems

In this section, we present the original versions of the network flow problems

whose extensions are studied throughout this thesis. Here, the goal is to show the

existing mathematical models to represent them and make clear how they are related.

2.3.1. Minimum Cost Flow Problem

The minimum cost flow problem (MCFP) is well-known and has widespread ap-

plications. It emerges as a relaxed subproblem in solving many difficult combinatorial

optimization problems [6]. Due to its special structure it can be solved efficiently by

various solution algorithms that have been developed ever since the publication of Ford

and Fulkerson’s seminal monograph [19]. MCFP formulation is the most general rep-

resentation of all network flow problems. The problem is to determine the shipment

of goods through a network by transferring the available supplies from transshipment

16

supply vertices to transshipment demand vertices in order to satisfy their demands.

This shipment must have the minimum cost among all alternatives and must obey the

flow bounds on arcs it traverses. The mathematical representation of MCFP is shown

as follows:

MCFP: min
∑

(i,j)∈A(N)

cijfij (2.1)

s.t.
∑

(i,j)∈A(N)

fij −
∑

(j,i)∈A(N)

fji = bi i ∈ V (N) (2.2)

lij ≤ fij ≤ uij (i, j) ∈ A(N). (2.3)

The objective function (2.1) minimizes the total cost of sending flow through the net-

work. The constraints (2.2) ensures that the difference between the total outflow leav-

ing a vertex and the total inflow entering it equals to the supply/demand, i.e. bi value,

of that vertex and they are referred as flow balance constraints. A feasible flow must

also guarantee that each flow amount on an arc is between flow bounds associated with

that arc and this condition is shown with constraints (2.3). Since we assume lij = 0

for our problems, they are called flow capacity constraints. We assume that all the

cost, capacity and supply/demand value parameters are integral and this assumption

is referred as integrality assumption. Under integrality assumption, MCFP formulation

can be solved by any linear programming (LP) solver and an integer optimal solution

is returned although fij, (i, j) ∈ A(N) are defined as continuous variables [6].

2.3.2. Maximum Flow Problem

The classical maximum flow problem (MFP) is first formulated by T. E. Harris

and F. S. Ross in order to find the minimum interdiction of the Soviet railway sys-

tem in 1955 as indicated in the review paper [24]. A year later, Ford and Fulkerson

demonstrated the well-known Max Flow-Min Cut theorem [25], and since then many

polynomial-time algorithms are devised to solve MFP.

MFP is a special version of MCFP where all flow unit costs are zero. Moreover,

the supply/demand of vertices except for the source, s, and the sink, t, equal to zero

17

and the supply of the source and the demand of the sink are both introduced by the

same auxiliary variable. This auxiliary variable, v, i.e. the value of the flow that can

be sent from the source to the sink, is maximized in the following formulation of MFP:

MFP: max v (2.4)

s.t.
∑

(i,j)∈A(N)

fij −
∑

(j,i)∈A(N)

fji =

v i = s

0 i ∈ V (N)\{s, t}

−v i = t

(2.5)

0 ≤ fij ≤ uij (i, j) ∈ A(N). (2.6)

MFP is modeled as a linear programming problem where all variables are allowed to

take fractional values. However, the optimal solution of not only MFP but also its dual,

i.e. the minimum capacity cut problem, is integer as long as the integrality assumption

holds due to the total dual integrality property of MFP [26].

2.3.3. Minimum Cut Problem

Before introducing the dual problem of MFP, that is the minimum capacity cut

problem or the minimum cut problem (MCP), we had better give the necessary defini-

tions. Given a partition of the vertex set V (N) into V 1 and V 2 where V 2 = V (N)\V 1,

the set of arcs that have one endpoint in V 1 and the other endpoint in V 2 is called a

cut and represented by the notation [V 1, V 2]. In the context of our problem MFP, we

are interested in an s-t cut which is defined with respect to the source s and the sink

t, and is a cut satisfying the property that s ∈ V 1 and t ∈ V 2.

The capacity of a cut [V 1, V 2] is defined as the total flow capacities of forward

arcs, i.e. from V 1 to V 2. That is,

cap(V 1, V 2) =
∑

i∈V 1,j∈V 2

uij. (2.7)

18

For the sample network given in Figure 2.5, V 1 consists of vertices 1, 2 and 3 while V 2

includes the others. The arcs belonging to cut [V 1, V 2] are (2,4), (2,6), (3,5), (4,3) and

the capacity of this cut is equal to u24 +u26 +u35. The s-t cut with minimum capacity

Figure 2.5. An s-t cut.

among all s-t cuts is called the minimum (capacity) cut and the Max Flow-Min Cut

theorem states that the maximum flow that can be sent from s to t is equal to the

capacity of minimum s-t cut [25]. Therefore, If we assign dual variables π to constraint

set (2.5), and µ to constraint set (2.6), the minimum cut problem formulation becomes

MCP: min
∑

(i,j)∈A(N)

µijuij (2.8)

s.t. πi − πj + µij ≥ 0 (i, j) ∈ A(N) (2.9)

πt − πs = 1 (2.10)

πi unr , µij ≥ 0 i ∈ V (N), (i, j) ∈ A(N). (2.11)

This representation always yields an integer optimal solution under the integrality

assumption of the capacities uij although it is formulated as an LP problem. In fact,

the arcs in the minimum cut, i.e. the arcs directed from the connected component

containing s to the one with t have µ∗ij values equal to one and the remaining ones

have zero values. In other words, the arcs with optimal dual multipliers having value

one form the minimum cut.

19

2.3.4. Assignment Problem

The assignment problem (AP) is well-known and has widespread applications in

the areas of personnel scheduling, task assignment, job shop loading, facility location

and workforce planning. It is also faced as a relaxed subproblem in solving many

difficult combinatorial optimization problems. Due to its special structure, it can be

solved efficiently and many polynomial time solution algorithms have been developed

since the publication of the Hungarian algorithm [6,27].

AP is defined on a bipartite graph G consisting of equally sized vertex sets V1(G)

and V2(G), i.e. V (G) = V1(G) ∪ V2(G) and |V1(G)| = |V2(G)|. All the edges of graph

G, denoted by E(G) have one endpoint in V1(G) and the other in V2(G) as implied by

the definition of bipartite graph. Besides, we assume a complete bipartite graph where

E(G) contains all the possible edges between V1(G) and V2(G) and there exists a cost

cij associated with every edge {i, j} ∈ E(G). In this problem, we wish to match the

vertices of V1(G) and V2(G) at minimum cost where the most popular examples are to

assign workers to jobs or jobs to machines.

AP can also be seen as a special type of MCFP on a network N consisting of

four layers. The subsets V1(G) and V2(G) form two layers of N where the arc tails

are in V1(G) and heads of arcs are in V2(G). bi = 1 for all i ∈ V1(G) and bi = −1 for

all i ∈ V2(G). We also add a source, s, together with arcs (s, i) ∈ A(N), i ∈ V1(G)

and a sink, t, with arcs (i, t) ∈ A(N), i ∈ V2(G). Addition of these nodes with

bs = −bt = |V1(G)| = |V2(G)| increments the number of layers by two. Moreover,

uij = 1 ∀(i, j) ∈ A(N). If we solve MCFP on this network, we obtain the assignment

with minimum cost by taking the arcs carrying unit flow from V1(G) to V2(G).

Although it is possible to transform AP into an MCFP instance, we prefer to

continue with the original undirected graph representation where each feasible solution

is a matching. We introduce binary decision variable xij for edge {i, j} ∈ E(G), which

is set to 1 if and only if edge {i, j} is in the matching. Then, it can be formulated as

20

a binary integer programming problem (BIP):

AP: min
∑

{i,j}∈E(G)

cijxij (2.12)

s.t.
∑

{i,j}∈E(G)

xij = 1 i ∈ V1(G) (2.13)

∑
{i,j}∈E(G)

xij = 1 j ∈ V2(G) (2.14)

xij ∈ {0, 1} {i, j} ∈ E(G). (2.15)

Although the flow capacity parameters uij = 1 for all {i, j} ∈ E(G), there is no need to

include flow capacity restrictions in this formulation due to the fact that flow balance

constraints (2.13) and (2.14) imply these bounds. When the integrality constraints of

xij, i.e. constraints (2.15), are replaced with xij ≥ 0 {i, j} ∈ E(G) and AP is solved

as a linear programming problem, an integer optimal assignment is found since its

constraint matrix is totally unimodular [26].

2.3.5. Other Problems

There are also other special versions of MCFP which are beyond the scope of

this thesis such as the fixed charge network flow problem [28, 29], the shortest path

problem [30], the transportation problem [31] and the circulation problem [32]. In

the fixed charge network flow problem, there are fixed costs of utilizing arcs that are

incurred once when positive flow sent through them. The shortest path problem and

MFP can be considered as complementary models. The first one ignores the flow

bounds and seeks the minimum cost s-t path whereas MFP searches for a maximum

flow from s to t obeying the flow bounds but disregarding its cost. The transportation

problem is a special instance of MCFP and a more general version of AP. This problem

is defined on a bipartite graph where the two vertex subsets are not necessarily of equal

cardinality and the flow upper bounds are free to take any value. Lastly, the circulation

problem aims to find the minimum cost flow circulated in a network where bi = 0 for

all i ∈ V (N).

21

2.4. Conflict Notion

Any pair of arcs are said to be conflicting when only one of them is allowed to

have positive flow in a feasible solution. Any pair of paths with at least two conflicting

arcs are said to be conflicting. Notice that conflicting paths are not necessarily arc or

vertex disjoint. Any disjoint pair of paths can be conflicting, and any two compatible

conflict-free paths can share arcs or vertices.

As a direct result of the flow decomposition theorem that we mention previously,

it is possible to say that an (arc) flow on N = (V (N), A(N)) is conflict-free if and only

if its equivalent path and circuit flow representations are conflict-free, since an arc (i, j)

with positive flow (i.e. fij > 0) appears at least on one path or circuit with positive

flow on it in a path and circuit flow representation, and if it conflicts another arc with

positive flow, then there exists another path or circuit of the same representation having

positive flow on it and conflicting with arc (i, j). For the network flow problems with

conflicts, the directed paths from a source vertex to a sink vertex and circuits, namely

flow paths and circuits, of a feasible path and circuit flow must be conflict-free. In other

words, an optimal solution is a conflict-free flow with respect to an objective function,

and feasible with respect to the balance, lower bound and capacity restrictions.

We consider a special form of conflict in the minimum cost noncrossing flow

problem on layered networks (MCNFP). Here, any arc pair conflicts if and only if they

cross each other with respect to the special embedding of the vertices in the layered

network. As a consequence, if two arcs (i1, j1), (i2, j2) ∈ Al(l+1)(N) cross, then i1 > i2

and j1 < j2 and vice versa; they form a crossing. Observe that arcs (s, j) ∈ A12(N) as

well as arcs (i, t) ∈ A(L−1)L(N) are noncrossing. Any pair of paths with at least two

distinct arcs that cross each other is said to be crossing. Notice that crossing paths are

not necessarily arc or vertex disjoint. Any disjoint pair of paths may cross, and any

two noncrossing paths may share arcs or vertices.

Then it is possible to say that an (arc) flow on N = (V (N), A(N)) is noncrossing

if and only if all paths of the equivalent path flows are noncrossing, since an arc (i, j)

22

with positive flow (i.e. fij > 0) appears on at least one path with positive flow on it,

and if it is crossed by another arc, then there exists another path having positive flow on

it with an arc crossing arc (i, j). For example, in Figure 2.4, the paths s→ 2→ 1→ t

and s→ 1→ 2→ t are crossing since they both have positive flows (i.e. 3 and 2 units

of flows respectively) and arcs (2, 1) and (1, 2) are crossing. The directed paths from

a source vertex to a demand vertex with positive flow on its arcs, namely flow paths,

must be noncrossing in addition to flow balance, lower and upper bound restrictions

in order to be feasible. We say such flow is feasible and also noncrossing.

2.4.1. Conflict Graph

We can use a conflict graph C = (V (C), E(C)), as done in [17, 33], to represent

conflict relations between the arcs of network N = (V (N), A(N)). Here, the vertex set

V (C) consists of the arcs A(N) of the network, and the edge set E(C) consists of the

conflicting arc pairs. In other words, (i, j), (k, l) ∈ A(N) are conflicting if and only if

{(i, j), (k, l)} ∈ E(C). Let δC({(i, j)}) ⊆ E(C) be the set of edges incident with vertex

(i, j) in the conflict graph and its size denotes the degree of vertex (i, j) in the conflict

graph C, i.e. dC(i, j). For simplicity, we use the notation δC(i, j) instead of δC({(i, j)}).

We also let NC(i, j) and NC(i, j) denote the sets of neighbors and non-neighbors of

(i, j) in the conflict graph C. Clearly, |NC(i, j)| = dC(i, j).

Notice that every subset of conflict-free arcs of A(N) forms a stable set of the

conflict graph C. If the subset of conflict-free arcs cannot be expanded by adding one

more arc without violating the conflict-free property, than it corresponds to a maximal

stable set on C. Besides, cliques of the conflict graph C represent the family of the arc

subsets of A(N) where every arc conflicts with the remaining ones in the subset. A

conflict-free subset of arcs of A(N) can be constructed by picking at most one element

from each clique of V (C).

23

2.4.2. Conflict Formulations

We use conflicting arc lists in order not to allow positive flow values on conflicting

arcs in a solution. For each arc (i, j) ∈ A(N), a separate list δC(i, j) consisting of arcs

conflicting with (i, j) is prepared. Recall that δC(i, j) is the set of neighbors of (i, j)

in the conflict graph C. Obviously, (k, l) ∈ δC(i, j) if and only if (i, j) ∈ δC(k, l). In

order to prevent the simultaneous selection of conflicting arcs, the binary variables xij

(i, j) ∈ A(N) are introduced. If xij = 1, then fij is allowed to take a positive value and

fkl for all (k, l) ∈ δC(i, j) are forced to be zero. Therefore, we introduce the conflict

constraints

xij + xkl ≤ 1 (k, l) ∈ δC(i, j); (i, j) ∈ A(N), (2.16)

which are known as the packing constraints in the literature. Alternatively, conflict

constraints (2.16) can be replaced with

∑
(k,l)∈δC(i,j)

xkl + |δC(i, j)|xij ≤ |δC(i, j)| (i, j) ∈ A(N). (2.17)

We refer to this new version as the weak (W) and the previous one as the strong

(S) representation. Let PS and PW denote the polyhedrons representing the feasible

solution sets of the LP relaxations of the strong and weak representations. In other

words,

PS = {x ∈ Rm : xij + xkl ≤ 1 (k, l) ∈ δC(i, j); (i, j) ∈ A(N) and xij ≥ 0 (i, j) ∈ A(N)},

and

PW = {x ∈ Rm :
∑

(k,l)∈δC(i,j)

xkl + |δC(i, j)|xij ≤ |δC(i, j)| and xij ≥ 0 (i, j) ∈ A(N)}.

24

Then PS ⊆ PW since inequalities (2.17) can be obtained by aggregating inequalities

(2.16) for (k, l) ∈ δC(i, j).

If we let K denote the family of maximal cliques of C where every edge in E(C)

belongs to some K ∈ K, a third set of constraints, which we call the clique (K) repre-

sentation, can be obtained by replacing constraints (2.16) with the clique inequalities

∑
(i,j)∈V (K)

xij ≤ 1 K ∈ K. (2.18)

PK is the polyhedron corresponding to the LP relaxation of the clique representation

of the conflicts represented by

PK = {x ∈ Rm :
∑

(i,j)∈V (K)

xij ≤ 1 K ∈ K and xij ≥ 0 (i, j) ∈ A(N)}.

Based on the previous works [34,35] we can say that PK ⊆ PS. Notice that, the number

of maximal cliques can be exponential for a graph. Producing all maximal cliques is

not realistic unless the conflict graph belongs to a special class on which the number

of maximal cliques is limited by a number polynomial in the size of the graph. In this

case, a sufficient number of cliques can be generated so that the edges of C are covered

by those cliques. However, we cannot claim that a clique representation with a subset

of K is stronger than the other two conflict formulations.

25

3. LITERATURE REVIEW

The conflict constraints are widely used in the literature with different names

such as negative disjunctive constraints, exclusionary side constraints or incompatibil-

ity constraints within various contexts. For example, in the knapsack problem with

conflicts (KPC) some pairs of items are not allowed to be packed together [33, 36–40].

Another extensively studied problem is the bin packing problem with conflicts (BPPC)

where some pairs of objects are not allowed to be put into the same bin [41–48]. In

the transportation problem with conflicts (TPC), certain pairs of supply nodes which

are defined separately for each demand point can not send items to that demand point

simultaneously [49–52].

Besides, we encounter variants of the well-known network optimization problems

taking into account the incompatible pairs of edges/arcs. In all of these variants,

we are given the sets of conflicting pairs of edges/arcs and at most one of them can

be selected in a feasible solution. The first one of these problems is the minimum

spanning tree problem with conflicts (MSTPC), which aims to find a tree touching

all the vertices with minimum total edge cost. Conflict constraints prevent conflicting

pairs of edges to be contained together in a feasible spanning tree [53–56]. The second

one is the matching problem with conflicts (MPC). There exist several versions of

MPC. Their objective is to find either a matching with maximum cardinality, i.e. the

maximum (cardinality) matching problem with conflicts (MMPC) [17], or a matching

with minimum total edge weights as in the minimum cost perfect matching problem

with conflicts (MCPMPC) [57,58]. Another variant is the shortest path problem with

conflicts (SPPC) which can be treated as a network flow problem where all flows

are equal to one [17]. The most related work which we consider in this thesis is

the maximum flow problem with conflicts (MFPC) in which the goal is to send the

maximum possible flow from the source to the sink by selecting at most one of the

conflicting arc pairs [16].

26

3.1. Complexity Results

The difficulty of the mentioned problems is thoroughly studied in the literature.

The authors mostly benefit from the conflict graph which represents the conflict rela-

tions between the variables of the concerned problem in order to carry out the com-

plexity analysis and to determine the special conditions under which these problems

are solvable in polynomial time [17, 33]. Recall that the vertices of the conflict graph

correspond to the variables and there exists an edge between two vertices if they con-

flict with each other. If the problem in question can be represented on a conflict graph,

it is simply reduced to finding an independent set that optimizes an objective function.

The obtained results about the hardness of these problems show that the addition of

the conflict constraints complicate the problem even though there exist polynomial or

pseudo-polynomial time algorithms to solve their original versions (i.e. the versions

without conflict constraints).

To begin with, the 0-1 knapsack problem with a polynomially bounded knapsack

size can be optimally solved through a greedy heuristic or a dynamic programming ap-

proach. However, 0-1 KPC is proved to be strongly NP -hard in [33] by reminding that

it can be seen as a maximum weight stable set problem (MWSP). This paper provides

algorithms that run in pseudo-polynomial time if the conflict graph of the knapsack

problem with conflicts belongs to the special graph classes, namely trees, graphs with

bounded treewidth and chordal graphs. Furthermore, a dynamic programming algo-

rithm is developed for this problem if its conflict graph is an interval graph in [47]. Bin

packing problem is one of the classic NP -hard problems [20]. For BPPC, the authors

in [41] propose approximation algorithms with a worst case bound if the corresponding

conflict graph belongs to graph classes such as split graphs, cographs or partial k-trees

on which coloring problem is solvable in polynomial time. Transportation problem is

another problem for which there exist a number of polynomial time algorithms. But,

the addition of conflict constraints makes it intractable as shown in [52]. Actually,

finding a feasible solution for TPC is proven to be strongly NP -hard after applying a

reduction from the graph 3-colorability problem, which is also strongly NP -hard [20].

On the other hand, if the number of demand nodes are limited to two and the con-

27

flicting supplier set is identical for all demand nodes or if the number of suppliers are

fixed and not a part of the problem input, then it turns out to be weakly NP -hard

and pseudo-polynomial time algorithms are proposed to solve these special instances

in the same work.

We can also find complexity results about the conflict variants of network opti-

mization problems. The minimum spanning tree problem can be solved in O(|A(N)|

log|V (N)|) or O(|A(N)| + |V (N)| log|V (N)|) time with Kruskal’s and Prim’s algo-

rithms, respectively [6]. On the contrary, MSTPC is strongly NP -hard [17]. If its

conflict graph consists of disjoint maximal cliques, then it can be solved in strongly

polynomial time [17]. The same study reveals that MMPC is strongly NP -hard and

the SPPC belongs to APX-hard problems which constitute a subclass of NP -hard

problems. For APX-hard problems, finding an approximation better than a constant c

is as hard as finding the optimal solution indicating that APX-hardness is a stronger

complexity result than being NP -hard. [54] and [57] provide polynomially solvable spe-

cial cases of the MSTPC and MCPMPC, respectively. Finally, MFPC is shown to be

strongly NP -hard by using a reduction from MWSP in [16].

3.2. Exact Solution Approaches

Exact solution algorithms have also been proposed for most of these problems.

For KPC, an implicit enumeration scheme combined with an interval reduction method

is proposed in [36]. A branch-and-bound (BB) algorithm together with apriori reduc-

tion techniques are proposed in [38]. The same study presents a dichotomous search

procedure which makes use of dominating constraints and covering cuts to construct an

alternative representation of the same problem. Another BB algorithm with improved

upper bounding procedures and branching strategies is presented recently [40]. It is

compared to other existing solution methods through experiments; the computational

results are analyzed in-depth and reported in detail to assess the performance of ev-

ery specific component of the algorithm. Three different branch-and-price algorithms

for BPPC are introduced in [45], [46], and [47]. The one in [45] is based on the set

covering formulation which can be used as an alternative representation of the con-

28

sidered problem. The second approach utilizes Lagrangean relaxation bounds within

the branch-and-price scheme which allows branching not only on a single pattern but

also on multiple patterns. The valid inequalities are also produced for the subproblems

as the algorithm continues. The last one mostly relies on the way it solves the pric-

ing problem and demonstrates an outstanding performance compared to the existing

methods in the literature. MSTPC is solved exactly by a very simple branch-and-

bound procedure, which makes use of the polynomially solvable cases in [54], and by a

branch-and-cut method in [55]. For TPC, there exist two branch-and-bound schemes

proposed in [10] and [50]. The transportation problem formulation in [10] includes non-

linear side constraints, each of which restricting the product of the associated integer

flow variables to zero to prevent conflicting arcs from appearing in the solution at the

same time. The proposed exact solution method is a BB algorithm that solves ordi-

nary transportation problems obtained by relaxing the nonlinear equalities to compute

bounds, and sets one of the two variables violating a nonlinear side constraint with

their relaxed optimal values to zero to branch. [59] considers also the same formulation

but they propose evolutionary algorithms for its solution. The primary difference of

the works of [49] and [50] is in the considered TPC formulation; the nonlinear side

constraints are linearized using additional binary variables, packing inequalities and

big-M coefficients. As a solution method, BB with a combinatorial branching rule and

sophisticated early pruning techniques using the spanning trees of network simplex

algorithm are proposed. [60] is the first stone that paves the road towards developing a

mature exact solution method to solve the assignment problem with conflicts (APC).

A näıve Branch-and-Bound (BB) algorithm, which can be seen as a very preliminary

version of the one presented in Chapter 8, is introduced. It is tested with only two

branching rules, which are fairly straightforward. The computational experiments are

also preliminary and performed on small sized instances. Still, the results are promising

and encouraging.

29

3.3. Heuristics

In spite of the proposed efficient exact solution methods, large instances of the

problems with conflict constraints cannot be solved in a reasonable amount of time due

to their inherent difficulty. Hence, a number of heuristic methods are also presented in

the literature. For KPC, a reactive local search method that uses a degrading process

to escape from local maxima and to ensure diversification is described in [37]. Also

a memory list is kept to avoid repetitive configurations. Other local search methods

both näıve and enriched with diversification processes can be found in [36] and [39].

Several methods to solve BPPC including first fit decreasing packing heuristic, coloring

and clique based heuristics and their hybrid forms are described in [43]. Different

lower bounds [44] and an iterated local search with a few neighborhood structures that

enhance the solution quality [48] are available in the literature. Näıve forms of a local

search heuristic, a tabu search metaheuristic and a lagrangean heuristic for MSTPC

are briefly presented in [54]. The authors in [57] focus on APC and develop tabu

search methods improved with frequency matrices and enhanced by keeping the most

recent local optimal solutions. Also, four different lower bounding schemes for this

problem is given in the same study. [58] mainly focuses on simple iterated algorithms

for APC. One of the iterated algorithms is based on a local search scheme and the

other one employs a commercial mixed integer linear programming problem solver as

a subroutine. For TPC, a tabu search metaheuristic which benefits from the linearized

problem formulation is utilized in [49]. This metaheuristic takes advantage of the

underlying spanning tree structure of a visited solution to estimate the best move in a

neighborhood. Moreover, a sophisticated hybrid spanning tree based genetic algorithm

for the same problem can be found in [51]. It is reported that it produces successful

results in spite of prolonged computation time.

3.4. Applications

Several practical applications of BPPC appear in computer science. One of them

aims, given a set of processes (e.g. multimedia streams), to determine the minimum

number of processors where some pair of processes cannot be assigned to the same

30

processor in order to increase fault tolerance by not allowing to process the two repli-

cas in the same processor or increase efficiency by forcing the usage of two CPUs on

different processors. Another problem arises in parallel computing of partial differ-

ential equations. If a result of subcomputation influences the other, they cannot be

scheduled simultaneously and the goal is to minimize the total computation time [42].

Similarly, resource clustering problem in highly distributed parallel computing can be

mentioned [61]. Other examples are the examination scheduling problem that mini-

mizes the number of time periods where two exams cannot be held in the same period

if they have common enrolled students and the delivery problem where flammable,

explosive or toxic materials cannot be transported in the same vehicle [43, 62]. Those

can be modeled as the BPPC and KPC emerges as a subproblem in this context.

The exclusionary flow restriction which mostly arises in the transportation prob-

lem can also be faced in real life. For example, containers arriving to a container

terminal may not be positioned in the same row of the yard due to differences in size,

ownership, or content [10]; a warehouse may not be allowed to receive goods simulta-

neously from some pairs of suppliers because of the safety requirements [49]; at most

one supply node from each supplier may be allowed to deliver goods to a customer in

the procurement problems under a total quantity discount policy [63]; messages may

not be routed simultaneously in a sensor network because of the inference they cause

in each others’ communication channels [64]; some quay cranes may not be assigned to

some pair of vessels at the same time because they have to move on a line and cannot

cross each others [11, 65]; products may not be compatible to be carried on the same

vehicle [66].

31

4. PROBLEM DEFINITIONS AND FORMULATIONS

In this chapter, the definitions of the problems we study within the scope of this

thesis are given and the various mathematical models we develop to formulate them

are presented.

4.1. Minimum Cost Noncrossing Flow Problem1

The minimum cost noncrossing flow problem (MCNFP) is an extension of the

ordinary minimum cost flow problem (MCFP) on layered networks with additional

compatibility constraints in conjunction with the flow balance, capacity, lower bound,

and binary restrictions. In general, a layered network provides a graphical tool to

model the scheduling of flow with spatial constraints.

4.1.1. Flow Scheduling with Spatial Constraints

Three important problems associated with the management of seaside operations

at container terminals are the berth allocation problem (BAP), the quay crane assign-

ment problem (QCAP), and the quay crane scheduling problem (QCSP). Excellent

surveys of the related works with a classification according to some specific attributes

are provided in [65,67–70].

In general, BAP deals with the determination of optimal berthing times and

positions of the vessels. It is possible to visualize a solution of BAP by means of a

time-berth diagram where the y-axis represents the quay discretized in berth sections

vessels can occupy and the x-axis represents time. A common assumption is that each

berth section is just large enough to be occupied by only one quay crane. A sample

time-berth diagram is given in Figure 4.1. There are five vessels and the rectangles

represent the area they cover on the time-berth diagram. For example vessel 1 is

berthed at berth sections 1 and 2, and stays berthed from time 0 to 3 (i.e. 3 time

1An earlier version of this section appears in [12] as a part of its content.

32

periods). QCAP finds the optimal number of cranes assigned to the vessels, and thus

can be seen as a special form of the optimal crane splitting problem [70]. The numbers

within the parenthesis in the rectangles are the crane numbers required per time period

that guarantee the determined length of stay for the vessels. For example, vessel 2

stays berthed for 9 periods, and demands 3 cranes during periods 1 – 3 and 4 cranes

during periods 4 – 9. QCSP focuses on assigning quay cranes to optimal work places

in each interval, given the berth locations of the vessels along the quay and number

of the cranes that should serve them (i.e. the information Figure 4.1 provides) with

the objective of minimizing the total setup cost due to crane relocations on the berth

over the planning horizon. An interval is the time that elapses between two sequential

events. An event is a specific vessel activity capable to cause a change in the number

of serving cranes; it is an arrival or departure. More than one event can occur at the

same time. This is also illustrated in Figure 4.1. There are five intervals. For example,

the first one starts with the arrivals of vessels 1, 2 and 3 at time 0, and ends with the

departures of vessels 1 and 3, and arrival of vessel 4 at time 3, which is also the starting

time of the second interval. Observe that the number of cranes in service during an

interval cannot be larger than 7, which is the total number of cranes in the terminal.

A layered network representation describing the sample situation explained above is

v1

(2)

B
er

th
 s

ec
ti

o
n

Time
 0 1 2 3 4 5 6 7 8 9 10

v3

(2)

v2

(3)

 v4

 (3)

4

8

12

v5

 (1)

v2

(4)

 v4

 (2)

v2

(4)

1 2 3 4 5

v2

(4)

Two departures
and one arrival

Arrival Departure DepartureDeparture

v5

 (1)

v2

(4)

Events

Intervals

2

11

3

Figure 4.1. Sample berth allocations and quay crane assignments for four vessels

33

given in Figure 4.2. This is a directed, layered, single source, and single sink network.

The only vertex of the first layer is the super source, which represents the terminal’s

resources, with supply equal to the total number of quay cranes. Similarly, the last

layer consists of a single vertex as well. It is the super sink with demand equal to the

total number of quay cranes; it also represents the terminal’s resources. The remaining

vertices belong to internal layers and represent the vessels demanding cranes at each

time interval. Except the first and the last layers, each one of L layers represents a

snapshot of the berth during a time interval. In other words, layer l exists in the

network if a vessel berths or departs changing the current snapshot; it is then followed

by a new one. Notice that the number of cranes assigned to the berthed vessels can

change only between consecutive layers, since such a change can only be caused by

either an arrival or departure. These events and the intervals they represent are also

depicted in Figure 4.1.

s

7

t

7 - 7

6

5

4

3

2

1

4

2

1

3

5

7

6

5

4

3

2

1

4

5

3

2

1

3

2

1

-2

-3

-2

-4

-3

-1

-4

-2

-1

-4

-4

Figure 4.2. A layered network describing the situation given in Figure 4.1

34

At each layer l, a berthed vessel is represented by a vertex, whose demand is equal

to the number of assigned cranes. These vertices are called vessel vertices, and they

are ordered starting from the bottom of the layer to the top in accordance with their

position in the berth from the beginning to the end. There is a second type of vertices

below and above the vessel vertices. They are called parking vertices and represent

the waiting area for the idle cranes. In any layer, the number of parking vertices is

one more than the number of vessel vertices. To summarize, by letting nl denote the

number of berthed vessels at the quay during interval l, there are nl vessel vertices and

nl + 1 parking vertices. Hence, the total number of vertices in layer l is 2nl + 1 and

a vertex with an even index (i.e. 2, 4, . . . , 2nl) corresponds to a vessel vertex, while

those with an odd index (i.e. 1, 3, . . . , 2nl + 1) represent parking vertices with finite

capacities. The capacity of the first (last) parking vertex in each layer is equal to the

number of available berth sections between the beginning (end) of the berth and the

first (last) vessel, whereas the capacity of an intermediate parking vertex is equal to

the number of available berth sections between two neighboring vessels. If there is not

enough room in one of these locations, then the capacity of the corresponding vertex is

set to zero, which is a consequence of the assumption that no more than one crane can

physically fit into a berth section; this is the unit measure used for the discretization

of the quay. The negative numbers on the even vertices are the crane demands of the

vessels in Figure 4.2.

The network of Figure 4.2 is incomplete to be a base for the MCNFP formulation.

As can be easily observed, the total demand is not equal to the total supply. Besides,

the odd vertices are capacitated and they have to be appropriately presented. For this

purpose, except the super source s and super sink t, we split the vertices by creating

a clone for each one. At layer l, the original vertex il and its clone i′l are connected

by arc (il, i
′
l). Since the demand of an original vessel vertex in layer l is equal to the

number of assigned cranes, so is the demand of a clone vessel vertex. Therefore, both

the lower and upper bounds on the flow of arc (il, i
′
l) are set to the crane demand of

the vessel, which implies that the flow on the arc (il, i
′
l) for even il is forced to be

equal to the demand value. Similar to the vessel vertices, parking vertices also have

clones. An original parking vertex il and its clone i′l for odd il are connected by an

35

arc whose lower and upper bounds are set to zero and the capacity of the parking

vertex il respectively. In short, every vertex has a weight. Vessel vertices have crane

demands, and parking vertices have capacities. By using clones, vessel vertices are

transformed from transshipment supply vertices into pure transshipment vertices, and

parking vertices are transformed into uncapacitated, pure transshipment vertices.

The flows on the arcs of this network correspond to crane relocations or move-

ments from parking areas to vessels, from vessels to vessels (this includes the case where

a crane continues serving the same vessel or starts serving a new vessel without an idle

period), from vessels to parking areas in each time interval. The costs associated with

these relocations are defined as unit flow costs. They become setup costs for an arc

connecting a clone vertex of layer l − 1 to an original vertex of layer l. Some of them

can be zero as well. For example, the ones for cranes that keep serving the same vessel

between consecutive intervals, and the ones that keep waiting at the same berth section

or, move from parking areas to different parking areas. This construction is illustrated

in Figure 4.3 for the example of Figure 4.1 and Figure 4.2. It is limited to the first three

layers (i.e. time intervals) for the sake of simplicity. The numbers on arcs (2, 2′), (4, 4′),

and (6, 6′) are the demands (i.e. both the lower and upper bound values of the flow)

of vessel vertices 2, 4 and 6. The capacities for parking vertices are not shown; but

they can be selected appropriately. Notice that, except s and t, the vertices are pure

transshipment vertices. QCSP becomes an ordinary MCFP on the described layered

network if crane crossing is allowed. Unfortunately, this is not possible in reality; quay

cranes are restricted to move on a rail and thus the relocation paths cannot cross. In

other words, it is not enough to solve the MCFP on the described layered network to

determine an optimal crane schedule for the example of Figure 4.1, since, for example,

an optimal solution can include flows on arcs (2, 4) and (4, 2) in Figure 4.2 between

the second and third layers. They become arcs (2′, 4) and (4′, 2) in Figure 4.3. This

is actually the end of the first interval when both vessels 1 and 2 depart, and vessel

4 arrives. Four cranes have to be relocated to satisfy the demand of vessel 4, which

is three cranes, and the additional demand of vessel 2, which is one crane. If this is

done by sending one crane from vessel 1 (i.e. vertex 2′) to vessel 4 and (i.e. vertex 4)

a crossing with arc (4′, 2) occurs because this crane is blocked by the cranes serving

36

s

7'

7

6'

5'

4'

3'

2'

1'

4

2

1

3

5

2

3

2

4

3

7

6

5

4

1

2

3

1'

2'

3'

4'

5'

Figure 4.3. The layered network appropriate for a minimum cost network flow

formulation of the example given in Figure 4.1 and Figure 4.2

vessel 2, which is shown as the crossing of the two bold solid arcs in Figure 4.2 and

Figure 4.3. This can also be handled by sending one crane from vessel 2 to vessel 4 (i.e.

on arc (4′, 4)), and one crane from vessel 1 to vessel 2 (i.e. on arc (2′, 2)), namely by

sending flow on the bold dashed arcs of Figure 4.2 and Figure 4.3. As a consequence,

it is possible to say that QCSP is in fact equivalent to a MCFP with additional spatial

constraints allowing only noncrossing arcs to have positive flow values in an optimal

solution, which makes it a particular subclass of MCNFP.

37

MCNFP is a generalization of the QCSP where we consider a flow problem with

suppliers and customers located on a line. The commodity flow is realized by means

of vehicles, which are restricted to move along a single track lane, and hence cannot

pass each other as a spatial restriction. Besides, suppliers and customers have time

varying operating characteristics: at a given time some of them can leave and/or new

ones can arrive, and can change their supplies/demands. The purpose is to determine

an optimal commodity flow schedule between them so that total distribution cost is

minimized. We will consider this generalization in the rest of this thesis.

4.1.2. Problem Representation

It is possible to formulate MCNFP as a mixed-integer linear programming prob-

lem (MILP) by allowing only noncrossing arcs to have positive flows. In other words,

for each arc (i, j) ∈ Al(l+1)(N), if there is a positive flow on (i, j), i.e. if fij > 0, then

fpq = 0 for all (p, q) ∈ Al(l+1)(N) with either 1 ≤ p ≤ i − 1 and j + 1 ≤ q ≤ nl+1,

or i + 1 ≤ p ≤ nl and 1 ≤ q ≤ j − 1. Obviously, fij = 0 if fpq > 0 for one of

such (p, q) ∈ Al(l+1)(N). In addition to the flow variables fij, we use the previously

introduced binary design variables xij ∈ Al(l+1)(N) to model this. xij is set to 1 if

fij > 0. Besides, if xij = 1 then fpq = 0 for all (p, q) such that either 1 ≤ p ≤ i− 1 and

j + 1 ≤ q ≤ nl+1, or i+ 1 ≤ p ≤ nl and 1 ≤ q ≤ j − 1. This allows us to define the list

Sij of arcs incompatible (i.e. crossing) with arc (i, j) ∈ Al(l+1)(N) as

Sij = {(p, q) ∈ Al(l+1)(N) : 1 ≤ p ≤ i− 1, j + 1 ≤ q ≤ nl+1;

i+ 1 ≤ p ≤ nl, 1 ≤ q ≤ j − 1} l = 1, 2, . . . , L. (4.1)

Notice that Sij is equivalent to the δC(i, j) which is the set of neighbors of (i, j) in

the conflict graph C. But we prefer to use Sij in the context of MCNFP rather than

δC(i, j) in order to emphasize that arc incompatibility is caused by physical crossing

38

of arcs. Then, we obtain the following MILP formulation for MCNFP.

MCNFP: min
∑

(s,j)∈A12(N)

csjfsj +
L−2∑
l=2

∑
(i,j)∈Al(l+1)(N)

cijfij +
∑

(i,t)∈AL−1L(N)

citfit (4.2)

s.t.
∑

(s,j)∈A12(N)

fs,j = bs (4.3)

∑
(i,j)∈Al(l+1)(N)

fij −
∑

(j,i)∈A(l−1)l(N)

fji = bi i ∈ Vl(N);

l = 2, 3, . . . , L− 1 (4.4)

−
∑

(i,t)∈A(L−1)L(N)

fit = bt (4.5)

0 ≤ fij ≤ uijxij (i, j) ∈ Al(l+1)(N);

l = 1, 2, . . . , L− 1 (4.6)

xpq + xij ≤ 1 (p, q) ∈ Sij;

(i, j) ∈ Al(l+1)(N);

l = 1, 2, . . . , L− 1 (4.7)

xij ∈ {0, 1} (i, j) ∈ Al(l+1)(N);

l = 1, 2, . . . , L− 1. (4.8)

Without constraints (4.7) and (4.8), and with uij instead of uijxij in constraints (4.6)

the formulation is the one of ordinary MCFP on the layered network illustrated in Fig-

ure 2.3. The constraints (4.7) are equivalent to the conflict constraints (2.16) ensuring

that flow can only be sent through only noncrossing arcs. This formulation is referred

as the strong MCNFP formulation since the strong conflict representation is used to

model the relation between the crossing arcs and it is denoted by MCNFPS.

39

4.2. Minimum Cost Flow Problem with Conflicts2

The minimum cost flow problem with conflicts (MCFPC), in which the simul-

taneous shipment of goods through some pairs of arcs is prohibited, is obtained by

generalizing the previous results obtained for MCNFP for general networks and deal-

ing with a more abstract version of incompatibility constraints, namely conflicting arcs.

As opposed to the crossing arcs encountered in MCNFP, conflicting arcs do not need

to cross each other with respect to a particular embedding of vertices in the network.

They do not have to share a common tail or head; they can be any pair of arcs in the

network.

We can observe that MCFPC has an interesting recent application in online event-

based social networks. The aim is to find conflict-aware event-participant arrangements

given a set of users and a set of events. In this setting, every event allows limited number

of participants and there is a maximum number of activities a user can join. A user

cannot participate in certain pairs of events because either the events coincide or the

time interval between two events is restrictive concerning the location of events. For

each user-event pair an interestingness value is calculated based on the event history

that the user attend previously. The higher this value is, the more the user enjoys

that event. The objective is to find the user-event matching satisfying the capacity of

users and events, and maximizing the total interestingness. Since this is equivalent to

minimizing the total dissimilarity between the matched user-event pairs, this problem

can be modeled as a MCFPC [71].

MCFPC can be formulated as an MILP by generalizing from the MCNFP formu-

lation. We use the conflicting arc list of (i, j) which is previously defined and denoted

by δC(i, j) in order not to allow positive flow values on conflicting arcs in an optimal

solution. The previously introduced flow variables, f , and binary design variables, x,

are used.

2An earlier version of this section appears in [13] as a part of its content.

40

If fij > 0, i.e. if there is a positive flow on (i, j), then fkl = 0 for all (k, l) ∈

δC(i, j). If fij > 0, then xij = 1. Besides, if fij > 0, then xkl = 0 and thus fkl = 0 for

all (k, l) ∈ δC(i, j). Then, MCFPC has the following MILP formulation:

MCFPC: min
∑

(i,j)∈A(N)

cijfij (4.9)

s.t.
∑

(i,j)∈A(N)

fij −
∑

(j,i)∈A(N)

fji = bi i ∈ V (N) (4.10)

xij + xkl ≤ 1 (k, l) ∈ δC(i, j); (i, j) ∈ A(N) (4.11)

0 ≤ fij ≤ uijxij (i, j) ∈ A(N) (4.12)

xij = 0, 1 (i, j) ∈ A(N). (4.13)

Without constraints (4.11) and (4.13) and with uij instead of uijxij in constraints

(4.12), the above MILP formulation becomes the LP formulation of the ordinary

MCFP on a general network. It can be observed that MCFP is a relaxation of both

MCFPC and MCNFP. MCFPC formulation ensures that any feasible flow cannot be

sent through conflicting arcs by using the strong conflict constraints. Therefore, this

model is referred as the strong formulation of MCFPC and denoted by MCFPCS in

the sequel.

4.3. Maximum Flow Problem with Conflicts3

A variant of MFP obtained by adding the conflict constraints is examined. In

a feasible solution of this extended problem, which we briefly call the maximum flow

problem with conflicts (MFPC), at most one of the conflicting arcs is allowed to have

positive flow on it. An interesting application of this problem arises in multi-hop wire-

less networks on which the performance of signal transmission degrades substantially

with the increasing number of traversed hops. In a network of nodes with identical and

omnidirectional radio ranges, going from a single hop to 2 hops halves the throughput

of a flow. Hence interference dictates that only one of the links connecting these two

3An earlier version of this section appears in [14] as a part of its content.

41

hops can be active at a time where the aim is to maximize the flow throughput between

the given source-destination pairs [72]. MFPC is known to be strongly NP -hard [16].

The goal is to determine the maximum flow from s to t obeying the flow bounds

and conflict restrictions. We can formulate MFPC as an MILP since it is a special

version of MCFPC where bi = 0 for all vertices in V (N) except the source and the

sink. Hence, the following MILP is obtained:

MFPC: max v (4.14)

s.t.
∑

(i,j)∈A(N)

fij −
∑

(j,i)∈A(N)

fji =

v i = s

0 i ∈ V (N)\{s, t}

−v i = t

(4.15)

xij + xkl ≤ 1 (k, l) ∈ δC(i, j) : (i, j) ∈ A(N) (4.16)

fij ≤ uijxij (i, j) ∈ A(N) (4.17)

xij = 0, 1 , fij ≥ 0 (i, j) ∈ A(N). (4.18)

The flow-balance equalities (4.15) and the flow capacity constraints (4.17) without x

variables are common with the original MFP formulation. The conflict constraints

(4.16) prevent simultaneous flow on the conflicting arcs. Based on this fact, MFP is

a relaxation of MFPC obtained by relaxing conflict constraints. This version is called

the strong MFPC formulation and denoted as MFPCS.

4.4. Assignment Problem with Conflicts4

Another considered problem is the assignment problem with conflicts (APC),

which is an extension of AP with additional conflict constraints. In this extended

problem, when an item (e.g. job) is assigned to a destination (e.g. machine) the

assignment of a subset of items to a subset of destinations may be prohibited. In other

words, APC is equivalent to finding a minimum weight perfect matching such that

no more than one edge is selected from each conflicting edge pair. Although various

4An earlier version of this section appears in [15] as a part of its content.

42

additional restrictions have been previously studied, the consideration of conflicts in

particular, has been recent.

APC is a close relative of graph and network based combinatorial optimization

problems, which also include conflict constraints. Actually it is the special form of the

minimum cost flow problem with conflicts where the underlying graph is undirected

and bipartite and the flow upper bounds of all edges are set to one.

One of the important yard operations in container terminals is to find the best

possible depositing position in the storage area for the arriving containers. The storage

yard is divided into several rows and arriving containers are classified according to

certain criteria (ownership, size, full/empty containers, preferences of the customers

etc.). As a result, it is not possible to stack some of the containers in the same row

at neighbor locations of the storage yard due to the incompatibilities between them.

Then, the determination of an optimum assignment strategy that minimizes total cost

of operations (searching and/or loading of containers) can be formulated as an APC.

A similar type of storage problem occurs in warehouses. Some of them may not be

allowed to receive goods from some pairs of producers because of the incompatibilities

between their product; they may cause deterioration or damage to each other or to the

facility when they are stored at closely. For example food and toxic products cannot

be stored together, they should be separated from each other and from other goods to

eliminate damages.

Manpower planning is another area for possible applications of APC. Workers may

be assigned to jobs according to interpersonal relations in addition to qualifications and

requirements. In certain cases a pair of workers cannot be assigned to a pair of jobs.

This may be because of their incapability of forming a team on these jobs. For example

when some pilot is assigned to the crew of a flight, some of the cabin personnel should

not be on the same crew due to some disfunctional conflict between them and the pilot.

43

In transportation, two or more products can be incompatible and are not allowed

on the same vehicle. For example hazardous material may become unstable if mixed

with other products, and food cannot be mixed with chemicals. The first approach is to

use dedicated vehicles with homogenous loads. Unfortunately, this leads to a very large

fleet size in case of a large number of incompatibilities between the products, namely to

the waste of resources and money. The other approach is to use heterogeneous vehicles

and avoid the loading of the incompatible products on the same vehicle, which can be

handled by means of assignment constraints in conjunction with conflict inequalities.

We would like to finalize giving potential applications by mentioning that APC

arises also as a subproblem when solving some of the difficult combinatorial opti-

mization problems. One such problem is the quadratic bottleneck assignment prob-

lem [73], which is a generalization of the bandwidth assignment problem in matrices

and graphs [74]. Another one is a potential extension of the ordinary asymmetric trav-

eling salesman obtained after adding conflict inequalities to formulate the dependence

between the exiting and entering arcs of the cities: some of the leaving arcs may not be

selected if a particular entering arc is in the tour and a tour can consist of only compat-

ible arcs. The relaxation obtained by disregarding the subtour elimination constraints

is an APC.

It is possible to formulate APC as a binary integer programming (BIP) problem.

To this end, we make use of a conflicting edge pair list. Let G = (V1(G)∪V2(G), E(G))

be a complete bipartite graph, where |V1(G)| = |V2(G)| = n, V1(G) ∩ V2(G) = ∅ and

E(G) = {e1, . . . , em}. Note that, in the sequel, we will interchangeably denote an

edge with e = {i, j} such that i ∈ V1(G) and j ∈ V2(G). For each edge {i, j} ∈

E(G), the previously defined conflicting edge list δC(i, j) is used. If e ∈ E(M) where

E(M) ⊆ E(G) is the edge set of a perfect matching M = (V (M), E(M)), then the

edges f ∈ δC(e) are not allowed to be in E(M). Obviously, f ∈ δC(e) if and only if

e ∈ δC(f), and V (M) = V1(G) ∪ V2(G) since M is perfect.

As a typical example, suppose there are n workers and n jobs. If worker i is

assigned to job j the cost incurred will be cij. Assume worker i can work at job j and

44

worker k can work at job l different from job j. In certain cases it may be required

that workers i and k cannot be assigned to jobs j and l at the same time. This may

be due to their inabilities to work together within the same team. In other words,

the assignment of worker i to job j is in conflict with the assignment of worker k to

job l, and thus they are the elements of each other’s conflicting assignment list, i.e.

{i, j} ∈ δC(k, l) and {k, l} ∈ δC(i, j). Our goal is to find a conflict-free assignment with

minimum possible total cost.

Notice that the binary decision variables xij for e = {i, j} ∈ E(G) which exist in

the ordinary assignment problem (AP) formulation, are sufficient to model the conflict

relations. No extra variables are needed. xij set to 1 if and only if edge e = {i, j} ∈

E(M). Then, the following BIP formulation which is first proposed in [58] is obtained:

APC: min
∑

{i,j}∈E(G)

cijxij (4.19)

s.t.
∑

{i,j}∈E(G)

xij = 1 i ∈ V1(G) (4.20)

∑
{i,j}∈E(G)

xij = 1 j ∈ V2(G) (4.21)

xij + xkl ≤ 1 {k, l} ∈ δC(i, j) : {i, j} ∈ E(G) (4.22)

xij = 0, 1 {i, j} ∈ E(G). (4.23)

Equations (4.20) and (4.21) are AP constraints and ensure the construction of a per-

fect matching in the bipartite graph G. Conflict constraints (4.22) guarantee that

no edge pair in a feasible perfect matching can be conflicting. In other words, when

{{i, j}, {k, l}} is a conflicting pair then at most one of the edges, i.e. either {i, j} or

{k, l}, or neither can appear in a perfect matching. AP is a relaxation of APC, obtained

by removing the conflict constraints and this version is called the strong mathematical

representation of APC which we denote as APCS in the sequel.

45

4.5. Alternative Formulations

4.5.1. Weak Formulations

An equivalent formulation of MCFPC is obtained by replacing inequalities (4.11)

with

∑
(p,q)∈δC(i,j)

xpq + |δC(i, j)|xij ≤ |δC(i, j)| (i, j) ∈ A(N); (4.24)

Notice that, the constraint set (4.24) is the same with the weak conflict representation

shown with constraints (2.17).

Weak conflict constraints (2.17) can be used to obtain the weak formulation of

MCNFP. Similarly, constraints (4.21) of MFPC can be replaced with their aggregated

versions given as constraint (2.17). Moreover, we can rewrite the conflict constraints

(4.22) of APC as

∑
(k,l)∈δC(i,j)

xkl + |δC(i, j)|xij ≤ |δC(i, j)| {i, j} ∈ E(G). (4.25)

As can be noticed, these formulations give weaker linear programming (LP) bounds

since inequalities (2.17) and (4.25) are obtained by aggregating strong conflict con-

straints over the list δC(i, j) for each arc (i, j) and edge {i, j}. Hence, we refer to

these versions as the weak formulations and we denote them as MCNFPW , MCFPCW ,

MFPCW and APCW .

4.5.2. Clique Formulations

Given the family of maximal cliques of the conflict graph, denoted by K, clique

formulations of MCNFP, MCFPC, MFPC and APC can be attained by replacing con-

straints (4.7), (4.11), (4.21) and (4.22) with the clique inequalities (2.18). In the

46

remaining chapters, those are referred as MCNFPK , MCFPCK , MFPCK and APCK ,

respectively.

Since the number of maximal cliques can be exponential in the size of the graph,

we generate a subset of K instead of generating all members of K. This subset of clique

inequalities are selected so that they cover all the edges of the conflict graph C i.e. all

conflict relations are represented. When we use a subset of K, we cannot claim that

the LP bound of clique formulation is better than the one of the strong formulation

but it still gives relaxation bound for the problem.

Algorithm 4.4: Greedy heuristic to find a subset of K

Input: A conflict graph C = (V (C), E(C));

Output: A subset of K;

begin

l = 1, W = V (C);

while W 6= 0 do

Sort the vertices of V (C) in nonincreasing dC(i, j) values with respect to C[W]

for all arcs i ∈ V (C) do

Put i into U if it is adjacent to all vertices in U ;

end for

Kl ←− U ;

W ←− W \Kl;

l←− l + 1;

end while

Return Kj, j = 1, 2, ..., l − 1;

end

Figure 4.4. Greedy heuristic to find a subset of K.

47

4.5.3. Combinatorial Optimization Problem Formulations

Recall that a subset S of conflict-free arcs form a stable set of the conflict graph

C. As a consequence, MCFPC becomes the combinatorial optimization problem

min{z1(S) : S ∈ S(C)}, (4.26)

where S(C) is the family of the maximal stable sets of the conflict graph and the value

of the objective function is calculated by solving a reduced MCFP on the subnetwork

(V (N), S) with vertices V (N) and arcs S, of the original network N . In other words,

MCFP(S): z1(S) = min
∑

(i,j)∈S

cijfij (4.27)

s.t.
∑

(i,j)∈S

fij −
∑

(j,i)∈S

fji = bi i ∈ V (N) (4.28)

0 ≤ fij ≤ uij (i, j) ∈ S. (4.29)

In case MCFP(S) is not feasible for a given S, we set z1(S) =∞ for convenience.

Proposition 4.1. Let S and S ′ be two stable sets of the conflict graph C. Then,

z1(S ′) ≤ z1(S) for S ⊆ S ′.

Proof. The problem MCFP(S ′) is a relaxation of MCFP(S) since its set of variables

include the set of variables of MCFP(S) as a subset.

Note that the given formulation is valid to model MCNFP if the vertex and

arc indices are modified accordingly. Furthermore, since APC is a special case of

MCPFC, the combinatorial optimization version of APC can be written similarly where

S represents the edges of the original bipartite graph G. Suppose that the optimal

objective value of AP on a stable set S, i.e. APC(S), is denoted by z2(S) and this

value is equal to infinity if there is no feasible assignment on the given stable set. Then,

finding the stable set with the minimum z2(S) value is equivalent to solving APC.

48

Therefore, we attain the combinatorial optimization problem, which is equivalent to

APC,

min{z2(S) : S ∈ S(C)}. (4.30)

Corollary 4.1. Let S and S ′ be two stable sets of the conflict graph C. Then, z2(S ′) ≤

z2(S) for S ⊆ S ′.

Proof. This is is a direct result of Proposition 4.1 as APC(S) is a particular version of

MCFPC(S).

A similar approach can be used to provide a combinatorial optimization formula-

tion for MFPC. Since it is a maximization problem, MFPC can be reformulated using

the stable sets of the conflict graph as

max{z3(S) : S ∈ S}, (4.31)

where the value z3(S) is calculated by solving a maximum flow problem on the sub-

network (V (N), S) of the original network N . In other words,

MFPC(S): z3(S) = max v (4.32)

s.t.
∑

(i,j)∈S

fij −
∑

(j,i)∈S

fji =

v i = s

0 i ∈ V (N)\{s, t}

−v i = t

(4.33)

0 ≤ fij ≤ uij (i, j) ∈ S. (4.34)

Proposition 4.2. Let S and S ′ be two stable sets of the conflict graph C such that

S ⊆ S ′. Then, z3(S ′) ≥ z3(S).

49

Proof. The assertion trivially follows from the fact that the feasible solution space of

MFPC(S) includes the feasible solutions of MFPC(S ′).

As a direct consequence of these propositions, it is sufficient to consider only

maximal stable sets of C. Besides, since the relaxation problems MCFP, AP and MFP

are polynomially solvable, it is straightforward to say that for any conflict graph with

a polynomial number of maximal stable sets MCFPC, APC and MFPC can be solved

in polynomial time. At this point two questions one can ask are whether there exists

graph classes with a number of stable sets bounded by a polynomial in the size of the

graph (i.e. the number or vertices and/or edges), and whether there exist a polynomial

time algorithm to generate them.

An answer for the first question can be provided by considering the cliques of the

complement C of the conflict graph C, since stable sets of a graph are the cliques of its

complement. For example chordal graphs have at most n maximal cliques [75], graphs

of boxicity k have at most (2n)k maximal cliques [76], planar graphs have at most

7n/3−6 maximal cliques [76], and Kk−free graphs have at most max{n, n∆k−2/2k−2}

maximal cliques [77], where n is the number of vertices and ∆ is the maximum degree

of any vertex. This is not true when C is a general graph since the maximum number

of maximal cliques is 3dn/3e in a general graph [78]. Yet another answer can be given

by checking the maximum number of the minimal dominating sets of the conflict graph

itself since a maximal stable set is a minimal dominating set of a graph, i.e. the maximal

stable sets of a graph form a subset of its minimal dominating sets. Lower and upper

bounds on the maximum number of minimal dominating sets of certain graph classes

are reported in [79]. These bounds are mostly exponential functions of the number

of vertices. The two exceptions are the threshold and chain graphs. The maximum

number of minimal dominating sets for the threshold graphs is equal to ω(G), which is

the size of the largest clique of G. This number becomes bn/2c+ m for chain graphs,

where m is the number of edges. The lower and upper bounds respectively become

15n/6 and 1.7159n for general graphs [80].

50

The second question is related to the generation of maximal stable sets and

minimal dominating sets of C, and maximal cliques of C. Most of the algorithms are

enumerative and have running times within a polynomial factor of the proved upper

bound for the graph class in question. For example, the one in [81] generates all

maximal stable sets, the one in [82] generates all maximal cliques and the ones in [79]

generate all minimal dominating sets.

In short, when the conflict graph belongs to one of the classes of threshold or

chain graphs, or the complement of the conflict graph belongs to one of the classes

of chordal graphs, graphs of boxicity k, planar graphs, and Kk − free graphs, the

maximum number of maximal stable sets are bounded by a polynomial in the number

of vertices n and the number of edges m, and they can be generated in polynomial

time. Hence, MCFPC, MFPC and APC can be solved in polynomial time for these

particular cases by first generating the family S(C) of the maximal stable sets of C

and then evaluating them by solving MCFPC(S), MFPC(S) or APC(S) for S ∈ S(C).

Obviously, this can be done in time bounded by a polynomial in n and m in the worst

case.

51

5. COMPLEXITY ANALYSIS

This chapter presents the complexity analysis results for the minimum cost non-

crossing flow problem on layered networks (MCNFP) and the minimum cost flow prob-

lem with conflicts on general networks (MCFPC). Moreover, a particular condition

which makes MCNFP and the assignment problem with conflicts (APC) polynomially

solvable is explained.

5.1. The Difficulty of the Minimum Cost Noncrossing Flow Problem5

We first define the decision problems associated with the MCNFP and its variant

with restricted total flow costs for the flow paths (MCNFP-RC) in the following.

MCNFP Instance: A layered network N = (V (N), A(N)) with L ∈ Z+ layers each

of which having nl ∈ Z+ vertices l = 1, 2, . . . , L except the first and last ones: they

consist of single vertices, namely a source s for layer l = 1 and a sink t for layer

l = L. There is a supply/demand bi ∈ Z+ for every vertex i ∈ V (N) satisfying∑
i∈V +(N) bi =

∑
i∈V −(N) bi. For each arc (i, j) ∈ A(N) there is a capacity uij ∈ Z+,

and unit flow cost cij ∈ Z+. There is also a given number C ∈ Z+.

Question: Is there a noncrossing arc flow with total cost less than C?

MCNFP-RC Instance: The same as the MCNFP instance.

Question: Is there a noncrossing arc flow with total cost less than C for every

flow path?

5An earlier version of this section appears in [12] as a part of its content.

52

Proposition 5.1. MCNFP-RC is NP -complete for

bil =

B, if l = 1 (i.e. i1 = s)

−B, if l = L (i.e. iL = t)

0, otherwise,

with B ∈ Z+.

Proof. i. MCNFP-RC ∈ NP : If a flow is given, its feasibility can be checked in poly-

nomial time. Checking the feasibility of the flow with respect to the flow balance

constraints and bounds can be done in O(|A(N)|) time. Checking whether there is

a crossing requires at most O(|V (N)|2L) time. As a consequence of the flow decom-

position theorem [19] given a nonnegative arc flow it is possible to generate all flow

paths in O(|V (N)|+ |A(N)|) time and the number of flow paths is O(|V (N)|+ |A(N)|)

in the worst case. Thus, checking whether or not the total cost of each path is less

than C takes O((|V (N)| + |A(N)|)|A(N)|) = O(|A(N)|2) time. Therefore, there is a

polynomial time certificate checking algorithm and MCNFP-RC ∈ NP .

ii. MCNFP-RC is hard (Reduction from the set partitioning problem): The

Set Partitioning Problem (SPP), which is known to be NP -complete [20], reduces

polynomially to MCNFP-RC. The SPP deals with the following question: Given a set

S of V elements with values sv ∈ Z+, v = 1, 2, . . . , V and
∑

v∈S sv = D, is there a

subset S ′ ⊂ S such that
∑

v∈S′ sv =
∑

v∈S\S′ sv = D
2

?

An instance of MCNFP-RC corresponding to an arbitrary SPP instance can be

the complete layered network N = (V (N), A(N)) with

a. L = V + 3 layers,

53

b. nl = 2, l = 2, 3, . . . , L − 1; n1 = nL = 1 vertices at each layer having a sup-

ply/demand

bil =

2, if l = 1 (i.e. i1 = s)

−2, if l = L (i.e. iL = t)

0, otherwise,

c. C = D + (V + 1),

d. unit flow cost

cilil+1
=

D
2
, if l = 1; il+1 = 1, 2

1, if l = L− 1; iL−1 = 1, 2

1, if l = 2, 3, . . . , L− 1; il = 1, il+1 = 2

1, if l = 2, 3, . . . , L− 1; il = 2, il+1 = 1

sl−1 + 1, if l = 2, 3, . . . , L− 1; il = il+1 = 1

sl−1 + 1, if l = 2, 3, . . . , L− 1; il = il+1 = 2,

e. lower bounds lilil+1
= 0 and capacities

uilil+1
=

1, if l = 2, 3, . . . , L− 1; il = 1, il+1 = 2

1, if l = 2, 3, . . . , L− 1; il = 2, il+1 = 1

uilil+1
∈ Z+, otherwise.

Figure 5.1 illustrates the network obtained after this transformation for S =

{s1, s2, s3}, V = 3, S ′ = {s1, s3}, L = 3 + 3 = 6. The numbers on the arcs are the

unit costs. For vertex numbering we use the previously mentioned convention. Two

noncrossing flow paths satisfying the total flow cost restriction C = D+4 are presented

using dashed arcs. Observe that the paths have unit flow on them, satisfy balance

equalities, lower bound and capacity restrictions, and cost restrictions. Furthermore,

they are noncrossing. The first of the two paths presents subset S ′ (path 1→ 2→ 1→

54

1 1 1

2

l = 1 l = 2 l = 3

s t

2

1

l = 4

1

l = 5

2

l = 6

1

2

 1

 1
 1

 1 s
2
+1

 s
1
+1

 D/2

 D/2

 1

 1
 1

 1

 s
3
+1

 s
3
+1

 s
2
+1

 s
1
+1

-2 2

Figure 5.1. Noncrossing paths corresponding to an SPP instance

1→ 2→ 1) and the second one the subset S\S ′ (path 1→ 1→ 1→ 2→ 2→ 1). They

are not necessarily disjoint; arc (2, 1) between layers 5 and 6 is traversed by both paths.

The noncrossing flow path representation of sets S ′ and S is not unique. They can be

represented using two other paths as well. For example path 1→ 2→ 2→ 1→ 1→ 1

for S ′ and path 1 → 1 → 2 → 2 → 1 → 1 for S\S ′. Notice that, this time arc (1, 1)

between layers 5 and 6 is on both paths. What must be done now is to show that S

has a subset S ′ such that
∑

v∈S′ sv =
∑

v∈S\S′ sv = D
2

if and only if there is a feasible

flow with noncrossing flow paths each having at most C = D+ (V + 1) total flow cost.

First, suppose that S has a subset S ′ such that
∑

v∈S′ sv =
∑

v∈S\S′ sv = D
2

.

Then, it is possible to generalize the path structure of Figure 5.1 so that the first

path includes the elements of S ′ and the second path the elements of S\S ′. As can

be noticed, these flow paths are noncrossing, satisfy flow balance equalities, lower

bounds and capacity restrictions, and each has a total flow cost D + (V + 1) (i.e.

D
2

+
∑

v∈S′ sv + (V + 1) = D + (V + 1) = D
2

+
∑

v∈S\S′ sv + (V + 1)). Thus, if the set

S has a subset S ′ such that
∑

v∈S′ sv =
∑

v∈S/S′ sv = D
2

, it is possible to construct two

noncrossing flow paths each with a total flow cost equal to D + (V + 1).

Conversely, suppose that we are given a flow feasible with respect to flow balance

equalities, lower bounds, capacity restrictions and having only noncrossing flow paths

each with a cost less than D + (V + 1). First of all for the described MCNFP-RC

instance there can be at most two s-t flow paths since exactly two units of flow have

to be sent out of source s. Single s-t flow path (with two units of flow on it) is not

possible because the total cost of the one with the smallest total cost is D+ 2(V + 1),

55

which is larger than the restriction D + (V + 1). Hence, two distinct flow paths have

to start at source s. Besides, they must satisfy the cost restrictions (i.e. each has a

total cost of at most D + (V + 1)).

Consider the arcs (il, il+1) such that il = il+1 = 1, 2 for l = 2, 3, . . . , L−1. This is

the pair of arcs with costs sv+1, v ∈ S. Then, at least one of these two arcs il = il+1 =

1, 2 must appear on one of these two paths for each l = 2, 3, . . . , L−1. Otherwise, there

is a crossing because of the network structure and unit upper bounds on arcs (il, il+1)

with il = 1 and il+1 = 2, and il = 2 and il+1 = 1 for l = 2, 3, . . . , L−1 (i.e. in case there

is one which is missing on both paths) or one of the paths has cost larger thanD+(V +1)

(i.e. one of them can be traversed by both paths), which is a contradiction. In short,

there are two flow paths each having unit flow on it and partitioning the arcs with costs

sv+1 v ∈ S (i.e. these arcs appear exactly on one of them) and thus the sum of the total

costs is equal to 2D
2

+
∑

v∈S sv +2(V +1) = 2(D+(V +1)). This implies that each flow

path satisfies fully its total cost restriction D+ (V + 1), since each has a total flow cost

less than D+(V +1) with grand total exactly equal to 2(D+(V +1)). Finally, one of the

flow paths cannot include all of them (i.e. the set S entirely) because this results in a

total cost of D
2

+
∑

v∈S sv+(V +1) = 3
2
D+(V +1) > D+(V +1). Let S be the set of these

arcs and S ′ be its subset included in the first path. Then, other path would traverse the

arcs in S ′\S. Recall that each one of these paths has total cost D+(V +1). Therefore,

D
2

+
∑

v∈S′ sv + (V + 1) = D + (V + 1) and D
2

+
∑

v∈S\S′ sv + (V + 1) = D + (V + 1),

which implies that
∑

v∈S′ sv =
∑

v∈S\S′ sv = D − D
2

= D
2

. This transformation can be

done in O(V) time.

Proposition 5.2. MCNFP is NP -complete when

bil =

B′, if l = 1 (i.e. i1 = s)

−B′, if l = L (i.e. iL = t)

0, otherwise,

with B′ ∈ Z+.

56

Proof. i. MCNFP ∈ NP : First of all any certificate of MCNFP can be checked in

polynomial time similar to MCNFP-RC. Hence, MCNFP ∈ NP .

ii. MCNFP is hard (Reduction from MCNFP-RC): Consider any arbitrary in-

stance of MCNFP-RC with unit costs cij ∈ Z+, (i, j) ∈ A(N), supply/demand bi ∈ Z+,

i ∈ V (N) and capacities uij ∈ Z+, (i, j) ∈ A(N) as assumed in the assertion, and cost

restrictions D ∈ Z+ for the flow paths. To generate a particular MCNFP instance we

keep the same layered network structure of a MCNFP-RC instance, but modify unit

costs, arc capacities, supplies and demands.

We choose

b′il =

B′, if l = 1 (i.e. i1 = s)

−B′, if l = L (i.e. iL = t)

0, otherwise,

with

B′ = B +

⌈
1

(L− 1)

⌉
= B + 1.

We set the unit costs all equal to λ′, arc capacities to u′ij = uij + 1, and the restriction

C = λ′(L− 1)B′. Here λ′ ∈ Z+ is larger enough than BD.

First suppose that MCNFP-RC has a noncrossing flow f ∈ Q|A(N)|
+ satisfying

flow balance, arc capacity constraints and cost restrictions on the flow paths Pk =

(V (Pk), A(Pk)) k = 1, 2, . . . , K. Here, K is the number of noncrossing flow paths and

K ≤ |V (N)|+ |A(N)| as a consequence of the flow decomposition theorem [19]. How-

ever, for this particular case, due to the integrality of the flow and network structure

K ≤ B.

57

Since each flow path satisfies the cost restrictions,

∑
(i,j)∈A(Pk)

cijfk ≤ D k = 1, 2, . . . , K,

and consequently

K∑
k=1

∑
(i,j)∈A(Pk)

cijfk ≤ KD.

Here, fk is the amount of positive flow sent through the kth flow path. Then,

∑
(i,j)∈A(N)

cijfij ≤ KD (5.1)

follows, since fij =
∑K

k=1

∑
{Pk:(i,j)∈A(Pk)} fk, where fij is the flow on arc (i, j).

At this point, we have to show the following claim.

Claim 5.1.

K∑
k=1

∑
(i,j)∈A(Pk)

fk = (L− 1)B.

Proof. First of all,
∑K

k=1

∑
(i,j)∈A(Pk) fk =

∑K
k=1 |A(Pk)|fk. Because of the special struc-

ture of the network N = (V (N), A(N)) (i.e. layered network with forward arcs) every

feasible arc flow can be represented as a path flow having exactly L− 1 arcs. Besides,

each flow path with positive flow on it connects a source vertex to a sink vertex [19].

Hence,

K∑
k=1

∑
(i,j)∈A(Pk)

fk =
K∑
k=1

|A(Pk)|fk = (L− 1)
K∑
k=1

fk.

58

In addition, the sum of the flows over the flow paths is equal to the sum of supplies,

which is equal to the negative of the sum of the demands, namely to B. In other words∑K
k=1 fk =

∑
i∈V +(N) bi = −

∑
i∈V −(N) bi = B, which completes the proof.

Then, for unit costs c′ij = cij + λij with λij ∈ Z+, λ = max(i,j)∈A(N){λij} = BD

and λ = min(i,j)∈A(N){λij} the total flow cost becomes

∑
(i,j)∈A(N)

c′ijfij =
∑

(i,j)∈A(N)

cijfij +
∑

(i,j)∈A(N)

λijfij

=
K∑
k=1

∑
(i,j)∈A(Pk)

cijfk +
K∑
k=1

∑
(i,j)∈A(Pk)

λijfk

≤ KD + λ
K∑
k=1

∑
(i,j)∈A(Pk)

fk

= KD + λ(L− 1)B

≤ BD + λ(L− 1)B

= λ[(L− 1)B + 1]

= λ(L− 1)

(
B +

1

L− 1

)
≤ λ(L− 1)(B + 1)

= λ(L− 1)B′

≤ λ′(L− 1)B′.

The second term of the fourth expression follows from the second term of the third

expression as consequence of claim 5.1. The fifth expression follows from the fourth

since B ≥ K. We also use the definition λ = BD and the fact that λ′ ≥ λ. Notice

that,

C = λ′(L− 1)B′ = λ′
K∑
k=1

∑
(i,j)∈A(Pk)

f ′k.

In other words, this upper bound C is the total cost of an arc flow f ′, with path

flow f ′k k = 1, 2, . . . , K on the flow paths Pk k = 1, 2, . . . , K, for the same network

59

structure with B′ and u′ij as defined previously, and unit flow costs set to λ′. Notice

that it is possible to obtain f ′ by increasing the flow f on one of the flow paths Pk

k = 1, 2, . . . , K, say fp on path Pp by one unit and keeping the remaining ones the

same, i.e. by setting f ′p = fp + 1, f ′k = fk for k 6= p. This is a feasible solution of

the particular MCNFP instance we have created, i.e. a noncrossing flow feasible with

respect to the flow balance equalities and capacity restrictions, with total cost equal

to C.

Conversely, suppose that the particular MCNFP instance has a noncrossing flow

with total cost not larger than C. Let P ′k = (V (P ′k), A(P ′k)), k = 1, 2, . . . , K ′ be the

corresponding K ′ flow paths of a feasible flow f ′ of the particular MCNFP instance,

which also satisfies total cost restriction. Let also f ′k k = 1, 2, . . . , K ′ be the path flow

corresponding to these K ′ flow paths. Hence,

C = λ′(L− 1)B′ = λ′
K′∑
k=1

∑
(i,j)∈A(P ′k)

f ′k

≥
K′∑
k=1

∑
(i,j)∈A(P ′k)

c′ijf
′
k

=
∑

(i,j)∈A(N)

c′ijf
′
ij

=
∑

(i,j)∈A(N)

cijf
′
ij +

∑
(i,j)∈A(N)

λijf
′
ij

=
K′∑
k=1

∑
(i,j)∈A(P ′k)

cijf
′
k +

K′∑
k=1

∑
(i,j)∈A(P ′k)

λijf
′
k

≥
K′∑
k=1

∑
(i,j)∈A(P ′k)

cijfk +
K′∑
k=1

∑
(i,j)∈A(P ′k)

λijf
′
k

≥
K′∑
k=1

∑
(i,j)∈A(P ′k)

cijfk + λ

K′∑
k=1

∑
(i,j)∈A(P ′k)

f ′k

=
K′∑
k=1

∑
(i,j)∈A(P ′k)

cijfk + λ(L− 1)B′.

60

The first inequality is a consequence of our selection of λ′. For example setting λ′ = c′

with c′ = max(i,j)∈A(N){c′ij} is a possibility. The last equality is a consequence of claim

5.1, since it can be shown that
∑K′

k=1

∑
(i,j)∈A(P ′k) f

′
k = (L − 1)B′ similarly. Hence, we

can write

K′∑
k=1

∑
(i,j)∈A(P ′k)

cijfk ≤ C − λ(L− 1)B′ = λ′(L− 1)B′ − λ(L− 1)B′ = (L− 1)B′(λ′ − λ),

which becomes

K′∑
k=1

∑
(i,j)∈A(P ′k)

cijfk ≤ D

after setting

λ = λ′ −
⌊

D

(L− 1)B′

⌋
·

For example for λ′ = c′ and λ = BD it is possible to set

λ = c′ −
⌊

D

(L− 1)B′

⌋
,

provided that

c′ ≤ BD +

⌊
D

(L− 1)B′

⌋

in order to have λ ≥ λ, which makes C − λ(L− 1)B′ ≤ D. Also for c′ = dαc+ λe with

c = max(i,j)∈A(N){cij},

α =
1

(L− 1)B′
,

and λ = BD we have c ≤ D.

61

In short,

∑
(i,j)∈A(P ′k)

cijfk ≤ D k = 1, 2, . . . , K ′

follows, since cij ≥ 0 and f ′k > 0 (i, j) ∈ A(P ′k), implying
∑

(i,j)∈A(P ′k) cijf
′
k ≥ 0,

k = 1, 2, . . . , K ′. Therefore, it is possible to obtain a feasible solution f of MCNFP-RC

using the flow paths of the noncrossing arc flow f ′ by simply decreasing the flow on

one of the flow paths P ′k k = 1, 2, . . . , K ′, say f ′p on path P ′p by one unit and keeping

the remaining ones the same, i.e. by setting fp = f ′p − 1, fk = f ′k for k 6= p. Finally,

this transformation can be done in
∑L−1

l=1 (nlnl+1) +
∑L

l=1 nl = O(|V (N)|2 + |V (N)|),

which is polynomial and the proof is complete.

The next two propositions follow directly form Proposition 5.1 and Proposition

5.2.

Proposition 5.3. MCNFP-RC is NP -complete for general demand supply/demand,

i.e. bi ∈ Z+ for every vertex i ∈ V (N) satisfying
∑

i∈V +(N) bi =
∑

i∈V −(N) bi.

Proof. In Proposition 5.1 we have shown that a restriction of MCNFP-RC is NP -

complete. It is obtained by setting

bil =

B, if l = 1 (i.e. i1 = s)

−B, if l = L (i.e. iL = t)

0, otherwise,

with B ∈ Z+.

Proposition 5.4. MCNFP is NP -complete for general demand supply/demand, i.e.

b′i ∈ Z+ for every vertex i ∈ V (N) satisfying
∑

i∈V +(N) b
′
i =

∑
i∈V −(N) b

′
i.

62

Proof. In Proposition 5.2 we have shown that a restriction of MCNFP is NP -complete.

It is obtained by setting

b′il =

B′, if l = 1 (i.e. i1 = s)

−B′, if l = L (i.e. iL = t)

0, otherwise,

with B′ ∈ Z+.

5.2. The Difficulty of the Minimum Cost Flow Problem with Conflicts6

This problem is not defined previously in the literature to the best of our knowl-

edge but a close relative, the maximum flow problem with conflicts (MFPC) is in-

troduced in [16] which includes complexity results on MFPC. The authors prove that

MFPC is strongly NP -hard and polynomially inapproximable even for networks where

the number of incoming arcs i.e. in-degree and the number of outgoing arcs i.e. out-

degree of each vertex is bounded by two. We exploit these theoretical results to carry

out the complexity analysis for MCFPC.

The same relation between the ordinary MCFP and the maximum flow problem

(MFP) exists also between MCFPC and MFPC and this situation helps assess the

complexity of MCFPC. We first define their associated decision problems.

MCFPC Instance: A network N = (V (N), A(N)) consisting of n vertices V (N)

and m arcs A(N), and a list of conflicting arc pairs. Every vertex i ∈ V (N) has a

supply/demand bi ∈ Z satisfying
∑

i∈V +(N) bi = −
∑

i∈V −(N) bi. For each arc (i, j) ∈

A(N) there is a unit flow cost cij ∈ Z+, finite upper bound, i.e. capacity, uij ∈ Z+,

and lower bound lij = 0.

6An earlier version of this section appears in [13] as a part of its content.

63

Question: Is there a conflict-free flow with total cost less than or equal to D for

D ∈ Z+ given?

MFPC Instance: A network N = (V (N), A(N)) consisting of n vertices V (N)

and m arcs A(N), and a list of conflicting arc pairs. There is no supply/demand, i.e.

bi = 0, for every vertex i ∈ V (N). There is a finite capacity uij ∈ Z+ for each arc

(i, j) ∈ A(N).

Question: Is there a conflict-free flow with value larger than or equal to F for

F ∈ Z+ given?

Proposition 5.5. MCFPC is NP-complete for

bi =

B, if i = s

−B, if i = t

0, otherwise,

with B ∈ Z+.

Proof. i. MCFPC ∈ NP : The feasibility of a given flow can be checked in polynomial

time in the worst case. First of all, it takes O(|A(N)|) to check the feasibility of the

flow balance equalities in the worst case. Besides, it takes at most O(|A(N)|2) to find

out whether a conflict exists and O(|A(N)|) to determine whether the total flow cost

is not less than D. Therefore, there is a polynomial time certificate checking algorithm

with a O(|A(N)|2) worst case time complexity and thus MCFPC ∈ NP .

ii. MCFPC is hard (MFPC is a restriction of MCFPC): It is possible to see that

the question “Is there a conflict-free flow with value larger than or equal to F?” of

the MFPC’s decision question is equivalent to the MCFPC’s, “Is there a conflict-free

flow with total cost less than or equal to D?”, after setting D = 0 and B = F . As

a consequence, MFPC is a special class of MCFPC, which makes MCFPC strongly

NP -hard since MFPC is strongly NP -hard as shown in [16].

64

We can also provide an even stronger complexity result for MCFPC using the

definition of an approximation algorithm given in [83]. According to this work, given

an optimization problem Π, an algorithm A is an approximation algorithm for Π if,

for any given feasible instance, it returns an approximate solution, that is a feasible

solution of Π.

Proposition 5.6. There cannot exist any polynomial time approximation algorithm for

the particular instances of MCFPC satisfying the supply/demand and cost conditions of

Proposition 5.5 for networks having no vertices with in-degree and out-degree exceeding

2 and no circuits.

Proof. Since even checking the existence of a conflict-free flow with value B is NP -

complete for networks with the given characteristics [16], no polynomial time approxi-

mation algorithm can exist for MCFPC.

5.3. The difficulty of the Maximum Flow Problem with Conflicts and the

Assignment Problem with Conflicts

A detailed analysis about the difficulty of MFPC is provided in [16]. The ordinary

MFP can be easily solved on a network consisting of disjoint s-t paths by summing

up the minimum flow capacities on each path. Based on this simple network, MFPC

is said to have a feasible solution if a conflict-free s-t path can be found on a given

network N . Since this is equivalent to solving the problem of path with forbidden pairs

of edges which is known to be NP -complete [20], MFPC is proved to be NP -hard,

also. Moreover, there is no polynomial time approximation algorithm due to the fact

that checking the existence of a feasible solution cannot be done in polynomial time.

Another reduction from the maximum weight stable set problem (MWSP) is done by

showing that a stable set on the conflict graph C with total weight W is equivalent to a

conflict-free flow of W units. This reduction allows to explore a polynomially solvable

instance of MFPC which is a network consisting of s-t disjoint paths of length at most

two. The corresponding conflict graph of this network contains only disjoint paths and

cycles and MWSP can be solved by dynamic programming on this class of graphs.

65

APC is proved to be strongly NP -complete in [17] by a reduction from a spe-

cial subclass of 3-satisfiability (3-SAT) problem where each clause has size three and

each literal occurs exactly twice. Satisfiability (SAT) problem is the first-known NP -

complete problem which tries to find if it is possible to return a true answer by replacing

a boolean formula with consistent true-false values [84]. Given an instance of 3-SAT

problem with k clauses and n variables, finding whether the problem is satisfiable is

equivalent to finding a conflict-free matching with weight k + 2n.

5.4. A Polynomially Solvable Special Case for the Minimum Cost

Noncrossing Flow Problem7

Let us assume that the network N = (V (N), A(N)) is not only layered but also

complete (i.e. all arcs between the vertices of layers l and l + 1 exist) and the unit

costs are nonnegative, symmetric and additive for i 6= j. Namely,

cij ≥ 0, (5.2)

cij = cji, (5.3)

cij =

j−1∑
k=i

ck(k+1). (5.4)

Notice that (5.4) is valid if i < j. Otherwise we can interchange the limits of the

summation and apply (5.3) as a consequence of symmetry.

Recall that for a pair of crossing arcs (i1, j1) and (i2, j2), i1 < i2 and j2 <

j1. Besides, there are six possible orderings of these four vertices according to the

convention we use for numbering the vertices (i.e. vertex labels denote their orders

from bottom in their layers):

i. i1 < i2 ≤ j2 < j1 iii. i1 ≤ j2 < j1 ≤ i2 v. j2 ≤ i1 < i2 ≤ j1

ii. j2 < j1 ≤ i1 < i2 iv. j2 ≤ i1 < j1 ≤ i2 vi. i1 ≤ j2 < i2 ≤ j1.

7An earlier version of this section appears in [12] as a part of its content.

66

These six cases are illustrated in Figure 5.2 with six snapshots from two consecutive

layers of a layered network. Horizontal lines represent the inequalities of the order-

ings. Strict inequalities are reflected with additional nodes below or underneath of

the tail/head of the crossing arcs. Solid arcs represent the crossings, whereas dashed

ones represent their compatible equivalents. Observe that, if the flow conservation is

satisfied and there is one unit of flow on each one of the crossing (solid) arcs before

the correction, there must be one unit of flow on the new (dashed) arcs and zero unit

of flow on the crossing arcs in order to correct the crossing and guarantee flow balance

equations at the same time. The next lemma shows such change does not increase

total flow cost.

Proposition 5.7. The unit correction cost is nonincreasing under assumptions (5.2)

– (5.4) of the unit flow costs.

Proof. We will evaluate the cost of one unit of flow on arcs (i1, j1) and (i2, j2) (i.e.

fi1j1 = fi2j2 = 1 and fi2j1 = fi1j2 = 0) with the cost of one unit of flow on arcs (i2, j1)

and (i1, j2) (i.e. fi1j1 = fi2j2 = 0 and fi2j1 = fi1j2 = 1), namely ci1j1 + ci2j2 with

ci2j1 + ci1j2 for the six possible crossings.

i. i1 < i2 ≤ j2 < j1: ci1j1 + ci2j2 = ci1i2 + ci2j2 + cj2j1 + ci2j2

= ci2j1 + ci1j2

ii. j2 < j1 ≤ i1 < i2: ci1j1 + ci2j2 = ci2i1 + ci1j1 + cj1j2 + ci1j1

= ci2j1 + ci1j2

iii. i1 ≤ j2 < j1 ≤ i2: ci1j1 + ci2j2 = ci1j2 + cj2j1 + ci2j1 + cj1j2

= ci2j1 + ci1j2 + 2cj1j2

iv. j2 ≤ i1 < j1 ≤ i2 : ci1j1 + ci2j2 = ci1j2 + cj2j1 + ci2j1 + cj1j2

= ci2j1 + ci1j2 + 2cj1j2

v. j2 ≤ i1 < i2 ≤ j1 : ci1j1 + ci2j2 = ci1i2 + ci2j1 + ci2i1 + ci1j2

= ci2j1 + ci1j2 + 2ci1i2

vi. i1 ≤ j2 < i2 ≤ j1: ci1j1 + ci2j2 = ci1j2 + cj2i2 + ci2j1 + ci2j2

= ci2j1 + ci1j2 + 2ci2j2 .

67

Layer l Layer l+1

j2

j1

i2

i1

i. i1 < i2 ≤ j2 < j1

j2

j1

i2

i1

ii. j2 < j1 ≤ i1 < i2

Layer l Layer l+1

j2

j1

i2

i1

iii. i1 ≤ j2 < j1 ≤ i2

Layer l Layer l+1

j2

j1

i2

i1

iv. j2 ≤ i1 < j1 ≤ i2

Layer l Layer l+1

j2

j1

i2

i1

v. j2 ≤ i1 < i2 ≤ j1

Layer l Layer l+1

j2

j1

i2

i1

vi. i1 ≤ j2 < i2 ≤ j1

Layer l Layer l+1

Figure 5.2. Six possible crossings

68

Then, as a consequence of Proposition 5.7, it is possible to show that correcting

the crossings in an optimal alternate solution of MCFP results in an optimal noncross-

ing flow.

Proposition 5.8. If the unit costs satisfy assumptions (5.2) – (5.4), then the MCFP

has an optimal solution with no crossing arcs with positive flows.

Proof. Consider an optimal solution f∗ of the MCFP and crossing arcs (i1, j1) and

(i2, j2), which means f ∗i1,j1 > 0 and f ∗i2,j2 > 0, and either i1 < i2 and j2 < j1 or i2 < i1

and j1 < j2. Without loss of generality we can assume that i1 < i2 and j2 < j1. It

is possible to correct the crossing by a simple operation and adjust the flows on the

corresponding arcs without harming its feasibility. If f ∗i1j1 ≥ f ∗i2j2 > 0, then add new

arcs (i2, j1) and (i1, j2) with flows f ∗i2j2 , adjust the flow on arc (i1, j2) by subtracting

f ∗i1j1 , and finally delete arc (i2, j1). However, if f ∗i2j2 > f ∗i1j1 , then operate similarly by

adding new arcs (i2, j1) and (i1, j2) with flows f ∗i1,j1 , adjust the flow on arc (i2, j1) by

subtracting fi1j1 , and finally delete arc (i1, j2).

These operations are illustrated in Figure 5.3. The crossing represented by solid

arcs is corrected by replacing them with dashed arcs. Observe that flow balance is pre-

served at vertices i1, i2, j1, j2. Consequently, only cases (i) and (ii) or cases (iv)−−(vi)

respectively with cj1j2 = 0, ci1i2 = 0 and ci2j2 = 0 can occur in an optimal solution of

the MCFP, since otherwise it is possible to create a new feasible flow with one fewer

crossing and smaller total flow cost after implementing the above operations, which

contradicts the optimality of flow f∗. Therefore, the elimination of the crossings in

an optimal solution of the MCFP results in an alternative optimal solution with no

crossings.

Notice that Proposition 5.8 has an implicit assumption as well: the two correction

operations are implementable, which may not be possible if (i1, j1) or (i2, j2) are missing

in the network, and/or there is not enough residual capacity on both of them. However,

in case the complete layered network is uncapacitated (i.e. uij = ∞, (i, j) ∈ A(N))

they can be applied to correct the crossings.

69

i2 j1
fi

2
j
2

Layer l Layer l+1

i1 j2

(f i 1
j 1

 –
 f i 2

j 2
)

 fi
1
j
1
 ≥ fi

2
j
2

(a)

f
i
2 j

2

f i 1
j 1

fi
2
j
2

i2 j1
fi

1
j
1

Layer l Layer l+1

i1 j2

(f
i

2 j
2 - f

i
1 j

1)

 fi
2
j
2
 > fi

1
j
1

(b)

f
i

2 j
2

f i 1
j 1

fi
1
j
1

Figure 5.3. Two possible corrections

Propositon 5.7 and Proposition 5.8 have also some implications when arcs have

finite capacities. This is stated with the following two corollaries.

Corollary 5.1. For positive (i.e. cij > 0, (i, j) ∈ A(N)), symmetric and additive

costs, and finite upper bounds, if an optimal solution of the MCFP has crossings of one

of the types (iv)−−(vi), then f ∗i2j1 = ui2j1 and f ∗i1j2 = ui1j2.

Proof. Assume that an optimal solution f∗ of the MCFP has a crossing consisting of

arcs (i1, j1) and (i2, j2). As a consequence of the positivity assumption of unit costs

and unit cost comparisons given in Proposition 5.7, ci1j1 + ci2j2 > ci1j2 + ci2j1 , and

as a consequence of correction operations given in Proposition 5.8, the new flow is

still feasible since this operation conserves flow balance at vertices i1, i2, j1, j2 and has

smaller total cost, which contradicts the optimality of f∗. Hence, this operation must

have been blocked, which is possible only if f ∗i2j1 = ui2j1 and f ∗i1j2 = ui1j2 .

Corollary 5.2. For positive (i.e. cij > 0, (i, j) ∈ A(N)), symmetric and additive

costs, and finite upper bounds the crossing of arcs (i1, j1) and (i2, j2) can be corrected

by one of the two operations given in Proposition 5.8 if f ∗i2j2 < min{ui1j2 , ui2j1} for

f ∗i1j1 ≥ f ∗i2j2 or if f ∗i1j1 < min{ui1j2 , ui2j1} for f ∗i2j2 > f ∗i1j1.

Proof. Directly follows from the definition of the correction operations.

70

5.5. A Polynomially Solvable Special Case: Bipartite Noncrossing

Matching Problem8

We again consider the matching problem on a bipartite graph G = (V1(G) ∪

V2(G), E(G)) with edges representing possible assignments; but there is a minor dif-

ference: 2 ≤ |V1(G)| ≤ |V2(G)| and the bipartite graph is complete, i.e. E(G) =

V1(G) × V2(G). Hence, the size of a maximum cardinality matching can be at most

|V1(G)|, which means a maximum (cardinality) matching is V1(G)-perfect. The main

differences are in the conflict and cost structures.

A conflict is particularly defined on a crossing for a particular embedding of the

vertices: given that the vertices in V1(G) and V2(G) are numbered as 1, 2, . . . , |V1(G)|

and 1, 2, . . . , |V2(G)| from bottom to top, two edges {i1, j1}, {i2, j2} are in conflict if

i1 < i2 and j2 < j1, or i2 < i1 and j1 < j2. Hence, a V1(G)-perfect matching is feasible

if there is no such pair of the edges in the matching. This is illustrated with Figure

5.4. The first matching, which is shown with bold lines, does not include any conflict

and thus it is feasible. However, the second one is infeasible since it includes at least

one conflicting edge pair such as the edges {2, 4} and {3, 2}.

1

2

3

4

5

1

2

3

(a) feasible

1

2

3

4

5

1

2

3

(b) infeasible

Figure 5.4. Matchings

8An earlier version of this section appears in [15] as a part of its content.

71

Unit costs are nonnegative, symmetric and additive for i 6= j. Namely,

cij ≥ 0 (5.5)

cij = cji (5.6)

cij =

j−1∑
k=i

ck(k+1). (5.7)

Notice that (5.7) is valid if i < j. Otherwise, we can interchange the limits of the

summation and apply (5.6) as a consequence of symmetry.

There can be more than one feasible conflict-free V1(G)-perfect matching. Then,

the problem becomes the determination of a conflict-free minimum weight V1(G)-

perfect matching. Clearly, the BIP formulation of the problem is almost the same

as (4.19) – (4.23). The only difference is that equalities (4.21) become less than or

equal to type inequalities. Now, a feasible ordinary matching is V1(G)-perfect, but not

necessarily V2(G)-perfect.

This special setting is quite realistic. Consider the situation where jobs are static

and served by mobile servers moving on a line and assume that the number of servers

is at least as the number of jobs, and machines can serve any one of the jobs. A typical

example is frequently encountered in container terminals [67, 68]. Quay cranes, which

are to be assigned to load/unload berthed vessels, are spatially restricted to move in

line on a rail along the quay and cannot cross each others as a result. However, since

they can serve any vessel and there are at least vessel many cranes, there is always

a feasible solution, namely an assignment of the cranes to vessels. We illustrate the

situation with Figure 5.5. There are three berthed vessels and five quay cranes, which

are respectively represented by rectangles and circles. They are numbered starting

from the beginning of the quay in order. Crane assignment of Figure 5.5(a) is feasible.

However, the one of Figure 5.5(b) is infeasible. Crane 2 has to pass by cranes 3, 4, and

5 to stand alongside vessel 3. Similarly, crane 5 has to pass cranes 4, 3, and 2 to reach

vessel 1.

72

1 2 3

1 5432

(a) feasible

1 2 3

1 5432

(b) infeasible

Figure 5.5. Crane assignments

The problem can be represented as a bipartite graph G = (V1(G)∪V2(G), E(G)),

where 2 ≤ |V1(G)| ≤ |V2(G)| with edges representing possible assignments. For ex-

ample {i, j} ∈ E(G) exists if vessel i can be served by crane j with a nonnegative

assignment (i.e. set-up) cost cij. When we adopt the numbering convention used in

Figure 5.4(a) and Figure 5.4(b), namely jobs and servers are labelled from left to right

starting from the beginning of the line, a feasible crane assignment becomes the deter-

mination of the subset of edges with spatial restrictions: no edge pair {i1, j1}, {i2, j2}

can be in a feasible solution if i1 < i2 and j2 < j1 or i1 > i2 and j1 < j2. Feasible and

infeasible crane assignments become respectively the feasible and infeasible matchings

of Figure 5.4(a) and Figure 5.4(b). A conflict is explicitly defined and has the described

special property, and the edges of the conflict graph have this property with the men-

tioned vertex numbering convention. Moreover, it is very common to assume that the

assignment cost is proportional with the travel distance, which makes the equivalent

redefinition of the assignment cost cij as the cost of moving from the location of crane

i to the location of vessel j, and thus the satisfaction of assumptions (5.5) – (5.7)

becomes possible, since cranes and vessels (servers and jobs) can be assumed aligned

on the same line.

Recall that for a pair of conflicting edges {i1, j1} and {i2, j2}, i1 < i2 and j2 <

j1. Besides, there are six possible orderings of these four vertices according to the

convention we use for numbering (i.e. particular embedding of the vertices):

i. i1 < i2 ≤ j2 < j1 iii. i1 ≤ j2 < j1 ≤ i2 v. j2 ≤ i1 < i2 ≤ j1

ii. j2 < j1 ≤ i1 < i2 iv. j2 ≤ i1 < j1 ≤ i2 vi. i1 ≤ j2 < i2 ≤ j1.

Any one of these cases eventually represents a conflict having the form illus-

trated in Figure 5.6(a). Solid edges are conflicting, whereas dashed ones represent

73

their conflict-free equivalents. Observe that, constraints (4.20) and constraints (4.21)

are still satisfied after correcting the conflict, i.e. after replacing conflicting (solid)

edges with the new (dashed) edges. Proposition 5.9 shows that such change does not

increase total cost. One can also run into these six cases for the given particular con-

flict definition and cost assumption in the scheduling of moving resources under similar

spatial constraints, such as the crane scheduling problem in container terminals [11].

Hence, it is possible to benefit from their arguments in proving that this particular

case can be solved in polynomial time.

Proposition 5.9. The correction cost is nonincreasing under the assumptions (5.5) –

(5.7).

Proof. It is a direct conclusion of Proposition 5.7 because the assigned arcs can be

interpreted as the arcs carrying unit flow in a four layered network. Actually, the

bipartite noncrossing matching problem can be treated as a special version of MCNFP

where the number of layers is only four and all flow upper bounds are equal to 1.

Then, as a consequence of Proposition 5.9, it is possible to show that correcting

the conflicts in an optimal solution of the ordinary bipartite matching relaxation re-

sults in an optimal conflict-free V1(G)-perfect matching, i.e. it is possible to solve the

problem in polynomial time.

i2 j1
xi

2
j
2
= 0

i1 j2

x
i
2 j

2 = 1

x i 1
j 1

= 1

xi
2

j
2
= 0

(a) Before correction

i2 j1
xi

2
j
2

= 1

i1 j2

x
i
2 j

2 = 0

x i 1
j 1

= 0

xi
2

j
2
= 1

(b) After correction

Figure 5.6. A conflict

Proposition 5.10. If the costs satisfy assumptions (5.5) – (5.7), then the V1(G)-perfect

matching problem has an optimal conflict-free solution.

74

Proof. Consider an optimal solution x∗ of the ordinary bipartite matching relaxation

and conflicting edges {i1, j1} and {i2, j2}, which means x∗i1,j1 = 1 and x∗i2,j2 = 1, and

either i1 < i2 and j2 < j1 or i2 < i1 and j1 < j2. Without loss of generality we

can assume that i1 < i2 and j2 < j1. It is possible to correct a conflict by a simple

operation. Replace the edges {i1, j1} and {i2, j2} of the matching with the new edges

{i2, j1} and {i1, j2} (i.e. set x∗i1j1 = x∗i2j2 = 0 and x∗i2j1 = x∗i1j2 = 1).

This operation is illustrated with Figure 5.6. The conflict represented by solid

edges in Figure 5.6(a) is corrected by replacing them with the dashed ones to obtain the

conflict-free matching of Figure 5.6(b). Observe that the feasibility of the matching is

preserved at vertices i1, i2, j1, j2. Consequently, only cases (i) and (ii) or cases (iii) – (vi)

when with cj1j2 = 0, ci1j1 = 0, ci1i2 = 0 and ci2j2 = 0 can occur in an optimal solution of

the relaxation, since otherwise it is possible to create a new V1(G)-perfect matching with

one fewer conflict and smaller total cost after implementing the correction operation of

Figure 5.6, which contradicts the optimality of matching x∗. Therefore, the elimination

of the conflicts in an optimal solution of the ordinary bipartite matching problem

results in an alternative optimal conflict-free matching. Besides, this can be done in

polynomial time in the number of edges.

Notice that Proposition 5.10 has an implicit assumption as well: two correction

operations can be implemented, which may not be possible if {i1, j1} or {i2, j2} are

missing in the graph. However, this is not possible in our case since we assume that

the bipartite graph G is complete.

75

6. PRE-OPTIMIZATION PROCEDURES

In this chapter several pre-optimization procedures which can be applied prior

to any exact solution method, are described. Particularly, decreasing the size of the

problem in advance is of high importance to enhance the performance of the subsequent

exact solution algorithm. For this purpose, efficient and cheap preprocessing strategies

are developed for MCNFP and MCFPC, and a probing scheme is provided for MCFPC

and APC. They delete the nonpromising arcs which cause infeasibility with respect to

the conflict constraints in case they are selected in a feasible solution. Due to the

special structure of MFPC which ensures that the problem produces always a feasible

solution which is equal to zero flow, the developed preprocessing and probing techniques

are not applicable for this problem. Also, heuristics are developed to find an initial

feasible solution of MCFPC and APC in order to obtain a “good enough” bound for

the optimal objective value of the considered problems.

6.1. Reducing the Number of Crossings on Layered Networks9

Now, consider the MCNFP formulation. An optimal solution of the MCFP relax-

ation defined by (4.2) – (4.5), which is obtained after dropping compatibility constraints

(4.6) and (4.7), and replacing uijxij with uij in (4.8), can have crossings. The efficiency

of any exact solution algorithm can be improved if some of the potential crossings can

be detected and deleted in advance. The following proposition and its corollary provide

a tool in this direction.

Proposition 6.1. An arc (p, q) ∈ Al(l+1)(N) is crossed by an arc

i. (r, s) ∈ Al(l+1)(N) with r > p and s < q in an optimal solution f∗ of the MCFP if

−
∑

{j∈Vl(N):j≤p}

∑
{(j,i)∈Al(l+1)(N):i<q}

f ∗ji <
∑

{i∈V −l+1(N):i<q}

bi

9An earlier version of this section appears in [12] as a part of its content.

76

ii. (r, s) ∈ Al(l+1)(N) with r < p and s > q in an optimal solution f∗ of the MCFP if

−
∑

{j∈Vl(N):j≥p}

∑
{(j,i)∈Al(l+1)(N):i>q}

f ∗ji <
∑

{i∈V −l+1(N):i>q}

bi

Proof. We only show part (i), since the proof of part (ii) is similar. Consider the flow

balance equation of the vertices of layer l + 1 with demand bi (i.e. the set V −l+1(N))

and add them side by side for vertices i < q to obtain

∑
{i∈V −l+1(N):i<q}

bi =
∑

{i∈V −l+1(N):i<q}

∑
(i,j)∈Al+1l+2(N)

f ∗ij −
∑

i∈V −l+1(N):i<q

∑
(j,i)∈Al(l+1)(N)

f ∗ji.

The second summation on the right hand side can be split into two for arcs (j, i) ∈

Al(l+1)(N) respectively for j > p and j ≤ p which results in

∑
{i∈V −l+1(N):i<q}

bi =
∑

{i∈V −l+1(N):i<q}

∑
(i,j)∈Al+1l+2(N)

f ∗ij −
∑

{i∈V −l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j≤p}

f ∗ji

−
∑

{i∈V −l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j>p}

f ∗ji.

Notice that the first two terms on the right hand side represent the difference between

the total outflow from the demand vertices of layer l+ 1 which are below vertex q, and

the total inflow to the same vertices from the vertices of layer l which are below vertex

77

p including p as well. Then,

∑
{i∈V −l+1(N):i<q}

bi ≥ −
∑

{i∈V −l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j≤p}

f ∗ji

−
∑

{i∈V −l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j>p}

f ∗ji

≥ −
∑

{j∈Vl(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j≤p}

f ∗ji

−
∑

{i∈V −l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j>p}

f ∗ji

follows since f ∗ij ≥ 0 for all (i, j) ∈ Al+1l+2(N), and

∑
{j∈Vl(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j≤p}

f ∗ji ≥
∑

{i∈V −l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j≤p}

f ∗ji.

Therefore, if the condition of the assertion is true, then

0 >
∑

{i∈V −l+1(N):i<q}

bi +
∑

{j∈Vl(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j≤p}

f ∗ji

≥ −
∑

{i∈V −l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j>p}

f ∗ji

and

0 <
∑

{i∈V −l+1(N):i<q}

∑
{(j,i)∈Al(l+1)(N):j>p}

f ∗ji

follows consequently. Hence, there must exist an arc (r, s) ∈ {(j, i) ∈ Al(l+1)(N) : j >

p, i < q} with frs > 0.

Corollary 6.1. An arc (p, q) ∈ Al(l+1)(N) with positive flow cannot exist in an optimal

solution of MCNFP if one of the following conditions holds.

78

i.

−
∑

{j∈Vl(N):j≤p}

∑
{(j,i)∈Al(l+1)(N):i<q,i∈V −l+1(N)}

min{uji,−bi} <
∑

{i∈V −l+1(N):i<q}

bi

ii.

−
∑

{j∈Vl(N):j≥p}

∑
{(j,i)∈Al(l+1)(N):i>q,i∈V −l+1(N)}

min{uji,−bi} <
∑

{i∈V −l+1(N):i>q}

bi

Proof. Directly follows from Proposition 6.1 as a consequence of the fact that 0 ≤ f ∗ji ≤

min{uji,−bi} for (j, i) ∈ Al(l+1)(N), i ∈ V −l+1(N).

First of all, notice that this rule is related to the satisfaction of the total demand

of a subset of vertices in Vl+1(N). Besides, although it provides a sufficient condition for

an arc to be crossed, all possible crossings cannot be prevented in an optimal solution

of the MCFP relaxation by the condition described in Corollary 6.1. Nevertheless, it

can reduce the number of crossings by deleting arcs in the network. An arc (p, q) ∈

Al(l+1)(N) is crossed by another arc (i, j) ∈ Al(l+1)(N) with p < i ≤ nl and 1 ≤ j <

q ≤ nl+1 if the total demand associated with vertices 1 ≤ j < q cannot be satisfied by

the total inflow to them from vertices 1 ≤ i ≤ p as stated in case (i) of Corollary 6.1.

Case (ii) deals with the situation that (p, q) is crossed by an arc (i, j) with 1 ≤ i < p

and 1 ≤ j < q ≤ nl+1.

It is also possible to state supply versions of Proposition 6.1 and Corollary 6.1.

We give their statement in the following without proof for the sake of completeness,

since their proofs are very similar and can be done by rewording the arguments for the

supplies instead of the demands.

Proposition 6.2. An arc (p, q) ∈ Al(l+1)(N) is crossed by an arc

79

i. (r, s) ∈ Al(l+1)(N) with r > p and s < q in an optimal solution f∗ of the MCFP if

∑
{i∈Vl+1(N):i≥q}

∑
{(j,i)∈Al(l+1)(N):j>p}

f ∗ji <
∑

{j∈V +
l (N):j>p}

bj

ii. (r, s) ∈ Al(l+1)(N) with r < p and s > q in an optimal solution f∗ of the MCFP if

∑
{i∈Vl+1(N):i≤q}

∑
{(j,i)∈Al(l+1)(N):k<p}

f ∗ji <
∑

{j∈V +
l (N):j<p}

bj

Corollary 6.2. An arc (p, q) ∈ Al(l+1)(N) with positive flow cannot exist in an optimal

solution of MCNFP if one of the following conditions holds.

i.

∑
{i∈Vl+1(N):i≥q}

∑
{(j,i)∈Al(l+1)(N):j>p,j∈V +

l (N)}

min{uji, bj} <
∑

{j∈V +
l (N):j>p}

bj

ii.

∑
{i∈Vl+1(N):i≤q}

∑
{(j,i)∈Al(l+1)(N):j<p,j∈V +

l (N)}

min{uji, bj} <
∑

{j∈V +
l (N):j<p}

bj

This time, this rule is related to the satisfaction of the total supply of a subset of

vertices in Vl(N). An arc (p, q) ∈ Al(l+1)(N) is crossed by another arc (i, j) ∈ Al(l+1)(N)

with 1 ≤ p < i ≤ nl and 1 ≤ j < q ≤ nl+1 if the total outflow from vertices

1 ≤ p < i ≤ nl to vertices 1 ≤ q ≤ j ≤ nl+1 as stated as case (i) in Corollary 6.2. Case

(ii) deals with the situation that (p, q) is crossed by an arc (i, j) with 1 ≤ i < p ≤ nl

and 1 ≤ q < j ≤ nl+1.

As a result, the efficiency of an exact solution algorithm may increase because

the network size can be reduced considerably using these rules. The preprocessing that

Corollary 6.1 suggests can be stated formally as Algorithm 6.1 given in Figure 6.1. The

process Corollary 6.2 suggests is very similar and the corresponding algorithm is not

included.

80

Algorithm 6.1: Preprocessing for MCNFP

Input: A layered network N = (V (N), A(N)), arc capacities u and unit flow costs

c;

Output: A preprocessed network;

begin

for l = 2, 3, . . . , L− 2 do

for all arc (p, q) ∈ Al(l+1)(N) such that p ≤ nl − 1, q ≥ 2 do

D = 0, C = 0;

for j = 1, 2, . . . , q − 1 do

if bj < 0, then D ← D + bj;

for all arc (i, j) ∈ Al(l+1)(N) do

if i ≤ p, then C ← C + min{uij,−bj}

end for

end for

end for

if C < −D, then Delete (p, q);

else D = 0, then C = 0;

for j = q + 1, q + 2, . . . , nl+1 do

if bj < 0, then D ← D + bj;

for all arc (i, j) ∈ Al(l+1)(N) do

if i ≥ p, then C ← C + min{uij,−bj};

end for

end for

if C < −D, then Delete (p, q);

end for

end

Figure 6.1. Preprocessing for MCNFP.

81

6.2. Preprocessing on General Networks10

The aim is to detect the arcs which are impossible to carry positive flow in any

feasible solution of MCFPC and delete them from the network permanently at the

beginning. Deleting arcs through preprocessing is previously utilized in Section 6.1 by

exploiting the layered structure of the network. Here, a generalized scheme which is

applicable for any type of network is presented.

To determine whether an arc (i, j) ∈ A(N) can be deleted or not, we begin by

assuming a positive flow along arc (i, j). Then, the arcs in the conflict list of (i, j)

are forced to carry zero flow to obey the conflict restrictions. We need to check two

conditions for each arc (p, q) ∈ δC(i, j):

i. If vertex p is a supply vertex, then the total capacities of the outgoing arcs besides

the elements of δC(i, j) must be larger than or equal to the supply of p, i.e.

bp ≤
∑

(p,v)∈A(N)\δC(i,j)

upv.

ii. If vertex q is a demand vertex, then the total capacities of the incoming arcs

besides the elements of δC(i, j) must be larger than or equal to the demand of q,

i.e.

−bq ≤
∑

(w,q)∈A(N)\δC(i,j)

uwq.

If any one of these two conditions are violated, then we have to send additional

amount of flow that conflicts with the current flow on arc (i, j) to satisfy flow balance.

So, we conclude that arc (i, j) cannot carry positive flow on a MCFPC solution and

this arc is deleted permanently. This procedure is repeated for all arcs in the network

and each arc is either deleted or left as it is. Preprocessing steps are formally listed as

Algorithm 6.2 given in Figure 6.2.

10An earlier version of this section appears in [13,15] as a part of their contents.

82

Algorithm 6.2: Preprocessing for MCFPC

Input:Network N = (V (N), A(N));

Output: The reduced arc set A(N);

begin

OUTER LOOP:

for all arc (i, j) ∈ A(N) do

INNER LOOP:

for all arc (p, q) ∈ δC(i, j) do

sum = 0;

if bp > 0 then

for all arc (p, v) ∈ A(N) do

if (p, v) /∈ δC(i, j), then sum ← sum+ upv;

end for

if bp > sum, then delete arc (i, j) and break;

end if

if bq < 0 then

for all arc (w, q) ∈ A(N) do

if (u, q) /∈ δC(i, j), then sum ← sum+ uwq;

end for

if −bq > sum, then delete arc (i, j) and break;

end if

end for

END OF INNER LOOP

end for

END OF OUTER LOOP

end

Figure 6.2. Preprocessing for MCFPC.

83

6.3. Probing

We begin with the probing scheme developed for MCFPC. First, the flow value

of an arc (i, j) is forced to a nonzero value and all conflicting arcs are cleared up

by setting their flow capacities to zero. If the relaxed problem ignoring the conflict

restrictions is infeasible under these conditions, then (i, j) cannot carry positive flow in

a feasible solution and we delete this arc permanently. This procedure is repeated for

all arcs in the network. Probing requires to solve |A(N)| MCFP relaxations. It makes

possible deleting more arcs at the expense of more computation time when compared

to preprocessing. Clearly, integer flow is assumed here, which is guaranteed for integer

capacities. A step-by-step description of probing scheme is given as Algorithm 6.3 in

Figure 6.3.

We can implement the same probing procedure for APC after necessary adjust-

ments. Briefly, an edge is selected and forced to be in a conflict-free assignment by

deleting all its conflicting edges from the graph. Then, if the relaxed problem turns out

to be infeasible then the selected edge cannot appear in any feasible assignment and

thus we can delete it permanently from the graph. This procedure is repeated once for

every edge at the beginning of any algorithm.

6.4. Finding Initial Solutions

Diving heuristics and local search base heuristics are proposed to find an ini-

tial solution for MCFPC and APC, respectively. These solutions provide finite upper

bounds to the optimal objective value of these problems and obtaining a good ini-

tial upper bound given by the objective value of a feasible solution is essential to the

performance of the subsequent exact solution method.

6.4.1. Diving Heuristics

We can use a simple diving heuristic to attain a feasible solution of MCFPC as

fast as possible. First, the MCFP relaxation allowing conflicts is solved and one of the

84

Algorithm 6.3: Probing for MCFPC

Input:Network N = (V (N), A(N));

Output: The reduced arc set A(N);

begin

for all arc (i, j) ∈ A(N) do

create a copy of flow capacities, uoriginalij = uij for all (i, j) ∈ A(N);

set lij = 1;

set upq = 0 for all (p, q) ∈ δC(i, j);

solve MCFP relaxation;

if MCFP is infeasible then

delete arc (i, j);

else

set lij = 0;

end if

set upq = uoriginalpq for all (p, q) ∈ δC(i, j);

end for

end

Figure 6.3. Probing for MCFPC.

85

conflicting flows is set to zero and the MCFP relaxation is solved again. All conflicting

flows are cleared in this manner. If there is no conflicting pair, a feasible solution is

found. If the problem turns out to be infeasible or the relaxation produces a higher

lower bound than that of the incumbent solution, the last arc whose flow is forced to

be zero, is forced to have positive flow. Then we delete the arcs conflicting with it.

Essentially, we are doing a depth-first search on a BB tree to find a feasible

solution fast. Notice that it provides the optimal solution if all nodes of the tree are

processed. We need three variables to backtrack in the tree: k denotes the depth of

the tree, ak keeps the arc that is used to branch at depth k and binary flag dk which is

set to 0 if ak have 0 flow and to 1 if the arcs in its conflict list are forced to have zero

flow. Algorithm 6.4 gives a detailed description of these steps in Figure 6.4.

The success of the heuristic relies on how arc ak is selected. The flow with the

highest unit cost or the one that conflicts with the highest number of arcs perform better

than arbitrary selection. We hope to find a small lower bound by deleting the arc with

the highest unit cost, and a conflict-free solution in the smallest possible number of steps

by deleting the most infeasible arc with the highest number of conflicts with respect

to the relaxed MCFP solution. The first rule favors the quality of the bound while the

second one intends to find any feasible solution with a smaller number of branching

operations. However, we cannot claim that the second rule always performs faster than

the first rule because counting the number of conflicts for each flow requires additional

time. This heuristic can be stopped when the first or rth conflict-free solution is found,

where r is a parameter. Alternatively, it can return the best conflict-free feasible flow,

if found, within a time limit. In our experiments, we apply both arc selection rules

separately and stop the heuristic when the first conflict-free flow is obtained. The

smallest of the returned bounds is selected as the initial upper bound.

6.4.2. Local Search Based Heuristic

An initial feasible solution of APC is found through a straightforward perturba-

tion based local search procedure. First of all, an initial perfect matching is constructed

86

Algorithm 6.4: Diving heuristic

Input: Network N = (V (N), A(N));

Output: An upper bound, z̄, for MCFPC;

begin

1. Initialize: Create a copy of flow capacities, uoriginalij = uij for all (i, j) ∈ A(N),

k = 0, z̄ =∞;

2. Solve MCFP relaxation;

if infeasible, then go to step 4;

else Let f and z be respectively an optimal solution and its value;

if z ≥ z, then go to step 4;

else go to step 3;

3. Branch:

if f is conflict-free, then go to step 5;

else find an arc (i, j) whose flow violates conflict constraints (i.e. fij, fpq > 0

for some (p, q) ∈ δC(i, j));

Set k ← k + 1, ak = (i, j), uij = 0, dk = 0, and go to step 2;

4. Prune:

if k = 0, then go to step 6;

else if dk = 0, then uak = uoriginalak
, lak = 1, upq = 0 for all (p, q) ∈ δC(ak)

where dk = 1, and go to step 2;

else lak = 0, upq = uoriginalpq for all (p, q) ∈ δC(ak) \
⋃
i∈J δC(ai) where

J = {i : i ∈ {1, 2, . . . , k − 1} and d(i) = 1};

Set k ← k − 1, go to step 2;

5. Update upper bound: z̄ = z, go to step 4;

6. Return z.

end

Figure 6.4. Diving heuristic for computing an initial upper bound on MCFPC.

87

with the Hungarian algorithm. Then a local search is performed by exchanging con-

flicting edges with their compatible neighbors. When it is not possible to obtain any

improvement, the current solution is randomly permuted and again the local search

procedure is run. This process is repeated for a number of times and the best feasible

solution (i.e. the feasible solution with the smallest upper bound) is accepted as the

initial solution and its objective is used as the initial upper bound.

88

7. BENDERS DECOMPOSITION ALGORITHM

In this chapter11 , a mature Benders decomposition (BD) algorithm for solving

MFPC is described. BD is a well-known approach based on the separation of a compli-

cated formulation into a master problem and a subproblem [85]. The algorithm consists

of generating constraints for the master problem as needed by using the output of the

subproblem which in turn uses the solution of the master problem as its input. The

iterations continue until all the necessary cuts are added to reach the optimum of the

original formulation. It has been applied to a wide variety of optimization problems

related to planning, scheduling, routing, etc. especially in the last two decades. A

recent survey summarizes both theoretical and practical approaches utilized to acceler-

ate BD [86]. Briefly, the authors discuss the impact of the choice of the mathematical

model, the decomposition strategy, the solution procedure to solve the master problem

and the subproblem, and the quality of the generated cuts. An earlier study, [87],

compiles the BD applications in detail for fixed-charge network design problems.

In MFPC formulations, x variables can be considered as the variables which

complicate the problem because once they are fixed, the formulation becomes an LP

problem and it can be solved by any LP solver. As a matter of fact, it is the well-known

MFP, and there exist polynomial-time algorithms to solve it [6]. Due to this special

structure, we can decompose MFPCS, the strong MFPC formulation, into a master

problem (MPS) which contains only x variables and a subproblem (SP) including f

and v variables. The master problem for MFPCS can be written as

MPS: max 0 + v∗ (7.1)

s.t. xij + xkl ≤ 1 (k, l) ∈ δC(i, j); (i, j) ∈ A(N) (7.2)

xij = 0, 1 (i, j) ∈ A(N). (7.3)

11An earlier version of this chapter appears in [14] as a part of its content.

89

The first term of (7.1), which is zero, is the term depending on x in the original

objective function (4.14) and the second term v∗ is the optimal objective value of the

following SP that utilizes x̄ values which are the output of MPS:

SP(x̄): max v (7.4)

s.t.
∑

(i,j)∈A(N)

fij −
∑

(j,i)∈A(N)

fji =

v i = s

0 i ∈ V (N)\{s, t}

−v i = t

(7.5)

fij ≤ uijx̄ij (i, j) ∈ A(N) (7.6)

fij ≥ 0 (i, j) ∈ A(N). (7.7)

Notice that SP(x̄) has always a finite optimum if all arc capacities are finite. Also,

it is always feasible because f = 0 is the trivial solution for the problem. Hence, the

dual problem of SP(x̄) is always feasible and has a finite optimum. If we assign dual

variables π to constraint set (7.5), and µ to constraint set (7.6), the dual formulation

becomes

DSP(x̄): min
∑

(i,j)∈A(N)

µijuijx̄ij (7.8)

s.t. πi − πj + µij ≥ 0 (i, j) ∈ A(N) (7.9)

πt − πs = 1 (7.10)

πi unr , µij ≥ 0 i ∈ V (N), (i, j) ∈ A(N). (7.11)

By weak duality, the objective value of an optimal solution of DSP(x̄) gives an

upper bound on the optimal objective value of SP(x̄) implying that

v∗ ≤
∑

(i,j)∈A(N)

µ∗ijuijxij. (7.12)

90

At this point, we should remind that DSP(x̄) is the minimum cut formulation

and the minimum cut formulation always yields an integer optimal solution under in-

tegrality assumption of the capacities uij although it is formulated as an LP problem.

In fact, the arcs in the minimum cut, i.e. the arcs oriented from the connected compo-

nent containing s to the one with t have µ∗ij values equal to one and the remaining ones

have zero values. In other words, the optimal dual multipliers with value one form the

minimum cut MC, i.e. µ∗ij = 1 for (i, j) ∈ MC where µ∗ is an optimal solution. As a

result, inequality (7.12) can be rewritten as

v∗ ≤
∑

(i,j)∈MC

uijxij. (7.13)

Given the optimal dual multipliers µ∗ij, (i, j) ∈ A(N), inequality (7.12) represents

a Benders optimality cut, which is added to the MPS’s constraints in the next iteration.

Observe that we do not generate any Benders feasibility cut because the dual problem

is always feasible and finite, as stated before. According to the classical iterative

approach, MPS is resolved after the addition of every Benders cut. Since we know

that MPS and SP(x̄) produce upper and lower bounds, respectively, the algorithm is

terminated when the optimal objective values produced by the two problems are equal.

Although a general BD framework is described to solve MFPCS, we observed that

it can be improved from the algorithmic and implementation aspects within the context

of our problem. In the following sections, we present the procedures designed to obtain

stronger Benders cuts and to find efficient connectivity cuts. Moreover, we explain

how to produce valid inequalities and an initial upper bound for the master problem.

Finally, the impact of the choice of the mathematical model and the implementation

of BD as a single branch-and-cut tree are discussed.

91

7.1. Strong Connectivity Cuts

Previously, we have mentioned that DSP(x̄) is always feasible, and thus produces

only Benders optimality cuts. This is not surprising as MFPCS itself always produces

a feasible flow (i.e. zero flow is a trivial feasible solution). However, when the selected

arcs (with x̄ij = 1) do not provide a directed path from s to t, it means that there is

a cut which is also a minimum cut separating the source and the sink, and producing

zero flow. In this situation, we need to make sure that at least one of the arcs in this

minimum cut MC is selected in the optimal solution by adding the connectivity cut

∑
(i,j)∈MC

xij ≥ 1. (7.14)

The idea behind the cuts of type (7.14) is the fact that zero flow is very unlikely

to be the maximum. So, we can accelerate the algorithm by avoiding zero flows as

much as possible with the help of connectivity cuts. We should note that they are

previously utilized [88] to ensure feasibility. Besides, they can be considered as the

stronger forms of combinatorial Benders cuts

∑
(i,j):x̄ij=0

xij +
∑

(i,j):x̄ij=1

(1− xij) ≥ 1. (7.15)

which are proposed in [89].

Since we are not obliged but free to assign positive fij value if x̄ij = 1, it is to

our advantage to increase the number of selected arcs. That is exactly why the second

term of the left-hand side of the combinatorial cut (7.15) is not needed for our problem.

Also, the variables on the left-hand side of (7.14) form a subset of the variables in the

first term of the left hand side of (7.15) implying that constraint (7.14) is stronger than

constraint (7.15).

92

Furthermore, when the s-t connection cannot be constructed for given x̄ij, (i, j) ∈

A(N), there may exist multiple cuts that disconnect the source and the sink. Among

them, the one containing the smallest number of arcs provides the strongest connec-

tivity cut. In order to find this cut, we make use of the following proposition which is

valid for the ordinary minimum cut problem on a connected network.

Proposition 7.1. Let us define new arc capacities u′ij = muij + 1, where m = |A(N)|.

The minimum cut with respect to the capacities u′ij is the minimum cut with respect to

the capacities uij containing the minimum number of arcs.

Proof. First, we will show that the minimum cut with u′ij is also a minimum cut with

capacities uij. Now, consider the objective function to be minimized with the modified

capacities, which is
∑

(i,j)∈A(N) µiju
′
ij. When u′ij values are replaced with muij + 1, it

becomes

m
∑

(i,j)∈A(N)

µijuij +
∑

(i,j)∈A(N)

µij. (7.16)

As the minimum cut has to contain at least one arc, and uij ≥ 1 (i, j) ∈ A(N), it follows

that
∑

(i,j)∈A(N) µijuij ≥ 1. Thus, the minimum value that the first term of (7.16) can

take is m. Moreover, the maximum number of arcs in a cut cannot exceed the total

number of arcs. Then, the second term of (7.16) can be at most m. Therefore, the

optimum is determined by the first term which is a multiple of the objective function

with respect to the original capacities. So, we conclude that the resulting minimum

cut is optimal with respect to both uij and u′ij. If there exist multiple minimum cuts

providing the same value for the first term, the second term of (7.16) breaks the tie,

and favors the one containing the minimum number of arcs.

The difference of DSP(x̄) from the classical minimum cut formulation stems from

the existence of x̄ij parameters. Then, it is possible to reach a similar conclusion for

DSP(x̄).

93

Proposition 7.2. The minimum cut, i.e. an optimal solution of DSP(x̄), with respect

to the newly defined arc capacities u′ijx̄ij where u′ijx̄ij = muijx̄ij + 1 is the minimum

cut with respect to the capacities uijx̄ij containing the minimum number of arcs.

Proof. Directly follows from the proof of Proposition 7.1.

When the subproblem produces zero flow, a strong connectivity cut is produced

in addition to the Benders cut. Although two optimization problems must be solved

in this case, two cuts are added in one step, which can increase the efficiency of the

method.

7.2. Strong Benders Cuts

As a result of the maximum flow-minimum cut duality, DSP obtained for fixed

x̄ is the minimum cut problem, which is a member of highly degenerate network

optimization problems. When DSP(x̄) provides multiple optima, alternative Ben-

ders optimality cuts exist, as expected. In this case, employing a strategy that se-

lects the strongest Benders cut among them improves the performance of the al-

gorithm [88]. A formal definition of the strength of a cut in a given optimization

problem miny∈Y, z∈R{z : z ≥ f(u) + yg(u) u ∈ U} is provided in [90]: the cut

z ≥ f(u1) + yg(u1) is stronger than (or dominates) the cut z ≥ f(u2) + yg(u2) if

z ≥ f(u1) + yg(u1) ≥ f(u2) + yg(u2) y ∈ Y , satisfying the inequality strictly for at

least one y ∈ Y . The cut that dominates all the other cuts is called Pareto-optimal.

Since finding the Pareto-optimal cut involves solving an optimization problem and find-

ing a point in the relative interior of Y [88], there is a trade-off between the strength

of the generated cut and the time spent to find it. In other words, it is worthwhile as

long as the overall saved time exceeds the devoted time in order to produce strong cuts.

For example, [90] and [88] develop procedures to find pareto-optimal cuts efficiently by

exploiting the special structures of the dual subproblems. On the other hand, the dual

problems are solved using a two-phase approach to strengthen the obtained Benders

cuts [91, 92].

94

For our problem, we adopt the line of reasoning proposed in [92] in order to

strengthen Benders cuts. When we consider the objective function (7.8) of DSP(x̄)

, it can be observed that arcs (i, j) ∈ A(N) with x̄ij = 0 have no contribution to

the objective value regardless of the values of µij. Our aim is to find the alternative

optimum that assigns as many zero values as possible to these µij variables in order to

obtain a strengthened cut of type (7.12). Due to the fact that the right-hand side of

inequality (7.12) provides an upper bound on the maximum flow v∗, this strategy allows

us to insert better bounds to the MPS formulation. For this purpose, upon determining

the optimal objective value of DSP(x̄) (or equivalently SP(x̄)) denoted by z(x̄), the

following optimization problem called the modified dual subproblem (mDSP(x̄)), is

solved.

mDSP(x̄): min
∑

(i,j)∈A(N)

µijuij (7.17)

s.t.
∑

(i,j)∈A(N)

µijuijx̄ij = z(x̄) (7.18)

constraints (7.9), (7.10), and (7.11).

Although we expect to produce a strengthened Benders optimality cut, it requires

to solve two optimization problems, namely DSP(x̄) and mDSP(x̄). According to the

objective function (7.17), the strong Benders cut is equivalent to the minimum cut

with respect to given uijx̄ij values where its total flow capacity with respect to uij is

the smallest among the multiple minimum cuts. Instead of solving two optimization

problem, the strong Benders cut can be generated by changing the parameters as

described in the next proposition.

Proposition 7.3. Let us replace x̄ij with x̄′ij = Ux̄ij + 1 where U =
∑

(i,j)∈A(N) uij.

Then the optimal solution of DSP(x̄′) is equivalent to the optimal solution of mDSP(x̄).

95

Proof. Consider the objective function to be minimized with the modified parameters,

which is
∑

(i,j)∈A(N) µijuijx̄
′
ij. When x̄′ij values are replaced with Ux̄ij + 1, it becomes

U
∑

(i,j)∈A(N)

µijuijx̄ij +
∑

(i,j)∈A(N)

µijuij. (7.19)

For any cut, the first term of (7.19) is a multiple of U , which is the largest

value that the second term of (7.19) can ever take. Hence, the first term determines

the minimum cut ensuring that the optimal solution of DSP(x̄′) is also optimal for

DSP(x̄). In other words, an optimal solution of DSP(x̄′) satisfies constraint (7.18). If

there exist multiple feasible solutions providing the same value for the first term, the

second term of (7.19), which is equal to objective function (7.17) of mDSP(x̄), favors

the alternative optimal solution having the minimum total cut capacity with respect

to original flow capacities uij.

Upon solving DSP(x̄′), the attained optimal dual values µ∗ij, (i, j) ∈ A(N) are

used to generate Benders optimality cuts of type (7.12). According to the experimental

results presented in Section 6, the overall efficiency of the algorithm is improved by

means of the strengthened cuts.

7.3. Valid Inequalities and Initial Upper Bound

In branch-and-cut, a finite upper bound increases the probability of pruning the

nodes of the branch-and-bound tree and the overall efficiency could be significantly

improved. To that end, we use the optimal objective value of MFP relaxation obtained

by omitting the conflict constraints and x, as the initial upper bound for v∗.

Besides, the initial form of MPS neither forces x values to be positive nor includes

a constraint that connects v∗ to the rest of the formulation. Under these conditions,

it is certain that an s-t disconnected subnetwork is produced. In order to increase

the number of selected arcs, we can add valid inequalities. For example, there exists

96

a minimum cut corresponding to the solution of the MFP relaxation. We derive one

valid inequality of type (7.13) and one of type (7.14) from this cut, and add them to

the initial master problem.

Moreover, it is possible to anticipate some of the cuts that will be added in the

future and add them to the formulation at the beginning. We apply a breadth first

search that begins from the source s, continues by labeling the vertices V (N), and

finally stops when the sink t is labeled. Note that the vertex label represents the

length (in the number of arcs) of the shortest (directed) path from s to that vertex,

and the ones with the same label form a layer. If we end up with l layers, then we

have l − 1 arc sets that separate these layers. Thus, we add two valid inequalities for

each arc set, one in the form of Benders optimality cut and the other in the form of

connectivity cut, as described before.

Notice that the addition of valid inequalities does not ensure producing s-t con-

nected subnetworks but it carries us a few steps ahead with much less effort. These

inequalities will probably be added to MPS in the forthcoming iterations so this ap-

proach is quite useful to shorten the solution time.

7.4. Benders Decomposition for the Other Formulations

In Section 4, MFPC is modeled using weak, strong, and clique formulations. The

weak one is obtained by aggregating the constraints of the strong formulation for each

arc, and the clique formulation is built using the maximal cliques of the conflict graph.

Since the difference of the models originates from the form of conflict constraints, i.e.

the constraints involving x variables, the same BD approach can be applied to MFPCW

after changing the master problem with

MPW : max 0 + v∗

s.t.
∑

(k,l)∈δC ij

xkl + |δC(i, j)|xij ≤ |δC(i, j)| (i, j) ∈ A(N)

xij = 0, 1 (i, j) ∈ A(N).

97

Similarly, we can implement BD for the clique formulation MFPCK using the

following master problem:

MPK : max 0 + v∗

s.t.
∑

(i,j)∈K

xij ≤ 1 K ∈ K

xij = 0, 1 (i, j) ∈ A(N).

Even though the models represent the same problem, they differ in terms of BD

performance. [90] report that the representation with a tighter LP relaxation performs

better. Our computational experiments support the idea that the strong formulations

generate stronger Benders cuts in naive BD. On the other hand, we observe that

MPW can be solved faster than MPS and MPK . Therefore, the entire practical BD

performance on the weak formulation is much better from the computational point of

view. Hence, MFPCW is employed in benchmarking instead of MFPCS and MFPCK .

7.5. Implementation

In the ordinary BD, the master problem is solved optimally whenever a Benders

cut is added. Undoubtedly, re-optimizing a mixed-integer programming problem in

a repeated manner has high computational cost. Instead, we utilize a single branch-

and-cut tree for the solution of the master problem, which allows user interruption

when an integer solution x̂ is found. First, DSP(x̂) is solved and using its objective

function value z(x̂), the strong Benders optimality cut is determined. If the optimal

value of DSP(x̂) is zero, uij values are modified as described in Proposition 7.2, and

a strong connectivity cut is obtained. The generated cut(s) is (are) added to the

master problem, and the branch-and-cut procedure continues until all integer solutions

are explored. Successful implementations of a similar approach are available in the

literature within different contexts [93, 94].

98

The depicted cut generation procedures require the solution of at least two opti-

mization problems for each integer solution. We can speed up the algorithm by solving

MFP with an efficient algorithm in order to compute the initial z(x̂) value and find the

strong connectivity cut. To this end, Goldberg’s preflow-push algorithm [95] which is

known to be the fastest MFP solver in practice is used. The numerical results confirm

that the described implementation considerably improves the quality of the obtained

solutions. The final version of BD, which incorporates all the described improvements,

is provided more formally as Algorithm 7.1.

Algorithm 7.1: MFPC Benders Decomposition

Input: A network N = (V (N), A(N));

Output: Optimal solution for MFPC, f∗ and v∗;

begin

1. Initial UB: Solve MFP relaxation on N and set its optimal objective value

as UB;

2. Valid Inequalities: Find the minimum cut corresponding to the MFP

relaxation solution and several other cuts produced by breadth-first search on

N . Generate inequalities of type (7.13) and (7.14) for each cut and add them

to the master problem;

3. Solve the master problem. Whenever an integer solution x̂ is found,

i. Generate a strong Benders optimality cut according to Proposition 7.3;

ii. If the maximum flow of SP(x̂) is 0, then generate a strong connectivity

cut;

iii. Add the generated cuts to the master problem and return to the solution

process;

4. Return the solution of the master problem.

end

Figure 7.1. MFPC Benders Decomposition.

99

8. BRANCH-AND-BOUND ALGORITHM

The proposed BB in this chapter12 employs the relaxations of the given problems

obtained by omitting the conflict constraints and the variables utilized to model the

conflicts, namely the minimum cost flow problem (MCFP), the maximum flow problem

(MFP) and the assignment problem (AP) relaxations. The bounds they give are used

for pruning purposes and branching is performed only if the optimal solution of the

relaxed problem contains conflicting flows in general terms. First, we outline the BB

steps for the minimum cost flow problem with conflicts (MCFPC) and then indicate

the differences when applied to the maximum flow problem with conflicts (MFPC) and

the assignment problem with conflicts (APC).

At each node of the BB tree, MCFP relaxation that is obtained by removing

constraints (4.11), replacing (4.12) with 0 ≤ fij ≤ uij, (i, j) ∈ A(N) and deleting all x

variables is solved. If the relaxation is infeasible, the current subproblem is fathomed.

Otherwise, the objective value of the relaxation gives a lower bound for a conflict-free

solution. If this lower bound is not less than the best known upper bound, the current

node is pruned. Otherwise, if the resulting solution does not violate constraints (4.11),

i.e. there is no conflicting arc pair with positive flow on it, then a feasible solution for

MCFPC is obtained and the upper bound can be updated. If none of these conditions

are satisfied, the current node is divided into child nodes. The algorithm ends when

all the nodes in the tree are pruned and returns the incumbent solution.

The same procedure can also be applied to APC by solving AP relaxations at

nodes of the BB tree. Notice that, xij, (i, j) ∈ A(N) remains in the relaxation. If a

node is not pruned due to the infeasible solution space of the subproblem or the bound

of AP relaxation, we check whether a conflict-free assignment is found checking the

values of xij variables.

12An earlier version of this chapter appears in [13–15] as a part of their contents.

100

Described BB steps to solve MCFPC are also valid for MFPC when we use MFP

relaxations at every node of the BB tree. Since MFPC is a maximization problem, MFP

relaxations of the subproblems provide an upper bound to a conflict-free solution. If

this upper bound is not larger than the best known lower bound, i.e. the objective

value of the best known conflict-free feasible solution, the current node is pruned. We

do not need to check the feasibility of the solution because MFP has always a feasible

solution, which is zero flow.

8.1. Branching Rules for Division

The branching rule has a major impact on the performance of the algorithm. Five

rules are considered for branching. The first one is based on a conflicting pair of arcs

(edges), the second one on a conflicting arc (edge), the third one is a hybrid form of

the first two rules, and the last two employs a clique including a conflicting arc (edge)

pair.

8.1.1. Conflicting Pair Branching

At node t of the BB tree we choose a pair of conflicting arcs, say arcs (p, q)

and (r, s), in an optimal solution of the corresponding minimum cost flow relaxation

MCFP(t). We create two subproblems where arcs (p, q) and (r, s) are forced to be zero,

respectively. This rule does not partition the parent’s feasible solution space; because

the case where both (p, q) and (r, s) carry zero flow is allowed in both child nodes. Pair

branching rule prevents only one conflicting arc pair, namely arcs (p, q) and (r, s), from

appearing in the descendant nodes. However, these arcs can conflict with other arcs at

deeper levels and this can result in a very large BB tree. This rule can be implemented

as described using MFP relaxations at node t, denoted by MFP(t). When we apply

this rule in BB to solve APC, the branching is performed using edges instead of arcs.

101

8.1.2. Conflicting Arc Branching

Let (p, q) and (r, s) be two conflicting arcs with fpq, frs > 0 in an optimal solution

of the relaxation MCFP(t) or MFP(t). Choose one of them, say arc (p, q), as the

branching arc and create two subproblems based on it. In the first subproblem delete

arc (p, q), and in the second problem delete all the arcs conflicting with arc (p, q) and

force arc (p, q) to carry positive flow. The resulting division provides a partition and

one arc at each branching is guaranteed not to conflict with any other arc deeper in

the tree. In fact, it is in the same spirit as the variable branching of classical BB with

LP relaxation.

This rule is referred as conflicting edge branching when applied to an AP relax-

ation at node t, denoted by AP(t). For branching, we choose two edges {p, q} and {r, s}

with xpq, xrs = 1 in an optimal solution of AP(t).

8.1.3. Conflicting Arc Pair Branching

This rule is a combination of conflicting pair and conflicting arc (edge) branching

rules. When we detect a conflicting arc (edge) pair, we consider three cases that can

occur in a feasible solution of the child nodes. In other words, one of the conflicting

arcs (edges) is forced to be in a feasible solution in one branch, the other is forced to

be in a feasible solution in another branch and both of them are forbidden to be in a

feasible solution in the third branch. As can be seen this is not a dichotomized rule as

the previous ones.

8.1.4. Clique Branching

A more interesting approach can be the consideration of the cliques of the conflict

graph C = (V (C), E(C)). Recall that a subset of arcs in which every arc conflicts with

others form a clique in the conflict graph. At any node of the BB tree, in an optimal

solution of the MCFP relaxation, if we have a pair of conflicting arcs with positive

flows, we can find a clique of K, preferably with maximum cardinality, including the

102

corresponding vertices of this pair. We partition the vertices of the clique into subsets.

For each subset of vertices, a child node is produced by deleting their corresponding arcs

from the original network N . This rule is an adaptation of the generalized upper bound

(GUB) branching of the classical BB with LP relaxation and expected to produce a

more balanced BB tree [96].

Let (p, q) and (r, s) be two conflicting arcs with flows in an optimal solution of the

MCFP(t) (or MFP(t)) at node t of the BB tree. Determine a clique K = (V (K), E(K))

of the conflict graph including (p, q), (r, s) ∈ V (K). It is better to have K be one of the

cliques with the largest cardinality as mentioned. Since finding a maximum cardinality

clique is itself an intractable problem, we prefer to use an efficient greedy method for

producing maximal cliques. For this purpose we first let (p, q) and (r, s) be the first

two elements of V (K), search over the arcs in δC(p, q) and add one to V (K) if it is

also an element of δC(r, s). In other words, if we are given an initial vertex pair of

the conflict graph C which is known to be connected by an edge and denoted as the

subset U , we can employ a greedy heuristic to find a maximal clique K∗ including U .

A formal description of the greedy heuristic is given as Algorithm 8.1.

Here, we consider two versions of the clique branching rule: clique-0 and clique-1

branching rules. In the first clique branching rule, named as clique-0 branching rule, we

partition the vertices of the clique K into two subsets as evenly as possible ensuring that

the vertices equivalent to the initially given conflicting flows are in separate subsets.

For each subset of vertices, a child node is produced by deleting their corresponding

arcs from the original network N .

Notice that this rule includes pair branching as a special case, since a conflicting

pair is a clique of size two of the conflict graphs. Besides, it becomes arc branching if

the partition is made unevenly so that one of the two subsets includes only one of the

conflicting arcs and the other contains the rest of the clique, namely the arcs that are

in conflict with it.

103

Algorithm 8.1: Greedy heuristic to determine a maximal cardinality

clique

Input: A conflict graph C = (V (C), E(C)) and a vertex subset U ⊆ V (C) of size

two to be included in the clique;

Output: A maximum cardinality clique K∗ including vertices of U ;

begin

Set K = U and put in S vertices in V (C) that are adjacent with all vertices in U ;

while S 6= 0 do

Choose a vertex in S, say w, with the largest degree in the induced subgraph

C[S] of conflict graph C;

K ←− K ∪ {w};

S ←− S \ {w};

Delete from S all vertices that are not adjacent with w

end while

Set K∗ = K and induced subgraph C[K∗] is a maximal clique including U

end

Figure 8.1. Greedy heuristic to determine a maximal cardinality clique.

104

In the second clique branching rule, called as clique-1 branching rule, we partition

the vertices of the clique into more than two subsets. In fact, we add |V (K)| + 1

subproblems to the active node list. For each vertex u of K, a child node is created

by deleting all the vertices except u and forcing the corresponding arc of u to carry

positive flow. Also, one more child node is added where all vertices of K are deleted

from the conflict graph. As can be noticed this is not a dichotomized branching rule.

The clique branching rules described here can be safely implemented when we

find a pair of conflicting edges in an optimal assignment provided in AP(t).

8.2. Penalty Calculation

Penalty calculation and the resulting strong branching idea which anticipates

the outcomes of possible branching strategies and selects the most promising one has

become an essential part of the algorithms that solve integer programming problems

[35,96]. Calculated penalties are used to improve the bounds given by the subproblem

relaxation and thus increasing the probability of pruning. If we are not able to prune

the node, we have the possibility of fixing values of some variables. They also serve as

powerful tools when determining the arcs (edges) or pairs that we branch on.

In the context of network flows with constraints, the penalty with respect to an

arc (i, j) with fij > 0 is a lower bound for the amount of increase in the objective

function value when the flow on arc (i, j) is forced to be zero and it is denoted by pnij.

Given an optimal solution of MCFP relaxation, the deletion of arc (i, j) by imposing

the constraint uij = 0 makes the current optimal solution infeasible and requires dual

simplex iterations to recover the created infeasibility. From a theoretical perspective,

pnij value corresponds to the change in the objective value after one dual simplex

iteration.

105

8.2.1. Penalties from Basic Spanning Tree

We need the basis information of the optimal solution in order to calculate penal-

ties. The basis is represented in the form of either matrices/tableaux or spanning trees.

Since we use network simplex algorithm to solve MCFP relaxations, all the informa-

tion is kept in the underlying basic spanning tree, T = (V (T), A(T)), of the current

optimal solution. In [50], a similar penalty calculation that exploits the spanning tree

structure is applied for the transportation problem with exclusionary side constraints,

where some pairs of supply nodes are not allowed to send flow to a certain demand

node simultaneously. The described penalty calculation method in [50] is for the unca-

pacitated flows. In our case, we develop an elaborate penalty calculation routine which

is modified for flows with finite arc capacities.

As MCFP solver, we use the network simplex algorithm of LEMON (Library

for Efficient Modeling and Optimization in Networks, [97]), which is a C++ template

library offering efficient implementations for combinatorial optimization tasks with

graphs and networks. Since the network simplex algorithm of LEMON works with

basic spanning trees, the basic spanning tree T corresponding to the optimal solution

of MCFP relaxation is kept within the source code. In the spanning tree T associated

with the optimal solution, some arcs are basic, (i.e. arcs in the tree), and others are

nonbasic, (i.e. arcs outside the tree). The basic arcs carry flows that are strictly

between the lower and the upper bounds, lij < fij < uij (i, j) ∈ A(T), only if the basic

feasible solution is non-degenerate. If the solution is degenerate, flows of some of the

basic arcs might be at one of the bounds. However, the nonbasic arcs always carry

flows at their either lower or upper bounds. These two subsets of the nonbasic arcs are

denoted by L and U , respectively. Given the optimal spanning tree T , we can calculate

pnij values for fij > 0 by considering two cases:

Case 1. : If (i, j) ∈ A(T) and if we delete (i, j) by making uij = 0, we obtain

an excess supply at node i and a demand deficit at node j by an amount of fij. When

arc (i, j) is deleted from T , two subtrees T1 = (V (T1), A(T1)) and T2 = (V (T2), A(T2))

106

are obtained. Suppose that i ∈ V (T1) and j ∈ V (T2). The resulting excess flow can be

either sent from T1 to T2 through the nonbasic arcs which are at their lower bounds or

pulled back from T1 to T2 through the nonbasic arcs which are at their upper bounds.

The product of the lowest reduced cost of all nonbasic arcs and fij gives the penalty

for arc (i, j). In other words,

pnij = fij ×min{|c̄kl| : (k, l) ∈ L, k ∈ V (T1), l ∈ V (T2) or

(k, l) ∈ U, k ∈ V (T2), l ∈ V (T1)}
(8.1)

where ckl = ckl − πk − πl is the reduced cost of (k, l) ∈ A(N) and πi, i ∈ V (N) are the

dual variables associated with constraints (4.10).

If pnij > 0, we stop. Zero penalty is implied by a zero reduced cost, which is a

sign of degeneracy. Due to the fact that optimal MCFP solutions are often degenerate,

the occurence of zero penalties is not rare. So, when pnij = 0, one more dual simplex

iteration is carried out and pnij is recalculated.

Let (u, v) = argmin(k,l)∈L{ckl}. If c̄uv = 0, some or all of the flow fij is sent

from i to j with zero cost along a unique path P = (V (P), A(P)) from i to j on

V (T1) ∪ V (T2) ∪ {(u, v)}. The flow along P is restricted by upq − fpq value if the

direction of (p, q) ∈ P is towards j and constrained by fpq − lpq value otherwise. If the

minimum of these values is not less than fij, then we can send fij units of flow from

i to j at a unit cost of cuv = 0. As a result, pnij remains zero. Otherwise, we denote

the maximum allowed flow by r and send r units of flow along P = (V (P), A(P)) and

update the flows of arcs on P . New flow on arc (i, j) is set to fij − r, the spanning

tree T is updated by adding arc (u, v) and deleting an arc of P whose flow reaches to

one of the bounds. Since the reduced cost of the entering arc is zero, reduced costs of

other arcs do not change with this (pivot) operation. For the remaining flow on (i, j),

pnij is recalculated as described above.

107

Case 2. : If (i, j) /∈ A(T), some of the excess supply occured at node i can be

sent to node j through the unique path P on the spanning tree T . Suppose that the

path P is divided into two as P1 = (V (P1), A(P1)) and P2 = (V (P2), A(P2)) where

P1 contains arcs directed towards node j and P2 contains arcs directed towards node

i. The flow that can be sent along P is limited by upq − fpq if the direction of arc

(p, q) is the same as the flow’s, and restricted by fpq − lpq otherwise. The product of

the minimum of these values and the reduced cost of the nonbasic arc (i, j) gives the

penalty for arc (i, j). In short,

pnij = |c̄ij| ×min{upq − fpq, (p, q) ∈ A(P1) and fpq − lpq, (p, q) ∈ A(P2)}.

After sending the flow along P , if there is still a positive flow on arc (i, j), the

arc (i, j) enters the spanning tree and the blocking arc on path P leaves the spanning

tree. Upon updating the spanning tree and reduced costs, we can apply the procedure

described in the first case and the sum of the two penalties gives the total penalty of

forcing the flow on arc (i, j) to be zero.

These operations are carried out very efficiently if the internal data structures of

LEMON are used. In the network simplex algorithm of LEMON, the spanning tree is

represented by XTI (Extended Threaded Index) instead of classical ATI (Augmented

Threaded Index). Without using the internal data structure for penalty calculations,

the burden of the required time to calculate penalties exceeds its advantages. However,

XTI representation enables efficient implementation, and penalty calculation procedure

becomes a powerful tool. The differences between the ATI and XTI schemes are sum-

marized in [97].

If a subproblem of the BB tree is not pruned, penalties are calculated for the arcs

whose flows conflict at least one other arc’s flow. Penalty information is used when

determining the lower bounds of the produced child nodes, for pruning and variable

fixing. Moreover, we make use of them while selecting an arc or a pair of arc for

branching purposes.

108

Note that we do not calculate penalties while solving MFPC as no proper cost

structure is defined; unit flow costs are essential to compute reduced costs. Although

it is possible to reformulate MFPC as MCFPC problem by assigning negative unit

costs to arcs leaving the source and the ones entering the sink, we prefer to utilize a

polynomial time algorithm to solve MFPC instead of the network simplex algorithm.

8.2.2. Penalties from the Solution of the Hungarian Algorithm

It is also possible to calculate penalties when we deal with AP relaxation. In this

context, penalty pnij is defined as an estimate of the increase in the lower bound value

when edge {i, j} is removed from the current optimal assignment, which is obtained

by solving the assignment relaxation of the subproblem AP(t). Consider a pair of con-

flicting edges {{p, q}, {r, s}} of the optimal assignment. The penalty pnpq of removing

an edge {p, q} is estimated as pnpq = βp + βq where βp = min{cpi : i = 1, . . . , n; i 6= p}

and βq = min{ciq : i = 1, . . . , n; i 6= q}. Here, cij is the reduced cost of nonbasic edge

{i, j}, i.e. an edge which is not in the optimal assignment of AP relaxation. Notice

that the reduced cost values cij are computed by the Hungarian algorithm which is run

for solving AP relaxation of the subproblem, AP(t), at search node t.

8.2.3. Pruning by Penalties

Penalties are calculated at node t if the optimal solution of MCFP(t) or AP(t)

relaxation contains a conflicting flow or edges and its optimal objective value is less

than the best known upper bound, z(t) < z̄. Calculated penalties allow us to estimate

how far a conflict-free solution is from the solution of the relaxed problem.

Given a conflicting pair (i, j) and (p, q) where fij, fpq > 0 in MCFP(t) or a con-

flicting edge pair {i, j} and {p, q} with xij = 1 and xpq = 1 in APC(t), penalties pnij

and pnpq are calculated. Then, min{pnij, pnpq} is the estimated lower bound on the

cost of clearing this conflict. Hence, the lowest increase in the objective value to reach

a feasible MCFPC solution, e(t), is equal to the maximum of these estimates for each

109

conflicting flow pair:

e(t) = max{min{pnij, pnpq} : fij, fpq > 0 and (p, q) ∈ δC(i, j)}.

When APC is considered, the expression e(t) becomes

e(t) = max{min{pnij, pnpq} : xij, xpq = 1 and (p, q) ∈ δC(i, j)}.

Therefore, node t can be pruned if z(t) + e(t) ≥ z. Clearly, larger e(t) values lead

to smaller BB tree. If we can make sure that clearing up one conflicting pair does

not affect the penalties associated with other conflicting flows, taking the summation

instead of the maximum provides much better estimates. In general, clearing one

conflict changes reduced costs, penalties and even removes other existing conflicts. So,

special cases need further consideration.

8.2.4. Pegging

In some cases, the penalties are not sufficiently large for pruning; but they can

still provide useful information for reducing problem size by variable fixing, which is

also called pegging. At search node t, if z(t) + e(t) < z, all arcs are examined one by

one. For an arc (i, j), if z(t) +pnij ≥ z, then fij > 0 (or xij = 1 for APC) is forced, and

the flows of the arcs in its conflict list are forced to be zero at node t of the BB tree.

Pegging operations prevent at least one conflict. If all existing conflicting flows

have already been removed by pegging, neither pruning nor branching is carried out.

Still, the current subproblem t is left in the active node list to be resolved in the future

with additional constraints. Otherwise, two child nodes are created with lower bounds

equal to z(t) + e(t).

110

8.3. Branching Variable Selection

In BB algorithm for MCFPC and APC, the arc with the highest penalty among

the unpegged arcs is selected as the branching arc while applying the arc branching

rule. The pair whose minimum penalty is maximum is selected as the branching pair

when using pair, arc pair and clique branching rules. In other words, among all con-

flicting pairs {(p, q), (r, s)}, we select the one, with the maximum of min{pnpq, pnrs}.

This approach is similar to the strong branching applied in the classical BB with LP

relaxations. Strong branching gives priority to arcs that are expected to produce higher

increase in the lower bounds and its performance turns out to be better than the other

rules such as selecting the arc or arc pair with the (total) highest unit cost or (total)

highest number of conflicts it involves.

For APC, in addition to strong branching, we also try another conflicting pair

selection rule, which is the largest number of conflicts. Here, we consider the conflicting

edge pair {i, j} and {k, l} with the largest number of total conflicting edges, namely

with the largest |δC(i, j)| + |δC(k, l)| value. For the conflicting edge branching rule,

among all edges {p, q} conflicting with other edges in an assignment relaxation solution

at a leaf node of the BB tree, we select the one with the largest number of conflicting

edges, namely, with the largest |δC(p, q)| value.

When MFPC is considered, two straightforward possible rules could be to select

the arc with the highest or lowest flow capacity among the candidate arcs. Two more

rules are to branch on the arc or arc pair with the highest infeasibility with respect to

a conflict-free solution. In other words, for an arc (i, j) where fij > 0 in an optimal

solution of relaxation MFP(t), the other positive flows conflicting with fij are counted.

As the counted value increases, (i, j) becomes more infeasible with respect to conflict

constraints. Notice that this is different from selecting the arc with the highest |δC(i, j)|

value, since it is not solution dependent. Actually, it corresponds to the rule of the

ordinary BB with LP relaxation that consists of selecting the most or least infeasible

variable whose fractional value is the furthest or closest to the nearest integer number.

111

Although this arc selection rule is computationally more expensive, it significantly

reduces the mean depth of the BB tree before pruning.

Apart from these, we can keep the average difference that each variable produces

between the bounds of the nodes when it is used to branch. If we obtain better quality

bounds from the relaxation, the probability to prune that node increases. Hence, the

arc that gives the highest estimated difference based on the historical data is selected

as the branching arc variable. The experiments show that the final variable selection

rule works the best for BB that solves MFPC.

8.4. Subproblem Selection

The subproblem with the smallest lower bound and the largest upper bound are

selected from the active node list to be processed in the next iteration during the

implementation of BB for MCFPC and MFPC, respectively. While solving APC, we

carry out experiments with four subproblem selection rules to compare the strategies:

depth first search (DFS) and breadth first search (BFS) which respectively select the

last inserted and the first inserted subproblems to the active node list in addition to

selecting the subproblems with the smallest lower bound (SLB) and with the largest

lower bound (LLB).

8.5. Algorithms to Solve Relaxed Problems

Determining how to solve the relaxations of the emerging subproblems is a critical

decision which has a considerable impact on the performance of the overall algorithm.

Since the obtained relaxed problems belong to the family of network flow problems, we

make use of polynomial time algorithms which could be quite advantegous especially as

the problem size gets larger. To this end, we utilize Hungarian algorithm to solve AP

relaxations. However, variants of simplex algorithm which is known to be exponential

time but performs reasonably well on practice could be preferred. The network simplex

algorithm which allows computing penalties using the basic spanning trees is selected

as MCFP solver.

112

MFP relaxations of the visited subproblems are solved very efficiently by Gold-

berg’s preflow-push algorithm [95]. Note that this algorithm works properly for zero

lower bounds on the arc flows. For this reason, the resulting division of conflicting arc

branching rule does not provide a partition because the case with fpq = 0 is allowed

in the feasible solutions of both subproblems. If we force fpq to have a positive value

in the second branch by defining a lower bound equal to one, we will not be able to

benefit from the available efficient maximum flow solvers. Theoretically, a partition

ends up with less number of tree nodes as we avoid replicated subproblems. However,

the performance of the overall algorithm depends not only on the theoretical back-

ground it is founded but also on the way it is implemented. In the latter case where

we impose a positive lower bound to the arcs, we solve the subproblems with an LP

solver. However, this option combined with the perfect partition cannot outperform

the initially described branching strategy.

8.6. Local Preprocessing

Another way of improving the efficiency of the algorithm for MCFPC is the ap-

plication of preprocessing procedure locally for each subproblem just before solving the

MCFP relaxation. Through local preprocessing, it is probable to eliminate more arcs

from the subproblem in question with a little computational effort. Every subproblem

is created by deleting some arcs from its parent. Let MCFPC(t) be the subproblem

considered at node t and N (t) = (V (N (t)), A(N (t))) be the related network. If it is

obtained from its parent MCFPC(t−1) and network N (t−1) = (V (N (t−1)), A(N (t−1))),

then the arc subset A(t) = A(N (t−1))\A(N (t))) represents deleted arcs. So, the sup-

plies of tail nodes must be sent and demands of head nodes of the deleted arcs must

be satisfied to obtain a feasible solution. Given the deleted arcs as the input, local

preprocessing routine repeats pre-processing (i.e. inner loop of Algorithm 5.1) for the

arcs that conflict with the outgoing arcs of the tail nodes and incoming arcs of the

head nodes of the deleted arcs if they are supply and demand nodes, respectively. Al-

though the local implementation of probing steps is also possible, it is not efficient to

call probing at every node of the BB tree because it requires much more time than

113

preprocessing does in return of a marginal profit. The steps of local preprocessing are

described as Algorithm 8.2 in Figure 8.2.

The whole BB procedure proposed to solve MCFPC and APC is given as Algo-

rithm 8.3 in Figure 8.3.

Since MFPC is a maximization problem and the described BB to solve it differs in

terms of the called subroutines, BB for MFPC is summarized separately as Algorithm

8.4.

114

Algorithm 8.2: Local preprocessing

Input: A subproblem MCFPC(t), the arc set A(t) that exist in the parent of

MCFPC(t) but not in MCFPC(t);

Output: The new reduced arc set of subproblem MCFPC(t);

begin

create a copy of flow capacities, uoriginalij = uij for all (i, j) ∈ A(N);

for all arc (i, j) ∈ A(t) do

if bi > 0 then

for all arc (k, l) ∈ δC(i, v) v ∈ V (N) do

if arc (k, l) is unlabeled then

For arc (k, l), repeat inner loop of Algorithm 6.2;

end if

label arc (k, l);

end for

end if

if bj < 0 then

for all arc (k, l) ∈ δC(u, j)u ∈ V (N) do

if arc (k, l) is unlabeled then

For arc (k, l), repeat inner loop of Algorithm 6.2;

end if

label arc (k, l);

end for

end if

end for

end

Figure 8.2. Local preprocessing.

115

Algorithm 8.3: Branch-and-bound Algorithm for MCFPC and APC

Input: A network N = (V (N), A(N)), initial upper bound z;

Output: Optimal conflict-free flow f∗, and its cost z∗;

begin

1. Initialization: Add MCFPC (or APC) into the active subproblem list L;

2. Termination test: If L = ∅, then go to step 7;

3. Subproblem selection: Select and remove a subproblem from L, apply local

preprocessing and solve MCFP (or AP) relaxation on it. If it has a solution,

then let f ′ (or x′) and z′ be the optimal one and its objective value;

i. If the subproblem is infeasible or z′ ≥ z, then go to step 2;

ii. Else if f ′ (or x′) is conflict-free, then set z = z′, f∗ = f ′ (or x∗ = x′) and

go to step 2;

4. Penalty Calculation: Calculate penalties, pnij. If they are sufficently large

to prune the current subproblem, then go to step 2;

5. Pegging: Fix the values of variables using calculated penalties. If all

conflicting flows are cleared up with pegging operation, then add the current

subproblem to L and go to step 3;

6. Branching: Create two subproblems and add them to L. Go to step 3;

7. Return f∗ (or x∗) and z∗.

end

Figure 8.3. Branch-and-bound Algorithm for MCFPC and APC.

116

Algorithm 8.4: Branch-and-bound Algorithm for MFPC

Input: A network N = (V (N), A(N));

Output: Optimal solution for MFPC, f∗ and v∗;

begin

1. Initialization: Add MFPC into the active subproblem list L, set z = 0;

2. Termination test: If L = ∅, then go to step 4;

3. Subproblem selection: Select and remove a subproblem from L and solve

its MFP relaxation. Let f ′ and v′ be an optimal flow and its value, respectively;

i. If v′ ≤ z, then go to step 2;

ii. Else if f ′ is conflict-free, then set z = v′, f∗ = f ′ and go to step 2;

3. Branching: Create two subproblems and add them to L. Go to step 3;

4. Set v∗ = z. Return f∗ and v∗

end

Figure 8.4. Branch-and-bound Algorithm for MFPC.

117

9. RUSSIAN DOLL SEARCH ALGORITHM

Russian Doll Search (RDS) is an efficient search procedure, which explores maxi-

mal stable sets of the conflict graph C. Since optimal solution of MCFPC, MFPC and

APC can be found by solving their MCFP, MFP and AP relaxation on some maximal

stable set on C, this method can be applied to three problems. In this chapter13 , we

describe all the steps for the most general problem, MCFPC, use the notation of z(S)

instead of zk(S) k = 1, 2, 3 and point out the problem-specific parts at the end.

RDS evaluates z(S) values of the explored maximal stables sets by solving the

problem given with (4.27) – (4.29), i.e. MCFP(S). It continues by adding/removing

arcs to/from a partial stable set at hand and returns the maximal stable set S∗ whose

z(S∗) value is minimum. RDS is first introduced to solve constraint optimization or

constraint satisfaction problems by [98]. The key feature which makes RDS applicable

to our problem is the hereditary structure of stable sets. RDS approach is reported

to produce very successful results in [21] and [99]. The former implements a similar

algorithm for the maximum s-plex and the maximum s-defective clique problems which

are also hereditary graph properties. The authors of the latter apply a RDS approach to

find a maximum weighted subgraph with minimum risk which is originally modeled in

a stochastic programming framework. Both papers provide significantly better results

than the commercial solvers. In our study, the naive RDS method is improved by the

introduction of dynamic candidate sets and allowing the property violating vertices to

enter the maximal stable set when we make sure that the optimization procedure is

not affected by this operation as a consequence of Proposition 4.1.

9.1. Description of the Algorithm

Substantially, RDS is a BB based combinatorial algorithm that tracks between

the levels of the BB tree. We keep a partial stable set I throughout the algorithm. The

corresponding arcs to the vertices in I do not conflict each other, by definition. The

13An earlier version of this chapter appears in [13–15] as a part of their contents.

118

vertices that do not share an edge with I are placed into a free vertex set Fl associated

with level l. Furthermore, a candidate set Cl which is a subset of Fl is defined for level

l. Cl consists of vertices that do not violate the stable set property when added to

I. Actually, all elements of Fl satisfy this condition but the size of the candidate set

has a major impact on the performance of the algorithm. Cl = Fl is assumed in the

naive implementation of RDS. The approaches to downsize the candidate set will be

discussed later.

The algorithm starts at level l = 0 by inserting all isolated vertices to the initial

stable set, I = {i : i ∈ V (C), dC(i) = 0}, and the remaining ones to F0. I∗ denotes

the incumbent solution with cost z(I∗), and z is the global upper bound, which is

initially equal to the output of the heuristic that finds an initial feasible solution.

MCFP relaxation is solved on the arc set I ∪ Fl, at level l. It should be emphasized

that the corresponding arcs of I do not necessarily carry positive flow and any two

flows in Fl may conflict with each other while the ones in I are absolutely conflict-

free. If the objective value of the relaxed problem, zl, is less than z and Cl 6= ∅,

branching is performed by adding a vertex il ∈ Cl to I. Branching operation increases

the size of I by one, I = I ∪ {il}, il ∈ Cl. The branching vertex il is selected as the

first element of Cl and removed from Cl and Fl. The free arc set of the next level

is constructed by removing all vertices whose inclusion in I violates the stable set

property: Fl+1 = {j ∈ Fl : (i, j) /∈ E(C), j 6= i}.

In the case where zl < z and Cl+1 = ∅, the incumbent solution and the global

upper bound are updated as I∗ = I, z = zl and pruning operation is performed. The

algorithm backtracks to the previous level by removing the last added vertex from I,

namely il−1, and proceeds by adding the next vertex in the candidate set of level l− 1,

Cl−1. If the MCFP relaxation is infeasible or produces a lower bound which is not

less than the best upper bound, i.e. zl ≥ z, the current branch is pruned exactly in

the same way by removing the last added vertex from I and adding the vertex of the

candidate set of the previous level. In these two cases, the stable sets that could be

obtained by branching further would provide either no feasible flow or a feasible flow

with a higher cost than the global upper bound.

119

The order of the vertices in the candidate set is an important factor that affects

the size of the RDS search tree. The branches which are formed by adding the initial

vertices of Cl are less likely to be pruned. As we approach to the end of the candidate

set, more vertices are deleted and the probability of encountering high-cost or infeasible

MCFP solutions increases. The goal is to place the vertices that are expected to cause

pruning as the initial entries of the candidate set Cl. Following this principle, the

vertices are ordered in terms of decreasing unit costs of the corresponding arcs just

once at the beginning. The performance of this ordering is better than the other rules:

ordering by indices, increasing unit costs, increasing or decreasing degrees.

9.2. Candidate Set Generation

Up to now, we have described the naive RDS algorithm developed to solve

MCFPC. Now we present how we reduce the size of the candidate set with the aim of

improving efficiency. Recall that the candidate set of level l is determined only when

the optimal objective value of MCFP relaxation on I∪Fl, zl, is less than z. The candi-

date set generation procedure is quite simple: a maximal stable set Sl on the subgraph

of C induced by the vertex set Fl, denoted by C[Fl], is found and Fl \ Sl is assigned

as the candidate set Cl. The vertices of C[Fl] are added one by one to Sl, which is

initially an empty set. Sl is filled in a greedy manner if the next vertex is not adjacent

to the current set. The size of Sl must be maximized to minimize the size of the can-

didate set Cl. In order to achieve this, the vertices of C[Fl] are sorted in the increasing

order of their degrees with respect to the induced subgraph C[Fl]. While constructing

Sl, the vertices whose corresponding arcs carry positive flow in the solution of MCFP

relaxation are given priority. As a result, the ones with zero flow are more probable

to fall into Cl. This preference improves the efficiency of the algorithm when applied

with a dynamic candidate set, which will be described in the next subsection.

Upon determining Sl, another MCFP relaxation on I∪Sl is solved. If the relaxed

problem has a solution, we know that it is also a conflict-free solution and z is updated

if necessary. This step can be thought as an equivalent form of the heuristics, which

is applied in the classical branch-and-bound with LP relaxation to find an integer

120

solution from a given fractional solution. There is another advantage of solving MCFP

relaxation on I ∪Sl. The corresponding vertices of the nonbasic arcs with nonnegative

reduced costs (i.e. cij ≥ 0) can also be added to the maximal stable set Sl, although

this can cause the violation of the stable set property as a consequence of Proposition

4.1. Because we know that those arcs never carry positive flow in an optimal solution

even if they are included in the set I ∪ Sl. In other words, although the vertices of

I ∪Sl do not constitute a stable set, its arcs with positive flow are guaranteed to form

a stable set of the conflict graph. In the final step, Cl is set to Fl \Sl. If Cl is returned

as an empty set, then the optimal solution and its value is updated, I∗ = I ∪ Sl and

z = z(I ∪ Sl), and the current branch is pruned.

9.3. Dynamic Candidate Set Approach

The original naive RDS algorithm works with a static candidate set, which is

generated only once during branching. However, there are some disadvantages of using

static candidate sets in our context. For example, suppose that MCFP relaxation is

solved on I ∪ Fl, the current branch is pruned for some reason at level l, and the last

added vertex il−1 is removed from I. Also suppose that the removal of il−1 creates an

infeasibility, i.e. MCFP relaxation on the I ∪ Fl−1 is infeasible (Notice that, at this

moment il−1 is included neither in I nor in Fl−1). In static candidate set approach,

there is no possibility of detecting this situation at the time of occurence. Instead, we

add every element of Cl−1 one by one to I and solve the relaxed problem on I ∪ Fl
where Fl ⊂ Fl−1. These branches at level l, ends up with an infeasible solution space

due to the fact that I ∪ Fl−1 includes I ∪ Fl. A similar case takes place when the

removal of a vertex increases the objective value above z. On the other hand, we can

save |Cl−1| many relaxations by setting Cl−1 = ∅ if we detect this situation exactly

when it occurs.

Another source of inefficiency is the vertices of Cl representing the arcs carrying

zero flow in the solution of the MCFP relaxation on I ∪ Fl. Consider the case where

all vertices in Cl are associated with zero flow. Then, there is no need to proceed

and branch because the vertices of I ∪ Fl with positive equivalent flow already form a

121

maximal stable set and it is not possible to attain better MCFP solutions in I∪Fl+1. In

this case, Cl can be accepted as an empty set and the current branch is pruned instead

of performing additional unnecessary iterations. If we keep using the static candidate

set approach, either all vertices are added to Cl regardless of their equivalent flow value

or the ones with zero flow are left outside while constructing Cl for the first time. The

former situation causes inefficiency as explained above, while the latter misses some

maximal stable sets which may include an optimal solution of MCFPC. As a hybrid

approach, vertices (i.e. arcs of A(N)) associated with zero flow can be omitted from

the candidate set initially and they can be added if they take positive values later in

the algorithm. In order to keep track of the dynamic candidate set, another set ZFl is

defined to keep track of the vertices in Fl \ Sl with zero flow, while the others are kept

in Cl.

The use of the dynamic candidate set is proposed to avoid these mentioned in-

conveniences, namely the inability to detect non-promising candidate solutions and

the unnecessary branching operations with the vertices corresponding to arcs with zero

flow. In order to understand better the working principle of the dynamic candidate

set, assume that the current branch is pruned at level l, then the last added vertex is

deleted from I and the MCFP relaxation on I ∪ Fl−1 is solved again. If there is no

solution or the objective value is not smaller than the upper bound z, Cl−1 is set to

the empty set. Otherwise, the elements of Cl−1 and ZFl−1 are checked. The vertices of

Cl−1 with zero flow are moved to ZFl−1 and the vertices of ZFl−1, which corresponds

to positive flows, are placed into Cl−1. Notice that we solve two MCFP relaxations

per stable set evaluation. Since the MCFP solver we use, network simplex algorithm

of LEMON, is a very efficient implementation and the number of evaluated stable sets

in the static approach is much more than the twice of the number in the dynamic

set approach; the advantages of the dynamic set approach dominate this drawback.

Finally, we should keep in mind that local preprocessing steps, which are previously

described in Section 8.6, can be applied just before solving any MCFP relaxation to

eliminate vertices representing the free arcs from the free set Fl. Overall RDS algorithm

is formally listed as Algorithm 9.1.

122

Algorithm 5.6: RDS Algorithm for MCFPC

Input: A network N = (V (N), A(N)) with conflict graph C = V (C), E(C), initial

upper bound z;

Output: Optimal independent set I∗ of C and its z(I∗) value;

begin

1. Initialization: Set I = {i ∈ V (C) : dC(i) = 0}, F0 = V (C) \ I, l = 0

2. Bounding: Solve MCFP relaxation on I ∪ Fl. Let fl and zl be the optimal

solution and its objective value

If zl ≥ z, then go to step 6

3. Candidate Set Construction:

i. Find a maximal independent set Sl on the induced subgraph C[Fl]

ii. Solve MCFP relaxation on I ∪ Sl, set z = z(I ∪ Sl) if z > z(I ∪ Sl)

iii. Enlarge Sl with vertices whose equivalent arcs having nonengative reduced

costs

iv. Put the elements of Fl \ Sl whose corresponding flows are positive into Cl

4. Maximality Check: If Cl = ∅, then set I∗ = I ∪ Sl and z = z(I ∪ Sl), go

to step 6

5. Branching:

i. Set il = i ∈ Cl, add il to I and remove it from Cl and Fl

ii. Set Fl+1 = {j ∈ Fl : (i, j) /∈ E(C)}

iii. Set l = l + 1, go to step 2

6. Pruning:

i. If l = 0, then go to step 8

ii. Remove il−1 from I, set l = l − 1

7. Candidate Set Update: Solve the MCFP relaxation on I ∪ Fl, update zl

and fl

i. If zl ≥ z, then go to step 6

ii. Else, rearrange Cl such that it contains the vertices of Fl \Sl with positive

flow values, go to step 4

8. Termination: Set z∗ = z. Return I∗ and z∗

end

Figure 9.1. RDS Algorithm for MCFPC.

123

Application of the described RDS algorithm to solve MFPC requires some mod-

ifications as well. First of all, it is a maximization problem and solving MFPC gives

an upper bound. Therefore, we branch if zl > z where zl is the optimal objective value

of MFP relaxation at level l and z is the global lower bound. Whenever Cl = ∅ is

encountered or z(I ∪ Sl) provides a better solution than the incumbent, z is updated.

Notice that we cannot enlarge Sl with the vertices violating stable set property because

reduced costs are not defined for the arcs of the network. Also, the vertices of V (C)

sorted in the increasing order of the flow capacities once at the beginning to make a

more efficient search.

Implementation of RDS to solve APC can be quite efficient because we do not

need to use an algorithm to calculate z(S). The selected vertices in S already satisfy the

conflict constraints, i.e. constraints (4.22), and give a matching which is not necessarily

perfect. Hence, z(S) can be calculated by simply summing up the edge costs over the

elements of S. Still, it is necessary to use Hungarian algorithm to solve APC on z(I∪Sl)

in order to be able to determine the reduced costs.

124

10. EXPERIMENTS AND RESULTS

This chapter14 provides the results of the experiments carried out to measure the

efficiency of the proposed solution methods.

10.1. Computational Study for the Minimum Cost Noncrossing Flow

Problem

We have realized a set of computational experiments on a large set of randomly

generated test instances in order to assess the strength of the relaxations (i.e. LP re-

laxations of the formulations and MCFP relaxation) and the value of the preprocessing

scheme.

10.1.1. Test Environment

A NETGEN-like [100] instance generator, which exploits the layered structure of

the network, has been developed for generating test instances. After setting the number

of layers L and the maximum number of vertices in a layer nmax, the vertex number of

vertices for layers 2, 3, . . . , L−1 are generated uniformly within [1, nmax]. Layers 1 and

L have a single vertex, namely s and t. Arcs are obtained by connecting the vertices

of the adjacent layers, and the crossing ones are determined according to the vertex

embedding we use. Then, a skeleton, which guarantees a feasible noncrossing flow, is

constructed and its arcs are assigned large enough unit costs in order to prevent them

from appearing in an optimal solution.

33 instances are generated with 10, 11, 12,. . . , 20 layers; three instances for each

value. nmax is set to 15, 16, 17, 18, 19, and 20 arbitrarily, and exactly one instance is

generated for each combination. The properties of the test instances are reported in

Table 10.1. The first column includes the instance numbers. Columns 2 – 5 list the

basic structural properties; these are the number of layers, maximum number of vertices

14An earlier version of this chapter appears in [12–15] as a part of their contents.

125

at each layer, number of vertices and arcs. Column 6 includes the number of crossing

arc pairs. The values given in columns 7 and 9 are the maximum possible number of

arcs and arc pairs in the networks respectively. They are equal to |V (N)|(|V (N)| − 1)

and |A(N)|(|A(N)| − 1)/2 and used to calculate the arc and crossing arc pair densities

reported in columns 8 and 10, whose entries are obtained by dividing the entries of

column 4 by the ones of column 7 and the entries of column 5 by the ones of column 9.

The computations are carried out on a workstation with Intel Xeon CPU E5-

2687W0 3.10 GHz processor and 64.0 GB RAM, and operating within Microsoft Win-

dows 7 Professional environment. The programs are coded in C++ [101]. The CPU

times and objective values are obtained using CPLEX 12.6 [102] with default options

on.

10.1.2. Formulations and Relaxations

We start our experiments with the MILP formulations and their relaxations.

Based on the averages listed in the last row of Table 10.2, we can say that the weak

formulation (i.e. (4.2) – (4.6), (4.8), (4.24)) is the most efficient one in terms of

optimal solution time, although the strong formulation (i.e. (4.2) – (4.8)) gives 20.26%

higher lower bound. This is probably because its LP relaxation can be solved faster,

which means a faster process of the nodes of the branch-and-bound tree. The weakest

lower bounds belong to the MCFP relaxation. Although their computation requires

the solution of MCFP, it can be done efficiently using one of the known algorithms

(e.g. [32]). As a result, a very efficient branch-and-bound algorithm can be developed

by taking advantage of this.

10.1.3. The Effect of Preprocessing

In order to judge the effect of the preprocessing, we compare the CPU times of

both formulations and relaxations with preprocessing. We prefer not to report prepro-

cessing times since it takes less than 0.001 seconds for all test instances. According

to the results summarized in Table 10.3, we can say that the effect of preprocessing

126

Table 10.1. Properties of the generated test instances.

Instance L nmax |V (N)| |A(N)| Crossing Arc Max. Num. Arc Density Max. Num. Crossing Arc Pair

Number Pair Number Arcs (%) Pairs Density (%)

1 10 15 71 617 15,725 4,970 12.41 190,036 8.27

2 10 18 100 1,024 39,942 9,900 10.34 523,776 7.63

3 10 20 83 744 23,782 6,806 10.93 276,396 8.60

4 11 15 90 750 17,734 8,010 9.36 280,875 6.31

5 11 16 96 863 24,081 9,120 9.46 371,953 6.47

6 11 17 91 776 27,704 8,190 9.47 300,700 9.21

7 12 16 99 879 28,706 9,702 9.06 385,881 7.44

8 12 17 103 978 28,867 10,506 9.31 477,753 6.04

9 12 18 107 1,009 37,796 11,342 8.90 508,536 7.43

10 13 15 111 856 17,469 12,210 7.01 365,940 4.77

11 13 17 110 899 24,540 11,990 7.50 403,651 6.08

12 13 19 98 767 19,561 9,506 8.07 293,761 6.66

13 14 16 95 669 12,412 8,930 7.49 223,446 5.55

14 14 18 116 959 21,493 13,340 7.19 459,361 4.68

15 14 20 129 1,278 52,662 16,512 7.74 816,003 6.45

16 15 15 105 774 16,566 10,920 7.09 299,151 5.54

17 15 16 118 1,004 24,251 13,806 7.27 503,506 4.82

18 15 17 144 1,295 46,373 20,592 6.29 837,865 5.53

19 16 15 110 836 14,628 11,990 6.97 349,030 4.19

20 16 16 122 794 11,529 14,762 5.38 314,821 3.66

21 16 20 125 774 13,259 15,500 4.99 299,151 4.43

22 17 15 92 557 9,973 8,372 6.65 154,846 6.44

23 17 16 119 904 18,306 14,042 6.44 408,156 4.49

24 17 17 117 847 15,389 13,572 6.24 358,281 4.30

25 18 17 133 943 18,467 17,556 5.37 444,153 4.16

26 18 18 133 844 10,720 17,556 4.81 355,746 3.01

27 18 19 143 1,085 25,747 20,306 5.34 588,070 4.38

28 19 15 145 1,131 27,812 20,880 5.42 639,015 4.35

29 19 16 130 981 19,430 16,770 5.85 480,690 4.04

30 19 20 189 1,620 44,161 35,532 4.56 1,311,390 3.37

31 20 15 125 872 20,522 15,500 5.63 379,756 5.40

32 20 16 148 939 14,379 21,756 4.32 440,391 3.27

33 20 17 135 951 13,160 20,180 4.71 451,725 2.91

127

Table 10.2. Formulations and relaxations.

Instances Strong Formulation Weak Formulation MCFP Relaxation

No. z∗ CPU CPU Lower CPU CPU Lower CPU Lower

Optimum Relaxation Bound Optimum Relaxation Bound Relaxation Bound

(sec.) (sec.) (sec.) (sec.) (sec.)

1 12,525 36.42 0.05 6,356.9 120.12 0.03 4,343.3 0.00 3,732.0

2 27,697 1,644.14 0.36 20,405.1 597.78 0.04 18,617.0 0.01 18,211.0

3 20,930 76.48 0.08 11,767.6 55.63 0.03 9,194.2 0.01 8,749.0

4 36,005 44.85 0.21 13,573.5 38.41 0.05 8,956.4 0.00 7,689.0

5 20,731 179.08 0.08 7,395.7 179.93 0.03 5,147.9 0.00 4,713.0

6 33,793 33.34 0.09 8,867.7 58.77 0.03 6,116.8 0.00 4,997.0

7 19,360 1,497.88 0.07 15,063.6 846.02 0.05 13,591.5 0.00 13,002.0

8 16,783 52.65 0.21 7,413.8 43.55 0.03 6,049.0 0.01 5,847.0

9 30,472 50.51 0.13 9,684.2 46.15 0.09 5,817.0 0.00 4,715.0

10 28,272 56.26 0.13 18,667.9 52.42 0.02 16,537.7 0.01 16,088.0

11 33,980 126.07 0.20 22,755.8 81.51 0.03 20,632.4 0.01 19,825.0

12 26,264 17.09 0.21 12,482.1 89.30 0.03 9,427.8 0.01 8,144.0

13 45,081 110.02 0.17 21,667.8 89.01 0.06 18,011.7 0.00 14,476.0

14 15,073 1,107.39 0.09 6,267.6 741.07 0.04 4,972.0 0.00 4,728.0

15 22,162 193.07 0.41 7,619.5 1,139.20 0.10 5,426.7 0.00 5,183.0

16 27,435 808.50 0.06 16,279.7 772.31 0.03 13,679.0 0.00 12,375.0

17 36,773 2,480.90 0.11 18,934.7 1,824.77 0.03 15,358.4 0.00 14,033.0

18 56,305 17.79 0.20 25,659.4 20.52 0.06 18,726.9 0.01 15,344.0

19 21,666 386.88 0.05 11,699.2 200.76 0.02 9,410.8 0.00 8,564.0

20 41,783 21.45 0.03 35,661.5 24.71 0.02 33,877.9 0.00 33,406.0

21 43,085 20.68 0.17 31,782.8 40.32 0.03 27,980.7 0.00 26,181.0

22 27,308 14.27 0.04 13,886.8 35.59 0.02 11,644.2 0.00 8,815.0

23 25,277 1,013.86 0.17 12,397.9 585.06 0.06 9,806.9 0.00 8,747.0

24 29,701 654.81 0.08 19,957.1 1,817.86 0.02 17,153.8 0.00 16,084.0

25 27,641 12.49 0.06 15,794.8 18.75 0.03 13,470.2 0.01 12,803.0

26 97,928 7.65 0.22 73,421.1 22.08 0.08 61,444.4 0.00 47,289.0

27 40,357 383.21 0.12 22,516.4 271.14 0.04 17,350.2 0.01 14,807.0

28 25,141 68.47 0.08 13,829.7 58.20 0.03 11,626.5 0.01 11,108.0

29 37,767 833.74 0.13 20,836.8 536.03 0.05 15,618.7 0.00 12,549.0

30 50,254 65.11 0.38 36,129.3 145.42 0.11 32,449.0 0.00 31,690.0

31 22,431 6.35 0.05 13,524.9 19.34 0.02 11,606.8 0.00 10,175.0

32 58,713 80.68 0.08 42,226.8 104.81 0.03 36,960.4 0.02 33,595.0

33 40,462 667.09 0.09 21,700.0 732.59 0.03 18,026.5 0.00 16,428.0

Average 33,308 386.94 0.14 19,279.63 345.73 0.04 16,031.29 0.00 14,366.42

128

Table 10.3. The effect of preprocessing.

Instances Strong Formulation Weak Formulation MCFP Relaxation

No. Deleted CPU CPU Lower CPU CPU Lower CPU Lower

arcs Optimum Relaxation Bound Optimum Relaxation Bound Relaxation Bound

(%) (sec.) (sec.) (sec.) (sec.) (sec.)

1 17.18 150.96 0.03 10,084.1 130.07 0.01 9,004.5 0.00 7,573.0

2 22.56 807.76 0.14 23,531.1 710.11 0.04 22,343.6 0.00 21,771.0

3 32.53 58.83 0.08 17,617.6 65.47 0.01 16,370.0 0.00 15,417.0

4 34.00 46.78 0.09 26,024.5 30.83 0.02 22,215.4 0.00 18,233.0

5 33.37 199.91 0.05 13,353.6 154.49 0.02 11,405.4 0.00 10,459.0

6 39.95 29.14 0.05 17,744.5 34.02 0.02 14,853.7 0.00 11,790.0

7 17.75 813.49 0.05 15,517.5 736.54 0.02 13,927.2 0.00 13,211.0

8 27.20 54.24 0.06 11,002.1 26.60 0.02 10,051.0 0.00 9,780.0

9 41.43 46.01 0.04 19,005.1 49.86 0.02 17,008.1 0.00 13,809.0

10 26.99 47.25 0.04 23,194.2 67.05 0.01 22,016.2 0.00 21,062.0

11 27.03 84.58 0.08 26,659.7 82.01 0.02 24,549.0 0.00 22,621.0

12 31.94 36.89 0.07 17,829.4 43.48 0.03 14,982.2 0.01 12,828.0

13 31.09 73.31 0.14 30,034.7 137.09 0.02 26,735.0 0.00 21,627.0

14 22.42 1,549.86 0.07 10,500.2 902.51 0.01 9,372.4 0.00 8,876.0

15 37.72 270.41 0.07 16,377.9 246.04 0.02 14,871.8 0.00 13,818.0

16 25.97 629.98 0.05 20,596.6 801.53 0.02 18,740.5 0.00 16,511.0

17 27.29 855.85 0.06 29,049.0 1,415.23 0.02 26,260.6 0.00 23,116.0

18 40.62 11.62 0.05 40,105.0 19.06 0.02 36,289.8 0.01 32,746.0

19 23.92 120.99 0.03 16,242.7 162.94 0.00 14,291.0 0.00 13,226.0

20 20.15 15.63 0.03 39,794.9 25.82 0.02 38,818.5 0.02 37,431.0

21 39.66 25.94 0.01 40,188.5 34.07 0.01 38,722.2 0.00 35,262.0

22 33.75 16.27 0.02 21,957.7 19.31 0.01 20,464.6 0.00 15,803.0

23 25.66 834.77 0.04 19,232.2 623.70 0.02 17,545.0 0.00 15,479.0

24 26.21 641.70 0.03 24,720.9 750.19 0.02 23,241.9 0.00 22,516.0

25 32.77 10.27 0.06 23,398.6 8.97 0.02 21,655.9 0.01 18,863.0

26 26.78 15.27 0.09 81,890.1 24.32 0.03 74,967.9 0.00 61,555.0

27 24.06 242.85 0.12 29,029.3 346.73 0.04 25,195.9 0.01 21,840.0

28 34.39 58.08 0.05 21,149.7 50.28 0.02 20,268.8 0.00 18,964.0

29 21.71 660.31 0.08 27,530.7 764.88 0.02 24,636.9 0.00 21,660.0

30 30.43 89.73 0.06 45,592.5 71.62 0.02 43,524.6 0.00 42,261.0

31 33.83 7.73 0.03 19,353.6 16.16 0.02 18,220.8 0.00 14,838.0

32 30.56 64.70 0.06 51,554.2 78.23 0.02 49,395.0 0.00 43,606.0

33 32.07 599.35 0.06 27,870.6 502.49 0.02 25,607.8 0.00 23,013.0

Average 29.48 277.89 0.06 25,991.91 276.72 0.02 23,865.25 0.00 21,259.55

129

is remarkable. First of all, the values in the second column indicate that, on the av-

erage, 29.48% of the arcs have been deleted. There is also a considerable decrease in

the running times. The average CPU time decreases by 28.18% and 19.96% for the

strong and weak formulations respectively. The weak formulation is 0.4% faster with

preprocessing compared to the strong formulation. There is a higher improvement in

the efficiency of the strong formulation due to preprocessing, which makes its average

performance comparable with that of the weak formulation after preprocessing. An in-

teresting observation is related to the lower bounds; preprocessing makes them 34.82%,

48.87%, and 48.08% higher on the average.

10.2. Computational Study for the Minimum Cost Flow Problem with

Conflicts

10.2.1. Test Environment

In order to evaluate the performances of the proposed algorithms, the instances

which are guaranteed to have at least one feasible solution are produced by NETGEN

generator [100]. First, a feasible skeleton network is constructed. This skeleton includes

at least one feasible solution for the Minimum Cost Flow Problem (MCFP) incurring

a high cost so that this solution is unlikely to be an optimal one. Then, random arcs

with all the necessary parameters are added to the network to obtain a MCFP instance.

Finally, the conflict lists are generated arbitrarily by ensuring that none of the arcs in

the skeleton conflict with each other. This final step makes the skeleton feasible for

MCFPC; at least one feasible solution is guaranteed.

The size of the test instances are characterized by three parameters: the number

of nodes n = |V (N)|, the arc density p = m
n(n−1)

with m = |A(N)|, and the conflict

density d = 2w
m(m−1)

with w = |E(C)|. The parameters are set to the following values:

n ∈ {40, 50, 60, 70, 80}, p ∈ {0.3, 0.4, 0.5, 0.6} and d ∈ {0.2, 0.3, 0.4, 0.5}. As a result

5 × 4 × 4 = 80 instances are generated to be considered in the computational study.

Parameter values outside this range render too small or too large instances, which

makes either all algorithms find an optimal solution within a few seconds or none of

130

them produce a feasible solution. For reporting the results we have prepared summary

tables (i.e. Table 10.4 – Table 10.10). They are based on Table A.1 – Table A.5

given in the Appendix. They include computational results of the experiments for

each individual instance.

BB algorithm with three branching rules, i.e. pair, clique and arc branching,

and RDS are tested on the generated instances and the results are compared with the

MILP solver of CPLEX (version 12.9) on both strong and weak formulations. Even

though the superiority of specially designed algorithms over general purpose CPLEX

is not surprising, the breakthrough of the recent versions of CPLEX should not be

disregarded. Besides, no solution method solving MCFPC exists in the literature to

the best of our knowledge. Therefore, CPLEX is selected as the benchmark to measure

the efficiency of the algorithms.

Prior to running each method, including CPLEX solver, previously described

pre-optimization procedures are applied to obtain a reduced network and an upper

bound. They are applied to all algorithms for the sake of fairness. Dual simplex

method of CPLEX is selected because our experiments show that its average running

time is around 5 seconds shorter than primal simplex and network simplex algorithms

of CPLEX which perform almost equally. The MCFP relaxations of BB and RDS

algorithms are solved using the network simplex solver of LEMON (version 1.3.1). All

experiments are carried out on a computer with Microsoft Windows 7 Professional

operating system and Intel Xeon CPU E5-2687W 3.10 GHz processor with 64.0 GB

RAM. The running time is limited by one hour.

10.2.2. The Effect of Preprocessing and Probing

Sequentially applied preprocessing and probing steps clear all conflicts in 4 of

the instances and delete 6.73% of arcs on the average by spending 0.50 seconds in the

average. Probing and preprocessing account for 97.5% and 2.5% of the total time,

respectively. Although the average percentage of the deleted arcs is not remarkable,

the standard deviation is quite high. It seems to be independent of the number of

131

vertices (n), whereas the group averages over 20 instances for each value of p and d

indicate that the percentage of deleted arcs can be increased by reducing arc density p

or increasing conflict density d (see Table 10.4 and Table 10.5). In other words, these

pre-optimization procedures can be useful tools to reduce the size of the networks

particularly with low p and high d values in a negligible amount of time.

Table 10.4. Average percentage of deleted arcs: the effect of arc density.

p Preprocessing(%) Probing(%) Total(%)

0.3 9.11 7.01 16.12

0.4 5.76 4.04 9.81

0.5 0.71 0.11 0.82

0.6 0.08 0.07 0.16

Avg 3.92 2.81 6.73

Table 10.5. Average percentage of deleted arcs: the effect of conflict density.

d Preprocessing(%) Probing(%) Total(%)

0.2 0.45 0.36 0.81

0.3 0.74 1.08 1.83

0.4 4.92 2.29 7.22

0.5 9.56 7.50 17.05

Avg 3.92 2.81 6.73

10.2.3. The Effect of Diving

The diving heuristic is applied with two different rules as mentioned previously

in Section 6.4.1 following the probing procedure. It is stopped when a conflict-free

solution is found but since we provide a 60-second time limit for each rule, it takes

120 seconds in the worst case to find an initial feasible solution. According to the

experimental results, finding an initial solution using these two diving heuristics takes

an overall average of 27.36 CPU seconds and at least one rule provides an upper bound

for all instances. The average CPU times calculated for the same n, p and d values are

132

listed in Table 10.6. Note that for each n value, the mean is evaluated over 16 instances.

The required time to find a conflict-free solution becomes longer as n or p increases, as

expected. However, an interesting result is the negative correlation between the CPU

time of the diving heuristic and the conflict density. At the first glance, one might

think that more time is needed to get rid of the conflicts as d increases. However,

larger d means larger conflicts per arc and it allows us to remove more arcs when an

arc is forced to carry positive flow.

Table 10.6. Mean CPU time spent by the diving heuristic.

n Avg. CPU Time (s) p Avg. CPU Time (s) d Avg. CPU Time (s)

40 6.19 0.3 10.35 0.2 59.40

50 14.29 0.4 16.11 0.3 20.50

60 21.50 0.5 34.85 0.4 13.58

70 38.33 0.6 45.00 0.5 13.12

80 57.40

Avg 27.36 Avg 27.36 Avg 27.36

10.2.4. Performance Assessment of the New Exact Solution Methods

10.2.4.1. Most Effective Branching Rule. The number of test instances which can be

solved to optimality within one hour is counted for every method and listed in the first

row of Table 10.7. For test instance k, let LBk
i be the lower bound given by method i

and maxLBk is the maximum of the lower bounds given by all methods. Notice that

if a method finds an optimal solution the lower bound becomes equal to the optimum

objective value. The performance measure

LBdevki = 100× (maxLBk − LBk
i)

maxLBk
(10.1)

is calculated for every instance k and method i. When we take the average of LBdevki

values over k, we obtain a statistic that shows the quality of the lower bounds produced

133

by algorithm i,

LBdevi =

∑80
k=1 LBdev

k
i

80
. (10.2)

The average of percent deviations of the lower bounds from the best value, i.e.

LBdevi, are listed in the second row of Table 10.7. A similar measure can be calcu-

lated for the upper bounds but the quality of the upper bound mostly depends on the

quality of the diving heuristic, which is common for all algorithms, so it is not calcu-

lated here. According to the results, there is a strong correlation between the number

of instances solved optimally and the average deviation from the best lower bound.

BB with pair branching rule is able to solve 7 instances optimally within one hour

with the worst lower bound performance among all methods. Pair branching produces

successful results compared to earlier versions of CPLEX used for the transportation

problem with exclusionary side constraints in [50]. Since pair branching produces very

large BB trees even for small MCFPC instances, it cannot outperform CPLEX which

solves optimally 31 and 59 instances with strong and weak formulations, respectively.

Since more instances are solved optimally, the average deviation from the best bound is

smaller for the weak formulation as indicated in the table. In theory, the relaxation of

the weak one is solved faster producing worse lower bound compared to the strong for-

mulation. Clearly, its advantages outweigh the drawbacks and CPLEX’s performance

on weak formulation is set as the benchmark for the new algorithms and the results of

the strong formulation are not considered.

Both clique and arc branching rules of BB give better results than CPLEX on

strong formulation but BB with clique branching, which finds optimum solution of 53

instances, has been outperformed by CPLEX on weak formulation in terms of both

performance indicators. Clique branching rule will not be discussed any more due to

the fact that BB approaches have a lot in common theoretically and arc branching rule

is more successful. The number of instances solved to optimality by RDS and BB-Arc

(i.e. BB with arc branching rule) are 67 and 70, respectively. The first row of Table

10.7 includes the number of test instances solved optimally within one hour of running

134

time. The numbers of the second row are the LBdevi values (i.e. relative percent

deviation of the lower bounds) for different methods. At sum, this table reveals that

BB provides the highest lower bound for every single instance finding the maximum

number of optimum solutions and RDS is the second most successful algorithm in terms

of both performance measures.

Table 10.7. Solution performance of different methods: total number of solved

instances and LBdevi values.

CPLEX-Strong CPLEX-Weak BB-Arc BB-Pair BB-Clique RDS

31 59 70 7 53 67

53.37 17.12 0.00 83.16 26.76 13.81

10.2.4.2. The Efficiency of the New Methods. In order to assess the effect of the pa-

rameters, the overall results given in Table 10.7 are grouped in terms of n, p and d

values. One of the performance measures is sufficient for aggregation since the two of

them are strongly correlated with each other. Table 10.8 reveals that RDS becomes less

successful as the number of nodes increases. Although there seems to be a downward

trend in the performance of BB-Arc and CPLEX-Weak as the number of vertices n

increases, it is not significant. An increase in n causes slight decreases in the perfor-

mance of RDS due to the fact that it indirectly increases the number of arcs, i.e. the

number of vertices in the conflict graph. Finding maximal stable sets becomes more

time-consuming as the number of vertices in the conflict graph increases.

According to Table 10.9, all methods show better performance as conflict density

increases and perform worse as arc density increases. A higher arc density directly

affects the depth of BB and RDS search trees, i.e. we need to do more branching to

find a conflict-free solution or a maximal stable set of the conflict graph. Also, one

additional arc results in two additional variables and one more constraint in the MILP

formulation, hence CPU times of CPLEX increase. Notice that the slope of the change

is steeper for CPLEX, i.e. the performance of CPLEX is more sensitive to changes in p.

On the other hand, increasing conflict density does not change the number of variables

135

Table 10.8. The effect of the number of vertices.

n BB-Arc RDS CPLEX-W

40 15 15 15

50 16 15 14

60 13 13 9

70 14 13 12

80 12 11 9

Total 70 67 59

or constraints in the weak formulation but some of the new constraints dominate the

previous ones providing a restricted solution space. The reason why CPLEX is faster

with higher d values is the improved quality of lower bounds produced by the more

restricted LP relaxation. Also, branching rules associated with BB and RDS allow

them to remove more arcs per subproblem as the value of d increases.

Table 10.9. The number of optimally solved instances aggregated over p and d values.

p BB-Arc RDS CPLEX d BB-Arc RDS CPLEX

0.3 19 19 18 0.2 12 9 7

0.4 20 18 15 0.3 18 18 15

0.5 16 16 15 0.4 20 20 18

0.6 15 14 11 0.5 20 20 19

Total 70 67 59 Total 70 67 59

Another indicator that measures the efficiency of the algorithm is the CPU times.

First we detected 59 test problems that are solved optimally by all three solution

approaches within one hour CPU time limit. We take the average CPU times of these

instances in order to evaluate the algorithms appropriately. According to Table 10.10,

where the average CPU times taken over optimally solved 59 instances are reported,

BB is 31 and RDS is 10 times faster than CPLEX.

136

Table 10.10. Average CPU times in seconds.

BB-Arc RDS CPLEX-W

23.28 73.03 719.74

10.2.5. The Effect of Local Procedures

It is also possible to evaluate the effect of each procedure mounted inside the

algorithms. For instance, local application of the preprocessing steps prior to each

subpoblem, both in BB and RDS, has an obvious positive impact on the efficiency of

the solution procedures. It removes 7.97% of the arcs per subproblem on the average

and the range is [1.05, 18.71]. The instances with high percentages, closer to the upper

limit of the range, are observed to be solved quickly. Another procedure is the penalty

calculation which caused 0.27% of the prunings (i.e. 0.27% of all pruned subproblems

is a consequence of the improvement made in the lower bound due to the penalty

calculations). The high frequency of degenerate solutions and the early application

of local preprocessing can be accounted for this ignorable percentage attributed to

penalties. Moreover, the average percentage of all arcs which are fixed by pegging per

subproblem is 1.55%. Although this percentage seems very low, it is a consequence of

the local preprocessing steps which delete a considerable number of nonpromising arcs.

The power of pegging can be better observed when the local preprocessing procedures

are turned off. If we do not call the described local procedures, 4.64% of all arcs are

fixed per subproblem through pegging, on the average. Due to the fact that local

preprocessing steps improve the overall performance, they are utilized in the final form

of the algorithm.

137

10.3. Computational Study for the Maximum Flow Problem with Conflicts

10.3.1. Test Environment

The performance of every algorithm is evaluated over a set of randomly generated

instances which are guaranteed to have at least one nonzero feasible solution for MFPC.

As the initial step of the arc generation process, an arbitrary directed path from s to

t is constructed, and the minimum possible flow capacities are assigned so that the

permitted flow on this path is unlikely to be the maximum flow from source to sink.

Then, additional arcs with various flow capacities are defined on the network. Finally,

the conflict lists are created randomly by ensuring that none of the arcs in the initially

created s-t path conflict with each other. This final step provides at least one feasible

solution with nonzero objective value for MFPC, and the small capacities of the arcs

on the path make it a less attractive choice.

There exist three parameters determining the size of a test instance: the num-

ber of vertices n = |V (N)|, the arc density p = m
n(n−1)

where m = |A(N)|, and the

conflict density d = 2w
m(m−1)

with w = |E(C)|. The values of these parameters are

selected from the following sets: n ∈ {40, 50, 60, 70, 80}, p ∈ {0.3, 0.4, 0.5, 0.6}, and

d ∈ {0.3, 0.4, 0.5, 0.6}. For every combination of parameter values, two test instances

are generated, which makes a total of 2× 5× 4× 4× = 160 instances. We remark that,

parameter values outside the selected ranges render too small or too large instances,

for which either all algorithms find an optimal solution within a few seconds or none

of them produces a feasible solution. The results are presented in Table 10.11 – Ta-

ble 10.18 in an aggregated fashion. The details can be found in Table A.6 – Table

A.12 given in the Appendix. They include computational results for each individual

instance.

New BD, BB and RDS algorithms are tested on the generated instances by

comparing the results with the MILP solver of CPLEX (version 12.7) on the strong

(MFPCS), weak (MFPCW), and clique (MFPCK) formulations. In addition, the per-

formance of the built-in Benders decomposition algorithm of CPLEX is compared with

138

that of our BD algorithm. No exact solution procedure solving MFPC exists in the lit-

erature to the best of our knowledge. Therefore, CPLEX is selected as the benchmark

to assess the efficiency of the algorithms.

All of the algorithms are implemented in C++ environment [101] and the solution

of the MFP relaxation within the algorithms is obtained by Goldberg’s preflow-push

algorithm implemented in LEMON (version 1.3.1) [97]. The experiments are carried out

with one hour CPU time limit on a workstation with Microsoft Windows 7 Professional

operating system, Intel Xeon CPU E5-2687W 3.10 GHz processor and 64.0 GB RAM.

10.3.2. The Effect of the Formulation

From a theoretical point of view, solving the LP relaxation of MFPCS takes

longer while producing a better upper bound compared to MFPCW ’s. Hence, we expect

that solving the strong MILP formulation yields an optimal solution by creating fewer

subproblems, which are processed considerably faster than those obtained from the

weak MILP representation. According to the experimental results of our experiments,

the optimal solutions of 38 and 86 instances out of 160 are found within the allowed

CPU time limit by solving the strong and weak MILPs, respectively. Examining the

common 38 instances that are optimally solved with both formulations indicates that

MFPCW is solved about 8 times faster than MFPCS, on the average. When we take

into account the significant reduction in the number of constraints and the capability of

CPLEX to improve the quality of the bounds, the numerical results are not surprising.

CPLEX is able to solve the clique formulation, MFPCK , for 40 instances out

of 160, and it takes 15.74 seconds on he average to find the set of maximal cliques

that covers the edges of the conflict graph using the heuristic procedure described in

Section 4.5.2. Although the number of conflict constraints in MFPCK is about one-

eighth of those in MFPCS, it is still considerably larger than that of MFPCW . So,

the performance of CPLEX on the clique formulation is similar to that of the strong

formulation, MFPCS. To sum up, the advantages of MFPCW outweigh its drawbacks,

139

and the results obtained by CPLEX on the weak formulation are set as the benchmark

for the new algorithms.

10.3.3. The Comparison of Different Benders Decomposition Implementa-

tions

As explained before, BD can be applied on the strong, weak, and clique formula-

tions using either the classical iterative approach in which the master problem and the

subproblem are solved iteratively or by means of a single-search tree where the gener-

ated cuts are added by interrupting the ongoing branch-and-cut algorithm that solves

the master problem. Since there exist many alternatives, a set of experiments is carried

out with the naive version of BD (without strong cuts) to decide which combination

works the best. Among them, we have first combined MFPCS with the iterative BD

approach. This method is able to find the optimal solutions of 38 instances (see Table

10.11), which shows that this combination is far worse than our benchmark.

Table 10.11. Number of optimally solved instances in 1 hour.

Method Instances

Iterative (MFPCS) 38

Single Tree (MFPCS) 97

Single Tree (MFPCK) 85

Single Tree (MFPCW) 121

CPLEX BD (MFPCW) 43

In the next set of experiments, BD is applied to MFPCS again where the produced

Benders cuts are gradually added using a single-search tree. 97 instances are solved

optimally this time, and the results suggest that we should adopt the single-search tree

implementation. Then, BD is applied on MFPCK and MFPCW using a single-search

tree, and the optimal solutions of 85 and 121 instances are found, respectively, within

one hour.

140

Finally, we compare the performance of the built-in Benders decomposition of

CPLEX implemented on MFPCW , which appears to be the most suitable formulation

for BD. Although it gives slightly better results than the iterative approach in terms

of the number of instances solved optimally, it is not even close to the performance of

BD implementations on a single-search tree.

Table 10.12. Average number of generated cuts and average CPU times.

Method Benders Cuts CPU time (s)

Iterative (MFPCS) 34.86 819.89

Single Tree (MFPCS) 54.39 51.25

Single Tree (MFPCK) 56.93 106.86

Single Tree (MFPCW) 56.29 28.56

CPLEX BD (MFPCW) 46.07 704.75

For every method, we take average number of added Benders optimality cuts and

solution times over 28 instances whose optimal solutions are found by all four methods,

and list them in Table 10.12. In theory, single-search tree adds a cut whenever it finds

an integer solution for the master problem, and continues from the current node of

the search tree at which the integer solution is found. In contrast, the iterative BD

method generates a Benders optimality cut and resolves a more constrained master

problem from the very beginning. Results indicate that we end up with consistently

fewer Benders cuts before the optimal solution is found with the iterative BD. This

outcome supports the claim that the iterative approach generates stronger cuts. How-

ever, the inefficiency originating from repeatedly solving the master problem cannot be

compensated by the strength of the obtained cuts. On the other hand, the results show

that the quality/strength of the produced Benders cuts does not change significantly

across different formulations. It is not surprising due to the fact that the subproblem

remains unchanged for all formulations. The average CPU times clearly reveal that

the single-search tree approach with weak representation outperforms the others, and

it appears to be the best way of implementing Benders decomposition for our problem.

141

10.3.4. Improvements for the Benders Decomposition Algorithm

The utilization of strong cuts, valid inequalities, and an initial upper bound does

not have the same impact on the performance of BD applied to different formulations.

As the results in Table 10.13 indicate, the number of instances whose optimal solution

is found within one hour CPU time limit increases from 121 to 128 in the case of

MFPCW , and from 85 to 87 for MFPCK . However, the aforementioned improvements

do not help in solving MFPCS. When the experimental results are analyzed in detail,

it is observed that the master problem of MFPCS becomes more difficult to be solved

with the addition of valid inequalities, and the solution time of BD is influenced in a

negative way. This finding is also valid in the case of MFPCK for some instances where

the number of constraints is relatively higher.

Table 10.13. The number of optimally solved instances for different versions of BD.

Algorithm MFPCS MFPCK MFPCW

Naive BD 97 85 121

Improved BD 84 87 128

Since BD on the weak formulation MFPCW gives the best results, we continue our

analysis with MFPCW . For 121 instances which are solved optimally with both naive

and improved BD, the average CPU time is reduced from 544.00 to 408.53 seconds. In

other words, the proposed improvements decrease the solution time by 24.90%, on the

average.

According to the results of the improved BD experiments, 62% of the created sub-

problems provide a nonzero feasible flow from s to t for the original problem MFPCW ,

whereas the percentage of subproblems that do not contain a directed s-t path is 38%.

142

10.3.5. Efficiency of the Exact Algorithms

In order to measure the performance of the exact algorithms, we check the quality

of the bounds as well as the number and CPU times of the test instances that can be

solved optimally within one hour CPU time limit. For an instance k, let LBk
i and UBk

i

denote the lower and upper bounds computed by method i, and maxLBk and minUBk

denote the maximum of the lower bounds and the minimum of the upper bounds given

by all methods. Notice that if an algorithm finds an optimal solution, the lower and

upper bounds become equal to the optimal objective value. The performance indicators

LBdevki = 100× (maxLBk − LBk
i)

maxLBk
(10.3)

and

UBdevki = 100× (UBk
i −minUBk)

minUBk
(10.4)

measure the deviations from the best known bounds, and are calculated for every

instance k and method i. When we take the average of LBdevki and UBdevki values

over 160 instances, we obtain the following two statistics showing the quality of the

lower and upper bounds produced by algorithm i:

LBdevi =

∑160
k=1 LBdev

k
i

160
(10.5)

and

UBdevi =

∑160
k=1 UBdev

k
i

160
. (10.6)

Obviously, the algorithms with the least LBdevi and UBdevi values are the most

successful ones in terms of the bound quality. The results are summarized in Table

143

10.14 for methods BB, RDS, and BD on MFPCW , which is denoted by BDW , and

compared with the results of CPLEX on the weak formulation denoted as CPLEXW .

Table 10.14. Solution performance of different methods.

Algorithm Instances CPU times LBdev UBdev

CPLEXW 86 656.73 3.12 69.93

BDW 128 106.62 2.37 5.08

BB 117 85.95 0.96 2.11

RDS 128 44.56 1.70 106.27

The number of test instances optimally solved within one hour is determined

for every method, and listed in the second column of Table 10.14. The developed

algorithms are well ahead of the CPLEXW while BDW and RDS seem to be the most

successful ones in finding optimal solutions. For the purpose of comparing the speed of

the algorithms, the average CPU times are calculated over 84 instances whose optimal

solutions are found by all four methods. They are written in the third column of Table

10.14. RDS is almost 15 times faster than CPLEXW while BB and BDW are 7.5 and

6 times more efficient than CPLEXW , respectively.

The average percent deviations of the bounds from the best bounds, i.e. LBdevi

and UBdevi, are provided in the fourth and fifth columns. According to the results, the

quality of the produced lower bounds does not differ too much but BB appears to be

the algorithm that gives the best lower bounds (or best feasible solutions). CPLEXW

and RDS are not capable of providing good upper bounds. Since RDS is working

according to the depth-first search principle, this outcome is expected. The other two

methods yield relatively better upper bounds where BB turns out to be the winner

among the proposed solution methods.

144

10.3.6. Effect of Instance Size on the Performance

In order to assess the effect of the instance size on the performance of the methods,

the results given in Table 10.14 are grouped in terms of n, p and d. Although it is

possible to do this aggregation over four different presented performance measures,

they are not independent from each other. Hence, it suffices to consider only one of

them, namely the number of optimal solutions found within one hour time limit. Table

10.15 reveals that there is an obvious downward trend in the efficiency of the solution

methods as n increases, and the rate of degradation is the highest for CPLEXW . While

all of them are able to solve all test instances with 40 vertices, CPLEXW can solve only

2 out of 32 instances with 80 vertices. The performance of the remaining algorithms

deteriorates as well, but considerably slower. They are capable to find optimal solutions

of around half of the instances even for n = 80.

Table 10.15. The effect of the number of vertices.

n CPLEXW BDW BB RDS

40 32 32 32 32

50 28 31 29 30

60 17 27 22 26

70 7 22 19 23

80 2 16 15 17

Total 86 128 117 128

According to Table 10.16, all methods perform better as the conflict density

increases and worse as the arc density increases. A higher arc density directly affects

the depth of the BB and RDS search trees, i.e. we need to do more branching to

find a feasible solution. When we consider the weak MILP formulation, an additional

arc results in two additional variables and one more constraint hence augmenting the

required CPU times of CPLEXW and BDW . Notice that the rate of change is steeper

for CPLEXW ; the performance of CPLEXW is more sensitive to changes in p.

145

Table 10.16. The effect of the arc density

p CPLEXW BDW BB RDS

0.3 32 38 34 37

0.4 22 33 31 35

0.5 19 30 28 31

0.6 13 27 24 25

Total 86 128 117 128

On the other hand, a higher conflict density does not change the number of vari-

ables or constraints in the weak formulation but some of the new constraints dominate

the previous ones providing a more restricted solution space. For higher d values, more

restricted LP relaxations speed up CPLEXW and the master problem of BDW . Also,

branching rules associated with BB and RDS allow them to remove more arcs per sub-

problem as d increases. The computational results in Table 10.17 point out that the

algorithms become more successful with increasing d values.

Table 10.17. The effect of the conflict density

d CPLEXW BDW BB RDS

0.3 16 20 14 19

0.4 19 31 25 31

0.5 24 37 38 38

0.6 27 40 40 40

Total 86 128 117 128

One interesting result is obtained for d = 0.3 where the number of optimally

solved instances by CPLEXW , (i.e. 16), is larger than the one of those solved by

BB, which is 14. This fact could be perceived as an indicator that CPLEXW is more

successful than BB for d values equal to 0.3. In order to make sure that this is really

the case, we check the other performance measures for this subgroup of instances and

146

report the results in Table 10.18. LBdev and UBdev values confirm that the produced

bounds are significantly better for the BB algorithm and the average solution time

calculated over 14 common instances solved by both CPLEXW and BB is considerably

shorter for BB. The superiority of other efficiency indicators does not support the claim

that CPLEXW outperforms BB when d = 0.3.

Table 10.18. Comparison of CPLEXW and BB for d = 0.3.

Algorithm Instances CPU times LBdev UBdev

CPLEXW 16 577.66 4.17 24.93

BB 14 351.26 2.46 5.18

10.4. Computational Study for the Assignment Problem with Conflicts

10.4.1. Test Environment

In the literature, there is no standard test library for the APC. To the best of our

knowledge the only works addressing the APC are [57,58,60]. Hence, we have generated

new and larger test instances following the instance generation procedure suggested in

these works. Our test bed consists of 135 test problems of various sizes. The number of

nodes in the left hand-side of the bipartite graph G = (V1(G)∪ V2(G), E(G)) is shown

with |V (G)| and selected between 15 and 500. The number of distinct conflict pairs,

i.e. |E(C)|, ranges between 5, 000 and 200, 000.

Now we introduce the details of the computational experiments. The algorithms

are coded in C++ [101] and tested on a PC with 2.2 GHz Intel Core i7 processor and 8

GB RAM operations within 64-bit Windows 7 environment. CPLEX 12.7 with default

options is used as a subroutine to solve the resulting BIP and LP problems.

The computational experiments are summarized in Table 10.19 – Table 10.26.

The numbers reported in all tables, except the ‘Average’ row, represent the overall

147

average values of 5 randomly generated test instances. The row ‘Average’ in all tables

indicate the overall average values of the corresponding columns. In all tables, the first

two columns, i.e. columns ‘|V (G)|’ and ‘|E(C)|’ include the number of vertices and

conflict pairs in the test instances, respectively. We report CPU times in seconds under

‘CPU’ columns. In our experiments, we have imposed a CPU time limit of one hour.

Hence, in Table 10.22 the instances which cannot be solved within the CPU limit of

one hour are marked with ‘na’.

In Table 10.19 – Table 10.26, rather than reporting the exact values of the upper

and lower bounds obtained during our experiments, we present percent deviations from

the optimal value. Namely, we calculate percent deviations of upper and lower bounds

from the optimal objective value as 100× (zub−z∗)
z∗

and 100× (z∗−zlb)
z∗

respectively. Here,

zub (zlb) stands for the best upper (lower) bound and z∗ denotes the optimum value of

the APC.

10.4.2. The Effect of the Formulations

Table 10.19 summarizes computational results obtained with the BIP formula-

tions and the results obtained with the RDS algorithm. The third column, i.e. the

column ‘OPT’, is for the average optimal values. The next six columns are for the

CPLEX when we solve optimally WEAK and STRONG formulations with a CPU time

limit of one hour. The ‘Best Sol.’ columns, namely the fourth and seventh columns,

include an optimal or best feasible solution values during the search of the BB tree with

CPLEX. The ‘Nodes’ columns include the number of nodes processed by CPLEX. The

CPU times are given with ‘CPU’. The last three columns incorporate results obtained

with the RDS algorithm. The tenth column, namely ‘Best UB’, includes the percent

deviation of the incumbent solution from the optimum solution value when the RDS

algorithm is stopped. The eleventh column, i.e. ‘Explored Nodes’, reports the number

of nodes of the BB tree explored during the run of the RDS algorithm. The last column

stands for the CPU time in seconds.

148

Considering the results in Table 10.19, we can conclude that WEAK formulation

yields an optimal or best solutions faster with an overall CPU time average of 316.91

secs. CPU time, though exploring larger number of nodes, when compared with the

STRONG formulation, which requires 371.19 secs. overall average CPU time. Besides,

in 23 out of 27 cases, WEAK formulation outperforms STRONG formulation. As a

result, we can argue that the BIP performance of the WEAK formulation is better than

that of the STRONG formulation. Note that, we cannot reach the optimum within

the CPU time limit in all cases. As for example, for a few instances with |V (G)| = 40

and |E(C)| = 60, 000 CPLEX could not yield optimal solution within one hour for

both formulations. On the other hand, one can observe that in overall average the

RDS algorithm does not outperform the best performing BIP formulation, i.e. WEAK

formulation, solved to optimality with CPLEX (671.47 secs. vs 316.91 secs). However,

in 15 out of 27 cases, which are indicated in boldface, the RDS algorithm runs faster

than CPLEX.

10.4.3. The Effect of the Branching Rules

According to our preliminary experiments, we have observed that, among all com-

bination of subproblem selection rules, i.e. depth first search (DFS), breadth first search

(BFS), smallest lower bound (SLB), largest lower bound (LLB), branching rules, i.e.

conflicting pair branching, conflicting edge branching, conflicting edge-pair branching,

clique-0 branching, clique-1 branching, and conflicting pair selection rules, i.e. largest

number of conflicts and strong branching, we obtain the best results in terms of both

accuracy and efficiency when DFS subproblem selection rule is applied together with

the conflicting edge branching and strong branching strategy. Therefore, we do not

report the results obtained with other combinations of these rules.

In Table 10.20 we present the effect of three straightforward branching rules,

i.e. conflicting edge branching rule, conflicting pair branching rule and conflicting

edge-pair branching, on the performance of the BB algorithm. Columns 3 – 6 are

for the results with conflicting edge branching, columns 7 – 11 include the results

obtained with conflicting pair branching rule and the last four columns report the

149

results with conflicting edge-pair branching rule. Recall that, in all three cases we

use DFS to select subproblems from the active node list L and strong branching for

selecting conflicting pairs. Recall that the columns ‘Explored Nodes’ list the number

of subproblems processed by the BB algorithm. The columns ‘Active Nodes’ include

the number of unprocessed problems when the BB algorithm stops. Notice that when

the BB algorithm stops with 0 number of active nodes then the optimum is reached.

When we consider the conflicting edge branching rule, we observe that in all cases,

except for |V (G)| = 100 and |E(C)| = 350, 000, the optimum is reached. Therefore,

we can conclude that conflicting edge branching rule outperforms the other two rules

in terms of both accuracy and efficiency.

Table 10.21 includes the results obtained when we apply clique branching rules.

Columns 3 – 7 incorporate the results obtained with clique-0 branching rule and

columns 8 – 12 report the results obtained with clique-1 branching rule. In the col-

umn under ‘Cliques’ we report the number of maximal cliques of the conflict graph

C = (V (C), E(C)) generated during the BB algorithm for clique branching. To this

end, at each active node of the BB tree, i.e. a problem from L, we perform the greedy

heuristic described in Figure 8.1 which detects a maximal cardinality clique including

the selected conflicting edge pair. When the size of the maximal clique is larger than

or equal to three we apply one of the clique branching rules, for the other case we

consider conflicting edge branching rule. As it can be observed from Table 10.21, the

clique branching rules do not perform better than conflicting edge branching rule.

Recall that, in the computational experiments summarized in Table 10.20 – Table

10.22 we have employed the strong branching for the conflicting pair selection rule.

Next, Table 10.23 includes the results obtained with another conflict pair selection

rule, i.e. the largest number of conflicts rule. To be precise, columns 4 – 7 are for the

results obtained with strong branching rule and columns 8 – 11 incorporate results with

the largest number of conflicts rule. As it can be observed from Table 10.23, strong

branching arises to be more efficient than the largest number of conflicts (262.05 secs.

vs. 799.09 secs. average CPU times). Moreover, in 24 out of 135 test instances we

150

could not reach the optimum with the largest number of conflicts. However, this value

is 5 out of 135 for the strong branching.

10.4.4. The Effect of the Subproblem Selection Rules

In Table 10.22 we present the results obtained with four subproblem selection

rules together with the conflicting edge branching rule and strong branching strategy.

Columns 3 – 6 are for the DFS rule, columns 7 – 10 incorporate the results with the

BFS rule, the columns 11 – 14 include the results with SLB and the last four columns

report the results with the LLB. As it can be observed from Table 10.22, with the BFS

rule the BB algorithm cannot find an optimal solution in 8 out of 27 cases within the

CPU time limit of one hour. Similarly, when SLB (LLB) is applied we cannot reach

the optimum for 10 (1) cases. Considering the percentage gap from the optimum value,

we can say that both DFS and LLB outperform the other two subproblem selection

strategies. However, when we take into account the CPU times, DFS arises to be the

best subproblem selection strategy. As a final remark, we should point that when we

do not consider the case |V (G)| = 100 and |E(C)| = 350, 000, the overall average CPU

time requirement with DFS decreases down to 133.67 secs. while this value is 559.21

secs. for the LLB.

10.4.5. The Effect of the Initial Upper Bound

Considering the outputs reported in Table 10.20 – Table 10.22 and Table 10.23, we

can say that it is reasonable to proceed with the combination of DFS, conflicting edge

branching and strong branching strategies. As we have already discussed in Section

3.1.1 the quality of the initial upper bound value considerably affects the overall per-

formance of the BB algorithm. Table 10.24 includes the experimental results obtained

with the initial upper bound z which is set to the solution value calculated by the local

search algorithm introduced in Section 3.1.1. and with the initial upper bound z, which

is set to an arbitrarily large value. In columns 3 – 4 we give the results obtained with

the local search algorithm. Recall that, when local search finds a feasible solution then

the current solution is perturbed in order to search other regions of the solution space.

151

The number of perturbations is set to |V (G)|. Columns 5 – 8 (9 – 12) include results

when BB algorithm starts with finite initial upper bound our local search heuristic

computes (an arbitrarily large value). As it can be observed, the efficiency of the BB

algorithm depends on the quality of the initial upper bound. Observe that, the average

CPU time requirement decreases from 296.58 secs. to 262.05 secs. when local search

is run to obtain an initial upper bound value z for the BB algorithm. Note that the

computation times required by the local search heuristic are not taken into account

in the CPU times of the BB algorithms, which we report in the corresponding ‘CPU’

columns.

10.4.6. The Effect of Probing

Next, in Table 10.25, we report the results on the effect of probing on the per-

formance of the BB algorithm. The columns ‘Probings’ stand for the number of nodes

where probing has been applied. Columns 3 – 7 incorporate the results obtained when

probing has been applied in the first 100 iterations of the BB algorithm. Columns 8 –

12 (13 – 17) are for the results when probing has been applied in the first 1, 000 (10, 000)

iterations. As it can be observed from Table 10.25, when probing is applied in the first

100 iterations, a slight decline occurs in the efficiency of the BB algorithm compared

to the results reported in columns 3 – 6 of Table 10.23, (262.05 vs. secs. to 285.34 secs.

average CPU times). However, when we apply for the first 1, 000 iterations or more, it

seems that the efficiency of the BB algorithm deteriorates even further, which can be

attributed to the excessive CPU time requirement of the probing procedure.

10.4.7. The Effect of Pegging

Finally, Table 10.26 summarizes the results obtained when pegging heuristic is

performed within the BB algorithm and the initial upper bound z is set to infinity.

The columns ‘Peggings’ stand for the number of edges in E(G) pegged during the run

of the BB algorithm. The columns 3 – 5 stand for the best results obtained with two

BIP formulations, i.e. WEAK and STRONG formulations. Columns 6 – 10 include

results obtained when pegging heuristic is called within the BB algorithm. Note that

152

the results reported in the last five columns are the best among all results obtained

with the BB algorithms presented so far. As it can be observed, the performance of

the BB algorithm considerably improves when we employ pegging heuristic together

with the optimum initial upper bound values. Namely, the overall average CPU time

of the BB with pegging is significantly shorter (247.31 secs. on the average) than the

CPU times reported with the Best of BIP Models (i.e. 316.91 secs. on the average).

Notice also that BB with pegging is the winner in 21 out of 27 cases.

T
ab

le
10

.1
9.

P
er

fo
rm

an
ce

of
th

e
fo

rm
u
la

ti
on

s
an

d
th

e
R

D
S

al
go

ri
th

m
.

W
E

A
K

fo
rm

u
la

ti
o
n

-
B

IP
S
T

R
O

N
G

fo
rm

u
la

ti
o
n

-
B

IP
R

D
S

|V
(G

)|
|E

(C
)|

O
P

T
B

e
st

S
o
l.

N
o
d
e
s

C
P

U
B

e
st

S
o
l.

N
o
d
e
s

C
P

U
B

e
st

U
B

E
x
p
lo

re
d

N
o
d
e
s

C
P

U

1
5

5
0
0
0

2
2
4
6
.2

0
.0

0
1
2
0
0
6
.0

1
3
.2

0
.0

0
1
8
8
3
.8

5
0
.7

0
.0

0
1
6
8
3
3
0
.0

3
.6

2
0

1
0
0
0
0

2
4
5
0
.8

0
.0

0
1
2
0
9
6
2
.4

1
3
0
.1

0
.0

0
2
6
7
2
1
.4

1
6
7
.9

0
.0

0
3
6
2
0
1
7
.2

1
3
.1

3
0

2
0
0
0
0

3
2
4
7

0
.0

0
9
3
9
5
.8

2
5
.8

0
.0

0
3
6
7
8
.8

3
3
.2

0
.0

0
1
2
3
8
5
4
.4

1
1
.5

3
0

3
0
0
0
0

3
3
5
5
.8

0
.0

0
4
7
9
9
3
8
.2

1
6
5
0
.3

0
.0

0
1
5
8
1
1
1
.0

2
4
7
1
.6

0
.0

0
7
4
1
9
3
9
0
.0

6
3
7
.4

4
0

4
0
0
0
0

4
2
0
5

0
.0

0
3
7
3
1
.0

1
2
.2

0
.0

0
1
0
6
5
.0

1
8
.2

0
.0

0
1
4
1
2
2
3
.6

2
4
.7

4
0

6
0
0
0
0

4
2
8
3
.4

0
.0

1
7
0
2
3
7
6
.2

3
5
0
8
.5

0
.1

1
1
3
1
2
6
8
.0

3
6
0
0
.1

0
.2

9
2
2
9
5
3
7
9
0
.0

3
4
0
2
.9

5
0

5
0
0
0
0

5
1
8
3
.4

0
.0

0
7
3
4
.6

7
.6

0
.0

0
2
0
4
.2

7
.1

0
.0

0
1
2
7
5
5
9
.2

3
9
.4

5
0

6
0
0
0
0

5
1
8
6
.2

0
.0

0
2
1
1
8
.2

1
4
.9

0
.0

0
4
2
2
.6

1
5
.4

0
.0

0
7
1
5
8
1
2
.8

1
9
7
.5

6
0

8
0
0
0
0

6
1
6
3
.6

0
.0

0
5
7
6
.8

1
0
.6

0
.0

0
3
2
0
.0

1
1
.8

0
.0

0
1
6
6
8
6
7
.8

7
7
.6

7
0

1
0
0
0
0
0

7
1
5
6
.8

0
.0

0
8
5
.6

9
.2

0
.0

0
0
.0

9
.7

0
.0

0
7
4
0
4
8
.2

5
4
.7

7
0

1
5
0
0
0
0

7
1
6
6
.8

0
.0

0
6
0
6
5
.4

4
6
.7

0
.0

0
1
9
1
0
.6

8
0
.8

0
.0

1
3
0
2
4
9
8
3
.4

2
0
7
0
.7

8
0

2
0
0
0
0
0

8
1
5
4
.2

0
.0

0
1
7
5
7
.0

3
4
.4

0
.0

0
7
5
3
.2

5
1
.6

0
.0

5
2
7
0
9
0
9
8
.6

2
6
6
7
.9

9
0

2
5
0
0
0
0

9
1
5
7
.2

0
.0

0
5
6
6
9
.0

6
8
.5

0
.0

0
1
8
7
6
.6

1
8
1
.4

0
.0

7
2
7
8
3
7
8
4
.4

3
5
9
9
.6

1
0
0

1
0
0
0
0
0

1
0
1
1
8
.8

0
.0

0
0
.0

7
.8

0
.0

0
0
.0

1
0
.6

0
.0

0
2
9
6
6
.6

6
.5

1
0
0

2
5
0
0
0
0

1
0
1
4
4

0
.0

0
7
2
7
.6

2
3
.9

0
.0

0
1
0
9
.0

3
2
.1

0
.0

1
6
8
2
4
4
0
.8

1
2
4
2
.8

1
0
0

3
5
0
0
0
0

1
0
1
6
0

0
.0

0
1
0
6
6
9
.0

1
4
9
.9

0
.0

0
3
8
2
1
.8

4
2
1
.2

0
.4

2
2
7
4
6
5
9
8
.4

3
5
9
9
.4

1
5
0

2
0
0
0
0
0

1
5
0
9
3
.6

0
.0

0
0
.0

1
5
.3

0
.0

0
0
.0

2
0
.9

0
.0

0
1
6
9
.0

1
.3

1
5
0

3
5
0
0
0
0

1
5
1
0
2
.2

0
.0

0
0
.0

2
2
.7

0
.0

0
0
.0

3
4
.2

0
.0

0
1
7
1
9
1
.4

1
1
7
.5

1
5
0

5
0
0
0
0
0

1
5
1
0
5
.8

0
.0

0
0
.0

3
3
.8

0
.0

0
0
.0

5
2
.0

0
.0

0
4
7
6
7
0
.8

3
3
7
.1

2
0
0

2
0
0
0
0
0

2
0
0
7
7
.4

0
.0

0
0
.0

3
9
.3

0
.0

0
0
.0

4
3
.4

0
.0

0
2
4
.0

0
.4

2
0
0

4
0
0
0
0
0

2
0
0
8
2
.8

0
.0

0
0
.0

4
6
.5

0
.0

0
0
.0

5
9
.1

0
.0

0
3
7
2
.8

6
.5

2
5
0

5
0
0
0
0
0

2
5
0
5
8
.4

0
.0

0
0
.0

9
9
.5

0
.0

0
0
.0

1
1
5
.8

0
.0

0
1
9
6
.2

6
.6

2
5
0

7
0
0
0
0
0

2
5
0
5
7
.8

0
.0

0
0
.0

1
0
6
.8

0
.0

0
0
.0

1
3
1
.6

0
.0

0
8
4
.4

2
.9

3
0
0

1
0
0
0
0
0

3
0
0
4
2
.4

0
.0

0
0
.0

1
8
4
.1

0
.0

0
0
.0

1
7
7
.9

0
.0

0
3
.0

0
.2

3
0
0

3
0
0
0
0
0

3
0
0
4
0
.6

0
.0

0
0
.0

1
8
8
.6

0
.0

0
0
.0

1
9
5
.0

0
.0

0
7
.0

0
.6

4
0
0

2
0
0
0
0
0

4
0
0
1
6
.6

0
.0

0
0
.0

6
0
8
.8

0
.0

0
0
.0

5
9
1
.1

0
.0

0
2
.4

0
.3

5
0
0

2
0
0
0
0
0

5
0
0
0
6
.2

0
.0

0
0
.0

1
4
9
7
.3

0
.0

0
0
.0

1
4
3
7
.9

0
.0

0
2
.0

6
.9

A
v
e
ra

g
e

1
4
2
2
4
.5

6
0
.0

0
1

5
0
2
5
2
.3

3
3
1
6
.9

1
0
.0

0
4

1
2
3
0
1
.7

0
3
7
1
.1

9
0
.0

3
1
6
3
9
5
7
3
.6

4
6
7
1
.4

7

T
ab

le
10

.2
0.

P
er

fo
rm

an
ce

of
th

e
st

ra
ig

h
tf

or
w

ar
d

b
ra

n
ch

in
g

ru
le

s

D
F

S
(c

o
n
fl

ic
ti

n
g

e
d
g
e

b
ra

n
c
h
in

g
)

D
F

S
(c

o
n
fl

ic
ti

n
g

p
a
ir

b
ra

n
c
h
in

g
)

D
F

S
(c

o
n
fl

ic
ti

n
g

e
d
g
e
-

p
a
ir

b
ra

n
c
h
in

g
)

B
e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
|V

(G
)|

|E
(C

)|
U

B
N

o
d
e
s

N
o
d
e
s

U
B

N
o
d
e
s

N
o
d
e
s

U
B

N
o
d
e
s

N
o
d
e
s

1
5

5
0
0
0

0
.0

0
8
1
8
6
5
.8

0
.0

1
.7

6
.8

5
1
3
0
1
4
3
6
1
5
.8

9
5
.2

3
6
0
0
.0

0
.0

0
8
1
7
5
2
.2

0
.0

0
2
.1

2
0

1
0
0
0
0

0
.0

0
1
7
2
7
1
7
.4

0
.0

5
.0

6
.0

9
8
6
3
8
9
6
9
6

7
7
.6

3
6
0
0
.0

0
.0

0
2
8
9
2
7
5
.8

0
.0

0
9
.8

3
0

2
0
0
0
0

0
.0

0
5
1
0
2
2
.4

0
.0

2
.8

1
.6

2
4
8
4
9
0
3
5
4
.2

3
7
.8

3
6
0
0
.0

0
.0

0
1
4
8
6
3
2
.6

0
.0

0
9
.7

3
0

3
0
0
0
0

0
.0

0
1
8
3
1
4
2
7
.6

0
.0

1
2
0
.9

2
.8

1
4
1
1
4
4
0
3
2
.6

6
9
.2

3
6
0
0
.0

0
.0

0
3
3
0
0
2
4
2
.8

0
.0

0
2
2
2
.5

4
0

4
0
0
0
0

0
.0

0
3
0
3
1
8
.2

0
.0

2
.7

1
.9

5
2
6
5
6
2
3
7
9
.6

5
3

3
6
0
0
.0

0
.0

0
2
8
6
9
6
7
.4

0
.0

0
3
3
.6

4
0

6
0
0
0
0

0
.0

0
1
1
1
8
6
5
7
3
.4

0
.0

1
1
8
6
.0

2
.6

3
2
3
5
9
3
2
8
8
.8

9
0
.6

3
6
0
0
.0

0
.0

0
1
2
9
8
1
9
0
1

0
.0

0
1
2
9
9
.6

5
0

5
0
0
0
0

0
.0

0
2
0
1
5
3
.4

0
.0

2
.6

0
.9

2
1
7
7
4
8
9
3
5
.2

3
6
.4

3
6
0
0
.0

0
.0

0
1
6
4
7
3
9
.6

0
.0

0
2
6
.1

5
0

6
0
0
0
0

0
.0

0
2
4
5
6
4
.2

0
.0

3
.7

1
.6

0
1
7
0
2
6
7
1
9
.4

6
2
.6

3
6
0
0
.0

0
.0

0
6
8
0
2
3
0
.8

0
.0

0
1
0
5
.1

6
0

8
0
0
0
0

0
.0

0
2
2
3
0
8
.2

0
.0

4
.9

1
.3

9
1
2
0
6
1
3
4
0
.8

6
1
.4

3
6
0
0
.0

0
.0

0
8
8
8
0
7
5
.6

0
.0

0
1
9
5
.6

7
0

1
0
0
0
0
0

0
.0

0
7
4
9
8
.8

0
.0

2
.2

0
.4

0
6
5
9
8
8
5
5
.6

2
5
.0

2
6
2
4
.8

0
.0

0
3
8
9
5
1
9
.8

0
.0

0
1
1
8
.0

7
0

1
5
0
0
0
0

0
.0

0
3
0
1
7
9
5
.8

0
.0

9
3
.8

1
.7

6
8
2
3
3
5
8
4
.2

1
2
2

3
6
0
0
.0

0
.0

0
6
6
1
5
4
1
2
.2

0
.0

0
2
0
2
5
.3

8
0

2
0
0
0
0
0

0
.0

0
2
6
2
2
3
2
.2

0
.0

1
0
4
.1

0
.4

9
6
8
2
6
3
3
9
.6

4
5
.4

3
6
0
0
.0

0
.2

1
6
8
7
7
5
5
9

1
7
.4

0
2
9
9
8
.7

9
0

2
5
0
0
0
0

0
.0

0
2
5
4
5
1
6
9
.4

0
.0

1
3
7
0
.2

0
.4

7
4
8
6
1
2
5
8
.4

6
4
.4

3
6
0
0
.0

0
.2

4
6
6
3
0
5
6
3
.4

2
1
.0

0
3
4
2
8
.9

1
0
0

1
0
0
0
0
0

0
.0

0
9
3
1
.8

0
.0

0
.6

0
.0

0
8
5
7
0
.8

0
.0

6
.7

0
.0

0
1
8
8
2
3
.6

0
.0

0
1
2
.4

1
0
0

2
5
0
0
0
0

0
.0

0
9
8
6
8
5
7
.4

0
.0

5
3
6
.3

0
.2

7
3
4
9
4
5
2
2
.6

4
1
.8

3
0
1
7
.1

0
.0

7
3
5
1
0
7
7
2
.4

1
2
.0

0
2
2
4
6
.9

1
0
0

3
5
0
0
0
0

0
.1

1
5
6
7
6
5
5
5
.2

1
3
.2

3
6
0
0
.0

0
.3

9
3
7
2
2
1
9
9
.4

7
1
.4

3
6
0
0
.0

0
.3

7
5
5
4
4
8
2
5
.6

3
5
.8

0
3
6
0
0
.0

1
5
0

2
0
0
0
0
0

0
.0

0
1
0
1
.8

0
.0

0
.2

0
.0

0
2
9
1
.8

0
.0

0
.7

0
.0

0
3
0
5
9

0
.0

0
5
.0

1
5
0

3
5
0
0
0
0

0
.0

0
2
5
5
5
.2

0
.0

3
.9

0
.0

0
2
3
2
2
0

0
.0

4
7
.0

0
.0

0
1
3
1
9
9
3

0
.0

0
2
0
7
.9

1
5
0

5
0
0
0
0
0

0
.0

0
2
1
7
1
8
.6

0
.0

2
9
.5

0
.0

0
4
5
6
8
9
6
.8

0
.0

9
5
8
.9

0
.0

3
9
5
7
7
5
7
.8

5
.2

0
1
4
3
7
.5

2
0
0

2
0
0
0
0
0

0
.0

0
1
7
.8

0
.0

0
.1

0
.0

0
2
2
.8

0
.0

0
.1

0
.0

0
1
1
6
.8

0
.0

0
0
.4

2
0
0

4
0
0
0
0
0

0
.0

0
1
9
5
.6

0
.0

0
.9

0
.0

0
1
5
7
9
.2

0
.0

6
.8

0
.0

0
2
4
9
2

0
.0

0
8
.5

2
5
0

5
0
0
0
0
0

0
.0

0
1
0
3
.6

0
.0

0
.7

0
.0

0
2
3
1
.2

0
.0

2
.1

0
.0

0
6
8
3

0
.0

0
4
.3

2
5
0

7
0
0
0
0
0

0
.0

0
3
5
0
.2

0
.0

2
.2

0
.0

0
5
2
2
.6

0
.0

4
.1

0
.0

0
3
1
9
7
.4

0
.0

0
1
7
.8

3
0
0

1
0
0
0
0
0

0
.0

0
3
.2

0
.0

0
.1

0
.0

0
3
.8

0
.0

0
.1

0
.0

0
6
.6

0
.0

0
0
.1

3
0
0

3
0
0
0
0
0

0
.0

0
5
.6

0
.0

0
.1

0
.0

0
7
.4

0
.0

0
.1

0
.0

0
1
2

0
.0

0
0
.1

4
0
0

2
0
0
0
0
0

0
.0

0
2
.0

0
.0

0
.1

0
.0

0
3
.0

0
.0

0
.2

0
.0

0
5
.8

0
.0

0
0
.1

5
0
0

2
0
0
0
0
0

0
.0

0
2
.0

0
.0

0
.1

0
.0

0
2
.4

0
.0

0
.2

0
.0

0
2
.8

0
.0

0
0
.1

A
v
e
ra

g
e

0
.0

0
8
6
0
2
6
0
.9

9
0
.4

9
2
6
2
.0

5
1
.1

0
1
6
1
9
9
5
7
3
.1

1
3
5
.3

3
1
9
8
0
.3

4
0
.0

3
1
8
3
3
6
5
2
.5

8
3
.3

9
6
6
7
.2

6

T
ab

le
10

.2
1.

P
er

fo
rm

an
ce

of
th

e
cl

iq
u
e

b
ra

n
ch

in
g

ru
le

s

D
F

S
(c

li
q
u
e
-0

b
ra

n
c
h
in

g
)

D
F

S
(c

li
q
u
e
-1

b
ra

n
c
h
in

g
)

B
e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
li
q
u
e
s

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
li
q
u
e
s

C
P

U
|V

(G
)|

|E
(C

)|
U

B
N

o
d
e
s

N
o
d
e
s

U
B

N
o
d
e
s

N
o
d
e
s

1
5

5
0
0
0

0
.0

0
8
8
8
2
4
1
.2

0
1
0
0
.8

1
8
.8

0
.0

0
9
2
3
1
8
.8

0
9
2
.6

2
.0

2
0

1
0
0
0
0

0
.0

0
2
9
9
4
1
3
8

0
2
3
8
.4

9
4
.2

0
.0

0
2
8
0
8
5
6
.2

0
2
1
8
.8

9
.4

3
0

2
0
0
0
0

0
.0

0
2
1
9
2
4
4
.4

0
6
0
6

1
1
.7

0
.0

0
9
5
8
8
3
.2

0
5
8
2
.2

5
.7

3
0

3
0
0
0
0

0
.0

7
3
2
5
3
1
4
1
0
.8

2
.8

6
5
3
.8

1
9
5
5
.3

0
.0

0
3
2
8
9
2
7
6
.2

0
6
2
7
.4

2
1
2
.0

4
0

4
0
0
0
0

0
.0

0
3
5
0
1
9
3
.2

0
8
3
5

3
3
.6

0
.0

0
1
1
9
0
3
4
.2

0
7
6
3
.6

1
3
.3

4
0

6
0
0
0
0

1
.8

2
3
5
0
5
8
1
4
4
.2

3
6
.4

1
1
6
5
.6

3
6
0
0
.0

0
.1

1
2
3
9
7
4
0
9
5

7
.4

1
2
3
5

2
6
6
9
.5

5
0

5
0
0
0
0

0
.0

0
1
0
1
4
7
6
.6

0
3
1
4

1
5
.7

0
.0

0
1
0
0
0
6
7
.4

0
3
3
0

1
7
.2

5
0

6
0
0
0
0

0
.0

0
2
9
0
9
9
5
.6

0
6
1
6
.8

4
3
.9

0
.0

0
3
2
2
4
9
1

0
6
1
7
.8

5
4
.6

6
0

8
0
0
0
0

0
.0

0
2
4
7
9
9
3
.2

0
3
4
6
.4

5
5
.8

0
.0

0
3
5
2
7
1
7
.8

0
3
6
6
.2

8
8
.0

7
0

1
0
0
0
0
0

0
.0

0
4
7
0
5
3
.6

0
1
2
5
.2

1
4
.5

0
.0

0
6
6
6
7
5
.8

0
1
2
6

2
4
.1

7
0

1
5
0
0
0
0

0
.0

0
2
3
0
6
0
0
8

0
8
2
9
.6

7
1
5
.3

0
.0

0
2
1
1
7
6
5
4
.2

0
8
2
1
.8

7
4
2
.2

8
0

2
0
0
0
0
0

0
.0

0
1
4
8
3
5
9
5
.4

0
6
2
9
.2

6
8
3
.1

0
.0

0
1
7
2
1
7
6
0

0
6
0
4
.8

8
7
0
.9

9
0

2
5
0
0
0
0

0
.1

3
5
1
0
2
4
7
1

1
2
.4

5
0
1
.2

2
9
6
4
.8

0
.1

8
4
8
8
5
9
3
8
.8

1
3
.2

5
1
3
.4

2
9
5
4
.7

1
0
0

1
0
0
0
0
0

0
.0

0
4
2
3
5
.4

0
9
.6

3
.0

0
.0

0
5
2
3
5
.6

0
9
.8

4
.1

1
0
0

2
5
0
0
0
0

0
.0

1
2
5
2
6
6
1
6

1
.8

1
7
8

1
6
5
1
.8

0
.0

1
2
1
1
6
5
7
7
.8

2
.2

1
7
4
.8

1
4
8
8
.8

1
0
0

3
5
0
0
0
0

0
.2

8
5
4
2
0
2
1
5
.4

2
5
.8

4
3
3

3
6
0
0
.0

0
.3

5
4
7
4
1
4
0
3
.6

2
3
.4

4
6
2
.4

3
6
0
0
.0

1
5
0

2
0
0
0
0
0

0
.0

0
5
5
5

0
0
.6

1
.3

0
.0

0
5
5
6

0
0
.6

1
.4

1
5
0

3
5
0
0
0
0

0
.0

0
8
3
2
0
.4

0
6
.4

1
7
.9

0
.0

0
1
0
6
8
7
.2

0
6
.6

2
4
.3

1
5
0

5
0
0
0
0
0

0
.0

0
4
2
0
7
8
.8

0
2
3

8
5
.8

0
.0

0
4
7
0
3
6
.2

0
2
2
.4

1
0
1
.5

2
0
0

2
0
0
0
0
0

0
.0

0
3
8
.2

0
0
.2

0
.8

0
.0

0
4
0

0
0
.2

0
.3

2
0
0

4
0
0
0
0
0

0
.0

0
6
6
4
.8

0
0
.4

3
.4

0
.0

0
6
5
6
.6

0
0
.4

3
.4

2
5
0

5
0
0
0
0
0

0
.0

0
2
2
8
.6

0
0
.2

2
.1

0
.0

0
2
1
7
.4

0
0
.2

2
.3

2
5
0

7
0
0
0
0
0

0
.0

0
8
4
5

0
0

8
.3

0
.0

0
8
4
5

0
0

9
.0

3
0
0

1
0
0
0
0
0

0
.0

0
4
.8

0
0

0
.1

0
.0

0
4
.8

0
0

0
.1

3
0
0

3
0
0
0
0
0

0
.0

0
1
1
.2

0
0

0
.2

0
.0

0
1
1
.2

0
0

0
.2

4
0
0

2
0
0
0
0
0

0
.0

0
4
.6

0
0

0
.2

0
.0

0
4
.6

0
0

0
.2

5
0
0

2
0
0
0
0
0

0
.0

0
2

0
0

0
.2

0
.0

0
2

0
0

0
.2

A
v
e
ra

g
e

0
.0

9
3
3
1
9
4
3
6
.5

0
2
.9

3
2
8
1
.9

8
5
7
7
.1

1
0
.0

2
1
6
4
2
2
9
8
.0

3
1
.7

1
2
8
0
.6

3
4
7
7
.7

5

T
ab

le
10

.2
2.

P
er

fo
rm

an
ce

of
th

e
su

b
p
ro

b
le

m
se

le
ct

io
n

ru
le

s

D
F

S
(c

o
n
fl

ic
ti

n
g

e
d
g
e
)

B
F

S
(c

o
n
fl

ic
ti

n
g

e
d
g
e
)

S
L

B
(c

o
n
fl

ic
ti

n
g

e
d
g
e
)

L
L

B
(c

o
n
fl

ic
ti

n
g

e
d
g
e
)

B
e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
|V

(G
)|

|E
(C

)|
U

B
N

o
d
e
s

N
o
d
e
s

U
B

N
o
d
e
s

N
o
d
e
s

U
B

N
o
d
e
s

N
o
d
e
s

U
B

N
o
d
e
s

N
o
d
e
s

1
5

5
0
0
0

0
.0

0
8
1
8
6
5
.8

0
.0

1
.7

0
.0

0
8
4
4
1
8

0
.0

3
.1

0
.0

0
8
3
1
8
1
.6

0
.0

7
4
.8

0
.0

9
2
9
0
8
.2

0
.0

2
.0

2
0

1
0
0
0
0

0
.0

0
1
7
2
7
1
7
.4

0
.0

5
.0

0
.0

0
1
8
5
6
0
6
.4

0
.0

9
.9

0
.0

0
1
7
7
0
0
7
.8

0
.0

1
2
2
8
.9

0
.0

2
1
1
6
2
9
.4

0
.0

6
.6

3
0

2
0
0
0
0

0
.0

0
5
1
0
2
2
.4

0
.0

2
.8

0
.0

0
9
2
8
9
4
.6

0
.0

9
.7

0
.0

0
4
9
2
7
8
.8

0
.0

8
7
.0

0
.0

7
4
3
1
8
.8

0
.0

4
.4

3
0

3
0
0
0
0

0
.0

0
1
8
3
1
4
2
7
.6

0
.0

1
2
0
.9

0
.0

0
2
4
2
5
9
6
2

0
.0

3
8
7
.8

n
a

n
a

n
a

n
a

0
.0

2
5
0
8
6
7
8
.6

0
.0

1
6
5
.7

4
0

4
0
0
0
0

0
.0

0
3
0
3
1
8
.2

0
.0

2
.7

0
.0

0
8
8
6
2
6
.6

0
.0

8
.1

0
.0

0
2
5
8
4
3
.6

0
.0

2
6
.3

0
.0

6
4
2
6
3
.8

0
.0

6
.4

4
0

6
0
0
0
0

0
.0

0
1
1
1
8
6
5
7
3
.4

0
.0

1
1
8
6
.0

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

0
.0

1
4
1
2
6
2
9
6

0
.0

3
0
0
9
.5

5
0

5
0
0
0
0

0
.0

0
2
0
1
5
3
.4

0
.0

2
.6

0
.0

0
6
3
9
5
7
.6

0
.0

7
.1

0
.0

0
2
2
1
2
6
.8

0
.0

4
6
.8

0
.0

5
3
4
3
9
.8

0
.0

8
.0

5
0

6
0
0
0
0

0
.0

0
2
4
5
6
4
.2

0
.0

3
.7

0
.0

0
1
1
3
4
0
2
.4

0
.0

1
9
.8

0
.0

0
2
3
7
2
6
.4

0
.0

3
4
.7

0
.0

1
7
6
0
4
9

0
.0

2
6
.4

6
0

8
0
0
0
0

0
.0

0
2
2
3
0
8
.2

0
.0

4
.9

n
a

n
a

n
a

n
a

0
.0

0
1
7
8
7
6

0
.0

1
9
.7

0
.0

1
0
1
7
7
7
.8

0
.0

2
1
.8

7
0

1
0
0
0
0
0

0
.0

0
7
4
9
8
.8

0
.0

2
.2

0
.0

0
3
7
7
1
9
.2

0
.0

1
0
.1

4
0
.0

0
6
8
6
0
.4

0
.0

5
.0

0
.0

3
6
8
5
6

0
.0

1
1
.3

7
0

1
5
0
0
0
0

0
.0

0
3
0
1
7
9
5
.8

0
.0

9
3
.8

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

0
.0

1
4
1
2
4
6
0
.2

0
.0

4
3
5
.5

8
0

2
0
0
0
0
0

0
.0

0
2
6
2
2
3
2
.2

0
.0

1
0
4
.1

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

0
.0

8
5
1
3
0
2
.8

0
.0

3
7
5
.3

9
0

2
5
0
0
0
0

0
.0

0
2
5
4
5
1
6
9
.4

0
.0

1
3
7
0
.2

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

0
.0

1
3
9
3
0
8
6
7

0
.0

8
8
9
8
.9

1
0
0

1
0
0
0
0
0

0
.0

0
9
3
1
.8

0
.0

0
.6

0
.0

0
2
4
1
2

0
.0

1
.2

6
0
.0

0
5
9
5
.2

0
.0

0
.4

0
.0

2
6
7
0
.4

0
.0

2
.0

1
0
0

2
5
0
0
0
0

0
.0

0
9
8
6
8
5
7
.4

0
.0

5
3
6
.3

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

0
.0

2
6
7
1
1
0
2
.6

0
.0

1
4
9
2
.2

1
0
0

3
5
0
0
0
0

0
.1

1
5
6
7
6
5
5
5
.2

1
3
.2

3
6
0
0
.0

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

1
5
0

2
0
0
0
0
0

0
.0

0
1
0
1
.8

0
.0

0
.2

0
.0

0
6
1
5
.2

0
.0

1
.0

n
a

n
a

n
a

n
a

0
.0

5
5
5

0
.0

1
.1

1
5
0

3
5
0
0
0
0

0
.0

0
2
5
5
5
.2

0
.0

3
.9

0
.0

1
7
4
9
1

0
.0

1
1
.6

n
a

n
a

n
a

n
a

0
.0

7
6
9
3

0
.0

1
3
.5

1
5
0

5
0
0
0
0
0

0
.0

0
2
1
7
1
8
.6

0
.0

2
9
.5

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

0
.0

3
3
9
5
6
.6

0
.0

5
6
.5

2
0
0

2
0
0
0
0
0

0
.0

0
1
7
.8

0
.0

0
.1

0
.0

0
2
8
.8

0
.0

0
.2

0
.0

0
1
6
.6

0
.0

0
.1

0
.0

3
8
.2

0
.0

0
.2

2
0
0

4
0
0
0
0
0

0
.0

0
1
9
5
.6

0
.0

0
.9

0
.0

0
5
2
0
.2

0
.0

1
.9

0
.0

0
1
5
0
.2

0
.0

0
.6

0
.0

6
6
5
.2

0
.0

2
.6

2
5
0

5
0
0
0
0
0

0
.0

0
1
0
3
.6

0
.0

0
.7

0
.0

0
2
9
8
.4

0
.0

2
.0

0
.0

0
1
1
9

0
.0

0
.9

0
.0

2
2
7
.8

0
.0

1
.6

2
5
0

7
0
0
0
0
0

0
.0

0
3
5
0
.2

0
.0

2
.2

0
.0

0
9
2
1
.4

0
.0

6
.3

0
.0

0
3
9
4
.2

0
.0

2
.7

0
.0

8
4
5

0
.0

5
.6

3
0
0

1
0
0
0
0
0

0
.0

0
3
.2

0
.0

0
.1

0
.0

0
4
.4

0
.0

0
.1

0
.0

0
3
.8

0
.0

0
.1

0
.0

4
.8

0
.0

0
.1

3
0
0

3
0
0
0
0
0

0
.0

0
5
.6

0
.0

0
.1

0
.0

0
1
1

0
.0

0
.2

0
.0

0
7
.6

0
.0

0
.2

0
.0

1
1
.2

0
.0

0
.2

4
0
0

2
0
0
0
0
0

0
.0

0
2
.0

0
.0

0
.1

0
.0

0
4
.2

0
.0

0
.2

0
.0

0
3

0
.0

0
.2

0
.0

4
.6

0
.0

0
.1

5
0
0

2
0
0
0
0
0

0
.0

0
2
.0

0
.0

0
.1

0
.0

0
2

0
.0

0
.2

0
.0

0
2

0
.0

0
.2

0
.0

2
0
.0

0
.1

A
v
e
ra

g
e

0
.0

0
8
6
0
2
6
0
.9

9
0
.4

9
2
6
2
.0

5
0
.0

0
1
6
3
4
1
5
.5

4
0
.0

0
2
5
.2

9
0
.0

0
2
3
9
5
2
.5

3
0
.0

0
8
9
.9

1
0
.0

0
1
3
9
8
4
0
8
.5

8
0
.0

0
5
5
9
.5

1

T
ab

le
10

.2
3.

P
er

fo
rm

an
ce

of
th

e
co

n
fl
ic

ti
n
g

p
ai

r
se

le
ct

io
n

ru
le

s

S
tr

o
n
g

b
ra

n
c
h
in

g
L

a
rg

e
st

N
u
m

b
e
r

o
f

C
o
n
fl

ic
ts

B
e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
|V

(G
)|

|E
(C

)|
U

B
N

o
d
e
s

N
o
d
e
s

U
B

N
o
d
e
s

N
o
d
e
s

1
5

5
0
0
0

0
.0

0
8
1
8
6
5
.8

0
.0

1
.7

0
.0

0
1
3
7
6
3
8
.6

0
.0

2
.2

2
0

1
0
0
0
0

0
.0

0
1
7
2
7
1
7
.4

0
.0

5
.0

0
.0

0
6
3
9
3
0
6
.8

0
.0

1
5
.2

3
0

2
0
0
0
0

0
.0

0
5
1
0
2
2
.4

0
.0

2
.8

0
.0

0
3
6
0
2
7
1
.8

0
.0

1
8
.0

3
0

3
0
0
0
0

0
.0

0
1
8
3
1
4
2
7
.6

0
.0

1
2
0
.9

0
.0

0
3
4
8
4
9
5
2
4

1
.4

1
7
3
6
.3

4
0

4
0
0
0
0

0
.0

0
3
0
3
1
8
.2

0
.0

2
.7

0
.0

0
5
4
5
5
8
5
.6

0
.0

5
0
.9

4
0

6
0
0
0
0

0
.0

0
1
1
1
8
6
5
7
3
.4

0
.0

1
1
8
6
.0

0
.6

2
4
0
1
2
9
0
5
6

9
.6

3
6
0
0
.0

5
0

5
0
0
0
0

0
.0

0
2
0
1
5
3
.4

0
.0

2
.6

0
.0

0
3
8
6
1
5
7
.4

0
.0

5
5
.4

5
0

6
0
0
0
0

0
.0

0
2
4
5
6
4
.2

0
.0

3
.7

0
.0

0
1
8
3
5
0
2
4
.2

0
.0

2
6
6
.8

6
0

8
0
0
0
0

0
.0

0
2
2
3
0
8
.2

0
.0

4
.9

0
.0

0
1
1
4
4
1
8
3
.4

0
.0

2
5
3
.4

7
0

1
0
0
0
0
0

0
.0

0
7
4
9
8
.8

0
.0

2
.2

0
.0

0
4
9
1
9
5
2
.8

0
.0

1
6
3
.5

7
0

1
5
0
0
0
0

0
.0

0
3
0
1
7
9
5
.8

0
.0

9
3
.8

0
.0

4
8
3
1
8
5
8
1
.8

4
.4

2
5
8
1
.2

8
0

2
0
0
0
0
0

0
.0

0
2
6
2
2
3
2
.2

0
.0

1
0
4
.1

0
.2

8
8
4
3
1
6
6
9
.8

1
6
.6

3
6
0
0
.0

9
0

2
5
0
0
0
0

0
.0

0
2
5
4
5
1
6
9
.4

0
.0

1
3
7
0
.2

0
.1

8
6
7
0
3
5
7
3
.4

1
4
.6

3
6
0
0
.0

1
0
0

1
0
0
0
0
0

0
.0

0
9
3
1
.8

0
.0

0
.6

0
.0

0
1
3
4
3
2
.2

0
.0

1
0
.6

1
0
0

2
5
0
0
0
0

0
.0

0
9
8
6
8
5
7
.4

0
.0

5
3
6
.3

0
.0

0
2
0
5
3
0
1
2

3
.8

1
3
7
5
.1

1
0
0

3
5
0
0
0
0

0
.1

1
5
6
7
6
5
5
5
.2

1
3
.2

3
6
0
0
.0

0
.3

0
5
7
6
1
4
0
4
.6

2
2
.4

3
6
0
0
.0

1
5
0

2
0
0
0
0
0

0
.0

0
1
0
1
.8

0
.0

0
.2

0
.0

0
5
2
6
.4

0
.0

1
.3

1
5
0

3
5
0
0
0
0

0
.0

0
2
5
5
5
.2

0
.0

3
.9

0
.0

0
3
8
1
3
8
.2

0
.0

8
5
.6

1
5
0

5
0
0
0
0
0

0
.0

0
2
1
7
1
8
.6

0
.0

2
9
.5

0
.0

0
2
0
4
6
7
7
.4

0
.0

4
6
9
.3

2
0
0

2
0
0
0
0
0

0
.0

0
1
7
.8

0
.0

0
.1

0
.0

0
4
5
.4

0
.0

0
.2

2
0
0

4
0
0
0
0
0

0
.0

0
1
9
5
.6

0
.0

0
.9

0
.0

0
1
9
9
6
.8

0
.0

1
0
.9

2
5
0

5
0
0
0
0
0

0
.0

0
1
0
3
.6

0
.0

0
.7

0
.0

0
1
4
3
6
.8

0
.0

1
1
.8

2
5
0

7
0
0
0
0
0

0
.0

0
3
5
0
.2

0
.0

2
.2

0
.0

0
6
7
1
8
.4

0
.0

6
7
.1

3
0
0

1
0
0
0
0
0

0
.0

0
3
.2

0
.0

0
.1

0
.0

0
4
.2

0
.0

0
.1

3
0
0

3
0
0
0
0
0

0
.0

0
5
.6

0
.0

0
.1

0
.0

0
1
9

0
.0

0
.3

4
0
0

2
0
0
0
0
0

0
.0

0
2
.0

0
.0

0
.1

0
.0

0
7
.2

0
.0

0
.2

5
0
0

2
0
0
0
0
0

0
.0

0
2
.0

0
.0

0
.1

0
.0

0
2
.4

0
.0

0
.1

A
v
e
ra

g
e

0
.0

0
8
6
0
2
6
0
.9

9
0
.4

9
2
6
2
.0

5
0
.0

5
4
1
5
0
1
4
6
.1

8
2
.7

0
7
9
9
.0

9

T
ab

le
10

.2
4.

T
h
e

eff
ec

t
of

th
e

in
it

ia
l

u
p
p

er
b

ou
n
d

on
th

e
p

er
fo

rm
an

ce
of

th
e

B
B

al
go

ri
th

m

L
o
c
a
l

S
e
a
rc

h
D

F
S

-
(c

o
n
fl

ic
ti

n
g

e
d
g
e
)

w
it

h
in

it
ia

l
z
<
∞

D
F

S
-

(c
o
n
fl

ic
ti

n
g

e
d
g
e
)

w
it

h
in

it
ia

l
z

=
∞

B
e
st

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

C
P

U
|V

(G
)|

|E
(C

)|
U

B
U

B
N

o
d
e
s

N
o
d
e
s

U
B

N
o
d
e
s

N
o
d
e
s

1
5

5
0
0
0

1
.8

1
0
.7

0
.0

0
8
1
8
6
5
.8

0
.0

1
.7

0
.0

0
8
7
9
3
0
.8

0
.0

2
.2

2
0

1
0
0
0
0

1
.9

9
0
.8

0
.0

0
1
7
2
7
1
7
.4

0
.0

5
.0

0
.0

0
2
3
0
8
9
9
.2

0
.0

7
.6

3
0

2
0
0
0
0

2
.1

3
0
.9

0
.0

0
5
1
0
2
2
.4

0
.0

2
.8

0
.0

0
6
7
8
9
1
.6

0
.0

4
.4

3
0

3
0
0
0
0

2
.1

8
1
.1

0
.0

0
1
8
3
1
4
2
7
.6

0
.0

1
2
0
.9

0
.0

0
2
3
9
3
1
1
8
.4

0
.0

1
6
1
.4

4
0

4
0
0
0
0

2
.1

7
1
.8

0
.0

0
3
0
3
1
8
.2

0
.0

2
.7

0
.0

0
4
4
5
6
1
.4

0
.0

4
.4

4
0

6
0
0
0
0

2
.4

2
2
.2

0
.0

0
1
1
1
8
6
5
7
3
.4

0
.0

1
1
8
6
.0

0
.0

0
1
1
4
4
4
3
6
6
.6

0
.0

1
3
4
2
.5

5
0

5
0
0
0
0

2
.1

0
2
.5

0
.0

0
2
0
1
5
3
.4

0
.0

2
.6

0
.0

0
3
0
1
4
2
.6

0
.0

4
.3

5
0

6
0
0
0
0

2
.2

2
2
.9

0
.0

0
2
4
5
6
4
.2

0
.0

3
.7

0
.0

0
3
1
9
7
6
.2

0
.0

4
.9

6
0

8
0
0
0
0

2
.2

5
3
.7

0
.0

0
2
2
3
0
8
.2

0
.0

4
.9

0
.0

0
3
2
4
4
6
.6

0
.0

6
.8

7
0

1
0
0
0
0
0

2
.3

1
3
.9

0
.0

0
7
4
9
8
.8

0
.0

2
.2

0
.0

0
1
1
2
5
8
.0

0
.0

3
.4

7
0

1
5
0
0
0
0

2
.4

4
4
.1

0
.0

0
3
0
1
7
9
5
.8

0
.0

9
3
.8

0
.0

0
4
3
8
9
7
4
.6

0
.0

1
3
1
.8

8
0

2
0
0
0
0
0

2
.4

3
4
.3

0
.0

0
2
6
2
2
3
2
.2

0
.0

1
0
4
.1

0
.0

0
4
4
6
6
5
8
.6

0
.0

1
8
6
.5

9
0

2
5
0
0
0
0

2
.4

5
4
.3

0
.0

0
2
5
4
5
1
6
9
.4

0
.0

1
3
7
0
.2

0
.0

0
3
0
4
9
3
0
6
.0

0
.0

1
6
0
3
.2

1
0
0

1
0
0
0
0
0

2
.4

7
4
.2

0
.0

0
9
3
1
.8

0
.0

0
.6

0
.0

0
1
6
2
4
.0

0
.0

1
.2

1
0
0

2
5
0
0
0
0

2
.4

9
4
.5

0
.0

0
9
8
6
8
5
7
.4

0
.0

5
3
6
.3

0
.0

1
1
5
8
0
9
5
2
.4

1
.6

8
8
5
.3

1
0
0

3
5
0
0
0
0

2
.6

1
4
.7

0
.1

1
5
6
7
6
5
5
5
.2

1
3
.2

3
6
0
0
.0

0
.1

1
6
1
6
8
6
1
0
.6

1
6
.4

3
6
0
0
.0

1
5
0

2
0
0
0
0
0

2
.8

7
5
.0

0
.0

0
1
0
1
.8

0
.0

0
.2

0
.0

0
2
0
4
.4

0
.0

0
.4

1
5
0

3
5
0
0
0
0

2
.9

3
5
.1

0
.0

0
2
5
5
5
.2

0
.0

3
.9

0
.0

0
4
8
4
4
.2

0
.0

7
.9

1
5
0

5
0
0
0
0
0

3
.1

6
6
.5

0
.0

0
2
1
7
1
8
.6

0
.0

2
9
.5

0
.0

0
2
7
9
9
3
.6

0
.0

4
3
.4

2
0
0

2
0
0
0
0
0

3
.5

4
8
.2

0
.0

0
1
7
.8

0
.0

0
.1

0
.0

0
3
0
.6

0
.0

0
.2

2
0
0

4
0
0
0
0
0

3
.6

8
8
.6

0
.0

0
1
9
5
.6

0
.0

0
.9

0
.0

0
4
7
2
.6

0
.0

1
.7

2
5
0

5
0
0
0
0
0

4
.0

8
1
0
.5

0
.0

0
1
0
3
.6

0
.0

0
.7

0
.0

0
1
4
3
.8

0
.0

1
.0

2
5
0

7
0
0
0
0
0

4
.3

3
1
1
.3

0
.0

0
3
5
0
.2

0
.0

2
.2

0
.0

0
4
0
5
.6

0
.0

2
.6

3
0
0

1
0
0
0
0
0

4
.4

9
1
2
.8

0
.0

0
3
.2

0
.0

0
.1

0
.0

0
3
.8

0
.0

0
.1

3
0
0

3
0
0
0
0
0

4
.7

2
1
6
.0

0
.0

0
5
.6

0
.0

0
.1

0
.0

0
7
.6

0
.0

0
.2

4
0
0

2
0
0
0
0
0

5
.1

6
2
0
.5

0
.0

0
2
.0

0
.0

0
.1

0
.0

0
3
.0

0
.0

0
.2

5
0
0

2
0
0
0
0
0

7
.1

2
2
3
.7

0
.0

0
2
.0

0
.0

0
.1

0
.0

0
2
.0

0
.0

0
.2

A
v
e
ra

g
e

3
.0

6
6
.4

8
0
.0

0
8
6
0
2
6
0
.9

9
0
.4

9
2
6
2
.0

5
0
.0

0
9
6
6
4
7
5
.1

4
0
.6

7
2
9
6
.5

8

T
ab

le
10

.2
5.

T
h
e

eff
ec

t
of

th
e

p
ro

b
in

g
on

th
e

p
er

fo
rm

an
ce

of
th

e
B

B
al

go
ri

th
m

D
F

S
-

(c
o
n
fl

ic
ti

n
g

e
d
g
e
)

w
it

h
p
ro

b
in

g
(fi

rs
t

1
0
0

it
e
ra

ti
o
n
s)

D
F

S
-

(c
o
n
fl

ic
ti

n
g

e
d
g
e
)

w
it

h
p
ro

b
in

g
(fi

rs
t

1
0
0
0

it
e
ra

ti
o
n
s)

D
F

S
-

(c
o
n
fl

ic
ti

n
g

e
d
g
e
)

w
it

h
p
ro

b
in

g
(fi

rs
t

1
0
0
0
0

it
e
ra

ti
o
n
s)

B
e
st

E
x
p
lo

re
d

A
c
ti

v
e

P
ro

b
in

g
s

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

P
ro

b
in

g
s

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

P
ro

b
in

g
s

C
P

U
|V

(G
)|

|E
(C

)|
U

B
N

o
d
e
s

N
o
d
e
s

U
B

n
o
d
e
s

N
o
d
e
s

U
B

n
o
d
e
s

N
o
d
e
s

1
5

5
0
0
0

0
.0

0
8
6
7
1
7
.6

0
.0

1
8
8

1
.8

9
0
.0

0
8
1
9
8
9
.8

0
.0

1
8
6
0
.8

1
.8

5
0
.0

0
3
8
8
9
0

0
.0

1
8
4
0
2

1
.4

2
2
0

1
0
0
0
0

0
.0

0
2
2
4
1
0
1
.4

0
.0

1
8
2
.8

6
.9

2
0
.0

0
2
2
2
9
8
2
.2

0
.0

1
7
6
3
.2

6
.9

6
0
.0

0
2
1
6
9
2
0
.6

0
.0

1
7
0
6
9

7
.4

0
3
0

2
0
0
0
0

0
.0

0
6
2
3
0
8
.4

0
.0

1
6
8

3
.7

3
0
.0

0
6
2
3
0
8
.4

0
.0

1
6
1
4
.8

3
.9

7
0
.0

0
6
2
3
0
8
.4

0
.0

1
5
9
9
6

7
.9

2
3
0

3
0
0
0
0

0
.0

0
2
3
1
1
6
6
2

0
.0

1
6
2
.8

1
4
4
.9

3
0
.0

0
2
3
1
1
6
4
3
.4

0
.0

1
6
2
2

1
3
5
.2

6
0
.0

0
2
3
1
1
5
1
9
.6

0
.0

1
6
0
9
6

1
5
2
.9

1
4
0

4
0
0
0
0

0
.0

0
4
3
6
4
1
.4

0
.0

1
7
3
.6

4
.3

8
0
.0

0
4
3
6
4
1
.4

0
.0

1
6
4
9
.6

4
.7

0
0
.0

0
4
3
6
4
1
.4

0
.0

1
5
9
7
8

1
7
.1

6
4
0

6
0
0
0
0

0
.0

0
1
1
3
5
6
3
5
6

0
.0

1
6
4

1
1
4
5
.6

0
0
.0

0
1
1
3
5
6
3
5
6

0
.0

1
6
1
2
.8

1
1
2
5
.1

7
0
.0

0
1
1
3
5
6
3
5
4

0
.0

1
5
9
4
5

1
1
9
4
.6

7
5
0

5
0
0
0
0

0
.0

0
3
0
1
3
1

0
.0

1
6
4
.4

4
.4

2
0
.0

0
3
0
1
3
1

0
.0

1
5
9
4
.4

5
.7

2
0
.0

0
3
0
1
3
1

0
.0

1
5
5
0
8

2
5
.6

6
5
0

6
0
0
0
0

0
.0

0
3
1
7
7
0
.2

0
.0

1
7
1
.6

4
.8

0
0
.0

0
3
1
7
7
0
.2

0
.0

1
6
1
4
.4

5
.8

3
0
.0

0
3
1
7
7
0
.2

0
.0

1
5
0
6
3

2
5
.8

3
6
0

8
0
0
0
0

0
.0

0
3
2
3
3
3
.4

0
.0

1
6
6

6
.7

9
0
.0

0
3
2
3
3
3
.4

0
.0

1
5
7
0

8
.9

0
0
.0

0
3
2
3
3
3
.4

0
.0

1
5
2
5
6

4
1
.6

9
7
0

1
0
0
0
0
0

0
.0

0
1
1
2
3
1
.2

0
.0

1
5
7
.6

3
.5

7
0
.0

0
1
1
2
3
1
.2

0
.0

1
5
4
0
.4

7
.3

3
0
.0

0
1
1
2
3
1
.2

0
.0

1
0
3
8
2

3
9
.3

7
7
0

1
5
0
0
0
0

0
.0

0
4
3
8
3
4
0
.6

0
.0

1
7
2
.8

1
2
3
.8

5
0
.0

0
4
3
8
3
4
0
.6

0
.0

1
5
7
7
.2

1
2
5
.6

5
0
.0

0
4
3
8
3
4
0
.6

0
.0

1
5
3
0
6

1
7
3
.6

9
8
0

2
0
0
0
0
0

0
.0

0
4
4
0
1
1
9
.2

0
.0

1
6
1
.6

1
7
4
.6

6
0
.0

0
4
4
0
1
1
9
.2

0
.0

1
5
1
2
.8

1
7
8
.6

2
0
.0

0
4
4
0
1
1
9
.2

0
.0

1
4
7
5
6

2
5
8
.1

1
9
0

2
5
0
0
0
0

0
.0

0
2
9
8
0
1
1
9

0
.0

1
6
0
.8

1
4
9
5
.2

9
0
.0

0
2
9
8
0
1
1
9

0
.0

1
4
6
3
.6

1
4
8
3
.1

7
0
.0

0
2
9
8
0
1
1
9

0
.0

1
4
4
7
4

1
6
6
7
.3

5
1
0
0

1
0
0
0
0
0

0
.0

0
1
6
2
4

0
.0

1
4
7
.2

2
.2

5
0
.0

0
1
6
2
4

0
.0

1
3
4
8
.4

1
3
.1

2
0
.0

0
1
6
2
4

0
.0

2
2
0
1
.2

2
2
.6

6
1
0
0

2
5
0
0
0
0

0
.0

0
1
6
0
7
0
6
5
.4

2
.4

1
6
1
.2

8
6
5
.7

7
0
.0

0
1
8
8
7
6
2
6

0
.0

1
4
5
0
.4

1
0
2
7
.3

2
0
.0

1
1
4
7
5
8
9
6
.6

2
.6

1
4
1
6
6

9
7
8
.7

9
1
0
0

3
5
0
0
0
0

0
.1

1
6
1
1
2
0
4
0
.4

1
6
.8

1
5
7
.2

3
6
0
0
.0

0
0
.1

1
5
8
6
4
2
3
5

1
6
.2

1
5
2
4
.2

3
6
0
0
.0

0
0
.1

1
5
7
8
8
1
2
3
.2

1
6

1
4
2
9
4

3
6
0
0
.0

0
1
5
0

2
0
0
0
0
0

0
.0

0
2
0
4
.4

0
.0

1
0
4

3
.5

0
0
.0

0
2
0
4
.4

0
.0

2
3
4
.8

7
.6

7
0
.0

0
2
0
4
.4

0
.0

2
3
4
.8

7
.2

3
1
5
0

3
5
0
0
0
0

0
.0

0
4
8
4
4
.2

0
.0

1
2
8
.4

1
1
.8

3
0
.0

0
4
8
4
4
.2

0
.0

1
2
1
6

4
5
.6

9
0
.0

0
4
8
4
4
.2

0
.0

5
8
8
1
.2

1
8
5
.2

4
1
5
0

5
0
0
0
0
0

0
.0

0
2
7
9
9
3
.6

0
.0

1
5
2

4
7
.9

2
0
.0

0
2
7
9
9
3
.6

0
.0

1
2
9
1
.6

8
0
.2

8
0
.0

0
2
7
9
9
3
.6

0
.0

1
1
6
3
7

3
7
9
.3

7
2
0
0

2
0
0
0
0
0

0
.0

0
3
0
.6

0
.0

3
1
.6

2
.4

1
0
.0

0
3
0
.6

0
.0

3
1
.6

2
.3

9
0
.0

0
3
0
.6

0
.0

3
1
.6

2
.2

7
2
0
0

4
0
0
0
0
0

0
.0

0
4
7
2
.6

0
.0

1
1
6

1
0
.0

5
0
.0

0
4
7
2
.6

0
.0

5
0
5
.6

3
8
.5

0
0
.0

0
4
7
2
.6

0
.0

5
1
6

3
7
.1

9
2
5
0

5
0
0
0
0
0

0
.0

0
1
4
3
.8

0
.0

1
0
1
.2

1
6
.4

1
0
.0

0
1
4
3
.8

0
.0

1
5
1
.6

2
4
.1

2
0
.0

0
1
4
3
.8

0
.0

1
5
1
.6

2
2
.9

1
2
5
0

7
0
0
0
0
0

0
.0

0
4
0
5
.6

0
.0

1
0
0
.8

1
8
.0

8
0
.0

0
4
0
5
.6

0
.0

4
2
6
.8

6
8
.6

3
0
.0

0
4
0
5
.6

0
.0

4
2
6
.8

6
5
.2

9
3
0
0

1
0
0
0
0
0

0
.0

0
3
.8

0
.0

2
.8

0
.7

3
0
.0

0
3
.8

0
.0

2
.8

0
.7

7
0
.0

0
3
.8

0
.0

2
.8

0
.7

0
3
0
0

3
0
0
0
0
0

0
.0

0
7
.6

0
.0

6
.8

1
.7

3
0
.0

0
7
.6

0
.0

6
.8

1
.7

6
0
.0

0
7
.6

0
.0

6
.8

1
.6

6
4
0
0

2
0
0
0
0
0

0
.0

0
3

0
.0

2
1
.2

1
0
.0

0
3

0
.0

2
1
.2

6
0
.0

0
3

0
.0

2
1
.1

6
5
0
0

2
0
0
0
0
0

0
.0

0
2

0
.0

1
.2

1
.4

4
0
.0

0
2

0
.0

1
.2

1
.5

1
0
.0

0
2

0
.0

1
.2

1
.3

9

A
v
e
ra

g
e

0
.0

0
9
5
5
6
9
1
.5

9
0
.7

1
1
2
6
.1

6
2
8
5
.3

4
0
.0

0
9
5
6
6
8
7
.5

0
0
.6

0
1
0
8
1
.1

0
2
9
6
.5

2
0
.0

0
9
3
6
7
9
3
.8

4
0
.6

9
9
2
5
1
.2

3
3
3
0
.3

3

T
ab

le
10

.2
6.

T
h
e

eff
ec

t
of

th
e

p
eg

gi
n
g

on
th

e
p

er
fo

rm
an

ce
of

th
e

B
B

al
go

ri
th

m

B
e
st

o
f

B
IP

fo
rm

u
la

ti
o
n
s

D
F

S
-

(c
o
n
fl

ic
ti

n
g

e
d
g
e
)

w
it

h
p

e
g
g
in

g
B

e
st

N
o
d
e
s

C
P

U
B

e
st

E
x
p
lo

re
d

A
c
ti

v
e

P
e
g
g
in

g
s

C
P

U
|V

(G
)|

|E
(C

)|
S
o
lu

ti
o
n

U
B

N
o
d
e
s

N
o
d
e
s

1
5

5
0
0
0

0
.0

0
1
2
0
0
6
.0

1
3
.2

0
.0

0
6
7
5
3
1
.4

0
.0

5
3
3
1
6
.8

1
.4

2
0

1
0
0
0
0

0
.0

0
1
2
0
9
6
2
.4

1
3
0
.1

0
.0

0
2
0
7
6
9
6
.4

0
.0

2
0
8
6
2
5
.4

6
.3

3
0

2
0
0
0
0

0
.0

0
9
3
9
5
.8

2
5
.8

0
.0

0
5
4
1
2
5
.6

0
.0

5
5
9
4
1
.8

3
.0

3
0

3
0
0
0
0

0
.0

0
4
7
9
9
3
8
.2

1
6
5
0
.3

0
.0

0
2
0
6
7
3
6
4

0
.0

2
6
2
0
3
8
0
.8

1
2
9
.0

4
0

4
0
0
0
0

0
.0

0
3
7
3
1
.0

1
2
.2

0
.0

0
3
5
7
7
6
.6

0
.0

3
6
5
3
8

3
.5

4
0

6
0
0
0
0

0
.0

1
7
0
2
3
7
6
.2

3
5
0
8
.5

0
.0

0
9
8
2
6
4
7
6

0
.0

1
3
1
9
1
0
6
9
.4

1
0
4
7
.4

5
0

5
0
0
0
0

0
.0

0
7
3
4
.6

7
.6

0
.0

0
2
2
1
9
0
.2

0
.0

1
8
8
5
5
.4

3
.3

5
0

6
0
0
0
0

0
.0

0
2
1
1
8
.2

1
4
.9

0
.0

0
2
5
5
1
1
.2

0
.0

2
4
0
5
0
.4

3
.9

6
0

8
0
0
0
0

0
.0

0
5
7
6
.8

1
0
.6

0
.0

0
2
6
0
8
0

0
.0

2
1
7
5
8
.4

5
.6

7
0

1
0
0
0
0
0

0
.0

0
8
5
.6

9
.2

0
.0

0
8
3
4
4
.4

0
.0

5
0
4
8

2
.6

7
0

1
5
0
0
0
0

0
.0

0
6
0
6
5
.4

4
6
.7

0
.0

0
3
3
5
7
6
9

0
.0

3
0
1
4
3
7

1
0
4
.4

8
0

2
0
0
0
0
0

0
.0

0
1
7
5
7
.0

3
4
.4

0
.0

0
3
2
9
3
1
6
.8

0
.0

2
7
5
8
5
8
.4

1
4
1
.0

9
0

2
5
0
0
0
0

0
.0

0
5
6
6
9
.0

6
8
.5

0
.0

0
2
0
5
4
6
6
8

0
.0

1
9
0
5
4
7
2
.2

1
1
2
6
.9

1
0
0

1
0
0
0
0
0

0
.0

0
0
.0

7
.8

0
.0

0
1
3
2
6
.8

0
.0

4
2
6

0
.9

1
0
0

2
5
0
0
0
0

0
.0

0
7
2
7
.6

2
3
.9

0
.0

0
1
4
0
8
1
2
3

0
.0

1
0
8
0
1
8
0

8
7
5
.5

1
0
0

3
5
0
0
0
0

0
.0

0
1
0
6
6
9
.0

1
4
9
.9

0
.0

0
4
4
8
3
1
8
7
9

0
.0

3
7
3
0
7
8
9
.4

2
3
1
7
1
.5

1
5
0

2
0
0
0
0
0

0
.0

0
0
.0

1
5
.3

0
.0

0
2
0
1
.2

0
.0

1
7
.2

0
.4

1
5
0

3
5
0
0
0
0

0
.0

0
0
.0

2
2
.7

0
.0

0
4
1
2
9
.8

0
.0

8
3
1
.6

7
.1

1
5
0

5
0
0
0
0
0

0
.0

0
0
.0

3
3
.8

0
.0

0
2
3
2
6
9
.6

0
.0

4
0
1
1
.6

3
8
.1

2
0
0

2
0
0
0
0
0

0
.0

0
0
.0

3
9
.3

0
.0

0
3
0
.4

0
.0

0
.8

0
.1

2
0
0

4
0
0
0
0
0

0
.0

0
0
.0

4
6
.5

0
.0

0
4
5
5
.4

0
.0

1
1

1
.7

2
5
0

5
0
0
0
0
0

0
.0

0
0
.0

9
9
.5

0
.0

0
1
3
4
.2

0
.0

2
.2

0
.9

2
5
0

7
0
0
0
0
0

0
.0

0
0
.0

1
0
6
.8

0
.0

0
3
9
3

0
.0

8
.8

2
.5

3
0
0

1
0
0
0
0
0

0
.0

0
0
.0

1
8
4
.1

0
.0

0
3
.8

0
.0

0
.0

0
.1

3
0
0

3
0
0
0
0
0

0
.0

0
0
.0

1
8
8
.6

0
.0

0
7
.6

0
.0

0
.0

0
.1

4
0
0

2
0
0
0
0
0

0
.0

0
0
.0

6
0
8
.8

0
.0

0
3

0
.0

0
.0

0
.0

5
0
0

2
0
0
0
0
0

0
.0

0
0
.0

1
4
9
7
.3

0
.0

0
2

0
.0

0
.0

0
.0

A
v
e
ra

g
e

0
.0

0
1

5
0
2
5
2
.3

3
3
1
6
.9

1
0
.0

0
2
2
7
1
5
1
1

0
.0

8
7
1
6
5
2
.9

8
6

2
4
7
.3

1

161

11. CONCLUSIONS

This thesis provides a comprehensive study on network flow problems with con-

flict constraints including the minimum cost noncrossing flow problem (MCNFP), the

minimum cost flow problem with conflicts (MCFPC), the maximum flow problem with

conflicts (MFPC), and the assignment problem with conflicts (APC). It contributes

by giving complexity results, finding properties that make MCNFP and APC poly-

nomially solvable, developing different problem representations and the exact solution

algorithms benefiting from the particular underlying structures.

11.1. The Minimum Cost Noncrossing Flow Problem

Initially, we first introduce MCNFP and we show that the problem is NP -hard.

Then, we describe polynomially solvable special cases applicable to well-known prac-

tical problems such as the quay crane scheduling problem encountered in container

terminals: the problem becomes polynomially solvable when the traveling distances

are used as the set-up costs, which is a common practice. We also propose mixed-

integer linear programming formulations. Finally, we develop a preprocessing scheme

and experimentally study its effect on the formulations. Chapter 10 resume the ex-

perimental results where we solve the mathematical formulations of MCNFP over 33

instances. When we apply the preprocessing scheme to reduce the problem size prior

to solving the problem, 29.48% of the arcs are deleted on the average and the solution

time is decreased by at least 20%.

11.2. The Minimum Cost Flow Problem with Conflicts

Initially, we provide a brief complexity analysis of MCFPC and indicates the poly-

nomially solvable cases when the underlying conflict graph has known special structures

where the number of maximal stable sets is polynomial and they can be generated in

polynomial time. Three alternative ways to formulate MCFPC are given: a strong

MILP formulation, a weak MILP formulation and a combinatorial optimization rep-

resentation. Moreover, a branch-and-bound (BB) and Russian Doll Search (RDS)

162

algorithms are proposed. For BB, a penalty calculation procedure taking advantage

of the spanning trees representing the basic feasible solutions is described to apply

strong branching, improve relaxation bounds and for pegging the variables. A new and

efficient approach of RDS that uses dynamic candidate lists instead of the static ones

is introduced. To the best of our knowledge, these are the first reported exact solution

methods in the literature to solve MCFPC. They are proven to perform significantly

better than the commercial MILP solver CPLEX in terms of CPU times and the qual-

ity of bounds. When we compare the optimal solution times, BB and RDS are 31 and

10 times faster than CPLEX (version 12.9), respectively.

11.3. The Maximum Flow Problem with Conflicts

Three alternative MILP formulations using three alternative representations of

the conflict constraints and a combinatorial optimization problem representation are

given. LP relaxations of each MILP have different strengths. Moreover, new Benders

decomposition (BD), BB and RDS algorithms are proposed. Although MFPC is stud-

ied before in the literature and proven to be NP -hard, these are the first reported exact

solution methods for MFPC. They perform significantly better than CPLEX (version

12.7) does on the test instances with moderate sizes. BB and BD provide the best

average optimality gaps for the instances that cannot be solved in one hour-time limit

and RDS is reported to be the fastest algorithm to find the optimal solution.

11.4. The Assignment Problem with Conflicts

Finally, we have implemented BB and RDS algorithms for the assignment problem

with conflicts (APC), which is known to be strongly NP -hard, and introduced a poly-

nomially solvable case. For our BB algorithm we have suggested five branching rules:

conflicting pair branching, conflicting edge branching, conflicting edge-pair branching,

clique-0 branching and clique-1 branching. We have also tested a pegging technique

and several probing strategies. Among all these combinations, the best results are

observed for the conflicting edge branching when combined with depth first search,

an initial upper bound heuristic and pegging. According to the extensive computa-

163

tional experiments we can say that, with the best performing combination of several

strategies, the proposed BB algorithm is 22 % more efficient than the best performing

Binary Integer Programming formulation solved with CPLEX 12.7, on the average.

On the other hand, we should point out that although the CPU time requirement of

the RDS algorithm does not seem to be satisfactory for middle sized instances, RDS

outperforms the BIP formulations solved via CPLEX when the number of vertices is

at least 200.

11.5. Potential Future Research

When we consider the studied problems one by one, we should state that MCNFP

is very likely to be strongly NP -hard and this might be shown using a strongly NP -

hard path problem for the reduction such as the transportation problem with conflicts.

A Benders decomposition algorithm can be developed in order to solve the minimum

cost flow problem with conflicts by making use of the special structure of the problem.

The essentials of the described algorithms can be safely implemented for other problems

which are available in the literature and deal with conflict constraints. Particularly,

RDS is applicable to any problem that can be reduced to an optimization problem

on a graph with hereditary property, stable set problem, for example. Besides, the

instances with large number of vertices, high arc density and with low conflict density

are not expected to be solved efficiently by any exact solution method mentioned here.

Therefore, there is a room for efficient heuristics, which should be considered as a new

and promising research direction as well.

164

REFERENCES

1. “Video story on Sino-Lankan Colombo International Container Terminal”,

https://newsin.asia, accessed at May 2019.

2. Golden, B. L., “A minimum-cost multicommodity network flow problem concern-

ing imports and exports”, Networks , Vol. 5, No. 4, pp. 331–356, Oct. 1975.

3. Even, S., A. Itai and A. Shamir, “On the complexity of time table and multi-

commodity flow problems”, 16th Annual Symposium on Foundations of Computer

Science (sfcs 1975), IEEE, Oct. 1975.

4. Desrosiers, J., Y. Dumas, M. M. Solomon and F. Soumis, “Chapter 2 Time con-

strained routing and scheduling”, Handbooks in Operations Research and Man-

agement Science, pp. 35–139, Elsevier, 1995.

5. Ahuja, R. K. and J. B. Orlin, “A capacity scaling algorithm for the constrained

maximum flow problem”, Networks , Vol. 25, No. 2, pp. 89–98, Mar. 1995.

6. Ahuja, R. K., T. L. Magnanti and J. B. Orlin, Networks Flows , New-York:

Prentice-Hall, 1993.

7. Wayne, K. D., Generalized Maximum Flow Algorithms , Ph.D. Thesis, Cornell

University, 1999.

8. Kleinberg, J. M., Approximation Algorithms for Disjoint Path Problems , Ph.D.

Thesis, Massachusetts Institute of Technology, May 1996.

9. Baier, G., E. Köhler and M. Skutella, “The k-Splittable Flow Problem”, Algo-

rithmica, Vol. 42, No. 3-4, pp. 231–248, May 2005.

10. Cao, B., “Transportation problem with nonlinear side constraints a branch and

bound approach”, Math. Methods Oper. Res. (ZOR), Vol. 36, pp. 185–197, 1992.

165

11. Türkoğulları, Y., Z. C. Taşkın, N. Aras and K. Altınel, “Optimal berth allocation,

time-variant quay crane assignment and scheduling with crane setups in container

terminals”, European Journal of Operational Research, Vol. 254, pp. 985–1001,

2016.

12. Altınel, İ. K., N. Aras, Z. Şuvak and Z. C. Taşkın, “Minimum cost noncrossing

flow problem on layered networks”, Discrete Applied Mathematics , Vol. 261, pp.

2–21, May 2019.

13. Şuvak, Z., I. K. Altınel and N. Aras, Minimum cost flow problem with con-

flicts , Tech. Rep. No: FBE-IE-03/2018-03, Department of Industrial Engineering,

Bog̃aziçi University, İstanbul, Turkey, 2018.

14. Şuvak, Z., I. K. Altınel and N. Aras, Exact Solution Algorithms for the Maximum

Flow Problem with Additional Conflict Constraints , Tech. Rep. No: FBE-IE-

02/2019-02, Department of Industrial Engineering, Bog̃aziçi University, İstanbul,

Turkey, 2019.

15. Öncan, T., Z. Şuvak and I. K. Altınel, Assignment problems with conflicts , Tech.

Rep. No: FBE-IE-03/2016-16, Department of Industrial Engineering, Bog̃aziçi

University, İstanbul, Turkey, 2016.

16. Pferschy, U. and J. Schauer, “The maximum flow problem with disjunctive con-

straints”, Journal of Combinatorial Optimization, Vol. 26, pp. 109–119, 2013.

17. Darmann, A., U. Pferschy, J. Schauer and G. J. Woeginger, “Paths, trees and

matchings under disjunctive constraints”, Discrete Applied Mathematics , Vol. 159,

pp. 1726–1735, 2011.

18. Diestel, R., Graph Theory , Springer-Verlag GmbH, 2017.

19. Ford, L. R., Jr. and D. R. Fulkerson, Flows in Networks , New Jersey: Princeton

University Press, 1962.

166

20. Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to the

Theory of NP-completeness , San Francisco: Freeman, 1979.

21. Trukhanov, S., C. Balasubramaniam, B. Balasundaram and S. Butenko, “Al-

gorithms for detecting optimal hereditary structures in graphs, with ap-

plication to clique relaxations”, Comput Optim Appl , pp. 56–113, 2013,

https://doi.org/10.1007/s10589-013-9548-5.

22. Gouveia, L., M. Leitner and M. Ruthmair, “Layered graph approaches for com-

binatorial optimization problems”, Computers & Operations Research, Vol. 102,

pp. 22–38, Feb. 2019.

23. Lee, D.-H., H. Q. Wang and L. Miao, “Quay crane scheduling with non-

interference constraints in port container terminals”, Transportation Research

Part E: Logistics and Transportation Review , Vol. 44, No. 1, pp. 124–135, Jan.

2008.

24. Schrijver, A., “On the history of the transportation and maximum flow problems”,

Mathematical Programming , Vol. 91, No. 3, pp. 437–445, Feb. 2002.

25. Ford, L. R., Jr. and D. R. Fulkerson, “Maximal Flow Through a Network”, Cana-

dian Journal of Mathematics , Vol. 8, pp. 24–32, 1956.

26. Schrijver, A., Combinatorial Optimization. Polyhedra and Efficiency , Volume 24

of Algorithms and Combinatorics, Springer-verlag, Berlin, 2003.

27. Kuhn, H. W., “The Hungarian method for the assignment problem”, Naval Re-

search Logistics Quarterly , Vol. 2, pp. 83–97, 1955.

28. Ortega, F. and L. A. Wolsey, “A branch-and-cut algorithm for the single-

commodity, uncapacitated, fixed-charge network flow problem”, Networks ,

Vol. 41, No. 3, pp. 143–158, May 2003.

167

29. Hewitt, M., G. L. Nemhauser and M. W. P. Savelsbergh, “Combining Exact and

Heuristic Approaches for the Capacitated Fixed-Charge Network Flow Problem”,

INFORMS Journal on Computing , Vol. 22, No. 2, pp. 314–325, May 2010.

30. Ahuja, R. K., K. Mehlhorn, J. Orlin and R. E. Tarjan, “Faster algorithms for the

shortest path problem”, Journal of the ACM , Vol. 37, No. 2, pp. 213–223, Apr.

1990.

31. Ford, L. R. and D. R. Fulkerson, “Solving the Transportation Problem”, Man-

agement Science, Vol. 3, No. 1, pp. 24–32, Oct. 1956.

32. Goldberg, A. V. and R. E. Tarjan, “Solving minimum cost flow problem by succes-

sive approximation”, Mathematics of Operations Research, Vol. 15, pp. 430–466,

1990.

33. Pferschy, U. and J. Schauer, “The knapsack problem with conflict graphs”, Jour-

nal of Graph Algorithms and Applications , Vol. 13, pp. 233–249, 2009.

34. Grötschel, M., L. Lovasz and A. Schrijver, Geometric Algorithms and Combina-

torial Optimization, Springer-Verlag Berlin Heidelberg, 1993.

35. Conforti, M., G. Cornuejols and G. Zambelli, Integer Programming , Graduate

Texts in Mathematics, Springer International Publishing, 2014.

36. Yamada, T., S. Kataoka and K. Watanabe, “Heuristic and Exact Algorithms

for the Disjunctively Constrained Knapsack Problem”, Information Processing

Society of Japan Journal , Vol. 43, No. 9, pp. 2864–2870, Sep. 2002.

37. Hifi, M. and M. Michrafy, “A reactive local search-based algorithm for the dis-

junctively constrained knapsack problem”, Journal of the Operational Research

Society , Vol. 57, No. 6, pp. 718–726, Jun. 2006.

38. Hifi, M. and M. Michrafy, “Reduction strategies and exact algorithms for the

168

disjunctively constrained knapsack problem”, Computers & Operations Research,

Vol. 34, No. 9, pp. 2657–2673, Sep. 2007.

39. Akeb, H., M. Hifi and M. E. O. A. Mounir, “Local branching-based algorithms for

the disjunctively constrained knapsack problem”, Computers & Industrial Engi-

neering , Vol. 60, No. 4, pp. 811–820, May 2011.

40. Bettinelli, A., V. Cacchiani and E. Malaguti, “A Branch-and-Bound Algorithm for

the Knapsack Problem with Conflict Graph”, INFORMS Journal on Computing ,

Vol. 29, No. 3, pp. 457–473, Aug. 2017.

41. Jansen, K. and S. Öhring, “Approximation Algorithms for Time Constrained

Scheduling”, Information and Computation, Vol. 132, No. 2, pp. 85–108, Feb.

1997.

42. Jansen, K., “An Approximation Scheme for Bin Packing with Conflicts”, Journal

of Combinatorial Optimization, Vol. 3, No. 4, pp. 363–377, 1999.

43. Gendreau, M., G. Laporte and F. Semet, “Heuristics and lower bounds for the

bin packing problem with conflicts”, Computers & Operations Research, Vol. 31,

No. 3, pp. 347–358, Mar. 2004.

44. Khanafer, A., F. Clautiaux and E.-G. Talbi, “New lower bounds for bin packing

problems with conflicts”, European Journal of Operational Research, Vol. 206,

No. 2, pp. 281–288, Oct. 2010.

45. Muritiba, A. E. F., M. I., E. Malaguti and P. Toth, “Algorithms for the Bin

Packing Problem with Conflicts”, INFORMS Journal on Computing , Vol. 22,

No. 3, pp. 401–415, Aug. 2010.

46. Elhedhli, S., L. Li, M. Gzara and J. Naoum-Sawaya, “A Branch-and-Price Al-

gorithm for the Bin Packing Problem with Conflicts”, INFORMS Journal on

Computing , Vol. 23, No. 3, pp. 404–415, Aug. 2011.

169

47. Sadykov, R. and F. Vanderbeck, “Bin Packing with Conflicts: A Generic Branch-

and-Price Algorithm”, INFORMS Journal on Computing , Vol. 25, No. 2, pp.

244–255, May 2013.

48. Capua, R., Y. Frota, L. S. Ochi and T. Vidal, “A study on exponential-size

neighborhoods for the bin packing problem with conflicts”, Journal of Heuristics ,

Vol. 24, No. 4, pp. 667–695, Apr. 2018.

49. Sun, M., “A tabu search heuristic procedure for solving the transportation prob-

lem with exclusionary side constraints”, Journal of Heuristics , Vol. 3, pp. 305–326,

1998.

50. Sun, M., “The transportation problem with exclusionary side constraints and two

branch-and-bound algorithms”, European Journal of Operational Research, Vol.

140, pp. 629–647, 2002.

51. Syarif, A. and M. Gen, Journal of Intelligent Manufacturing , Vol. 14, No. 3/4,

pp. 389–399, 2003.

52. Goossens, D. and F. C. R. Spieksma, “The transportation problem with exclu-

sionary side constraints”, 4OR, Vol. 7, No. 1, pp. 51–60, Jan. 2008.

53. Darmann, A., U. Pferschy and Schauer, Determining a minimum spanning tree

with disjunctive constraints , pp. 414–423, Algorithmic Decision Theory, ADT

2009, Lecture Notes in Computer Science, vol. 5783, Springer, 2009.

54. Zhang, R., S. N. Kabadi and A. P. Punnen, “The minimum spanning tree problem

with conflict constraints and its variations”, Discrete Optimization, Vol. 8, pp.

101–205, 2011.

55. Samer, P. and S. Urrutia, “A branch and cut algorithm for minimum spanning

trees under conflict constraints”, Optimization Letters , Vol. 9, pp. 41–55, 2015.

170

56. Carrabs, F., R. Cerulli, R. Pentangelo and A. Raiconi, “Minimum spanning tree

with conflicting edge pairs: a branch-and-cut approach”, Annals of Operations

Research, May 2018.

57. Öncan, T., R. Zhang and A. P. Punnen, “The minimum cost perfect match-

ing problem with conflict pair constraints”, Computers & Operations Research,

Vol. 40, pp. 920–930, 2013.

58. Öncan, T. and I. K. Altınel, “A branch-and-bound algorithm for the minimum

cost bipartite perfect matching problem with conflict pair constraints”, Proc. of

the Int. Conf. on Sys. Eng. and Eng. Mngt. (ICSEEM’16), 2016.

59. Cao, B. and G. Uebe, “Solving transportation problems with nonlinear side con-

straints with tabu search”, Comp. Oper. Res., Vol. 22, pp. 593–603, 1995.

60. Öncan, T. and İ. K. Altınel, “A Branch-and-Bound Algorithm for the Minimum

Cost Bipartite Perfect Matching Problem with Conflict Pair Constraints”, Elec-

tronic Notes in Discrete Mathematics , Vol. 64, pp. 5–14, Feb. 2018.

61. Beaumont, O., N. Bonichon, P. Duchon and H. Larchevêque, “Distributed Ap-

proximation Algorithm for Resource Clustering”, Structural Information and

Communication Complexity , pp. 61–73, Springer Berlin Heidelberg, 2008.

62. Christofides, N., A. Mingozzi and P. Toth, Combinatorial Optimization, chap.

Loading problems, pp. 339–69, Chicester: Wiley, 1979.

63. Goossens, D., A. Maas, F. Spieksma and J. van de Klundert, “Exact algorithms

for procurement problems under a total quantity discount structure”, European

Journal of Operational Research, Vol. 178, No. 2, pp. 603–626, Apr. 2007.

64. Buragohain, C., S. Suri, C. D. Toth and Y. Zhou, “Improved throughput bounds

for interference-aware routing in wireless networks”, G. Lin (Ed.), Computing and

Combinatorics, 13th Annual Conference, COCOON07, LNCS 4598 , pp. 210–221,

171

2007.

65. Boysen, N., D. Briskorn and F. Meisel, “A generalized classification scheme for

crane scheduling with interference”, European Journal of Operational Research,

Vol. 258, No. 1, pp. 343–357, Apr. 2017.

66. Manerba, D. and R. Mansini, “A branch-and-cut algorithm for the multi-vehicle

traveling purchaser problem with pairwise incompatibility constraints”, Networks ,

Vol. 65, No. 2, pp. 139–154, Dec. 2014.

67. Bierwirth, C. and F. Meisel, “A survey of berth allocation and quay crane schedul-

ing problems in container terminals”, European Journal of Operational Research,

Vol. 202, pp. 615–627, 2010.

68. Bierwirth, C. and F. Meisel, “A follow-up survey of berth allocation and quay

crane scheduling problems in container terminals”, European Journal of Opera-

tional Research, Vol. 244, pp. 675–689, 2015.

69. Carlo, H. J., I. F. A. Vis and K. J. Roodbergen, “Seaside operations in container

terminals: literature overview, trends, and research directions”, Flexible Services

and Manufacturing Journal , Vol. 27, No. 2-3, pp. 224–262, Jun. 2015.

70. Steenken, D., S. Voßand R. Stahlbock, “Container terminal operation and oper-

ations research - a classification and literature review”, OR Spectrum, Vol. 26,

No. 1, pp. 3–49, Jan. 2004.

71. She, J., Y. Tong, L. Chen and C. C. Cao, “Conflict-Aware Event-Participant Ar-

rangement and Its Variant for Online Setting”, IEEE Transactions on Knowledge

and Data Engineering , Vol. 28, No. 9, pp. 2281–2295, Sep. 2016.

72. Jain, K., J. Padhye, V. N. Padmanabhan and L. Qiu, “Impact of Interference on

Multi-Hop Wireless Network Performance”, Wireless Networks , Vol. 11, No. 4,

pp. 471–487, Jul. 2005.

172

73. Zhang, R., Quadratic bottleneck problems: algorithms, complexity and related top-

ics , Ph.D. Thesis, Simon Fraser University, Department of Mathematics, Canada,

2011.

74. Papadimitriou, C. H., “The NP-completeness of the bandwidth minimization

problem”, European Journal of Operational Research, Vol. 16, pp. 263–279, 1976.

75. Fulkerson, D. R. and O. A. Gross, “Incidence matrices and interval graphs”,

Pasific Journal of Mathematics , Vol. 131, pp. 835–855, 1965.

76. Spinrad, J. P., Efficient Graph Representations , Number 19 in Fields Institute

Monographs. American Mathematical Society, 2003.

77. Mitchell, J. and V. Polishchuk, “Graphs with few cliques”, Proc. 7th Quadrennial

Int. Conf. on the Theory and Appl. of Graphs, 1992, Graph Theory, Combina-

torics and Applications , pp. 945–956, 1995.

78. Moon, J. W. and L. Moser, “On cliques in graphs”, Israel Journal of Mathematics ,

Vol. 3, pp. 23–28, 1965.

79. Couturier, J. F., P. Heggernes, P. V. Hof and D. Kratsch, “Minimal dominat-

ing sets in graph classes: Combinatorial bounds and enumeration”, Theoretical

Computer Science, Vol. 487, pp. 82–94, 2013.

80. Fomin, F. V., F. Grandoni, A. V. Pyatkin and A. A. Stepanov, “Combinato-

rial bounds via measure and conquer: bounding minimal dominating sets and

applications”, ACM Trans. Algorithms , Vol. 5, pp. 9:1–9:17, 2008.

81. Tsukiyama, S., M. Ide, H. Ariyoshi and I. Shirakawa, “A new algorithm for gener-

ating all the maximal independent sets”, SIAM J. Computing , Vol. 6, pp. 505–517,

1977.

82. Makino, K. and T. Uno, “New algorithms for enumerating all maximal cliques”,

173

SWAT 2004, Lecture Notes in Computer Science, Vol. 3111 , pp. 260–272, 2004.

83. Ausiello, G., P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela and

M. Protasi, Complexity and Approximation: Combinatorial Optimization Prob-

lems and Their Approximability Properties , Springer Verlag, Berlin, 1999.

84. Cook, S. A., “The complexity of theorem-proving procedures”, Proceedings of the

third annual ACM symposium on Theory of computing - STOC 71 , ACM Press,

1971.

85. Benders, J. F., “Partitioning procedures for solving mixed variables programming

problems”, Numerische Mathematik , Vol. 4, pp. 238–252, 1962.

86. Rahmaniani, R., T. G. Crainic, M. Gendrau and W. Rei, “The Benders decompo-

sition algorithm: A literature review”, European Journal of Operational Research,

Vol. 259, No. 3, pp. 801–817, Jun. 2017.

87. Costa, A. M., “A survey on benders decomposition applied to fixed-charge net-

work design problems”, Computers & Operations Research, Vol. 32, No. 6, pp.

1429–1450, Jun. 2005.

88. Magnanti, T. L., P. Mireault and R. T. Wong, “Tailoring Benders decomposition

for uncapacitated network design”, Mathematical Programming Studies , pp. 112–

154, Springer Berlin Heidelberg, 1986.

89. Codato, G. and M. Fischetti, “Combinatorial Benders Cuts for Mixed-Integer

Linear Programming”, Operations Research, Vol. 54, No. 4, pp. 756–766, Aug.

2006.

90. Magnanti, T. L. and R. T. Wong, “Accelerating Benders Decomposition: Al-

gorithmic Enhancement and Model Selection Criteria”, Operations Research,

Vol. 29, No. 3, pp. 464–484, Jun. 1981.

174

91. Roy, T. J. V., “Cross decomposition for mixed integer programming”, Mathemat-

ical Programming , Vol. 25, No. 1, pp. 46–63, Jan. 1983.

92. Üster, H. and H. Agrahari, “A Benders decomposition approach for a distribution

network design problem with consolidation and capacity considerations”, Opera-

tions Research Letters , Vol. 39, No. 2, pp. 138–143, 2011.

93. Bodur, M., T. Ekim and Z. C. Taşkin, “Decomposition algorithms for solving

the minimum weight maximal matching problem”, Networks , Vol. 62, No. 4, pp.

273–287, Oct. 2013.

94. Taşkın, Z. C. and M. Cevik, “Combinatorial Benders cuts for decomposing IMRT

fluence maps using rectangular apertures”, Computers & Operations Research,

Vol. 40, No. 9, pp. 2178–2186, Sep. 2013.

95. Goldberg, A. V. and R. E. Tarjan, “A new approach to the maximum-flow prob-

lem”, Journal of the ACM , Vol. 35, No. 4, pp. 921–940, Oct 1988.

96. Nemhauser, G. and L. Wolsey, Integer and Combinatorial Optimization, Wiley,

New York, 1988.

97. Kovács, P., Minimum-cost flow algorithms: An experimental evaluation, Tech.

rep., Egerváry Research Group on Combinatorial Optimization, Budapest, Hun-

gary, 2015.

98. Verfaillie, G., M. Lemaitre and T. Schiex, “Russian Doll Search for solving con-

straint optimization problems”, Proceedings of the National Conference on Arti-

ficial Intelligence, pp. 181–187, Citeseer, Princeton, 1996.

99. Rysz, M., M. Mirghorbani, P. Krokhmal and E. L. Pasiliao, “On risk-averse

maximum weighted subgraph problems”, J Comb Optim, pp. 28– –167, 2014,

https://doi.org/10.1007/s10878-014-9718-0.

175

100. Klingman, D., A. Napier and J. Stutz, “NETGEN: A program for generating large

scale capacitated assignment, transportation, and minimum cost flow networks”,

Management Science, Vol. 20, pp. 814–820, 1974.

101. “Visual C++ Documentation”, https://docs.microsoft.com/en-us/cpp, ac-

cessed at Jun. 2019.

102. CPLEX User’s Manual: IBM ILOG CPLEX Optimization Studio,

https://www.ibm.com/support/knowledgecenter, accessed at May 2019.

176

APPENDIX A: APPENDICES

A.1. Detailed Computational Results for the Minimum Cost Flow
Problem with Conflicts

The following tables, i.e. Table A.1 – Table A.5 include the raw computational

results. They are used to prepare the summary tables, i.e. Table 10.4 – Table 10.10,

in Section 10.2.

T
ab

le
A

.1
.

P
ro

p
er

ti
es

of
th

e
te

st
in

st
an

ce
s

an
d

th
e

u
p
p

er
b

ou
n
d
s

gi
ve

n
b
y

th
e

d
iv

in
g

h
eu

ri
st

ic
s.

P
ro

b
le

m
In

st
an

ce
s

D
iv

in
g

H
eu

ri
st

ic
s

P
ro

b
le

m
In

st
an

ce
s

D
iv

in
g

H
eu

ri
st

ic
s

In
st

an
ce

N
u
m

b
er

A
rc

C
on

fl
ic

t
R

u
le

1
R

u
le

1
R

u
le

2
R

u
le

2
In

st
an

ce
N

u
m

b
er

A
rc

C
on

fl
ic

t
R

u
le

1
R

u
le

1
R

u
le

2
R

u
le

2
N

o
of

n
o
d
es

d
en

si
ty

d
en

si
ty

(U
B

)
C

P
U

T
im

e
(U

B
)

C
P

U
T

im
e

N
o

of
n
o
d
es

d
en

si
ty

d
en

si
ty

(U
B

)
C

P
U

T
im

e
(U

B
)

C
P

U
T

im
e

(n
)

(p
)

(d
)

(s
)

(s
)

(n
)

(p
)

(d
)

(s
)

(s
)

1
40

0.
3

0.
2

19
,8

50
0.

04
19

,8
50

2.
01

41
60

0.
5

0.
2

63
,0

00
57

.6
0

60
.0

0
2

40
0.

3
0.

3
17

,2
00

0.
16

17
,2

00
0.

10
42

60
0.

5
0.

3
15

0,
00

0
2.

05
15

0,
00

0
2.

90
3

40
0.

3
0.

4
35

,9
00

0.
80

35
,9

00
0.

21
43

60
0.

5
0.

4
24

,0
00

5.
95

24
,0

00
20

.7
0

4
40

0.
3

0.
5

28
,0

00
0.

15
28

,0
00

0.
32

44
60

0.
5

0.
5

32
,4

00
9.

03
32

,4
00

7.
19

5
40

0.
4

0.
2

27
,9

50
1.

75
27

,9
50

0.
43

45
60

0.
6

0.
2

15
7,

75
0

19
.9

7
15

7,
75

0
7.

22
6

40
0.

4
0.

3
47

,8
00

0.
12

47
,8

00
1.

47
46

60
0.

6
0.

3
34

,2
50

20
.1

6
60

.0
0

7
40

0.
4

0.
4

27
,8

50
0.

08
27

,8
50

0.
10

47
60

0.
6

0.
4

10
7,

40
0

9.
84

10
7,

40
0

7.
59

8
40

0.
4

0.
5

27
,1

50
0.

21
27

,1
50

0.
25

48
60

0.
6

0.
5

34
,1

00
9.

42
34

,1
00

10
.4

7
9

40
0.

5
0.

2
38

,3
00

4.
59

38
,3

00
1.

40
49

70
0.

3
0.

2
12

5,
70

0
0.

58
12

5,
70

0
3.

53
10

40
0.

5
0.

3
11

4,
15

0
0.

09
11

4,
15

0
1.

42
50

70
0.

3
0.

3
13

9,
10

0
1.

29
13

9,
10

0
1.

16
11

40
0.

5
0.

4
63

,7
00

0.
17

63
,7

00
0.

19
51

70
0.

3
0.

4
–

–
–

–
12

40
0.

5
0.

5
70

,0
00

0.
03

70
,0

00
0.

31
52

70
0.

3
0.

5
56

,0
00

1.
71

56
,0

00
1.

84
13

40
0.

6
0.

2
60

.0
0

35
,3

12
19

.5
0

53
70

0.
4

0.
2

11
2,

00
0

57
.4

1
60

.0
0

14
40

0.
6

0.
3

54
,0

00
1.

29
54

,0
00

1.
25

54
70

0.
4

0.
3

18
1,

95
0

2.
59

18
1,

95
0

4.
12

15
40

0.
6

0.
4

64
,0

00
1.

03
64

,0
00

0.
36

55
70

0.
4

0.
4

11
9,

90
0

1.
08

11
9,

90
0

1.
88

16
40

0.
6

0.
5

19
,5

00
1.

18
19

,5
00

1.
14

56
70

0.
4

0.
5

16
8,

00
0

1.
92

16
8,

00
0

4.
02

17
50

0.
3

0.
2

34
,7

00
13

.7
9

34
,7

00
14

.5
0

57
70

0.
5

0.
2

12
3,

25
0

56
.1

2
60

.0
0

18
50

0.
3

0.
3

48
,4

50
1.

25
48

,4
50

0.
12

58
70

0.
5

0.
3

21
8,

95
0

6.
88

21
8,

95
0

10
.9

8
19

50
0.

3
0.

4
19

,4
00

1.
09

19
,4

00
0.

13
59

70
0.

5
0.

4
12

6,
00

0
13

.0
1

12
6,

00
0

13
.2

6
20

50
0.

3
0.

5
–

–
–

–
60

70
0.

5
0.

5
13

5,
00

0
2.

99
13

5,
00

0
3.

74
21

50
0.

4
0.

2
59

,9
00

25
.6

6
59

,9
00

3.
50

61
70

0.
6

0.
2

60
.0

0
15

7,
45

0
14

.1
5

22
50

0.
4

0.
3

11
1,

90
0

0.
23

11
1,

90
0

0.
49

62
70

0.
6

0.
3

11
6,

50
0

37
.2

1
11

6,
50

0
23

.7
5

23
50

0.
4

0.
4

24
,6

50
1.

04
24

,6
50

0.
51

63
70

0.
6

0.
4

12
6,

00
0

20
.7

9
12

6,
00

0
22

.1
6

24
50

0.
4

0.
5

–
–

–
–

64
70

0.
6

0.
5

10
6,

35
0

23
.2

3
10

6,
35

0
31

.1
4

25
50

0.
5

0.
2

89
,2

50
4.

73
89

,2
50

22
.1

5
65

80
0.

3
0.

2
50

,2
00

54
.7

7
60

.0
0

26
50

0.
5

0.
3

62
,4

50
2.

05
62

,4
50

1.
25

66
80

0.
3

0.
3

42
,9

50
33

.0
6

42
,9

50
3.

70
27

50
0.

5
0.

4
79

,2
50

1.
09

79
,2

50
2.

01
67

80
0.

3
0.

4
15

2,
20

0
0.

94
15

2,
20

0
2.

01
28

50
0.

5
0.

5
17

,0
50

6.
86

17
,0

50
4.

59
68

80
0.

3
0.

5
–

–
–

–
29

50
0.

6
0.

2
86

,4
08

8.
25

60
.0

0
69

80
0.

4
0.

2
13

8,
15

0
11

.2
8

60
.0

0
30

50
0.

6
0.

3
44

,9
00

5.
75

44
,9

00
3.

02
70

80
0.

4
0.

3
11

8,
35

0
9.

72
11

8,
35

0
9.

99
31

50
0.

6
0.

4
86

,0
50

1.
34

86
,0

50
2.

48
71

80
0.

4
0.

4
71

,9
50

9.
04

71
,9

50
14

.7
1

32
50

0.
6

0.
5

15
,9

50
5.

66
15

,9
50

5.
50

72
80

0.
4

0.
5

13
1,

60
0

0.
96

13
1,

60
0

1.
29

33
60

0.
3

0.
2

53
,9

50
7.

01
53

,9
50

1.
28

73
80

0.
5

0.
2

60
.0

0
37

4,
55

0
54

.3
4

34
60

0.
3

0.
3

52
,3

00
0.

99
52

,3
00

1.
22

74
80

0.
5

0.
3

60
.0

0
14

8,
00

0
23

.6
6

35
60

0.
3

0.
4

20
,9

50
2.

05
20

,9
50

0.
50

75
80

0.
5

0.
4

14
3,

80
0

21
.0

7
14

3,
80

0
16

.4
9

36
60

0.
3

0.
5

52
,9

00
0.

08
52

,9
00

1.
34

76
80

0.
5

0.
5

19
2,

00
0

18
.9

3
19

2,
00

0
21

.5
1

37
60

0.
4

0.
2

12
0,

65
0

3.
95

12
0,

65
0

3.
66

77
80

0.
6

0.
2

16
7,

80
0

59
.0

1
60

.0
0

38
60

0.
4

0.
3

90
,0

00
3.

12
90

,0
00

1.
75

78
80

0.
6

0.
3

15
9,

80
0

22
.9

9
60

.0
0

39
60

0.
4

0.
4

10
7,

95
0

0.
10

10
7,

95
0

0.
85

79
80

0.
6

0.
4

20
1,

45
0

36
.0

2
20

1,
45

0
47

.4
1

40
60

0.
4

0.
5

47
,6

50
0.

10
47

,6
50

1.
80

80
80

0.
6

0.
5

10
3,

65
0

33
.9

8
10

3,
65

0
32

.5
9

T
ab

le
A

.2
.

C
P

U
ti

m
es

of
al

go
ri

th
m

s.

In
st

an
ce

C
P

L
E

X
-S

tr
on

g
C

P
L

E
X

-W
ea

k
B

B
-A

rc
B

B
-P

ai
r

B
B

-C
li

q
u
e

R
D

S
In

st
an

ce
C

P
L

E
X

-S
tr

on
g

C
P

L
E

X
-W

ea
k

B
B

-A
rc

B
B

-P
ai

r
B

B
-C

li
q
u
e

R
D

S
N

o
C

P
U

T
im

e
C

P
U

T
im

e
C

P
U

T
im

e
C

P
U

T
im

e
C

P
U

T
im

e
C

P
U

T
im

e
N

o
C

P
U

T
im

e
C

P
U

T
im

e
C

P
U

T
im

e
C

P
U

T
im

e
C

P
U

T
im

e
C

P
U

T
im

e
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
(s

)
1

12
3.

49
41

.8
2

4.
09

>
36

00
>

36
00

20
.8

2
41

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

2
29

.2
8

17
.0

2
0.

58
>

36
00

96
.7

2
1.

27
42

>
36

00
23

6.
72

3.
45

>
36

00
26

3.
98

10
.2

2
3

22
.4

2
11

.6
0

0.
23

>
36

00
1.

29
0.

6
43

>
36

00
>

36
00

42
1.

43
>

36
00

>
36

00
72

2.
22

4
1.

36
1.

19
0.

09
>

36
00

0.
04

0.
22

44
>

36
00

3,
59

6.
49

81
.4

8
>

36
00

39
.5

14
7.

23
5

62
9.

20
22

8.
91

41
.0

7
>

36
00

>
36

00
98

.2
2

45
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
6

10
6.

37
40

.6
9

2.
7

>
36

00
38

2.
56

6.
18

46
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
7

2.
63

2.
23

0.
07

>
36

00
0.

19
0.

23
47

>
36

00
>

36
00

14
2.

8
>

36
00

29
87

.8
6

30
5.

25
8

0.
80

0.
71

0.
01

1.
34

0.
01

0.
02

48
>

36
00

>
36

00
19

7.
32

>
36

00
81

.1
33

9.
22

9
>

36
00

2,
02

7.
80

27
4.

08
>

36
00

>
36

00
44

3.
81

49
1,

59
5.

60
23

3.
36

11
.0

6
>

36
00

>
36

00
67

.0
8

10
15

4.
15

45
.3

6
0.

44
>

36
00

16
.8

3
0.

89
50

>
36

00
24

2.
17

0.
69

>
36

00
3.

2
2.

37
11

10
.2

4
46

.6
3

0.
12

>
36

00
0.

09
0.

44
51

0.
05

0.
03

0
0

0
0

12
4.

07
3.

55
0.

03
0.

68
0.

02
0.

1
52

>
36

00
54

4.
90

4.
26

>
36

00
3.

48
10

.0
7

13
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
53

>
36

00
>

36
00

26
57

.7
8

>
36

00
>

36
00

>
36

00
14

1,
07

6.
57

18
8.

30
7.

55
>

36
00

74
6.

88
46

.4
7

54
>

36
00

61
9.

77
15

.6
5

>
36

00
17

47
.4

3
38

.1
5

15
34

7.
36

68
.1

1
0.

58
>

36
00

2.
46

2.
47

55
>

36
00

19
1.

06
1.

22
>

36
00

1.
19

3.
15

16
1,

20
1.

29
78

.0
0

1.
06

>
36

00
1.

77
3.

4
56

>
36

00
45

7.
36

1.
34

>
36

00
1.

72
5.

16
17

2,
48

7.
92

89
6.

72
17

0.
06

>
36

00
>

36
00

27
6.

72
57

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

18
0.

62
0.

56
0.

11
>

36
00

0.
28

0.
34

58
>

36
00

1,
09

5.
03

17
.9

1
>

36
00

26
14

.2
82

.5
5

19
21

9.
14

13
0.

28
3.

31
>

36
00

19
.4

5
7.

28
59

>
36

00
3,

16
6.

74
16

.7
4

>
36

00
33

45
.1

2
20

0.
33

0.
21

0
0

0
0

60
>

36
00

46
0.

99
1.

75
>

36
00

0.
85

5.
17

21
>

36
00

>
36

00
98

2.
41

>
36

00
>

36
00

26
74

.6
8

61
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
22

25
6.

76
56

.6
1

0.
12

>
36

00
1.

64
1.

2
62

>
36

00
>

36
00

63
1.

32
>

36
00

>
36

00
16

65
.1

9
23

2,
52

9.
34

41
9.

16
6.

12
>

36
00

23
.4

5
13

.9
5

63
>

36
00

2,
38

7.
09

26
.4

6
>

36
00

42
.4

4
11

1.
6

24
0.

23
0.

16
0

0
0

0
64

>
36

00
2,

88
9.

19
27

.9
2

>
36

00
52

.7
9

70
.6

25
>

36
00

1,
32

3.
10

17
6.

76
>

36
00

>
36

00
12

95
.4

7
65

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

26
1,

81
7.

32
14

8.
69

1.
81

>
36

00
78

.1
8.

86
66

>
36

00
>

36
00

45
6.

52
>

36
00

>
36

00
89

1.
21

27
1,

36
4.

09
15

2.
66

1.
43

>
36

00
4.

65
3.

52
67

>
36

00
12

8.
70

0.
48

>
36

00
0.

46
0.

85
28

>
36

00
73

4.
84

33
.4

>
36

00
10

.6
5

63
.9

1
68

5.
63

2.
07

0
0

0
0

29
>

36
00

>
36

00
57

5.
5

>
36

00
>

36
00

>
36

00
69

>
36

00
>

36
00

18
54

.1
3

>
36

00
>

36
00

>
36

00
30

>
36

00
1,

18
4.

54
49

.2
8

>
36

00
>

36
00

16
8.

56
70

>
36

00
>

36
00

61
.8

2
>

36
00

>
36

00
17

0.
91

31
>

36
00

79
.4

3
1.

04
>

36
00

1.
63

2.
44

71
>

36
00

2,
94

8.
32

70
>

36
00

92
2.

23
19

3.
3

32
>

36
00

1,
14

8.
15

39
.7

>
36

00
24

.8
5

88
.8

2
72

10
6.

10
46

.6
6

0.
53

58
.5

0.
18

1.
25

33
>

36
00

1,
15

5.
88

12
5.

86
>

36
00

>
36

00
48

2.
79

73
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
34

1,
16

1.
00

81
.8

1
2.

21
>

36
00

14
7.

46
7.

25
74

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

35
2,

47
8.

22
18

9.
87

3.
63

>
36

00
12

.6
6

13
.6

1
75

>
36

00
2,

13
6.

78
31

.1
8

>
36

00
86

.4
83

.5
9

36
1,

10
1.

95
41

.7
0

0.
73

>
36

00
0.

37
1.

37
76

>
36

00
2,

95
7.

50
16

.7
4

>
36

00
8.

69
83

.4
1

37
>

36
00

>
36

00
17

24
.2

2
>

36
00

>
36

00
35

78
.3

1
77

>
36

00
>

36
00

>
36

00
>

36
00

>
36

00
>

36
00

38
>

36
00

25
8.

65
3.

54
>

36
00

10
4.

61
10

.4
8

78
>

36
00

1,
21

0.
73

32
.4

8
>

36
00

53
4.

58
11

0.
63

39
11

.7
3

14
.1

9
0.

25
>

36
00

0.
07

0.
64

79
>

36
00

3,
49

3.
14

40
.2

5
>

36
00

19
4.

29
10

4.
67

40
>

36
00

53
.5

1
0.

44
>

36
00

0.
78

2.
1

80
>

36
00

2,
54

7.
11

19
.4

1
>

36
00

21
.7

58
.4

179

Table A.3. Number of solved subproblems to find an optimal solution within 1 hour
time limit.

Instance No BB-Arc BB-Pair BB-Clique RDS Instance No BB-Arc BB-Pair BB-Clique RDS
1 13,440 732,584 6,077,470 27,466 41 556,096 192,891 232,525 557,992
2 2,163 723,440 451,995 1,597 42 449 127,253 32,505 375
3 667 812,169 4,235 460 43 97,493 94,676 466,058 47,389
4 89 985,377 43 49 44 10,295 139,352 5,541 4,605
5 120,188 685,923 895,606 148,853 45 355,596 107,851 133,252 263,530
6 5,559 767,315 903,061 3,877 46 227,805 115,814 114,536 195,274
7 83 872,893 147 70 47 16,649 128,903 347,495 8,969
8 25 6,483 9 20 48 24,520 58,706 10,415 10,104
9 382,509 617,879 1,346,085 261,654 49 6,731 726,415 864,586 17,493
10 326 1,008,331 12,413 239 50 115 328,910 507 148
11 87 2,169,725 75 124 51 0 0 0 0
12 19 650 7 19 52 943 153,687 677 464
13 3,509,645 491,181 610,014 2,723,137 53 817,768 234,047 479,195 1,195,978
14 4,335 439,998 410,047 9,030 54 2,298 134,180 282,399 2,107
15 272 368,327 1,055 376 55 67 91,660 69 63
16 339 238,087 509 244 56 113 86,965 117 86
17 372,077 631,474 714,233 259,621 57 311,294 93,245 119,138 202,152
18 117 3,399,582 243 115 58 1,888 62,976 232,937 3,309
19 3,261 627,271 18,687 1,652 59 713 45,177 1,553 530
20 0 0 0 0 60 70 46,534 25 55
21 1,246,221 574,151 1,190,047 1,733,193 61 182,881 45,262 60,469 149,266
22 91 4,409,331 1,073 400 62 31,372 37,360 65,492 24,799
23 2,389 328,763 8,769 1,394 63 772 24,980 1,041 1,245
24 0 0 0 0 64 1,033 20,547 1,605 752
25 119,717 410,650 577,328 395,381 65 909,586 223,079 314,780 990,855
26 500 325,473 19,887 1,131 66 142,838 136,894 330,887 73,984
27 307 232,094 777 170 67 48 462,243 37 40
28 5,671 119,010 1,925 2,996 68 0 0 0 0
29 265,443 242,116 358,438 734,005 69 200,831 80,839 98,574 132,708
30 12,600 132,923 420,462 15,100 70 4,691 59,427 140,701 4,373
31 123 182,099 235 102 71 3,533 43,906 53,323 2,657
32 6,581 95,037 4,371 3,812 72 23 15,406 9 20
33 147,036 432,841 1,244,040 209,609 73 272,999 56,552 70,283 146,975
34 1,381 539,415 82,919 1,460 74 265,594 52,201 93,970 285,469
35 1,826 305,121 5,929 1,422 75 601 21,446 1,769 526
36 113 285,557 77 58 76 501 44,565 231 606
37 862,514 333,606 440,984 632,843 77 46,009 23,448 28,649 47,238
38 531 167,480 15,115 440 78 833 22,109 10,639 2,410
39 77 809,449 15 51 79 665 14,341 3,379 590
40 65 174,617 111 70 80 257 14,637 355 242

T
ab

le
A

.4
.

U
p
p

er
an

d
lo

w
er

b
ou

n
d
s

in
1

h
ou

r
ti

m
e

li
m

it
fo

r
in

st
an

ce
s

1-
40

.

In
st

an
ce

C
P

L
E

X
-S

tr
on

g
C

P
L

E
X

-S
tr

on
g

C
P

L
E

X
-W

ea
k

C
P

L
E

X
-W

ea
k

B
B

-A
rc

B
B

-A
rc

B
B

-P
ai

r
B

B
-P

ai
r

B
B

-C
li
q
u
e

B
B

-C
li
q
u
e

R
D

S
R

D
S

N
o

(U
B

)
(L

B
)

(U
B

)
(L

B
)

(U
B

)
(L

B
)

(U
B

)
(L

B
)

(U
B

)
(L

B
)

(U
B

)
(L

B
)

1
19

,8
50

19
,8

50
19

,8
50

19
,8

50
19

,8
50

19
,8

50
19

,8
50

1,
49

2
19

,8
50

2,
97

4
19

,8
50

19
,8

50
2

17
,2

00
17

,2
00

17
,2

00
17

,2
00

17
,2

00
17

,2
00

17
,2

00
79

4
17

,2
00

17
,2

00
17

,2
00

17
,2

00
3

35
,9

00
35

,9
00

35
,9

00
35

,9
00

35
,9

00
35

,9
00

35
,9

00
60

8
35

,9
00

35
,9

00
35

,9
00

35
,9

00
4

28
,0

00
28

,0
00

28
,0

00
28

,0
00

28
,0

00
28

,0
00

28
,0

00
1,

33
1

28
,0

00
28

,0
00

28
,0

00
28

,0
00

5
27

,9
50

27
,9

50
27

,9
50

27
,9

50
27

,9
50

27
,9

50
27

,9
50

1,
79

3
27

,9
50

2,
47

6
27

,9
50

27
,9

50
6

47
,8

00
47

,8
00

47
,8

00
47

,8
00

47
,8

00
47

,8
00

47
,8

00
1,

05
3

47
,8

00
47

,8
00

47
,8

00
47

,8
00

7
27

,8
50

27
,8

50
27

,8
50

27
,8

50
27

,8
50

27
,8

50
27

,8
50

2,
64

1
27

,8
50

27
,8

50
27

,8
50

27
,8

50
8

27
,1

50
27

,1
50

27
,1

50
27

,1
50

27
,1

50
27

,1
50

27
,1

50
27

,1
50

27
,1

50
27

,1
50

27
,1

50
27

,1
50

9
38

,3
00

3,
89

6
38

,3
00

38
,3

00
38

,3
00

38
,3

00
38

,3
00

1,
47

8
38

,3
00

2,
27

0
38

,3
00

38
,3

00
10

11
4,

15
0

11
4,

15
0

11
4,

15
0

11
4,

15
0

11
4,

15
0

11
4,

15
0

11
4,

15
0

4,
22

4
11

4,
15

0
11

4,
15

0
11

4,
15

0
11

4,
15

0
11

63
,7

00
63

,7
00

63
,7

00
63

,7
00

63
,7

00
63

,7
00

63
,7

00
11

,2
94

63
,7

00
63

,7
00

63
,7

00
63

,7
00

12
70

,0
00

70
,0

00
70

,0
00

70
,0

00
70

,0
00

70
,0

00
70

,0
00

70
,0

00
70

,0
00

70
,0

00
70

,0
00

70
,0

00
13

35
,0

51
2,

60
8

35
,0

51
2,

76
9

35
,0

51
5,

88
8

35
,0

51
1,

53
9

35
,0

51
1,

80
9

22
,4

23
1,

38
4

14
54

,0
00

54
,0

00
54

,0
00

54
,0

00
54

,0
00

54
,0

00
54

,0
00

2,
13

2
54

,0
00

54
,0

00
54

,0
00

54
,0

00
15

64
,0

00
64

,0
00

64
,0

00
64

,0
00

64
,0

00
64

,0
00

64
,0

00
2,

74
9

64
,0

00
64

,0
00

64
,0

00
64

,0
00

16
19

,5
00

19
,5

00
19

,5
00

19
,5

00
19

,5
00

19
,5

00
19

,5
00

99
0

19
,5

00
19

,5
00

19
,5

00
19

,5
00

17
34

,7
00

34
,7

00
34

,7
00

34
,7

00
34

,7
00

34
,7

00
34

,7
00

1,
06

1
34

,7
00

1,
56

9
34

,7
00

34
,7

00
18

48
,4

50
48

,4
50

48
,4

50
48

,4
50

48
,4

50
48

,4
50

48
,4

50
14

,8
60

48
,4

50
48

,4
50

48
,4

50
48

,4
50

19
19

,4
00

19
,4

00
19

,4
00

19
,4

00
19

,4
00

19
,4

00
19

,4
00

38
9

19
,4

00
19

,4
00

19
,4

00
19

,4
00

20
65

,6
00

65
,6

00
65

,6
00

65
,6

00
65

,6
00

65
,6

00
65

,6
00

65
,6

00
65

,6
00

65
,6

00
65

,6
00

65
,6

00
21

59
,9

00
2,

28
9

59
,9

00
2,

81
5

7,
01

1
7,

01
1

59
,9

00
1,

63
1

59
,9

00
2,

38
3

7,
01

1
7,

01
1

22
11

1,
90

0
11

1,
90

0
11

1,
90

0
11

1,
90

0
11

1,
90

0
11

1,
90

0
11

1,
90

0
42

,6
81

11
1,

90
0

11
1,

90
0

11
1,

90
0

11
1,

90
0

23
24

,6
50

24
,6

50
24

,6
50

24
,6

50
24

,6
50

24
,6

50
24

,6
50

93
9

24
,6

50
24

,6
50

24
,6

50
24

,6
50

24
68

,0
50

68
,0

50
68

,0
50

68
,0

50
68

,0
50

68
,0

50
68

,0
50

68
,0

50
68

,0
50

68
,0

50
68

,0
50

68
,0

50
25

89
,2

50
89

,2
50

89
,2

50
89

,2
50

89
,2

50
89

,2
50

89
,2

50
4,

78
5

89
,2

50
6,

80
3

89
,2

50
89

,2
50

26
62

,4
50

62
,4

50
62

,4
50

62
,4

50
62

,4
50

62
,4

50
62

,4
50

7,
65

3
62

,4
50

62
,4

50
62

,4
50

62
,4

50
27

79
,2

50
6,

70
5

79
,2

50
79

,2
50

79
,2

50
79

,2
50

79
,2

50
2,

97
3

79
,2

50
79

,2
50

79
,2

50
79

,2
50

28
17

,0
50

22
2

17
,0

50
17

,0
50

17
,0

50
17

,0
50

17
,0

50
22

1
17

,0
50

17
,0

50
17

,0
50

17
,0

50
29

85
,4

80
9,

72
2

85
,4

80
22

,3
31

85
,4

80
85

,4
80

85
,4

80
4,

45
3

85
,4

80
7,

51
1

85
,4

80
3,

66
3

30
44

,9
00

2,
53

1
44

,9
00

44
,9

00
44

,9
00

44
,9

00
44

,9
00

2,
14

6
44

,9
00

5,
40

0
44

,9
00

44
,9

00
31

86
,0

50
11

,4
71

86
,0

50
86

,0
50

86
,0

50
86

,0
50

86
,0

50
8,

14
1

86
,0

50
86

,0
50

86
,0

50
86

,0
50

32
15

,9
50

22
2

15
,9

50
15

,9
50

15
,9

50
15

,9
50

15
,9

50
23

4
15

,9
50

15
,9

50
15

,9
50

15
,9

50
33

53
,9

50
3,

29
8

53
,9

50
53

,9
50

53
,9

50
53

,9
50

53
,9

50
1,

55
3

53
,9

50
2,

71
6

53
,9

50
53

,9
50

34
52

,3
00

52
,3

00
52

,3
00

52
,3

00
52

,3
00

52
,3

00
52

,3
00

2,
87

4
52

,3
00

52
,3

00
52

,3
00

52
,3

00
35

20
,9

50
20

,9
50

20
,9

50
20

,9
50

20
,9

50
20

,9
50

20
,9

50
61

5
20

,9
50

20
,9

50
20

,9
50

20
,9

50
36

52
,9

00
52

,9
00

52
,9

00
52

,9
00

52
,9

00
52

,9
00

52
,9

00
1,

61
9

52
,9

00
52

,9
00

52
,9

00
52

,9
00

37
12

0,
65

0
4,

72
1

12
0,

65
0

5,
37

8
12

0,
65

0
12

0,
65

0
12

0,
65

0
3,

35
5

12
0,

65
0

3,
88

5
12

0,
65

0
12

0,
65

0
38

90
,0

00
6,

72
0

90
,0

00
90

,0
00

90
,0

00
90

,0
00

90
,0

00
4,

14
4

90
,0

00
90

,0
00

90
,0

00
90

,0
00

39
10

7,
95

0
10

7,
95

0
10

7,
95

0
10

7,
95

0
10

7,
95

0
10

7,
95

0
10

7,
95

0
13

,4
01

10
7,

95
0

10
7,

95
0

10
7,

95
0

10
7,

95
0

40
47

,6
50

1,
41

1
47

,6
50

47
,6

50
47

,6
50

47
,6

50
47

,6
50

1,
84

0
47

,6
50

47
,6

50
47

,6
50

47
,6

50

T
ab

le
A

.5
.

U
p
p

er
an

d
lo

w
er

b
ou

n
d
s

in
1

h
ou

r
ti

m
e

li
m

it
fo

r
in

st
an

ce
s

41
-

80
.

In
st

an
ce

C
P

L
E

X
-S

tr
on

g
C

P
L

E
X

-S
tr

on
g

C
P

L
E

X
-W

ea
k

C
P

L
E

X
-W

ea
k

B
B

-A
rc

B
B

-A
rc

B
B

-P
ai

r
B

B
-P

ai
r

B
B

-C
li
q
u
e

B
B

-C
li
q
u
e

R
D

S
R

D
S

N
o

(U
B

)
(L

B
)

(U
B

)
(L

B
)

(U
B

)
(L

B
)

(U
B

)
(L

B
)

(U
B

)
(L

B
)

(U
B

)
(L

B
)

41
63

,0
00

2,
39

9
63

,0
00

2,
76

2
63

,0
00

4,
15

6
63

,0
00

1,
67

5
63

,0
00

2,
03

3
63

,0
00

92
9

42
15

0,
00

0
7,

45
7

15
0,

00
0

15
0,

00
0

15
0,

00
0

15
0,

00
0

15
0,

00
0

6,
58

5
15

0,
00

0
15

0,
00

0
15

0,
00

0
15

0,
00

0
43

24
,0

00
37

3
24

,0
00

1,
14

7
24

,0
00

24
,0

00
24

,0
00

30
0

24
,0

00
1,

49
2

24
,0

00
24

,0
00

44
32

,4
00

22
9

32
,4

00
32

,4
00

32
,4

00
32

,4
00

32
,4

00
19

5
32

,4
00

32
,4

00
32

,4
00

32
,4

00
45

15
7,

75
0

3,
72

3
15

7,
75

0
5,

41
7

15
7,

75
0

9,
38

6
15

7,
75

0
3,

26
2

15
7,

75
0

3,
92

4
15

7,
75

0
2,

11
8

46
34

,2
50

51
0

34
,2

50
1,

05
3

34
,2

50
1,

86
6

34
,2

50
34

9
34

,2
50

89
3

34
,2

50
21

3
47

10
7,

40
0

99
1

10
7,

40
0

2,
09

6
10

7,
40

0
10

7,
40

0
10

7,
40

0
63

8
10

7,
40

0
10

7,
40

0
10

7,
40

0
10

7,
40

0
48

34
,1

00
34

2
34

,1
00

1,
00

8
34

,1
00

34
,1

00
34

,1
00

21
4

34
,1

00
34

,1
00

34
,1

00
34

,1
00

49
12

5,
70

0
12

5,
70

0
12

5,
70

0
12

5,
70

0
12

5,
70

0
12

5,
70

0
12

5,
70

0
13

,1
71

12
5,

70
0

21
,7

07
12

5,
70

0
12

5,
70

0
50

13
9,

10
0

24
,1

00
13

9,
10

0
13

9,
10

0
13

9,
10

0
13

9,
10

0
13

9,
10

0
13

,2
21

13
9,

10
0

13
9,

10
0

13
9,

10
0

13
9,

10
0

51
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
19

1,
15

0
52

56
,0

00
94

3
56

,0
00

56
,0

00
56

,0
00

56
,0

00
56

,0
00

64
7

56
,0

00
56

,0
00

56
,0

00
56

,0
00

53
1,

53
1

73
7

1,
53

1
90

5
1,

53
1

1,
53

1
11

2,
00

0
38

3
11

2,
00

0
49

8
2,

06
2

23
8

54
18

1,
95

0
6,

04
5

18
1,

95
0

18
1,

95
0

18
1,

95
0

18
1,

95
0

18
1,

95
0

4,
54

3
18

1,
95

0
18

1,
95

0
18

1,
95

0
18

1,
95

0
55

11
9,

90
0

10
,0

07
11

9,
90

0
11

9,
90

0
11

9,
90

0
11

9,
90

0
11

9,
90

0
7,

29
6

11
9,

90
0

11
9,

90
0

11
9,

90
0

11
9,

90
0

56
16

8,
00

0
2,

07
8

16
8,

00
0

16
8,

00
0

16
8,

00
0

16
8,

00
0

16
8,

00
0

2,
09

4
16

8,
00

0
16

8,
00

0
16

8,
00

0
16

8,
00

0
57

12
3,

25
0

3,
61

3
12

3,
25

0
6,

00
2

12
3,

25
0

9,
47

3
12

3,
25

0
3,

15
9

12
3,

25
0

3,
87

4
12

3,
25

0
1,

74
8

58
21

8,
95

0
2,

69
4

21
8,

95
0

21
8,

95
0

21
8,

95
0

21
8,

95
0

21
8,

95
0

2,
63

2
21

8,
95

0
21

8,
95

0
21

8,
95

0
21

8,
95

0
59

12
6,

00
0

3,
31

7
12

6,
00

0
12

6,
00

0
12

6,
00

0
12

6,
00

0
12

6,
00

0
2,

89
6

12
6,

00
0

12
6,

00
0

12
6,

00
0

12
6,

00
0

60
13

5,
00

0
3,

47
4

13
5,

00
0

13
5,

00
0

13
5,

00
0

13
5,

00
0

13
5,

00
0

3,
63

9
13

5,
00

0
13

5,
00

0
13

5,
00

0
13

5,
00

0
61

15
7,

45
0

4,
73

1
15

7,
45

0
7,

05
2

15
7,

45
0

16
,9

63
15

7,
45

0
3,

71
8

15
7,

45
0

4,
64

4
15

7,
45

0
1,

69
7

62
11

6,
50

0
2,

90
1

11
6,

50
0

5,
31

1
11

6,
50

0
11

6,
50

0
11

6,
50

0
2,

85
7

11
6,

50
0

4,
28

9
11

6,
50

0
11

6,
50

0
63

12
6,

00
0

3,
18

1
12

6,
00

0
12

6,
00

0
12

6,
00

0
12

6,
00

0
12

6,
00

0
2,

48
6

12
6,

00
0

12
6,

00
0

12
6,

00
0

12
6,

00
0

64
10

6,
35

0
64

1
10

6,
35

0
10

6,
35

0
10

6,
35

0
10

6,
35

0
10

6,
35

0
74

9
10

6,
35

0
10

6,
35

0
10

6,
35

0
10

6,
35

0
65

50
,2

00
57

7
50

,2
00

76
9

50
,2

00
1,

60
6

50
,2

00
41

6
50

,2
00

63
6

50
,2

00
26

7
66

42
,9

50
33

1
42

,9
50

1,
29

5
42

,9
50

42
,9

50
42

,9
50

45
2

42
,9

50
1,

32
0

42
,9

50
42

,9
50

67
15

2,
20

0
9,

18
6

15
2,

20
0

15
2,

20
0

15
2,

20
0

15
2,

20
0

15
2,

20
0

19
,0

33
15

2,
20

0
15

2,
20

0
15

2,
20

0
15

2,
20

0
68

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

27
1,

70
0

69
13

8,
15

0
4,

64
3

13
8,

15
0

7,
06

0
13

8,
15

0
13

8,
15

0
13

8,
15

0
3,

48
1

13
8,

15
0

4,
62

7
13

8,
15

0
3,

85
3

70
11

8,
35

0
3,

18
2

11
8,

35
0

6,
03

4
11

8,
35

0
11

8,
35

0
11

8,
35

0
2,

99
8

11
8,

35
0

6,
50

1
11

8,
35

0
11

8,
35

0
71

71
,9

50
1,

35
2

71
,9

50
71

,9
50

71
,9

50
71

,9
50

71
,9

50
1,

52
4

71
,9

50
71

,9
50

71
,9

50
71

,9
50

72
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
13

1,
60

0
73

37
4,

55
0

6,
37

4
37

4,
55

0
12

,7
99

37
4,

55
0

23
,2

88
37

4,
55

0
4,

72
1

37
4,

55
0

5,
69

3
37

4,
55

0
2,

61
6

74
14

8,
00

0
24

0
14

8,
00

0
64

6
14

8,
00

0
1,

59
6

14
8,

00
0

22
0

14
8,

00
0

35
8

14
8,

00
0

15
5

75
14

3,
80

0
4,

93
8

14
3,

80
0

14
3,

80
0

14
3,

80
0

14
3,

80
0

14
3,

80
0

2,
13

2
14

3,
80

0
14

3,
80

0
14

3,
80

0
14

3,
80

0
76

19
2,

00
0

82
7

19
2,

00
0

19
2,

00
0

19
2,

00
0

19
2,

00
0

19
2,

00
0

96
5

19
2,

00
0

19
2,

00
0

19
2,

00
0

19
2,

00
0

77
16

7,
80

0
3,

94
8

16
7,

80
0

5,
69

8
16

7,
80

0
5,

88
8

16
7,

80
0

2,
83

1
16

7,
80

0
3,

43
8

16
7,

80
0

1,
59

3
78

15
9,

80
0

13
,6

39
15

9,
80

0
15

9,
80

0
15

9,
80

0
15

9,
80

0
15

9,
80

0
8,

18
6

15
9,

80
0

15
9,

80
0

15
9,

80
0

15
9,

80
0

79
20

1,
45

0
4,

23
3

20
1,

45
0

20
1,

45
0

20
1,

45
0

20
1,

45
0

20
1,

45
0

3,
67

3
20

1,
45

0
20

1,
45

0
20

1,
45

0
20

1,
45

0
80

10
3,

65
0

1,
44

4
10

3,
65

0
10

3,
65

0
10

3,
65

0
10

3,
65

0
10

3,
65

0
1,

64
6

10
3,

65
0

10
3,

65
0

10
3,

65
0

10
3,

65
0

182

A.2. Detailed Computational Results for the Maximum Flow Problem
with Conflicts

Table A.6 – Table A.12 include the computational results on the instance basis.

They are used to prepare the concise tables, (Table 10.11 – Table 10.18), in Section

10.4.

T
ab

le
A

.6
.

P
ro

p
er

ti
es

of
th

e
te

st
in

st
an

ce
s.

In
st

an
ce

N
u

m
b

er
of

A
rc

C
on

fl
ic

t
In

st
an

ce
N

u
m

b
er

of
A

rc
C

on
fl

ic
t

In
st

an
ce

N
u

m
b

er
of

A
rc

C
on

fl
ic

t
In

st
an

ce
N

u
m

b
er

of
A

rc
C

on
fl

ic
t

N
o

ve
rt

ic
es

d
en

si
ty

d
en

si
ty

N
o

ve
rt

ic
es

d
en

si
ty

d
en

si
ty

N
o

ve
rt

ic
es

d
en

si
ty

d
en

si
ty

N
o

ve
rt

ic
es

d
en

si
ty

d
en

si
ty

(n
)

(p
)

(d
)

(n
)

(p
)

(d
)

(n
)

(p
)

(d
)

(n
)

(p
)

(d
)

1
40

0.
3

0.
3

41
50

0.
4

0.
3

81
60

0.
5

0.
3

12
1

70
0.

6
0.

3
2

40
0.

3
0.

3
42

50
0.

4
0.

3
82

60
0.

5
0.

3
12

2
70

0.
6

0.
3

3
40

0.
3

0.
4

43
50

0.
4

0.
4

83
60

0.
5

0.
4

12
3

70
0.

6
0.

4
4

40
0.

3
0.

4
44

50
0.

4
0.

4
84

60
0.

5
0.

4
12

4
70

0.
6

0.
4

5
40

0.
3

0.
5

45
50

0.
4

0.
5

85
60

0.
5

0.
5

12
5

70
0.

6
0.

5
6

40
0.

3
0.

5
46

50
0.

4
0.

5
86

60
0.

5
0.

5
12

6
70

0.
6

0.
5

7
40

0.
3

0.
6

47
50

0.
4

0.
6

87
60

0.
5

0.
6

12
7

70
0.

6
0.

6
8

40
0.

3
0.

6
48

50
0.

4
0.

6
88

60
0.

5
0.

6
12

8
70

0.
6

0.
6

9
40

0.
4

0.
3

49
50

0.
5

0.
3

89
60

0.
6

0.
3

12
9

80
0.

3
0.

3
10

40
0.

4
0.

3
50

50
0.

5
0.

3
90

60
0.

6
0.

3
13

0
80

0.
3

0.
3

11
40

0.
4

0.
4

51
50

0.
5

0.
4

91
60

0.
6

0.
4

13
1

80
0.

3
0.

4
12

40
0.

4
0.

4
52

50
0.

5
0.

4
92

60
0.

6
0.

4
13

2
80

0.
3

0.
4

13
40

0.
4

0.
5

53
50

0.
5

0.
5

93
60

0.
6

0.
5

13
3

80
0.

3
0.

5
14

40
0.

4
0.

5
54

50
0.

5
0.

5
94

60
0.

6
0.

5
13

4
80

0.
3

0.
5

15
40

0.
4

0.
6

55
50

0.
5

0.
6

95
60

0.
6

0.
6

13
5

80
0.

3
0.

6
16

40
0.

4
0.

6
56

50
0.

5
0.

6
96

60
0.

6
0.

6
13

6
80

0.
3

0.
6

17
40

0.
5

0.
3

57
50

0.
6

0.
3

97
70

0.
3

0.
3

13
7

80
0.

4
0.

3
18

40
0.

5
0.

3
58

50
0.

6
0.

3
98

70
0.

3
0.

3
13

8
80

0.
4

0.
3

19
40

0.
5

0.
4

59
50

0.
6

0.
4

99
70

0.
3

0.
4

13
9

80
0.

4
0.

4
20

40
0.

5
0.

4
60

50
0.

6
0.

4
10

0
70

0.
3

0.
4

14
0

80
0.

4
0.

4
21

40
0.

5
0.

5
61

50
0.

6
0.

5
10

1
70

0.
3

0.
5

14
1

80
0.

4
0.

5
22

40
0.

5
0.

5
62

50
0.

6
0.

5
10

2
70

0.
3

0.
5

14
2

80
0.

4
0.

5
23

40
0.

5
0.

6
63

50
0.

6
0.

6
10

3
70

0.
3

0.
6

14
3

80
0.

4
0.

6
24

40
0.

5
0.

6
64

50
0.

6
0.

6
10

4
70

0.
3

0.
6

14
4

80
0.

4
0.

6
25

40
0.

6
0.

3
65

60
0.

3
0.

3
10

5
70

0.
4

0.
3

14
5

80
0.

5
0.

3
26

40
0.

6
0.

3
66

60
0.

3
0.

3
10

6
70

0.
4

0.
3

14
6

80
0.

5
0.

3
27

40
0.

6
0.

4
67

60
0.

3
0.

4
10

7
70

0.
4

0.
4

14
7

80
0.

5
0.

4
28

40
0.

6
0.

4
68

60
0.

3
0.

4
10

8
70

0.
4

0.
4

14
8

80
0.

5
0.

4
29

40
0.

6
0.

5
69

60
0.

3
0.

5
10

9
70

0.
4

0.
5

14
9

80
0.

5
0.

5
30

40
0.

6
0.

5
70

60
0.

3
0.

5
11

0
70

0.
4

0.
5

15
0

80
0.

5
0.

5
31

40
0.

6
0.

6
71

60
0.

3
0.

6
11

1
70

0.
4

0.
6

15
1

80
0.

5
0.

6
32

40
0.

6
0.

6
72

60
0.

3
0.

6
11

2
70

0.
4

0.
6

15
2

80
0.

5
0.

6
33

50
0.

3
0.

3
73

60
0.

4
0.

3
11

3
70

0.
5

0.
3

15
3

80
0.

6
0.

3
34

50
0.

3
0.

3
74

60
0.

4
0.

3
11

4
70

0.
5

0.
3

15
4

80
0.

6
0.

3
35

50
0.

3
0.

4
75

60
0.

4
0.

4
11

5
70

0.
5

0.
4

15
5

80
0.

6
0.

4
36

50
0.

3
0.

4
76

60
0.

4
0.

4
11

6
70

0.
5

0.
4

15
6

80
0.

6
0.

4
37

50
0.

3
0.

5
77

60
0.

4
0.

5
11

7
70

0.
5

0.
5

15
7

80
0.

6
0.

5
38

50
0.

3
0.

5
78

60
0.

4
0.

5
11

8
70

0.
5

0.
5

15
8

80
0.

6
0.

5
39

50
0.

3
0.

6
79

60
0.

4
0.

6
11

9
70

0.
5

0.
6

15
9

80
0.

6
0.

6
40

50
0.

3
0.

6
80

60
0.

4
0.

6
12

0
70

0.
5

0.
6

16
0

80
0.

6
0.

6

T
ab

le
A

.7
.

C
P

L
E

X
C

P
U

ti
m

es
(i

n
se

co
n
d
s)

fo
r

w
ea

k
(C

P
L

E
X
W

),
st

ro
n
g

(C
P

L
E

X
S
)

an
d

cl
iq

u
e

(C
P

L
E

X
K

)
fo

rm
u
la

ti
on

s.

In
st

an
ce

C
P

L
E

X
W

C
P

L
E

X
S

C
P

L
E

X
K

In
st

an
ce

C
P

L
E

X
W

C
P

L
E

X
S

C
P

L
E

X
K

In
st

an
ce

C
P

L
E

X
W

C
P

L
E

X
S

C
P

L
E

X
K

In
st

an
ce

C
P

L
E

X
W

C
P

L
E

X
S

C
P

L
E

X
K

N
o

N
o

N
o

N
o

1
20

.4
5

41
.1

7
29

.2
3

41
1,

38
0.

51
>

3,
60

0
3,

00
2.

44
81

>
3,

60
0

>
3,

60
0

>
3,

60
0

12
1

>
3,

60
0

>
3,

60
0

>
3,

60
0

2
10

.0
2

63
.3

4
54

.6
5

42
21

3.
58

1,
91

6.
55

1,
04

8.
60

82
>

3,
60

0
>

3,
60

0
>

3,
60

0
12

2
>

3,
60

0
>

3,
60

0
>

3,
60

0
3

21
.1

9
19

2.
04

10
9.

31
43

79
6.

90
>

3,
60

0
>

3,
60

0
83

>
3,

60
0

>
3,

60
0

>
3,

60
0

12
3

>
3,

60
0

>
3,

60
0

>
3,

60
0

4
18

.2
1

10
8.

58
85

.8
9

44
26

2.
28

3,
19

8.
91

1,
87

3.
82

84
>

3,
60

0
>

3,
60

0
>

3,
60

0
12

4
>

3,
60

0
>

3,
60

0
>

3,
60

0
5

19
.0

5
98

.9
5

63
.5

4
45

70
8.

83
>

3,
60

0
>

3,
60

0
85

>
3,

60
0

>
3,

60
0

>
3,

60
0

12
5

>
3,

60
0

>
3,

60
0

>
3,

60
0

6
12

.5
6

11
1.

32
13

0.
67

46
28

3.
91

3,
27

6.
71

3,
50

8.
41

86
2,

32
6.

10
>

3,
60

0
>

3,
60

0
12

6
>

3,
60

0
>

3,
60

0
>

3,
60

0
7

25
.1

6
19

3.
01

14
1.

84
47

54
.9

9
>

3,
60

0
>

3,
60

0
87

1,
70

8.
75

>
3,

60
0

>
3,

60
0

12
7

>
3,

60
0

>
3,

60
0

>
3,

60
0

8
34

.6
0

15
1.

26
12

0.
34

48
33

3.
93

>
3,

60
0

>
3,

60
0

88
1,

77
8.

31
>

3,
60

0
>

3,
60

0
12

8
>

3,
60

0
>

3,
60

0
>

3,
60

0
9

78
.3

9
24

8.
26

16
8.

96
49

1,
77

3.
07

>
3,

60
0

>
3,

60
0

89
>

3,
60

0
>

3,
60

0
>

3,
60

0
12

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

25
6.

68
59

9.
24

48
7.

56
50

1,
29

5.
33

>
3,

60
0

>
3,

60
0

90
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

10
4.

40
58

6.
20

43
3.

31
51

1,
01

9.
91

>
3,

60
0

>
3,

60
0

91
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

1
>

3,
60

0
>

3,
60

0
>

3,
60

0
12

10
3.

05
53

7.
72

46
3.

09
52

1,
09

4.
33

>
3,

60
0

>
3,

60
0

92
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

2
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

12
8.

58
1,

05
6.

37
56

4.
28

53
96

0.
73

>
3,

60
0

>
3,

60
0

93
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

3
>

3,
60

0
>

3,
60

0
>

3,
60

0
14

10
2.

09
50

0.
29

53
1.

66
54

1,
15

1.
55

>
3,

60
0

>
3,

60
0

94
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

4
3,

00
8.

25
>

3,
60

0
>

3,
60

0
15

41
.9

2
80

8.
04

48
4.

27
55

83
8.

49
>

3,
60

0
>

3,
60

0
95

3,
27

4.
12

>
3,

60
0

>
3,

60
0

13
5

2,
11

9.
22

>
3,

60
0

>
3,

60
0

16
10

6.
81

56
9.

48
64

6.
03

56
20

9.
01

>
3,

60
0

>
3,

60
0

96
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

6
>

3,
60

0
>

3,
60

0
>

3,
60

0
17

52
0.

09
2,

41
5.

34
2,

84
5.

37
57

>
3,

60
0

>
3,

60
0

>
3,

60
0

97
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
18

13
3.

86
70

2.
02

49
1.

21
58

>
3,

60
0

>
3,

60
0

>
3,

60
0

98
>

3,
60

0
>

3,
60

0
>

3,
60

0
13

8
>

3,
60

0
>

3,
60

0
>

3,
60

0
19

21
5.

98
2,

02
7.

10
97

5.
95

59
>

3,
60

0
>

3,
60

0
>

3,
60

0
99

94
4.

64
>

3,
60

0
>

3,
60

0
13

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
20

19
1.

96
1,

29
8.

48
93

6.
78

60
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

0
1,

06
6.

98
>

3,
60

0
>

3,
60

0
14

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
21

25
8.

13
1,

92
2.

94
1,

57
5.

15
61

1,
22

8.
67

>
3,

60
0

>
3,

60
0

10
1

1,
30

2.
17

>
3,

60
0

>
3,

60
0

14
1

>
3,

60
0

>
3,

60
0

>
3,

60
0

22
26

7.
59

1,
68

6.
52

1,
24

5.
22

62
1,

56
7.

66
>

3,
60

0
>

3,
60

0
10

2
1,

24
2.

46
>

3,
60

0
>

3,
60

0
14

2
>

3,
60

0
>

3,
60

0
>

3,
60

0
23

10
3.

52
2,

20
5.

30
1,

47
8.

43
63

1,
13

6.
37

>
3,

60
0

>
3,

60
0

10
3

94
6.

14
>

3,
60

0
>

3,
60

0
14

3
>

3,
60

0
>

3,
60

0
>

3,
60

0
24

46
.4

7
1,

70
9.

75
1,

28
1.

35
64

1,
01

3.
15

>
3,

60
0

>
3,

60
0

10
4

44
8.

81
>

3,
60

0
>

3,
60

0
14

4
>

3,
60

0
>

3,
60

0
>

3,
60

0
25

1,
24

2.
92

>
3,

60
0

>
3,

60
0

65
2,

12
0.

14
>

3,
60

0
>

3,
60

0
10

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
14

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
26

43
4.

00
2,

98
8.

04
1,

44
5.

87
66

1,
76

3.
87

>
3,

60
0

>
3,

60
0

10
6

>
3,

60
0

>
3,

60
0

>
3,

60
0

14
6

>
3,

60
0

>
3,

60
0

>
3,

60
0

27
91

7.
94

>
3,

60
0

>
3,

60
0

67
44

1.
35

>
3,

60
0

>
3,

60
0

10
7

>
3,

60
0

>
3,

60
0

>
3,

60
0

14
7

>
3,

60
0

>
3,

60
0

>
3,

60
0

28
63

2.
78

>
3,

60
0

2,
23

5.
80

68
18

2.
60

3,
39

5.
31

1,
30

1.
42

10
8

>
3,

60
0

>
3,

60
0

>
3,

60
0

14
8

>
3,

60
0

>
3,

60
0

>
3,

60
0

29
39

8.
53

>
3,

60
0

>
3,

60
0

69
54

8.
47

>
3,

60
0

>
3,

60
0

10
9

>
3,

60
0

>
3,

60
0

>
3,

60
0

14
9

>
3,

60
0

>
3,

60
0

>
3,

60
0

30
36

9.
22

>
3,

60
0

>
3,

60
0

70
26

1.
74

>
3,

60
0

>
3,

60
0

11
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

15
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

31
83

.9
6

>
3,

60
0

>
3,

60
0

71
26

7.
06

>
3,

60
0

>
3,

60
0

11
1

>
3,

60
0

>
3,

60
0

>
3,

60
0

15
1

>
3,

60
0

>
3,

60
0

>
3,

60
0

32
42

.3
9

2,
42

0.
22

1,
72

4.
54

72
11

2.
57

>
3,

60
0

>
3,

60
0

11
2

2,
38

2.
11

>
3,

60
0

>
3,

60
0

15
2

>
3,

60
0

>
3,

60
0

>
3,

60
0

33
11

4.
88

67
7.

09
29

5.
20

73
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

3
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

3
>

3,
60

0
>

3,
60

0
>

3,
60

0
34

14
4.

97
75

8.
26

40
5.

87
74

>
3,

60
0

>
3,

60
0

>
3,

60
0

11
4

>
3,

60
0

>
3,

60
0

>
3,

60
0

15
4

>
3,

60
0

>
3,

60
0

>
3,

60
0

35
10

8.
86

84
6.

41
75

3.
36

75
83

0.
00

>
3,

60
0

>
3,

60
0

11
5

>
3,

60
0

>
3,

60
0

>
3,

60
0

15
5

>
3,

60
0

>
3,

60
0

>
3,

60
0

36
20

2.
82

1,
05

8.
94

58
4.

56
76

>
3,

60
0

>
3,

60
0

>
3,

60
0

11
6

>
3,

60
0

>
3,

60
0

>
3,

60
0

15
6

>
3,

60
0

>
3,

60
0

>
3,

60
0

37
71

.9
0

88
1.

96
98

7.
26

77
1,

69
6.

27
>

3,
60

0
>

3,
60

0
11

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
38

11
4.

38
1,

70
6.

31
1,

22
8.

47
78

1,
27

3.
12

>
3,

60
0

>
3,

60
0

11
8

>
3,

60
0

>
3,

60
0

>
3,

60
0

15
8

>
3,

60
0

>
3,

60
0

>
3,

60
0

39
89

.8
6

64
8.

98
66

6.
89

79
1,

06
8.

26
>

3,
60

0
>

3,
60

0
11

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
40

60
.5

4
90

7.
97

41
6.

83
80

29
3.

61
>

3,
60

0
>

3,
60

0
12

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
16

0
>

3,
60

0
>

3,
60

0
>

3,
60

0

T
ab

le
A

.8
.

C
P

U
ti

m
es

(i
n

se
co

n
d
s)

fo
r

d
iff

er
en

t
im

p
le

m
en

ta
ti

on
s

of
B

en
d
er

s
d
ec

om
p

os
it

io
n

fo
r

in
st

an
ce

s
1-

80
.

N
ai

ve
B

D
Im

p
ro

ve
d

B
D

N
ai

ve
B

D
Im

p
ro

ve
d

B
D

In
st

an
ce

It
er

at
iv

e
S

in
gl

e
T

re
e

S
in

gl
e

T
re

e
S

in
gl

e
T

re
e

C
P

L
E

X
B

D
S

in
gl

e
T

re
e

S
in

gl
e

T
re

e
S

in
gl

e
T

re
e

In
st

an
ce

It
er

at
iv

e
S

in
gl

e
T

re
e

S
in

gl
e

T
re

e
S

in
gl

e
T

re
e

C
P

L
E

X
B

D
S

in
gl

e
T

re
e

S
in

gl
e

T
re

e
S

in
gl

e
T

re
e

N
o

(M
F

P
C
S
)

(M
F

P
C
S
)

(M
F

P
C
K

)
(M

F
P

C
W

)
(M

F
P

C
W

)
(M

F
P

C
S
)

(M
F

P
C
K

)
(M

F
P

C
W

)
N

o
(M

F
P

C
S
)

(M
F

P
C
S
)

(M
F

P
C
K

)
(M

F
P

C
W

)
(M

F
P

C
W

)
(M

F
P

C
S
)

(M
F

P
C
K

)
(M

F
P

C
W

)
1

65
.9

3
13

.0
0

25
.4

6
5.

74
29

.6
3

13
.6

6
18

.3
8

16
.3

4
41

>
3,

60
0

>
3,

60
0

>
3,

60
0

1,
51

2.
98

>
3,

60
0

2,
02

0.
91

2,
18

1.
32

78
1.

36
2

28
2.

70
17

.5
7

12
.9

8
4.

54
33

.7
1

9.
02

5.
82

5.
11

42
>

3,
60

0
74

8.
35

1,
05

9.
63

12
1.

10
3,

21
6.

24
92

3.
01

1,
10

6.
85

15
8.

00
3

77
4.

11
28

.5
5

22
.7

2
10

.9
8

12
0.

01
28

.3
7

16
.1

1
10

.9
9

43
>

3,
60

0
1,

06
9.

62
1,

48
5.

31
27

6.
65

>
3,

60
0

88
1.

89
1,

33
2.

85
25

3.
63

4
28

1.
38

28
.8

8
18

.6
3

10
.2

7
42

.3
5

15
.0

6
7.

96
6.

30
44

3,
59

9.
66

38
0.

63
78

6.
05

83
.6

8
>

3,
60

0
45

8.
50

60
8.

64
73

.5
6

5
55

2.
66

7.
80

26
.9

9
8.

83
21

9.
70

18
.9

2
12

.6
8

8.
58

45
>

3,
60

0
34

5.
55

1,
03

0.
55

14
5.

99
>

3,
60

0
92

4.
02

45
3.

38
99

.1
2

6
16

.4
6

3.
70

3.
40

7.
16

12
1.

70
7.

54
5.

32
7.

62
46

>
3,

60
0

19
8.

23
54

4.
10

83
.3

7
>

3,
60

0
47

5.
89

76
0.

50
60

.3
0

7
21

.1
1

3.
92

16
.4

6
25

.2
7

31
0.

77
14

.5
3

11
.2

3
18

.9
6

47
27

.5
3

74
.3

8
59

.9
4

21
.4

7
2,

26
2.

74
24

4.
34

78
.3

4
20

.1
6

8
15

8.
28

5.
41

12
.0

3
23

.6
8

89
.6

1
11

.2
9

16
.4

4
26

.5
7

48
33

6.
17

82
.2

9
27

7.
15

40
.4

7
>

3,
60

0
15

6.
53

43
.0

9
33

.1
8

9
>

3,
60

0
62

.9
8

97
.7

0
23

.7
0

44
5.

25
50

.3
0

27
.4

9
18

.9
9

49
>

3,
60

0
3,

21
7.

54
2,

19
7.

64
56

6.
03

>
3,

60
0

2,
97

0.
97

1,
91

2.
53

48
3.

23
10

>
3,

60
0

58
4.

45
65

5.
48

25
9.

52
1,

24
3.

65
67

0.
15

31
8.

51
22

6.
66

50
>

3,
60

0
1,

57
5.

90
1,

00
2.

11
63

6.
65

>
3,

60
0

2,
67

8.
99

54
5.

61
17

4.
91

11
1,

70
8.

06
37

.1
3

92
.4

5
34

.7
4

60
0.

87
64

.5
5

13
0.

46
25

.9
3

51
>

3,
60

0
61

1.
96

1,
07

5.
96

28
8.

60
>

3,
60

0
89

9.
62

38
8.

77
22

4.
44

12
1,

67
4.

49
45

.4
0

63
.2

6
24

.0
4

32
3.

22
10

6.
16

50
.6

7
22

.3
7

52
>

3,
60

0
59

2.
65

97
8.

42
26

4.
61

>
3,

60
0

2,
70

8.
02

1,
35

9.
89

18
4.

08
13

>
3,

60
0

36
.4

0
84

.4
6

47
.2

4
44

5.
66

85
.9

6
50

.6
4

38
.6

6
53

>
3,

60
0

80
3.

21
1,

36
4.

91
14

1.
18

>
3,

60
0

1,
30

6.
58

81
9.

05
88

.9
8

14
2,

19
2.

77
43

.8
4

10
0.

95
33

.1
3

30
5.

00
66

.7
4

63
.0

6
28

.2
4

54
1,

76
0.

54
34

7.
88

33
9.

71
72

.6
3

2,
71

6.
76

63
9.

85
30

2.
02

84
.0

7
15

12
.7

6
8.

83
13

.5
1

24
.0

4
28

2.
14

16
.4

1
10

.3
4

32
.9

5
55

37
8.

02
14

0.
93

22
6.

36
76

.2
4

>
3,

60
0

58
0.

22
50

5.
13

52
.8

8
16

54
3.

96
32

.5
7

26
.1

0
33

.6
3

51
8.

70
79

.2
0

48
.9

5
37

.2
4

56
>

3,
60

0
16

3.
19

65
7.

84
19

.5
0

>
3,

60
0

19
0.

41
28

6.
90

23
.8

8
17

>
3,

60
0

55
8.

67
1,

02
0.

38
27

6.
67

2,
19

6.
66

1,
12

1.
36

71
2.

59
18

2.
15

57
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
18

>
3,

60
0

14
5.

16
30

4.
68

96
.0

3
1,

30
2.

10
15

7.
70

94
.5

2
32

.3
1

58
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

30
4.

88
>

3,
60

0
>

3,
60

0
>

3,
60

0
2,

72
1.

50
19

1,
01

1.
85

56
.9

4
22

0.
48

38
.4

2
38

8.
89

82
.1

3
46

.0
8

36
.9

3
59

>
3,

60
0

1,
28

6.
72

>
3,

60
0

61
9.

27
>

3,
60

0
1,

99
6.

83
98

3.
22

40
3.

39
20

>
3,

60
0

12
0.

49
50

7.
19

49
.8

1
2,

02
1.

14
20

5.
36

12
2.

74
51

.3
3

60
>

3,
60

0
2,

19
8.

47
>

3,
60

0
1,

54
5.

95
>

3,
60

0
>

3,
60

0
>

3,
60

0
93

1.
24

21
84

8.
00

94
.2

6
35

7.
90

50
.2

3
1,

00
7.

60
17

0.
45

13
0.

39
68

.5
6

61
3,

12
0.

16
97

.1
3

19
9.

95
86

.4
7

>
3,

60
0

15
8.

71
36

6.
13

16
8.

93
22

2,
06

6.
63

31
.8

9
17

2.
90

46
.9

4
95

9.
90

21
9.

52
87

.9
2

47
.7

7
62

>
3,

60
0

66
5.

82
1,

58
6.

22
16

3.
36

>
3,

60
0

>
3,

60
0

1,
22

4.
60

25
1.

02
23

22
5.

11
29

.9
2

73
.5

2
27

.5
8

25
6.

14
81

.4
2

76
.7

2
32

.2
1

63
47

4.
99

10
7.

41
1,

14
0.

55
15

4.
78

>
3,

60
0

1,
74

4.
49

54
6.

27
92

.2
9

24
12

.5
7

8.
41

50
.1

1
34

.4
6

39
2.

62
76

.2
4

41
.1

4
33

.5
1

64
>

3,
60

0
18

9.
84

1,
71

2.
47

75
.6

6
>

3,
60

0
21

3.
00

51
3.

05
79

.7
9

25
>

3,
60

0
2,

59
5.

36
3,

15
0.

02
57

6.
31

>
3,

60
0

1,
46

9.
91

58
2.

47
65

6.
86

65
>

3,
60

0
>

3,
60

0
>

3,
60

0
3,

44
9.

85
>

3,
60

0
2,

97
2.

01
3,

46
3.

70
1,

16
5.

05
26

>
3,

60
0

41
4.

49
63

5.
95

22
9.

27
2,

16
6.

22
49

6.
86

18
6.

48
99

.8
3

66
>

3,
60

0
1,

63
4.

90
2,

23
7.

72
90

8.
00

2,
96

4.
85

1,
18

0.
55

1,
14

8.
27

57
2.

83
27

>
3,

60
0

89
3.

62
1,

58
8.

16
39

0.
47

>
3,

60
0

1,
94

7.
26

2,
13

3.
90

16
5.

28
67

>
3,

60
0

67
6.

98
47

8.
95

14
2.

87
>

3,
60

0
36

8.
19

51
5.

97
76

.8
3

28
>

3,
60

0
56

6.
16

1,
34

8.
62

14
7.

65
>

3,
60

0
54

0.
09

63
4.

30
16

5.
50

68
>

3,
60

0
44

.8
2

10
5.

61
32

.6
4

72
6.

96
26

9.
21

18
5.

38
30

.6
7

29
>

3,
60

0
32

6.
59

51
4.

18
55

.9
4

2,
42

6.
00

32
0.

19
75

.5
5

71
.5

6
69

1,
76

4.
59

10
4.

99
18

9.
67

42
.7

1
2,

13
3.

07
45

8.
20

41
.2

3
22

.8
4

30
3,

58
4.

92
16

1.
60

64
4.

44
81

.3
2

2,
00

0.
72

68
0.

89
40

4.
59

81
.8

9
70

>
3,

60
0

83
.5

9
89

.2
0

38
.8

0
3,

02
3.

63
11

2.
94

78
.0

6
43

.0
7

31
15

5.
52

21
3.

42
25

3.
81

26
.3

5
>

3,
60

0
76

2.
08

39
4.

38
24

.6
3

71
>

3,
60

0
17

0.
91

25
6.

70
29

.7
7

>
3,

60
0

73
1.

28
28

5.
31

27
.3

2
32

8.
71

6.
68

9.
21

9.
36

70
2.

86
22

.1
4

9.
30

9.
24

72
>

3,
60

0
70

.6
7

18
7.

40
28

.1
7

>
3,

60
0

30
2.

03
38

9.
63

29
.3

9
33

1,
64

8.
48

15
4.

94
21

4.
83

22
.5

0
50

9.
50

12
1.

82
45

.8
6

22
.6

4
73

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

34
>

3,
60

0
18

8.
92

50
4.

47
11

7.
11

1,
25

7.
35

19
5.

17
87

.2
7

43
.7

1
74

>
3,

60
0

>
3,

60
0

>
3,

60
0

3,
45

5.
42

>
3,

60
0

>
3,

60
0

>
3,

60
0

98
2.

05
35

>
3,

60
0

17
7.

73
19

8.
59

70
.4

8
1,

19
8.

05
12

0.
84

19
0.

10
40

.4
8

75
>

3,
60

0
76

1.
33

1,
95

5.
89

13
3.

21
>

3,
60

0
2,

18
2.

56
1,

74
3.

74
15

5.
02

36
>

3,
60

0
11

9.
64

33
6.

07
65

.9
6

2,
55

3.
91

16
0.

85
21

0.
26

59
.0

5
76

>
3,

60
0

>
3,

60
0

>
3,

60
0

2,
27

4.
51

>
3,

60
0

>
3,

60
0

2,
59

9.
00

82
5.

96
37

91
0.

86
26

.0
8

35
.8

8
28

.8
1

1,
51

6.
56

12
0.

87
16

.8
6

41
.7

5
77

>
3,

60
0

55
7.

64
1,

52
0.

85
18

1.
99

>
3,

60
0

1,
20

0.
75

41
3.

48
11

9.
22

38
75

2.
36

30
.8

0
10

0.
23

46
.3

9
81

5.
87

11
1.

03
67

.0
5

39
.6

2
78

>
3,

60
0

1,
04

6.
20

1,
65

7.
52

12
7.

22
>

3,
60

0
1,

11
0.

21
1,

35
8.

23
80

.2
8

39
49

.6
6

27
.9

1
86

.1
3

19
.8

7
58

6.
26

54
.1

3
60

.0
3

25
.6

9
79

>
3,

60
0

26
4.

48
2,

39
2.

56
11

5.
89

>
3,

60
0

1,
20

2.
51

58
2.

47
72

.3
7

40
0.

42
1.

79
2.

08
10

.8
0

48
6.

04
8.

72
2.

82
13

.1
8

80
29

.1
7

14
6.

31
42

5.
77

58
.4

1
>

3,
60

0
43

6.
35

12
6.

94
49

.5
8

T
ab

le
A

.9
.

C
P

U
ti

m
es

(i
n

se
co

n
d
s)

fo
r

d
iff

er
en

t
im

p
le

m
en

ta
ti

on
s

of
B

en
d
er

s
d
ec

om
p

os
it

io
n

fo
r

in
st

an
ce

s
81

-1
60

.

N
ai

ve
B

D
Im

p
ro

ve
d

B
D

N
ai

ve
B

D
Im

p
ro

ve
d

B
D

In
st

an
ce

It
er

at
iv

e
S

in
gl

e
T

re
e

S
in

gl
e

T
re

e
S

in
gl

e
T

re
e

C
P

L
E

X
B

D
S

in
gl

e
T

re
e

S
in

gl
e

T
re

e
S

in
gl

e
T

re
e

In
st

an
ce

It
er

at
iv

e
S

in
gl

e
T

re
e

S
in

gl
e

T
re

e
S

in
gl

e
T

re
e

C
P

L
E

X
B

D
S

in
gl

e
T

re
e

S
in

gl
e

T
re

e
S

in
gl

e
T

re
e

N
o

(M
F

P
C
S
)

(M
F

P
C
S
)

(M
F

P
C
K

)
(M

F
P

C
W

)
(M

F
P

C
W

)
(M

F
P

C
S
)

(M
F

P
C
K

)
(M

F
P

C
W

)
N

o
(M

F
P

C
S
)

(M
F

P
C
S
)

(M
F

P
C
K

)
(M

F
P

C
W

)
(M

F
P

C
W

)
(M

F
P

C
S
)

(M
F

P
C
K

)
(M

F
P

C
W

)
81

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

12
1

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

82
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
12

2
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
83

>
3,

60
0

2,
74

3.
26

>
3,

60
0

2,
14

7.
85

>
3,

60
0

>
3,

60
0

>
3,

60
0

1,
81

1.
32

12
3

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

84
>

3,
60

0
3,

06
9.

65
>

3,
60

0
1,

26
9.

20
>

3,
60

0
>

3,
60

0
>

3,
60

0
75

4.
81

12
4

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

85
>

3,
60

0
3,

57
4.

48
>

3,
60

0
58

6.
03

>
3,

60
0

>
3,

60
0

2,
83

6.
90

67
6.

99
12

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
2,

38
3.

48
86

>
3,

60
0

1,
01

6.
97

2,
37

7.
80

24
6.

04
>

3,
60

0
96

0.
41

90
2.

37
27

0.
69

12
6

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

3,
29

2.
34

87
2,

69
0.

79
94

8.
35

1,
58

7.
33

11
0.

96
>

3,
60

0
43

7.
11

28
6.

28
96

.0
3

12
7

>
3,

60
0

>
3,

60
0

>
3,

60
0

82
4.

26
>

3,
60

0
>

3,
60

0
>

3,
60

0
58

4.
75

88
>

3,
60

0
33

7.
54

1,
89

3.
83

17
0.

62
>

3,
60

0
>

3,
60

0
>

3,
60

0
17

8.
04

12
8

>
3,

60
0

>
3,

60
0

>
3,

60
0

76
2.

90
>

3,
60

0
>

3,
60

0
>

3,
60

0
66

3.
02

89
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
12

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
90

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

13
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

2,
85

1.
28

91
>

3,
60

0
>

3,
60

0
>

3,
60

0
3,

42
7.

78
>

3,
60

0
>

3,
60

0
>

3,
60

0
2,

64
6.

61
13

1
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

98
5.

23
92

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

2,
87

7.
18

13
2

>
3,

60
0

>
3,

60
0

>
3,

60
0

1,
69

6.
83

>
3,

60
0

>
3,

60
0

>
3,

60
0

74
7.

71
93

>
3,

60
0

>
3,

60
0

>
3,

60
0

1,
02

7.
98

>
3,

60
0

>
3,

60
0

>
3,

60
0

98
5.

53
13

3
>

3,
60

0
97

9.
01

>
3,

60
0

33
2.

31
>

3,
60

0
>

3,
60

0
>

3,
60

0
33

6.
80

94
>

3,
60

0
1,

39
2.

37
>

3,
60

0
69

6.
00

>
3,

60
0

>
3,

60
0

>
3,

60
0

55
6.

91
13

4
1,

39
9.

42
76

5.
90

2,
83

2.
15

20
9.

65
>

3,
60

0
53

9.
18

79
5.

09
19

6.
45

95
>

3,
60

0
1,

39
9.

07
>

3,
60

0
23

2.
38

>
3,

60
0

>
3,

60
0

>
3,

60
0

24
2.

75
13

5
>

3,
60

0
1,

74
7.

61
>

3,
60

0
11

8.
50

>
3,

60
0

70
6.

34
>

3,
60

0
12

4.
64

96
>

3,
60

0
1,

63
8.

27
3,

15
8.

68
33

0.
58

>
3,

60
0

>
3,

60
0

>
3,

60
0

27
6.

14
13

6
>

3,
60

0
81

8.
85

2,
09

3.
80

17
0.

65
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

7.
92

97
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

64
5.

20
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

25
7.

11
13

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
98

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

13
8

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

99
>

3,
60

0
1,

26
9.

16
1,

39
2.

90
15

4.
85

>
3,

60
0

1,
37

3.
69

1,
97

9.
74

17
6.

89
13

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

0
>

3,
60

0
55

6.
58

3,
04

7.
32

17
8.

67
>

3,
60

0
2,

28
6.

94
40

8.
32

11
1.

56
14

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

1
2,

83
8.

71
38

5.
74

91
8.

14
11

7.
91

>
3,

60
0

3,
03

8.
77

1,
02

2.
16

10
7.

00
14

1
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

34
9.

68
>

3,
60

0
>

3,
60

0
2,

49
9.

70
99

2.
71

10
2

>
3,

60
0

58
2.

52
89

6.
35

19
9.

98
>

3,
60

0
1,

09
3.

66
1,

13
6.

51
11

3.
66

14
2

>
3,

60
0

>
3,

60
0

>
3,

60
0

2,
54

6.
24

>
3,

60
0

>
3,

60
0

>
3,

60
0

1,
47

7.
15

10
3

>
3,

60
0

22
5.

86
70

2.
19

72
.6

8
>

3,
60

0
27

3.
03

1,
41

9.
51

59
.0

5
14

3
>

3,
60

0
2,

59
1.

82
>

3,
60

0
27

5.
53

>
3,

60
0

>
3,

60
0

>
3,

60
0

36
6.

57
10

4
>

3,
60

0
25

8.
01

72
8.

83
45

.3
8

>
3,

60
0

1,
77

9.
14

1,
94

3.
46

61
.9

2
14

4
>

3,
60

0
>

3,
60

0
>

3,
60

0
52

6.
31

>
3,

60
0

>
3,

60
0

>
3,

60
0

53
1.

03
10

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
14

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

6
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
14

6
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

12
5.

31
14

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

8
>

3,
60

0
>

3,
60

0
>

3,
60

0
3,

34
9.

54
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

98
8.

66
14

8
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
56

5.
70

>
3,

60
0

>
3,

60
0

>
3,

60
0

49
1.

87
14

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
58

0.
09

>
3,

60
0

>
3,

60
0

>
3,

60
0

58
5.

20
15

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
3,

51
3.

45
>

3,
60

0
>

3,
60

0
>

3,
60

0
3,

40
0.

77
11

1
>

3,
60

0
1,

00
5.

29
1,

72
2.

06
25

5.
33

>
3,

60
0

>
3,

60
0

>
3,

60
0

21
3.

42
15

1
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

41
1.

01
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

42
5.

92
11

2
>

3,
60

0
31

9.
44

2,
02

0.
47

16
3.

80
>

3,
60

0
63

2.
30

>
3,

60
0

14
7.

65
15

2
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

32
2.

43
>

3,
60

0
>

3,
60

0
>

3,
60

0
1,

48
9.

58
11

3
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

3
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

4
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

4
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
2,

82
2.

26
15

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

6
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

6
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
3,

57
3.

87
>

3,
60

0
>

3,
60

0
>

3,
60

0
2,

50
9.

22
15

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

8
>

3,
60

0
78

2.
86

>
3,

60
0

1,
02

2.
20

>
3,

60
0

>
3,

60
0

>
3,

60
0

69
8.

26
15

8
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

9
>

3,
60

0
96

1.
76

>
3,

60
0

49
8.

70
>

3,
60

0
>

3,
60

0
>

3,
60

0
42

0.
72

15
9

>
3,

60
0

>
3,

60
0

>
3,

60
0

2,
66

8.
07

>
3,

60
0

>
3,

60
0

>
3,

60
0

2,
50

0.
11

12
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

78
4.

37
>

3,
60

0
>

3,
60

0
2,

74
6.

56
81

2.
54

16
0

>
3,

60
0

>
3,

60
0

>
3,

60
0

2,
22

5.
69

>
3,

60
0

>
3,

60
0

>
3,

60
0

1,
91

2.
25

T
ab

le
A

.1
0.

C
P

U
ti

m
es

(i
n

se
co

n
d
s)

of
ex

ac
t

so
lu

ti
on

al
go

ri
th

m
s

to
so

lv
e

M
F

P
C

.

In
st

an
ce

B
D
W

B
B

R
D

S
In

st
an

ce
B

D
W

B
B

R
D

S
In

st
an

ce
B

D
W

B
B

R
D

S
In

st
an

ce
B

D
W

B
B

R
D

S
N

o
N

o
N

o
N

o
1

16
.3

4
1.

81
1.

22
41

78
1.

36
87

.4
4

17
1.

16
81

>
3,

60
0

>
3,

60
0

>
36

00
12

1
>

3,
60

0
>

3,
60

0
>

3,
60

0
2

5.
11

1.
15

2.
68

42
15

8.
00

45
.6

6
42

.5
1

82
>

3,
60

0
>

3,
60

0
>

3,
60

0
12

2
>

3,
60

0
>

3,
60

0
>

3,
60

0
3

10
.9

9
1.

12
0.

89
43

25
3.

63
20

.1
1

23
.2

1
83

1,
81

1.
32

61
3.

47
63

2.
41

12
3

>
3,

60
0

>
3,

60
0

>
3,

60
0

4
6.

30
0.

53
0.

36
44

73
.5

6
15

.9
4

12
.1

8
84

75
4.

81
>

3,
60

0
95

0.
95

12
4

>
3,

60
0

>
3,

60
0

>
3,

60
0

5
8.

58
0.

23
0.

37
45

99
.1

2
23

.7
3

8.
02

85
67

6.
99

10
3.

38
14

9.
8

12
5

2,
38

3.
48

1,
01

9.
57

73
5.

11
6

7.
62

0.
27

0.
23

46
60

.3
0

13
.2

4
7.

27
86

27
0.

69
22

5.
92

12
5.

25
12

6
3,

29
2.

34
1,

63
1.

64
1,

59
1.

30
7

18
.9

6
0.

02
0.

12
47

20
.1

6
0.

2
1.

23
87

96
.0

3
1.

93
13

.7
3

12
7

58
4.

75
34

.6
10

4.
36

8
26

.5
7

0.
08

0.
16

48
33

.1
8

2.
31

4.
45

88
17

8.
04

24
.4

5
20

.0
9

12
8

66
3.

02
40

.9
5

19
7.

06
9

18
.9

9
3.

17
4.

7
49

48
3.

23
1,

72
9.

33
43

2.
9

89
>

3,
60

0
>

3,
60

0
>

3,
60

0
12

9
>

3,
60

0
>

3,
60

0
>

3,
60

0
10

22
6.

66
52

.8
1

32
.3

9
50

17
4.

91
>

3,
60

0
1,

00
2.

80
90

>
3,

60
0

>
3,

60
0

>
3,

60
0

13
0

2,
85

1.
28

>
3,

60
0

>
3,

60
0

11
25

.9
3

2.
67

4.
9

51
22

4.
44

74
1.

84
22

6.
06

91
2,

64
6.

61
>

3,
60

0
1,

74
3.

33
13

1
1,

98
5.

23
>

3,
60

0
53

6.
33

12
22

.3
7

5.
24

3.
4

52
18

4.
08

50
.3

6
17

7.
89

92
2,

87
7.

18
>

3,
60

0
>

3,
60

0
13

2
74

7.
71

95
7.

28
38

1.
84

13
38

.6
6

4.
32

1.
25

53
88

.9
8

27
.8

9
59

.0
8

93
98

5.
53

67
4.

47
38

6.
49

13
3

33
6.

80
22

.9
6

29
.5

14
28

.2
4

0.
76

1.
81

54
84

.0
7

16
.8

2
15

.4
1

94
55

6.
91

12
2.

02
39

1.
2

13
4

19
6.

45
10

.2
26

.9
9

15
32

.9
5

0.
13

0.
42

55
52

.8
8

2.
08

6.
8

95
24

2.
75

12
.4

8
27

13
5

12
4.

64
18

.5
25

.0
8

16
37

.2
4

1.
03

0.
8

56
23

.8
8

1.
47

3.
57

96
27

6.
14

22
.5

9
43

.0
7

13
6

15
7.

92
7.

61
26

.8
8

17
18

2.
15

81
5.

02
97

.5
3

57
>

3,
60

0
>

3,
60

0
>

3,
60

0
97

1,
25

7.
11

>
3,

60
0

>
3,

60
0

13
7

>
3,

60
0

>
3,

60
0

>
3,

60
0

18
32

.3
1

15
.4

8
23

.6
7

58
2,

72
1.

50
>

3,
60

0
>

3,
60

0
98

>
3,

60
0

>
3,

60
0

97
9.

93
13

8
>

3,
60

0
>

3,
60

0
>

3,
60

0
19

36
.9

3
2.

39
7.

43
59

40
3.

39
12

1.
03

92
.6

6
99

17
6.

89
23

3.
52

48
.3

8
13

9
>

3,
60

0
>

3,
60

0
3,

23
9.

05
20

51
.3

3
6.

9
14

.6
6

60
93

1.
24

24
0.

7
20

0.
68

10
0

11
1.

56
11

5.
91

70
.7

5
14

0
>

3,
60

0
>

3,
60

0
>

3,
60

0
21

68
.5

6
3.

68
3.

35
61

16
8.

93
8.

86
42

10
1

10
7.

00
53

.5
1

40
.7

14
1

99
2.

71
2,

05
4.

79
71

2.
22

22
47

.7
7

3.
03

2.
34

62
25

1.
02

99
.5

1
55

.9
3

10
2

11
3.

66
8.

72
7.

97
14

2
1,

47
7.

15
65

3.
31

54
3.

16
23

32
.2

1
0.

36
1.

36
63

92
.2

9
4.

99
19

.2
7

10
3

59
.0

5
1.

92
7.

02
14

3
36

6.
57

39
.0

3
42

.0
4

24
33

.5
1

0.
27

1.
05

64
79

.7
9

2.
71

7.
82

10
4

61
.9

2
1.

23
4.

06
14

4
53

1.
03

11
4.

21
13

3.
85

25
65

6.
86

1,
97

1.
84

1,
04

6.
06

65
1,

16
5.

05
>

3,
60

0
1,

91
3.

83
10

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
14

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
26

99
.8

3
44

.4
8

15
5.

61
66

57
2.

83
12

3.
19

21
0.

87
10

6
>

3,
60

0
>

3,
60

0
78

4.
78

14
6

>
3,

60
0

>
3,

60
0

>
3,

60
0

27
16

5.
28

76
.6

6
40

.1
1

67
76

.8
3

43
.8

2
28

.3
1

10
7

1,
12

5.
31

>
3,

60
0

84
2

14
7

>
3,

60
0

>
3,

60
0

>
3,

60
0

28
16

5.
50

14
8.

52
70

.2
8

68
30

.6
7

28
.0

2
7.

94
10

8
1,

98
8.

66
3,

51
5.

93
85

8.
8

14
8

>
3,

60
0

>
3,

60
0

>
3,

60
0

29
71

.5
6

5.
09

4.
81

69
22

.8
4

9.
13

8.
1

10
9

49
1.

87
81

.6
2

10
1.

13
14

9
>

3,
60

0
1,

39
7.

73
1,

46
5.

65
30

81
.8

9
4.

42
7.

16
70

43
.0

7
1.

36
4.

45
11

0
58

5.
20

16
3.

91
10

1.
46

15
0

3,
40

0.
77

1,
72

2.
46

64
0.

91
31

24
.6

3
1.

14
2

71
27

.3
2

3.
12

2.
59

11
1

21
3.

42
6.

1
29

.1
4

15
1

1,
42

5.
92

14
0.

53
26

3.
03

32
9.

24
0.

02
0.

62
72

29
.3

9
0.

45
1.

65
11

2
14

7.
65

21
.7

5
21

.2
8

15
2

1,
48

9.
58

60
.1

4
17

1.
55

33
22

.6
4

9.
42

5.
62

73
>

3,
60

0
>

3,
60

0
>

3,
60

0
11

3
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

3
>

3,
60

0
>

3,
60

0
>

3,
60

0
34

43
.7

1
16

.9
12

.6
8

74
98

2.
05

>
3,

60
0

1,
66

2.
31

11
4

>
3,

60
0

>
3,

60
0

>
3,

60
0

15
4

>
3,

60
0

>
3,

60
0

>
3,

60
0

35
40

.4
8

7.
24

5.
8

75
15

5.
02

46
.6

48
.7

2
11

5
2,

82
2.

26
>

3,
60

0
2,

43
8.

30
15

5
>

3,
60

0
>

3,
60

0
>

3,
60

0
36

59
.0

5
19

.5
5

8.
69

76
82

5.
96

1,
67

4.
85

52
6.

28
11

6
>

3,
60

0
>

3,
60

0
>

3,
60

0
15

6
>

3,
60

0
>

3,
60

0
>

3,
60

0
37

41
.7

5
2.

42
0.

84
77

11
9.

22
42

.4
5

46
.8

3
11

7
2,

50
9.

22
54

1.
88

73
2.

33
15

7
>

3,
60

0
>

3,
60

0
>

3,
60

0
38

39
.6

2
4.

88
1.

25
78

80
.2

8
57

.8
49

.9
2

11
8

69
8.

26
20

9.
45

27
1.

63
15

8
>

3,
60

0
>

3,
60

0
>

3,
60

0
39

25
.6

9
0.

7
0.

66
79

72
.3

7
2.

39
4.

46
11

9
42

0.
72

20
.1

1
72

.5
6

15
9

2,
50

0.
11

89
5.

8
83

9.
03

40
13

.1
8

0.
05

0.
19

80
49

.5
8

1.
19

4.
68

12
0

81
2.

54
13

6.
13

84
.2

9
16

0
1,

91
2.

25
78

.0
6

51
3.

15

188

Table A.11. Upper and lower bounds for instances 1-80.

Instance BDW BB RDS Instance BDW BB RDS
No UB LB UB LB UB LB No UB LB UB LB UB LB
1 37 37 37 37 37 37 41 37 37 37 37 37 37
2 49 49 49 49 49 49 42 53 53 53 53 53 53
3 24 24 24 24 24 24 43 35 35 35 35 35 35
4 33 33 33 33 33 33 44 38 38 38 38 38 38
5 12 12 12 12 12 12 45 21 21 21 21 21 21
6 34 34 34 34 34 34 46 18 18 18 18 18 18
7 13 13 13 13 13 13 47 24 24 24 24 24 24
8 15 15 15 15 15 15 48 37 37 37 37 37 37
9 35 35 35 35 35 35 49 40 40 40 40 40 40
10 51 51 51 51 51 51 50 57 57 66 55 57 57
11 26 26 26 26 26 26 51 40 40 40 40 40 40
12 50 50 50 50 50 50 52 53 53 53 53 53 53
13 13 13 13 13 13 13 53 25 25 25 25 25 25
14 19 19 19 19 19 19 54 38 38 38 38 38 38
15 25 25 25 25 25 25 55 25 25 25 25 25 25
16 19 19 19 19 19 19 56 18 18 18 18 18 18
17 43 43 43 43 43 43 57 67.42 45 70 49 383 47
18 55 55 55 55 55 55 58 73 73 104 73 493 71
19 33 33 33 33 33 33 59 38 38 38 38 38 38
20 35 35 35 35 35 35 60 51 51 51 51 51 51
21 27 27 27 27 27 27 61 39 39 39 39 39 39
22 34 34 34 34 34 34 62 37 37 37 37 37 37
23 15 15 15 15 15 15 63 26 26 26 26 26 26
24 34 34 34 34 34 34 64 33 33 33 33 33 33
25 45 45 45 45 45 45 65 36 36 44 36 36 36
26 80 80 80 80 80 80 66 53 53 53 53 53 53
27 30 30 30 30 30 30 67 22 22 22 22 22 22
28 48 48 48 48 48 48 68 34 34 34 34 34 34
29 26 26 26 26 26 26 69 27 27 27 27 27 27
30 36 36 36 36 36 36 70 33 33 33 33 33 33
31 24 24 24 24 24 24 71 12 12 12 12 12 12
32 37 37 37 37 37 37 72 19 19 19 19 19 19
33 37 37 37 37 37 37 73 40 39 50 39 213 39
34 48 48 48 48 48 48 74 64 64 67 64 64 64
35 24 24 24 24 24 24 75 26 26 26 26 26 26
36 33 33 33 33 33 33 76 38 38 38 38 38 38
37 21 21 21 21 21 21 77 29 29 29 29 29 29
38 33 33 33 33 33 33 78 37 37 37 37 37 37
39 13 13 13 13 13 13 79 14 14 14 14 14 14
40 37 37 37 37 37 37 80 37 37 37 37 37 37

189

Table A.12. Upper and lower bounds for instances 81-160.

Instance BDW BB RDS Instance BDW BB RDS
No UB LB UB LB UB LB No UB LB UB LB UB LB
81 72.61 40 61 53 375 40 121 121.87 41 92 43 459 50
82 98.69 52 84 68 434 53 122 176.92 55 145 72 809 61
83 40 40 40 40 40 40 123 75.85 34 60 35 453 35
84 39 39 46 39 39 39 124 80.79 52 66 53 424 54
85 26 26 26 26 26 26 125 32 32 32 32 32 32
86 37 37 37 37 37 37 126 53 53 53 53 53 53
87 25 25 25 25 25 25 127 25 25 25 25 25 25
88 19 19 19 19 19 19 128 36 36 36 36 36 36
89 88.01 53 84 53 458 49 129 62.52 31 51 38 289 35
90 136.65 51 103 53 547 54 130 69 69 90 56 388 52
91 41 41 43 41 41 41 131 23 23 25 23 23 23
92 53 53 69 53 365 53 132 37 37 37 37 37 37
93 27 27 27 27 27 27 133 15 15 15 15 15 15
94 53 53 53 53 53 53 134 50 50 50 50 50 50
95 24 24 24 24 24 24 135 15 15 15 15 15 15
96 33 33 33 33 33 33 136 34 34 34 34 34 34
97 39 39 67 39 190 37 137 77.55 54 85 54 382 46
98 55 35 52 38 47 47 138 102.82 49 90 52 434 50
99 23 23 23 23 23 23 139 47.99 29 38 29 36 36
100 36 36 36 36 36 36 140 64.36 50 57 50 388 50
101 25 25 25 25 25 25 141 28 28 28 28 28 28
102 19 19 19 19 19 19 142 50 50 50 50 50 50
103 14 14 14 14 14 14 143 26 26 26 26 26 26
104 20 20 20 20 20 20 144 34 34 34 34 34 34
105 92.49 45 76 48 369 48 145 107.75 40 78 48 478 44
106 83.36 52 67 65 65 65 146 145.68 48 112 51 508 47
107 31 31 35 31 31 31 147 51.94 38 40 38 281 39
108 36 36 36 36 36 36 148 106.51 38 71 55 556 50
109 26 26 26 26 26 26 149 29 25 25 25 25 25
110 33 33 33 33 33 33 150 35 35 35 35 35 35
111 25 25 25 25 25 25 151 23 23 23 23 23 23
112 18 18 18 18 18 18 152 33 33 33 33 33 33
113 81.18 34 69 38 416 39 153 139.49 41 103 33 536 35
114 104.02 48 92 49 433 50 154 202.83 68 133 81 830 56
115 35 35 41 35 35 35 155 90.62 33 69 37 547 37
116 98.88 55 81 55 637 35 156 125.18 37 94 38 689 46
117 25 25 25 25 25 25 157 84.32 38 54 38 598 38
118 50 50 50 50 50 50 158 92.95 37 58 48 655 48
119 24 24 24 24 24 24 159 26 26 26 26 26 26
120 19 19 19 19 19 19 160 36 36 36 36 36 36

