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ABSTRACT

UNSUPERVISED LEARNING OF WORD ALIGNMENTS

FOR STATISTICAL MACHINE TRANSLATION

Word alignment is a crucial first step in learning statistical translation models.

In this dissertation, we propose a Bayesian approach to unsupervised learning of word

alignments by introducing a sparse prior on the parameters of IBM word alignment

models. In the original approach, word translation probabilities are estimated using

the expectation-maximization (EM) algorithm. In the proposed approach, they are

random variables with a prior and are integrated out during inference, where collapsed

Gibbs sampling is used. The inferred word alignments are evaluated in a statistical ma-

chine translation (SMT) setting, experimenting with several language pairs and sizes

of corpora and comparing against the EM and variational Bayes (VB) methods. We

show that Bayesian inference outperforms both EM and VB in the majority of test

cases, effectively addresses the high-fertility rare word problem in EM and unaligned

rare word problem in VB, achieves higher agreement and vocabulary coverage rates

than both, and leads to smaller phrase tables. We also propose a method for un-

supervised learning of the optimal segmentation for SMT. We augment the original

Morfessor monolingual segmentation model with a word alignment model so that the

new model optimizes the posterior probability of the parallel training corpus according

to a generative segmentation-translation model. In order to speed up computation, we

propose an incremental method for approximate translation likelihood calculation and

a parallelizable search algorithm, which improves the performance of even the mono-

lingual segmentation. We use the proposed method to segment the Turkish side in

a Turkish-to-English SMT system and find that the bilingual model results in more

intuitive segmentations but does not yield a further significant increase in BLEU scores.
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ÖZET

İSTATİSTİKSEL MAKİNE ÇEVİRİSİ İÇİN KELİME

HİZALAMALARININ GÖZETİMSİZ ÖĞRENİMİ

Kelime hizalama, istatistiksel çeviri modeli öğreniminde kritik öneme sahip bir ilk

aşamadır. Bu tez çalışmasında IBM kelime hizalama modellerinin parametreleri üzerine

seyrek bir önsel getirerek kelime hizalamalarının gözetimsiz öğrenimi için Bayesçi bir

yaklaşım önerilmektedir. Orijinal yöntemde kelime çeviri olasılıkları beklenti-eniyileme

(EM) yöntemiyle kestirilmektedir. Önerilen yöntemde ise bu olasılıklar bir önsel dağılı-

ma sahip rastsal değişkenlerdir ve daraltılmış Gibbs örneklemesi kullanılarak çıkarım

esnasında tümlevi alınmaktadır. Çıkarımı yapılan hizalamalar bir istatistiksel makine

çevirisi (SMT) ortamında birçok dil çifti ve derlem büyüklükleri üzerinde EM ve

değişimsel Bayes (VB) ile kıyaslanarak değerlendirilmektedir. Önerilen Bayesçi yönte-

min sınama senaryolarının çoğunluğunda diğer iki yöntemden üstünlüğü, EM yöntemin-

deki yüksek doğurganlıklı nadir kelime ve VB yöntemindeki hizalanmamış nadir ke-

lime problemlerine etkin çözüm getirdiği, iki yöntemden de daha yüksek uzlaşım ve

dağarcık kapsama oranı elde ettiği, ve daha küçük öbek tablolarını mümkün kıldığı

gösterilmektedir. Tezde aynı zamanda SMT için en uygun bölütlemenin gözetimsiz

öğrenimi için de bir yöntem önerilmektedir. Orijinal Morfessor tek dilli bölütleme

modeli bir kelime hizalama modeliyle geliştirilmektedir, böylece yeni model paralel

eğitim derleminin üretken bir bölütleme-hizalama modeline göre sonsal olasılığını en

iyiler. Hesaplamayı hızlandırmak amacıyla, yaklaşık çeviri olabilirliğini hesaplamak

için artımsal bir yöntem ve aynı zamanda tek dilli bölütlemenin de başarımını iy-

ileştiren paralelleştirilebilen bir arama yordamı önerilmektedir. Önerilen yöntem bir

Türkçeden İngilizceye SMT sisteminde Türkçe tarafı bölütlemek için kullanılmış ve iki

dilli modelin daha sezgisel bölütlemelere yol açmasına rağmen BLEU skorlarında daha

öte bir belirgin artış sağlamadığı gözlenmiştir.
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1. INTRODUCTION

In training statistical machine translation (SMT) systems, the parameters/feature

values of the translation models are estimated from parallel corpora. Whether the

employed models are the widely-used phrase-based models [1] or the more recent tree-

based models [2,3], a crucial first step in training is word alignment [4]. These models

make use of the estimated word alignments for constraining the set of candidates in

phrase or grammar rule extraction. As such, the coverage and the accuracy of the

learned phrase/rule translation models are strongly correlated with those of the word

alignment. Therefore, good word alignment algorithms are important since they affect

the remaining steps of SMT system training.

Given a sentence-aligned parallel corpus, the goal of the word alignment is to

identify the mapping between the source and target words in parallel sentences. Since

word alignment information is usually not available during corpus generation and hu-

man annotation is costly, the task of word alignment is considered as an unsupervised

learning problem.

State-of-the-art word alignment models, such as IBM Models [5], hidden Markov

model (HMM) [6], and the jointly-trained symmetric HMM [7], contain a large number

of parameters (such as word translation, transition, and fertility probabilities) that need

be estimated in addition to the desired alignment variables. The common method of

inference in such models is expectation-maximization (EM) [8] or an approximation to

EM when exact EM is intractable. The EM algorithm finds the value of parameters that

maximizes the likelihood of the observed variables. However, with many parameters to

be estimated without any prior, EM tends to explain the training data by overfitting

the parameters. Moreover, EM is generally prone to getting stuck in a local maximum

of the likelihood. Finally, EM is based on the assumption that there is one fixed value

of parameters that explains the data, i.e., EM-inferred word alignments do not take

into account other probable values of the parameters.
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Another problem in word alignment arises when aligning a morphologically di-

verging language pair (e.g., Turkish-English) such that there is usually a granularity

mismatch when using word alignment models. Word-based models treat a space-

separated token (a “word”) as the smallest unit in the model. On the other hand,

Turkish is an agglutinative language where words can carry several morphemes in the

form of suffixes. As a result, a Turkish word can correspond to a multi-word (some-

times non-contiguous) phrase when paired with a morphologically simpler language

such as English. Figure 1.1 illustrates this morphological divergence on a example

English-Turkish translation pair.

say if you will not be able to do

yapamayacaksan söyle
XXX

XXX
XXX

XX

Z
Z
Z
Z

J
J
J

E
E
E

�
�
�

,
,
,
,

��
��

��

!!
!!

!!
!!

��
��

��
��
�

Figure 1.1. An English-Turkish translation pair and its ground-truth word alignment.

Encoding so many morphemes in a word leads to fast-growing vocabulary, data

sparsity issues in estimating model parameters, and high degree of out-of-vocabulary

(OOV) problems during run-time. For example, even though there are a total of about

150 distinct lexical suffixes in Turkish, the number of possible word derivations are

practically unlimited, posing a huge problem for word-based models.

Furthermore, 1-to-N alignment models (such as the popular IBM Models 1-5 and

the HMM alignment model) are usually run in both directions before symmetrization.

This creates a problem when the target language in the alignment generation model

is the morphologically-rich language. For example in Figure 1.1, English-to-Turkish

generative model requires the Turkish word “yapamayacaksan” to align to only one

English word, which does not accurately capture the true translation process. As a

result, naively applying word-based alignment/translation models to parallel corpora

involving Turkish is not optimal.
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A logical solution to this problem is morphological analysis, i.e., tokenizing the

individual morphemes, since the translation process is assumed to preserve meaning

and the smallest meaning-bearing unit in language is the morpheme. Therefore, one

expects a better correspondence between a translation pair on the morpheme level

leading to more accurate alignments, except for the language-specific idiosyncrasies

(for example, the semantics contributed by the English word/morpheme “the” does

not have an overt morpheme counterpart in Turkish, a similar example is the lack of

an accusative marker in English).

For agglutinative languages (and, to an extent, even for inflecting languages such

as Arabic, English etc.), morphological analysis can be approximated by segmentation,

i.e., splitting surface word forms into multiple “morphs”. For the Turkish word “yapa-

mayacaksan” in Figure 1.1, segmentation into its surface morphemes results in a more

fine-grained and scalable morpheme-based alignment as shown in Figure 1.2.

yap +a +ma +yacak +sa +n

do be able to not will if you

Figure 1.2. Morphemes and their correspondences to the words in the English

translation of the Turkish word yapamayacaksan (’if you will not be able to do’)

Our motivation in this study is to improve on the existing statistical machine

translation (SMT) models for Turkish. We focus on improving the learning of align-

ments and modeling of morphology, hopefully leading to better translation models (e.g.,

phrase tables). We also would like to preserve the two traits of SMT that has lead

to its widespread success, namely learning without requiring human involvement and

language independence. Hence we narrow our interest to the unsupervised learning

methods.

The work presented in this thesis can be divided into two parts. In the first

part, we present a method for Bayesian inference of word alignments that outperforms
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the existing maximum-likelihood solutions (Chapter 3). In the second part, we pro-

pose a method for unsupervised determination of the optimal segmentation for SMT

(Chapter 4).

1.1. Contributions of the Thesis

This study contributes to the steps (i)–(ii) of translation model training described

in Figure 1.3. Improvements in modeling and inference of these fundamental steps

(tokenization and alignment) are expected to result in better translation models, and

eventually better decoding (i.e., translation) performance. Since our ultimate goal is

improving the translation quality, we measure the utility of our proposed algorithms

on the end-to-end translation performance of the SMT system.

(i) Tokenization (i.e., determination of what constitutes a “word”)

(ii) Word alignment (in both directions)

(iii) Symmetrization of word alignments

(iv) Phrase-pair/SCFG rule extraction

(v) Computation of phrase-/rule-based features (e.g., probabilities estimated

from the counts in the training corpus)

Figure 1.3. Steps in learning a translation model.

The main contributions of this thesis are:

• Bayesian treatment of IBM word aligment Models 1 and 2 (Section 3.3). We

treat the model parameters as multinomial-distributed random variables with

sparse Dirichlet priors and integrate over all parameter values during inference.

• Derivation of a Gibbs sampler for the proposed Bayesian alignment models

(Section 3.3.3 and Appendix A) as well as equivalence of the Chinese Restau-

rant Process view of word alignment (Section 3.3.4).

• Extensive end-to-end evaluation of the alternative unsupervised word align-

ment methods (EM, Gibbs sampling and variational Bayes) and their combina-
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tions on several language pairs and data sizes (Section 3.4), including sampling

analysis of the Gibbs sampler (Section 3.6).

• Detailed intrinsic evaluation of the word alignments obtained by these methods

(Section 3.5).

• A bilingual extension of the Morfessor segmentation algorithm that performs

sub-word segmentation by taking into account both sides of the SMT training

corpus (Section 4.3.2).

• An incremental method for approximate translation likelihood calculation in

order to speed up the proposed bilingual segmentation method (Section 4.3.3).

• A parallel search algorithm for speeding up using multiple CPUs that is also

both applicable and beneficial to the original (monolingual) version of Morfes-

sor (Section 4.3.4).

Parts of the work in this thesis has been published before as follows: The Bayesian

treatment of word alignment (Chapter 3) was first presented in [9] and then elaborated

with extensive evaluation in [10]. The proposed unsupervised segmentation method

(Chapter 4) was presented in [11] and [12].

1.2. Organization of the Thesis

We start with a brief overview of statistical machine translation, the main setting

and motivation in our work, in Chapter 2. The state-of-the-art log-linear approach and

its components are presented. Then the usual steps of training an SMT system are

outlined.

In Chapter 3 we present a method for Bayesian inference of word alignments that

outperforms the existing maximum-likelihood solutions. We re-formulate the original

IBM Model 1 as a multinomial generative model and introduce a conjugate prior on

the model parameters. This allows us to integrate out the parameters and infer the

word alignments using Gibbs sampling. We describe the Gibbs sampling procedure

and a modified sampling algorithm that enables multi-threaded implementation. An

extension of the approach to IBM Model 2 is also presented. The proposed method is
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evaluated on various language pairs with varying sizes of corpora. The Gibbs samplers

and the inferred alignments are analyzed in detail.

In Chapter 4 we propose a method for unsupervised determination of the optimal

segmentation for SMT. To improve on the commonly-used Morfessor algorithm, which

utilizes only monolingual information, a bilingual model is proposed that utilizes both

sides of the training corpus. In order to speed up computation, an incremental method

of computing approximate likelihoods and a parallel search method are proposed. The

proposed method is evaluated in a Turkish-English SMT setting.

Finally, conclusion and future research directions are discussed in Chapter 5.

Special attention is reserved for relating the work in this thesis to the most recent MT

paradigm, neural machine translation (NMT). Potential impact of the presented work

on NMT is outlined.
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2. STATISTICAL MACHINE TRANSLATION

In most of today’s SMT systems, the probability of a translation hypothesis e

given the source sentence f is formulated as a log-linear model:

P (e|f) =
1

Z(f)
exp(

K∑
k=1

λkhk(e, f)) (2.1)

Here, hk represent the feature functions, K the number of features in the model and

λk the feature weights. Z is essentially a normalization factor so that
∑

e P (e|f) = 1.

The decision rule for the best hypothesis e∗ is a direct maximization over the

posterior P (e|f):

e∗ = arg max
e

P (e|f) (2.2)

= arg max
e

K∑
k=1

λkhk(e, f) (2.3)

Note that the value of Z never needs to be computed since it is a common denomi-

nator in the probabilities of all hypotheses. We also utilize the monotonicity of the

exponential function and work directly on the linear combination of features.

Every system today uses an assortment of features hk with K usually around

10–15. The most commonly-used features are:

• Word translation probabilities in both translation directions

• SCFG rule or phrase (depending on the system) translation probabilities in

both translation directions

• Language model probability of the hypothesis (hLM(e, f) = P (e))

• Word/phrase/rule count in the hypothesis

• Reordering (distortion) model cost.
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Note that the values for most of these features depend on the particular “derivation”

that produces e from f , e.g., which set of SCFG rules were applied or which phrase-

pairs were used etc. It is the decoder’s task to search for the hypothesis (or derivation)

with the highest total score according to (2.3).

Many of the feature functions listed above are probabilities, which need to be

estimated (from data) in a training step before decoding. SMT system training usually

consists of the following steps:

(i) Learn the model-based feature functions.

• Learn a translation model, as shown in Figure 1.3.

• Learn a language model (usually an N-gram model).

• Learn other models, if any (e.g., some systems use probabilistic reorder-

ing models, additional part-of-speech (POS) language models etc.).

(ii) Learn the feature weights, usually using the minimum error rate training

(MERT) algorithm [13].
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3. BAYESIAN WORD ALIGNMENT

In this chapter we present a Bayesian approach to word alignment inference in

IBM Models 1 and 2. In the classical maximum-likelihood approach, word translation

probabilities (i.e., model parameters) are estimated using the expectation-maximization

(EM) algorithm. In the proposed approach, word translation probabilities are ran-

dom variables with a prior and are integrated out during inference. We use Gibbs

sampling to infer the word alignment posteriors. The inferred word alignments are

compared against EM and variational Bayes (VB) inference in terms of their end-to-

end translation performance on several language pairs and types of corpora up to 15

million sentence pairs. Experimental results show that Bayesian inference outperforms

both EM and VB. Further analysis reveals that the proposed method effectively ad-

dresses the high-fertility rare word problem in EM and unaligned rare word problem

in VB, achieves higher agreement and vocabulary coverage rates than both, and leads

to smaller phrase tables.

3.1. Introduction

Word alignment is a crucial early step in the training pipeline of most statistical

machine translation (SMT) systems [4]. Whether the employed models are phrase-

based or tree-based, they use the estimated word alignments for constraining the set

of candidates in phrase or grammar rule extraction [1–3]. As such, the coverage and

the accuracy of the learned phrase/rule translation models are strongly correlated with

those of the word alignment. Given a sentence-aligned parallel corpus, the goal of the

word alignment is to identify the mapping between the source and target words in par-

allel sentences. Since word alignment information is usually not available during corpus

generation and human annotation is costly, the task of word alignment is considered

as an unsupervised learning problem.

State-of-the-art word alignment models, such as IBM Models [5], hidden Markov

model (HMM) [6], and the jointly-trained symmetric HMM [7], contain a large num-
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ber of parameters (such as word translation, transition, and fertility probabilities) that

need be estimated in addition to the desired alignment variables. The common method

of inference in such models is expectation-maximization (EM) [8] or an approximation

to EM when exact EM is intractable. The EM algorithm finds the value of parameters

that maximizes the likelihood of the observed variables. However, with many param-

eters to be estimated without any prior, EM tends to explain the training data by

overfitting the parameters. A well-documented example of overfitting in EM-estimated

word alignments is the case of rare words, where some rare words act as “garbage collec-

tors” aligning to excessively many words on the other side of the sentence pair [14–16].

Moreover, EM is generally prone to getting stuck in a local maximum of the likelihood.

Finally, EM is based on the assumption that there is one fixed value of parameters

that explains the data, i.e., EM gives a point estimate.

We propose a Bayesian approach in which we utilize a prior distribution on the

parameters. The alignment probabilities are inferred by integrating over all possible pa-

rameter values. We treat the word translation probabilities as multinomial-distributed

random variables with a sparse Dirichlet prior. Inference is performed via Gibbs sam-

pling, which samples the posterior alignment distribution. We compare the EM and

Bayesian alignments on the case of IBM Models 1 and 2. The inferred alignments are

evaluated in terms of end-to-end translation performance on various language pairs

and corpora.

The remainder of this chapter is organized as follows: The related literature is

reviewed in Section 3.2. The proposed model and the inference algorithm are presented

in Section 3.3. The experiments are described and their results are presented in Sec-

tion 3.4. A detailed analysis of the resulting alignments, sampling settings, and BLEU

variance are provided in Sections 3.5–3.7, followed by the conclusions in Section 3.8.

3.2. Related Work

Problems with the standard EM estimation of IBM Model 1 were pointed out

by Moore [16]. A number of heuristic changes to the estimation procedure, such as
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smoothing the parameter estimates, were shown to reduce the alignment error rate, but

the effects on translation performance were not reported. Zhao and Xing [17] address

the data sparsity issue using symmetric Dirichlet priors in parameter estimation and

they use variational EM to find the maximum a posteriori (MAP) solution. Vaswani

et al. [18] encourage sparsity in the translation model by placing an `0 prior on the

parameters and then optimize for the MAP objective.

Zhao and Gildea [19] use sampling in their proposed fertility extensions to IBM

Model 1 and HMM, but they do not place any prior on the parameters. Their inference

method is stochastic EM (also known as Monte Carlo EM), a maximum-likelihood

technique in which sampling is used to approximate the expected counts in the E-

step. Even though they report substantial reductions in the alignment error rate, the

translation performance measured in BLEU does not improve.

Bayesian modeling and inference have recently been applied to several unsu-

pervised learning problems in natural language processing such as part-of-speech tag-

ging [20,21], word segmentation [22,23], grammar extraction [24] and finite-state trans-

ducer training [25] as well as other tasks in SMT such as synchronous grammar induc-

tion [26] and learning phrase alignments directly [27].

Word alignment learning problem was addressed jointly with segmentation learn-

ing by Xu et al. [28], Nguyen et al. [29], and Chung and Gildea [30]. As in this

paper, they treat word translation probabilities as random variables (with an associ-

ated prior distribution). Both [28] and [29] place nonparametric priors (also known as

cache models) on the parameters. Similar to our work, this enables integration over

the prior distribution. In [28], a Dirichlet Process prior is placed on IBM Model 1

word translation probabilities. In [29], a Pitman-Yor Process prior is placed on word

translation probabilities in a proposed bag-of-words translation model that is similar to

IBM Model 1. Both studies utilize Gibbs sampling for inference. However, alignment

distributions are not sampled from the true posteriors but instead are updated either

by running GIZA++ [28] or using a “local-best” maximization search [29]. On the

other hand, a sparse Dirichlet prior on the multinomial parameters is used in [30] to
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prevent overfitting.

Bayesian word alignment with Dirichlet priors was also investigated in a recent

study using variational Bayes (VB) [31]. VB is a Bayesian inference method which

is sometimes preferred over Gibbs sampling due to its relatively lower computational

cost and scalability. However, VB inference approximates the model by assuming

independence between the hidden variables and the parameters. To evaluate the effect

of this approximation, we also present and analyze the experimental results obtained

using VB (Sections 3.4.3 and 3.5).

3.3. Bayesian Inference of Word Alignments

We first recap the IBM Model 1 presented in [5] and establish the notation used

in this paper. Given a parallel corpus (E,F) of S sentence pairs, let e (f) denote the

s-th sentence in E (F), and let ei (fj) denote the i-th (j-th) word among a total of

I (J) words in e (f)1 . We also hypothesize an imaginary “null” word e0 to account

for any unaligned words in f . Also let VE and VF denote the size of the respective

vocabularies.

We associate with each fj a hidden alignment variable aj whose value ranges

over [0, I]. The set of alignments for a sentence (corpus) is denoted by a (A). The

model parameters consist of a VE × VF table T of word translation probabilities such

that te,f = P (f |e). Since f is conditioned on e, we refer to e (e) as the “source” word

(sentence) and f (f) as the “target” word (sentence)2 .

1Keeping in mind that e, f , I, J (and a introduced later) are defined with respect to the s-th
sentence, we drop the subscript s for notational simplicity.

2Historically, the source and target designations were based on the translation task, when the word
alignment direction was dictated by the “noisy channel model” to be the inverse of the translation
direction. Today almost all SMT systems using IBM models train alignments in both directions,
decoupling the alignment direction from that of translation and nullifying the justification of the early
nomenclature.
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Table 3.1. List of variables in the original IBM Model 1. To simplify notation,

sentence-specific subscripts are omitted from the variables a, e, f , I and J ; their

dependence on the sentence index s is implicit.

Observed variables:

e = e1 · · · eI s-th source (English) sentence, consisting of I words

f = f1 · · · fJ s-th target (French) sentence, consisting of J words

VE Size of the source corpus vocabulary (including the null word)

VF Size of the target corpus vocabulary

Hidden variables:

a = a1 · · · aJ Alignments for the s-th sentence pair; for each target word fj,

aj takes integer values in [0, I] with the value 0 representing

alignment to the null source word

Model parameters:

T A VE × VF table of translation probabilities where te,f = P (f |e)

The conditional distribution of the Model 1 variables given parameters T is ex-

pressed by the following generative model:

aj|e ∼ Uniform(aj; I + 1)

P (F,A|E; T) =
∏
s

P (a|e)P (f |a, e; T) (3.1)

=
∏
s

1

(I + 1)J

J∏
j=1

teaj ,fj . (3.2)

The dependency structure of this generative model is illustrated in Figure 3.1.

The two unknowns A and T are estimated using the EM algorithm, which finds

the value of T that maximizes the likelihood of the observed variables E and F ac-

cording to the model. Once the value of T is known, the probability of any alignment

becomes straightforward to compute.
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Figure 3.1. Plate representation of the generative model IBM Model 1.

In the following derivation of our proposed model, we treat the unknown T as a

random variable. Following the Bayesian approach, we assume a prior distribution on

T and infer the distribution of A by integrating over all values of T.

3.3.1. Canonical Representation of Model 1

We first convert the token-based expression in (3.2) into a type-based one as (with

T now a random variable):

P (F,A|E,T) =
∏
s

1

(I + 1)J

VE∏
e=1

VF∏
f=1

(te,f )
ne,f,s (3.3)

=

VE∏
e=1

VF∏
f=1

(te,f )
Ne,f ·

∏
s

1

(I + 1)J
, (3.4)

where in (3.3) the count variable ne,f,s denotes the number of times the source word

type e is aligned to the target word type f in the sentence pair s, and in (3.4) Ne,f =∑
s ne,f,s.

This formulation exposes two properties of IBM Model 1 that facilitates the

derivation of a Bayesian inference algorithm. First, the parametrization on T is in the

canonical form of an exponential family distribution (as the inner-product of parameters

log te,f and sufficient statistics Ne,f ), which implies the existence of a conjugate prior
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that simplifies calculation of the posterior.

Second, the distribution in (3.4) depends on the variables E, F and A only

through a set of count variables Ne,f . In other words, the order of words within a

sentence has no effect on the likelihood, which is called exchangeability or a “bag of

words” model. This results in simplification of the terms when deriving the Gibbs

sampler.

3.3.2. Prior on Word Translation Probabilities

For each source word type e, by definition te = te,1 · · · te,VF form the parameters

of a multinomial distribution that governs the distribution of the target words aligned

to e. Hence, the conditional distribution of the j-th target word in a sentence pair is

defined by:

fj|a, e,T ∼ Multinomial(fj; teaj ).

Since the conjugate prior of multinomial is the Dirichlet distribution, we choose:

te|Θ ∼ Dirichlet(te; Θe),

where Θe = θe,1 · · · θe,VF . Overall, Θ = Θ1 · · ·ΘVE are the hyperparameters of the

model. The mathematical expression for the prior P (T; Θ) is provided in (A.3) in the

Appendix. The dependency structure of the proposed generative model is illustrated

in Figure 3.2.

We can encode our prior expectations for te into the model by suitably setting the

values of Θe. For example, we generally expect the translation probability distribution

of a given source word type e to be concentrated on one or a few target word types.

Setting θe,f � 1, ∀f allocates more prior weight to such sparse distributions. Figure 3.3

shows the probability density function (PDF) of an example symmetric sparse Dirichlet

distribution for the case where VF = 3. Figure 3.4 illustrates random samples drawn
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Figure 3.2. Plate representation of the proposed generative model.
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from the PDF used in Figure 3.3. Similarly, Figure 3.5 shows random samples drawn

from a sparse Dirichlet prior for the case where VF = 4.

3.3.3. Inference by Gibbs Sampling

To infer the posterior distribution of the alignments P (A|E,F; Θ), we use Gibbs

sampling [32], a stochastic inference technique that produces random samples that

converge in distribution to the desired posterior. In general, for a set of random

variables z = {zj}, a Gibbs sampler iteratively updates the variables zj one at a time

by sampling its value from the distribution P (zj|z¬j), where the superscript ¬j denotes

the exclusion of the variable being sampled.

Before applying Gibbs sampling to our model in (3.4), since we are only after A,

we integrate out the unknown T using:

P (F,A|E; Θ) =

∫
T

P (T; Θ)P (F,A|E,T). (3.5)

The remaining set of variables is z = {E,F,A}, of which only A is unknown.

Starting from (3.5), the Gibbs sampling formula is found as (the derivation steps

are outlined in the Appendix A):

P (aj = i|E,F,A¬j; Θ) ∝
N¬jei,fj + θei,fj∑VF

f=1N
¬j
ei,f

+
∑VF

f=1 θei,f
. (3.6)

Here, N¬jei,fj denotes the number of times the source word type ei is aligned to the

target word type fj in A, not counting the current alignment link between fj and eaj .

We can also observe the effect of the prior, where the hyperparameters act as pseudo-

counts added to Nei,fj . Table 3.2 describes the complete inference algorithm. In Step 1,
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Table 3.2. Alignment inference algorithm for Bayesian IBM Model 1 using Gibbs

sampling.

Input: E, F; Output: K samples of A

1 Initialize A

2 for k = 1 to K do

3 for each sentence pair s in (E,F) do

4 for j = 1 to J do

5 for i = 0 to I do

6 Calculate P (aj = i| · · · ) according to (3.6)

7 Sample a new value for aj

A can be initialized arbitrarily. However, informed initializations, e.g., EM-estimated

alignments, can be used for faster convergence. Once the Gibbs sampler is deemed to

have converged after B burn-in iterations, we collect M samples of A to estimate the

underlying distribution P (A|E,F). To reduce correlation between these M samples, a

lag of L iterations is introduced in-between. Thus the algorithm is run for a total of

K = B +M × L iterations.

The phrase/rule extraction step requires as its input the most probable alignment

A∗ = arg maxA P (A|E,F), which is also called the Viterbi alignment. Since A is a

vector with a large number of elements, we make the assumption that the most frequent

value for the vector A can be approximated by the vector consisting of the most frequent

values for each element aj. Hence, we select for each aj its most frequent value in the

M collected samples as the Viterbi alignment.

3.3.4. Interpretation as a Chinese Restaurant Process

We can also view the IBM Model 1 as a Chinese Restaurant Process (CRP). In

this analogy, each e has its own separate restaurant. The j-th target word goes to the
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restaurant of eaj and sits at a table according to (K: number of existing tables)

P (tablej = k) =


Nk

N+α
if 1 ≤ k ≤ K (sits at an existing table),

α
N+α

if k = K + 1 (opens a new table).

(3.7)

The seating at the tables defines a partition, and the CRP assigns a probability to

any such partition. To map these partitions to the space of target-language vocabulary,

we introduce labels (dishes) to each table (labeled CRP model).

Restaurant ei

f (i,1)

Table 1

p =
N(i,1)

N(i)+α

b

b
b

f (i,2)

Table 2

p =
N(i,2)

N(i)+α

b

b
b

f (i,Ki)

Table Ki

p =
N(i,Ki)

N(i)+α

b

b
b

b b b

Figure 3.6. Illustration of the Chinese Restaurant Process (CRP) model.

At each table, only one dish is served. Different dishes correspond to different

translations of e. When a customer opens a new table, he/she gets to choose the dish

for that table from the menu (G0), and subsequent customers of that table are served

that same dish.
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When the j-th customer arrives at the restaurant of eaj , the probability that he

is served a particular dish f is given by

P (dish(j) = f) = P (sits at an existing table with f served on it)

+ P (opens a new table and chooses f as the dish) (3.8)

=

 ∑
k ∈ existing tables with

f served on them

Nk

N + α

+
α

N + α
· P (f |G0) (3.9)

=
Nf + α · P (f |G0)

N + α
(3.10)

The CRP model given in (3.10) allows unlimited VF . Being able to account for

an unlimited outcome space is especially useful for hidden random variables, where the

vocabulary cannot be determined beforehand. The CRP model “lets the data choose”

the appropriate vocabulary size to account for the observed data. This property is

appealing in problems such as mixtures (where the number of mixtures is unknown)

and word segmentation (where the underlying word types are unknown).

In the case of finite3 |VF |, (3.10) and (3.6) are equivalent, since by definition

Nf ≡ N¬jeaj ,f
, N =

∑
f Nf ,

∑
f P (f |G0) = 1, and hyperparameters Θ and (α,G0) are

related according to

θeaj ,f = α · P (f |G
(eaj )

0 ) (3.11)

after which (3.10) becomes

P (dish(j) = f) = P (fj|E,F¬j,A) =
N¬jeaj ,f

+ θeaj ,f∑|VF |
f ′=1N

¬j
eaj ,f

′ +
∑|VF |

f ′=1 θeaj ,f ′
. (3.12)

3Note that the number of tables is still infinite.
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It follows from the graphical model topology (Figure 3.2) that the predictive

distribution for the alignments P (aj|E,F,A¬j) is proportional to P (fj|E,F¬j,A) as

follows:

P (aj|E,F,A¬j) =
P (E,F,A)

P (E,F,A¬j)
(3.13)

=
P (E,F¬j,A¬j) · P (aj, fj|E,F¬j,A¬j)

P (E,F,A¬j)
(3.14)

=
P (E,F¬j,A¬j) · P (aj|E,F¬j,A¬j) · P (fj|E,F¬j,A)

P (E,F,A¬j)
(3.15)

=
P (E,F¬j,A¬j) · 1

|e|+1
· P (fj|E,F¬j,A)

P (E,F,A¬j)
(3.16)

∝ P (fj|E,F¬j,A), (3.17)

the expression for which was already found in (3.12).

3.3.5. Extension to IBM Model 2

IBM Model 1 assumes that all alignments are equally probable, i.e., P (aj = i) =

(I+ 1)−1. In IBM Model 2 [5], the alignment probability distribution P (aj) for a given

target word at position j depends on the quadruple (i, j, I, J). This dependency is

parametrized by a distortion parameter d for each quadruple such that

P (aj = i|j, I, J) = di,j,I,J . (3.18)

Note that Model 1 is a special case of Model 2 in which the parameters di,j,I,J are fixed

at (I + 1)−1.

Different variants of Model 2 have been proposed to reduce the number of pa-

rameters, e.g., by dropping dependence on J (di,j,I [15]) or using relative distortion (dr

where r = i− bj I
J
c [6], also called “diagonal-oriented Model 2” [33]). In the following,

we used the latter parametrization; the derivation for inference in the other variants

would be similar.
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Bayesian inference in Model 2 can be derived in an analogous manner to Model 1.

Treating the set of distortion parameters, denoted by d = d−maxs I · · · dmaxs I , as a new

random variable, equations (3.2) and (3.4) can be adapted to Model 2 as:

P (F,A|E,T,d) =
∏
s

J∏
j=1

(teaj ,fj · daj−bj I
J
c) (3.19)

=

VE∏
e=1

VF∏
f=1

(te,f )
Ne,f ·

maxs I∏
r=−maxs I

(dr)
Cr , (3.20)

where in (3.20) the count variable Cr stores the number of times a particular relative

distortion r occurs in A.

Since d form the parameters of a multinomial distribution on aj (see (3.18)), we

choose a Dirichlet prior on d:

aj|d ∼ Multinomial(aj; d)

d|Φ ∼ Dirichlet(d; Φ),

where Φ = φ−maxs I · · ·φmaxs I are the distortion hyperparameters. Integrating out the

parameters T and d results in the following Gibbs sampling formula for Bayesian IBM

Model 2:

P (aj = i|E,F,A¬j; Θ,Φ)

∝
N¬jei,fj + θei,fj∑VF

f=1 N
¬j
ei,f

+
∑VF

f=1 θei,f
· (C¬jr + φr), (3.21)

where r = i− bj I
J
c. A complete derivation is presented in the Appendix. To infer the

alignments under Model 2, the only change needed in Table 3.2 is the use of (3.21)

instead of (3.6) in step 6.
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3.3.6. Parallel Algorithm for Multithreaded Implementation

Normally, the Gibbs sampling algorithm for Equation (3.6) can be implemented in

a single processor as shown in Table 3.2. We devised a multi-threaded implementation

as an approximation of Gibbs sampling as shown in Table 3.3, where the counts Ne,f

and Cr are not updated until the end of an iteration. Similar approximations have been

done in scaling Gibbs sampling to large datasets using multiple parallel processors, e.g.

in [34].

Table 3.3. Multithreaded Gibbs Sampling Implementation.

main()

Input: E, F; Output: K samples of A

1 Initialize A

2 for k = 1 to K do

3 for each chunk in (E,F) do

4 Execute OneThread(chunk)

5 for each change in ChangeList do

6 Update Counts

OneThread(chunk)

1 for each sentence pair s in chunk do

2 for j = 1 to J do

3 for i = 0 to I do

4 Calculate P (aj = i|A¬j,E,F)

5 Make a random draw for aj

6 Add to ChangeList

All large-data experiments reported in Sections 3.4.5 and 3.4.6 have been per-

formed using this multi-threaded implementation.
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3.4. Experimental Results

3.4.1. Experimental Setup

We evaluated the performance of the Bayesian word alignment via bi-directional

translation experiments. We performed the initial experiments and analyses on small

data, then tested the best performing baseline and proposed methods on large data.

Furthermore, we performed some of the side investigations and compute-intensive ex-

periments such as those concerning the alignment combination schemes, morphological

segmentation, convergence and the effect of sampling settings only on the smallest of

the datasets (Turkish↔English).

For Turkish↔English (T↔E) experiments, we used the travel domain BTEC

dataset [35] from the annual IWSLT evaluations [36] for training, the CSTAR 2003

test set for tuning, and the IWSLT 2004 test set for testing. For Arabic↔English

(A↔E), we used LDC2004T18 (news from years 2001-2004) for training, subsets of

the AFP portion of LDC2004T17 (news from year 1998) for tuning and testing, and

the AFP and Xinhua subsets of the respective Gigaword corpora (LDC2007T07 and

LDC2007T40) for additional LM training. We filtered out sentence pairs where either

side contains more than 70 words for Arabic↔English. All language models are 4-gram

in the travel domain experiments and 5-gram in the news domain experiments with

modified Kneser-Ney smoothing [37] and interpolation. Table 3.4 shows the statistics

of the data sets used in the small-data experiments.

For each language pair, we obtained maximum-likelihood word alignments using

the EM implementation of GIZA++ [15] and Bayesian alignments using the pub-

licly available Gibbs sampling (GS) implementation [38]. As sampling settings (Sec-

tion 3.3.3), we used M = 100; L = 10; and B = 400 for T↔E and 8000 for A↔E. We

chose identical symmetric Dirichlet priors for all source words e with θe,f = θ = 0.0001

to obtain a sparse Dirichlet prior.
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After alignments were obtained in both translation directions, standard phrase-

based SMT systems were trained in both directions using Moses [39], SRILM [40],

and ZMERT [41] tools. The translations were evaluated using the single-reference

BLEU [42] metric. Alignments in both directions were symmetrized using the default

heuristic in Moses (“grow-diag-final-and”). To account for the random variability in

minimum error-rate training (MERT) [43], we report the mean and standard deviation

of 10 MERT runs for each evaluation.

We also investigated alignment combination, both within and across alignment

methods, to obtain the best possible performance. For this purpose, we obtained three

alignment samples from each inference method while trying to capture as much diversity

as possible. For EM, we obtained alignments after 5, 20, and 80 iterations (denoted by

EM-5, EM-20, and EM-80, respectively). For GS, we ran three separate chains, two

initialized with the EM alignments (denoted by GS-5 and GS-80, respectively), and to

provide even more diversity, a third initialized based on co-occurrence (denoted by GS-

N): Each target word was initially aligned to the source candidate that it co-occurred

with the most number of times in the entire parallel corpus.

Table 3.4. Corpus statistics for each language pair in the small-data experiments.

T: Turkish, E: English, A: Arabic.

T / E A / E

Training set:

Sentences 20k 56k

Tokens 140k / 183k 1.5M / 1.8M

Tokens/sentence 7.0 / 9.1 27 / 33

Types 18k / 7.3k 80k / 35k

Singletons 10k / 3.2k 35k / 14k

Additional LM tokens - 215M / 298M

Tuning set sentences 506 873

Test set sentences 500 879



27

3.4.2. Performance Comparison of EM and GS

Figure 3.7 compares the BLEU scores of SMT systems trained with individual

EM- and GS-inferred alignments. In all cases, using GS alignments that are initialized

with the alignments from EM leads to higher BLEU scores on average than using the

EM alignments directly. In Section 3.5, we investigate the intrinsic differences between

the EM- and GS-inferred alignments that lead to the improved translation performance.

Alignment combination across methods (heterogeneous combination) has been

previously shown [44,45] to improve the translation performance over individual align-

ments. Moreover, alignment combination within a method (homogeneous combination)

can also cope with random variation (in GS) or overfitting (in EM).

We implemented alignment combination by concatenating the individual sets of

alignments, meanwhile replicating the training corpus, and training the SMT system

otherwise the same way. We experimented with various alignment combination schemes

and found that combining the EM alignments from 5, 20, and 80 iterations is in general

better than the individual alignments, with a similar conclusion for combining the

three GS alignments described in Section 3.4.1. Further combination of these two

combinations for a total of six alignments sometimes improved the performance even

more. So we present the results in this section using these three combination schemes

(denoted by EM(Co), GS(Co), and EM(Co)+GS(Co), respectively, in Figure 3.8).

We observe from Figure 3.8 that GS(Co) outperforms EM(Co) on average, both

by itself and in combination with EM(Co), in most cases by a significant margin.

However, which scheme (GS(Co) or EM(Co)+GS(Co)) is the best seems to depend on

the language pair and/or dataset.

3.4.3. Comparison with Variational Bayes

Using the publicly available software [46], we experimented with variational Bayes

(VB) inference using similar alignment combination schemes: combination of three
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Figure 3.7. Translation performance of word alignments obtained by

expectation-maximization (EM), Gibbs sampling initialized with EM (GS) and

variational Bayes (VB): ∗ EM, � GS, O VB.
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VB-inferred alignments after 5, 20, and 80 Model 1 iterations; and further combi-

nation of it with the three EM-inferred alignments above (denoted by VB(Co) and

EM(Co)+VB(Co), respectively).

The translation peformance of the individual VB alignments in Figure 3.7 shows

that, compared to EM, VB achieves higher BLEU scores in T↔E but lower scores in

A↔E. On the other hand, GS outperforms VB in all cases but one in Figure 3.7. As for

the performance after alignment combination, Figure 3.8 shows that, for all translation

directions GS(Co) leads to higher average BLEU scores compared to VB(Co), both with

and without further combination with EM(Co). The performance of VB(Co) relative

to EM(Co) is similar to the case for individual alignments (better in T↔E, worse

in A↔E). However, EM(Co)+VB(Co) outperforms or performs as good as EM in all

cases, demonstrating that Bayesian word alignment can be beneficial even with a fast,

yet approximate inference method.

To explain the particularly low performance of VB in Arabic↔English, we in-

spected the alignments inferred by EM, GS, and VB. We found that while VB with

sparse Dirichlet prior avoids excessive alignment fertilities, it leaves many rare source

words unaligned. For example, the percentage of unaligned source singletons for EM-5,

GS-5, and VB-5 in the English→Arabic (Arabic→English) alignments are 27%, 16%,

and 69% (44%, 34%, and 71%), respectively. We believe the higher rate of unaligned

singletons can lead to poorer training set coverage and lower translation performance

(Section 3.5).

3.4.4. Experiments with Morphologically Segmented Corpus

Morphological preprocessing is a common practice in modern SMT systems deal-

ing with morphologically unmatched language pairs. Thus, as a side investigation,

we also experimented with morphological segmentation in the T↔E corpus to see its

effect on the performance of our proposed method (morphological segmentation is also

applied in the large-data A↔E experiments presented in Section 3.4.5). We used the

morphological analyzer by Oflazer [47] to segment the Turkish words into lexical mor-
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Figure 3.9. Results for the morphologically-segmented Turkish-English corpus. All

BLEU scores are computed at the word level.

phemes. As a result, the vocabulary size decreased to 5.6k (from 18k, cf. Table 3.4),

with 2.4k of them singletons. The out-of-vocabulary rate in the Turkish tuning and

test sets decreased from 5.2% and 6.1% to 0.9% and 0.8%, respectively. The BLEU

scores were still computed at the word level in the case of English→Turkish translation

by joining the morphemes in the output.

The results in Figure 3.9 show that the advantage of GS over EM still holds in

the morphologically-segmented condition in both translation directions, both individ-

ually and with combination. In addition, comparing the BLEU scores with those in

Figs. 3.7 and 3.8 confirms the previous studies that applying morphological segmenta-

tion improves the translation performance significantly, especially in the morphologi-

cally poorer direction (i.e., Turkish→English).
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Table 3.5. Corpus statistics for each language pair in the large-data experiments.

A: Arabic, E: English, C: Czech, G: German.

A / E C / E G / E

Training:

Sentences 7.6M 15.4M 2.0M

Tokens 202M / 203M 203M / 230M 50M / 53M

Types 355k / 342k 1.53M / 1.00M 420k / 139k

LM tokens - / 241M 265M / 1.05G 477M / 1.05G

Tuning sentences 1000 3003 3003

Test sentences 2000 3003 3003
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Figure 3.10. Arabic→English BLEU and TER scores of various alignment methods:

∗ EM(Co), � GS(Co), ◦ EM(Co)+GS(Co), and O VB(Co).
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3.4.5. Experiments on Larger Datasets

The scalability of the alignment inference methods was also tested on publicly

available large datasets (Table 3.5). We used the 8-million sentence Multi-UN corpus

[48] for Arabic→English translation experiments. As is common in most state-of-

the-art systems for this language pair, we performed morphological segmentation on

the Arabic side for the best performance (we used the MADA+TOKAN tool [49]).

Note that after morphological segmentation, Arabic no longer exhibits the vocabulary

characteristics of a morphologically-rich language (Table 3.5). We set aside the last

100k sentences of the corpus and randomly extracted the tuning and test sets from this

subset. The English side of the parallel corpus was used for language model training.

We used the WMT 2012 [50] datasets for Czech ↔ English (C↔E) and German

↔ English (G↔E) translation experiments. The C↔E training data consisted of the

Europarl, news commentary, and the 15-million sentence CzEng 1.0 [51] corpora while

the G↔E training data consisted of only the Europarl and news commmentary corpora.

WMT 2011 and 2012 news testsets were used for tuning and testing, respectively. The

WMT 2012 monolingual news corpora covering years 2007–2011 were used for language

model training.

In all large-data experiments, sentences longer than 70 words were excluded from

translation model training. Gibbs sampling settings of (B, M, L) = (1000, 100, 1)

were used. All language models were 4-gram. To obtain the best possible baseline,

we also utilized techniques that we had previously observed to improve performance

on similar corpora, such as lattice sampling [52] and search in random directions [53]

during MERT and minimum Bayes risk decoding [54]. All other experimental settings

(e.g., 10 MERT runs etc.) were identical to the small-data experiments (Section 3.4.1).

To conform with the majority of previous research and evaluations in these lan-

guage pairs, we trained SMT systems in both directions for the WMT 2012 language

pairs and in the Arabic→English direction for the Multi-UN task. For the two largest

datasets (C↔E and A→E), we also experimented with 1-million sentence versions for
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faster development experiments and to provide an intermediate data size setting.

The results are presented in Figs. 3.10-3.12. For translation to English, Gibbs

sampling improves over EM for all five corpora, the largest improvement achieved by

GS(Co)+EM(Co) in A→E (0.5 to 0.7 BLEU mean difference) and by GS(Co) in C→E

and G→E (0.3 to 0.5 BLUE mean difference). However, for translation from English

(E→C and E→G), we do not observe a consistent improvement over EM.

For the 1-million sentence A→E task, we also report the translation error rates

(TERs) [55] (bottom row of Figure 3.10). Except for the comparison between GS(Co)

and EM(Co)+GS(Co) in the 1M-sentence setting, in all possible pair-wise comparisons

between the alignment methods in both corpus settings, the method with the higher

mean BLEU score also has the lower mean TER score4 .

In addition, we compared the performance of some of the many possible alignment

combination schemes (Figure 3.13). Not surprisingly, combination with EM(Co) helps

both GS(Co) and VB(Co), and the relative ranking of the latter two does not change

after combination with EM(Co). Furthermore, combination of GS(Co)+VB(Co) im-

proves the performance slightly over EM(Co)+GS(Co).

3.4.6. Bayesian Model 2 Results

We tested the IBM Model 2 Gibbs sampling algorithm on the 1M-sentence subset

of the Arabic-English Multi-UN corpus. Unlike the case of translation parameters T,

there is no clear language- and domain-independent knowledge of how the distortion

parameters d (the distribution of aj) should look like. Therefore, we assumed that

all distortion distributions are a priori equally probable, which corresponds to setting

the distortion hyperparameters φr = 1 for all r. We also collapsed the counts for

distortions larger in magnitude than 5, resulting in 11 total distortion count variables

Nr≤−5, N−4, · · · , N4, Nr≥5, as done in [7].

4BLEU was used as the error metric for optimization in MERT.



36

45

45.2

45.4

45.6

45.8

46

46.2

46.4

B
LE

U

Alignment Method

1M−sentence Arabic−English

 

 
EM comb.
VB comb.
EM+VB comb.
GS comb.
EM+GS comb.
GS+VB comb.
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Table 3.6. BLEU scores of IBM Model 2 alignment inference methods on the

1M-sentence Arabic→English translation.

Method Model 2 EM Model 2 GS

BLEU 46.97 ±0.15 47.17 ±0.14
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We compared the translation performance of the EM- and GS-inferred Model 2

alignments. Both methods are initialized with the same EM-5 alignments (i.e., 5 iter-

ations of Model 1 EM). Model 2 EM is run for 5 iterations. Model 2 GS is estimated

with B = 1000, M = 100 and L = 1. The results are shown in Table 3.6. Bayesian

inference improves the mean BLUE score by 0.2 BLEU. Further improvement could be

possible by alignment combination within and across methods, as done in Section 3.4.2.

3.5. Alignment Analysis

In order to explain the BLEU score improvements achieved by the Bayesian align-

ment approach and to characterize the differences between the alignments obtained by

various methods, we analyzed the alignments in Figure 3.7 using several intrinsic and

extrinsic evaluation metrics. As representative alignments from each method, we se-

lected EM-5, VB-5, and GS-5.

3.5.1. Fertility Distributions

Fertility of a source word is defined as the number of target words aligned to

it. In general, we expect the fertility values close to the word token ratio between

the languages to be the most frequent and high fertility values to be rare. Figure 3.14

shows the fertility distributions in alignments obtained from different methods. We can

observe the “garbage collecting” effect in the long tails of the EM-estimated alignments.

For example, in English-Arabic Model 1 alignment using EM, 1.2% of the English source

tokens are aligned with nine or more Arabic target words, corresponding to 22.3k total

occurrences or about 0.4 occurrence per sentence. In all alignment tasks, both Bayesian

methods result in fewer high-fertility alignments compared to EM. Among Bayesian

inference techniques, GS is more effective than VB in avoiding high fertilities.

3.5.2. Alignment Dictionary Size

Reducing the number of unique alignment pairs has been proposed as an objective

for word alignment [56,57]: it was observed during manual alignment experiments that
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Figure 3.14. Distribution of alignment fertilities for source language tokens.

humans try to find the alignment with the most compact “alignment dictionary” (a

vocabulary of unique source-target word pairs) as possible. Figure 3.15 shows that

both GS and VB explain the training data using a significantly smaller alignment-pair

vocabulary compared to EM.

3.5.3. Singleton Fertilities

The average alignment fertility of source singletons was proposed as an intrinsic

evaluation metric in [45]. We expect lower values to correlate with better alignments.

However, a value of zero could be achieved by leaving all singletons unaligned, which

is clearly not desirable. Therefore, we refine the definition of this metric to calculate

the average over aligned singletons only. The minimum value thus attainable is one.

Figure 3.16 shows that both Bayesian methods significantly reduce singleton fertilities.
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Figure 3.15. Alignment dictionary size normalized by the average of source and target

vocabulary sizes.
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Figure 3.16. Average alignment fertility of aligned singletons.
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The average fertility of aligned singletons by itself is not sufficient to accurately

assess an alignment since unaligned singletons are not represented. Hence, we also

report the percentage of unaligned singletons in Figure 3.17. GS has the lowest un-

aligned singleton rate among Model 1 inference methods. An interesting observation

is that, while EM-estimated alignments suffer from rare words being assigned high fer-

tilities (Figure 3.16), VB suffers from a high percentage of the rare words (e.g., about

70% of singletons in A↔E) being left unaligned, resulting in lower translation perfor-

mance (Section 3.4.3). Our analysis agrees with the findings of Guzman et al. [58] that

unaligned words in an alignment results in lower-quality phrase tables.
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Figure 3.17. Percentage of unaligned singletons.

3.5.4. Alignment Points in Agreement

Since the IBM alignment models are one(source)-to-many(target), switching the

source and target languages usually result in a different set of alignment links (or

points in an alignment matrix). The intersection of the two sets consists of high-

precision alignment points where both alignment models agree [7]. Since the number
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of alignment points in each direction is constant (equal to the number of target words),

increasing precision at the expense of recall by predicting fewer alignment points is not

applicable in these models. Therefore higher agreement rate implies not only higher

precision but higher recall as well. Figure 3.18 shows that GS has the highest alignment

agreement rate among the alignment methods for both language pairs.

ET−TE EA−AE
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

A
lig

nm
en

t p
oi

nt
s 

in
 a

gr
ee

m
en

t p
er

 tr
ai

ni
ng

 to
ke

n

Alignment task pair

 

 
EM
VB
GS

Figure 3.18. Number of symmetric alignments normalized by the average of source

and target tokens.

3.5.5. Training Set Vocabulary Coverage by Phrase Table

We can also evaluate the inferred alignments extrinsically, e.g., by evaluating the

SMT systems trained using those alignments. A desirable feature in a SMT system is

to have as high vocabulary coverage as possible. This metric is highly sensitive to the

performance of an alignment algorithm on infrequent words since they represent the

majority of the vocabulary of a corpus (see Table 3.4). Figure 3.19 shows that alignment

by GS leads to the best vocabulary coverage in all four alignment tasks. Note that

word types that appear in the phrase table only as part of larger phrase(s) are excluded
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from this metric, since such words are practically out-of-vocabulary (OOV) except only

in those specific contexts.
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Figure 3.19. Percentage of training set vocabulary covered by single-word phrases in

the phrase table.

Poor training set vocabulary coverage results in some non-OOV words being

treated by the system as OOV, either dropping them from the output or leaving them

untranslated. Such pseudo-OOV words further degrade the translation performance in

addition to the OOV words. Figure 3.20 shows that GS alignments lead to the lowest

rate of pseudo-OOV words.

3.5.6. Phrase Table Size

In most machine translation applications, having a small model size is valuable,

e.g., to reduce the memory requirement or the start-up/access time. Alignment meth-

ods can affect the induced phrase table sizes. Figure 3.21 compares the number of

phrase pairs in the SMT systems trained by different alignment methods. In the A↔E

task, where model size is of more concern compared to the smaller T↔E task, GS re-

sults in significantly smaller phrase tables. This result is particularly remarkable since



43

ET TE EA AE
0

1

2

3

4

5

6

7

N
on

−
O

O
V

 u
nt

ra
ns

la
te

d 
w

or
ds

 in
 te

st
 s

et
 (

%
)

Translation direction

 

 
EM
VB
GS

Figure 3.20. Decode-time rate of input words that are in the training vocabulary but

without a translation in the phrase table.

it means that a system using GS-inferred alignments achieves more vocabulary cover-

age (Section 3.5.5) and higher BLEU scores (Section 3.4.2) with a smaller model size.

Thanks to a larger intersection during alignment symmetrization (Figure 3.18), GS-

based phrase tables contain a higher number of single-word phrase pairs (Figure 3.19).

Moreover, fewer unaligned words after symmetrization lead to fewer poor-quality long

phrase pairs [58].

3.5.7. Alignment Error Rate

Table 3.7 shows the alignment error rates (AERs) [15] obtained in the C↔E align-

ment tasks using a publicly available 515-sentence manually-aligned reference set [59].

The Bayesian methods achieve better AERs than EM in both alignment directions (de-

noted by “EC” and “CE”). Contrary to the ranking of the methods according to BLEU

(Figure 3.11), VB achieves the best AER, which also holds true after symmetrization

(denoted by “Sym.”). Furthermore, the symmetrized GS-5 alignment has the worst

AER in the 1M-sentence experiment. These discrepancies support earlier findings by
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Figure 3.21. Phrase table size normalized by the average of source and target tokens.

Table 3.7. Alignment error rate (%) of the uni-directional and symmetrized

Czech-English alignments.

Training set 1M sentences 15M sentences

Direction EC CE Sym. EC CE Sym.

EM-5 45.1 41.4 30.9 40.6 38.4 27.7

GS-5 41.9 40.0 31.6 36.4 34.9 26.7

VB-5 37.8 36.5 28.9 31.9 32.1 24.1
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several others that AER is generally not a good predictor of BLEU performance [60].

As a final remark, in Table 3.7 EM-5 enjoys a larger amount of reduction in AER

via symmetrization compared to GS-5, which suggests the possibility that the default

alignment symmetrization heuristic in Moses (“grow-diag-final-and”) has been fine-

tuned for the default EM-based alignments, and thus other symmetrization/phrase

extraction methods might work better for the GS- and VB-based alignments. For

example, Bayesian alignment inference could be complemented with a probabilistic

model of phrase extraction, e.g. [27], which is left as a future work.

3.6. Sampling Analysis

3.6.1. Effect of Sampling Settings

We investigated the effect of changing the sampling settings B, M , and L (Sec-

tion 3.3.3) on T↔E GS-N alignments. To account for the variability due to the ran-

domness of the sampling process, we present in Figs. 3.22 and 3.23 the mean and the

standard deviation of BLEU scores over eight separate chains with different random

seeds. At each B value shown, eight separate SMT systems were trained. These eight

runs each comprise a separate MERT run, thus error bars in Figs. 3.22 and 3.23 also

include the variation due to MERT.

Figure 3.22 shows the effect of changing B with M = 100 and L = 1. In this

experiment, the sampler converges after roughly a few thousand iterations. Compar-

ing the BLEU scores in Figure 3.22 to those of the three EM-initialized samplers in

Figure 3.7, where B = 400, for the same language pair suggests that running more

iterations of Gibbs sampling can compensate for poor initializations, or equivalently,

initializing with EM alignments can provide a head start in the convergence of the

Gibbs chain.

Figure 3.23 compares the effect of different read-out schemes. The (M,L) settings

of both (1000, 1) and (100, 10) collect samples over the same 1000-sample interval. We
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can deduce from their comparison in Figure 3.23 that including or discarding the inter-

mediate samples does not make a significant difference. On the other hand, comparing

the settings (100, 1) and (1000, 1) confirms our intuition that increasing the number of

samples (M) leads to more reliable (smaller variance) estimates of the Viterbi align-

ments.

3.6.2. Convergence and Variance Between Iterations

Figure 3.24 compares the change in BLEU scores as iterations progress during

both EM and GS. A separate SMT system is trained at each shown data point on

the plots. Each dot in the graphs correspond to a separate SMT system trained and

optimized from the alignment estimated at that iteration. In the figure, there are two

main sources of BLEU score variation between the iterations: updated alignments at

each iteration and randomness due to MERT.
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Figure 3.24. BLEU scores of alignments estimated at different iterations. Left: EM,

middle: samples from the Gibbs chain, right: GS viterbi estimates with

M = 100, L = 1. Note the difference in x-axis scales.
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Comparing the BLEU scores of sample and Viterbi alignments obtained by GS,

we observe smaller variance and higher average BLEU scores using Viterbi alignments.

Compared to EM, GS achieves higher average BLEU scores, albeit with a larger amount

of variation between iterations due to the random nature of sampling. To reduce the

variation, a larger value of M (Section 3.6.1) and/or a combination of alignments at

different iterations can be used.

3.6.3. Computational Complexity

The computational complexity of the Gibbs sampling algorithm in Table 3.2 is

linear in the number of sentences and roughly quadratic in the average number of words

per sentence. Running Gibbs sampling (Model 1) on the largest of our datasets, the

15.4M-sentence Czech-English corpus, takes on average 33 seconds per iteration (steps

3–7 in Table 3.2) using 24 threads on a 3.47GHz Intel Xeon X5690. In the case of

Model 2, the average time per Gibbs sampling iteration increases to 48 seconds. For

comparison, a Model 1 EM iteration on the same hardware and number of threads using

MGIZA [61] takes 326 seconds on average (excluding pre-processing and initializations).

In the case of Model 2, for which multi-threading is not implemented in MGIZA, an

EM iteration took 1960 seconds on average. These results are summarized in Table 3.8.

Table 3.8. Execution time on 15.4 M sentence Czech-English dataset.

Avg. EM iteration Avg. GS iteration

Model 1 326 s @ 24 cpus 33 s @ 24 cpus

Model 2 1960 s @ 1 cpu 48 s @ 24 cpus

3.7. Lowering Variance in BLEU Scores

3.7.1. Motivation

All experiments in Section 3.6, particularly those in Figure 3.24, show large BLEU

variations that reduce the signifance of the attained average improvements. One source
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of variations is the random nature of Gibbs sampling. There is also noise stemming from

factors unrelated to alignment such as parameter optimization and test set variance.

In the following sub-sections, we attempt to reduce these two types of variations.

3.7.2. Alignment Combination

An advantage of sampling approaches that we can leverage in our application is

the availability of several outputs. After convergence, since we expect different samples

to be probabilistically equivalent, some of the changes from one sample to the next

are expected to be constructive while some destructive. In other words, alignments

obtained at different iterations are expected to have a complementary nature that can

be utilized in a combination approach. These suggest that alignment combination

among samples from a single Gibbs chain could be beneficial. We also investigate

alignment combination among samples from multiple Gibbs chains that are started

from different initializations.

Alignments obtained using different methods (such as GS and EM) could also have

a complementary nature. Therefore, aside from the above two homogeneous combina-

tion methods where the components are obtained using the same alignment method,

we also investigate heterogenous combination where the alignments are obtained using

different alignment methods.

Table 3.9 shows the typical stages of a SMT system training pipeline where align-

ment combination can be applied. We experimented with various combination methods

as described below:

Method A: Apply Step 1 separately to each input alignment, then obtain a single

alignment by taking the union of all input alignment points. Then continue from step

2 using this combined alignment.

Method B : Apply steps 1 and 2 separately to each input alignment, then combine

the set of extracted phrases. Continue from step 3 using this combined phrase list.
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Table 3.9. Steps in phrase-based SMT training pipeline where alignment combination

can be applied.

Step 1. Symmetrize word alignments obtained in two directions using grow-diag-

final heuristic.

Step 2. Extract phrases that are consistent with the symmetrized word alignment.

Step 3. Obtain phrase-level features by calculating conditional probability esti-

mates from co-occurrence counts in the training corpus. The output of

this step is a so-called phrase table with five features for each phrase.

Step 4. Optimize the weights of these phrase-level features (along with other fea-

tures such as LM etc.).

Step 5. Decode a given test sentence using the phrase table and the optimized

weights.

Method C : Apply steps 1–3 separately to obtain multiple different phrase tables.

These phrase tables may have overlapping phrases, but some of their feature values

will be different. Use all these phrase tables in weight tuning and decoding, effectively

increasing the number of features.

Method D : Replicate the training corpus multiple times, applying a different input

alignment for each replica. Then apply steps 1–5 on this synthetically larger training

corpus.

Table 3.10 compares the above four methods against the individual alignments

on the Turkish-English (TE) task and sampling settings described in Section 3.4.1. As

input to alignment combination, we chose GS-5, GS-80 and GS-N.

Since we obtained the best result with Method D, we applied it also to the other

translation directions in Section 3.4.1. Table 3.11 shows the results. For reference,

we also report the results with IBM Model 4 alignments (M4) trained in the standard

bootstrapping regimen of 15H53343.
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Table 3.10. BLEU scores using different combination methods. C1 uses the default

N-best list size of 300 during tuning, C2 uses 1000 due to more number of features in

this method.

Method TE BLEU

GS-N 41.14

GS-5 40.63

GS-80 41.78

A 39.86

B 37.78

C1 40.58

C2 40.91

D 41.32

Table 3.11. BLEU scores for individual and combined alignments from Gibbs

sampling.

Method TE ET AE EA

EM-5 38.91 26.52 15.50 15.17

EM-80 39.19 26.47 15.66 15.02

GS-N 41.14 27.55 14.64 15.89

GS-5 40.63 27.24 16.41 15.82

GS-80 41.78 29.51 15.92 16.02

Comb. Method D 41.32 29.86 15.68 16.62

M4 39.94 27.47 16.46 15.43
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An appealing property of alignment combination is that it “smooths out” the

occasional big drop in BLEU score and as a result is not worse than EM in any of

the cases. Compared to the individual alignments, the combination outperforms the

best individual alignment in two of the four language directions. More importantly, it

outperforms the worst individual alignment in all four cases.

An additional utility of alignment combination is that, in general, even if the

combination method gives a result not significantly outperforming the best individual

alignment, it removes the problem of choosing/predicting the “best” alignment from

the individual alternatives.

Tables 3.10 and 3.11 represent a multiple-chain homogeneous alignment combi-

nation strategy. We also observed similar benefits from the single-chain homogeneous

combination and heterogeneous combination methods as shown in Figures 3.25–3.27.

3.7.3. Modifications to Minimum Error Rate Training Procedure

In this section we attempt to reduce the variation due to factors other than

differences in alignment. Here we address below four such sources of noise:

(i) Randomness in MERT, in particular, the additional random re-starts at each

iteration.

(ii) Local optima in MERT, leading to possibly finding different local optima

depending on starting point.

(iii) Possible data sparsity in MERT, leading to poor estimates of feature weights.

(iv) Measurement noise stemming from the test set (and the metric).

Figure 3.28 shows the results of our attempts at reducing each type of variation,

TE direction at the top and ET direction at the bottom. The leftmost column is

the baseline using the standard MERT procedure, which was used in all previous

experiments in this setting, e.g., in the rightmost column of Figure 3.24. The mean

and standard deviation of BLEU scores (excluding the first 1000 samples) for each
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Figure 3.28. BLEU scores obtained applying modifications to the MERT procedure.

graph is also given in the figure.

The second column addresses (i) above, eliminating random re-starts. There is

no clear effect on the variation, slightly decreasing in TE and slightly increasing in ET.

However, the mean BLEU score does not change, which provides a nice side benefit

since we can now use the MERT procedure without additional re-starts, which results in

a significant reduction in SMT training time. In this particular case, the 20:1 reduction

in line-search optimization resulted in 5:1 reduction in the overall training time.

The third column addresses (ii) above, by using hopefully-better default weights

when starting MERT. These weights were determined by the analysis of the MERT

output weights in previous experiments in the rightmost column of Figure 3.24, which
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Figure 3.29. Phrase translation and word penalty weights found by the MERT

procedure during training of systems from different alignments.

are shown in Figures 3.29 and 3.30. Our hypothesis goes that if we start from a set of

initial weights closer to the average previous optimum, those systems that previously

could not reach a good optimum due to poor initialization can this time attain better

optima, thus hoping to eliminate the lowest BLEU scores from the variations. Fig-

ure 3.28 shows that the new weights indeed result in higher average BLEU scores and

less variation.

The fourth column addresses (iii) above, by increasing the development set size

from 506 to 1012 sentences. The effect on variation is not notable, but a slight increase

in average BLEU score is observed, suggesting better weight estimates.
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Figure 3.30. Distortion model weights found by the MERT procedure during training

of systems from different alignments.
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Finally, the fifth column addresses (iv) above, by increasing the test set size

from 500 to 1006 sentences. Note that the previous BLEU scores are not directly

comparable with this graph since the test set changed. The new sentences might be

“harder” or “easier”, depending on the sentence lengths, out-of-vocabulary rate, etc.

Nevertheless, we observe a significant decrease in standard deviation, suggesting that

some of the noise we observe is due to the intricacies of the test set. Increasing the

test set size seems to be the single most effective attempt at reducing BLEU variation

(and increasing confidence).

Overall, the standard deviation of BLEU scores have dropped from 0.53 to 0.29

in TE direction, and from 0.60 to 0.35 in ET direction. Meanwhile, for the first three

modifications, the mean BLEU score increased from 40.78 to 41.14 in TE direction, and

from 28.25 to 28.77 in ET direction, without any change in alignment or translation

model training.

3.8. Conclusion

We developed a Gibbs sampling-based word alignment inference method for

Bayesian IBM Models 1 and 2 and showed that it compares favorably to EM esti-

mation in terms of translation BLEU scores. We observe the largest improvement

when data is sparse, e.g., in the cases of smaller corpora and/or more morphological

complexity. The proposed method successfully overcomes the well-known “garbage col-

lection” problem of rare words in EM-estimated current models and learns a compact,

sparse word translation distribution with more training vocabulary coverage. We also

found Gibbs sampling to perform better than variational Bayes inference, which leaves

a substantially high portion of source singletons unaligned. Additionally, we utilized

alignment combination techniques to further improve the performance and robustness.

Future research avenues include estimation of the hyperparameters from available

data or auxiliary sources and utilization of the proposed algorithm in either initializa-

tion or inference of more advanced alignment models.
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4. JOINT LEARNING OF WORD ALIGNMENT AND

MORPHOLOGICAL SEGMENTATION

In this chapter we propose a method for unsupervised determination of the opti-

mal morphological segmentation for statistical machine translation (SMT). We present

a segmentation metric that takes into account both sides of the SMT training corpus.

We formulate the objective function as the posterior probability of the training cor-

pus according to a generative segmentation-translation model. We describe how the

IBM Model-1 translation likelihood can be computed incrementally between adjacent

segmentation states for efficient computation. Submerging the proposed segmentation

method in a SMT task from morphologically-rich Turkish to English does not exhibit

the expected improvement in translation BLEU scores. However, the proposed par-

allel search algorithm improves the translation performance (as measured by BLEU)

compared to the original sequential search algorithm of Morfessor [11].

4.1. Introduction

In SMT, words are normally considered as the building blocks of translation

models. However, especially for morphologically complex languages such as Finnish,

Turkish, Czech, Arabic etc., it has been shown that using sub-lexical units obtained af-

ter morphological preprocessing can improve the machine translation performance over

a word-based system [62–64]. The motivation for morphological segmentation can be

illustrated with an example parallel corpus given in Table 4.1. Applying the segmen-

tation in Table 4.2 can help the SMT training in learning a more accurate translation

model. Morphological segmentation also helps the system cope with words unseen in

the training corpus (out-of-vocabulary words). However, the effect of segmentation on

translation performance is indirect and difficult to isolate [65].

Many systems apply morphological segmentation before SMT training. But the

challenge in designing a sub-lexical SMT system is the decision of what segmentation to
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Table 4.1. Word-based alignment problem with an agglutinative language.

English corpus Turkish corpus

key anahtar

my key anahtarım

wallet cüzdan

my wallet cüzdanım

Table 4.2. Subword-based alignment problem with an agglutinative language.

English corpus Turkish corpus

key anahtar

my key anahtar +ım

wallet cüzdan

my wallet cüzdan +ım

use. This constitutes our main research motivation in this chapter: For the particular

language pair and training corpus at hand, what is the optimal sub-word segmentation

in terms of translation performance?

Linguistic morphological analysis is intuitive, but it is language-dependent and

usually needs disambiguation. Furthermore, the linguistic approach is not necessar-

ily optimal in that (i) manually engineered segmentation schemes can outperform a

straightforward linguistic morphological segmentation, e.g., [62], and (ii) linguistic seg-

mentation may result in even worse performance than a word-based system, e.g., [66].

Existing solutions to this problem are predominantly heuristic, language-depen-

dent, and as such are not easily portable to other languages. The optimal degree of

segmentation might decrease as the amount of training data increases [62,67]. Also, the

optimal segmentation could change when paired with a different language. Therefore,

it is desirable to learn the optimal segmentation in an unsupervised manner.
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In this chapter, we extend the unsupervised monolingual approach of Creutz and

Lagus [68] to take into account bilingual information from the parallel training corpus

when making segmentation decisions. As a result, the segmentation learning process is

tailored to the particular SMT task via the same parallel corpus that is used in training

the statistical translation models.

4.2. Related Work

Most works in SMT-oriented segmentation are supervised in that they consist

of manual experimentation to choose the best among a set of segmentation schemes,

and are language(pair)-dependent. For Arabic, Sadat and Habash [69] present several

morphological preprocessing schemes that entail varying degrees of decomposition and

compare the resulting translation performances in an Arabic-to-English task. Shen et

al. [44] use a subset of the morphology and apply only a few simple rules in segmenting

words. Durgar El-Kahlout and Oflazer [66, 70] tackle this problem when translating

from English to Turkish, an agglutinative language. They use a morphological ana-

lyzer and disambiguation to arrive at morphemes as tokens. However, training the

translation models with morphemes actually degrades the translation performance.

They outperform the word-based baseline only after some selective morpheme group-

ing. Bisazza and Federico [64] adopt an approach similar to the Arabic segmentation

studies above, this time in a Turkish-to-English translation setting.

Unsupervised segmentation by itself has garnered considerable attention in the

computational linguistics literature [68,71–75]. However, only a fraction of works report

their performance in a translation task. Virpioja et al. [76] used Morfessor [68] to

segment both sides of the parallel training corpora in translation between Danish,

Finnish, and Swedish, but without a consistent improvement in results. Poon et al. [71]

and Luong et al. [77] propose unsupervised segmentation methods for the purpose of

machine translation. However, the segmentation learning in these works does not have

input from the translation model.
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Morfessor, which gives state of the art results in many tests [78], uses only mono-

lingual information in its objective function. It is conceivable that we can achieve a

better segmentation for translation by considering not one but both sides of the par-

allel corpus. A possible choice is the post-segmentation alignment accuracy. However,

Elming et al. [79] show that optimizing segmentation with respect to alignment er-

ror rate (AER) does not improve and even degrades machine translation performance.

Snyder and Barzilay [72] use bilingual information but the segmentation is learned

independently from translation modeling.

In the work by Chang et al. [80], the granularity of the Chinese word segmentation

is optimized by training SMT systems for several values of a granularity bias parameter

and it is found that the value that maximizes translation performance (as measured by

BLEU) is different than the value that maximizes segmentation accuracy (as measured

by precision and recall).

One motivation in morphological preprocessing before translation modeling is

“morphology matching” as in the work by Lee [67] and in the scheme “EN” of Habash

and Sadat [62]. In [67], the goal is to match the lexical granularities of the two lan-

guages by starting with a fine-grained segmentation of the Arabic side of the corpus

and then merging or deleting Arabic morphemes using alignments with a part-of-speech

tagged English corpus. But this method is not completely unsupervised since it re-

quires external linguistic resources in initializing the segmentation with the output of

a morphological analyzer and disambiguator. Talbot and Osborne [81] tackle a special

case of morphology matching by identifying redundant distinctions in the morphology

of one language compared to another.

Xu et al. [28] and Nguyen et al. [29] present unsupervised methods that jointly

learn segmentations and alignments. However, they do not report evaluations on ag-

glutinative languages such as Turkish and Finnish.
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4.3. Proposed Method

4.3.1. Monolingual Model

To model the segmentation process, the generative model of Morfessor [68, 82]

introduces an auxiliary variable MF that represents the lexicon of morphemes that

make up the words in the monolingual corpus F. Then the problem of finding the

maximum a posteriori (MAP) segmentation can be written as:

M̂F = arg max
MF

P (MF|F) (4.1)

= arg max
MF

P (MF,F)

P (F)
(4.2)

= arg max
MF

P (MF,F) (4.3)

Since there can be several valid segmentations of F given MF, for clarity we

introduce a hidden variable Fseg that represents the segmented version of F according

to MF. Now the monolingual generative model can be written as:

P (MF,F) =
∑
Fseg

P (MF)P (Fseg|MF)P (F|Fseg) (4.4)

where P (F|Fseg) is either 1 or 0 indicating legal segmentations of F according to MF.

In searching for the MAP segmentation model M̂F, the summation is approxi-

mated with the max () operation so that (4.3) becomes:

M̂F ≈ arg max
MF

P (MF)P (Fseg|MF) (4.5)

In (4.5), the prior P (MF) on the lexicon is assumed to only depend on the frequen-

cies and lengths of the individual morphs, which are also assumed to be independent.

The likelihood of the segmented corpus P (Fseg|MF) is computed as the product of
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morph probabilities estimated from their frequencies in the corpus.

4.3.2. Bilingual Model

We re-formulate the monolingual MAP problem in (4.1) so as to take into account

both sides of the parallel training corpus as following:

M̂F = arg max
MF

P (MF|E,F) (4.6)

= arg max
MF

P (MF,E,F) (4.7)

= ≈ arg max
MF

P (MF)P (Fseg|MF)P (E|Fseg) (4.8)

This proposed segmentation model takes into account the likelihood of both sides

of the parallel corpus while searching for the optimal segmentation. The joint likelihood

is decomposed into a prior, a monolingual likelihood, and a translation likelihood, as

shown in (4.8). We model the first two components as in the monolingual case while

for the translation component P (E|Fseg) we use IBM Model 1, which is presented in

Section 3.3. The translation likelihood of an individual sentence pair (e,f) according

to IBM Model 1 is given by [5]:5

P (f|e) =
P (J |e)

(I + 1)J

J∏
j=1

I∑
i=0

tei,fj . (4.9)

The sentence length probability distribution P (J |e) is assumed to be Poisson with the

expected sentence length equal to I.

The role of the bilingual component P (E|Fseg) in (4.8) can be motivated with a

simple example as follows. Consider an occurrence of two phrase pairs in a Turkish-

English parallel corpus and the two hypothesized sets of segmentations for the Turkish

phrases as shown in Table 4.3. Without access to the English side of the corpus, a

5For coherence with the SMT literature, where the derivations are in the form of P (f |e), we switch
the notation of the source and target language corpus labels from here to the end of Section 4.3.3,
without loss of generalization.
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monolingual segmenter can quite possibly score Segmentation #1 higher than Segmen-

tation #2 (e.g., due to the high frequency of the observed morph “+m”). On the

other hand, a bilingual segmenter is expected to assign a higher alignment probabil-

ity P (E|F) to Segmentation #2 than Segmentation #1, because of the aligned words

key||anahtar, therefore ranking Segmentation #2 higher.

Table 4.3. Example segmentation hypotheses.

Phrase #1 Phrase #2

Turkish phrase anahtar anahtarım

English phrase key my key

Segmentation #1 anahtar anahtarı +m

Segmentation #2 anahtar anahtar +ım

4.3.3. Incremental Computation of Model-1 Likelihood

During search through possible segmentations, the translation likelihood P (f|e)

needs to be calculated according to (4.9) for every hypothesized segmentation. In

order to compute (4.9), we need to have at hand the individual morph translation

probabilities tei,fj . These can be estimated using the EM algorithm given by [5], which

is guaranteed to converge to a global maximum of the likelihood for Model 1. However,

running the EM algorithm to optimization for each considered segmentation model can

be computationally expensive, and can result in overtraining. Therefore, in this work

we used the likelihood computed after the first EM iteration, which we show to also have

the nice property that P (f|e) can be computed incrementally from one segmentation

hypothesis to the next.

The incremental updates are derived from the equations for the count collection

and probability estimation steps of the EM algorithm as follows. In the count collection

step, in the first iteration, we need to compute the fractional counts c(fj|ei) [5]:

c(fj|ei) =
1

I + 1
(#fj)(#ei), (4.10)
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where (#fj) and (#ei) denote the number of occurrences of fj in f and ei in e, respec-

tively.

Let fk denote the word hypothesized to be segmented. Let the resulting two sub-

words be fp and fq, any of which may or may not previously exist in the vocabulary.

Then, according to (4.10), as a result of the segmentation no update is needed for

c(fj|ei) for j = 1 . . . VF , j 6= p, q, i = 1 . . . VE (note that fk no longer exists); and the

necessary updates ∆c(fj|ei) for c(fj|ei), where j = p, q; i = 1 . . . VE are given by:

∆c(fj|ei) =
1

I + 1
(#fk)(#ei). (4.11)

Note that (4.11) is nothing but the previous count value for the segmented word,

c(fk|ei). So, all needed in the count collection step is to copy the set of values c(fk|ei)

to c(fp|ei) and c(fq|ei), adding if they already exist.

Then in the probability estimation step, the normalization is performed including

the newly added fractional counts.

4.3.4. Parallel Search and Stochastic Search

The original search algorithm of Morfessor [82] is a greedy algorithm where the

costs of the following search points are affected by the decision in the current step. This

leads to a sequential search and does not lend itself to parallelization. Specifically, in

an iteration of the algorithm, all words in the vocabulary are processed one-by-one

(preferably in random order), computing for each word the posterior probability of the

generative model after each possible binary segmentation (“splitting”) of the word. If

the highest-scoring split increases the posterior probability compared to not splitting,

that split is accepted (for all occurrences of the word) and the resulting sub-words

are explored recursively for further segmentations. This process is repeated until an

iteration no more results in a significant increase in the posterior probability.
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In the first proposed search alternative [11], which we call “batch-update”, the

segmentation decisions for individual words are stored but are not applied until the

end of an iteration. In this way, all cost calculations can be performed independently

and in parallel. Since the model is not updated at every decision, the search path

generally differs from that in the sequential search and hence results in a different final

segmentation.

The second proposed alternative search strategy [12], which we call “stochastic

search”, is an application of Gibbs sampling. Instead of the greedy model updates

at each processed word, the segmentation decision for a word is sampled from the

distribution proportional to the posterior probability of the model given the existing

state of segmentation for the rest of the words.

Note that these two proposed methods are not mutually exclusive and they can

co-exist in a segmentation scheme.

4.4. Results

We performed in vivo testing of the segmentation algorithm on the Turkish side

of a Turkish-to-English task. We compared the segmentations produced by Morfessor,

Morfessor modified for parallel search (Morfessor-p), and Morfessor with bilingual cost

(Morfessor-bi) against the word-based performance. We used the ATR Basic Travel

Expression Corpus (BTEC) [35], which contains travel conversation sentences similar

to those in phrase-books for tourists traveling abroad. The training corpus contained

19,972 sentences with average sentence length 5.6 and 7.7 words for Turkish and En-

glish, respectively. The test corpus consisted of 1,512 sentences with 16 reference

translations. We used GIZA++ [15] for post-segmentation token alignments and the

Moses toolkit [39] with default parameters for phrase-based translation model gener-

ation and decoding. Target language models were trained on the English side of the

training corpus using the SRILM toolkit [40]. The BLEU metric [42] was used for

translation evaluation.
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Figure 4.1. BLEU scores obtained with different segmentation methods. Multiple

data points for a system correspond to different random orders in processing the data.

Figure 4.1 compares the translation performance obtained using the described

segmentation methods. All segmentation methods generally improve the translation

performance (Morfessor and Morfessor-p) compared to the word-based models. How-

ever, Morfessor-bi, which utilizes both sides of the parallel corpus in segmenting, does

not convincingly outperform the monolingual methods.

In order to investigate whether the proposed bilingual segmentation cost corre-

lates any better than the monolingual segmentation cost of Morfessor, we show several

cost-BLEU pairs obtained from the final and intermediate segmentations of Morfessor

and Morfessor-bi in Figure 4.2. The correlation coefficients show that the proposed

bilingual metric is somewhat predictive of the translation performance as measured by

BLEU, while the monolingual Morfessor cost metric has almost no correlation. Yet,

the strong noise in the BLEU scores (vertical variation in Figure 4.2) diminishes the

effect of this correlation, which explains the inconsistency of the results in Figure 4.1.
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Figure 4.2. Cost-BLEU plots of Morfessor and Morfessor-bi. Correlation coefficients

are -0.005 and -0.279, respectively.

Indeed, in our experiments even though the total cost kept decreasing at each iteration

of the search algorithm, the BLEU scores obtained by those intermediate segmentations

fluctuated without any consistent improvement.

Table 4.4 displays sample segmentations produced by both the monolingual and

bilingual segmentation algorithms. We can observe that utilizing the English side of

the corpus enabled Morfessor-bi: (i) to consistently identify the root word “anahtar”

(top portion), and (ii) to match the English plural word form “games” with the Turkish

plural word form “oyunlar” (bottom portion). Monolingual Morfessor is unaware of the

target segmentation, and hence it is up to the subsequent translation model training

to learn that “oyun” is sometimes translated as “game” and sometimes as “games” in

the segmented training corpus.

Stochastic search is able to find better segmentations with lower model costs
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Table 4.4. Sample segmentations produced by Morfessor and Morfessor-bi.

Count Morfessor Morfessor-bi English Gloss

7 anahtar anahtar (the) key

6 anahtar + ımı anahtar + ımı my key (ACC.)

5 anahtarla anahtar + la with (the) key

4 anahtarı anahtar + ı 1(the) key (ACC.); 2his/her key

3 anahtarı + m anahtar + ım my key

3 anahtarı + n anahtar + ın 1your key; 2of (the) key

1 anahtarı + nız anahtar + ınız your (pl.) key

1 anahtarı + nı anahtar + ını 1your key (ACC.); 2his/her key (ACC.)

1 anahtar + ınızı anahtar + ınızı your (pl.) key (ACC.)

1 oyun + lar oyunlar (the) games

2 oyun + ları oyunlar + ı 1(the) games (ACC.); 2his/her games; 3their game(s)

1 oyun + ların oyunlar + ı + n 1of (the) games; 2your games

1 oyun + larınızı oyunlar + ı + n + ızı your (pl.) games (ACC.)

compared to the original greedy search as shown in Table 4.5 for the monolingual

Morfessor. However, this search improvement does not translate over to translation

performance in terms of BLEU score (Table 4.6) in the IWSLT 2010 task [83]. This

suggests a model mismatch, which can be expected in this case since the segmentation

model uses only monolingual observations. Table 4.6 also shows that the batch-update

search, while enabling parallel computation, results in lower test set performance in

this task.

Table 4.5. Segmentation model scores (in negative log probability) obtained by

greedy search with three different random vocabulary scan orders and by stochastic

search with 2000 iterations over the vocabulary.

Search Model score

Original 1559831

(greedy) 1559315

1559527

Stochastic 1554433
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Table 4.6. Comparison of %BLEU scores with different segmentation search

algorithms in the IWSLT 2010 task.

Search algorithm Tuning Test iwslt09 iwslt10

Original 59.41 54.42 52.15 49.83

Batch-update 59.22 53.61 50.68 48.55

Stochastic 59.09 54.55 51.90 48.60

4.5. Analysis and Further Experiments

4.5.1. Utilizing Allomorphy

Morfessor does not use any linguistic knowledge in its model. However, by in-

corporating minimal linguistic knowledge in the form of allomorphy (the same lexical

morpheme appearing in different surface forms depending on the stem it is attaching

to), one might expect to improve the translation performance. To test this hypothesis,

we used the following setup: The segmentation model is trained and the corpus seg-

mented as before using Morfessor. Then, all the allomorphic letters in all the suffixes

are mapped to their base letter, (e.g., [ı, i, u, ü] are all mapped to H etc.), hoping that

equivalences between variants of the same lexical morphemes are in this way captured.

This postprocessing is not applied to the stems. The resulting corpus is fed to the

SMT training (or decoding) phase.

Table 4.7 shows that, even though small improvements on development sets were

observed, we did not obtain the expected improvements on the test sets. It is possible

that imposing allomorphy externally after the segmentation is learned has a negative

effect on the performance. A possible future research avenue could be to use this

linguistic knowledge during segmentation learning inside Morfessor (though the new

segmentation method would no longer be truly unsupervised).
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Table 4.7. Comparison of %BLEU scores with and without postprocessing allomorphs

in Morfessor output in the IWSLT 2010 task.

Representation dev1 dev2 iwslt09 iwslt10

Surface forms 59.41 54.42 52.15 49.83

Allomorphs 59.53 55.28 51.57 48.93

4.5.2. Segmentation Training with Monolingual Out-of-Domain Corpus

In this section, we explore whether using a large monolingual corpus can re-

duce data sparsity of Turkish word forms and hence improve the segmentation. We

experiment with using a large Turkish monolingual corpus to see whether a better seg-

mentation can be learned. The additional corpus, which consists of about 40 Mwords

with a vocabulary size of about 500 K, is gathered from Turkish news sites on the web,

so it is out of domain for the BTEC corpus in the IWSLT task.

In the first experiment (named here as “+mono”), we simply merge the BTEC

corpus with the additional monolingual corpus and train Morfessor. In the second

experiment (named here as “+mono(flat)”), we set the frequencies of all the words in

the vocabulary to 1. This latter method results in more satisfactory segmentations in

some applications [68], mainly because on large corpora, frequently occurring complex

words are not segmented by Morfessor. As a result, training Morfessor on “types”

rather than on “tokens” is found to match linguistic segmentation more closely. Since

our additional monolingual corpus is quite large, we also experimented with this flat-

vocabulary method. But we first cut-off the singletons in the out-of-domain corpus

before merging the two vocabularies, mainly for text noise reduction.

The results are shown in Table 4.8. Using an out-of-domain monolingual corpus

did not help the translation performance in our experiments, though training on types

is found to be more effective than training on tokens in this case.
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Table 4.8. %BLEU scores with and without added monolingual out-of-domain corpus

for segmentation training.

Corpus tuning dev1 dev2 iwslt09 iwslt10

btec dev1 59.41 54.42 52.15 49.83

+mono dev1 55.88 50.49 49.17 46.09

+mono(flat) dev1 58.98 53.53 50.69 48.87

+mono dev2 53.60 53.46 50.31 47.01

+mono(flat) dev2 56.89 56.54 51.08 49.66

4.5.3. Experiments with Morfessor Categories-MAP

Up to here, the unsupervised segmentation experiments are conducted using

Morfessor-baseline, which employs a fairly simple segmentation model where the in-

duced morphs are assumed to be independent of their context. A more advanced model

called Morfessor Categories-MAP [68] probabilistically assigns each induced morph to

one of prefix, stem, or suffix classes. In an observed corpus of words segmented into

morphs, the transitions between classes and the emissions of morphs from a given class

are modeled in a hidden Markov model (HMM) framework.

The performance of this segmentation model, named here as “Morfessor-catmap”,

is compared in Table 4.9. It exceeds the performance of Morfessor-baseline, but still

falls short of supervised segmentation.

4.6. Conclusions

We have presented a method for determining optimal sub-word translation units

automatically from a parallel corpus. We have also showed a method of incrementally

computing the first iteration parameters of IBM Model-1 between segmentation hy-

potheses. The proposed parallel search algorithm improved the translation performance

compared to the original sequential search algorithm. Being language-independent, the
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Table 4.9. %BLEU scores of the developed Turkish-English systems each tuned on

devset1.

Segmentation dev1 dev2 iwslt09 iwslt10

Word-based 56.65 51.40 49.48 47.49

Morfessor-baseline 59.41 54.42 52.15 49.83

Morfessor-catmap 62.69 54.78 53.03 50.91

Linguistic+manual 64.62 59.46 56.40 53.32

proposed algorithm can be added as a one-time preprocessing step prior to training in

a SMT system without requiring any additional data/linguistic resources. The experi-

ments show that the translation units learned by the proposed algorithm improves on

the word-based baseline in a Turkish-to-English translation task. However, the addi-

tion of bilingual information in the model did not yield a noticeable effect, suggesting

more work needs to be done to more effectively utilize the information in the parallel

corpus in guiding the segmentation decisions.

Overall, experimental results show that while unsupervised segmentation im-

proves translation BLEU scores over the word-based baseline for this task, it does not

(yet) reach the performance of task-optimized supervised segmentation (Table 4.9).

Even though up to now we have tested our results on Turkish, the applied methods are

entirely language-independent (save affixation) and we expect them to be applicable

particularly to other agglutinative languages as well.

Possible future research avenues include improving the model (e.g., incorporating

the HMM morpheme generation model of Morfessor Categories-MAP [68]), improving

the search method and evaluating on other morphologically-rich languages.
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5. CONCLUSION

In this dissertation, we proposed unsupervised solutions to two prominent prob-

lems in statistical machine translation:

In Chapter3, we propose a Bayesian approach to word alignment inference in

IBM Models 1 and 2. In the proposed approach, the model parameters are treated as

random variables with a prior and are integrated out during inference. We compare the

inferred word alignments against EM and variational Bayes inference in terms of their

end-to-end translation performance on several language pairs and types of corpora up

to 15 million sentence pairs. We show that Bayesian inference outperforms both EM

and VB in the majority of test cases. We also propose several metrics to measure

the effectiveness of an alignment algorithm. Our analysis reveals that the proposed

method effectively addresses the high-fertility rare word problem in EM and unaligned

rare word problem in VB, achieves higher agreement and vocabulary coverage rates

than both, and leads to smaller phrase tables.

In Chapter 4, we tackle the problem of unsupervised determination of the op-

timal morphological segmentation for SMT and propose a segmentation metric that

takes into account both sides of the parallel training corpus. We formulate the objective

function as the posterior probability of the training corpus according to a generative

segmentation-translation model. We describe how the IBM Model-1 translation likeli-

hood can be computed incrementally between adjacent segmentation states for efficient

computation. We also propose a parallelizable search algorithm, which improves the

search performance of the monolingual segmentation as well.

5.1. Future Work

Model 1 assumes that all alignments are equally likely, i.e., a target word can

be aligned with any word in its source sentence with equal probability. However, for

morphologically imbalanced language pairs such as Turkish-English, it can be expected
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Figure 5.1. BLEU scores obtained by standard Model 1 and its fertility extensions.

that some Turkish word types consistently generate more target words than some other

Turkish word types. This can be incorporated in our model by replacing

aj|e ∼ Uniform(aj; |e|+ 1) (5.1)

with the following:

aj|e ∼ Multinomial(aj; k) (5.2)

where k is a vector of parameters specifying the expected fertility of each source word

type. Note that this is a more general model than Model 1, which is a special case

where ke = const. for all e in the source vocabulary.
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In contrast to our earlier Bayesian model, where the translation parameters were

integrated out from inference equations, we now face the task of estimating k from

data as well. Our implementation of a MCEM procedure starts with ke = 1.0 and

re-estimates ke at certain intervals from maximum-likelihood estimation from the data

(hidden + observed variables, whose samples are available as output of Gibbs sam-

pling).

Figure 5.1 shows the results for TE (top) and ET (bottom) directions. The graphs

on the left are from Figure 3.24 as reference. Note that the first 2000 iterations of all

three columns are identical, since fertility parameters have not yet been updated. The

results are very recent and need more analysis. We would expect better alignments es-

pecially where the source is Turkish and target is English, so evaluating the alignments

and not the systems as in Figure 5.1 would be a good starting point.

5.2. Application to Neural Machine Translation

The initial motivation for the alignment and segmentation models proposed in this

thesis was to improve the performance of SMT. However, another machine translation

paradigm called Neural Machine Translation (NMT) recently has become popular and

achieved success both in machine translation evaluations [84] and deployment [85].

In the following, we discuss how the contributions in this thesis relate to NMT and

mention possible applications of the presented work in an NMT setting.

NMT systems usually have an encoder-decoder architecture [86–88], where one

neural network (the encoder) maps the input sequence of words to a sequence of real-

valued vectors, which are then fed to a separate neural network (the decoder) to produce

the output sequence of words. The decoder utilizes a third network called attention

which computes an additional context vector for the current output word position by

weighting the encoder outputs for all input positions, approximating a soft alignment.

The network parameters are trained end-to-end with the objective to maximize the

conditional probability of the target sentences in the training set given their source sen-

tences. The main advantages of NMT over SMT include end-to-end training resulting
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in all model parameters being optimized simultaneously, distributed representations of

words that capture and exploit similarities between words, and utilizing a much larger

context resulting in sentence-level fluent output.

The word alignments inferred by the Bayesian word alignment method presented

in Chapter 3 can be used in NMT for several purposes, e.g., for supervising the train-

ing by incorporating the alignments in the cost function (guided alignment train-

ing, [89–91]), for bootstrapping the training by adding sub-sentence pairs extracted

from the training corpus using standard SMT [89,92], for constraining the set of target

vocabularies for the decoder [91], for tracking the origin of the output words (e.g.,

within a computer-aided translation tool), or for overriding the NMT decisions for

words that are usually better handled by other (e.g., rule-based) methods such as

numbers, dates, certain terminology etc. Furthermore NMT does not cope well with

rare or unknown words, out-of-domain input, and low-resource conditions, in such cases

completely sacrificing adequacy in favor of fluency [93]; therefore under such conditions

SMT could be preferred over NMT or they could be used in combination.

The research problem in Chapter 4, unsupervised determination of the optimal

segmentation for a particular machine translation task, is also relevant in NMT since

most NMT systems apply sub-word segmentation as a preprocessing step. The motiva-

tion for segmentation in NMT is generally twofold: to reduce the vocabulary size due to

computational limitations, and to decrease the out-of-vocabulary and rare input words

since they severely degrade the NMT output quality [86,93,94]. Sub-word representa-

tion [75] achieves both goals. A third motivation in the case of morphologically-rich

languages could be computing real-valued representations and attention weights at the

morpheme level in order to better model the translation process. Currently the most

commonly used sub-word segmentation methods such as byte-pair encoding [95] and

the wordpiece model [85] utilize only monolingual information while making their sub-

word boundary decisions. Our approach in Chapter 4 of using bilingual information

during segmentation decisions could potentially lead to better segmentations in terms

of NMT performance.
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APPENDIX A: DERIVATION OF THE GIBBS

SAMPLING FORMULA

Here we describe the derivation of the Gibbs sampler for IBM Model 2 given

in Equation (3.21). Since IBM Model 1 is a special case of Model 2 where d is fixed

(Section 3.3.5), the derivation of the sampler for Model 1 given in Equation (3.6) would

follow exactly the same steps, except that there would be no prior P (d,Φ) and the

related terms.

A.1. The Dirichlet Priors

We choose a simple prior for the parameters T where each te has an independent6

Dirichlet prior with hyperparameters Θe (Section 3.3.2):

P (te; Θe) =
1

B(Θe)

VF∏
f=1

(te,f )
θe,f−1, (A.1)

where θe,f > 0 ∀{e, f} and

B(Θe)
def
=

∏VF
f=1 Γ(θe,f )

Γ(
∑VF

f=1 θe,f )
. (A.2)

Hence, the complete prior for T is given by:

P (T; Θ) =

VE∏
e=1

1

B(Θe)

VF∏
f=1

(te,f )
θe,f−1. (A.3)

6While the prior knowledge about T could have been possibly expressed as a more refined, corre-
lated distribution; we show that a simple, independent prior is also successful in biasing the parameters
away from flat distributions.
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Similarly, from Section 3.3.5:

P (d; Φ) =
1

B(Φ)

maxs I∏
r=−maxs I

(dr)
φr−1. (A.4)

We further define the priors for the translation and distortion parameters to be inde-

pendent so that P (T,d) = P (T)P (d).

A.2. The Complete Distribution

Since we are only interested in inferring A, we integrate out the unknowns T and

d in (3.20) using (A.3) and (A.4):

P (F,A|E; Θ,Φ)

=

∫
T

∫
d

P (T; Θ)P (d; Φ)P (F,A|E,T,d) (A.5)

=

∫
T

VE∏
e=1

1

B(Θe)

VF∏
f=1

(te,f )
Ne,f+θe,f−1

·
∫
d

1

B(Φ)

maxs I∏
r=−maxs I

(dr)
Cr+φr−1 (A.6)

=

VE∏
e=1

1

B(Θe)

∫
te

VF∏
f=1

(te,f )
Ne,f+θe,f−1

· 1

B(Φ)

∫
d

maxs I∏
r=−maxs I

(dr)
Cr+φr−1. (A.7)

As a result of choosing conjugate priors, the integrands with respect to te and

d in (A.7) can be recognized to be in the same form as the priors (i.e., Dirichlet

distributions) with new sets of parameters Ne + Θe and C + Φ, respectively, where we

have defined Ne = Ne,1 · · ·Ne,VF and C = C−maxs I · · ·Cmaxs I . Since the integral of a

probability distribution is equal to 1, we obtain the closed-form expression:

P (F,A|E; Θ,Φ) =

VE∏
e=1

B(Ne + Θe)

B(Θe)
· B(C + Φ)

B(Φ)
. (A.8)
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A.3. Gibbs Sampler Derivation

Given the complete distribution in (A.8), the Gibbs sampling formula P (zj|z¬j)

(Section 3.3.3) can be derived as:

P (aj|E,F,A¬j; Θ,Φ)

=
P (F,A|E; Θ,Φ)

P (F,A¬j|E; Θ,Φ)
(A.9)

∝ P (F,A|E; Θ,Φ)

P (F¬j,A¬j|E; Θ,Φ)
(A.10)

=

VE∏
e=1

B(Ne + Θe)

B(N¬je + Θe)
· B(C + Φ)

B(C¬j + Φ)
(A.11)

=
B(Neaj

+ Θeaj
)

B(N¬jeaj + Θeaj
)
· B(C + Φ)

B(C¬j + Φ)
(A.12)

=

∏VF
f=1 Γ

(
Neaj ,f

+ θeaj ,f

)
∏VF

f=1 Γ
(
N¬jeaj ,f

+ θeaj ,f

)
·
Γ
(∑VF

f=1

(
N¬jeaj ,f

+ θeaj ,f

))
Γ
(∑VF

f=1

(
Neaj ,f

+ θeaj ,f

))
·
∏maxs I

r=−maxs I
Γ (Cr + φr)∏maxs I

r=−maxs I
Γ
(
C¬jr + φr

)
·
Γ
(∑maxs I

r=−maxs I
(C¬jr + φr)

)
Γ
(∑maxs I

r=−maxs I
(Cr + φr)

) (A.13)

=
Γ
(
Neaj ,fj

+ θeaj ,fj

)
Γ
(
N¬jeaj ,fj

+ θeaj ,fj

)
·
Γ
(∑VF

f=1

(
N¬jeaj ,f

+ θeaj ,f

))
Γ
(∑VF

f=1

(
Neaj ,f

+ θeaj ,f

))
·
Γ
(
Caj−bj I

J
c + φaj−bj I

J
c

)
Γ
(
C¬j
aj−bj I

J
c + φaj−bj I

J
c

)
·
Γ
(∑maxs I

r=−maxs I
(C¬jr + φr)

)
Γ
(∑maxs I

r=−maxs I
(Cr + φr)

) (A.14)
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P (aj|E,F,A¬j; Θ,Φ)

=
(
N¬jeaj ,fj

+ θeaj ,fj

)
· 1∑VF

f=1

(
N¬jeaj ,f

+ θeaj ,f

)
·
(
C¬j
aj−bj I

J
c + φaj−bj I

J
c

)
· 1∑maxs I

r=−maxs I

(
C¬jr + φr

) (A.15)

∝
N¬jeaj ,fj

+ θeaj ,fj∑VF
f=1 N

¬j
eaj ,f

+
∑VF

f=1 θeaj ,f

·
(
C¬j
aj−bj I

J
c + φaj−bj I

J
c

)
, (A.16)

where (A.10) follows since P (fj|A¬j,E; Θ) is independent of aj, in (A.11) we used

(A.8), in (A.13) we used (A.2) and grouped similar factors, in (A.15) each fraction is

simplified using the property of the gamma function Γ(x+1) = xΓ(x), and in (A.16) the

proportionality comes from the omission of the last term in (A.15), which is constant

for all values of aj.


