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Akarun, Prof. Dr. Olcay Taner Yıldız for their insightful comments, encouragement,

and suggestions.

This research is supported by Marie Curie FP7-Reintegration-Grants within the

7th European Community Framework Programme and by Turkish State Planning Or-

ganization (DPT) under the TAM Project, number 2007K120610. I want to specially
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ABSTRACT

ONTOLOGY-BASED ENTITY TAGGING AND

NORMALIZATION IN THE BIOMEDICAL DOMAIN

One of the challenges for scientists in the biomedical domain is the huge amount

and the rapid growth of information buried in the text of electronic resources. De-

veloping text mining methods to automatically extract biomedical entities from the

text of these electronic resources and identifying the relations between the extracted

entities is crucial for facilitating research in many areas in the biomedical domain. Two

main problems, which have to be solved to accomplish this goal, are the extraction and

normalization of entities, and the identification of the relations between them from a

given text.

In this thesis, we proposed two approaches with two different perspectives for the

extraction and normalization of biomedical named entities. The first approach makes

use of shallow linguistic knowledge to extract entities and normalize them through an

ontology. On the other hand, the second approach makes use of word embeddings,

which convey semantic information, for the normalization of the entities in a given

text. The word-embedding based approach obtained the state-of-the-art results on the

BioNLP Shared Task 2016 Bacteria Biotope data set. Both of the proposed methods

are unsupervised and can be adapted to different domains. We also developed two

applications, one of which is a pipeline, which is composed of modules based on the

approaches that we proposed in this thesis, for the extraction of bacteria biotope in-

formation from scientific abstracts. The other application is developed for extracting

Brucella-host interaction relevant data from the biomedical literature, whose results

reveal the importance of using a wider context than a sentence for biomedical relation

extraction.



vi

ÖZET

BİYOMEDİKAL ALANDA ONTOLOJİ TABANLI VARLIK

İSMİ ETİKETLEME VE NORMALİZASYONU

Biyomedikal alandaki zorluklardan biri, elektronik kaynakların ve bu kaynaklar-

daki gömülü bilgilerin fazla olması ve hızla artmaya devam etmesidir. Biyomedikal

varlıkların isimlerini bu elektronik kaynaklardaki metinlerde otomatik olarak belir-

lemek için metin madenciliği yöntemleri geliştirmek ve bu varlıklar arasındaki ilişkileri

belirlemek, birçok alandaki araştırmayı kolaylaştırmak için çok önemlidir. Bu hedefe

ulaşmak için çözülmesi gereken iki ana sorun, belirli bir metindeki varlık isimlerinin

belirlenmesi ile normalizasyonu ve bu varlıkların arasındaki ilişkilerin tanımlanmasıdır.

Bu tezde, biyomedikal alandaki varlık isimlerinin metinlerden çıkarılması ve nor-

malizasyonu için iki farklı bakış açısına sahip iki yeni yaklaşım önerilmiştir. Birinci

yaklaşımda, metinlerdeki varlık isimlerini belirlemek ve onların bir ontoloji yoluyla

normalizasyonunu sağlamak için sığ dilbilimsel bilgiden yararlanılmıştır. Öte yandan,

ikinci yaklaşımda, metindeki varlık isimlerinin normalizasyonu için anlamsal bilgi içeren

sözcük gömme işlemleri kullanılmıştır. Sözcük gömme temelli yaklaşım, BioNLP 2016

Bakteri Biyotop veri kümesi üzerinde mevcut yöntemlerden daha başarılı sonuçlar elde

etmiştir. Önerilen yöntemlerin her ikisi de denetimsizdir ve farklı alanlara uyarlanabilir.

Ayrıca bu tezde, iki ayrı uygulama sunulmuştur. Birinci uygulama, bakterilerin biy-

otop bilgilerinin bilimsel özetlerden çıkarılması için önerdiğimiz yaklaşımlara dayanan

modüllerden oluşan bir sistemdir. Diğer uygulama ise, biyomedikal literatürden Brusella-

konak etkileşimi ile ilgili verileri çıkarmak için geliştirilmiştir; bu uygulamanın sonuçları,

biyomedikal ilişki çıkarımı için bir cümleden daha geniş bir bağlam kullanmanın önemini

ortaya koymaktadır.
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1. INTRODUCTION

The number of published articles in the biomedical domain is increasing every

day. PubMed is a free search engine that presents more than 28 million references and

abstracts on biomedical topics [2]. In PubMed, each year, approximately 1 million new

articles are being included and this number is growing exponentially (see Figure 1.1).

Even for a restricted search keyword bacteria, the number of published articles is grow-

ing exponentially (see Figure 1.2) and approximately 100,000 new articles are being

published each year. Human annotation can not keep up with this increasing amount

of information, which leads to increased demand for automation.

Figure 1.1. Exponential growth of the number of published articles in Pubmed

As the number of published articles is increasing rapidly each day, the need for

systems that automatically extract information from biomedical literature becomes

more important. Due to the reason that the majority of these information is in natural

language, natural language processing (NLP) techniques are required to extract and

categorize the relevant information.
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Figure 1.2. Exponential growth of the number of published articles related to

bacteria in Pubmed

1.1. Problem Statement

The main problems tackled in this thesis are the extraction and categorization of

biomedical named entities from the biomedical literature. These problems are called

Named Entity Recognition (NER) and Named Entity Normalization (NEN), which are

defined in detail in this section.

Figure 1.3. Sample text with annotated named entities

The term Named Entity (NE) was first used in the Sixth Message Understanding

Conference (MUC-6), whose ultimate aim was to extract structured information such

as person, organization, or location of company activities and defense activities from

unstructured text. Since then, a NE is defined as a portion of any text, which defines

a name of an abstract object or that of a physical object. In other words, named

entities can be defined as entity instances (e.g., “Istanbul” is an instance of a city).
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The task of identifying string portions with their boundaries as named entities from a

given text is called Named Entity Recognition (NER) (see Figure 1.1 for a sample text

with annotated named entities).

Figure 1.4. Sample text.Sample abstract of [1] with habitat entity mentions annotated

Figure 1.5. Sample ontology. A sample portion from the Onto-Biotope ontology
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In the biomedical domain, there are a variety of named entity types such as

drugs, proteins, genes, species, cell types, diseases, adverse drug reactions, and bacteria

biotopes. For example, “Diaformin” is an instance of a drug and “blood cancer” is an

instance of a disease.

After the identification of named entities with their boundaries, a further stan-

dardization step, which is called Named Entity Normalization (NEN), is in general re-

quired to disambiguate the extracted named entities [3]. When an ontology/dictionary

containing a set of entities E and a text containing a set of entity mentions X are

given, NEN is the task of mapping each named entity mention x in the given text to

its corresponding entity e in the given ontology/dictionary, where x ∈ X and e ∈ E [4].

This task is also called entity linking, entity grounding, or entity categorization, which

are used interchangeably throughout this thesis.

In this thesis, we addressed the NER and NEN tasks, experimenting with the

bacteria biotope and adverse drug reaction biomedical entity types. Figure 1.1 demon-

strates a sample text with annotated bacteria habitat (biotope) mentions, which are

represented in bold and Figure 1.1 demonstrates a sample portion from Onto-Biotope,

which is an ontology for bacteria habitats. Given a sample text with annotated habitat

mentions, the aim of habitat entity normalization is to link the mentions through the

Onto-Biotope Ontology. For instance, “pediatric”, “respiratory”, and “children less

than 2 years of age” are habitat entity mentions. The concept that is associated with

the “pediatric” habitat mention in the Onto-Biotope ontology is “pediatric patient”, the

one associated with the “respiratory” habitat mention is “respiratory tract part”, and

for “children less than 2 years of age” it is “pediatric patient”. Entity normalization can

also be performed through a dictionary. For instance, the sample sentence “In Study 3,

67% of patients treated with ADCETRIS experienced any grade of neuropathy.” states

a relation between the drug mention “ADCETRIS” and adverse drug reaction mention

“neuropathy”. The adverse drug reaction mention “neuropathy” can be normalized to

the “peripheral neuropathy” term in the Medical Dictionary for Regulatory Activities

(MedDRA) [5].
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Named entity recognition and normalization are preliminary tasks that should be

handled for many information extraction and retrieval tasks. For instance, in document

retrieval, queries and documents often contain named entities, whose detection and

categorization are fundamental for the success of the retrieval task. Another major

information extraction task where named entity recognition and normalization is crucial

is relation extraction, since the relations, which are intended to be extracted from text,

occur among the named entities. The named entity recognition and normalization

tasks pose many challenges, which are explained in detail in the following section.

1.2. Challenges

There are many challenges for named entity recognition and normalization in the

biomedical domain, some of which are summarized as followings:

• Ambiguity : Two named entities with the same surface form may have different

semantic meanings. These ambiguities are generally caused by abbreviations

(e.g., “ten” may refer to a number entity “ten” or an adverse drug reaction entity

“toxic epidermal necrolysis”).

• Variety : A named entity may appear in different surface forms in a given text

(e.g., “GIT”, “GI tract”, “git”, “intestinal tract”, “gastro-intestinal tract” are all

used to refer to the “gastro intestinal tract” named entity).

• Out of dictionary words : Construction of a dictionary is not an adequate tech-

nique due to the rapid growth of the vocabulary in the biomedical domain (e.g.,

“pediatric patient” is a habitat entity that exist in the Onto-Biotope ontology,

but “children less than 2 years-of-age with a respiratory illness”, which does not

exist in the ontology in this surface form, is another entity mention that refers to

the same habitat entity, namely “pediatric patient”).

• Multi-word biomedical named entities : Biomedical named entities are often not

single words, instead they generally consist of multiple-words in a text (e.g.,

“gastrointestinal tract” is a habitat entity, and “Stevens-Johnson syndrome” is

an adverse drug reaction entity).
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• Overlapping biomedical named entities : There may be overlapping named en-

tities in an entity mention such as “human gastrointestinal tract”, where there

are two overlapping habitat entities “human gastrointestinal tract” and “human”.

Therefore, the detection of the boundaries of the named entities in a text is not

a trivial task.

• Relatively small data sets : In the biomedical domain, the training data is rela-

tively smaller compared to many other domains in natural language processing

(e.g., in the training data set of the BioNLP Shared Task Bacteria Biotope Task,

there are only 747 entity mentions).

• Relatively large number of categories : In the biomedical domain, the number of

the semantic categories that should be considered is in general larger compared

to many other domains in natural language processing (e.g., there are 2,221 se-

mantic categories in the Onto-Biotope ontology and 22,499 dictionary terms in

the MedDRA dictionary).

1.3. Motivation

Many text mining methods have been implemented to extract and categorize the

biomedical named entities that are buried in biomedical texts. Most of the previous

methods require manually annotated training data, which makes the adaptation to

different kinds of biomedical entities difficult. Furthermore, even if they can be adapted,

the performances in general drop in the adapted domain. Even in the same domain,

any change such as changing the entity type, may result in decrease in performance for

the NER and NEN systems. For example, considering the biomedical domain, many

named entity recognition systems have been proposed for proteins and genes [6–10],

diseases [11, 12], chemical compounds and drugs [13]. Nevertheless, a system that is

developed for the identification of gene names, may not achieve high performances for

the identification of drug names.

In this thesis, we investigate the problems of the detection of named entities

mentioned in a biomedical text and the normalization of these mentions to a dictionary

or an ontology. We proposed two approaches with two different perspectives for the
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extraction and normalization of biomedical named entities. The first approach makes

use of shallow linguistic knowledge to extract entities and normalize them through an

ontology. On the other hand, the second approach makes use of word embeddings,

which convey semantic information, for the normalization of entities in a text. We

applied the shallow linguistic based approach to extract and normalize bacteria biotope

entities, and the word-embedding based approach to normalize bacteria biotope entities

and adverse drug reaction entities. Although these types of entities have been used

for testing purposes of the developed methods, both of the proposed methods are

unsupervised and can be adapted to different biomedical entity types, since they do

not require entity-specific manually annotated data.

1.4. Publication Notes

Parts of the work in this thesis have appeared in the following publications:

(i) PHISTO: pathogen-host interaction search tool, S. Durmuş Tekir, T. Çakır, E.

Ardıç, A.S. Sayılırbaş, G. Konuk, M. Konuk, H. Sarıyer, A.Uğurlu, İ. Karadeniz,

A. Özgür, F.E. Sevilgen, K. Ülgen, Bioinformatics, 2013 [14]. (Chapter 3.1)

(ii) Detection and categorization of bacteria habitats using shallow linguistic analysis,

İ. Karadeniz and A. Özgür, BMC Bioinformatics, 2015 [15]. (Chapter 3.2) and

(Chapter 5.1.5)

(iii) Bacteria biotope detection, ontology-based normalization, and relation extraction

using syntactic rules, İ. Karadeniz and A. Özgür, Proceedings of the BioNLP

Shared Task, 2013 [16]. (Chapter 3.2)and (Chapter 5.1.5)

(iv) Linking named entities through an ontology using word embeddings and syntac-

tic re-ranking, İ. Karadeniz and A. Özgür, BMC Bioinformatics, 2019 (Under

Review). (Chapter 4)

(v) Literature Mining and Ontology based Analysis of Host-Brucella Gene-Gene In-

teraction Network, İ. Karadeniz, J.Hur, Y. He, A. Özgür, Frontiers in microbiol-

ogy, 2015 [17].(Chapter 5.2)
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1.5. Thesis Overview

In this thesis, we focused specifically on the recognition of biomedical named

entities and their normalization through an ontology. The application domains that we

targeted are extracting information regarding bacteria biotopes (i.e., bacteria habitats),

adverse drug reactions, and pathogen-host interactions.

This thesis demonstrates that the linguistically-motivated rule-based and un-

supervised data-driven methods developed for named entity recognition and normal-

ization are promising alternatives to supervised machine learning algorithms in the

biomedical domain, where manually labeled data are in general scarce. The targeted

text is domain-specific and mainly comprise published scientific articles. Therefore,

rule-based and unsupervised data-driven approaches are able to capture some of the

available regularity and achieve promising results. The main contributions of this thesis

are summarized below.

(i) A text-mining module is implemented and integrated to the Pathogen-Host In-

teraction Search Tool (PHISTO) to find the missing experimental method infor-

mation of Pathogen-Host Interaction (PHI) data (Chapter 3.1) [14].

(ii) A rule-based method, which makes use of shallow linguistic knowledge, is pro-

posed for the ontology-based tagging and normalization of the biomedical named

entities. The method is evaluated for the task of bacteria habitat detection and

categorization and promising results are obtained compared to supervised ma-

chine learning based algorithms in the 2013 edition of the BioNLP Shared Task

on Bacteria Biotopes (Chapter 3.2) [16] [15].

(iii) A data-driven unsupervised approach is proposed for the ontology-based normal-

ization of biomedical named entities (Chapter 4). This approach is novel in the

sense that it makes use of syntactic information of the entity mention phrase while

representing the mentions using the embeddings of the constituent words. The

proposed approach is applied to the normalization problem of the habitat entities

through the Onto-Biotope ontology and the adverse drug reaction entities to the

MedDRA dictionary and state-of-the-art results are ontained. Although promis-
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ing results were obtained in Chapter 3.2 using the shallow linguistic knowledge

based approach for the detection and categorization of bacteria habitat entities,

the need for the manually crafted syntax-rules makes the method’s adaptation

harder to other types of biomedical entities. The newly proposed word embedding

based normalization method is unsupervised, since it does not require training

data manually annotated with entity mentions and their corresponding concepts

in the ontology. Therefore, it can be easily adapted for normalizing different

types of biomedical entities. (Chapter 4)

(iv) A rule-based method, which makes use of anaphora resolution, is proposed for

extracting the relations between biomedical named entities. The method is ap-

plied for the extraction of bacteria-habitat localization and part-of relations. De-

spite of the simplicity of the approach, promising results have been achieved

over the BioNLP Shared Task 2013 Bacteria Biotopes test data set (Chapter

5.1.5) [16] [15].

(v) A pipeline, which retrieves the related documents with bacteria localization infor-

mation from PubMed, identifies and normalizes the bacteria and habitat named

entities in these documents, and finally extracts the relations between the iden-

tified entities, is developed (Chapter 5.1) [16] [15].

(vi) Co-occurrence and supervised machine-learning based methods have been applied

for extracting Brucella-host interactions from PubMed. The results show that

incorporating context is essential for the extraction of biomedical relations, which

will be addressed as future work (Chapter 5.2) [17].
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2. BACKGROUND

This chapter consists of two sections. The first section introduces the tasks that

are closely related to the problems studied in this thesis, while the second section briefly

explains the machine learning techniques that we apply in this thesis.

2.1. Related Tasks

The tasks that are closely related to the problems studied in this thesis are Named

Entity Recognition and Named Entity Normalization.

2.1.1. Named Entity Recognition

The approaches proposed in the literature for the problem of named entity recog-

nition can be classified as dictionary-based approaches, rule-based approaches, machine-

learning based approaches, and deep learning approaches.

Early dictionary-based approaches tried to identify the entity mentions by uti-

lizing dictionary look-up and string matching algorithms by comparing the entity and

the dictionary terms [18–20]. These approaches can deal with morphological varia-

tions of the named entity mentions at the character-level and word-level by providing

a comprehensive dictionary. On the other hand, they are not able to capture the

word-order variations (e.g. “integrin alpha 4” or “alpha 4 integrin”) in the named

entity mentions [21]. Furthermore, dictionary-based approaches are restricted with the

completeness of the dictionary. In other words, if the dictionary is not complete in

the applied domain, it will be unable to recognize some named entity mentions, which

are composed of the words that do not exist in the dictionary. For these reasons,

dictionary-based approaches in general achieve high precision performances, but low

recall performances.
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Rule-based methods [22–24], which usually utilize manually defined rules, have

also been proposed as a solution for biomedical named entity recognition. Although,

with the rule-based methods, word-order variations in the named entity mentions can

also be captured, they need hand-crafted rules, which are time-consuming to build.

Moreover, it is difficult to apply the rule-based approaches to new named entity types,

especially in the biomedical domain [21].

To overcome the problems of rule-based and dictionary-based approaches, a va-

riety of machine-learning based approaches have been proposed. Classical machine

learning based approaches can be grouped as feature-based supervised approaches and

unsupervised approaches. Feature-based supervised machine-learning approaches can

be categorized as classification-based approaches and sequence-labeling approaches.

Both of these approaches generally consist of two phases: the training and the test

phases. In the training phase, features are extracted representing each training exam-

ple given annotated data sets and machine-learning algorithms are utilized to learn a

model. In the testing phase, the previously learned model is utilized to label the named

entities from unseen data.

Classification-based approaches generally handle the NER task as a multi-class

classification task, where each word in a sentence is classified as being part of a certain

type of a named entity or not. Support Vector Machines (SVM) [25, 26], and Naive

Bayes are among the mostly used classifiers.

Sequence-based approaches include Hidden Markov Models (HMM) based [27–

29], and Conditional Random Fields (CRF) based [30–32] approaches. In these ap-

proaches, whole sequences of words are taken into consideration instead of single words

or phrases. HMM-based NER approaches try to find the most likely tag “T” that

maximizes P (T |W ), where “W” is the given token sequence. Collier et al., (2000) pro-

posed a HMM based model [33] for the identification of protein and DNA names in the

text [27] and Zhou et al., (2004) applied the model proposed in a previous study [28] to

the biomedical domain [29]. Conditional Random Fields (CRF) [34] have also become

popular in the biomedical domain for the named entity recognition task. Settles et
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al., (2004) presented a biomedical named entity recognition framework, which utilizes

CRFs, for the recognition of protein, DNA, RNA, cell-line and cell-type entity classes

from biomedical articles [30]. The study showed that CRFs with even simple ortho-

graphic features achieves comparable performances to the state-of-the-art systems at

that time.

Zhang & Elhadad proposed an unsupervised approach for biomedical named

entity recognition and experimented the approach on two different benchmark data

sets [35]. In the study, they utilized features such as noun phrase (NP) chunks and

inverse document frequencies. They showed that it is theoretically applicable to the

biomedical entity types other than the experimented entity types.

With the increased popularity of deep learning [36], a variety of supervised neu-

ral architectures such as neural networks with word and character embeddings [37],

convolutional neural networks [38], recurrent neural networks [39], and long-short term

memory - conditional random fields (LSTM-CRF) based models [40] have been pro-

posed for the NER task in the biomedical domain. Although promising results are

obtained by these approaches, deep learning approaches require extensive amounts of

labeled data. In the biomedical domain, for many named entity types, either labeled

data does not exist or exists in small amounts that makes the application of these

methods to different kinds of named entities difficult.

A number of community-wide challenges including the BioCreative Challenges

[41–45] and BioNLP Shared Tasks [46–49], which have been conducted to assist the

progress of research in biomedical text mining, also addressed the task of biomedical

named entity recognition. The systems developed for these challenges are further

explained in the related work subsection of Chapter 3.2.
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2.1.2. Named Entity Normalization

Several approaches have been proposed for biomedical entity normalization for

different types of biomedical entities including genes/proteins [7–10, 50, 51], bacteria

biotopes [15, 48,49,52,53], and diseases [11, 12].

Early systems tried to link the entity mentions to the knowledge base entities

by utilizing dictionary look-up and string matching algorithms [7, 50, 51, 54]. For dic-

tionary based approaches, automatically extracted dictionaries were also utilized for

the normalization of named entities such as genes and proteins [50]. Similarly to the

NER studies, dictionary-based approaches for named entity normalization are also re-

stricted with the completeness of the dictionary. In other words, unseen entities in the

dictionary can not be captured and normalized by dictionary-based approaches [55].

Similar to the NER studies, rule-based approaches that rely on manually defined

rules [11] or automatically extracted rules [56] have also been proposed for entity nor-

malization. When the context is not defined by the rules, these kinds of approaches

are not be able to normalize the entities in the context. As a result, the rule-based

approaches are difficult to adapt to new entity types.

Feature-based supervised machine-learning approaches, which learn the similar-

ities between biomedical entity mentions and ontology concept names from labeled

training data have also been proposed and applied as a solution to the normalization

task of various biomedical entities. For example, GeNo is a gene name normalization

system, which utilizes logistic regression for learning a string similarity measure from

a dictionary [57] and DNorm is the first supervised machine-learning based disease

name normalization system, which utilizes pairwise learning to rank with the aim of

the normalization of the disease mentions [12].
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Approaches that rely on convolutional neural networks have also been proposed

for the normalization of biomedical entities from biomedical literature [58]. Experi-

ments on two benchmark datasets (the ShARe/CLEF eHealth dataset and the NCBI

disease dataset) resulted in promising performances. However, the need for the man-

ually annotated training data makes the adaptation of such methods to new domains

difficult. Cho et al., (2017) proposed a semi-supervised approach that facilitates word

embeddings to represent semantic spaces for normalizing biomedical entities such as

disease names and plant names [59]. Together with unlabeled data, this method also

makes use of labeled domain specific data, which makes its adaptation to other domains

difficult, if there are no such resources available.

The BioCreative Challenges [41–45] and BioNLP Shared Tasks [46–49] also ad-

dressed the task of biomedical entity normalization. The systems developed for these

challenges are further explained in the related work section of Chapter 4.

2.2. Related Techniques

The machine learning techniques that we apply in this thesis are word embeddings

and support vector machines, which are briefly explained in this section.

2.2.1. Word Embeddings

Word embeddings are the techniques that are used to represent the words in

a vocabulary as vectors of real numbers [60]. The terms word representation and

distributional representation are also used to refer to word embeddings.

In text mining, the extraction of semantic knowledge is an important issue to

make sense of the documents and the sentences. The motivation of representing the

words as real value vectors gives the opportunity to observe the semantic knowledge

between the represented words. To extract semantic knowledge, the conversion of

words to vectors of real numbers, which are machine processable formats, is in general

needed. There are many approaches for the representation of a word in NLP, the easiest
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of which is called one-hot encoding, in which 1 stands for the position where the word

exists in a vocabulary and 0 for the other positions. For a sample sentence “Stomach

is a part of human gastrointestinal tract” the words in the vocabulary are “Stomach,

is, a, part, of, human, gastrointestinal, tract”. According to one-hot encoding, “1, 0,

0, 0, 0, 0, 0, 0” represents the word “Stomach” and “0, 0, 0, 0, 0, 0, 1, 0” represents

the word “gastrointestinal”.

In one-hot encoding, word vectors are calculated without considering the other

words in the context. As a result, this kind of symbolic representation can not capture

the semantic similarity between the words such as “Stomach” and “gastrointestinal”,

although we know that there is a semantic similarity between them and “Stomach” is

part of the “gastrointestinal” system.

On the other hand, another type of word representations, which is called distri-

butional representations, describe the meanings of words by understanding the context

in which they appear. In these representations, the aim is to build dense vectors for

each word type such that they are good at predicting the other words in the context.

As a result, if we represent the vectors of words in the coordinate space, the vectors

of the words with similar context are observed to occupy close positions to each other.

Mathematically, the cosines of the angles between such vectors are close to 1.

Distributional representations became popular in NLP with word2vec, which is

a popular learning model proposed by Mikolov et al., (2013) [61], to induce word

embeddings from large unlabeled corpora. Skip gram and continuous bag-of-words

(CBOW) are the two different schemes that are proposed for word2vec model to learn

word representations. Both schemes are based on neural network models. For the

skip-gram model, the surrounding context is predicted given the current word. On the

other hand, for the CBOW model, the current word is predicted given the surrounding

context. Both schemes have their own advantages and disadvantages. Skip gram

scheme is observed to perform better with small amount of data. Furhermore, it is

able to represent rare words better. On the other hand, the CBOW scheme is faster

than skip gram scheme and able to represent frequent words better.
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Chiu et al., (2016) tried to find answers to the research questions of how to train

good word embeddings for biomedical NLP and how the quality of the embeddings

change according to the input corpora, model architectures, and hyper-parameter set-

tings [62]. In the study, to assess the effect of the input corpora, three variants of

corpora (PubMed, PMC, PubMed & PMC) were used to learn word embeddings. The

evaluation results showed that using a larger input corpus do not always guarantee a

higher score in the biomedical domain. Furthermore, the skip-gram model achieved

higher performance than the CBOW model. It was also shown that optimum window

sizes to define the context varies according to the type of the task. For NER tasks, a

window size of 2 is adequate, while for similarity and relatedness tasks, a window size

of 30 achieves better results.

As a consequence, word embedding models are promising approaches for captur-

ing semantic information and have been successfully used in several recent NLP tasks

such as named entity recognition [40,63], word-sense disambiguation [64,65], informa-

tion retrieval [66,67], and machine translation [68]. Word embedding models have also

led to promising results in the biomedical domain [62,69–71].

2.2.2. Support Vector Machines

Support Vector Machines (SVM) are one of the most popular machine learning

techniques that are used for classification and regression problems. In this part of the

thesis, classification based SVMs will be covered in detail.

The ultimate goal of the classification based SVMs is to separate the data points

that belong to different classes with an optimal decision surface (or hyper-plane). In

other words, the aim is to find a hyper-plane, that separates the instances into different

classes in the best way. In two dimensions, the decision surface used to classify instances

is a line. On the other hand, the decision surface used to classify the instances in three-

dimensional space is a plane, whereas in higher dimensions, it is a hyper-plane.
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Although, in general, there are lots of possible solutions that separate the features,

the aim is to find the optimal hyper-plane. The optimal hyper-plane is the hyper-plane

for which the distance between the hyper-plane and the closest data points (or support

vectors) is maximized. The intuition is that the closest data points to the hyper-plane

are the data points that are most difficult to be classified. The SVM classifier takes into

consideration these closest data points, which are called support vectors, and neglects

the other data points.

However, in reality, not all the patterns are linearly separable. In this case, the

original data points are required to be transformed into a new space, where the training

set is separable by utilizing a similarity function, which is called a kernel function. Edit

kernel and cosine kernel are two of the kernel functions that can be used to implicitly

realize this transformation in SVMs in the NLP domain.

2.2.2.1. Cosine Kernel. The cosine kernel defines the similarity between two vectors

as the cosine of the angle between them and is formulated as follows:

cos sim(a,b) = cos(a,b) =
a • b
‖a‖‖b‖

(2.1)

which is the dot product of the two vectors (a and b) normalized by the lengths

of them.

The cosine similarity takes values in the range of [0, 1], where the similarity takes

the maximum value of 1 if all the terms are the same. On the other hand, if none of

the terms are the same, then the cosine similarity takes the minimum value of 0.
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2.2.2.2. Edit Kernel. Edit kernel is defined by the edit distance between two strings,

where it is the minimum number of operations that have to be performed to transform

a string to another. In edit distance, there are three types of operations, which are

insertion, deletion, or substitution of a single character in a string. For example, the

edit distance between “dog” and “dogs” is 1. We insert “s” to the first word “dog” to

convert it to the second word “dogs” . The edit distance between “bad” and “sad” is

also 1. We substitute “b” with “s” to convert the first word “bad” to the second word

“sad”.

In the edit kernel, edit distance is normalized by dividing it by the number of

characters in the longer string, so that it takes values in the range of [0,1]. The edit

distance is converted into a kernel (or similarity) function as follows:

edit sim(a,b) = e−γ(edit distance(a,b)) (2.2)

where γ is a parameter that is a positive real number, which is used to obtain a

positive definite kernel function [72].
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3. ENTITY TAGGING AND NORMALIZATION USING

SHALLOW LINGUISTIC ANALYSIS

In this chapter, first an exact string matching based method for entity recognition

is described. The method has been integrated as a text mining module to the Pathogen-

Host Interaction Search Tool (PHISTO) for identifying the experimental methods of

pathogen-host protein-protein interactions. Recognizing the limitations of an exact

string matching based approach, next a linguistically motivated rule-based approach is

developed and evaluated for bacteria biotope detection and categorization. Although

the rule-based approach obtained promising performance, it is difficult to adapt to other

domains due to the hand-crafted rules. Therefore, in the next chapter an unsupervised

data-driven method for entity normalization is presented, which makes use of the word

embeddings of the entity mentions as well as their syntactic parses.

3.1. Entity Detection using Exact String Matching

In this section the string matching based entity detection module developed to

detect protein-protein interaction experimental methods and integrated to PHISTO is

described.

3.1.1. Background

The interactions between the proteins of infectious microorganisms, pathogens

and their human hosts allow the microorganisms to manipulate human cellular mech-

anisms to their own advantage, resulting in infection in the host organism. The re-

cent advances in high-throughput protein interaction detection methods have led to

the production of large-scale inter-species protein–protein interaction (PPI) data of

pathogen–human systems. Currently, there are a number of pathogen–host interaction

(PHI) resources that are specific to some pathogens. The only available resource to

access all PHI data in a single database [73] does not offer any additional functionality
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to analyze PHI networks. Pathogen–host interaction search tool (PHISTO) serves as

an up-to-date and functionally enhanced source of PHI data through a user-friendly

interface. Text mining is used to label PHIs extracted without any information on

interaction detection method.

23, 661 PHIs between human and pathogens are stored in PHISTO. Among the

PHI data extracted from the PPI databases, there were 12, 751 PHI data that were not

labeled with the experimental methods used to detect these interactions. In order to

make such PHI data available to the users, a fully automatic text mining module for

experimental method extraction is implemented using JAVA. The following subsections

describe this module in more detail.

3.1.2. Methods and Materials

3.1.2.1. Dictionary of Experimental Methods. We compiled a dictionary which in-

cludes interaction detection methods with general method names and the synonyms

from the PSI-MI Ontology version 2.5 [74]. The dictionary consists of 115 different

experimental method names with 159 synonyms.

A sample portion from our experimental method dictionary is shown in Figure 3.1.

MI: ID is the ID of the term in the PSI-MI ontology. The rows in bold colors indicate

the general names of the experimental methods, and the other rows correspond to

the synonyms. Both the general names and the synonyms of the methods are used

to assign methods to PHI data without experimental method information. In order

to have consistent data in PHISTO, the methods are represented with their general

names. Therefore, when a method’s synonym is matched in text, it is converted to its

corresponding general name using the dictionary before being stored in PHISTO.

3.1.2.2. Abstract Retrieval Module. An abstract retrieval module is implemented to

automatically download the abstracts of the articles that contain PHIs without experi-

mental method information from PubMed [2]. The PHI data downloaded from the PPI
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Figure 3.1. Sample portion of our experimental method dictionary

databases contain the PubMed IDs of the articles from where they were curated. Us-

ing this information a list of PubMed IDs associated with PHIs without experimental

method information is created.

Jsoup [75], which is an open source Java library for HTML source parsing, is

used to parse the HTML source code of the related article pages from PubMed. All

abstracts, whose PubMed IDs are in PubMed ID list generated above, are downloaded

one by one from PubMed. A sample abstract with PubMed ID: “11129635” that is

extracted from PubMed is shown in Figure 3.2.

Figure 3.2. Sample abstract

3.1.2.3. Exact Matching Algorithm. Exact string matching is used to assign experi-

mental methods to PHIs without experimental method information. For each PHI data

without experimental method, the related abstract is fetched from the abstracts’ cor-

pus by using the PubMed ID associated with the PHI. All the general method names

and their synonyms in the experimental method dictionary (which is compiled from

PSI-MI Ontology) are matched against the text of the abstract. If an experimental

method name from the dictionary occurs in the abstract, it is assigned to the current

PHI. The pseudo-code of this algorithm is shown in Figure 3.3.

A sample PHI, which does not originally contain experimental method informa-

tion (represented with “not specified”), is given below (Figure 3.4). Its corresponding

abstract (shown in Figure 3.2) is obtained from PubMed using the abstract extractor
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Figure 3.3. Pseudo-code of Exact Matching Algorithm

module described in Section 3.1.2.2. By using the exact string matching technique,

the “two-hybrid” method is assigned to this PHI (see Figure 3.2.).

Figure 3.4. Sample PHI data without experimental method information

3.1.3. Results and Discussion

We evaluated the text mining module using a test set consisting of 5104 PHIs

that contain experimental method information in PHISTO. The test set was created

by removing the 8162 PHIs whose experimental method was specified as Reactome-

curated, since Reactome-curated is not an experimental method name occurring in the

PSI-MI ontology. It rather denotes that these PHIs were obtained from the Reactome

database. We also removed 8903 PHIs that were curated from the article with PubMed

ID 20711500 [76]. Even though our text mining module was successfully able to deter-

mine their experimental method, we decided to remove these PHIs from our test set,

since including them would result in unrealistically high performance scores.

The text mining module assigned experimental methods to 2331 of the 5104 PHIs

in our test set. 1715 of these were correctly identified experimental methods. Thus,

the module achieves a promising precision of 74%. In other words, 74% (1715 / 2331)

of the assigned methods are correct. The recall and the F-score of the module are 34%

(1715 / 5104) and 47% (harmonic mean of recall and precision), respectively.

The text mining module is applied to PHI data that do not have experimental

method information. By utilizing the text mining module, 2952 experimental method
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names are extracted for 2109 unique PHIs. Finally, these results are stored in PHISTO,

which are presented with an asterisk to indicate that these experimental methods are

obtained by the text mining module.

3.2. Entity Detection and Normalization using Rules based on Shallow

Linguistic Analysis

In this section, we introduce a linguistically motivated rule-based approach for

entity recognition and normalization and apply the approach for tagging names of bac-

teria habitats (i.e., biotopes) in biomedical text by using an ontology. Our approach is

based on the shallow syntactic analysis of the text that include sentence segmentation,

part-of-speech (POS) tagging, partial parsing, and lemmatization.

Information regarding bacteria biotopes is important for several research areas

including health sciences, microbiology, and food processing and preservation. One of

the challenges for scientists in these domains is the huge amount of information buried

in the text of electronic resources. Developing methods to automatically extract bacte-

ria habitat relations from the text of these electronic resources is crucial for facilitating

research in these areas.

We participated in the Bacteria Biotope (BB) Task of the BioNLP Shared Task

2013. Our system (Boun) achieved the second best performance with 68% Slot Error

Rate (SER) in Sub-task 1 (Entity Detection and Categorization) This section of the

thesis reports the system that is implemented for the shared task, including the novel

methods developed and the improvements obtained after the official evaluation. The

extensions include the expansion of the OntoBiotope ontology using the training set

for Sub-task 1, which resulted in promising results for Sub-task 1 with a SER of 68%.

Our results show that a linguistically-oriented approach based on the shallow

syntactic analysis of the text is as effective as supervised machine learning approaches

for the detection and ontology-based normalization of habitat entities.
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3.2.1. Background

Identifying and characterizing the habitats where bacteria live (i.e. bacteria

biotopes) is crucial for gaining a better understanding of bacterial infections, which

in turn can lead to the development of novel disease prevention, prediction, and treat-

ment methods. Besides health sciences, information about the relations of bacteria with

their environments is also important for research areas such as microbiology, agronomy,

and food processing and preservation. One of the challenges that researches in these

areas face is the absence of a comprehensive database that stores the relationships

among bacteria and their habitats in a structured format. Most of the bacteria habitat

information is only available in unstructured textual format in electronic resources such

as scientific publications and web pages of bacteria sequencing projects [77]. For exam-

ple, even a limited search in PubMed for “bacteria AND (habitat OR localization OR

environment)”, which probably barely covers all relevant documents, returns 177, 000

documents (Search date: January 29, 2014). This illustrates the difficulty of manual

curation for creating a comprehensive database of bacteria and habitat relations. An

important step towards the creation and population of such a database is developing

text mining methods to automatically recognize and normalize mentions of bacteria

and habitats in text, as well to identify the relations among them.

The Bacteria Biotope (BB) Task in the BioNLP Shared Task 2013 addressed the

problems of identifying locations where bacteria live and semantically annotating them

using an ontology [52,77,78]. Unlike most previous biomedical information extraction

challenges which target extracting information from publications in PubMed (e.g. [43,

79,80]), the documents targeted in the BB task are scientific web pages intended for a

general audience. In addition, these documents are richer in terms of both the number

and the variety of habitats, compared to the ones in PubMed [77].

The BB task consisted of three sub-tasks. Sub-task 1 involved the identification of

habitat mentions in text and the assignment of them to the concepts in the OntoBiotope

(MBTO) Ontology [81]. Figure 3.5 shows a sample text file from the training set

provided by the organizers. The bacteria and habitat entities are shown in bold. For
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Figure 3.5. Sample text. A sample input file containing bacteria and habitat entities.

instance, “Bifidobacterium” is a bacteria entity, whereas “human gastrointestinal tract”

and “human” are habitat entities. The concept that is associated with the “human

gastrointestinal tract” habitat in the OntoBiotope ontology is “digestive tract”, and the

one associated with the “human” habitat is “human”.

Given the names, types (i.e. Bacteria, Habitat, Geographical), and positions of

the entities in text the goal of Sub-task 2 was to extract the localization relations

between bacteria and habitat (i.e. Habitat, Geographical) pairs, as well as PartOf

relations between habitat pairs. A PartOf relation between a pair of habitats holds

if one of them is a living organism (called host), and the other one is a part of this

organism (called host part). The relation between “Bifidobacterium” and “human

gastrointestinal tract”, as well as the one between “Bifidobacterium” and “human”

are among the localization relations described in the text shown in Figure 3.5. The

relation between the host “human” and the host part “human gastrointestinal tract”

is one of the PartOf relations described in Figure 3.5. One of the challenges in the

relation extraction task is the high frequency of bacteria anaphors and relations that

cross sentence boundaries.

Sub-task 3 was the same as Sub-task 2, except that the gold standard entities were

not provided to the participants. In other words, the participants were also expected
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to detect the bacteria and habitat entities.

In the following sections of this chapter, our proposed linguistically-oriented rule-

based approach for entity detection and categorization is explained. We describe our

submissions to Sub-task 1 (Entity Detection and Categorization) [16], as well as the

new methods that we developed and the improvements that we obtained after the

official evaluation. Our approach is based on the shallow syntactic analysis of the text

including sentence-splitting, tokenization, lemmatization, POS tagging, and shallow

(partial) parsing. Manually designed syntactic rules that utilize the noun phrases in the

sentences and the POS tags of the words are used to recognize the habitat entities and

map them to the corresponding concepts in the OntoBiotope ontology. Our approach

also tackles the problem of handling discontinuous entities such as the two distinct

entities “nasal cavity” and “oral cavity” in the phrase “nasal and oral cavity”.

As improvements to the Sub-task 1 system, we investigate expanding the On-

toBiotope ontology using the training set and extending the noun phrases with their

modifiers including the ones that are attached with the prepositions in, of, and with

(e.g. “infected child in Germany”).

3.2.2. Related work

Due to the continued rapid increase in the number of scientific articles published

in the biomedical domain, it has become difficult for scientists to reach and make use of

the knowledge contained in the biomedical scientific literature. Therefore, developing

text mining systems for automatically extracting the biologically useful information

from biomedical text has become crucial [21]. A number of shared tasks including

the LLL and BioCreative Challenges, as well as the BioNLP Shared Tasks have been

conducted, which have facilitated research in biomedical text mining [43, 79, 82, 83].

Most of these shared tasks addressed the problems of relation or event extraction

among bio-molecular entities such as proteins and genes.
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The Bacteria Biotope Task is the first shared task targeting the extraction of

information about bacteria and their habitats. This task was first conducted in the

BioNLP Shared Task 2011 [47, 84, 85]. Among the three teams that participated in

the Bacteria Biotope Task 2011 [84, 85], Bibliome INRA [86] obtained the best F-

score performance (45%) on the task of identifying habitat entities. They made use of

resources including a list of Agrovoc geographical names [87], the NCBI Taxonomy [88],

as well as an ontology for location types, and developed a system that is based on

ontology-based reasoning and linguistic features. UTurku [89] developed a generic

supervised machine learning based system that can be used for all the main tasks in the

BioNLP Shared Task 2011 with minor modifications. They incorporated this generic

system with additional named entity recognition patterns and external resources for

identifying the named entities and their types in the Bacteria Biotope Task. JAIST [90]

also used a supervised machine learning approach based on Conditional Random Fields

(CRFs) [34] for this task.

The Bacteria Biotope (BB) Task in the BioNLP 2013 Shared Task gave another

opportunity to scientists to address the task of extracting information about bacteria

and their habitats from text and evaluate their approaches on a common platform

[52,77]. This task maintained the primary objective of the 2011 edition of the BB task

of extracting bacteria and localization relations. In addition, it introduced a new task

that targeted a more fine-grained categorization (i.e. normalization) of habitat entities

through the OntoBiotope ontology. Five teams participated in the 2013 edition of the

BB Task [52,77]. For Sub-task 1 the systems were ranked according to their slot error

rates (SER). The first three systems obtained similar SER performances for this Sub-

task despite their different approaches to the problem [52, 77]. The LIPN system [91]

based on a supervised machine learning approach achieved the best SER score (66%)

in Sub-task 1. The IRISA system used a supervised machine learning approach based

on the k-Nearest Neighbor (kNN) method and obtained a SER score of 93% in Sub-

task 1 [92]. LIMSI [93] was the only team that participated in all three BB sub-

tasks. They used a method based on Conditional Random Fields [94] for the official

submissions, while they utilized Maximum Entropy models for later improvements.

They utilized various additional resources such as NCBI taxonomy for the detection of
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bacteria names, the Cocoa [95] annotations for the categorization of bacteria, habitat,

and geographical entities, and OntoBiotope Ontology for the identification of habitat

names. They obtained a SER value of 68% in the official submissions for Sub-task 1.

We participated in Sub-task 1 and Sub-task 2 of the BB Task 2013. Our system Boun

ranked second in Sub-task 1 with a SER score of 68% and third in Sub-task 2 with

an F-score of 27% in the official evaluation [16]. The Sub-task 1 module of the Boun

system utilized the shallow syntactic analysis of the text and linguistically-motivated

rules. The extended system Boun 2 obtained 68% SER on Sub-task 1. The details of

our official submission as well as the improvements developed after the shared task are

described in the following sections.

Sub-task 1 of the BB Task is related to the general problem of named entity

recognition (NER) and automatic semantic annotation by ontologies. Rule-based ap-

proaches (e.g. [96]), as well as machine-learning based methods (e.g. [97, 98]) have

been developed for biomedical NER. While state-of-the-art NER systems for proteins

and genes achieve performance levels that enable their use in practice, the problem

of recognizing bacteria habitat names in text has not been tackled prior to the 2011

and 2013 editions of the BB Task, and there is still a lot of room for improvement.

Different approaches for the semantic annotation of entities using ontologies have been

proposed in the literature. Our approach is related to rule-based methods that make

use of the syntactic and semantic analysis of the terms [99,100]. A problem related to

ontology-based semantic tagging has also recently been addressed in the Biocreative III

Interaction Method Task (IMT) [101]. The goal was to identify the interaction meth-

ods in the articles and normalize them through the PSI-MI ontology [74]. The best

performing systems in the shared task employed supervised machine learning meth-

ods [102, 103]. However, they formulated the problem as classifying the entire articles

to the ontology concepts, and did not address the problem of identifying the bound-

aries of the named entities. The relatively smaller training set size in the BB Task and

the large number of classes (i.e. 1700 concepts) pose challenges for supervised machine

learning based classifiers in this domain.
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3.2.3. Methods

We developed a linguistically motivated rule-based system for Sub-task 1 (Entity

Detection and Categorization), the workflow of which is displayed in Figure 3.6. The

input text is first pre-processed by splitting into sentences and performing shallow

syntactic analysis including POS tagging, lemmatization, and partial parsing. Based

on our observation in the training set, we assume that most habitat entities are noun

phrases. Before normalizing through the OntoBiotope ontology, the candidate habitat

entities are identified by extracting and simplifying the noun phrases in the sentences.

In addition, the OntoBiotope ontology is expanded by using the training set. We also

investigate handling discontinuous entities and entity modifiers. The details of our

approach are described in the following subsections.

Figure 3.6. Workflow of the Sub-task 1 System

3.2.3.1. Preprocessing. In the preprocessing step, we used the Genia Sentence Splitter

(GeniaSS) [104] to segment the text into sentences and the Genia Tagger [97, 105]

to obtain the shallow linguistic features of these sentences including the POS tags,

the lemmas, and the constituent categories of the words. Figure 3.7 shows a sample

sentence and the output obtained by the preprocessing module (on the left-hand side of

the figure). These shallow syntactic analysis results are then used in the following steps
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Figure 3.7. Sample output of the preprocessing, and the noun phrase extractor and

simplifier

of our system to extract and simplify the noun phrases (as shown on the right-hand

side of Figure 3.7), as well as to map them to the OntoBiotope ontology.

3.2.3.2. Ontology expansion from the training data. In this step, the annotated train-

ing data set is used to expand the OntoBiotope ontology. If a term in the training set

is labeled with an OntoBiotope ontology concept, it is included to the ontology as a

synonym of that concept, unless it is already defined as a name or as a synonym of that

concept. For example, the ontology concept with ID MBTO:00001875 has the name

“mummy tissue” in the ontology. This entry does not have any synonyms. However,

in the training set the term “tissues of ancient mummies” is labeled with this con-

cept. Therefore, “tissues of ancient mummies” is added as a synonym of the “mummy

tissue” concept in the ontology.

3.2.3.3. Noun phrase extraction and simplification. In the noun phrase extraction and

simplification step, first, the noun phrases are extracted based on the constituent cate-

gories of the words identified by the Genia Tagger. Next, the extracted noun phrases are

simplified by removing the words that do not contain informative information regarding

bacteria habitats. The non-informative words are identified based on their POS tags.

For instance, determiners and possessive pronouns are non-informative and thus, are

not included to the boundaries of the habitat entities. Consider the noun phrases “the
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mummy tissue” and “its small intestine”. The simplified noun phrases are obtained by

removing the determiner “the” from the first noun phrase and the possessive pronoun

“its” from the second noun phrase. Thus, the simplified noun phases are “mummy

tissue” and “small intestine”, respectively. The preprocessing, noun phrase extraction

and simplification processes are illustrated in Figure 3.7 for a sample sentence.

3.2.3.4. Discontinuous entity handling. Some habitat entity spans in text may be dis-

continuous. For example, the phrase “ground and surface water” contains two overlap-

ping entities, namely “ground water” and “surface water” [77]. Our system includes a

mechanism to handle discontinuous entities, which are represented with noun phrases

containing the conjunction “and”. Such noun phrases are split into two sub-phrases

from the conjunction “and”. If the two sub-phrases map to two concepts in the On-

toBiotope ontology, which have the same direct ancestor represented with a common

is-a relation, then the habitats are identified according to the structure of the noun

phrase as follows. Each sub-phrase is considered to be a separate habitat entity, if

both of the sub-phrases consist of single words tagged as nouns. Otherwise, the two

sub-phrases constituting the noun phrase are identified as a single habitat entity. On

the other hand, if the mapped two concepts in the OntoBiotope ontology don’t have a

common direct ancestor, then the corresponding two sub-phrases are considered to be

two separate habitat entities. Our approach for discontinuous entity handling is de-

scribed in more detail below through the example phrases “pharyngeal and gut mucosa”

, “iron-rich and wet environment”, “plants and animals”, and “mouse and cheese”.

• Given the phrase “pharyngeal and gut mucosa”, the two generated sub-phrases

are “pharyngeal mucosa” and “gut mucosa”. The direct ancestor of “pharyngeal

mucosa” in the OntoBiotope ontology is “respiratory tract part”, whereas the

direct ancestors of “gut mucosa” are “digestive tract part” and “mucosal tissue”.

Since the OntoBiotope ontology concepts corresponding to the two sub-phrases

don’t have a common direct ancestor, these sub-phrases are identified as two

different habitat entities, namely “pharyngeal mucosa” and “gut mucosa” (See

Figure 3.8).
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• Given the phrase “iron-rich and wet environment”, the two generated sub-phrases

are “iron-rich environment” and “wet environment”. The two concepts cor-

responding to these sub-phrases in the OntoBiotope ontology have a common

direct ancestor, which is “habitat wrt chemico-physical property”. Therefore, a

single habitat entity (i.e., “iron-rich and wet environment”) corresponding to the

entire noun phrase is generated (See Figure 3.9).

• Given the phrase “plants and animals”, the two generated sub-phrases are “plants”

and “animals”. The two concepts corresponding to these sub-phrases in the On-

toBiotope ontology have the “eukaryote host” direct ancestor. However, since

both sub-phrases consist of single words, which are tagged as noun, two different

habitat entities are identified, namely “plants” and “animals”.

• Given the phrase “mouse and cheese”, the two generated sub-phrases are “mouse”

and “cheese”. The concepts corresponding to these sub-phrases in the Onto-

Biotope ontology don’t have a common direct ancestor. Therefore, two different

habitat entities, namely “mouse” and “cheese”, are identified.

Figure 3.8. Discontinuous entity handling for the sample phrase “pharyngeal and gut

mucosa”

3.2.3.5. Entity modifier handling. The data set for the Bacteria Biotopes shared task

has been annotated by including the modifiers that describe the habitats in the bound-

aries of the habitat entities [77]. Consider the phrase “infected infant in Germany”.

The ontology concept that this phrase is mapped to is “infant” (MBTO:00000778).

However, the boundary of the habitat entity is the entire phrase, namely “infected in-

fant in Germany”. The shallow parser labels “infected infant” and “Germany” as two

separate noun phrases and “in” is labeled as a preposition. After the official evaluation,
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Figure 3.9. Continuous entity handling for the sample phrase “iron-rich and wet

environment”

our system has been extended to handle the habitat entities that contain modifiers.

If a noun phrase (NP) is followed by a preposition (prep) and then by another noun

phrase, the entire NP prep NP sequence is identified by the noun phrase extraction and

simplification module as a candidate habitat entity. Besides the prepositional phrases

that contain “in”, the ones that contain “of” (e.g. “respiratory tract of animals”)

and “with” (e.g. “2-year-old girl with tick-bourne relapsing fever”) are also handled

using the same approach. However, as discussed in the Results section this extension

degraded the performance of the system.

3.2.3.6. Ontology mapping. To identify whether the phrases extracted in the previous

steps correspond to habitat entities and to determine the boundaries of the habitat

entities, exact or partial matching against the names and synonyms of the concepts in

the OntoBiotope ontology is performed.

Consider the extracted noun phrase “the animal bodily fluid”. In the noun phrase

simplification step, this phrase is simplified as “animal bodily fluid”, which is searched

against the OntoBiotope ontology for exact or partial matches. As shown in Fig-

ure 3.10, this candidate phrase is mapped to two ontology concepts. It is mapped to

the concept “body fluid” due to the partial match with the exact synonym: “bodily

fluid”. Similarly, it is mapped to the concept “animal” due to the partial match with

the concept name: animal.
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Figure 3.10. Ontology mapping example

The boundaries of the habitat entities are identified by using the following man-

ually designed syntactic rules.

• If there is an exact match between an ontology concept and a candidate phrase,

the candidate phrase is identified as a habitat entity and the entity boundary is

set as the boundary of the candidate phrase.

• If there is a partial match between a candidate phrase and an ontology concept

such that the match begins from the first word of the candidate phase, but does

not cover the entire phrase, the matching sub-phrase of the candidate phrase is

identified as a habitat entity and the entity boundary is set as the boundary of

the matching sub-phrase. For instance, as shown in Figure 3.10, the first word

of the candidate phrase “animal bodily fluid” matches with the name: “animal”

of the ontology concept for animal. Therefore, the habitat entity “animal” is

identified and normalized to the ontology concept with MBTO:00001660.

• If there is a partial match between a candidate phrase and an ontology concept

such that the match does not begin from the first word of the candidate phrase,

the candidate phrase is identified as a habitat entity and the boundary of the

entity is set as the boundary of the phrase. For instance, in Figure 3.10, the

candidate phrase “animal bodily fluid” matches with the exact synonym: “bodily

fluid” of the ontology concept for body fluid, starting with the second word of

the candidate phrase. Therefore, the entire candidate phase “animal bodily fluid”
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is identified as a habitat entity and normalized to the ontology concept with

MBTO:00000921.

In order to match the different inflected forms of the habitat names such as

matching the habitat name “animal” against its plural form “animals”, we performed

lemmatization on the candidate phrases by using the Genia Tagger, and applied the

same methodology that is explained above not only to the surface forms of the candidate

phrases, but also to the lemmatized forms of them.

3.2.4. Results for the BioNLP Shared Task 2013 Data Set

3.2.4.1. Data set. The training, development, and test sets provided by the BB shared

task organizers contain 52, 26, and 26 documents, respectively. The gold standard

annotations for the training and development sets were provided to the participants,

whereas the evaluations on the test set were performed by using the online evaluation

tool released by the shared task organizers. The documents in the corpus consist of

web pages obtained from a number of web sites such as from the web sites of bacteria

sequencing projects or MicrobeWiki [77].

3.2.4.2. Evaluation metrics. The main evaluation metric used for Sub-task 1 is Slot

Error Rate (SER) [77]. Lower SER values denote better performance, since SER is an

error measure. The computation of SER is shown in Equation 3.1, where S, D, and

I correspond to the number of substitutions, deletions, and insertions, respectively.

N is the total number of habitats in the reference. If a reference entity does not

match exactly or partially with any of the predicted entities, then this corresponds to

a deletion, i.e., to a false negative. On the other hand, if a predicted entity does not

match exactly or partially with any of the reference entities, then this corresponds to

an insertion, i.e., to a false positive. D and I are the numbers of false negatives and

false positives, respectively.
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SER =
S +D + I

N
(3.1)

The computation of S is shown in Equation 3.2.

S = 1−M (3.2)

Here, M is the similarity between two entities. It is computed by using Equation

3.3. The more similar two entities are, the lower their substitution score is.

M = J ·W (3.3)

J in Equation 3.3 is the Jaccard coefficient similarity between the predicted and

reference entities [85]. If the boundary of the predicted entity is exactly the same as

the boundary of the reference entity, then J equals 1 for the pair. The less the entities

overlap, the lower the value of J is. W is a parameter that measures the similarity

between the ontology concepts of the reference and the predicted entities [106]. It is

based on the Jaccard coefficient of the sets of ancestors corresponding to the reference

and predicted entities. The value of W is 1 if the predicted entity and the reference

entity are assigned to the same concept in the ontology, and it is less than 1 if they

are assigned to different entities. The higher the value of W, the more similar the two

concepts are to each other.
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3.2.4.3. Results. Table 3.1 shows the detailed results obtained on the test set for

Sub-task 1 by the Boun and Boun 2 systems. The workflows of both systems are the

same (Figure 3.6), except the ontology expansion module, which is only available in

the Boun 2 system and a new additional rule for discontinuous entity handling. Both

systems perform discontinuous entity handling, and neither of them perform entity

modifier handling. These results show that expanding the OntoBiotope ontology using

the training set, did not lead to improvements in the performance of the system. Since

the concepts in the ontology are enriched by including more synonyms, more entities

in the test set are matched to their concepts in the ontology. This resulted in a lower

number of false negatives (i.e., lower D) and higher number of matches, which leads

to higher recall and F-score values. While the SER value does not change, due to the

increase in the number of false positives (i.e., insertions), the precision of the system

decreases.

Table 3.1. Detailed results on the test set for Sub-task 1 (Entity Boundary Detection

& Ontology Categorization)

Evaluation Metrics Boun Boun 2

S 112.70 115.24

I 141 158

D 89 74

M 305.30 317.75

SER 0.68 0.68

Recall 0.60 0.63

Precision 0.59 0.57

F-score 0.59 0.60

Table 3.2 presents a comparison of the results obtained by the Boun and Boun 2

systems, and the other systems that participated in the Bacteria Biotope 2013 Sub-task

1. The Boun system that we submitted to the official evaluation ranked second among

four systems in terms of the SER evaluation metric. The Boun 2 system also achieves

a SER value (68%) which is close to the LIPN system that ranked first in the shared

task. In addition, the precision and recall values of the Boun and Boun 2 systems are
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relatively more balanced compared to the other systems except the LIPN system.

Table 3.2. Comparison with the other systems that participated in the BB Sub-task 1

(Entity Boundary Detection & Ontology Categorization). The results obtained on the

test set are reported.

System SER Recall Precision F-score

LIPN 0.66 0.61 0.61 0.61

Boun 0.68 0.60 0.59 0.59

LIMSI 0.68 0.35 0.62 0.44

Boun 2 0.68 0.63 0.57 0.60

IRISA 0.93 0.72 0.48 0.57

Table 3.3 shows the effect of the discontinuous entity handling (DEH) module.

The first column displays the results obtained by the Boun 2 system, whereas the sec-

ond column shows the results obtained by removing the discontinuous entity handling

module from the system. These results demonstrate that performing discontinuous

entity handling leads to a lower SER value, i.e., to a better performance on the devel-

opment set. On the other hand, the discontinuous entity handling module does not

make any particular change in the SER values of the system on the training and test

sets.

Table 3.3. Effect of discontinuous entity handling (DEH). The results are reported on

the training, development, and test sets.

Boun 2 Boun 2 - DEH

SER Train 0.66 0.67

SER Dev 0.67 0.68

SER Test 0.68 0.68

Table 3.4 demonstrates the effect of the entity modifier handling module. The

first row presents the results obtained by the Boun 2 system, whereas the subsequent

rows show the results obtained by extending the Boun 2 system by including a mecha-

nism to handle the modifiers attached to the noun phrases with the prepositions in, of,

and with. Due to the fact that the SER values obtained by the system with the entity
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modifier handling module are not lower than the Boun 2 system for the training and

development sets, this module is not included to the final system. The results reveal

that the introduced entity modifier handling approach reduces the performance of the

system, due to the prepositional phrase attachment ambiguity problem. For example,

consider the sentence “This species was isolated from a Lyme disease patient in Eu-

rope”. Our entity modifier handling approach correctly identifies the habitat “Lyme

disease patient in Europe” by extending the “Lyme disease patient” noun phrase with

its modifier “in Europe”. However, given the sentence “This species was isolated from

a Lyme disease patient in 1993”, the habitat is incorrectly identified as “Lyme disease

patient in 1993”. The prepositional phrase “in 1993” is incorrectly attached to the

noun phrase, whereas it should have been attached to the verb “isolated”. Handling

complex nominals and resolving such prepositional phrase attachment problems can be

possible by using a full syntactic parser, rather than a partial parser.

Table 3.4. Effect of entity modifier handling. The results are reported on the

training, development, and test sets.

SER Train SER Dev SER Test

Boun 2 0.66 0.67 0.68

Boun 2 + in 0.68 0.67 0.70

Boun 2 + of 0.72 0.72 0.72

Boun 2 + with 0.67 0.67 0.68

3.2.5. Results for the BioNLP Shared Task 2016 Data Set

This section provides the evaluation results obtained by the BOUN 2 system

(Boun 2) on the BioNLP Shared Task 2016 Data Set.

3.2.5.1. Data Set. The training, development, and test sets provided by the BB shared

task organizers contain 71, 36, and 54 documents, respectively. The gold standard

annotations for the training and development sets were provided to the participants,

whereas the evaluations on the test set were performed by using the online evaluation

tool released by the shared task organizers. The documents in the corpus consist of
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scientific abstracts obtained from the PubMed database.

3.2.5.2. Evaluation Metrics. The main evaluation metric slot error rate (SER), which

is used for Sub-task 1 of BioNLP Shared Task 2013, is also used for BB-cat+ner Task

of BioNLP Shared Task 2016. Lower SER values denote better performance, since SER

is an error measure. Precision, recall and f-score measures are used for the evaluation

of BB-event task. Higher values denote better performance.

3.2.5.3. Results. Table 3.5 shows the detailed results obtained on the test set for BB-

cat+ner task by the Boun 2 system. Table 3.6 presents a comparison of the Boun 2

systems with the official results of the other teams that participated in the BioNLP

Shared Task 2016 Bacteria Biotope Task BB-cat+ner Sub-task. The results show

that the Boun 2 system ranks second in terms of SER value, while achieving better

precision and recall scores than the other systems. Although Boun 2 was developed by

considering documents that are web pages written for the general public, for scientific

abstracts it is able to achieve comparable performance without any adaptation.

Table 3.5. Results for BB-cat+ner-task (Entity Recognition and Categorization) on

BioNLP Shared Task 2016 Data Set. The results obtained on the test set are

reported.

System Habitats Only Ignore Boundaries Multiple Normalizations

SER 0.82 0.71 0.50

Mismatches 122.6 55.75 12.20

Matches 202.4 269.2 25.8

Insertions 92.0 92.0 0

Deletions 697.0 296.0 14

Recall 0.33 0.43 0.50

Precision 0.49 0.65 0.68

Predictions 417.0 417.0 38.0
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Table 3.6. Comparison of BB-cat+ner-task Results (Entity Recognition and

Categorization) on BioNLP Shared Task 2016 Data Set. The results obtained on the

test set are reported. MM:Mismatches M:Matches I:Insertions D:Deletions R:Recall

P:Precision Pred:Predictions

System SER MM M I D R P Pred

TagIt 0.775 199.960 188.040 49 233 0.30 0.43 437

BOUN 2 0.821 122.600 202.400 92 697 0.33 0.49 417

LIMSI 0.862 192.307 152.693 67 276 0.25 0.37 412

whunlp 0.950 226.358 119.642 89 275 0.19 0.28 435
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4. ENTITY NORMALIZATION USING WORD

EMBEDDINGS AND SYNTACTIC ANALYSIS

4.1. Background

Currently, the vast majority of the biomedical resources are in unstructured form

which originate from an assortment of contrary sources that incorporate nonstandard

naming conventions, which makes the required information difficult to use and under-

stand [107]. Ontologies help researchers to overcome these kinds of difficulties and

help researchers facilitate the vast amounts of biomedical knowledge available [108].

An ontology can provide a unique identifier for describing information for each entity,

which solves the heterogeneity problem and provides standardized and homogeneous

data [109]. Linking named entities in text through an ontology is an essential process

to make sense of the identified named entities [3].

In the Figure 1.1, the association between the entity mention “pediatric” and the

ontology concept term name “pediatric patient” can be relatively more easily detected

due to the lexical similarity between them. Similarly, the habitat mention “respiratory”

and the ontology concept “respiratory tract part” also share a common word, making

them lexically similar. However, lexical similarity may not always exist between en-

tity mentions and concept term names or concept synonyms. For example, there is

no lexical similarity between the habitat mention “children less than 2 years of age”

and ontology concept term name “pediatric patient”, which calls for the utilization of

semantic similarity.

Even if the named entities are given, linking the identified named entities to a

unique concept identifier in an ontology/dictionary is not a trivial task in the biomedical

domain. There are many challenges in the task of named entity linking through an

ontology or a dictionary, two of which are the variety and ambiguity problems of the

named entities [110]. A named entity may appear in different surface forms in a given

text, which is called the variety problem. Furthermore, two named entities with the
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same surface form may have different semantic meanings, which is called the ambiguity

problem. Linking of named entities for the biomedical domain has another big challenge

besides these two common problems in the general natural language processing domain.

In the biomedical domain, the training data is relatively smaller and the number of

the ontology/dictionary categories that should be considered is larger compared to

many other domains in natural language processing [52]. This poses a challenge for the

standard supervised classification algorithms. For example, there are 2,221 semantic

categories in the Onto-Biotope ontology, while the available training set contains only

747 entity mentions, and 16,295 words. For adverse drug reaction normalization, this

situation is worse since there are 22,499 MedDRA dictionary terms.

In this part of the thesis, for the ontology based normalization of the named entity

mentions in text, we propose an unsupervised approach, which utilizes both semantic

and syntactic information. The proposed approach uses word embeddings learned from

large unlabeled text to capture semantic information and syntactic parsing information

to re-rank the candidate ontology/dictionary concept terms. The proposed approach

is tested on two different data sets, which are the BioNLP Shared Task 2016 Bacteria

Biotopes (BB3) categorization sub-task data to normalize habitat entities through the

Onto-Biotope ontology and the Text Analysis Conference 2017 Adverse Drug Reaction

data to normalize adverse drug reaction mentions through the MedDRA dictionary. On

both data sets, the proposed normalization method with syntactic re-ranking achieved

better performance than the normalization method without syntactic re-ranking. Fur-

thermore, we obtained the new state-of-the-art results with 2.9 percentage points above

the previous best result for the Bacteria Biotopes (BB3) categorization sub-task.

4.2. Related Work

Several approaches have been proposed for biomedical entity normalization for

different types of biomedical entities including genes/proteins [7–10], bacteria biotopes

[15,48,49,52,53], and diseases [11,12]. Early systems tried to link the entity mentions

to the knowledge base entities by utilizing dictionary look-up and string matching

algorithms [7, 54]. Some studies [11, 15] used hand-written rules to measure the mor-
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phological similarity between entity mentions and ontology/dictionary entities, while

others [56] automatically learned patterns of variations of the entities. Supervised

machine-learning based approaches, which learn the similarities between biomedical

entity mentions and ontology concept names from labeled training data have also been

proposed and applied as a solution to the normalization task of various biomedical

entities such as diseases [12].

Most previous studies focused on utilizing morphological information for named

entity normalization. However, morphological similarity alone is not adequate to nor-

malize biomedical entities, which generally have forms different from the concept terms

that they should be tagged with [52]. Word embedding models, which learn distribu-

tional representations of words from large unlabeled corpora, are promising approaches

for capturing semantic information [61]. They have been successfully used in several

recent NLP tasks including the biomedical domain [62, 69–71]. Recently, word em-

beddings have also been used for the task of biomedical named entity normalization.

Li et al., (2017) proposed a convolutional neural network (CNN) architecture lever-

aging semantic and morphological information, which handles the biomedical entity

normalization task as a ranking problem [58]. In the proposed method, firstly can-

didates are generated using hand-crafted rules, and then they are ranked according

to semantic and morphological information, which are represented by a CNN-based

model. Experiments on two benchmark datasets (the ShARe/CLEF eHealth dataset

and the NCBI disease dataset) showed that semantic information is beneficial for the

biomedical entity normalization task as well as morphological information. However,

the requirement of hand-crafted rules and labeled data makes the adaptation of this

method to different domains harder and time-consuming. Cho et al., (2017) proposed

a semi-supervised approach that facilitates word embeddings to represent semantic

spaces for normalizing biomedical entities such as disease names and plant names and

obtained promising performance [59]. This method requires a domain specific corpus

and dictionary. Therefore, the adaptation of it to other domains is not easy, if there

are no such resources available.
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A number of community-wide challenges including the BioCreative Challenges

[41–45] and BioNLP Shared Tasks [46–49], which have been conducted to assist the

progress of research in biomedical text mining, also addressed the task of biomedical

entity normalization. The Bacteria Biotope task, whose ultimate aim is information

extraction regarding bacteria and their habitats, was first addressed in the BioNLP

Shared Task 2011 [47, 111], and has been conducted in 2013 [48, 52] and 2016 again

since then. We evaluated our proposed approach on the BB-cat subtask of the 2016

edition of the Bacteria Biotope task, which addressed the normalization of habitat

entity mentions in PubMed abstracts using the OntoBiotope ontology [49]. In the

official task, the teams TagIt [112] and LIMSI [113] proposed rule-based methods, while

BOUN [53] proposed a similarity-based method that utilizes both approximate string

matching and cosine similarity of word-vectors weighted with Term Frequency-Inverse

Document Frequency (TF-IDF). According to the official results, the best precision

(62%) for habitat mention normalization was obtained by the BOUN system.

The bacteria habitat mention normalization problem continued to attract the at-

tention of the researchers after the shared task. CONTES is a recently proposed semi-

supervised method for linking habitat entity mentions through the Onto-Biotope on-

tology [114]. The system is based on word embeddings that are induced from PubMed

by utilizing the Word2Vec tool. The cosine similarities between term vector repre-

sentations and concept vector representations are calculated to find the most similar

ontology concept to the given entity mention. They applied the proposed normalization

method to the test dataset of the Bacteria Biotope 2016 Task 3 (BB-cat), and obtained

comparable results to that of the state-of-the-art for the task of Bacteria Biotopes cat-

egorization. CONTES contains a transformation step to make comparable the term

vectors and the entity vectors which are represented in different dimensions. The need

for the transformation step makes the method semi-supervised, since it requires labeled

data for training the prediction model. Recently, Mehryary et al. (2017) used TF-IDF

weighted vector space representation for the named entity categorization of bacteria

biotopes [115]. Each ontology concept name and each entity mention is represented

with a TF-IDF weighted vector considering each concept name in the ontology as a

separate document and calculating IDF weights based on these names. The ontology
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concept with the highest cosine similarity is assigned to a given entity mention. Al-

though they achieved state-of-the-art results in the normalization task, the TF-IDF

based scheme has limitations in capturing the semantic relations between the ontology

concepts and entity mentions, since it is primarily based on the surface forms of the

words.

Besides the Bacteria Biotopes normalization task, we also evaluate our approach

on the task of normalizing Adverse Drug Reaction (ADR) mentions in drug labels to

the MedDRA terms. We use the recently provided data set from the Text Analysis

Conference (TAC) 2017. Different types of data sources such as electronic health

records [116], scientific publications, and social media data [117] and different types

of lexicons such as the Unified Medical Language System (UMLS) [118] and the side

effect resource (SIDER) [119] have been used to extract ADRs from text. Many of these

studies proposed a lexicon-based matching approach for ADRs recognition. Although a

number of studies have been conducted to automatically identify ADRs in text and map

them through a dictionary using NLP techniques, as far as we know the normalization

of the ADRs through a dictionary has not been studied as a separate task without

named entity recognition.

4.3. Methods

We developed a semantic similarity based unsupervised method for entity link-

ing through an ontology/dictionary, the work-flow of which is displayed in Figure 4.1.

Given a set of documents with annotated named entities and a corresponding ontology,

the normalization task is done in two steps. In the first step, the semantically most

similar ontology concepts are generated as candidates, and in the second step, the can-

didates are re-ranked according to the syntactic-based weighted semantic similarities.

The details of our approach are described in the following subsections.
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Figure 4.1. System Work-flow. Work-flow of the Named Entity Normalization System

4.3.1. Data Sets

4.3.1.1. Bacteria Biotope Entity Normalization. In this study, we used the official

data set that is provided by the BioNLP Shared Task 2016 organizers for the Bac-

teria Biotope categorization subtask. Since our proposed approach is unsupervised

and does not require any training data, the training and development sets are used

for error analysis during the development of the system, and the separate test set is

used for evaluating the performance of the proposed system. The data set provided by
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the shared task organizers was created by collecting titles and abstracts from PubMed,

which contain general information about bacteria and habitats. The data set, consist-

ing of 71 training, 36 development, and 54 test documents, was manually annotated by

the bioinformaticians of the Bibliome team of MIG Laboratory at the Institut National

de Recherche Agronomique (INRA) [49].

4.3.1.2. Adverse Drug Reaction Normalization. For Adverse Drug Reaction Normal-

ization, we used the official data set that is provided by the Text Analysis Conference

(TAC) 2017 organizers. The test set is used for evaluating the performance of the

proposed system. The data set contains general information about drug labels con-

sisting of 101 training and 99 test documents, which were manually annotated by the

organizers.

4.3.2. Preprocessing

In the preprocessing step, the annotated named entities and the ontology concept

names with their synonyms are tokenized, and the stop words are removed from the

named entity mentions and the ontology concept names. Furthermore, all non-ASCII

characters are stripped from both the named entities and the ontology concept names.

4.3.3. Word representations

Our proposed approach is mainly based on the assumption that semantically

similar words have similar vector spaces. Based on this assumption, if the semantic

similarity of named entity mentions and ontology concept terms can be computed, the

most similar concept in the ontology can be assigned as the normalized concept to the

named entity mention.

To compute the semantic similarity, each word is represented in the vector space

as a real-valued vector using a pre-trained word embedding model that is publicly

available [62]. The model has been trained leveraging word vectors that were induced



49

from PubMed by the Word2Vec tool [61]. The trained model is applied to each word

to obtain the corresponding word vector. We used the model variant with window size

of 30, since it has been shown to obtain higher performance in the biomedical concept

similarity and relatedness tasks in [62].

4.3.4. Identifying the Semantically Similar Ontology Concepts

The vectors of the ontology concept terms and the reference named entities (i.e.,

the named entity mentions in text) are computed in the same way as described below.

For each word in the named entities and ontology concept terms, the vector represen-

tations are obtained by the pre-trained model as explained in the previous subsection.

For the multi-word named entities and ontology concepts, the vector representations

are computed by averaging the vectors of their composing words. Figure 4.2 presents

the computation of the vector representation for a sample multi-word named entity “a

day-care center” and shows how the averaging is done. In the preprocessing step, the

stop-word “a” and the hyphen character are removed. The tokens “day”, “care”, and

“center” are considered and used for averaging to compute the vector representation

of the multi-word named entity. Each token is represented with a real-valued vector

using the pre-trained word embedding model that is explained in the previous subsec-

tion. The real-valued vectors of the tokens comprising the multi-word entity mention

are summed to create a real-valued vector, which is called ~sum. At the end, ~sum is

divided by the number of tokens other than the stop-words, which is 3 for the example

entity mention, to obtain a normalized real-valued vector for the multi-word named

entity.

For each reference entity and for each ontology concept term, a cosine similarity

score is calculated to get the semantic similarity between the related entity and the

ontology concept term. Since the vectors of ontology concept terms and reference

named entities are computed in the same way, unlike the CONTES system, there is

no need for a transformation step for the vectors in order to compute the similarity

between them. For each reference entity, ontology terms are ranked according to the

semantic similarity scores, the top k of which are the candidates for syntactic weighting
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Figure 4.2. Sample multi-word expression. Computation of the corresponding

real-value vector for a sample multi-word expression “a day-care center”, where ~e(t)

is the word embedding vector for token t

based re-ranking.

We also investigated using word mover’s distance (WMD), instead of cosine simi-

larity. WMD is a distance metric which represents text documents as a weighted point

cloud of embedded words and computes the distance between documents as the mini-

mum cumulative distance that words from a document need to travel to another [120].

It is based on the idea that documents without common words may convey similar

meanings and bag-of-words (BOW) is not enough to detect this kind of similarity.

4.3.5. Syntactic Re-ranking

Our system without syntactic analysis is not adequate alone to normalize entity

mentions like “children attending a day-care center”. Table 4.1 (Before re-ranking
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part) shows the output of our system without syntactic re-ranking for the sample entity

mention “children attending a day-care center”. The semantically most similar concepts

to the mention are found as “OBT:001423 medical center”, “OBT:001801 clinic”, and

“OBT:000259 research and study center”, which are false positives. The correct concept

is “OBT:002146 child”, which is very similar to the head word “children” of the mention

“children attending a day-care center”. As this example shows, if the system can

identify the most informative word in the reference entity mention, the correct concept

can be assigned to it (see Table 4.1 (After re-ranking part)).

We proposed a re-ranking module based on syntactic parsing to identify the

correct concept from among the top k candidates returned by the word-embedding

based similarity ranking. The re-ranking module makes use of the Stanford Parser

(version 3.8.0) [121] to detect the most informative word in the reference entity mention.

It computes the semantic similarity between the most informative words of the reference

mention and the candidate ontology concept, and re-ranks the top k semantically most

similar concepts.

Table 4.1. Semantically most similar concepts to the entity mention “children

attending a day-care center” with/without re-ranking.

Before Re-ranking

Rank Concept Similarity score

1 OBT:001423 medical center 0.8297

2 OBT:001801 clinic 0.7917

28 OBT:002146 child 0.6979

After Re-ranking

Rank Concept Similarity score

1 OBT:002146 child 0.7484

3 OBT:001801 clinic 0.6519

24 OBT:001423 medical center 0.5460

The intuition behind our re-ranking approach is that the entity mentions are

noun phrases and the heads of the noun phrases are the most informative words in

the mentions. To obtain the corresponding head words, the part-of-speech tags and
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Figure 4.3. Sample syntactic parse Syntactic parse of the Stanford Parser for the

sample named entity mention “children attending a day-care center”

syntactic parses of the entity mentions are required. We used the Stanford Parser by

providing the entity mentions as input and obtaining the syntactic parses composed of

their constituent phrases as output. Next, the syntactic parses are processed to find the

most informative words in the mentions by utilizing the algorithm whose pseudo-code

is given in Figure 4.5. According to this algorithm, the top level rightmost “noun” is

searched in the tree structured syntactic parse and assigned as the head of the mention

phrase. For example, for the sample mention “children attending a day-care center”,

the Stanford Parser generates the syntactic parse, which is shown in Figures 4.3 and 4.4.

Figure 4.3 demonstrates the syntactic parse with its constituent phrases and Figure

4.4 shows the tree view. The head of the sample mention is found as “children” and

the head of the concept name “OBT:001423 medical center” is found as “center” by

leveraging the algorithm.

Figure 4.4. Tree view of the sample parse Tree view of the syntactic parse of the

sample named entity mention “children attending a day-care center”

After the detection of the head words of the phrases as “children” for the “children

attending a day-care center” entity mention and “center” for the “OBT:001423 medical
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Figure 4.5. Pseudo-code Algorithm for finding the most informative word in an entity

mention whose syntactic parse is given as input. NP: Noun Phrase; NN: Noun

singular; NNS: Noun plural ;NNP: Proper noun singular; NNPS: Proper Noun plural

center” ontology concept name, the semantic similarities are recomputed based on these

new information. The similarity scores of the concepts with unrelated head words (e.g.

“OBT:001423 medical center”) will be lower and those of concepts with related head

words (e.g. “OBT:002146 child”) will be higher after the re-ranking phase (see Table

4.1).

The mathematical formulation of the syntactic weighting based similarity used for

re-ranking is shown in Equation 4.1, where SRR (m, c) is the final computed similarity

between mention m and candidate concept c, and SS is the semantic similarity, in which
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mhead is the head word of the mention m and chead is the head word of the concept c,

SS (m, c) is the similarity between mention m and concept c computed as described in

Section 4.3.4, and w is a weighting parameter which can take values between 0 and 1.

SRR (m, c) = (w * SS(mhead, chead)) + ((1-w) * SS(m, c)) (4.1)

4.4. Results and Discussion

In this section, the results of the proposed systems both with and without re-

ranking are presented. In addition, comparison with prior work is performed.

4.4.1. Evaluation Metrics

4.4.1.1. Evaluation for Bacteria Biotopes. For evaluation of the bacteria biotopes en-

tity normalization predictions, we used the official on-line evaluation service to compute

the precision score, which is the official measure used to rank the submissions in the

BioNLP Shared Task 2016 Bacteria Biotopes categorization sub-task.

In the BioNLP Shared Task 2016 Bacteria Biotopes categorization sub-task, enti-

ties have been given and the participants were required to predict the normalization of

the entities. In the official on-line evaluation, for each normalized Habitat entity, Wang

similarity W [122] is calculated with s = 0.65 to measure the similarity between the ref-

erence and the predicted normalization. Wang similarity is the Jaccard index between

the two sets of the predicted and the reference concept ancestors with a weighted factor

ds, where d is the distance between the corresponding concept and the ancestor, and

s is a parameter between 0 and 1. The submissions are evaluated with their Precision

values:
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Precision =
∑

Sp / N (4.2)

where Sp is the total Wang similarity W for all predictions [49], and N is the

number of predicted entities.

4.4.1.2. Evaluation for Adverse Drug Reaction. For evaluation of the adverse drug re-

actions entity normalization predictions, we computed the macro-averaged and micro-

averaged scores for precision, recall and f-score measures. True positives (TP), false

positives (FP), and false negatives (FN) are calculated by comparing the predicted

normalization concept with the reference normalization concept in the gold standard

via exact matching.

To compute Micro-average scores, the true positives, false positives, and false

negatives of the system are summed up for all drug labels to get the statistics (Equa-

tions 4.3 and 4.4). N is the total number of drug labels in the data set.

Micro-average Precision =

N∑
c=1

(TPc)

N∑
c=1

(TPc + FPc)

(4.3)
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Micro-average Recall =

N∑
c=1

(TPc)

N∑
c=1

(TPc + FNc)

(4.4)

On the other hand, the macro-averaged scores are computed as the average of

the individual precision and recall values obtained on each drug label (Equations 4.5

and 4.6).

Macro-average Precision =

N∑
c=1

(Precisionc)

(N)
(4.5)

Macro-average Recall =

N∑
c=1

(Recallc)

(N)
(4.6)

4.4.2. Results

4.4.2.1. Bacteria Biotopes. Table 4.2 shows the results of our proposed approach with

and without syntactic re-ranking. The results show that the system with the syntactic

re-ranking module achieves a higher performance. Recall that the proposed system
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without re-ranking computes the vector representations for the multi-word entities by

averaging the vectors of their composing words. On the other hand, the proposed

system with syntactic re-ranking computes the vector representations by giving higher

weights to the head words. This means that instead of averaging the vector represen-

tations, giving higher weights to the most informative words is a more suitable way for

vector representations of multi-word entities.

Table 4.2. Results for the system with and without syntactic re-ranking. Precision

values for the training and development data sets are reported. k is set to 5 and w is

set as 0.25 for the re-ranking module.

System Train Dev

Before Re-ranking 0.601 0.629

After Re-ranking 0.648 0.677

Table 4.3. Comparison with previous systems for the normalization task of bacteria

biotopes. Precision values for the test data set are reported. k is set to 5 and w to

0.25 for the proposed system (BOUNEL) based on the results on the training and

development sets.

System Precision

BOUNEL(Our system) 0.659

TURKU [115] 0.630

BOUN [53] 0.620

CONTES [114] 0.597

LIMSI [113] 0.438

BASELINE-2 0.322

BASELINE-1 0.225

Table 4.3 presents a comparison of the proposed system, named as BOUNEL

(BOUN Named Entity Linker), with the prior work on the task of habitat named

entity normalization. We compared our results with the previous systems that are

tested on the BioNLP Shared Task 2016 BB cat subtask test set. We computed two

different baseline results; the BASELINE-1 assigns the exact match of the term in the

ontology. In case of non-existence of an exact match, BASELINE-1 assigns the term to

the root concept of the Onto-Biotope ontology hierarchy, which is “bacteria habitat”
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concept. On the other hand, BASELINE-2 assigns all terms to the “bacteria habitat”

concept without searching for an exact match. The results show that our system

obtained a score of 65.9% which is higher than both of the baselines BASELINE-1

and BASELINE-2. Our proposed method also obtained higher scores than all other

previously proposed methods on the bacteria biotope normalization task, achieving the

new state-of-the-art results.

4.4.2.2. Adverse Drug Reactions. Table 4.4 presents the results of the proposed sys-

tem before and after syntactic re-ranking for the task of adverse drug reactions entity

normalization on the Text Analysis Conference 2017 Adverse Drug Reaction training

and test data sets. We used the same values for the parameters of the re-ranking mod-

ule as the bacteria biotope normalization task (k=5 and w=0.25). Since there is no

prior work on the task of adverse drug reactions entity normalization task on the same

data set, we compared our results with the baseline. We computed baseline results

by assigning the mention to the exact match of the term in the MedDRA dictionary.

As the results on Table 4.4 demonstrate, the new system with syntactic re-ranking

obtained higher precision, recall, and f-measure scores on both the training and test

data sets than the system without syntactic re-ranking. Furthermore, the new system

with syntactic re-ranking achieved significantly higher recall than the baseline, as a

result achieving higher f-measure scores.

4.4.3. Discussion

4.4.3.1. Bacteria Biotopes. Table 4.5 shows the performance of the proposed system

without syntactic re-ranking for returning the correct concept from the ontology among

the top k ranked candidates. For example, when k = 1, the concept assignment

is considered correct, only if the correct concept is ranked first by the system. On

the other hand, when k = 10, the concept assignment is considered correct, if the

correct concepts is ranked in the top ten by the system. These results motivated

the development of the re-ranking module, since as k increases, the precision of the

system also increases. The goal of syntactic re-ranking is to re-rank the top k retrieved
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Table 4.4. Results of the proposed method with/without re-ranking on the adverse

drug reaction normalization task. Precision, recall and f-score values for the training

and test sets are reported.

Training set

Baseline Before Re-ranking After Re-ranking

Macro-average Precision 0.999 0.737 0.742

Macro-average Recall 0.522 0.732 0.736

Macro-average F-score 0.686 0.735 0.739

Micro-average Precision 0.999 0.728 0.730

Micro-average Recall 0.513 0.723 0.725

Micro-average F-score 0.665 0.726 0.728

Test set

Baseline Before Re-ranking After Re-ranking

Macro-average Precision 0.999 0.683 0.687

Macro-average Recall 0.494 0.677 0.681

Macro-average F-score 0.661 0.675 0.684

Micro-average Precision 0.999 0.682 0.686

Micro-average Recall 0.489 0.675 0.680

Micro-average F-score 0.657 0.678 0.684

candidate concepts, so that the correct concept moves to the first rank, as in the

example shown in Table 4.1.

Table 4.5. Prediction performance of our system without syntactic re-ranking among

the semantically most similar top (k = 1, 5, 10, 20, 25, 50) concepts. Precision values

for the training and development data sets are reported when the reference concept is

among the top k.

k 1 5 10 15 20 25 50

Train 0.614 0.656 0.672 0.711 0.726 0.738 0.831

Dev 0.655 0.683 0.725 0.753 0.789 0.804 0.894

Table 4.6 demonstrates the results of our proposed approach with syntactic re-

ranking, when the top k candidates retrieved by the system without re-ranking are
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Table 4.6. Results for the system with syntactic re-ranking for the different

semantically most similar top (k = 5, 10, 15, 20, 25, 50) concepts. Precision values

for the training and development data sets are reported when the reference concept is

at the first rank after re-ranking the semantically most similar top (k = 5, 10, 15, 20,

25, 50) concepts.

k 5 10 15 20 25 50

Train 0.648 0.634 0.637 0.639 0.640 0.643

Dev 0.677 0.668 0.667 0.667 0.668 0.632

provided as input to the re-ranking module. As the results show, for values of k = 10,

k = 15, k = 20 and k = 25, the results are nearly the same on the training and

development sets, which means that after a threshold of k = 5, different values of k

make no big difference in the results. Therefore, based on the results on the training

and development sets, k is chosen as 5 empirically.

We also investigated the effects of using different similarity/distance metrics, word

mover’s distance (WMD) and cosine similarity. The results show that the system with

cosine similarity achieved better precision scores than the system with WMD on both

the training (WMD: 58.6%; Cosine: 60.1%) and development (WMD: 49.0%; Cosine:

62.9%) data sets.

Table 4.7. Results for the system with different weights for the most informative

words (w = 0, 0.25, 0.50, 0.75). Precision values for the training and development

data sets are reported.

w Train Dev

0 0.614 0.655

0.25 0.648 0.677

0.50 0.648 0.669

0.75 0.632 0.661

Table 4.7 shows the effect of the parameter w, which is used in Equation 4.1

to give weights to the most informative words (head of the noun phrase) with the

ultimate aim to calculate the similarity between the named entity mention phrases
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and the reference ontology terms. As the results show, for w = 0.25 our proposed

approach obtains higher precision on both the training and the development sets.

During the error analysis of the proposed system with syntactic re-ranking on the

training and development sets, we realized the existence of falsely normalized mentions,

which are possessive prepositional phrases (PPP). These phrases include compound

noun phrases in the “NP of NP” form. For example, the entity mention “throats of

two healthy children” is composed of two noun phrases “throats” and “two healthy

children”, where the first NP “throats” is the only informative NP for normalizing the

entity mention to the correct concept “OBT:000374 throat”. As a result of this fact,

a syntax rule is added before re-ranking to strip the non-informative words following

“of” from the entity mentions, if they are possessive prepositional phrases.

4.4.3.2. Adverse Drug Reactions. Although experimental results showed that the new

system with syntactic re-ranking obtained higher precision scores on both data sets

than the system without syntactic re-ranking, the improvement of the new system on

the Text Analysis Conference 2017 Adverse Drug Reaction (ADR) data set is lower

compared to the improvement that is achieved on the BioNLP Shared Task 2016 Bac-

teria Biotopes data set. Error analysis revealed two main sources of errors, which

are more prevalent in the ADR data set. The first source of errors is the usage of

abbreviations and acronyms as entity mentions, which are hard to normalize without

incorporating the context of the mentions. For example, in the training set, there are

entity mentions such as “sjs” and “ten”, which are acronyms that should be normal-

ized to the corresponding concepts “Stevens-Johnson syndrome” and “Toxic epidermal

necrolysis” in the MedDRA dictionary. Rare words are the second source of errors. Al-

though the word embedding model, which is used to calculate the semantic similarities,

has been learned from PubMed articles, there may still exist out of vocabulary words,

which are rare. For example, for the ADR mention “Neoscytalidium infections”, the

“Neoscytalidium” word does not exist in the model that is used to calculate the word

embeddings. In that case, the semantically most related concepts are found incorrectly

by the proposed system considering only the existing word “infections” as “Nosocomial
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infection”, “Opportunistic infection” and “Granulicatella infection”, while the correct

concept is “Neoscytalidium infection”.



63

5. APPLICATIONS

5.1. An application for the Bacteria Biotopes domain

5.1.1. Retrieval of the related abstracts

An abstract retrieval module is implemented to automatically download the ab-

stracts of the articles related to bacteria habitats from PubMed. We searched in

PubMed for “bacteria”, which returned 2, 141, 243 documents (Search date: Decem-

ber 2018). The first 1, 000 abstracts from this set of documents are automatically

downloaded for further processing.

5.1.2. Preprocessing

Firstly, each input file is split into sentences using the Genia Sentence Splitter

(GeniaSS) [123]. The outputs of the splitter are given to the Genia Tagger [97, 105]

as input files with the aim of obtaining the lemmas, the part-of-speech (POS) tags,

and the constituent categories of the words in the given biomedical text (e.g., surface

form: ticks; lemma: tick; POS tag: NNS; phrase structure: I-NP). We utilized these

syntactic information at the following steps of our system.

5.1.3. Named Entity Tagging

We assume that bacteria habitats are embedded in text as noun phrases, and all

noun phrases are possible candidates for habitat entities and bacteria entities.

The Noun Phrase Extractor and Simplifier module firstly detects the noun phrases

in the text by using the Genia Tagger and then post-processes these noun phrases by

using the syntactic rules that are explained in detail in the previous chapters. To

determine whether a candidate noun phrase is a habitat entity or not, the Habitat

Name Recognizer module searches all ontology entries, which compose the OntoBiotope
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Ontology, to find an exact match with the candidate noun phrase or with parts of it.

In the same way, Bacteria Name Recognizer module searches all the ontology entries,

which compose NCBI Taxonomy. In this step, the names, exact synonyms, and related

synonyms of ontology entries (ontology entry features) are compared with the candidate

noun phrase. After running this module, an output file, which contains the predicted

habitat entities and their positions in the input text, and a corresponding output file

for the predicted bacteria entities and their positions in the input text, are created.

5.1.4. Named Entity Normalization

While our system detects entities and their boundaries (as explained in detail

in Chapter 3.2), it also assigns ontology concepts to the retrieved entities. Bacteria

entities and habitat entities are normalized respectively through NCBI Taxonomy and

OntoBiotope ontology.

Although promising results are obtained for the ontology normalization of habitat

entities by using the approach, which is explained in detail in Chapter 3.2, the syntax

rules makes the adaptation to different biomedical entities harder. For the normal-

ization of habitat entities, our proposed approach (explained in detail in Chapter 4),

which is mainly based on the assumption that semantically similar words have similar

vector spaces, is utilized. Based on this assumption, the semantic similarity of habi-

tat entity mentions and ontology concept terms are computed, and the most similar

concept in the ontology is assigned as the normalized concept to the habitat entity

mention.

5.1.5. Relation Extraction

We propose two methods for identifying bacteria habitat localization relations.

The underlying assumption for the first method is that discourse changes with a new

paragraph. Therefore, it operates on a paragraph-basis. The second method performs

a more fine-grained analysis of the text and operates on a sentence-basis. We also

develop a novel anaphora resolution method for bacteria coreferences and incorporate
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it with the sentence-based relation extraction approach.

We participated in the Bacteria Biotope (BB) Task of the BioNLP Shared Task

2013. Our system ranked third with an F-score of 27% in Sub-task 2 (Localization

Event Extraction). At this part of the thesis, we report the system that is implemented

for the shared task, including the novel methods developed and the improvements ob-

tained after the official evaluation. The extensions include the novel sentence-based re-

lation extraction method incorporated with anaphora resolution for Sub-task 2. These

extensions resulted in state-of-the-art performance for Sub-task 2 with an F-score of

53%.

Our results show that the newly developed sentence-based relation extraction

system with the anaphora resolution module significantly outperforms the paragraph-

based one, as well as the other systems that participated in the BB Shared Task 2013.

5.1.5.1. Related Work. In this section, previous work that is related to the extraction

of relations between bacteria entities and habitat entities (Localization Relation Ex-

traction) and of relations between two habitat entities (Part Of Relation Extraction)

are covered in detail.

The participants of the first shared task (The BioNLP Shared Task 2011), which

targets the extraction of information about bacteria and their habitats, UTurku and

JAIST adapted machine learning approaches for detecting the Localization and Part-

of relations among bacteria and habitats. On the other hand, another team Bibliome

developed a rule-based system based on the co-occurrence of entities with a trigger

word in the same sentence. Only the Bibliome team performed coreference resolution.

UTurku’s system was based on sentence level processing, whereas JAIST’s system was

based on paragraph level processing. Therefore, Uturku’s system was most affected

from not performing coreference resolution [84,85].
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Sub-task 2 of the Bacteria Biotope (BB) Task in the BioNLP Shared Task 2013,

which gave another opportunity to scientists to address the task of extracting informa-

tion about bacteria and habitats, focused on the aim to extract the Localization and

Part Of relations. For Sub-task 2 the LIPN system [91] used a k-NN based approach

by building language models for each example relation. The best F-score (42%) for

Sub-task 2 was obtained by the TEES 2.1 system [124], which used multi-step Support

Vector Machine classification. TEES 2.1 obtained the best F-score of 14% and a relaxed

score of 49% in Sub-task 3 as well. TEES 2.1 is a generalized tool for relation extrac-

tion that was implemented to apply to many tasks in the BioNLP Shared Task. It did

not tackle Sub-task 1 of the BB task that aimed at identifying the habitat entities and

assigning them to the corresponding OntoBiotope ontology concepts. The IRISA sys-

tem used a machine learning approach based on the k-Nearest Neighbor (kNN) method

and ranked second with an F-score of 40% in Sub-task 2 [92]. LIMSI [93] was the only

team that participated in all three BB sub-tasks, but their results for Sub-task 2 and

Sub-task 3 were relatively lower compared to Sub-task 1 results. We also participated

in Sub-task 2 of the BB Task 2013. Our system Boun ranked third in Sub-task 2 with

an F-score of 27% in the official evaluation [16]. The Sub-task 2 system submitted to

the official evaluation was based on a paragraph-based relation extraction approach,

where the habitat entities were assumed to be related to the bacteria entity that occur

first in the paragraph. After the shared task we developed a novel method for Sub-task

2, which operates on a sentence basis. In order to handle relations that span multiple

sentences a new anaphora resolution approach for the bacteria biotopes domain has

been developed as well. These improvements led to state-of-the-art results in Sub-task

2. The extended system Boun 2 obtained 53% F-score on Sub-task 2. The details of

our official submission as well as the improvements developed after the shared task are

described in the following sections.

Sub-task 2 of the BB Task is related to the general problem of relation ex-

traction. A number of different methods including entity co-occurrence based ap-

proaches [125, 126] and pattern matching based approaches [127–129] have been de-

veloped for extracting relations among biomedical entities including genes, proteins,

drugs, and diseases. The state-of-the-art techniques for biomedical relation extrac-
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tion are in general based on using the syntactic analyses of the sentences, usually in

conjunction with supervised machine learning methods [123, 130–133]. Most relation

extraction systems operate on a sentence-level. The underlying assumption is that the

majority of the relations are contained within a single sentence. This assumption holds

for some domains. For example, it has been shown that only 5% of the relations in

the Genia event corpus [83] span multiple sentences [134]. However, a challenge in the

Bacteria Biotopes domain is the vast amount of relations that span multiple sentences

and the abundance of bacteria anaphora in the text. Despite this fact, only one of the

systems that participated in the BB Shared task 2011 tackled the anaphora resolution

problem in this domain [86], and none of the systems in the BB Task 2013 included

anaphora resolutions modules [77].

We will describe the systems that we developed for extracting bacteria localization

and habitat PartOf relations in the following subsections.

5.1.5.2. Methods. Localization relation extraction

One of the two types of relations that have to be extracted for Sub-task 2 is the

localization relations between bacteria and habitat entities. For example, the following

excerpt from an input text file “Bordetella. This group of organisms is capable of invad-

ing the respiratory tract of animals and causing severe diseases.”, contains information

about “Bordetella” bacteria that lives in the “respiratory tract of animals”. There-

fore, there are localization relations between the “Bordetella” bacteria entity and the

“respiratory tract of animals” and “animals” habitat entities, which must be extracted

automatically.

In order to extract localization relations between bacteria and habitat entities,

we propose two different systems. The paragraph-based system is the official system

which was submitted to BioNLP Shared Task 2013 [16]. The sentence-based system

with the anaphora resolution module was developed after the official evaluation. In

the following subsections, each system is explained in detail.
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Paragraph-based system: This system is based on the assumption that the bac-

teria name that occurs first in a paragraph is the topic of that paragraph. Therefore,

after identifying the bacteria and habitat entities in a paragraph, the bacterium that

appears first in the paragraph is associated with all habitat entities in that paragraph.

If this bacterium entity occurs earlier in the document as well, then its first occurrence

in the document is associated with the habitat entities in the paragraph. A special rule

is applied to bacteria names that contain the term “strain”. In this case, the habitat

entities are associated with the first occurrence of the corresponding bacterium name

that does not contain the “strain” term. For example, in a paragraph that starts with

the sentence “Bordetella petrii strain DSM12804 was initially isolated from river sedi-

ment”, a relation is set between the habitat entity “river sediment” and the bacterium

entity “Bordetella petrii DSM12804” that occurs earlier in the document, instead of

“Bordetella petrii strain DSM12804”, which is the first bacterium name in the given

paragraph.

Sentence-based system: The workflow of the sentence-based system is shown in

Figure 5.1. This system operates on a sentence-basis and performs a more fine-grained

analysis of the text compared to the paragraph-based system. First, the text is seg-

mented into sentences. Then, the bacteria and habitat entities that occur in the given

sentence are identified. The assumption is that there is a relation between bacteria and

habitat entities that occur in the same sentence, if there is a specific bacteria name

in the considered sentence. For example, “Bordetella petrii DSM12804” is a specific

bacteria name, whereas the terms “bacteria” and “bacterium” are not specific bacteria

names, even though they are tagged as bacteria entities in the text documents.

Anaphora resolution: One of the challenges for extracting bacteria localization

relations is that the corpus contains a large number of anaphora. In general, each docu-

ment in the corpus is about a specific bacterium species [77]. After an explicit mention

of the name of this species in a sentence, it is often referred to by using anaphors in the

subsequent sentences. Therefore, several localization relations span multiple sentences.

To tackle this problem we developed an anaphora resolution module and integrated it

with the sentence-based localization relation extraction system. The anaphora resolu-
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Figure 5.1. Workflow of the Sentence-based Sub-task 2 System

tion module detects sentences that do not include any bacteria entities, but contain

coreferences to bacteria entities. There are three types of anaphoric expressions which

are handled in different ways by our system:

Anaphora type 1: We compiled a keyword list consisting of 23 anaphoric ex-

pressions such as “the bacterium”, “this organism”, “this species”, “this genus”, and

“this group of organisms” by manually analyzing the training set. If a sentence does

not contain a bacteria name, but contains an anaphoric expression included in the

keyword list, the antecedent of the anaphor is set as the first bacteria name that oc-

curs in the previous sentence. Then, localization relations are identified between the

habitats in the sentence and the detected antecedent of the anaphoric expression. For

example, although the sentence “This bacterium is highly infectious, and can be spread
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through the contact with the infected animal products or through the air.” does not

include any explicit bacteria entity names, it describes localization relations between

the bacteria anaphor “This bacterium” and the habitats “animal products” and “air”.

In this case, the anaphora resolution module looks at the previous sentence, which is

“Brucella canis.” and assigns the habitat entities to this bacteria entity. If there is no

bacteria name in the previous sentence, then the first bacteria entity in the document

is assigned to the habitat entities, since in general each document is about a specific

bacterium species, and the mention of this species occurs first in the document.

Anaphora type 2: If there is no specific bacteria name in the given sentence,

but the sentence begins with the anaphoric pronoun “it”, then our system looks at

the previous sentence and a localization relation is set with the first bacteria in the

previous sentence and the habitats in the given sentence. For example, given the

sentence “It was isolated from Ixodes scapularis in 1982.”, our system looks at the

previous sentence “Borrelia burgdorferi.” and sets a localization relation between the

“Borrelia burgdorferi” bacteria entity and the “Ixodes scapularis” habitat entity.

Anaphora type 3: If a sentence begins with the “This strain” anaphoric expres-

sion, then similarly to the paragraph-based system, the bacteria entity that occurs

first in the document is assigned as the antecedent of the anaphor. Consequently, the

habitat entities in the sentence are assigned to this antecedent.

Part-Of Relation Extraction

PartOf relations between habitat entities is the second relation type targeted in

the BB Shared Task. For example, in the sentence “This strain was isolated from

infant feces”, the habitat entity “infant feces” is a part of the habitat “infant”. For

habitat PartOf relation extraction we introduce a shallow syntactic analysis dependent

rule-based approach. The first rule with the preposition “of” was developed for the

official shared task submission. The remaining rules were developed after the shared

task. Our rules are based on the assumption that a habitat is likely to be a part of

another habitat, if the mention of the second habitat in text contains the mention of
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the first habitat, and in addition the syntactic rules described below are met.

Syntax rule 1: If one habitat contains the other one, and the second habitat

follows one of the prepositions “of”, “in”, “from”, then the relation that the first

habitat is PartOf the second habitat is extracted. For example, the habitat mention

“rhizosphere of plants” contains the “plants” habitat mention. Since the first habitat

phrase contains the preposition “of”, and the second habitat phrase “plants” occurs

right after this preposition, the relation “rhizosphere of plants” is PartOf “plants” is

extracted. As another example, the habitat mention “oral cavity in humans” contains

the “humans” habitat mention. Since the first habitat mention contains the preposition

“in”, and the second habitat mention “humans” follows this preposition, the relation

“oral cavity in humans” is PartOf “humans” is extracted. Finally, “skin lesion from a

Lyme disease patient in Europe” and “Lyme disease patient in Europe” are overlapping

habitat entities, one of which contains “from”, which is succeeded by the second habitat

mention. Then, the relation “skin lesion from a Lyme disease patient in Europe” is

PartOf “Lyme disease patient in Europe” is extracted.

Syntax rule 2: If two habitat mentions overlap in text like in the example

“Aeschynomene stem nodule” and “Aeschynomene”, by looking at their positions we

infer a PartOf relation between them. For example, “Aeschynomene stem nodule” is

PartOf “Aeschynomene”.

5.1.5.3. Results. The evaluation metrics used for Sub-task 2 are precision, recall, and

f-score. The details of the evaluation metrics and the official evaluation results are

available in [77]. In the following subsections, the results of the system (Boun) with

which we participated in the BB shared task and the results of the improved system

(Boun 2) developed after the official evaluation are presented.

This section provides the evaluation results obtained by the paragraph-based sys-

tem (Boun) with which we participated in the BB Shared Task Sub-task 2 (Localization

and PartOf Event Extraction), as well as the newly developed sentence-based system
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Table 5.1. Results of BB Sub-task 2 (Localization and PartOf Event Extraction). The

results obtained on the test set are reported.

System Type Recall Precision F-score

Boun 2 Localization 0.61 0.54 0.57

PartOf 0.20 0.32 0.25

Boun Localization 0.23 0.38 0.29

PartOf 0.15 0.40 0.22

with the anaphora resolution module (Boun 2). Table 5.1 presents a comparison of the

Boun and Boun 2 systems with each other. The results demonstrate that the Boun 2

system performs significantly better than the Boun system.

Table 5.2. Comparison with the other systems that participated in the BB Sub-task 2

(Localization and PartOf Event Extraction). The results obtained on the test set are

reported.

System Recall Precision F-score

Boun 2 0.53 0.52 0.53

TEES 2.1 0.28 0.82 0.42

IRISA 0.36 0.46 0.40

Boun 0.21 0.38 0.27

LIMSI 0.04 0.19 0.06

Table 5.2 presents a comparison of the Boun and Boun 2 systems with the other

systems that participated in the shared task. According to the official results, the Boun

system ranked third among the four systems that participated in the event detection

task. The new Boun 2 system achieves 53% F-score on the test set, which is significantly

higher than the 27% F-score obtained by the Boun system. The F-score of the Boun

2 system is even higher than the F-score of the system that ranked first in the official

evaluation.

Tables 5.3, 5.4, and 5.5 show the effects of the anaphora resolution module

for localization extraction and the syntax rules for PartOf relation extraction on the
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Table 5.3. Effects of Anaphora Resolution Module and Syntax Rules (Localization

and PartOf Event Extraction). The results obtained on the training set are reported.

System Recall Precision F-score

Boun 2 0.46 0.42 0.44

- Anaphora 0.36 0.45 0.40

- Syntax rule 1 0.45 0.42 0.43

- Syntax rule 2 0.46 0.42 0.44

Table 5.4. Effects of Anaphora Resolution Module and Syntax Rules (Localization and

PartOf Event Extraction). The results obtained on the development set are reported.

System Recall Precision F-score

Boun 2 0.55 0.40 0.46

- Anaphora 0.50 0.44 0.47

- Syntax rule 1 0.54 0.40 0.46

- Syntax rule 2 0.53 0.42 0.47

Table 5.5. Effects of Anaphora Resolution Module and Syntax Rules (Localization

and PartOf Event Extraction). The results obtained on the test set are reported.

System Recall Precision F-score

Boun 2 0.53 0.52 0.53

- Anaphora 0.46 0.56 0.50

- Syntax rule 1 0.52 0.52 0.52

- Syntax rule 2 0.50 0.55 0.52

training, development, and test sets, respectively. The first rows of these tables show

the results obtained by the Boun 2 system. The second row shows the results obtained

by removing the anaphora resolution module from the system, and the third and fourth

rows show the results obtained by removing the first and second syntax rules from the

system, respectively. The anaphora resolution module achieves a considerable increase

in recall on all data sets (training, development, and test), which leads to improved

F-score performances on the training and test sets. The two syntax rules have similar
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effects. In general, they lead to an increase in recall, which can improve F-score if the

drop in precision is relatively less (e.g. on the training and test sets).

These results demonstrate that performing a more fine-grained analysis of the

text at the sentence level and incorporating an anaphora resolution module to handle

relations that span multiple sentence is an effective approach for extracting relations in

the bacteria biotopes domain. Our improved system achieves state-of-the-art results.

However, there is still a lot of room for improvement. Our current approach assumes

that if a specific bacteria (or its coreference) occur in the same sentence with a habitat

entity, there is a localization relation between them. Deeper syntactic and semantic

analysis of the sentences by using full or dependency parsing strategies can enhance

the accuracy of the system. The PartOf relation extraction method that we proposed

is only able to identify PartOf relations between habitat entities that overlap (e.g.

“human gastrointestinal tract” and “human”). A deeper syntactic analysis can enable

identifying long-distance relations between habitat entities (e.g. the PartOf relation

between “human” and “gut” in the sentence “This organism is found in humans as

a normal component of gut flora.”). Furthermore, the lower accuracy of the PartOf

relations may also be caused by the fact that our system does not take into account

whether the candidate habitat entities are hosts or host parts. For example, the habitat

entity “fresh water” is neither a host nor a host-part. Therefore, it should not be

considered for a PartOf relation. Including a module that can pre-identify the habitats

which can act as hosts or host-parts in advance, may improve the performance of the

system for PartOf relation extraction.

5.2. An application for Brucella-Host Relevant Interaction Extraction

5.2.1. Motivation

Brucella is a Gram-negative intracellular bacterium that causes zoonotic brucel-

losis in humans and various animals. Brucellosis is one of the most common zoonotic

diseases worldwide, causing approximately half a million new human brucellosis each

year. There are 10 species of Brucella based on the preferential host specificity: Bru-
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cella melitensis (goats), B. abortus (cattle), B. suis (swine), B. canis (dogs), B. ovis

(sheep), B. neotomae (desert mice), B. cetaceae (cetacean), B. pinnipediae (seal), B.

microti (voles), and B. inopinata (unknown) [135]. Among them, B. melitensis, B.

abortus, B. suis, and B. canis are pathogenic to human. The other Brucella species are

non-pathogenic to humans.

The genome sequences of all Brucella species are strikingly similar with nearly

identical genetic content and gene organization [136]. Humans can be infected with

Brucella by contact with infected animals, by inhalation of an aerosol, or by ingestion

of contaminated animal products (e.g., infected milk and meat). Upon entry into ani-

mals, the bacteria invade the blood stream and lymphatics where they multiply inside

phagocytic cells and eventually cause septicemia. Symptoms include undulant fever,

abortion, asthenia, endocarditis and encephalitis. In spite of a long documented his-

tory (Corbel, 1997), the treatment of human brucellosis remains difficult and requires

antibiotics that penetrate macrophages and can act in an acidic intracellular envi-

ronment. While currently used live attenuated Brucella animal vaccines (e.g., RB51,

strain 19, and Rev. 1) have the ability to protect animals, they are still pathogenic to

humans. No safe and effective Brucella vaccine is available for human use. To develop

safe and effective preventive and therapeutic measures against Brucella infections, it

is critical to understand the host-Brucella mechanisms that lead to Brucella patho-

genesis and host immunity against Brucella infection. Although extensive studies have

been undertaken, the systematic understanding of the host-Brucella interactions is still

missing.

Currently, there is very limited information regarding host-Brucella interactions

in the host–pathogen interaction databases such as PHIDIAS [137], PHISTO [138], and

HPIDB [73]. Most of the relevant information is only available in a textual format in

the published scientific articles. In this study, our goal is to utilize text mining methods

to extract host-Brucella gene interactions from the biomedical literature. In order to

extract host–pathogen gene interactions, first the pathogen and host gene names should

be identified in text, then the interactions among the host and pathogen genes should

be detected. For example, the sentence shown in Figure 5.2 [139] contains three



76

host genes (gamma interferon, interleukin-12, and interleukin-4) and one pathogen

gene (vjbR). This sentence states that there are two pathogen–host gene interactions:

(gamma interferon, vjbR) and (interleukin-12, vjbR). On the other hand, there is no

an interaction between the host gene interleukin-4 and pathogen gene vjbR.

Figure 5.2. Sample host-pathogen interaction describing sentence taken from [139].

The pathogen gene is shown in red and the host genes are shown in green.

Different methods have been proposed for literature mining of gene–gene inter-

actions. One of the simplest and widely used methods is based on the co-occurrence

statistics of the proteins in text [125]. Another common approach is matching pre-

specified patterns and rules over the sequences of words and/or their parts of speech in

the sentences [127, 140]. More recently, machine learning methods that integrate the

linguistic, syntactic, and/or semantic analysis of the sentences as kernel functions have

been proposed and shown to achieve state-of-the-art results for gene/protein interaction

extraction from text [141–144]. Similarly to previous literature mining studies, in this

study we used the commonly applied GENETAG-style named entity annotation [145].

In other words, a gene interaction can involve genes or gene products such as proteins.

A number of rule-based and machine learning based methods have been pro-

posed for identifying gene/protein mentions in text [22, 146, 147] [148]. In our previ-

ous studies, we developed dictionary- and rule-based named entity recognition tools,

SciMiner [149] and Vaccine Ontology (VO)-SciMiner [150], which are designed to iden-

tify genes/proteins and Vaccine Ontology (VO) terms in the biomedical literature.

Conventional Medical Subject Headings (MeSH) terminology has been frequently used

for literature mining, such as GenoMesh studies [151]. The usage of ontologies en-

hances the chances of retrieving gene–gene interactions. For example, in our recent

studies we have shown that the VO facilitates the retrieval of vaccine-associated IFN-

gamma interaction network [152], fever-related network [153], and Brucella vaccine
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interaction network [153]. Recently, we have developed an Interaction Network On-

tology (INO) which is used to classify the interaction keywords such as up-regulation,

inhibition, association, and binding in an ontology structure [154]. The classified inter-

action hierarchy makes us not only retrieve gene–gene interactions, but also the types

of gene–gene interactions [154]. We hypothesize that such a strategy can also be used

in host–pathogen gene–gene interaction literature retrieval.

Currently, the research in host–pathogen interactions literature mining mostly

focuses on the retrieval of host gene–gene interaction under a particular pathogen

infection (e.g., influenza) or pathogen gene–gene interactions [e.g., our Brucella vaccine

interaction network analysis [153]]. There are only a few studies on the retrieval of

both host and pathogen genes and the inter-species interactions among them [reviewed

in [155]]. Machine learning based methods were proposed for classifying abstracts of

scientific articles as being relevant to host–pathogen interactions or not [156, 157]. In

addition, Thieu et al. (2012) proposed a rule-based approach that is based on the

link-grammar representations of the sentences for extracting host–pathogen protein

interactions from text.

In this study, we use kernel-based methods for extracting host–pathogen gene

interactions, which have been shown to achieve promising results for extracting intra-

species protein interactions [132] [158]. One main issue in host–pathogen interaction

literature mining is the confusion of a gene being a host gene or pathogen gene, since

many gene names are shared in both hosts and pathogens. This is one main research

topic in our current study. We extended the SciMiner mammalian gene name identifi-

cation tool to recognize and distinguish between host and Brucella genes. In addition,

we used an INO-based method to model various gene–gene interactions under different

experimental conditions. Our results show that our combinatory strategy is able to

successfully retrieve and analyze host–pathogen gene–gene interaction networks.
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5.2.2. Methods and Materials

The main focus of this study is to identify the interactions between host and

Brucella genes. Many eukaryotic organisms act as the host of Brucella infections,

including human, cattle, goat, sheep, pig, etc. As a laboratory animal model, mice can

also be infected with Brucella. Our literature mining study covers these different host

species. Meanwhile, there are 10 different Brucella species.

The overall design and workflow of our approach is shown in Figure 5.3. All

PubMed papers are used as our data sources. They are filtered based on their rel-

evance to Brucella. The selected abstracts are processed by splitting into sentences

and identifying the host and Brucella gene name mentions using SciMiner. Next, co-

occurrence and machine learning based methods are used to extract the interactions

among the host and Brucella genes. A literature-mined and manually verified host-

Brucella gene–gene interaction network is created. Finally, ontology based modeling of

host–pathogen gene–gene interactions is performed by utilizing the Interaction Network

Ontology (INO). The details of the methods are presented in the following subsections.

Figure 5.3. Workflow of the host-Brucella interaction extraction approach.
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5.2.2.1. Data set collection. The 2015 MEDLINE/PubMed Baseline Distribution database

consisting of 23,343,329 records was downloaded from the US National Library of

Medicine and processed using our established literature mining pipeline. Briefly, the ti-

tle, abstract, and MeSH term of each record were parsed out from the downloaded XML

files. The collected abstracts were split into sentence level using LBJ2.nlp.SentenceSplitter

Java module. Then, enhanced version of our named entity recognition tools, SciMiner

[149] and VO-SciMiner [150], were used to identify host genes and pathogen genes,

and the results were populated into a local MySQL database. To define the Brucella-

specific context, we used a PubMed query, Brucella OR Brucellosis, which resulted in

a list of 16,699 PubMed IDs as of 2/1/2015.

5.2.2.2. Identifying gene names. To identify the mentioned host genes and Brucella

genes in the abstracts of articles, we used SciMiner [149] and VO-SciMiner [150].

SciMiner and VO-SciMiner are both dictionary- and rule-based literature mining tools.

SciMiner focuses on identification of mammalian genes, reported in terms of the of-

ficial human genes based on the HUGO Gene Nomenclature Committee (HGNC)

database [159], while VO-SciMiner identifies vaccine ontology (VO) terms and Bru-

cella genes.

To improve the identification accuracy of host and pathogen genes, we enhanced

the mining rules in both SciMiner and VO-SciMiner. First, the enhanced version

of SciMiner uses a stringent case match of gene symbols. In the original version of

SciMiner, which included dictionary of only human genes names and symbols, a relaxed

matching of symbol was employed to maximize the gene identification (high recall).

This relaxed case matching resulted in misidentifications such as recA, recombinase

A gene, being identified as the human RAD51 recombinase (RAD51), whose aliases

include RECA. Since the majority of the Brucella gene symbols start with a lower-case

character and usually end with an upper-case or numeric character, SciMiner excluded

symbols with this pattern. In case of the genes identified by both SciMiner as a host

gene and VO-SciMiner as a pathogen gene, the priority is given to the VO-SciMiner

identification considering the current context of Brucella-related literature.
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5.2.2.3. Mapping genes to pathogen and host species. In order to further improve the

overall accuracy of host gene identification, we used potential host species-related Med-

ical Subject Headings (MeSH) terms, including humans, rats, mice, cattle, guinea pigs,

swine, goats, and sheep to filter the genes identified by SciMiner. Only the host genes

identified from PubMed documents whose MeSH terms included at least one of these

selected terms were selected.

5.2.2.4. Gene-gene interaction extraction. In this study, co-occurrence based and su-

pervised machine-learning based approaches are used for extracting host-pathogen

gene-gene interactions. Both sentence-level and abstract-level co-occurrence approaches,

as well as a machine learning-based approach are investigated for this task. These ap-

proaches are described in the following subsections.

Co-occurrence based host-pathogen interaction extraction

We used two different contexts to extract the interactions based on the co-

occurrences of the host and pathogen genes: sentence-based context and abstract-based

context. In the sentence-based co-occurrence approach, if one pathogen and one host

gene occur in the same sentence, an interaction pair is extracted consisting of the cor-

responding pathogen and host genes. For example, in the sentence shown in Figure

5.2 [139], the SciMiner tool identifies two host genes (interleukin-12 and interleukin-4)

and one pathogen gene (vjbR). The sentence-level co-occurrence approach extracts the

interactions (interleukin-12, vjbR) and (interleukin-4, vjbR) from the sample sentence,

where (interleukin-12, vjbR) is a true interaction and (interleukin-4, vjbR) is an in-

correctly extracted interaction. In the sample sentence, gamma interferon is also a

host gene. However, since this gene is not detected by SciMiner, it is not considered

in the interaction extraction step. In the abstract-based co-occurrence approach, an

abstract is taken into consideration as the context window instead of a single sentence.

In other words, all pairs of host and pathogen genes that occur in the same abstract

are extracted as interacting pairs regardless of the sentence boundaries.
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Machine learning based host-pathogen interaction extraction

We utilized a machine learning based approach to classify whether a host and

pathogen gene pair occurring in the same sentence is described as interacting in the

sentence or not. We used support vector machines (SVM) (in particular the SVMlight

package [160]) as our classification algorithm with the cosine and edit kernels introduced

in [142]. These kernels make use of the dependency parse trees of the sentences that

represent the syntactic and semantic relations among the words. We used the Stanford

Parser [161] to obtain the dependency parse trees of the sentences in our Brucella

specific data set. We only processed sentences for which SciMiner identified at least

one host and one pathogen gene. The cosine and edit kernels are defined over the

path between the host gene and pathogen gene in the dependency parse tree of the

corresponding sentence.

The underlying assumption is that the dependency path between two entities is a

good description for the semantic relation between them. For example, the dependency

parse tree for the sample sentence “Furthermore, gap associated with murine IL-12 gene

in a DNA vaccine formulation partially protected mice against experimental infection.”,

taken from (Rosinha et al., 2002), is shown in Figure 5.4. The dependency path between

the host gene IL-12 and the pathogen gene gap, which are described as interacting in

the sample sentence, is “nn gene prep with associated vmod”. On this path we have the

word associated as well as the dependency relation type preposition with (prep with),

which provide clues for the interaction between gap and IL-12. The cosine kernel is

computed by taking the cosine similarity between two dependency paths, whereas the

edit kernel is computed by taking the edit distance between them and then converting

the distance measure to a similarity measure [142]. If two paths are similar, they are

likely to belong to the same class (the interaction class or the non-interaction class).

To the best of our knowledge, there are no publicly available manually labeled

host-pathogen gene-gene interaction corpora. Therefore, we trained the SVM classifier

with edit and cosine kernels by using corpora labeled for intra-species protein-protein

interactions. Specifically, we used the Christina Brun (CB) corpus provided as resource
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Figure 5.4. The dependency parse tree of a sample sentence. The tree generated for

the sentence Furthermore, gap associated with murine IL-12 gene in a DNA vaccine

formulation partially protected mice against experimental infection. from the

abstract of [162]. Host and pathogen genes identified by SciMiner are shown in green

and red, respectively.

at the BioCreative II challenge [163] and the AIMED corpus [164], which is a standard

corpus for evaluating intra-species protein-protein interactions. The learned cosine

and edit kernel based SVM models are used to classify each sentence as an interaction-

describing sentence or not for each host and pathogen gene pair identified by SciMiner

in the corresponding sentence.

5.2.2.5. Ontology modeling. The Interaction Network Ontology (INO) focuses on the

ontological representations of hierarchical biological interaction types and networks

[154]. INO has been proven to enhance the literature mining of gene-gene interac-

tion types [154]. In this study, we applied INO to analyze different interaction types

between host and Brucella at different experimental conditions. Furthermore, differ-

ent conditions of host-Brucella interactions were represented and analyzed through

ontology-based modeling.
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5.2.3. Results and discussion

5.2.3.1. Results. Identification of host and Brucella gene names

SciMiner and VO-SciMiner were enhanced to identify host and pathogen genes,

respectively. First, SciMiner has been modified to use stringent case match. In the

context of Brucella, consisting of 16,699 PubMed abstracts, the enhanced versions

of SciMiner and VO-SciMiner identified 47 unique pairs of potential host gene and

Brucella gene interactions using the improved symbol-based identification method and

confliction resolution between host and Brucella gene. Out of these 47 pairs, manual

examination confirmed that 24 unique pairs were true interactions, indicating an overall

accuracy of 51%.

Identification of host-Brucella gene-gene interactions

After identifying the host and Brucella gene names in sentences co-occurrence

and machine learning based methods are used to classify each pair in a sentence as

an interaction (positive class) or not (negative class). We performed manual evalu-

ation for the classification decisions of the methods for each host-Brucella gene pair

in each sentence. For the abstract-level co-occurrence approach, manual evaluation is

performed for each host-Brucella gene pair in each abstract.

Table 5.6. Co-occurrence and machine learning-based host-Brucella gene-gene

interaction results. TP: True Positive, TN: True Negative, FP: False Positive, FN:

False Negative.

TP TN FP FN Precision Recall F score

Co-occurrence (Sentence-based) 29 0 25 0 0.54 1.0 0.70

Co-occurrence (Abstract-based) 55 0 61 0 0.47 1.0 0.64

SVM (edit kernel) 15 12 12 14 0.56 0.52 0.54

SVM (cosine kernel) 12 19 5 17 0.71 0.41 0.52

The results obtained are summarized in Table 5.6. TP (True Positives) is the

number of host-pathogen interactions correctly classified as positive; FP (False Posi-

tives) is the number of negative host-pathogen interactions that are incorrectly classi-
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fied as positive by the classifier; TN (True Negatives) is the number of host-pathogen

interactions classified correctly as negative (no interaction); and FN (False Negatives)

is the number of positive host-pathogen interactions that are incorrectly classified as

negative by the classifier.

Precision, recall, and F-score are used as our metrics to evaluate the perfor-

mances of the utilized methods. Precision is the ratio of correctly identified positive

host-pathogen interactions over all interactions classified as positive by the classifier

(i.e., TP/(TP+FP)). Recall is the ratio of correctly classified positive host-pathogen

interactions over all positive host-pathogen interactions (i.e., TP/(TP+FN)). F-score

is the harmonic mean of these two measures.

Co-occurrence based methods classify all pairs of host-pathogen genes as positive,

if they occur in the same sentence or abstract. Therefore, they obtain the maximum

level of recall, i.e., 100%. Not all co-occurring gene pairs are true interaction pairs.

For example, in the sample sentence shown in Figure 5.2, there is no an interaction

between the pathogen gene vjbR and the host gene interleukin-4. However, the co-

occurrence methods incorrectly classify this pair as interacting, since they occur in the

same sentence. This leads to drop in precision.

SVM with edit and cosine kernel obtain higher precision compared to the co-

occurrence based approach. The precision obtained by the cosine kernel (71%) is

significantly higher than the precision values of the co-occurrence and edit kernel ap-

proaches. Edit kernel, on the other hand, obtains more balanced precision and recall

levels compared to the other methods.

Both edit kernel and cosine kernel operate on sentence-level. Therefore, they are

not able to identify interactions whose descriptions cross sentence boundaries. The

significantly higher number of true positive interactions retrieved by the abstract-level

co-occurrence approach indicates the importance of the use of abstracts (or scopes

wider than sentences) as context.
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Figure 5.5. Literature-mined host-Brucella gene-gene interaction results. (A) Venn

diagram (B) The literature-mined and manually verified host-Brucella gene-gene

interaction network.

Figure 5.5 shows the literature mined and manually verified unique host-Brucella

gene-gene interactions. In Figure 5.5 (A), Venn diagram shows the number of unique

host-Brucella interaction gene pairs retrieved and manually verified from sentence-level

and abstract-level processing. In Figure 5.5 (B), The literature-mined and manually

verified host-Brucella gene-gene interaction network is shown. Host genes are shown

in green and Brucella genes are shown in red. Red edges correspond to interactions re-

trieved from sentence-level processing. Black edges correspond to interactions retrieved

from abstract level processing. The more sentences/abstracts describe an interaction

between a gene pairs the thicker the edge connecting them. A total of 46 unique inter-

action pairs are retrieved. 24 of these were identified using sentence-level processing.

Abstract-level analysis enabled the retrieval of 22 additional unique interaction pairs

(Figure 5.5 A). The identified host-Brucella gene-gene interactions are represented as

a network, which consists of 20 Brucella genes and 25 host genes (Figure 5.5 B). The

interactions between host and Brucella gene pairs are represented as edges. The edges

are weighed based on the number of sentences/abstracts that state the corresponding
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interaction. BLS and L7/L12 are the most connected Brucella genes, whereas IFNG

and IRF1 are the most connected host genes.

Ontology Modeling of Host-Brucella Gene–gene Interactions

We used INO to analyze the types of interactions between the extracted host

and Brucella genes. The results of this analysis are shown in Figure 5.6. In total, six

different INO interaction types, all of which are sub-types of regulation, are identified

from this literature mining study. The ‘induction of production’ type is the most

common type identified. For instance, the sentence “The P39 and the bacterioferrin

(BFR) antigens of B. melitensis 16M were previously identified as T dominant antigens

able to induce both delayed-type hypersensitivity in sensitized guinea pigs and in vitro

gamma interferon (IFN-gamma) production by peripheral blood mononuclear cells from

infected cattle” [165] is an example sentence that describes an interaction of type

‘induction of production’ between pathogen and host genes. The sentence states that

Brucella gene P39 is able to induce in vitro host IFN-gamma production.

Figure 5.6. In total, six different INO interaction types were identified from this

literature mining study. The number of interactions of a specific type is shown in red

next to the interaction type. The ‘induction of production’ type is the most common

type identified.

5.2.3.2. Discussion. Using Brucella as an example pathogen, this study utilized lit-

erature mining and ontology analysis approaches to examine the interactions between

host genes/proteins and Brucella genes/proteins. Since genes encode for proteins, our
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host-Brucella gene–gene interactions also include protein–protein interactions. Our ap-

proach identified 46 pairs of host-Brucella gene–gene interactions from the literature,

and the ontology modeling analysis identified different types of interactions and pro-

vided deeper insights on how the host and Brucella genes/proteins interact at different

experimental conditions.

One challenge in host–pathogen interaction literature mining is the difficulty in

differentiating host genes and pathogen genes. In the current version of SciMiner and

VO-SciMiner we did not use any of the name (longer description)-based identification

results in the analysis. This is due to our manual evaluation of the preliminary re-

sults suggesting it is far more difficult to distinguish between host and pathogen genes

using longer description protein names as they are more redundant than gene sym-

bols. For example, the protein name “Superoxide dismutase [Cu-Zn]” may represent a

human/host gene name (SOD1 or SODC) or a Brucella/pathogen protein (SodC). In

general, the gene names are more unique than the gene symbols; therefore, use of only

short gene symbols resulted in decreased numbers of identified genes by the current

versions of SciMiner and VO-SciMiner. We will examine these missed genes and further

improve the sensitivity and accuracy of the gene name-based identification.

We investigated using co-occurrence and machine learning based methods for

extracting host–pathogen gene–gene interactions. The co-occurrence based methods

classify each pair of host and pathogen genes as interacting, if they occur in the same

sentence/abstract. Therefore, they obtain high recall by retrieving all interacting pairs

of genes. However, they also classify many gene pairs incorrectly as interacting, since

not all co-occurring gene pairs are true interactions. This leads to drop in perfor-

mance in terms of precision. The SVM classifiers with the dependency tree based

edit and cosine kernels make use of the syntactic analysis of the sentences. These

methods achieved higher precision compared to the co-occurrence based methods. To

the best of our knowledge, there does not exist a large manually labeled host–pathogen

gene–gene interaction data set. Therefore, the edit and cosine kernel based SVM classi-

fiers were trained by using generic (intra-species) protein–protein interaction data sets.

Training these classifiers with host–pathogen gene–gene interaction data might improve
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their performances. A drawback of most (if not all) currently available machine learn-

ing based interaction extraction methods is that they operate on sentence-level and

therefore, are not able to identify interactions that cross sentence boundaries. As our

sentence-level and abstract-level co-occurrence analysis revealed, many host-Brucella

interactions span multiple sentences. These results suggest that developing text mining

methods that operate on scopes wider than a sentence would be useful for extracting

host–pathogen gene–gene interactions.

Our ontology modeling studies demonstrate its value in further identifying the

nature and insights of host–pathogen gene–gene interactions. A simple gene–gene inter-

action may miss many details, especially in the setting of a host–pathogen interaction.

A gene–(interaction type)-gene would provide more details since the interaction type

could indicate how the two genes interact. The INO provides a way to classify hundreds

of interaction keywords into logically defined interaction types under a hierarchical on-

tology setting [154]. The usage of INO interaction types and its hierarchy allows us

to detect the distribution of the interaction types from our literature mining study

(see Figure 5.6). INO-based modeling also provides a novel way to identify interaction

types that are represented by multiple keywords in sentences [166].

Compared to model pathogens such as Escherichia coli and Salmonella, Brucella is

a less studied pathogen. However, the results obtained from this study provide the first

example of opportunities and challenges in the literature mining of the host–pathogen

gene–gene interactions.
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6. CONCLUSIONS

6.1. Discussion

In this thesis, we proposed two different methods for the two problems: named

entity recognition and named entity normalization. For the first one, a rule-based

approach is proposed, while for the second method, a data-driven approach, which

is based on word-embeddings is utilized. Both of the approaches are unsupervised

and do not need labeled data, thus both can be applied to different named entities

in the biomedical domain, where labeled data are scarce. In addition, for this thesis,

two applications are implemented: the first one is a pipeline for the extraction of

bacteria biotope information from Pubmed, and the other one is an application for the

extraction of Brucella-host related data from Pubmed abstracts. The details about the

contributions and the results are further discussed below.

For this thesis, a fully automatic text mining module for experimental method

extraction is implemented and integrated to Pathogen-Host Interaction Search Tool

(PHISTO), which serves as an up-to-date and functionally enhanced source of PHI

data through a user-friendly interface. To implement this module, a dictionary of

interaction detection methods is compiled from the PSI-MI ontology and the abstracts

of the articles that contain PHIs without experimental method information are obtained

from PubMed. An exact string matching-based approach was used to assign 2952

experimental method names to 2109 unique PHIs. The experimental method detection

module was evaluated by using the PHIs with experimental method information in

PHISTO. Although the module achieved a promising precision of 74%, the recall of

the module is 34%, which is lower compared to precision. This study demonstrates the

crucial need for new text-mining methodologies, which are more enhanced that exact

matching, for the detection and categorization of biomedical entities.

Following the text-mining module that is implemented for PHISTO, Chapter 3.2

presents a novel unsupervised method, which makes use of shallow linguistic knowl-
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edge and syntax rules, for the detection and categorization of bimedical named entities

through an ontology. We introduce a linguistically-motivated rule-based approach for

named entity recognition and normalization that targets identifying and normalizing

habitat entities through an ontology. We participated at the Bacteria Biotope Task

in the BioNLP Shared Task 2013 with our system (named as the Boun system) and

obtained promising results in the official evaluation. With the developments after the

shared task (named as the Boun 2 system), several extensions are proposed for named

entity recognition and normalization of the bacteria habitat entities. Extending the

candidate noun phrases by their modifiers resulted in lower performance, due to the

prepositional phrase attachment ambiguity problem. Incorporating an ontology expan-

sion module to our system (Boun) did not lead to improvement in the performance

in terms of SER score. The Boun and Boun 2 systems achieved the same SER value

(68%), which is close to the SER value of the system that ranked first in the shared

task. Our results show that our approaches based on the shallow syntactic analysis

of the text and linguistically-motivated hand-coded rules are as effective as supervised

machine learning approaches for named entity detection and ontology-based normal-

ization in the bacteria biotopes domain.

Although promising results are obtained in Chapter 3.2 for the detection and cat-

egorization of bacteria biotope entities, the need for the manually designed syntax-rules

makes the method’s adaptation harder to other types of biomedical entities. In Chapter

4, we introduce an unsupervised data-driven approach for biomedical entity normaliza-

tion through an ontology by utilizing word embeddings and syntactic re-ranking. The

proposed approach is applied to the normalization problem of habitat entities through

the Onto-Biotope ontology and the adverse drug reaction entities through the Med-

DRA dictionary, and tested on the BioNLP Shared Task 2016 Bacteria Biotopes data

set and the Text Analysis Conference 2017 Adverse Drug Reaction data set, respec-

tively. The new system based on word embeddings and syntactic re-ranking obtained

higher precision scores on both data sets than the system without syntactic re-ranking.

Furthermore, the system achieved a precision score of 65.9% on the BioNLP Shared

Task 2016 Bacteria Biotopes data set, which is 2.9 percentage points above the cur-

rent state-of-the-art. Our proposed approach with syntactic re-ranking (named as the
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BOUNEL system) uses the Stanford Parser, which is a supervised parser. However,

BOUNEL is unsupervised in the sense that it does not require training data manually

annotated with entity mentions and their corresponding concepts in the ontology. Fur-

thermore, the Stanford Parser has not been re-trained using biomedical data, but the

off-the-shelf parser pre-trained with the Penn Treebank has been used. Therefore, the

proposed approach can be easily adapted for normalizing different types of biomedical

entities. This thesis also shows that our approach based on syntactic based weighted

semantic similarity is as effective as supervised and semi-supervised approaches for

biomedical named entity normalization.

Chapter 5 presents two different applications, one of which is a pipeline for

the ontology-based entity tagging/normalization and relation extraction of bacteria

biotopes, and the other one is about extracting Brucella-host interactions and demon-

strates the importance of context in the text mining problems, which may also be

considered in the task of normalization as a future work to improve the results.

The first application, which is a pipeline for extracting information regarding bac-

teria biotopes from scientific abstracts, is presented in Chapter 5.1. For this pipeline,

an abstract module, which automatically downloads biomedical abstracts related to

bacteria from PubMed is implemented. By utilizing the named entity recognition and

normalization modules, which are explained in detail in Chapter 3.2, the bacteria en-

tities and habitat entities are extracted from the relevant abstracts. At the end, by

utilizing the relation extraction module, which is explained in detail in Chapter 5.1.5,

localization relations and Part-Of relations are extracted between the identified entities.

Finally, the study in Chapter 5.2 reveals that many relations among biomedical

entities span multiple sentences. Our sentence-level and abstract-level co-occurrence

analysis results suggest that developing text mining methods that operate on scopes

wider than a sentence would be useful for biomedical relation extraction.

In this thesis, both rule-based and supervised as well as unsupervised machine-

learning based approaches are utilized. The drawback of most supervised machine-
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learning based approaches in the biomedical domain is that they require labeled data,

which are generally not available. On the other hand, the rule-based approaches pro-

posed in this thesis do not require labeled data. The word embeddings based entity

normalization approach is also unsupervised, since it does not require labeled data, but

utilizes the large PubMed corpus to learn the word embeddings.

According to a recent study by Chiticariu et al. (2013), although the general

belief in academia that the rule-based systems, which require “tedious manual labor”

to build the rules, in information extraction appear to be “dead”, there is still room

for improvement in the rule-based approaches [167]. The results of the studies in this

thesis also support the idea that rule-based approaches can be as useful as supervised

and semi-supervised machine-learning based algorithms and there is still room for im-

provement in these approaches.

6.2. Future Work

Our future directions for research include employing a full syntactic parsing ap-

proach to better identify the modifiers of the entities for the biomedical named entity

recognition task.

Furthermore, rule-based systems will be utilized to annotate new unlabeled data,

creating a new labeled data set. Then, this new labeled data set will be used for

training the supervised machine-learning based approaches when the labeled data is

scarce.

For the normalization of entities, as future work, we will investigate incorporat-

ing the context of the reference entity mentions in text into the vector representations.

Error analysis over the training sets revealed that the proposed approach (BOUNEL)

is more successful for the normalization of entity mentions whose constituent words

have semantic meanings, compared to the entity mentions which contain abbrevia-

tions, acronyms, or rare words. We believe that incorporating context information

may improve the performance of the system for such entity mentions.
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As far as we know, a comprehensive database of locations where bacteria live, is

currently not available. As future work, we consider building such a database and a

web-based tool which will present the pipeline developed in this thesis as a service to

the users.
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