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ABSTRACT

STRUCTURAL BRAIN CONNECTOME EMBEDDING

FOR ALZHEIMER’S DISEASE

Neurodegenerative diseases are known to alter brain connectivity. Alzheimer’s

Disease (AD) is the most common one among these diseases. Although, many re-

searches have been made to understand AD, there are still more to explore about the

complicated nature of AD. To solve these mysteries, features extracted from connec-

tomes are widely used. Following the poor specificity of global connectome features,

more recently focus has been shifted towards substructures as potential biomarkers. A

new model, inspired by the Deepwalk, is proposed to represent these substructures in

this thesis. The model treats each individual connectome as a unique graph and learns

nodal embeddings per connectome by means of a random walk and a neural network

approach. The learned nodal embeddings are used as latent representations of local

connectivity and their discriminative power is assessed in SVM based leave-one-out ex-

periments over a cohort of 91 individuals. Promising results were obtained for AD-SCI

/ AD-MCI / MCI-SCI / AD-MCI-SCI classification tasks. Apart from classification,

such latent representations of local connectivity may serve as an appropriate space to

define the continuum of neurodegenerative disease progression temporally and spatially

which means nodal embeddings can be utilized for monitoring disease progression
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ÖZET

ALZHEİMER HASTALIĞI İÇİN YAPISAL BEYİN

HARİTALARI GÖMÜLERİ

Nörodejeneratif hastalıklar beyin bağlantılarını değiştirir. Alzheimer hastalığı,

nörodejeneratif hastalıklar arasında en yaygınıdır. Alzherimer’ı anlamak için yapılan

çalışmalara rağmen, hastalığın karmaşık yapısıyla ilgili hala keşfedilicek şeyler bu-

lunuyor. Bu yapıyı anlamlandırmak için, beyin haritasından çıkarılan genel yapıyı

yansıtan özellikler yaygın bir şekilde kullanıldı. Bu özelliklerin düşük özgüllüğe sahip

olmasından dolayı, son zamanlarda beyindeki belirli yapılar gizil bir işaretleyici olarak

kullanılmaya başlandı. Bu tezde, bu yapıları göstermesi için Deepwalk’tan esinlenen

yeni bir model sunuluyor. Bu model her bir kişisel beyin haritalarını eşsiz bir çizge

olarak sayar ve rastgele yürüşlerleri sinir ağıyla birlikte kullanarak her bir beyin hartasi

için düğümsel gömüler öğrenir. Öğrenilen düğümsel gömüler yerel bağlantıların gizli

gösterimleri olarak kullanılır ve bu gömülerin ayırıcı gücü SVM temelli birini dışarı

bırak deneyleriyle hesaplanır. Bu deneylerde AD-SCI / AD-MCI / MCI-SCI / AD-

MCI-SCI sınıflandırma görevleriyle ilgili umut verici sonuçlar alındı. Sınıflandırma

dışında, bu yerel bağlantıların gizli gösterimleri nöredejeneratif hastalıkların konumsal

ve zamansal ilerleme sürecini tanımlamak için uygun bir uzayda bulunuyor olabilirler

yani düğümsel gömülerden hastalığın ilerlemesini gözlemek için yararlanılabilir
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1. INTRODUCTION

Aging gives rise to deterioration of cognitive functions. Possible causes of age-

related cognitive problems are degeneration of hippocampus, region of brain that per-

forms formation and retrieval of memories, decreased blood flow to the brain at older

age and decline in hormones and proteins that guard and restore brain cells [1]. When

there is no underlying condition apart from aging process, loss of cognitive functions is

called as age-associated memory impairment. However in the presence of neurodegen-

erative diseases , loss in cognitive abilities becomes more severe. Heavy memory loss,

confusion doing familiar tasks, difficulty with language, and personality changes are

symptoms of such diseases and these group of symptoms is described as dementia. De-

mentia often occurs in older age and is different from normal-aging. Alzheimer’s disease,

dementia with Lewy bodies, Parkinson’s disease dementia and Huntington’s disease are

neuro-degenerative diseases that cause dementia. Aside from neuro-degenerative dis-

eases , vascular disorders, long term drug and alcohol addiction and depression may

result in dementia.

Alzheimer’s disease (AD) is the most common cause of dementia and accounts

for 60-80 percent of dementia cases [2]. Beta-amyloid (Aβ) and tau proteins reaches

abnormal levels in the brain of someone with AD and forms plaques and tangles to

disrupt neuronal activities. Proteins transfer freely between brain and Cerebrospinal

Fluid (CSF) , so levels of Aβ and tau protein in CSF sample obtained by lumbar

puncture can be used for accurate diagnosis of early AD [3]. Early diagnosis for AD

is crucial because progression have already occurred before AD shows its symptoms.

However invasive biomarkers are relatively expensive and has potential side effects

[4]. Improvement of magnetic resonance imaging (MRI) techniques gives rise to non-

invasive biomarkers. Non-invasive biomarkers are inexpensive and easy to perform.

For example, atrophy in brain measured by MRI is already used as biomarker for early

diagnosis of AD. However volume decline in brain is also part of normal-aging thus

distinguishing early AD by only looking at volume change is challenging.
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Aside from measurement of atrophy in brain, many studies have been made to

find relevant non-invasive biomarkers in recent years. These studies have focused on

leveraging brain’ network-like properties since it is well known that structural and

functional organization of a brain can be modeled as a network. Thus a number of

network based biomarkers are proposed and investigated for the purposes of early

diagnosis and staging of AD. Network-based biomarkers uses different connectivity

networks of brain, also named as connectomes , obtained by structural and functional

MRI.

Connectome is a simplified description of the elements and connections organizing

human brain, hence it is a network model [5]. In order to assemble a comprehensive

network model , two main aspects of connectome must be emphasized : network ele-

ments (nodes) and connections between elements (edges). Choosing network elements

at microscale, neurons and synapses, is not feasible since there are approximately

1010 neurons in human brain. A human connectome must provide realistic model to

represent information about brain. Defining network elements at macroscale, areas of

cerebral cortex or brain regions, is more practical and in this setup, number of elements

varies in the range of 90 to 1000. At macroscale, brain is generally parcellated by pre-

defined anatomical templates which can be volume-based or surface-based. Automated

Anatomical Labeling (AAL) atlas is the most common volume-based template when

Desikan-Killiany atlas and Destriux atlas are the most popular among surface-based

templates [6]. With the tools of graph theory, it has been shown that connectomes at

macroscale have non-random network properties such as existence of clusters of brain

regions and small-worldness . Absence of a universally accepted parcellation scheme is

a major drawback of macroscale connectomes.

Connectivities can be defined in two way : functional or structural connectivity

hence resulting functional networks (fNETs) and structural networks (sNETs). These

networks models can successfully represent functional and structural organization of

the human brain.
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fNETs are defined based on correlation of blood-oxygen-level-dependent (BOLD)

MRI signals acquired by functional MRI (fMRI). Measured BOLD signal is a sign of

activity at any given time. To be more precise, BOLD signals are changes in mag-

netic susceptibility and MRI tissue contrast that are indirectly indicative of underlying

changes in spontaneous or experimentally controlled brain activation [7]. After the

acquisition of BOLD signals , correlation of BOLD signals forms fNETs. Different

measures for correlations can be applied to construct fNETs such as partial correlation

or cross correlation.

sNETs are defined based on fibers reconstructed using tractography applied to

diffusion weighted MRI (DWI) data. Cerebral white matter is considered as a marker

for structural connectivity because myelinated fibers (axons) are found in white matter.

Fiber tracts forms pathways between brain regions and DWI can represent information

about the spatial orientation of fiber tracts. However current imaging methods are lim-

ited to detect fiber orientation where multiple fiber tracts are intersected or crossed. To

overcome this problem, tractography, a computational algorithm, is proposed. Trac-

tography can be utilized to trace complicated fiber tracts and results derived from

tractography are consistent with known brain pathways [8]. There are two different

approaches used for tractography : deterministic and probabilistic approaches. Deter-

ministic approach assumes single orientation at each voxel (three dimensional pixel) ,

while probabilistic approach assumes a distribution of orientations.

Connectionist approaches have gained increasing popularity in parallel with the

developments in MRI and through the incorporation of the well-developed graph the-

ory into brain research. Initially fNETs and later sNETs have been being proposed

and evaluated to study neurodegenerative diseases, specially AD [9]. Connectionist

approaches performs network analysis however different studies use different analysis

methods which can be grouped into three main categories : data centric approaches,

network based local and global features, subnetwork based approaches.

Data centric approaches treat connectivity values as features. Since the dimen-

sion of resulting feature is too high a preprocessing method is required . Statistical
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tests or support vector machine (SVM) based feature elimination algorithms are used

as a preprocessing method to reduce dimensionality as well as selecting discriminative

features. In this sense, Chen et al. [10] ranked fNET features in order to find dis-

criminating features and performed classification on healthy and AD patients. Dai et

al. [11] combined sNET and fNET features, including BOLD spectra to distinguish

AD patients from healthy subjects. However direct usage of connectivity values fails

to leverage network properties of brain, thus the information extracted from only sig-

nificant edges may provide less insight into AD. In a different data centric study which

accounts network structure of brain, Dipasquale et al. [12] used independent compo-

nent analysis (ICA) on fMRI signals and observes disconnection within default mode

network , a set of brain regions including medial frontal and posterior cingulate ar-

eas of the cortex , and functional connectivity damage. This work doesn’t include

a connectome analysis since fMRI data is directly used without construction of any

fNET. Networks are decomposed into distinct networks by the use of high dimensional

ICA. Decomposed networks are correlated in their fluctuations but they are maximally

independent in spatial domain.

Extracting local and global features from network is another application of con-

nectome analysis. Motivation behind using local and global features is that healthy

brains have optimal balance between segregation and integration [13]. Segregation

local features that measure the degree of nodes which the graph can be decomposed

while integration is global features that measure global efficiency of all nodes [7]. It

is found that the modularity is significantly reduced in an AD brain and it results in

loss of small-world networks [8]. Small-world networks are networks with high cluster-

ing and short path length properties. Loss in small-world networks proves disruption

in segregation and integration. Khazaee et al. [14] extracted a number of local (eg.

clustering coefficient) and global (eg. characteristic path length) features from thresh-

olded fNET and selected the most discriminative features by Fisher score algorithm to

train an SVM classifier. Wee et al. [15] used local clustering coefficients from multiple

sNETs after selecting statistically significant ones to diagnose Mild Cognitive Impair-

ment (MCI). In [16] , Wee et al. combined fNET and SNET to derive nodal clustering

coefficients and classified MCI and control subjects via a SVM classifier. Parasad et
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al. used normalized fiber counts as features of sNET to distinguish AD patients from

healthy patients [17]. Local and global features utilize network properties however they

commonly suffer from low specificity [18].

More recently, there has been a paradigm shift with the recognition of multi-

factorial nature of neurodegenerative diseases and the human brain’s multi-subnetwork

structure, each performs a different cognitive function [19]. Thus subnetwork based

approaches come into prominence. These approaches mainly perform community de-

tection using spectral algorithm [20]. Chen et al. [21] performed community detection

using the spectral algorithm on fNET by finding group level connectivity networks and

detected insula module lost its symmetric functional connections. Dai et al. [22] de-

fined seed region of interests to employ community detection on a reduced network and

found that highly connected hub regions are damaged. Sun et al. [23] also performed

the same algorithm and observed that abnormal changes in the modularity of fNET,

representing the reorganization and separation of subcortical regions.

In studies of AD, network analysis methods are limited by approaches outlined

above. Despite the increasing popularity of machine learning methods on various areas,

there is no remarkable study using machine learning for connectome analysis . How-

ever machine learning is already successfully applied to networks (graphs) to analyse

social networks and protein networks. Machine learning tools may capture additional

discriminative information and provide a better understanding of the progression and

diagnosis of AD.

This thesis proposes to use a random walk based graph embedding method, a

machine learning based method applied to networks, to represent sNETs for the pur-

poses of diagnosis and staging of AD. More specifically, a corpus of node sequences are

created by the means of random walk approach. Different sNETs result in different

rules for generating corpus hence each patient models a different language. However,

each sNET node is treated as a word, thus each patient sharing a common vocabulary.

These corpora is fed into neural probabilistic language model and nodal embeddings

per sNET are learned. Each nodal embeddings is used as features of a patient to train
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and test a SVM classifier to discriminate AD, MCI and SCI (Subjective Cognitive

Impairment) cases in a cohort of 91 individuals. Different architectures and objective

functions are experimented to find optimal embeddings. It is expected to nodal em-

beddings of patients with same clinical label have similar embeddings, resulting with

discriminative local connectivity patterns.

Remainder of this thesis is organized as follows. Chapter 2 reviews state of art

methods for graph embeddings. Chapter 3 describes the methodology, the algorithm

used to obtain graph embeddings, and theoretical background of the method. Chapter

4 proposes classification results from different experiments. Chapter 5 discusses results

and also combines manifold learning with graph embeddings. Chapter 6 concludes

thesis.
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2. STATE OF ART

Graphs have been utilized in various areas including biology, social networks and

linguistics. Connectivity between elements can be modeled as a graph and it allows

researchers to understand the underlying structure and function of complex networks

as well as achieving different tasks such as link prediction , node classification and

clustering [24]. Advertisement and friendship recommendations are applications of

link prediction on social networks [25]. Labeling documents in citation networks [26]

and finding disease proteins [27] are examples of node classification task. Clustering is

grouping similar nodes into the same subset and it can be used in image segmentation

[28].

An increasing body of research has been made to analyse complex networks.

Traditional network measures such as node degree, clustering coefficient, modularity

and path length can describe graph topology and extract structural information from

graphs but they are not applicable to complex networks which have millions of nodes

and they can’t be adapted to a learning problem, hence network measures are usually

inefficient and inflexible. Recently, there has been an increasing attention on graph

embedding methods that aim to find latent representation of nodes that encodes graph

structure. Graph embedding, or representation learning, methods assume that nodes

are embedded in a low-dimensional vector space and geometric relationship in this em-

bedding space reflects underlying structure of original graph. Many graph embedding

algorithms have been proposed to deal with large scale graphs and they can be catego-

rized into three main areas : factorization based methods, random walk based methods

and deep learning based methods.

Factorization based methods perform matrix factorization to obtain embeddings.

Laplacian Eigenmaps [29] and Locally Linear Embeddings (LLE) [30] are basic algo-

rithms based on factorization. These algorithms are often referred to as nonlinear

dimensionality reduction techniques. They construct a similarity graph from M di-

mensional feature vectors and find m dimensional embeddings of nodes belonging to
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constructed graph, where m << M . Laplacian Eigenmaps seek to find closer em-

beddings of nodes when nodes’ local connectivities are similar. LLE follows similar

concept but it assumes embedding of a node is a linear combination of the embeddings

of neighboring nodes. Both algorithms try to solve constrained optimization problem

and performs eigendecomposition. Optimization problem is defined in terms of the

connections of constructed graph and the resulting embeddings. Several possible ma-

trices can be used to represent connections of graph such as node adjacency matrix,

Laplacian matrix and node transition probability matrix. Laplacian Eigenmaps and

LLE use node adjacency matrix in objective function. Complexity of these methods is

in the order of square of node number, thus scalability is the main drawback for these

algorithms.

Apart from Laplacian Eigenmaps and LLE , many different approaches have been

considered for factorization based graph embeddings. While Laplacian Eigenmaps and

LLE only concern with finding similar embeddings for connected nodes, other algo-

rithms take into account preserving graph structure. Laplacian Eigenmaps and LLE

do it indirectly by penalizing dissimilarity between embeddings of connected nodes

however Graph Factorization [31], HOPE [32] and GRAREP [33] assume that inner

product of embeddings must reflect the structure of graph. Main difference of these

algorithms is the use of distinct matrices to represent the structure of graph. Graph

Factorization finds embeddings of which inner product represents node adjacency ma-

trix as close as possible. It also introduces norm of embeddings as a regularization term

at the objective function. Complexity of Graph Factorization is in the order of node

number so it is more scalable to complex systems compared to Laplacian Eigenmaps

and LLE. However node adjacency matrix is not always positive semidefinite and it may

cause problems in factorization. GRAREP algorithm factorizes powers of node tran-

sition probability matrix , hence embeddings capture higher order proximity. Despite

the additional structural information that embeddings have, the order of complexity

is same as Laplacian Eigenmaps algorithm which results in scalability issue. HOPE

algorithm aims to preserve higher order proximity and considers various matrices such

as Katz Index and Common Neighbors. HOPE points out that direct factorization of

higher order proximity matrices is expensive, and proposes a novel algorithm to find
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embeddings. Firstly authors assume that most of higher order proximity matrices are

equivalent to multiplication of two sparse matrices. Then two sparse matrices are fac-

torized with modified singular value decomposition (SVD) to find optimal embeddings.

This algorithm also captures higher order proximity but unlike GRAREP, HOPE is

scalable, its complexity is linear with the number of edges in the graph.

Random walk based methods rely on the assumption that nodes co-occurring in

short random walks must have similar embeddings. Deepwalk [34] and node2vec [35]

are examples of random walk based methods. Their approach to embedding problem

is the same : generating random walks and training a neural network language model

to get embeddings. Random walks are created starting from each node until a fixed

length is reached. This procedure is also repeated which means there are multiple

random walks starting from same node. Resulting random walks form a corpus. The

corpus is fed into a neural network and nodal embeddings are extracted. In this model,

nodes are treated as words and random walks are treated as sentences. Neural network

basically tries to maximize cooccurrence of words that are close to each other. Main

difference between random walk based methods and factorization based methods is

that the latter inputs a deterministic measure of node similarity. By using a stochastic

measure of node similarity, random walk based methods offer better performance [36].

Despite the main intuition behind Deepwalk and node2vec is very similar, they

differ in corpus creation and objective function used in training. For generating random

walks, Deepwalk uses unbiased random walks, i.e. next node in a random walk only

depends on connections of current node. However node2vec manipulates random walks

and creates biased random walks by defining new parameters to control probability of

returning to same node and probability of walking to a node that is connected to a

previously visited node. Additional parameters introduced in node2vec may change the

captured information in resulting embeddings. These parameters can be adjusted to

obtain embeddings that have more local or global information. In addition, Deepwalk

uses hierarchical softmax to reduce the complexity of training while node2vec uses

negative sampling to achieve the same. Despite algorithmic differences, Deepwalk and

node2vec do not show any notable differences on experiments. Among them, Deepwalk
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is the most common random walk based method and have already been successfully

applied in social networks.

Factorization and random walk based methods can be thought as encoders. These

methods find a mapping for nodes. However parameters of the mapping are not shared

between nodes. Parameter sharing can reduce the order of complexity which is the

main issue for factorization based methods. Another disadvantage of these methods

is their lack of leveraging node attributes which can be highly informative in some

applications.

Finally, deep learning based methods try to overcome issues summarized above

, unlike factorization and random walk based methods, parameters are shared in the

encoder and node attributes can be leveraged. Structural Deep Network Embeddings

(SDNE) [37] and Deep Neural Network for Graph Representation (DGNR) [38] use

deep autoencoders. Autoencoders are neural network models which learns compressed

form of the input data in unsupervised fashion and widely used in image processing

for dimensionality reduction and image denoising. SDNE proposes semi-supervised

model which has a supervised and an unsupervised part. Unsupervised part is de-

signed to preserve second order proximity, i.e. measurement of two nodes whether

they share common neighborhood node, by finding an embedding that can reconstruct

its neighborhood structure. Supervised part uses Laplacian Eigenmaps to penalize

dissimilarities of embeddings of connected nodes. Joint optimization of two objectives

leads to embeddings that preserve network structure. Parameters are shared in the

unsupervised part of the model. DGNR combines random walks with deep autoen-

coders. Cooccurrence of nodes in short random walks is encoded to positive point-wise

mutual information matrix (PPMI) [39] which is already a common tool in represent-

ing words [40]. PPMI matrix is fed into a stacked denoising autoencoder to obtain

embeddings.

Autoencoder based methods preserve graphs structure and can be applied to large

scale graphs. However they do not benefit from node attributes. Graph Convolutional

Networks (GCNs) handle with this issue by performing convolution operation on graph
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signals. GCNs are highly influenced by Convolutional Neural Networks (CNNs). CNNs

have already been successfully applied in many areas such as image classification [41]

and video processing [42]. Image and video signals are defined on the Euclidean do-

main. Convolution, filtering and pooling operations are well defined operations on this

domain. However all graphs are not in the regular Euclidean domain, thus convolution

and filtering operations must be redefined for such cases. This problem is overcome

by spectral graph theory [43]. Spectral graph theory uses basic relationship that the

convolution operation is equivalent to the multiplication in frequency domain. It is

proven that basis functions of Graph Fourier Transform are eigenvectors of the Graph

Laplacian matrix. After constructing theoretical background for Graph Fourier Trans-

form, filtering is defined in frequency domain. Therefore the convolution operation in

graph is indirectly identified and is linked to the Graph Laplacian matrix [44]. Graph

Laplacian matrix represents the underlying structure of graph. Also Kth order spectral

filters have got localization property, i.e. embedding of a node is affected by nodes that

are maximum K connection away [45]. This ensures that GCNs capture local infor-

mation like CNNs as well as preserving the graph structure. With the identification

of convolution and filtering operation on graphs, GCNs are used at node classification

tasks [26]. Embeddings of nodes are encoded in GCN layers. GCNs are scalable to

complex graphs, their order of complexity is linear with respect to the number of edges.

A human connectome is a network model, hence it is a graph. Therefore, graph

embedding methods can be applied to human connectomes. Embeddings that preserve

the network structure can be utilized to analyse connectomes such as finding struc-

tural and functional disconnections between brain regions. Apart from disconnections,

changes in connectivities up to higher order can be also detected by embeddings, since

embeddings are capable of encoding higher order similarities. However higher order

similarity information would not be useful for fNETs, since fNETs already consist of

correlation values between BOLD signals. Thus embeddings extracted by the means

of random walks or matrix factorization is not informative for fNETs. An example use

of graph embeddings for fNETs is constructing a population graph of which nodes are

subjects and node attributes are formed from fNET connectivity values of subjects,

then training a GCN to perform node classification task [46]. However this approach
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is only useful for classifying subjects, it does not contribute to answer the questions

such as which subnetworks AD targets at and how AD evolves. Graph embeddings

of sNETs may be capable of answering these questions, since nodal embeddings of a

sNET can represent local connectivity patterns by leveraging higher order similarities.

In this sense, random walks based methods can be utilized to observe changes in local

connections. Since AD can be characterized as a disconnection syndrome, these obser-

vations may help to diagnose and monitor disease. It is also mentioned previously that

random walk based methods are the most common and successful ones among graph

embeddings.
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3. METHODOLOGY

In this thesis, a modified version of Deepwalk algorithm is followed [34]. As it

previously described in random walk based embeddings, Deepwalk creates a corpus

from unbiased random walks and learns embeddings via a neural network. Thus the

algorithm has two parts : generating a corpus by random walks and neural network

based embedding learning.

The original Deepwalk uses binary graphs of which its adjacency matrix entries

are either 0 or 1. Hence transition from one node to other node follows a uniform

distribution. However in sNETs, weights of adjacency matrix are highly informative

about the structure of brain. Thus a slight modification is made in generating random

walks by using weighted adjacency matrices throughout this thesis.

Random walks start from each node and are last until a fixed length is reached.

The number of random walks starting from each node is fixed. There are three param-

eters in creating the corpus : walks per node (K), random walk length (L) and node

number (V ). More specifically a corpus consists of V ×K, L length random walks.

Constructed corpus is fed into a special neural network to obtain nodal embed-

dings. This neural network was originally built to find word embeddings in language

modeling. To learn embeddings, a center word (target word) and a set of words that

appear with center word within a fixed window size (context words) are taken as a

training pair. Depending on architecture, either the target word is predicted from

context words (Continuous Bag-of-words, CBOW) or the context words are predicted

from the target word (Skip-Gram). In this case, random walks are analogous to sen-

tences and nodes are analogous to words. In this thesis, both architectures will be

experimented and compared in terms of classification performance.

Deepwalk uses hierarchical softmax for faster training performance. Hierarchical

softmax creates a binary tree to reduce the complexity of calculating the objective
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function. However negative sampling is used throughout this thesis. Negative sampling

randomly samples k words in training, for the purpose of distinguishing observed data

and artificially generated data. Different k values are selected and experimented to

observe the impact of negative sample number.

To sum up, methodology to obtain embeddings is the following: constructing

a connectome as input, creating a corpus from connectome and learning embeddings

from the corpus. Algorithm steps are shown in 3.1.

Figure 3.1. Deepwalk Algorithm

3.1. Connectome Construction

Let G = {N,E} represent an sNET where the nodes (N) correspond to cortical

segments/parcels and the edges (E = {eij}) defined between pairs of nodes represent

the strength of their connectivity as ascribed by DWI based tractography. FSL [47],

FreeSurfer [48] and Tortoise [49] are used to preprocess, co-register and parcellate

the T1 weighted MRI and DWI volumes (at 1.5mm isotropic sampling) using the

Destrieux atlas . 4th order Runge-Kutta integration based deterministic principal dif-

fusion direction (PDD) tractography was applied with 30seed/voxel, 0.7mm stepsize,

35◦ curvature and 0.15 fractional anisotropy (FA) thresholds as stopping criteria [50].

Minimum fiber length was set to 20mm. Seed selection minimum FA criteria was 0.15.

The connectivity eij between parcels ni and nj is defined using a volume normalized
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weighted connectivity as,

Wik =
∑
r∈ni

Ñ (r; ek, σ) : Association of fiber fk with parcel ni (3.1)

eij =
2

vi + vj

∑
fk

WikWjk : Connectivity between parcels ni and nj (3.2)

where Ñ (.; ek, σ) is the truncated 3D isotropic Gaussian kernel1 centered at ek (the

closest end point of the fiber fk to node ni) with standard deviation σ. r is a voxel

position, vi is ni’s volume. We have set σ = 0.155mm using the Integrated Squared

Error (ISE) [51].

3.2. Corpus Generation

A fixed length (L) random walk is run on each sNET separately by initiating the

walk multiple times (K) from each node. The probability πij, to move from ni to nj,

is defined as,

πij =
eij∑
j eij

, i 6= j (3.3)

The resultant V×K L-length node sequences form the corpus from which aD−dimensional

embedding is learned for each node and each sNET. V = 148 as the Destrieux atlas

defines 148 parcels while K and L have set empirically .

3.3. Embedding Learning

Embeddings are learned via eural network language models. These language

models are used in language modeling to get word embeddings to achieve syntactic and

semantic tasks. Many different neural network architectures are proposed for obtaining

better word representations [52]. Among them, CBOW and Skip-gram architectures

1Ñ (r; ek, σ) =
1

0.74N (r− ek;0, σ)1(|r− ek| < 2σ), where N (r− ek;0, σ) is 3D isotropic Gaussian
with zero mean and σ standard deviation, 0.74 is the normalization factor for truncation at 2σ, 1(.)
is the indicator function.



16

become highly popular recently and draw increasing attention. Compared to previously

proposed techniques, CBOW and Skip-gram outperform them in terms of syntactic and

semantic tasks for language modeling [53].

CBOW and Skip-gram architectures have one hidden layer. CBOW tries to pre-

dict the target word from the context words while Skip-gram tries to predict the context

words from the target word. Detailed model architectures taken from [53] can be seen

in Figure 3.2.

Figure 3.2. Neural network architectures for CBOW and Skip-Gram

3.3.1. CBOW and Skip-Gram

CBOW takes one target node and a number of context nodes, nodes that appear

with the center node within a fixed window size, w. To provide better insight into

formulation lets assume w = 5 . Thus, subsequences of 11 nodes,one target node and

ten context nodes, are extracted from the L-length node sequences that make up a

corpus and used as a training sample. The target (center) node (nt) and ten context

nodes (nck, k ∈ [1, 10]), are all encoded as a one-hot vectors, nt,nck ∈ RV .

Definition 1. One-hot Vector. A V dimensional one-hot vector representation of pth

node is a binary vector that its pth entry is 1 and other entries are 0s.
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Input to hidden layer weight matrix C ∈ RD×V stores D-dimensional context

node embeddings in columns. The hidden layer, h ∈ RD, is the mean embedding of

ten context nodes ({nck}).

h =
1

10

10∑
k=1

C nck (3.4)

Hidden to output layer weight matrix W ∈ RD×V contains target node embeddings

that are subsequently used as nodal embeddings and utilized in classification. Hence

output layer, q ∈ RV represents scores. qi is ni’s score of being the target word for the

given context ({nck}). Higher score means higher likelihood for ni.

q = WT h (3.5)

Skip-gram also extracts a target word and ten context words. However target word is

input to Skip-gram model and ten context words are tried to be predicted. This results

in each training sample consists of one target word and one of context words, thus ten

training samples are produced from one pair of a target word context word set.

Input to hidden layer weight matrix W ∈ RD×V stores target node embeddings.

The hidden layer, h ∈ RD is the embedding of target node ({nt}).

h = W nt (3.6)

Hidden to output layer weight matrix C ∈ RD×V stores node embeddings . Hence

output layer, q ∈ RV represents the scores. qi is ni’s score being a context word for

the given target ({nt}).

q = CT h (3.7)
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Traditional approach to use scores is to consider them as probabilities coming

from a probability distribution. Thus CBOW computes probability of every word in

vocabulary being the target word when context words are given, i.e. P (nt|{nck}). Simi-

larly Skip-gram calculates probability of every word in vocabulary being one of context

words when target word is given, i.e. P ({nck}|nt). The probability values coming from

a distribution must be normalized and non-negative. However these scores are not nor-

malized and not necessarily non-negative, thus violate conditions of probability values.

To convert scores into proper probabilities that come from a probability distribution,

an additional layer is needed. The softmax layer after the output layer ensures that

this condition is satisfied.

Definition 2. Softmax. Let s(.) donate the softmax operation. s(.) is defined on

vectors as :

s(q) =
q∑V

k=1 exp(qk)
(3.8)

An objective function can be defined based on softmax values and one-hot vector

output. A simple approach is using nt − s(q) for CBOW or nck − s(q) for Skip-Gram.

However computing gradients with respect to weight matrices in this loss function

requires excessive computations. A cross-entorpy loss is introduced to compute the

gradients of error much easier.

Definition 3. Cross-entropy Loss. Let CE(.) donate the cross-entropy loss. CE(q,nt)

is defined on vectors as :

CE(q,nt) = −
V∑
k=1

nk log(qk) (3.9)

for CBOW while nt is replaced with nck for Skip-Gram and nk corresponds to kth entry

of input one-hot vector.

Cross-entropy loss can be written as CE(q,nt) = − log(qp) for target node p,

since only the pth entry of one-hot vector is non-zero, and equals to 1. When the cross-
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entropy loss is used, objective of the CBOW and Skip-Gram are to maximize the log

probabilities given below :

Jcbow(C) =

|C|∑
i=1

log(P (nti|nc)) (3.10)

Jsg(C) =

|C|∑
i=1

∑
−w≤j≤w,j 6=0

log(P (ncj|nti)) (3.11)

where C defines whole corpus and |C| defines number of elements in the corpus.

With the softmax layer, embedding learning complexity is in the order of V . To

speed up training process, two different objective functions are proposed : hierarchi-

cal softmax and negative sampling [54]. Hierarchical softmax is used in the original

Deepwalk algorithm. Details of hierarchical softmax can be found in Appendix A.

3.3.2. Negative Sampling

Traditional softmax approach on score values can be formulated as

P (nt|{nck}) =
exp(qnt)

Z
(3.12)

where qnt is the score of nt, Z is the normalization factor. Hierarchical softmax avoids

computing normalization factor by creating a binary tree. However structure of the

constructed tree highly effects performance and creating an optimal binary tree is

challenging. Another alternative approach proposed is negative sampling which will be

used for all experiments in this thesis.

Negative sampling is highly influenced by the noise contrastive estimation (NCE)

[55], proposed for training unnormalized probabilistic models. NCE also points out di-

rect computation of normalization factor is expensive. It treats normalization factor as
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another parameter to be learned in the model. NCE learns parameters while trying to

discriminate observed samples and artificially generated noise samples by maximization

of objective function based on log-likelihood of parameters.

Adapting NCE to language models, the learning problem of CBOW can posed as

classification of nt’s as those drawn from P (nt|{nck}) (positive samples) and those that

are drawn from a known noise distribution P0(n
t) (negative samples). It is also assumed

that negative samples are α times more probable than positive samples, hence nt comes

from a joint distribution, 1
α+1

P (nt|{nck}) + α
α+1

P0(n
t). Mnih et al. [56] also reports that

assuming Z = 1 in Equation 3.12 does not affect the performance, which they explain

with the high degree-of-freedom of the neural model used. Further, assuming uniform

distribution for P0(n
t) and setting the number of negative samples drawn per target

node as α ∈ I, we get αP0(n
t) = 1. Adopting these simplifications, we have posterior

probabilities for positive and negative samples as

P (I = 1|nt, {nck}) =
exp(qnt)

exp(qnt) + αP0(nt)
=

1

1 + exp(−qnt)
(3.13)

P (I = 0|nt, {nck}) =
αP0(n

t)

exp(qnt) + αP0(nt)
=

1

1 + exp(qnt)
(3.14)

where I ∈ {1, 0} is a binary variable representing nt’s being a positive/negative sample.

Hence, the objective function for training CBOW is defined as,

J(C,W) =
∑[

log(P (I = 1|nt, {nck}) +
α∑
j=1

P (n−j ) log(P (I = 0|n−j , {nck}))
]

(3.15)

where the outer summation is over all (nt, {nck}) m-tuples (m = α+ 1) in the training

set, n−j is the jth negative sample associated with a given context, P (n−j ) is the proba-

bility of drawing that negative sample. We used modified unigram distribution for the

prior P (n−j ), which is defined as

P (n−j ) =
#(nj)

γ∑V
i=1 #(ni)γ

(3.16)
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where #(ni) is the number of occurrences of node ni in the corpus and γ (negative

sample exponential) is set to 0.75 in [54], where authors reported slightly better per-

formance compared to unigram distribution. In this thesis different γ values will be

experimented.
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4. EXPERIMENTS AND RESULTS

The MRI data was acquired from 91 volunteers (46 male, 45 female, age=62±10,

17 AD, 48 MCI, 26 SCI) with written consent in a single session using the Philips

Achieva 3 T MRI system (Netherlands) with a 32-channel head coil. DWI volumes

were acquired with FOV = 200×236mm2 at 2.27mm isotropic voxel size. 120 volumes

were acquired at 6 shells in q-space using a single-shot, pulse-gradient spin echo (PGSE)

EPI sequence with TE/TR = 92ms/9032ms. T1 weighted MRI (T1w) volumes were

acquired via the 3D FFE (Fast Field Echo) pulse sequence with multi-shot TFE (Turbo

Field Echo) imaging mode with FOV = 220× 240mm2, 1.0mm3 isotropic voxels. AD

was diagnosed if the subject had multiple cognitive deficits with functional impairment

and a clinical dementia rating (CDR) scale score of at least 0.5. MCI was diagnosed

if the subject scored a total free recall (TFR) < 28 or a cue index (CI) < 0.68 in Free

and Cued Selective Reminding Test (FCSRT) and had a CDR score of 0.5. SCI was

diagnosed if the subject scored > 27 in FTR-FCSRT or > 0.67 in CI-FCSRT and had

a CDR score of 0.

Columns of W, namely wi ∈ RD, are nodal embeddings learned for each sNET

(individual) independently and used as latent representations of local structure. Dis-

criminative power of each nodal embeddings is assessed separately for AD/MCI, AD/SCI,

MCI/SCI and AD/MCI/SCI classification tasks by following steps :

(i) Nodal embeddings are learned for each subject, resulting with 91 D-by-148 em-

bedding matrices.

(ii) D dimensional embedding of a node i is taken from all subjects to form D-by-91

data matrix.

(iii) Resulting data is trained and tested by a Kernel-SVM using leave-one-out cross

validation (Radial basis function is used as kernel function).

(iv) Accuracy is measured for node i.

(v) Above steps are repeated until accuracy for all 148 nodes is measured.
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Pseudo-code for experiment pipeline can be seen at Fig 4.1. Kernel-SVM is used

as classifier for all experiments. Kernel-SVM is a special type of SVM. To provide

better insight into kernel-SVM, main idea behind SVM will be briefly introduced from

scratch.

Input Wj for j=1,2,..91

Wj is embedding matrix of subject j

for i = 1 to 148 do

Data matrix, D ∈ RD×91 dj = wj
i

RBF-SVM training and testing by leave-one-out cross validation

Calculate accuracy for node i

end for

Figure 4.1. Experiment Pipeline.

SVM finds a separating hyperplane which maximizes margins. Margin is the

distance between separating hyperplane (decision boundary) and the points that lie

closest to separating hyperplane. These points are also called as support vectors and

most difficult to classify. Since the decision boundary is determined by only the support

vectors, solving does not require hard computations.

SVM is linear with respect to its weight vector when data is linearly separable

and it is in the form of :

f(X) = cTX + b (4.1)

where c weight vector, X is data matrix and b is the bias vector. Weight vector c, can

be found by solving the following optimization problem :

minimize
c

1

2
||c||2

subject to yi(c
Txi + b) ≥ 1, i = 1, 2 . . . , n.

(4.2)
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where xi i
th data point (assuming each vector from data matrix is a point in a space)

and yi label of this data point. This formulation assumes a binary classification task

where the class labels are 1 or −1. The constraint given above is derived from these

equations below :

cTxi + b ≥ 1 when yi = 1 (4.3)

cTxi + b ≤ 1 when yi = −1 (4.4)

Above equations are consequences of margin maximization. However Eq. 4.2

only tries to find max-margin classifier that perfectly separates data. When most data

points are linearly separable but there are few points that can not be classified correctly,

the optimization problem can be redefined as :

minimize
c

1

2
||c||2 +R

n∑
i=1

ξi

subject to yi(c
Txi + b) ≥ 1− ξi, i = 1, 2 . . . , n.

(4.5)

ξi is the distance between the separating plane and the misclassified point. It

softens the margin constraint by allowing some data points to be misclassified. R

parameter controls the trade off between accuracy and margin size. This constrained

optimization problem can be solved by Lagrange,

L(w, b) =
1

2
||c||2 +R

n∑
i=1

ξi −
n∑
i=1

aiyi(c
Txi + b) +

n∑
i=1

(1− ξi)ai

∂L

∂c
= c−

n∑
i=1

aiyixi

∂L

∂b
=

n∑
i=1

aiyi

(4.6)
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Setting partial derivatives equal to zero, here is the solutions for the classifier param-

eters :

c =
n∑
i=1

aiyixi (4.7)

n∑
i=1

aiyi = 0 (4.8)

rewriting Eq. 4.5 in terms of ai and replacing c with Eq. 4.7 :

minimize
ai

n∑
i=1

ai −
1

2

∑
i

∑
j

aiajyiyj(x
T
i xj)

subject to 0 ≤ ai ≤ R

n∑
i=1

aiyi = 0

(4.9)

when (xTi xj) term is the inner product of data points. Dependence on w and b is

removed and this problem can be solved by only using inner products.

When data is not linearly separable, introducing a slack variable ξ is not enough.

Kernel-SVM addresses this issue and defines a feature map to project data into higher

dimensional space so that the projected data points can be separated linearly. Kernel-

SVM can be formulated as following :

f(X) = cTφ(X) + b (4.10)

where φ(x) defines a feature map into higher dimensional space. Rewriting Eq. 4.9

now we need to solve :

minimize
ai

n∑
i=1

ai −
1

2

∑
i

∑
j

aiajyiyj(φ(xi)
Tφ(xj))

subject to 0 ≤ ai ≤ R

n∑
i=1

aiyi = 0

(4.11)
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Although a feature map is used in this formulation, it does not have to be known

explicitly because it appears as in the form of inner product. Thus, calculating a kernel

function is enough to solve problem.

Definition 4. Kernel function. Let φ(x) donate a feature map. k(xi,xj) is defined on

vectors as:

k(xi, xj) = φ(xi)
Tφ(xj) (4.12)

There are many kernel functions such as linear kernel, polynomial kernel,sigmoid

kernel etc.. Among them, radial basis function (Gaussian kernel) is used in this thesis.

Definition 5. Radial basis function. Let krbf (xi,xj) donate a radial basis function.

krbf (xi,xj) is defined on vectors and performs :

krbf (xi,xj) = exp(γ||xi − xj||2) (4.13)

A kernel function simply computes the inner product of two projected vectors.

Radial basis function implies an infinite dimensional feature map which can be proven

by using Taylor expansion of exp(x).

SVM classifier is capable of finding complex decision boundaries by using kernel

trick. A trained neural network can also deal with the hard classification problems

however considering classification is performed for each 148 node with different model

parameters, SVM is advantageous over NN in terms of the training time.

RBF-SVMs are trained and tested by leave-one-out cross validation in this thesis.

In cross validation, data is separated into subsets then, the classifier trained on the

remaining subsets is tested in each subset and accuracy is measured. A simple k-fold

cross validation splits data into k groups. Leave-one-out cross validation is a specific

version of k-fold cross validation when k is equal to the number of data samples.
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Since there are limited samples in our dataset, leave-one-out cross validation is more

preferable then k-fold cross validation and a simple train/test split. Leave-one-out cross

validation also results in less biased estimation of how well the classifier is performing

compared to train/test split method.

Accuracy is considered as performance metric throughout all experiments. In

this thesis, different parameters are experimented such as network architecture choice,

number of walks starting at each node, negative sampling exponential etc.. Details of

each experiments can be seen at Table 4.1. Tables including top performing nodes and

circular graphs that shows all nodes’ performance are given at Appendix B.

Table 4.1. Parameters of experiments.

Experiment Network Architecture L K w γ k

TEST 1 CBOW 40 7 5 0.75 2

TEST 2 CBOW 40 7 5 0 2

TEST 3 CBOW 40 7 5 1 2

TEST 4 CBOW 40 5 5 0.75 2

TEST 5 CBOW 40 5 5 0 2

TEST 6 CBOW 40 5 5 1 2

TEST 7 CBOW 40 10 5 0.75 2

TEST 8 CBOW 40 10 5 0 2

TEST 9 CBOW 40 10 5 1 2

TEST 10 CBOW 40 7 5 0.75 5

TEST 11 CBOW 40 7 10 0.75 2

TEST 12 CBOW 40 20 5 0.75 2

TEST 13 CBOW 40 50 5 0.75 2

TEST 14 Skip-Gram 40 7 5 0.75 2

TEST 15 Skip-Gram 40 7 5 0.75 5

TEST 16 Skip-Gram 40 7 10 0.75 2

TEST 17 Skip-Gram 40 5 5 0.75 2

TEST 18 Skip-Gram 40 10 5 0.75 2

TEST 19 Skip-Gram 40 20 5 0.75 2

TEST 20 Skip-Gram 40 50 5 0.75 2

Among these experiments, TEST 1 is chosen as the best performing experiment

in terms of classification accuracy. Top performing nodes for TEST 1 are given at
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Table 4.2. In addition, a circular graph is used to visualize accuracy of each node for

TEST 1 at Figure 4.2.

Table 4.2. Classification accuracies of top performing nodes in TEST 1.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

95 R Lateral occipito-temporal gyrus 0.81 0.66 0.60 0.41

66 L Pericallosal sulcus 0.77 0.46 0.66 0.43

133 R Ant. occipital sulcus & preoccipital notch 0.77 0.75 0.53 0.40

76 R Inferior occipital gyrus (O3) and sulcus 0.93 0.75 0.60 0.48

106 R Subcallosal area, subcallosal gyrus 0.77 0.82 0.47 0.39

146 R Inferior temporal sulcus 0.60 0.80 0.50 0.46

124 R Anterior transverse collateral sulcus 0.74 0.77 0.55 0.51

13 L Orbital part of the inferior frontal gyrus 0.28 0.54 0.72 0.44

2 L Inferior occipital gyrus (O3) and sulcus 0.51 0.62 0.70 0.42

44 L Calcarine sulcus 0.56 0.57 0.70 0.39

39 L Horiz. ramus of ant. seg. of lateral sulcus 0.58 0.48 0.70 0.39

121 R Ant. seg. of the circular sulcus of insula 0.72 0.65 0.69 0.52

88 R Triangular part of the inferior frontal gyrus 0.63 0.71 0.622 0.51

56 L Intraparietal sulcus 0.2 0.62 0.58 0.51

Mean±Std (Top 5 nodes) 0.81±0.07 0.78±0.03 0.70±0.01 0.51±0.01

Figure 4.2. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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To evaluate the performance of nodal embeddings, a comparison with different

methods would be useful. One alternative is taking the concatenation of some nodal

embeddings instead embedding of a single node. To choose which nodes to concatenate,

subnetworks of brain can be used. In this theses, nodes that belong to same subnetwork

are concatenated. Parameters of concatenation experiment are the same with TEST

1. In concatenation experiment, RBF-SVMSs are trained ad tested by leave-one-out

cross validation. Results of this experiment can be seen at Table 4.3.

Table 4.3. Concatenation Experiment.

Subnetwork Name AD-SCI AD-MCI MCI-SCI All

Visual 0.74 0.63 0.55 0.37

Somatosensory and Auditory 0.37 0.57 0.54 0.32

Dorsal attention 0.58 0.65 0.69 0.42

Salience 0.66 0.65 0.43 0.35

Limbic 0.70 0.63 0.66 0.45

Fronto-parietal 0.74 0.70 0.54 0.46

Default mode 0.53 0.66 0.55 0.44

Another comparison can be done between nodal embeddings and direct use of

node adjacency matrix. Node adjacency matrix only captures information about first

order proximity while nodal embeddings contain additional information since embed-

ding learning maximizes the cooccurence of the target node with the surrounding con-

text nodes hence leverages higher order proximity. It is expected that prosed method

in this thesis learns the classification problems better compared to direct use of node

adjacency matrix. In this experiment, RBF-SVMSs are trained ad tested by leave-

one-out cross validation. Nodal features are the rows of node adjacency matrix. Top

performing nodes for this experiment are given at Table 4.4. Also, a circular graph is

used to visualize accuracies.
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Table 4.4. Classification accuracies of top performing adjacency matrix nodes.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

53 L Middle frontal sulcus 0.72 0.79 0.52 0.05

8 L Mid.-post. part of the cingulate gyrus and sulcus 0.72 0.79 0.70 0.48

84 R Posterior-ventral part of the cingulate gyrus 0.70 0.80 0.69 0.58

80 R Anterior part of the cingulate gyrus and sulcus 0.70 0.79 0.62 0.53

49 L Superior segment of the circular sulcus of the insula 0.70 0.80 0.68 0.06

48 L Inferior segment of the circular sulcus of the insula 0.63 0.79 0.61 0.52

90 R Superior frontal gyrus 0.49 0.62 0.72 0.57

120 R Marginal branch of the cingulate sulcus 0.00 0.00 0.70 0.03

105 R Straight gyrus 0.56 0.69 0.70 0.50

96 R Lingual gyrus 0.63 0.71 0.61 0.60

82 R Middle-posterior part of the cingulate gyrus and sulcus 0.00 0.75 0.65 0.58

136 R Lateral orbital sulcus 0.00 0.72 0.01 0.57

Mean±Std (Top 5 nodes) 0.71±0.01 0.79±0.01 0.70±0.01 0.58±0.01

Figure 4.3. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI).
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5. DISCUSSION

Neural network language models learn the relation between target words and

words that occurs in their vicinity, context words. sNET nodes are analogous to words,

hence nodal embeddings learn the relation between target node and context nodes

i.e. encoding local connectivity patterns. Changes in local connectivity patterns for

different sNETs can be captured by nodal embeddings since nodes with similar local

connections are mapped to similar embeddings.

Experiments show that nodal embeddings may also capture information about

disease progression since the discriminative power is higher for AD/SCI than AD/MCI

and MCI/SCI. Distinguishing MCI patients is harder compared to those with AD and

SCI, since MCI might be considered as a stage between AD and SCI. However not all

MCIs evolve to AD. Also there is a shift in the top performing nodes as the disease

progresses, which can be an indicator of spatial progression of the disease. Furthermore,

no clear symmetry across the cortical regions/nodes in terms of their power is observed,

in agreement with asymmetric changes in brain previously reported in AD literature.

By looking nodes’ membership in subnetworks, it is possible to make basic com-

ments on which cognitive functions are linked to top performing nodes and which

subnetworks AD targets at. It is believed that human brain consists of subnetworks

which all perform a specific cognitive function. A popular approach categorizes brain

into seven subnetworks : visual, default mode, fronto-parietal, dorsal attention, so-

matosensory and auditory (Som Aud), limbic and salience subnetworks. In TEST 1,

three of the most discriminative nodes for the AD/SCI classification (n95, n76, n133) be-

long to visual network which was observed as an early feature of cognitive impairments

in AD [57]. Further analysis on top performing nodes requires specialist opinions.

Nodal embeddings are directly related to parameters of the proposed method.

Changing the parameters may result in different classification performance of different

nodes. Parameters of the proposed method are either random walk related or neural
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network related parameters. Random walk related parameters determine corpus size

while neural network related parameters affect embedding learning process. Many

parameters are experimented independently, i.e. corpus size changed while neural

network parameters are kept same or neural network parameters are changed while the

corpus is the same. It is observed that proposed method is more sensitive to corpus

size and neural network architecture compared to other parameters.

Although CBOW architecture outperforms Skip-gram architecture in our classi-

fication tasks, Skip-gram architecture is reported as more successful at syntactic and

semantic tasks for word embeddings. Mikolov et al. [54] does not give any clear jus-

tification of why Skip-gram is more successful than CBOW. A possible explanation

for this outcome is that CBOW takes the mean of the context words, i.e. smooths

the distributional information while Skip-gram treats each context word as an output

to be predicted. Thus rare words are represented better in Skip-gram when a large

vocabulary is available since Skip-gram takes more training samples than CBOW. How-

ever when the vocabulary size is limited which is the case for this thesis (V = 148),

smoothing context words would be more helpful .

Corpus size is only dependent on L and K since vocabulary size is fixed. To

experiment different corpus size, only the number of walks starting from each node (K)

is changed when random walk length (L) is kept same. With different experiments, it is

observed that increasing corpus size degrades the performance. In CBOW, classification

accuracies do not decrease for classification tasks including MCI patients with the

increasing corpus size, however sensitivity decreases dramatically. In addition, most

of the nodes give nearly same classification performance. It is caused by unbalanced

class ratio of MCI (48 of 91 patients are labeled as MCI). Classifier simply decides

most subjects as MCI, even though class weight ratios are introduced in RBF-SVM

classifier. This indicates that the model is not learning properly. In Skip-Gram, both

classification accuracies and sensitivity are decreased. This performance drop is caused

by limited vocabulary size. Finer cortical parcellations, i.e. larger vocabulary, may

result in better classification performance.
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Other parameters such as window length (w), negative sample exponent (γ) and

number of negative samples (k) are experimented through different tests. Their impact

were lower compared to K and network architecture. w parameter determines the

degree of the local connectivities is captured in nodal embeddings. To exemplify,

setting it equal to 1 results in nodal embeddings that encode node-adjacency matrix.

To represent subnetworks around each node, w must be set greater than 1. In most

experiments, w = 5 is used. Bigger w values also decrease performance since changes

in local connectivity patterns become harder to be observed.

γ parameter is set empirically. Mikolov et al. [54], suggests that setting γ to

0.75 slightly outperforms compared to γ = 1. The latter corresponds to unigram

distribution, which is the word frequency. Values lower than 1 sample rare words more

frequently which improves quality of negative samples.

Different k values result in similar accuracies. Choice of k = 2 is better than k = 5

by a small margin, since a small set of negative samples are enough to distinguish target

word from noise samples.

D, embedding dimension is closely related to the data size (91). Although it is not

reported in this thesis, increasing D would improve RBF-SVM training performance

however test accuracy would decrease which indicates poorer generalizability.

In the direct use of node adjacency rows, top accuracies for classification tasks

including MCI patients seem better than nodal embedding accuracies. However the

use of node adjacency rows lacks specificity, they simply do not learn the classifica-

tion problem instead they label most of patients to numerically dominant group. It

means that node adjacency rows do not contain any relevant information about these

classification tasks. In the concatenation experiment, fronto-parietal, visual and limbic

subnetworks gives meaningful results, however nodal embeddings outperforms concate-

nation of nodal embeddings. Since a subnetwork consists of around 20 nodes, resulting

feature dimension is too big compared to data size and this is the cause of performance

decrease.
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Most discriminative nodes can be used to classify patients, i.e. they may be

useful for diagnosis. Apart from diagnosis, nodal embeddings might be helpful for

monitoring disease progression. To visualize relation between nodal embeddings and

the disease progression, Laplacian Eigenmaps is used to learn a manifold where the

disease progression can be represented in embedding space. Laplacian Eigenmaps is

also used to reduce dimensionality of 8 dimensional nodal embeddings.

Laplacian Eigenmaps is a non-linear dimensionality reduction technique that aims

to find mapping from a weighted graph formed by feature vectors (xi,x2, ....xn) ∈ RM

to embeddings (y1,y2, ....yn) ∈ Rm (m ≤ M) lying on a manifold embedded in RM .

Objective function of this mapping is the following:

minimize
y

∑
i,j

(yi − yj)2Wij (5.1)

As mentioned in Chapter 2, Laplacian Eigenmaps finds similar embeddings when

nodes are heavily connected. There are possible approaches to create node adjacency

matrix. One possible approach is finding closer points in terms of euclidean distance

i.e. ith node andjth node is connected when ||xi − xj||2 < ε and choosing weights as

either output of a function, Wij = g(xi,xj) or simple binary choice, Wij = 1 if there is

connection and Wij = 0 if there is no connection. In this thesis, it is considered that

all nodes are connected and weights are calculated as following :

Wij = exp(
||xi − xj||2

8
) (5.2)

Eq. 5.1 can be manipulated as :

∑
i,j

(yi − yj)2Wij = yTL y (5.3)
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where L is Laplacian matrix of a graph, L = D −W and D =
∑

jWij. Thus mini-

mization problem turns into :

minimize
y

∑
i,j

(yi − yj)2Wij

subject to yTD y = 1

(5.4)

where the constraint is given to remove scaling factor for embeddings. Solution to this

objective function is the minimum of generalized eigenvalue problem :

L y = λD y (5.5)

however minimum eigenvalue is 0 for Laplacian matrix which corresponds to constant

eigenvector that takes 1 for every node. By eliminating this trivial solution, m dimen-

sional embeddings are in the form of :

yi = (v1i , v
2
i , ....v

m
i ) (5.6)

where vmi is ith entry of mth smallest eigenvector that is a solution to Eq. 5.5.

Two dimensional embeddings from Laplacian Eigenamps are extracted to learn

a manifold where disease progression can be observed. Initial results are not satisfac-

tory since embeddings of MCI and SCI subjects are overlapping too much. However

embeddings of some AD subjects can be distinguished from those with MCI and SCI

as shown in Fig 5.1.

Two dimensional embeddings in Fig 5.1 are extracted from nodal embeddings

of node 124 (Right, Anterior transverse collateral sulcus), since the ratio of between

interclass distances to intraclass distances is maximum for node 124. Although clusters

are not clearly distinguished in this case, another mapping for nodal embeddings to
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lower dimensions may help monitoring disease progression.

Figure 5.1. Two dimensional Laplacian Eigenmaps for Node 124 (Red-AD,

Green-MCI, Blue-SCI).
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6. CONCLUSION

Latent representations of nodes learned by graph embeddings preserve local net-

work structure. Changes in local network structure may explain the nature of AD.

Analysing subnetworks associated with the most discriminative nodes shows which

cognitive functions are targeted at respectively, thus helps monitoring disease. It also

allows to identify early risk factors for AD. In addition a node with high accuracy and

sensitivity can be directly used for diagnosing AD. To sum up, this thesis offers a novel

approach to understand, diagnose and monitor AD.

The preliminary results are promising. To yield better results, further improve-

ments can be made. As in all machine learning applications, larger cohorts would

provide benefit to proposed method. Increasing cortical parcellation resolution would

give more accurate results due to finer anatomical localizations and the fact that neural

network language models perform better with larger vocabulary size.

To create larger cohorts, more subjects are needed. Change in cortical parcella-

tion requires a new anatomical atlas and recreating sNETs from the beginning. Col-

lecting more data and processing them to obtain new networks are not dependent to

proposed method. Improvements related to proposed method may include changes in

creating random walks, using fNETs of subjects and forming new features from nodal

embeddings.

Changes in creating random walk can be done by creating biased random walks

as it mentioned in node2vec [35]. By introducing new variables, random walks can be

manipulated to capture additional information of local structure.

fNETs of subjects capture information about correlation of BOLD signals. Since

most of fNETs are dense matrices, nodal embeddings coming from fNETs is not able

to capture any information about local structure by means of random walks. However

functional similarities along with structural connections would be utilized to create a
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new corpus in order to improve results.

Nodal embeddings can be used to form new features which may show progression

of disease. In Chapter 5, Laplacian Eigenmaps is proposed to learn manifold where the

disease progression can be monitored. However results are not successful enough, so

an alternative mapping function must be investigated. To find such a function, protein

levels, age and sex of a subject can be used apart from clinical label.
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APPENDIX A: HIERARCHICAL SOFTMAX

Hierarchical softmax creates a binary tree to factor out probabilities and assigns

probabilities to path of the binary tree. In Deepwalk, Huffman coding is used to

generate a binary tree. Huffman coding assigns short paths to frequent words. This

method reduces the complexity around order of log(V ). Formulation of hierarchical

softmax for Skip-Gram is :

P (nck|nt) = −
L(nc

k)−1∑
i=1

σ(I(node(nck, i+ 1), child(node(nck, i))v
Th) (A.1)

I(x, y) =

1, if x=y.

−1, otherwise.

(A.2)

h = W nt (A.3)

where node(nck, i) is the ith node on the path from the root to node nck and L(nck) is

the length of the path going the node nck. Lets assume node(nck, i) corresponds to pth

node , so child(node(nck, i)) is the two children of node p , v is the pth column of C

and σ() is sigmoid function.

Definition 6. Sigmoid function. Let σ() donate the sigmoid function. σ(x) is defined

on scalars and performs :

σ(x) =
1

1 + exp(−x)
(A.4)
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APPENDIX B: EXPERIMENTAL RESULTS

TEST 2 Parameters : i) CBOW ii) K=40 iii) L=7 iv) w=5 v) k=2 vi) α = 0

Table B.1. Classification accuracies of top performing nodes in TEST 2.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

133 R Ant. occipital sulcus & preoccipital notch 0.77 0.80 0.43 0.31

110 R Temporal plane of the superior temporal gyrus 0.77 0.52 0.55 0.36

124 R Anterior transverse collateral sulcus 0.74 0.74 0.49 0.41

76 R Inferior occipital gyrus (O3) and sulcus 0.74 0.65 0.58 0.30

23 L Parahippocampal gyrus 0.74 0.63 0.60 0.40

146 R Inferior temporal sulcus 0.51 0.82 0.35 0.34

16 L Superior frontal gyrus (F1) 0.63 0.75 0.55 0.36

147 R Superior temporal sulcus 0.63 0.74 0.35 0.37

148 R Transverse temporal sulcus 0.54 0.40 0.69 0.34

141 R Postcentral sulcus 0.61 0.63 0.69 0.35

128 R Superior frontal sulcus 0.63 0.70 0.69 0.43

121 R Ant. seg. of the circular sulcus of insula 0.65 0.62 0.68 0.48

25 L Angular gyrus 0.54 0.59 0.68 0.40

138 R Orbital sulci 0.56 0.70 0.55 0.53

91 R Long insular gyrus and central sulcus of the insula 0.72 0.66 0.62 0.51

27 L Superior parietal lobule 0.61 0.71 0.61 0.47

108 R Lateral aspect of the superior temporal gyrus 0.72 0.70 0.53 0.46

Mean±Std (Top 5 nodes) 0.75±0.02 0.77±0.04 0.69±0.01 0.49±0.03

Figure B.1. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 3 Parameters: i) CBOW ii) K=40 iii) L=7 iv) w=5 v) k=2 vi) α = 1

Table B.2. Classification accuracies of top performing nodes in TEST 3.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

124 R Anterior transverse collateral sulcus 0.81 0.72 0.54 0.47

22 L Lingual gyrus 0.77 0.63 0.55 0.47

146 R Inferior temporal sulcus 0.74 0.83 0.42 0.35

107 R Anterior transverse temporal gyrus 0.74 0.46 0.45 0.37

95 R Lateral occipito-temporal gyrus 0.72 0.60 0.53 0.34

134 R Lateral occipito-temporal sulcus 0.63 0.74 0.40 0.40

89 R Middle frontal gyrus 0.67 0.72 0.58 0.44

57 L Middle occipital sulcus and lunatus sulcus 0.51 0.72 0.57 0.41

31 L Straight gyrus 0.63 0.63 0.73 0.46

56 L Intraparietal sulcus 0.60 0.62 0.70 0.56

38 L Middle temporal gyrus 0.67 0.65 0.69 0.51

127 R Middle frontal sulcus 0.70 0.46 0.68 0.31

104 R Precuneus 0.49 0.54 0.68 0.40

27 L Superior parietal lobule 0.65 0.66 0.68 0.53

125 R Posterior transverse collateral sulcus 0.58 0.62 0.51 0.50

Mean±Std (Top 5 nodes) 0.76±0.04 0.75±0.05 0.70±0.02 0.51±0.03

Figure B.2. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 4 Parameters: i) CBOW ii) K=40 iii) L=5 iv) w=5 v) k=2 vi) α = 0.75

Table B.3. Classification accuracies of top performing nodes in TEST 4.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

124 R Anterior transverse collateral sulcus 0.84 0.71 0.42 0.35

101 R Superior parietal lobule 0.81 0.54 0.64 0.41

25 L Angular gyrus 0.79 0.55 0.53 0.40

23 L Parahippocampal gyrus 0.79 0.68 0.57 0.45

59 L Subcallosal area, subcallosal gyrus 0.77 0.49 0.47 0.28

35 L Anterior transverse collateral sulcus 0.58 0.79 0.32 0.34

29 L Precentral gyrus 0.65 0.79 0.60 0.48

76 R Inferior occipital gyrus (O3) and sulcus 0.65 0.77 0.45 0.37

68 L Inferior part of the precentral sulcus 0.42 0.77 0.61 0.43

45 L Central sulcus 0.51 0.75 0.49 0.35

113 R Horiz. ramus of ant. seg. of lateral sulcus 0.72 0.51 0.72 0.45

56 L Intraparietal sulcus 0.63 0.51 0.72 0.50

19 L Middle occipital gyrus 0.65 0.69 0.72 0.59

128 R Superior frontal sulcus 0.70 0.57 0.71 0.47

58 L Transverse occipital sulcus 0.70 0.60 0.69 0.51

39 L Horiz. ramus of ant. seg. of lateral sulcus 0.56 0.54 0.67 0.53

89 R Middle frontal gyrus 0.32 0.72 0.61 0.52

57 L Middle occipital sulcus and lunatus sulcus 0.72 0.68 0.66 0.52

Mean±Std (Top 5 nodes) 0.80±0.03 0.77±0.02 0.71±0.01 0.53±0.03

Figure B.3. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 5 Parameters: i) CBOW ii) K=40 iii) L=5 iv) w=5 v) k=2 vi) α = 0

Table B.4. Classification accuracies of top performing nodes in TEST 5.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

23 L Parahippocampal gyrus 0.84 0.50 0.72 0.39

124 R Anterior transverse collateral sulcus 0.79 0.74 0.45 0.36

59 L Ant. occipital sulcus & preoccipital notch 0.77 0.54 0.47 0.36

95 R Lateral occipito-temporal gyrus 0.74 0.75 0.38 0.32

147 R Superior temporal sulcus 0.72 0.39 0.66 0.34

35 L Planum polare of the superior temporal gyru 0.54 0.77 0.28 0.30

1 L Fronto-marginal gyrus and sulcus 0.63 0.77 0.32 0.24

18 L Short insular gyri 0.35 0.75 0.46 0.33

56 L Intraparietal sulcus 0.72 0.52 0.80 0.54

38 L Middle temporal gyrus 0.72 0.64 0.74 0.53

58 L Transverse occipital sulcus 0.67 0.65 0.73 0.53

113 R Horiz. ramus of ant. seg. of lateral sulcus 0.65 0.59 0.70 0.45

89 R Middle frontal gyrus 0.44 0.66 0.69 0.57

19 L Middle occipital gyrus 0.63 0.71 0.70 0.55

Mean±Std (Top 5 nodes) 0.77±0.05 0.76±0.01 0.74±0.04 0.54±0.02

Figure B.4. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 6 Parameters: i) CBOW ii) K=40 iii) L=5 iv) w=5 v) k=2 vi) α = 1

Table B.5. Classification accuracies of top performing nodes in TEST 6.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

124 R Anterior transverse collateral sulcus 0.81 0.72 0.49 0.41

111 R Inferior temporal gyrus 0.79 0.69 0.54 0.39

102 R Inferior temporal gyrus 0.77 0.59 0.54 0.33

76 R Inferior occipital gyrus (O3) and sulcus 0.77 0.79 0.43 0.40

38 L Middle temporal gyrus 0.74 0.55 0.58 0.43

146 R Inferior temporal sulcus 0.63 0.74 0.42 0.32

12 L Opercular part of the inferior frontal gyrus 0.67 0.74 0.52 0.48

68 L Inferior part of the precentral sulcus 0.54 0.72 0.65 0.48

56 L Intraparietal sulcus 0.65 0.46 0.74 0.50

65 L Ant. seg. of the circular sulcus of insula 0.49 0.32 0.72 0.36

44 L Calcarine sulcus 0.51 0.45 0.70 0.40

113 R Horiz. ramus of ant. seg. of lateral sulcus 0.65 0.52 0.69 0.44

29 L Precentral gyrus 0.63 0.72 0.69 0.53

52 L Inferior frontal sulcus 0.44 0.70 0.63 0.51

89 R Middle frontal gyrus 0.44 0.66 0.58 0.50

Mean±Std (Top 5 nodes) 0.78±0.03 0.74±0.03 0.71±0.02 0.50±0.02

Figure B.5. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 7 Parameters: i) CBOW ii) K=40 iii) L=10 iv) w=5 v) k=2 vi) α = 0.75

Table B.6. Classification accuracies of top performing nodes in TEST 7.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

124 R Anterior transverse collateral sulcus 0.79 0.66 0.46 0.37

111 R Inferior temporal gyrus 0.79 0.65 0.30 0.28

39 L Horiz. ramus of ant. seg. of lateral sulcus 0.79 0.63 0.64 0.51

147 R Superior temporal sulcus 0.72 0.75 0.27 0.30

134 R Lateral occipito-temporal sulcus 0.72 0.69 0.50 0.34

146 R Inferior temporal sulcus 0.63 0.83 0.27 0.35

133 R Ant. occipital sulcus & preoccipital notch 0.67 0.77 0.53 0.45

96 R Calcarine sulcus 0.70 0.74 0.62 0.48

14 L Triangular part of the inferior frontal gyrus 0.47 0.74 0.55 0.51

38 L Middle temporal gyrus 0.65 0.63 0.73 0.51

88 L Triangular part of the inferior frontal gyrus 0.65 0.59 0.70 0.51

56 L Intraparietal sulcus 0.51 0.63 0.69 0.48

90 R Superior frontal gyrus (F1) 0.72 0.65 0.68 0.40

87 R Orbital part of the inferior frontal gyrus 0.58 0.69 0.68 0.48

137 R Medial orbital sulcus 0.65 0.57 0.64 0.51

25 L Angular gyrus 0.49 0.63 0.66 0.51

Mean±Std (Top 5 nodes) 0.76±0.04 0.77±0.04 0.70±0.02 0.51±0.00

Figure B.6. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 8 Parameters: i) CBOW ii) K=40 iii) L=10 iv) w=5 v) k=2 vi) α = 0

Table B.7. Classification accuracies of top performing nodes in TEST 8.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

124 R Anterior transverse collateral sulcus 0.81 0.66 0.45 0.37

16 L Superior frontal gyrus (F1) 0.79 0.68 0.47 0.37

96 R Ant. occipital sulcus & preoccipital notch 0.77 0.67 0.46 0.41

147 R Superior temporal sulcus 0.74 0.70 0.37 0.34

141 R Postcentral sulcus 0.74 0.49 0.62 0.36

146 R Inferior temporal sulcus 0.65 0.80 0.39 0.37

133 R Ant. occipital sulcus & preoccipital notch 0.65 0.77 0.54 0.46

108 R Lateral aspect of the superior temporal gyrus 0.74 0.74 0.42 0.33

72 L Calcarine sulcus 0.47 0.72 0.60 0.44

111 R Inferior temporal gyrus 0.72 0.75 0.35 0.30

121 R Ant. seg. of the circular sulcus of insula 0.51 0.47 0.74 0.44

128 R Superior frontal sulcus 0.74 0.63 0.68 0.53

56 L Intraparietal sulcus 0.70 0.55 0.68 0.46

27 L Superior parietal lobule 0.51 0.55 0.68 0.43

145 R Subparietal sulcus 0.63 0.60 0.66 0.47

70 L Suborbital sulcus 0.60 0.68 0.57 0.50

52 L Inferior frontal sulcus 0.44 0.57 0.65 0.50

5 L Transverse frontopolar gyri and sulci 0.67 0.66 0.66 0.48

Mean±Std (Top 5 nodes) 0.77±0.03 0.76±0.03 0.69±0.03 0.50±0.02

Figure B.7. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 9 Parameters: i) CBOW ii) K=40 iii) L=10 iv) w=5 v) k=2 vi) α = 1

Table B.8. Classification accuracies of top performing nodes in TEST 9.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

124 R Anterior transverse collateral sulcus 0.81 0.52 0.57 0.48

76 R Inferior occipital gyrus (O3) and sulcus 0.79 0.69 0.47 0.42

31 L Straight gyrus 0.79 0.69 0.57 0.52

134 R Lateral occipito-temporal sulcus 0.77 0.68 0.31 0.30

115 R Posterior ramus of the lateral sulcus 0.77 0.59 0.61 0.37

133 R Ant. occipital sulcus & preoccipital notch 0.72 0.83 0.34 0.31

70 L Suborbital sulcus 0.65 0.77 0.66 0.57

35 L Planum polare of the superior temporal gyrus 0.70 0.74 0.35 0.32

17 L Horiz. ramus of ant. seg. of lateral sulcus 0.58 0.74 0.30 0.28

146 R Inferior temporal sulcus 0.72 0.72 0.32 0.36

25 L Angular gyrus 0.58 0.65 0.76 0.51

56 L Intraparietal sulcus 0.49 0.52 0.72 0.45

127 R Middle frontal sulcus 0.74 0.50 0.70 0.42

52 L Inferior frontal sulcus 0.63 0.55 0.69 0.53

38 L Middle temporal gyrus 0.72 0.57 0.69 0.45

14 L Triangular part of the inferior frontal gyrus 0.49 0.69 0.63 0.52

Mean±Std (Top 5 nodes) 0.79±0.02 0.76±0.04 0.71±0.03 0.53±0.02

Figure B.8. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 10 Parameters: i) CBOW ii) K=40 iii) L=7 iv) w=5 v) k=5 vi) α = 0.75

Table B.9. Classification accuracies of top performing nodes in TEST 10.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

141 R Postcentral sulcus 0.84 0.54 0.66 0.45

124 R Anterior transverse collateral sulcus 0.84 0.75 0.58 0.53

107 R Anterior transverse temporal gyrus 0.81 0.59 0.54 0.40

146 R Inferior temporal sulcus 0.79 0.71 0.47 0.44

133 R Ant. occipital sulcus & preoccipital notch 0.77 0.74 0.47 0.40

96 R Anterior transverse collateral sulcus 0.42 0.77 0.53 0.36

22 L Lingual gyrus 0.65 0.77 0.53 0.45

117 R Temporal pole 0.65 0.72 0.46 0.39

27 L Superior parietal lobule 0.70 0.60 0.70 0.54

25 L Angular gyrus 0.61 0.68 0.69 0.48

56 L Intraparietal sulcus 0.54 0.59 0.66 0.43

39 L Horiz. ramus of ant. seg. of lateral sulcus 0.51 0.51 0.66 0.35

14 L Triangular part of the inferior frontal gyrus 0.54 0.65 0.65 0.51

103 R Precentral gyrus 0.77 0.71 0.51 0.50

12 L Opercular part of the inferior frontal gyrus 0.51 0.62 0.62 0.50

Mean±Std (Top 5 nodes) 0.81±0.03 0.75±0.02 0.67±0.02 0.52±0.02

Figure B.9. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 11 Parameters: i) CBOW ii) K=40 iii) L=7 iv) w=10 v) k=2 vi) α = 0.75

Table B.10. Classification accuracies of top performing nodes in TEST 11.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

107 R Anterior transverse temporal gyrus 0.79 0.66 0.53 0.43

106 R Subcallosal area, subcallosal gyrus 0.77 0.65 0.58 0.43

146 R Inferior temporal sulcus 0.74 0.77 0.46 0.46

147 R Superior temporal sulcus 0.72 0.66 0.26 0.24

140 R Pericallosal sulcus 0.72 0.51 0.51 0.39

117 R Temporal pole 0.65 0.78 0.51 0.47

124 R Anterior transverse collateral sulcus 0.70 0.77 0.53 0.47

48 L Calcarine sulcus 0.44 0.74 0.61 0.42

12 L Opercular part of the inferior frontal gyrus 0.51 0.74 0.53 0.48

22 L Lingual gyrus 0.56 0.59 0.69 0.45

44 L Calcarine sulcus 0.65 0.57 0.66 0.45

108 R Lateral aspect of the superior temporal gyrus 0.63 0.72 0.65 0.51

101 R Superior parietal lobule 0.65 0.43 0.65 0.40

56 L Intraparietal sulcus 0.54 0.50 0.65 0.40

27 L Superior parietal lobule 0.65 0.51 0.64 0.48

Mean±Std (Top 5 nodes) 0.75±0.03 0.76±0.02 0.66±0.02 0.48±0.02

Figure B.10. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 12 Parameters: i) CBOW ii) K=40 iii) L=20 iv) w=5 v) k=2 vi) α = 0.75

Table B.11. Classification accuracies of top performing nodes in TEST 12.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

107 R Anterior transverse temporal gyrus 0.77 0.62 0.68 0.46

124 R Anterior transverse collateral sulcus 0.74 0.75 0.46 0.43

106 R Subcallosal area, subcallosal gyrus 0.74 0.70 0.54 0.46

128 R Superior frontal sulcus 0.70 0.71 0.57 0.44

102 R Inferior temporal gyrus 0.70 0.54 0.51 0.32

147 R Superior temporal sulcus 0.56 0.79 0.46 0.39

133 R Ant. occipital sulcus & preoccipital notch 0.63 0.75 0.43 0.35

146 R Inferior temporal sulcus 0.65 0.72 0.35 0.30

137 R Medial orbital sulcus 0.54 0.72 0.62 0.50

52 L Inferior frontal sulcus 0.32 0.61 0.77 0.44

19 L Middle occipital gyrus 0.56 0.66 0.73 0.55

2 L Inferior occipital gyrus (O3) and sulcus 0.35 0.70 0.71 0.48

80 R Ant. part of the cingulate gyrus and sulcus 0.51 0.50 0.70 0.51

25 L Angular gyrus 0.54 0.60 0.70 0.51

115 R Posterior ramus of the lateral sulcus 0.54 0.62 0.68 0.50

Mean±Std (Top 5 nodes) 0.74±0.03 0.75±0.03 0.72±0.03 0.51±0.02

Figure B.11. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 13 Parameters: i) CBOW ii) K=40 iii) L=50 iv) w=5 v) k=2 vi) α = 0.75

Table B.12. Classification accuracies of top performing nodes in TEST 13.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

98 R Lateral occipito-temporal gyrus 0.74 0.75 0.57 0.46

124 R Anterior transverse collateral sulcus 0.72 0.72 0.65 0.52

78 R Subcentral gyrus and sulci 0.70 0.77 0.60 0.50

31 L Straight gyrus 0.70 0.66 0.52 0.40

24 L Orbital gyri 0.70 0.66 0.50 0.40

23 L Parahippocampal gyrus 0.65 0.79 0.65 0.54

66 L Calcarine sulcus 0.61 0.77 0.65 0.55

41 L Posterior ramus of the lateral sulcus 0.56 0.77 0.64 0.48

122 R Inferior segment of the circular sulcus of the insula 0.49 0.72 0.70 0.56

44 L Calcarine sulcus 0.58 0.75 0.70 0.58

10 L Posterior-ventral part of the cingulate gyrus 0.70 0.74 0.70 0.57

102 R Postcentral gyrus 0.58 0.74 0.69 0.54

83 R Posterior-dorsal part of the cingulate gyrus 0.65 0.71 0.69 0.51

4 L Subcentral gyrus and sulci 0.56 0.74 0.69 0.57

68 L Inferior part of the precentral sulcus 0.35 0.69 0.69 0.56

Mean±Std (Top 5 nodes) 0.71±0.02 0.77±0.01 0.70±0.01 0.57±0.01

Figure B.12. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 14 Parameters: i) Skip-Gram ii) K=40 iii) L=7 iv) w=5 v) k=2 vi) α = 0.75

Table B.13. Classification accuracies of top performing nodes in TEST 14.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

124 R Anterior transverse collateral sulcus 0.77 0.74 0.55 0.51

143 R Superior part of the precentral sulcus 0.72 0.50 0.51 0.52

125 R Posterior transverse collateral sulcus 0.72 0.63 0.55 0.44

22 L Lingual gyrus 0.72 0.60 0.55 0.40

135 R Subcallosal area, subcallosal gyrus 0.70 0.55 0.60 0.46

108 R Lateral aspect of the superior temporal gyrus 0.70 0.74 0.60 0.51

49 L Sup. seg. of the circular sulcus of the insula 0.35 0.74 0.49 0.37

146 R Inferior temporal sulcus 0.65 0.72 0.47 0.36

100 R Supramarginal gyrus 0.54 0.72 0.55 0.51

148 R Transverse temporal sulcus 0.65 0.59 0.68 0.45

115 R Posterior ramus of the lateral sulcus 0.67 0.66 0.66 0.52

87 R Orbital part of the inferior frontal gyrus 0.44 0.70 0.66 0.46

69 L Superior part of the precentral sulcus 0.28 0.51 0.66 0.45

121 R Ant. seg. of the circular sulcus of insula 0.49 0.49 0.64 0.38

Mean±Std (Top 5 nodes) 0.73±0.03 0.73±0.01 0.66±0.01 0.51±0.01

Figure B.13. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 15 Parameters: i) Skip-Gram ii) K=40 iii) L=7 iv) w=5 v) k=5 vi) α = 0.75

Table B.14. Classification accuracies of top performing nodes in TEST 15.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

23 L Parahippocampal gyrus 0.77 0.57 0.51 0.36

115 R Posterior ramus of the lateral sulcus 0.74 0.66 0.54 0.42

140 R Pericallosal sulcus 0.72 0.48 0.50 0.34

141 R Postcentral sulcus 0.70 0.63 0.54 0.40

124 R Anterior transverse collateral sulcus 0.70 0.57 0.43 0.32

92 R Anterior transverse collateral sulcus 0.42 0.77 0.35 0.34

131 R Calcarine sulcus 0.40 0.74 0.47 0.37

125 R Posterior transverse collateral sulcus 0.58 0.74 0.53 0.41

108 R Lateral aspect of the superior temporal gyrus 0.58 0.72 0.47 0.40

89 R Middle frontal gyrus 0.63 0.72 0.46 0.42

52 L Inferior frontal sulcus 0.58 0.43 0.69 0.42

25 L Angular gyrus 0.67 0.48 0.66 0.39

130 R Intraparietal sulcus 0.54 0.57 0.64 0.37

14 L Triangular part of the inferior frontal gyrus 0.40 0.60 0.64 0.43

101 R Superior parietal lobule 0.65 0.54 0.62 0.37

121 R Ant. seg. of the circular sulcus of insula 0.56 0.65 0.60 0.45

113 R Horiz. ramus of ant. seg. of lateral sulcus 0.51 0.62 0.61 0.43

13 L Orbital part of the inferior frontal gyrus 0.47 0.68 0.61 0.43

Mean±Std (Top 5 nodes) 0.73±0.03 0.74±0.02 0.65±0.03 0.43±0.01

Figure B.14. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 16 Parameters: i) Skip-Gram ii) K=40 iii) L=7 iv) w=10 v) k=2 vi) α =

0.75

Table B.15. Classification accuracies of top performing nodes in TEST 16.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

69 L Lateral occipito-temporal gyrus 0.72 0.52 0.50 0.33

30 L Precuneus 0.67 0.46 0.60 0.36

74 L Transverse temporal sulcus 0.65 0.51 0.24 0.19

6 L Inferior occipital gyrus (O3) and sulcus 0.63 0.52 0.35 0.18

114 R Subcallosal area, subcallosal gyrus 0.61 0.60 0.54 0.42

147 R Superior temporal sulcus 0.49 0.74 0.31 0.25

138 R Orbital sulci 0.54 0.72 0.49 0.39

126 R Anterior transverse collateral sulcus 0.58 0.72 0.64 0.55

51 L Posterior transverse collateral sulcus 0.42 0.71 0.26 0.26

88 R Triangular part of the inferior frontal gyrus 0.54 0.70 0.64 0.53

123 R Sup. seg. of the circular sulcus of the insula 0.26 0.55 0.68 0.43

136 R Lateral orbital sulcus 0.58 0.65 0.66 0.43

113 R Horiz. ramus of ant. seg. of lateral sulcus 0.47 0.46 0.66 0.41

14 L Triangular part of the inferior frontal gyrus 0.54 0.42 0.66 0.36

142 R Inferior part of the precentral sulcus 0.42 0.66 0.55 0.44

115 R Posterior ramus of the lateral sulcus 0.44 0.68 0.55 0.44

Mean±Std (Top 5 nodes) 0.66±0.04 0.72±0.01 0.66±0.01 0.48±0.06

Figure B.15. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 17 Parameters: i) Skip-Gram ii) K=40 iii) L=5 iv) w=5 v) k=2 vi) α = 0.75

Table B.16. Classification accuracies of top performing nodes in TEST 17.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

125 R Posterior transverse collateral sulcus 0.79 0.60 0.54 0.43

133 R Ant. occipital sulcus & preoccipital notch 0.77 0.39 0.31 0.34

124 R Anterior transverse collateral sulcus 0.74 0.59 0.41 0.39

102 R Postcentral gyrus 0.74 0.45 0.55 0.33

63 L Subcallosal area, subcallosal gyrus 0.74 0.75 0.42 0.33

138 R Orbital sulci 0.51 0.77 0.49 0.35

17 L Calcarine sulcus 0.58 0.77 0.40 0.35

68 L Inferior part of the precentral sulcus 0.11 0.74 0.57 0.42

12 L Opercular part of the inferior frontal gyrus 0.37 0.72 0.47 0.36

142 R Ant. seg. of the circular sulcus of insula 0.54 0.35 0.74 0.46

89 R Middle frontal gyrus 0.54 0.20 0.72 0.44

56 L Intraparietal sulcus 0.70 0.55 0.70 0.41

19 L Middle occipital gyrus 0.63 0.62 0.70 0.53

126 R Inferior frontal sulcus 0.56 0.43 0.69 0.42

121 R Ant. seg. of the circular sulcus of insula 0.58 0.55 0.66 0.48

91 R Long insular gyrus and central sulcus of the insula 0.54 0.65 0.64 0.48

46 L Marginal branch of the cingulate sulcus 0.35 0.52 0.67 0.46

Mean±Std (Top 5 nodes) 0.76±0.02 0.75±0.02 0.71±0.02 0.48±0.03

Figure B.16. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 18 Parameters: i) Skip-Gram ii) K=40 iii) L=10 iv) w=5 v) k=2 vi) α =

0.75

Table B.17. Classification accuracies of top performing nodes in TEST 18.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

136 R Lateral occipito-temporal gyrus 0.77 0.66 0.62 0.43

10 L Posterior-ventral part of the cingulate gyrus 0.74 0.54 0.54 036

148 R Transverse temporal sulcus 0.72 0.46 0.49 0.26

129 R Inferior occipital gyrus (O3) and sulcus 0.72 0.68 0.41 0.31

128 R Superior frontal sulcus 0.72 0.63 0.65 0.45

49 L Anterior transverse collateral sulcus 0.61 0.71 0.41 0.33

70 L Suborbital sulcus 0.54 0.69 0.53 0.45

55 L Sulcus intermedius primus 0.49 0.69 0.61 0.44

13 L Orbital part of the inferior frontal gyrus 0.37 0.69 0.41 0.37

56 L Intraparietal sulcus 0.63 0.45 0.78 0.46

75 R Fronto-marginal gyrus and sulcus 0.61 0.48 0.70 0.43

27 L Superior parietal lobule 0.35 0.46 0.70 0.37

25 L Angular gyrus 0.35 0.29 0.69 0.31

80 R Ant. part of the cingulate gyrus and sulcus 0.61 0.62 0.69 0.45

88 R Triangular part of the inferior frontal gyrus 0.54 0.65 0.64 0.52

105 R Straight gyrus 0.67 0.62 0.65 0.45

Mean±Std (Top 5 nodes) 0.73±0.02 0.69±0.01 0.71±0.04 0.47±0.03

Figure B.17. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 19 Parameters: i) Skip-Gram ii) K=40 iii) L=20 iv) w=5 v) k=2 vi) α =

0.75

Table B.18. Classification accuracies of top performing nodes in TEST 19.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

112 R Lateral occipito-temporal gyrus 0.74 0.65 0.58 0.43

108 R Lateral aspect of the superior temporal gyrus 0.72 0.68 0.52 0.41

147 R Superior temporal sulcus 0.70 0.70 0.54 0.44

122 R Inferior segment of the circular sulcus of the insula 0.70 0.55 0.61 0.37

124 R Anterior transverse collateral sulcus 0.67 0.70 0.50 0.43

106 R Subcallosal area, subcallosal gyrus 0.67 0.77 0.53 0.51

70 L Suborbital sulcus 0.42 0.72 0.42 0.29

14 L Triangular part of the inferior frontal gyrus 0.33 0.71 0.57 0.42

23 L Parahippocampal gyrus 0.67 0.39 0.69 0.40

120 R Marginal branch of the cingulate sulcus 0.47 0.59 0.65 0.48

22 L Lingual gyrus 0.56 0.66 0.65 0.40

10 L Posterior-ventral part of the cingulate gyrus 0.60 0.43 0.65 0.31

118 R Calcarine sulcus 0.16 0.46 0.65 0.35

145 R Subparietal sulcus 0.37 0.62 0.61 0.48

101 R Superior parietal lobule 0.67 0.63 0.58 0.47

96 R Lingual gyrus 0.61 0.68 0.51 0.47

Mean±Std (Top 5 nodes) 0.71±0.02 0.72±0.03 0.66±0.02 0.48±0.02

Figure B.18. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)
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TEST 20 Parameters: i) Skip-Gram ii) K=40 iii) L=50 iv) w=5 v) k=2 vi) α =

0.75

Table B.19. Classification accuracies of top performing nodes in TEST 20.

# R/L Node Name AD-SCI AD-MCI MCI-SCI All

125 R Posterior transverse collateral sulcus 0.74 0.69 0.50 0.41

88 R Triangular part of the inferior frontal gyrus 0.70 0.57 0.65 0.47

25 L Angular gyrus 0.70 0.39 0.73 0.42

24 L Inferior occipital gyrus (O3) and sulcus 0.70 0.63 0.58 0.47

106 R Subcallosal area, subcallosal gyrus 0.67 0.72 0.51 0.46

49 L Anterior transverse collateral sulcus 0.32 0.75 0.54 0.39

146 R Inferior temporal sulcus 0.54 0.72 0.49 0.36

124 R Anterior transverse collateral sulcus 0.56 0.71 0.26 0.31

73 L Superior temporal sulcus 0.61 0.71 0.53 0.46

27 L Superior parietal lobule 0.63 0.48 0.73 0.45

123 R Ant. seg. of the circular sulcus of insula 0.47 0.51 0.68 0.44

23 L Parahippocampal gyrus 0.63 0.51 0.68 0.47

1 L Fronto-marginal gyrus and sulcus 0.63 0.57 0.68 0.42

128 R Superior frontal sulcus 0.61 0.54 0.66 0.47

108 R Lateral aspect of the superior temporal gyrus 0.54 0.55 0.64 0.47

Mean±Std (Top 5 nodes) 0.70±0.02 0.72±0.02 0.70±0.03 0.47±0.00

Figure B.19. Classification accuracies for all nodes (from outer to inner :

AD/SCI-AD/MCI-MCI/SCI-AD/MCI/SCI)


