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support and contributions in different studies within the scope of this thesis.

I am also grateful for the funding that I have received from TÜBİTAK Project 115E397.
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ABSTRACT

JOINT FREQUENCY/POWER UPDATE ALGORITHMS FOR

SELF-ORGANIZING FEMTOCELL NETWORKS

Heterogenous networks are resorted as one of the most promising ways for meeting the

rapidly increasing data demand. As the smallest members of heterogenous networks, femto

base stations also carry a huge potential for increasing the service quality in indoor areas.

However, their unplanned deployment by the end users increases the possibility of having

dense femtocell networks with unknown topologies. Therefore, self–organizing methods

have great importance in resource allocation of femtocell networks.

In this thesis, power and frequency allocation problems are studied for OFDMA fem-

tocell networks. First, we present a power update algorithm for the general wireless net-

works as an alternative for a well known power control algorithm from the literature. Then,

this algorithm and another power control algorithm from the literature are extended for the

OFDMA femtocell networks. As opposed to the previous versions, which are applicable only

in networks where each base station can have at most one user, the extended algorithms can

be used by base stations that have more than one user. Additionally, a frequency allocation

scheme is developed in order to increase the maximum achievable SINR in femtocell net-

works. Furthermore, by merging this scheme with the proposed power update algorithms, we

present two joint frequency/power update algorithms with increased performance. Conver-

gence and optimality analyses of all the proposed algorithms are carried out and illustrated

with numerical results.
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ÖZET

ÖZÖRGÜTLEMELİ FEMTO HÜCRE AĞLARI İÇİN TÜMLEŞİK

FREKANS/GÜÇ ATAMA ALGORİTMALARI

Hızla yükselen veri talebini karşılamak için başvurulan yöntemler arasında heterojen

ağlar önemli bir yer tutmaktadır. Heterojen ağların en küçük üyeleri olan femto baz is-

tasyonları, ev ve ofis gibi kapalı yerlerdeki servis kalitesini artırmaya yönelik büyük bir

potansiyel arz ederler. Femto hücrelerin kurulumu kullanıcılar tarafından plansız bir şekilde

yapıldığından, femto hücre ağlarının yoğun ve bilinmeyen bir topolojiye sahip olması kaçınıl-

maz hale gelmektedir. Bu nedenle, femto hücrelerin kaynak atama işlemini özörgütlemeli bir

şekilde yapması gerekmektedir.

Tez kapsamında ilk olarak, genel kablosuz haberleşme ağlarında kullanıma uygun bir

güç kontrol algoritması önerilmiştir. Bu algoritma, literatürde iyi bilinen bir güç kont-

rol algoritmasına alternatif olarak ortaya konulmuştur. Devamında, önerilen bu algoritma

ve literatürden alınan onaylaşım temelli bir başka güç kontrol algoritmasının çoklu kul-

lanıcılara sahip baz istasyonlarından oluşan OFDMA tabanlı femto hücre ağları için uyarlan-

ması sonucu iki güç kontrol algoritması geliştirilmiştir. Geliştirilen bu algoritmalar erişilebi-

lir en yüksek SINR değerini artıran bir frekans atama kuralıyla birleştirilmiş ve iki farklı

tümleşik frekans/güç atama algoritması elde edilmiştir. Tez kapsamında önerilen algorit-

maların yakın- sama ve optimalite analizleri yapılmış, yapılan kuramsal sonuçlar benzetim

çalışmalarıyla desteklenmiştir.
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1. INTRODUCTION

Global mobile data traffic is expected to be five times higher in 2024 compared to

2018 [1]. Small cells, also known as low–power base stations, have been used as one of the

promising ways to meet this exponentially increasing data demand. From the largest con-

nection capacity to the lowest, these low–power base stations are named as micro/pico/femto

base stations. A network that includes low–power stations with macro base stations (MBSs)

is called a multi–tier network where each tier consists of the collection of all similar base

stations (BS). These type of networks, which include more than one type of BS, are also

classified as Heterogeneous Networks (HetNets). In terms of spectral efficiency, HetNets are

superior than conventional (homogenous) cellular networks which consist solely of macro

base stations [2]. An example of a three–tier HetNet is shown in Figure 1.1.

Femto base stations (which may be referred as femtocells in the rest of this thesis),

the latest and the smallest member of the low–power base stations, are designed to provide

service for the indoor areas (houses, offices, etc.). They are purchased and deployed by the

end users like the WiFi access points. A single femtocell can provide service up to 8 user

equipments [3]. Deployment of a new femto base station (FBS) into coverage area of an

existing macro base station can provide faster connection (higher data rate) for the users who

suffer from low service quality. Thanks to the decreased cell radius and the transmitter to

receiver distances, users can have high received signal strength. Ultimately, by using these

access points appropriately, the overall capacity and data throughput of a given network can

be increased.

Depending on the air interference technologies, different kinds of femtocells are in use

(e.g., 2G, 3G, and OFDMA femtocells) [4]. Among those, OFDMA (Orthogonal Frequency

Division Multiple Access) based femtocells are the ones that is suitable for LTE and WiMAX

technologies which are likely to be used mostly in near future. Before femtocell technology

becomes widespread, interference management (along with other issues like synchronisation

and security) still stands among the major technical challenges that need to be solved. In an

OFDMA based, two–tier femtocell network, interferences may occur between cells of the
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Figure 1.1. An example network with three tiers.

same tier (co–tier) or the cells of different tiers (cross–tier). Since a base station does not

assign a subchannel (subcarrier) to more than one user equipment (UE), by the orthogonality

of the OFDMA subcarriers (subchannels), interference between the users of the same cell is

eliminated.

Based on portioning the available OFDMA subchannels, a two-tier network can be

classified into two: split and shared spectrum setups [5]. In the split spectrum case, macro

and the femto base stations use different OFDMA subcarriers, and cross–tier interference is

almost completely eliminated [6]. However, reserving a certain part of available spectrum

just for the femtocells can be costly due to the scarcity of available spectrum. When all

available subchannels are used by both femtocells and macrocells (shared spectrum), we have

higher spectral reuse. As a trade off, the interference management problem now includes

dealing not only with co–tier interference but also the cross–tier interference.

Deployment of the femtocells is done by the end users with no cell planning of opera-

tors. The unplanned deployment of the femtocells makes the network have an unpredictable

dynamic topology with the unknown number of base stations and users. It is also highly

likely that distance between the femtocells of two neighbors may be less than a meter. The
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possibility of having a huge number of agents with unknown locations, makes the network

almost impossible to be controlled by a central decision maker in real life applications. In

contrast, decentralized solutions, where the base stations control their own resources by us-

ing the information coming from their close neighbors, are much more realisable and require

less computational effort [7].

Different techniques have been proposed and used for interference management in

femtocell networks. Interference cancellation, which eliminates the interference after signal

is received, is one of these methods [4]. Interference management of an OFDMA femto-

cell network can also be done by the control of transmission power levels, by frequency

subchannel assignment, or by handover techniques.

In [8], a distributed frequency allocation algorithm is proposed for the OFDMA based,

two–tier networks, and the algorithm is proven to be decreasing the spectrum usage for a

desired quality of service. A macro user equipment (MUE) protective frequency allocation

scheme is proposed in [9], where the MUEs vulnerable to femtocell interference are placed

on a macro dedicated portion of the available spectrum according to the incoming Channel

Quality Information (CQI). In [10], game theoretical approaches are used for the power con-

trol of the two–tier femtocell networks. With the aim of maximizing the total throughput of

femto user equipments (FUEs), joint power/subchannel allocation algorithms were proposed

in [11] and [12], where non–convex mixed-integer optimization problems were relaxed into

convex versions.

A water–filling based power control algorithm has presented in [13] with the objective

of maximizing the throughput/energy ratio in two–tier networks. With a similar objective

function, a joint power/frequency allocation algorithm has been proposed in [14]. In order to

make sure that cross–tier interferences experienced by MUEs are under a predefined level,

a distributed downlink power control algorithm is proposed in [15] by using two major as-

sumptions that there exists a unidirectional broadcast channel that carries information about

the locations of MUEs from MBS to FBSs, and that FBSs are aware of their location.
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The issue of fairness has been addressed in the literature in different works. [16] is

one of the relatively early ones where the problem is regarded as a maximization of the total

system capacity with the constraints that ensures the proportional fairness. However, the

system model involves only a single base station, and the available OFDM subchannels are

assumed to be used by at most one user equipment (UE). Therefore, under this model, co-

tier interference does not exist. That makes the algorithm a little unpractical for the dense

femtocell networks.

The early studies of Foschini and Miljanic [17] can be considered as one of the earliest

autonomous power control algorithms that aim fairness. By imposing the same SINR target

to all user equipments, they aim to achieve fairness in the network. In recent studies of Senel

and Akar, such as [18] and [19], several consensus based power control algorithms have

been proposed with the objective of achieving fairness. In [18], the proposed power control

algorithm is analytically and numerically proven to be establishing the fairness among all the

users in the femtocell network in terms of their SINR (Signal to Interference plus Noise Ra-

tio) values. The other details of the algorithm given in [18], including stability, convergence

rate, and optimality analysis, can be found in [20, 21].

1.1. Motivations of the Thesis

The power control algorithm proposed by Foschini–Miljanic [17] provides the same

predetermined SINR for all receivers in a given network. However, as the major drawback

of this algorithm, depending on the channel conditions, this predetermined target SINR value

may not always be feasible. In order to set a feasible target value, channel conditions of the

entire network should be known beforehand by a centralized unit. For the crowded networks,

implementation of such an approach may not be possible, and there arises the need for a

completely decentralized algorithm that erases the infeasibility issue.

In the study given in [18], Şenel–Akar have presented a consensus based power con-

trol algorithm which has proved to be providing fairness among the receivers of a network.

However, in the network model used in this study, it is assumed that each base station has

only one user equipment, and that all users equipments get service on the same frequency
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channel. Since real life OFDMA base stations serves more than one user equipments on

multiple subchannels, this algorithm needs to be modified for more realistic models.

Finally, the algorithms that are proposed as a result of the given motivations performs

only power updates. By using them with a proper frequency allocation scheme, we aim to

improve their performance.

1.2. The Contributions of the Thesis

Main contributions of this thesis can be listed as follows:

• A consensus based power update algorithm is proposed as a better alternative for the

well known algorithm of Foschini-Miljanic given in [17].

• Optimality analysis of the networks consisting of transmitter/receiver pairs is carried

out.

• A graph expansion method is proposed for the power control algorithm given in [18].

By using this method, 2 power update algorithms are presented for the OFDMA fem-

tocell networks.

• In order to increase the maximum achievable SINR of a given OFDMA femtocell

network, a frequency allocation scheme is derived. Additionally, by using this scheme,

2 joint frequency/power update algorithms are proposed.

• It is analytically and numerically shown that all five algorithms discussed above ensure

fairness in the entire network when the underlying graph of the network is connected.

1.3. The Organization of the Thesis

The remaining chapters of this thesis are as organized follows: In Chapter 2, we first

introduce some definitions and results from graph theory and consensus algorithms. Then,

the background studies that inspired this thesis are briefly discussed.

In Chapter 3, a consensus based power update algorithm for the general wireless com-

munication networks is introduced. Some theoretical analyses regarding the convergence and
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optimality of the algorithm are presented. Additionally, simulation results of the algorithm

are given.

For OFDMA femtocell networks, two power update algorithms are introduced in Chap-

ter 4. Convergence analyses of the algorithms are carried out. Theoretical analyses are also

illustrated with numerical results.

In Chapter 5, a frequency allocation scheme is proposed with the objective of maxi-

mizing the optimal SINR solution. Then, two joint frequency/power update algorithms are

presented with their theoretical and numerical results.

Finally, in Chapter 6, some concluding remarks are given with some possible topics to

be studied in future.
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2. CONSENSUS PROBLEM AND PRIOR STUDIES

In this chapter, we first review basic concepts on graph theory and consensus algo-

rithms. Then, prior works of Foschini–Miljanic and Şenel–Akar, which can be considered

as the background studies of this thesis, will be discussed briefly.

2.1. Graph Theory

A graph is defined as a pair G = (V,E), where V = {1, . . . ,n} denotes the set of nodes

(agents), and the set of edges (links between the agents) is given by E. (i, j) ∈ E if there is

an information flow from node i to node j. If the information links between the nodes are

mutual (i.e., ( j, i) ∈ E is satisfied for all (i, j) ∈ E), then the corresponding graph is called

to be undirected, otherwise it is directed. Examples of undirected and directed graphs with

3 nodes are shown in Figure 2.1. The arrows used in Figure 2.1(b) represent the directed

information flow between nodes, where plain lines show bidirectional information exchange

between the nodes of undirected graph in Figure 2.1(a).

The adjacency matrix of a graph can be defined as A=
[
ai j
]
, where ai j > 0 if ( j, i)∈E,

while ai j = 0 for all ( j, i) 6∈ E. The element ai j of the matrix A corresponds to the weight

of the edge ( j, i). Also, for an equally weighted graph, non–zero ai j elements can be taken

as 1. With these definitions, the Laplacian matrix can be defined as L =
[
li j
]
∈ Rn×n, where

lii = ∑ j 6=i ai j, and li j =−ai j for all i 6= j. Then, sum of all elements in any row of a Laplacian

matrix is equal to zero.

An undirected graph (i.e., ai j = a ji for all i, j ∈ V ) is said to be connected if there

exists a path between any chosen pair of nodes. For an undirected graph, the following two

statements hold true [22]:

• L is symmetric positive semidefinite, and all of its nonzero eigenvalues are positive.

• 0 is a simple eigenvalue of L if and only if the graph is connected.
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1

2

3

(a) An undirected graph

1

2

3

(b) A directed graph

Figure 2.1. Example graphs with 3 nodes

2.2. Consensus Algorithms

This section provides some brief information about a particular type of consensus algo-

rithm that will be used in the later chapters. The main motivation behind the consensus algo-

rithms is to make desired states of a given system converge to a common equilibrium point

when the given system can not be controlled by a centralized unit. Consensus algorithms

are widely used in various application areas like formation control [23], smart grids [24],

blockchain technology [25], wireless communication networks, etc. For a time–invariant

network, the most common continuous–time consensus algorithm can be given as [26]

ẋi(t) =−
n

∑
j=1

ai j(xi(t)− x j(t)), i = 1, . . . ,n, (2.1)

where coefficient ai j is the element on row i and column j of adjacency matrix of corre-

sponding graph. When there is an information flow from agent j to agent i, ai j > 0 holds,

otherwise ai j = 0. By using the Laplacian matrix defined in Section 2.1, this equation can be

written in vector form as

ẋ(t) =−Lx(t). (2.2)

When the corresponding graph of the network is undirected (i.e., ai j = a ji, i, j ∈V ) and

connected, 0 is a simple eigenvalue of L with the corresponding eigenvector of 1, where 1 is
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a column vector of ones with length of n. Then, ẋ(t) = 0 holds only when x(t) = α1 for any

scalar α . Therefore, we can conclude that the system (2.1) is at equilibrium state only when

xi(t) = x j(t) holds for all i, j ∈V

2.3. Related Power Control Algorithms

In this section, we will discuss two power control algorithms proposed respectively

by Foschini–Miljanic and Şenel–Akar. Both algorithms are designed to establish fairness in

terms of the data rate provided to the user equipments of a given network. These algorithms

constitute a basis for the algorithms proposed in this thesis where they are improved/extended

in terms of feasibility and practicality.

2.3.1. Power Control Algorithm of Foschini–Miljanic

The study of Foschini–Miljanic [17] can be considered as one of the earliest distributed

power control algorithms in literature. Their work considers the downlink case of a wireless

communication network with M transmitter/receiver pairs, where the set of all pairs is de-

noted by I = {1,2, . . . ,M}. If pi(t) denotes the transmission power of BS i, then the SINR

of its users can be calculated by

Γi(t) =
pi(t)

∑
j∈I, j 6=i

hi j p j(t)+ηi
=

pi(t)
Ii(t)

, (2.3)

where hi j = gi j/gii and ηi = σi/gii. Here, gi j is the downlink channel gain between UE i and

interfering BS j, σi > 0 denotes the power of thermal noise received by UE i, and Ii(t) can

be considered as the value of normalized interference on UE i at time t. With this notation,

power control algorithm given in [17] can be written as

ṗi(t) =−β

(
1− γ

Γi(t)

)
pi(t),∀i ∈ I. (2.4)

Here, β is a positive update constant and γ is a predefined SINR value that is aimed by all

the BSs. By using the algorithm given in (2.4), BS i updates its transmission power until
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SINR of UE i reaches the predefined target value γ (i.e., ṗi(t) = 0 when Γi(t) = γ). When

this target value is reached by all UEs (i.e., Γi = γ, ∀i ∈ I), (2.3) can be written as

pi(t)
γ

= ∑
j∈I, j 6=i

hi j p j(t)+ηi, (2.5)

which, in vector form, leads to

(1
γ
I−H)p∗ =ηηη , (2.6)

where I is M×M identity matrix, H is an M-dimensional square matrix with zero diagonal

and positive
[
hi j
]

values on off-diagonals, ηηη denotes an M-dimensional vector containing ηi

values which are non–negative.

In order to find a feasible (non–negative power vector) solution to (2.6) for all possible

non–negative ηηη vectors, (1
γ
I−H) should be a monotone matrix. Since this matrix has non–

positive off-diagonal entries, being monotone equivalently means being an M–matrix [27,

28]. Thus, we can conclude that for (2.6) to have a feasible solution, γ needs to be set below

a upper limit such that 1
γ
> r(H), where r(H) denotes the spectral radius of the matrix H.

Note that it is hard to make the correct choice of γ in a distributed manner since the upper

limit of γ depends on channel gains of the entire network. For a predefined γ , the network

is not always feasible to have a solution. In Section 3, we propose a consensus based power

update algorithm (PUA-I) which eliminates this feasibility issue.

2.3.2. Power Control Algorithm of Şenel–Akar (PCA)

Reconsider the downlink case of a wireless communication network model with M

transmitter/receiver pairs (base station/user), where I = {1,2, . . . ,M}. For this network,

where the SINR of UE i is given by (2.3), a consensus based power control algorithm (PCA)

has been proposed by Şenel–Akar in [18] as follows:

ṗi(t) =−βi
Γi(t)
pi(t)

[
fii(t)Γi(t)− ∑

j∈Ni

fi j(t)Γ j(t)

]
, ∀i ∈ I. (2.7)



11

Here, βi is a constant that controls the update speed of pi(t), where Ni denotes the set of

close neighbors of BS i. Also, fii(t) and fi j(t) are the defined as connection weights. When

the underlying communication graph is connected, it is proven that PCA converges to a fair

solution ΓΓΓ∗, where Γ∗i = Γ∗j holds ∀i, j ∈ I. Detailed analysis of PCA, including stability,

convergence rate, and optimality analysis, can be found in [18, 20, 21].

PCA given in (2.7) is applicable for the networks where all BSs have a single UE to

serve. However, in real life OFDMA femtocell networks, there exist multiple subchannels

and a BS is more likely to have more than one UE. Also by its nature, a joint frequency/power

allocation problem should have multiple subchannels. In order to make the given PCA more

realistic for real life applications and more practical for joint resource allocation problems,

PCA is modified so that it ensures the global consensus in OFDMA femtocell networks

where BSs serve more than a single UE. This new power update algorithm (PUA-III) is

introduced in Section 4.3, with its details.

2.4. Chapter Summary

In this chapter, some important definitions and results about graph theory are presented,

and the equilibrium states of a particular consensus algorithm are investigated. Then, two

power control algorithms, which constitute the bases for the algorithms proposed in this

thesis, are discussed briefly. In next chapter, we propose a new power update algorithm that

stands as an alternative for the algorithm given in Section 2.3.1 in terms of feasibility.
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3. A DISTRIBUTED POWER UPDATE ALGORITHM

In this chapter, we present an alternative power update algorithm (PUA-I) for the well

known power control algorithm of Foschini–Miljanic [17]. In Section 2.3, it is shown that

the algorithm of Foschini–Miljanic, given in (2.3), does require a predetermined target SINR

value which ensures that the network is feasible. In contrast, PUA-I does not necessitate any

preset SINR value, and does not face any feasibility issue. After introduction of PUA-I, its

convergence and optimality analysis, along with simulation results, will be presented in the

remaining sections.

3.1. Power Update Algorithm I (PUA-I)

Reconsider the downlink case of a wireless communication network model with M

transmitter/receiver pairs (base station/user), where I = {1,2, . . . ,M}. Note that the com-

munication network model can be represented by a graph denoted by G = (V,E), where V

represents the set of nodes (BSs, V = I) and E denotes the set of edges (communication

channels between BSs). If BSs i and j have mutual information exchange, then there exists

an edge between nodes i and j in G. This implies that j ∈Ni (and i∈N j), where Ni represents

the set of BSs that have a mutual communication with BS i and |Ni| denotes the cardinality

of Ni. Throughout the thesis, the following is assumed to be satisfied:

Assumption 1. The underlying graph G = (V,E) of the communication network is con-

nected.

For a wireless communication network where the SINR of UE i is given by (2.3), the

distributed power update algorithm I (PUA-I) is proposed as follows:

ṗi(t) =−βi

(
1−

Γi,re f (t)
Γi(t)

)
pi(t), i ∈ I (3.1)
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where βi is a positive constant and Γi,re f (t) is given by

Γi,re f (t) =
1
|Ni| ∑

j∈Ni

Γ j(t). (3.2)

According to the algorithm (3.1), BS i updates its transmission power by using SINR

of its own UE and the reference value (3.2) which is defined as the average SINR of its close

neighbors. Note that (3.1) can also be written in vector form as follows:

ṗ(t) =−BId(t)NLΓΓΓ(t), (3.3)

where p(t) = [p1(t), p1(t), · · · , pM(t)]T , B = diag
[
βi
]M

i=1, ΓΓΓ(t) = [Γ1(t),Γ1(t), · · · ,ΓM(t)]T ,

Id(t) = diag
[
Ii
]M

i=1, N = diag
[ 1
|Ni|
]M

i=1, and L ∈ RM×M is a symmetric positive semi-definite

Laplacian matrix. As opposed to the power control algorithm presented in [17], the above

algorithm does not have any feasibility issues since the use of a pre-determined target SINR

value γ is not required.

3.2. Convergence Analysis of PUA-I

In this section, a detailed convergence analysis is provided for the power update algo-

rithm given in (3.1). In order to be able to carry out convergence analysis, we need to recall

the following lemmas.

Lemma 3.1. [29] Given a differentiable function f (t), if f (t) is lower bounded and non-

increasing ( ḟ (t)≤ 0), then it converges to a limit.

Lemma 3.2. [29] If a differentiable function f (t) converges to a limit as t→ ∞ and f̈ (t) is

bounded, then, ḟ (t)→ 0 as t→ ∞.

Using the properties given in Lemmas 3.1 and 3.2, the following result is presented:

Theorem 3.3. Under Assumption 1, the proposed power update algorithm given in (3.1)

converges to a fair solution ΓΓΓ∗, where Γ∗i = Γ∗j holds ∀i, j ∈ I.
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Proof. Consider the following function:

V (p(t)) = pT (t)B−1p(t) =
M

∑
i=1

1
βi

p2
i (t), (3.4)

which is non-negative for all t ≥ 0. Since we have pT (t) =ΓΓΓT (t)Id(t) from (2.3), the deriva-

tive of V (p(t)) with respect to time is expressed as

V̇ (p(t)) = ṗT (t)B−1p(t)+pT (t)B−1ṗ(t),

= −ΓΓΓ
T (t)LNId(t)p(t)−pT (t)Id(t)NLΓΓΓ(t),

= −2ΓΓΓ
T (t)Id

2(t)NLΓΓΓ(t),

= −2ΓΓΓ
T (t)LΓΓΓ(t), (3.5)

where L = Id
2(t)NL is a non-symmetric positive semi-definite Laplacian matrix. Hence,

V̇ (p(t)) ≤ 0 holds for all t ≥ 0. Since V (p(t)) ≥ 0 (lower bounded) and V̇ (p(t)) is non-

increasing, by Lemma 3.1, V (p(t)) converges to a limit as t → ∞. This implies that p(t) is

bounded together with ΓΓΓ(t) and Id(t).

Note that (3.5) can also be written as

V̇ (p(t)) = −2
M

∑
i=1

p2
i (t)
(

1−
Γi,re f (t)

Γi(t)

)
,

= −2
M

∑
i=1

p2
i (t)

Γi(t)

(
Γi(t)−Γi,re f (t)

)
(3.6)

whose time derivative can be expressed as

V̈ (p(t)) =−2
M

∑
i=1

pi(t)
Γi(t)

[(
2ṗi(t)Γi(t)− Γ̇i(t)pi(t)

)(
1−

Γi,re f (t)
Γi(t)

)
+ pi(t)

(
Γ̇i(t)− Γ̇i,re f (t)

)]
.

(3.7)
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Using (3.1), (3.7) can be computed as

V̈ (p(t)) = −2
M

∑
i=1

pi(t)
Γi(t)

[(
−2βi pi(t)

(
Γi(t)−Γi,re f (t)

)
− Γ̇i(t)pi(t)

)(
1−

Γi,re f (t)
Γi(t)

)

+pi(t)
(

Γ̇i(t)−
1
|Ni| ∑

j∈Ni

Γ̇ j(t)
)]

, (3.8)

and, using (2.3), Γ̇i(t) can be calculated by

Γ̇i(t) =
d
dt

( pi(t)
Ii(t)

)
=

ṗi(t)Ii(t)− pi(t)İi(t)
I2
i (t)

=
1

I2
i (t)

[
−βiI2

i (t)
(
Γi(t)−Γi,re f (t)

)
− pi(t)İi(t)

]
= −βi

(
Γi(t)−Γi,re f (t)

)
− Γi(t)

Ii(t)
∑

j∈I, j 6=i
hi j ṗ j(t)

= −βi
(
Γi(t)−Γi,re f (t)

)
− Γi(t)

Ii(t)
∑

j∈I, j 6=i
hi jI j(t)β j

(
Γ j(t)−Γ j,re f (t)

)
. (3.9)

Since it is already shown that Ii(t), pi(t), βi, hi j and Γi(t) are bounded for all t ≥ 0,

which implies Γi,re f (t) is also bounded, Γ̇i(t) is bounded for all t ≥ 0. Furthermore, we have

i, j ∈ I, where I has a finite number of elements. Hence, V̈ (p(t)) is bounded for all t ≥ 0.

From Lemma 3.2, we can conclude that V̇ (p(t))→ 0 as t→ ∞. In other words, we have

lim
t→∞

ΓΓΓ
T (t)LΓΓΓ(t) = 0 (3.10)

which implies LΓΓΓ(t) = 0 when t → ∞. Since the underlying graph of the communication

network is assumed to be connected (Assumption 1), the Laplacian matrix L has a simple

eigenvalue at zero [26]. Since βi > 0, Ii(t) > 0 holds for all i ∈ I and for all t ≥ 0, the

non-symmetric Laplacian matrix L has also a simple eigenvalue at zero, and its non-zero

eigenvalues have strictly positive real parts [30]. Hence, V̇ (p(t)) = 0 implies ṗ(t) = 0 and

we can conclude from (3.3) and (3.10) that Γ∗i = Γ∗j holds for all i, j ∈ I.
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Remark 1. The proposed power update algorithm (PUA-I) given in (3.1) not only overcomes

the problem of an infeasible choice of pre-determined target SINR value γ , but also provides

fairness among UEs in the network by achieving the same SINR level for each user in the

network.

3.3. Optimality Analysis

In this section, optimality analysis of the PUA-I which is given in (3.1) is carried out.

For the theoretical analysis, the non–negativity of SINR and power vectors are first discussed

in the following Lemma and its corollary.

Lemma 3.4. Starting with any positive initial power assignment vector p(t0)> 0, transmis-

sion powers of all base stations always remain non–negative, i.e., p(t)≥ 0,∀t ≥ t0.

Proof. For BS i to have a negative transmission power, there should exist an instant t1 such

that pi(t1) = 0 and ṗi(t1)< 0. By using (2.3) and (3.2), (3.1) can be rewritten as

ṗi(t1) = −βi

(
pi(t1)−Γi,re f (t1)Ii(t1)

)
= βiIi(t1)

1
|Ni| ∑

j∈Ni

Γ j(t1), (3.11)

which is always non–negative and becomes zero only when pi(t1) = 0,∀i ∈ I. Therefore,

pi(t1) = 0 contradicts with ṗi(t1)< 0.

As a natural extention of Lemma 3.4, starting with an arbitrary initial power assign-

ment vector p(t0)> 0, SINR values always remain non–negative, i.e., Γi(t)≥ 0 for all t ≥ t0.

With the given Lemma 3.4, the following two lemmas, where the second one is also

known as Perron theorem, are also required for the optimality analysis:

Lemma 3.5. (see 8.5.2 in [31]) If matrix A ∈ Rm×m is non–negative, then A is primitive if

and only if An > 0 for some n≥ 1.
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Lemma 3.6. (Perron Theorem, [32, 33]) Let r(A) denote the spectral radius of matrix

A ∈ Rm×m (i.e., r(A) = max{|λ1|, . . . , |λm|}). For a primitive non–negative square matrix

A, there exists a positive real eigenvalue λ = r(A) with algebraic multiplicity 1, where the

modulus of the other eigenvalues are strictly less than r(A). The corresponding right eigen-

vector of λ , also known as the Perron eigenvector, is positive and it is the only non–negative

eigenvector of A.

Using Theorem 3.3, and Lemmas 3.5 and 3.6, we state the following result for the

noise free systems:

Theorem 3.7. When the system is assumed to be noise free (i.e., ηi = 0,∀i ∈ I), the PUA-I,

given in (3.1), converges to a unique fair solution γ∗= 1
r(H) , where r(H) is the spectral radius

of H which is defined as an M-dimensional square matrix with zero diagonal and positive

hi j =
gi j
gii

values on the off-diagonals.

Proof. As stated in Theorem 3.3, the SINR values of the network converge to a fair solution

(i.e., Γi = γ∗, ∀i ∈ I). In a noise free system, once the consensus is reached, (2.3) can be

written as

Γi =
p∗i

∑
j∈I, j 6=i

hi j p∗j
= γ
∗,∀i ∈ I, (3.12)

which, in vector form, becomes

Hp∗ = 1
γ∗p
∗. (3.13)

Since Hc > 0 for all c≥ 2, by Theorem 3.5, the non-negative H matrix is found to be prim-

itive. As stated in Lemma 3.4, power vector p(t) always remains non–negative. Then, by

Theorem 3.6, it can be concluded that the only feasible solution for (3.13) is γ∗ = 1
r(H) and

p∗ equals to the corresponding eigenvector of r(H).
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Remark 2. Since H matrix does not contain any variable related with initial transmission

power values, the final SINR value that every UE converges (γ∗ = 1
r(H)), is the same for all

positive initial power assignment vectors.

In order to analyse the optimality of the system, in which thermal noise is not neglected

(i.e., ηηη ≥ 0 (ηηη 6= 0)), we need to recall the following theorem:

Lemma 3.8. [34] Let A ∈ Rm×m be an irreducible non–negative matrix. Then, A has a

simple positive eigenvalue λ equal to r(A), and positive eigenvectors α and α̃ associated

with λ , such that Aα = λα and AT α̃ = λα̃ . Given the following valid vector norms ‖·‖(p)

‖v‖(p) =


[

n
∑

i=1
α̃iαi

(
|vi|
αi

)p
]1/p

, f or 1≤ p < ∞,

max
i=1,...,m

|vi|
αi
, f or p = ∞,

(3.14)

weighted Hölder norms of the irreducible non–negative matrix A ∈ Rm×m can be defined as

‖A‖(p) = sup
‖v‖=1

‖Av‖(p). Then, ‖A‖(p) = r(A) holds for all 1≤ p≤ ∞.

When the thermal noise in the system is not neglected (i.e., ηηη ≥ 0 (ηηη 6= 0)), the

maximum achievable solution can be found by the following theorem:

Theorem 3.9. For a network modeled by (2.3), given any ε such that 0 < ε < 1
r(H) , there

exists a finite positive solution p∗ that satisfies Γi =
1

r(H) − ε , for all i ∈ I.

Proof. When all UEs have the same SINR value (i.e., Γi = γ∗, ∀i ∈ I), (2.3) can be written

as

Γi =
p∗i

∑
j∈I, j 6=i

hi j p∗j +ηi
= γ
∗,∀i ∈ I, (3.15)

which can be represented in vector form as follows:

( 1
γ∗ I−H

)
p∗ =ηηη . (3.16)
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Here, I is the M×M identity matrix, H is an M-dimensional square matrix with zero diag-

onal and positive hi j =
gi j
gii

values on the off-diagonals, ηηη denotes an M-dimensional vector

containing ηi values which are non–negative. In order to find a feasible p∗ (non–negative

power vector) solution to (3.16) for all possible non–negative ηηη vectors,
( 1

γ∗ I−H
)

should

be a monotone matrix. Since this matrix has non–positive off-diagonal entries, being mono-

tone equivalently means being an M–matrix [27]. Thus, we can conclude that for (3.16) to

have a feasible solution, γ∗ can not exceed an upper limit (i.e., γ∗ ≤ 1
r(H)). Since γ∗ = 1

r(H)

makes
( 1

γ∗ I−H
)

singular, maximum achievable SINR value is defined by a strict inequality.

Given ε , let α = εr(H). Then, γ∗ becomes γ∗ = (1−α)
r(H) , and the solution p∗ for (3.16)

can be written as

p∗ =
(

I− (1−α)

r(H)
H
)−1 (1−α)

r(H)
ηηη . (3.17)

Note that 0 < α < 1. Since (1−α) < 1, the modulus of the largest eigenvalue of (1−α)
r(H) H

is found to be less than 1, and we have the following equation [35]:

(
I− (1−α)

r(H)
H
)−1

= I+
∞

∑
i=1

(
(1−α)

r(H)
H
)i

. (3.18)

By using (3.18), we can rewrite (3.17) as

p∗ =
(1−α)

r(H)
ηηη +

[
∞

∑
i=1

(
(1−α)

r(H)
H
)i
]
(1−α)

r(H)
ηηη

=
(1−α)

r(H)
ηηη +

(
(1−α)

r(H)

)2

Hηηη +

(
(1−α)

r(H)

)3

H2
ηηη + . . .

=
(1−α)

r(H)
ηηη +

(1−α)

r(H)
H

[
(1−α)

r(H)
ηηη +

(
(1−α)

r(H)

)2

Hηηη +

(
(1−α)

r(H)

)3

H2
ηηη + . . .

]

=
(1−α)

r(H)
ηηη +

(1−α)

r(H)
Hp∗, (3.19)

Since H is an M-dimensional square matrix with zero diagonal and positive entries on off-

diagonals, it satisfies (I+H)M−1 > 0 and found to be an irreducible non–negative matrix

(Lemma 8.4.1. in [31]). By Perron–Frobenius (Theorem 3.9 in [32]), H has a simple eigen-
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value which equals to r(H), and the corresponding right eigenvector of r(H), denoted as v,

is the only strictly positive eigenvector of H. By using the weighted Hölder norm described

in Lemma 3.8, the infinity norm of p∗ can be written as

‖p∗‖
∞

=

∥∥∥∥(1−α)

r(H)
ηηη +

(1−α)

r(H)
Hp∗

∥∥∥∥
∞

=
(1−α)

r(H)
‖ηηη +Hp∗‖

∞

≤ (1−α)

r(H)
‖ηηη‖

∞
+

(1−α)

r(H)
‖Hp∗‖

∞

≤ (1−α)

r(H)
‖ηηη‖

∞
+

(1−α)

r(H)
‖H‖

∞
‖p∗‖

∞

=
(1−α)

r(H)
‖ηηη‖

∞
+(1−α)‖p∗‖

∞
. (3.20)

Then, by using (3.19) and (3.20), lower and upper bounds for ‖p∗‖
∞

can be expressed as

(1−α)

r(H)
‖ηηη‖

∞
< ‖p∗‖

∞
≤ 1

α

(1−α)

r(H)
‖ηηη‖

∞
. (3.21)

Thus, using the vector norm definition given in (3.14), it can be concluded that p∗ is finite

for all 0 < α < 1.

3.4. Simulation Results of PUA-I

In this section, numerical analysis for PUA-I is presented. Simulation topology which

is given in Figure 3.1 consists of 8 transmitter/receiver pairs. Simulations are carried out for

the downlink case and each BS (transmitter) is assumed to be causing interference on the UE

of every other BS. Dashed lines represent the communication links, on which the required

information is carried between the BSs. The collection of all dashed lines represents the

underlying graph which is connected for this network. Simulations of the algorithm are done

by its discrete time implementation. Using Euler’s approximation, PUA-I can be discretized

as

pi[k+1] = pi[k]−Tsβi

(
1−

Γi,re f [k]
Γi[k]

)
pi[k], i ∈ I, (3.22)
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Figure 3.1. PUA-I simulation topology with edges.

where Ts = 10ms denotes the sampling period, and update constant βi is chosen as 8 for all

BSs. All BSs start executing the algorithm with randomly chosen initial transmission powers

less than 33 dBm (2 Watt), where the thermal noise power is taken the same as −80 dBm

(10−11 Watt) on all UEs. The channel gains are calculated by gi, j = χ(i)d−α

i, j , where di, j is

the physical distance between UE i and interfering BS j. χ(i) value is generated randomly,

and taken as [1.1331 1.2070 1.5913 1.3960 1.5561 1.5399 1.5723 1.1704] for each BS/UE

pair. Path loss exponent is taken as α = 3.

Simulation results are given in Figure 3.2. In the first 5s, UEs stand still in their first

locations as given in Figure 3.1. As theoretically expected, SINR of all UEs converges to a

common value in this period. Then, from t = 5s to t = 10s, UEs are moved randomly with a

velocity of v = 1m/s. Each of these motions is realised as a Brownian motion with constant

step size (i.e. ∆d = v/Ts) and random direction in each iteration. For this time interval,

SINR values are constantly changing due to the motions of the UEs. After t = 10s, UEs

stop moving and are seen to be converging to a common SINR again. In summary, by this

simulation result, we see that the PUA-I can be used in the networks with dynamic topology.



22

0 5 10 15
Time (s)

16

18

20

22

24

26

28

30

32

34

S
IN

R
 (

dB
)

Figure 3.2. Simulation results of PUA-I with mobility.

3.5. Chapter Summary

In this chapter, a distributed power update algorithm (PUA-I) is proposed as an alter-

native for the well known algorithm of Foschini-Miljanic. It is analytically shown that the

PUA-I is stable for connected networks and it converges to the optimal fair solution. These

results are also illustrated by simulations. In the next chapter, we extend this algorithm, and

the algorithm given in Section 2.3.2, for the OFDMA femtocell networks where BSs can

have more than one UE.
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4. DISTRIBUTED POWER UPDATE ALGORITHMS FOR OFDMA

FEMTOCELL NETWORKS

In the network model considered for PUA-I (proposed in (3.1)) and PCA (given in

2.7), all BSs are assumed to serve a single UE on the same frequency channel. However,

in real life OFDMA femtocell networks, BSs are designed to serve more than a single UE,

and the available spectrum is divided into multiple subchannels. Also by its nature, a joint

power/frequency allocation problem should include multiple number of subchannels. In

order to make the given power control algorithms (PUA-I and PCA) more realistic, and

more usable in joint resource allocation problems, they need to be modified in such a way

that they ensure the global fairness among all of their users.

In this chapter, we propose two new power update algorithms (PUA-II and PUA-III)

which are respectively the multi–user extensions of PUA-I and the PCA [18]. The modifica-

tions are made by expanding the corresponding graph of inter–base station communication

network in a way that each node splits into virtual nodes by the number of its active sub-

channels. As a result, each BS updates its transmission power levels by using information

coming from its neighboring BSs and its own users. Expansion of the corresponding graphs

can be visualised better in Figure 4.1. Figure 4.1(a) shows the underlying graph of an ex-

ample network consisting of 3 transmitter/receiver pairs. Here, the small and dashed circles

respectively represent the BSs and their coverage areas, where the straight lines represent the

communication links between neighboring BSs. When each BS has 4 active subchannel/UE

pairs, and PUA-II (or PUA-III) is used, the underlying communication graph expands as

shown in Figure 4.1(b).

In the rest of this chapter, first, the system model will be introduced. Then, the pro-

posed algorithms (PUA-II and PUA-III) will be presented. Next, before concluding the chap-

ter, the simulation results will be given.
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Figure 4.1. Expansion of the underlying graph for a network with 3 BSs

4.1. System Model for OFDMA Femtocell Networks

System model considers the downlink case of a two–tier femtocell network. The first

tier consists of a single MBS and its UEs. Within the coverage area of the MBS, there exist

M f FBSs each may have different number of UEs. These FBSs and FUEs constitute the

second tier of the network. The set of all BSs is denoted as M = {0,1, . . . ,M f } where 0

corresponds to the MBS and others to FBSs. Km and Km respectively denote the set and

number of UEs served by BS m, where m ∈ M. The spectrum, which is divided into S

OFDMA frequency subchannels, is available for both MBS and FBSs. The set of available

subchannels is given by S = {1,2, . . . ,S}, where a subchannel can be assigned at most to

one UE within a cell. Therefore, intra–cell interference is eliminated by the orthogonality of

subchannels.

Connection status between BS m and UE k on subchannel s, k ∈ Km, is denoted by

ρs
m,k. If BS m provide service to UE k on subchannel s, ρs

m,k = 1. Otherwise, ρs
m,k = 0. In

the model, it is possible for BS m to have more (or less) UEs than the number of available

subchannels (i.e. Km 6= S). Let the subchannels that are assigned to a UE in a given cell

be called “active”, then Um and Um respectively denote the set of active subchannels of cell

m and that set’s cardinality. When we turn the set Um into a vector by sorting elements in

ascending order, we obtain the um vector which has the information of active subchannels
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in BS m. For instance, U2 = {1,4,7} and u2 = [1,4,7]T correspond to the set and vector of

subchannels that are in use by BS 2, respectively. Then, we can define Um = |um| as follows:

Um = |Um|= min(S,Km). (4.1)

If we patch all the um vectors, starting from BS 1 to BS M f , we get vector u which shows all

the active subchannels in the femtocell network:

u = [uT
1 , . . . ,u

T
M f

]T . (4.2)

Then, the length of vector u, which is equal to total number of all active subchannels of the

entire femtocell network, can be calculated as

U = ∑
i∈M\{0}

min(S,Ki). (4.3)

At time instant t, transmission power of BS m on subchannels s is denoted by ps
m(t).

Then, we can define a vector p̃m(t), which has the identical order as um, such that it con-

tains power values assigned to active subchannels of BS m (e.g., for u2 = [1,4,7]T , p̃2(t) =

[p̃1
2(t), p̃4

2(t), p̃7
2(t)]

T ). Then, the following vector, which has the length U , contains trans-

mission powers on all the active subchannels used by FBSs of the entire network:

p̃(t) = [p̃T
1 (t), p̃T

2 (t), . . . , p̃T
M f

(t)]T . (4.4)

For fixed channel assignment, SINR of the downlink signal from BS m to UE k on

subchannel s, where k ∈ Km, can be defined as

Γ
s
m,k(t) = ρ

s
m,k

ps
m(t)

∑
j∈M\m

hs
(m, j),k ps

j(t) + ηs
m,k

= ρ
s
m,k

ps
m(t)

Is
m,k(t)

, k ∈ Km, (4.5)
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where hs
(m, j),k =

gs
j,k

gs
m,k

and ηs
m,k =

σ s
k

gs
m,k

. ρs
m,k multiplier makes SINR value 0 when the BS m

does not serve UE k on the subchannel s, where k ∈ Km. Also, gs
m,k is the downlink channel

gain between UE k and BS m on subchannel s, where σ s
k ≥ 0 denotes the power of thermal

noise received by UE k on subchannel s.

A base station can assign an OFDMA subchannel to at most one UE. Therefore, for

the fixed m and k values, there will be at most one non–zero Γs
m,k(t) variable for all s ∈ S.

That means, without loss of generality, we can eliminate the k term in Γs
m,k(t), and let Γs

m(t)

denote the SINR on subchannel s in cell m, regardless of which UE is using that subchannel.

Then, the average SINR of the users served by BS m can be calculated as

Γm,ave(t) =
∑

i∈Um

Γi
m(t)

Um
. (4.6)

4.2. Power Update Algorithm II (PUA-II)

In this section, a consensus-based power update algorithm (PUA-II), whose objective

is to provide fairness among all femtocell users, is presented. Starting with random, but

feasible, p̃(0) vector, where subchannel assignment is assumed to be fixed, each femtocell m

in the network uses the following power update algorithm:

ṗs
m(t) =−β

s
m

[
1−

Γs
m,re f (t)

Γs
m(t)

]
ps

m(t), (4.7)

where

Γ
s
m,re f (t) =

1
Um−1+ ∑

j∈Nm

U j

[
∑

j∈Nm

U jΓ j,ave(t)+ ∑
i∈Um\s

Γ
i
m(t)

]
, s ∈ Um. (4.8)

Here, β s
m is a positive constant that determines the update speed of the transmission power

of BS m, on subchannel s. Nm denotes the set of close neighbours of BS m. In order to

execute the PUA-II given in (4.7), BS m requires 2 external information from its neighbours:
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Average SINR values on their actively used subchannels (Γ j,ave(t), ∀ j ∈Nm) and the number

of these actively used subchannels (U j, ∀ j ∈ Nm). The other required information (i.e. Um

and Γi
m, i ∈ S \ s) is already known by the BS m. It is also assumed that BS m does not

execute this algorithm on power update of subchannel s if there is no user assigned to that

subchannel. Instead, power on that subchannel is kept zero in order to prevent additional

interferences on other cells. It should also be noted that BS m needs to execute this algorithm

in a parallel fashion for each of its active subchannels.

In vector notation, (4.7) can be rewritten as

˙̃p(t) =−B̃Ĩd(t)ÑL̃Γ̃̃Γ̃Γ(t), (4.9)

where Γ̃̃Γ̃Γ(t) is the vector that contains the SINR values of active subchannels of entire fem-

tocell network. It has the same length (U) and identical order as p̃(t) given in (4.4). B̃ and

Ĩd(t) are U ×U diagonal matrices with respectively β s
m > 0 and Ĩs

m = p̃s
m/Γ̃s

m > 0 values on

the diagonals. Ñ is also a diagonal matrix with positive entries. Finally, L̃ ∈ RU×U is the

symmetric positive semi–definite Laplacian matrix.

Having described the overall system dynamics, the following result reveals the conver-

gence properties of PUA-II given in (4.7).

Theorem 4.1. Under Assumption 1, the proposed power update algorithm (PUA-II) given

in (4.7) converges to a fair solution Γ̃̃Γ̃Γ∗, where Γ̃s∗
i = Γ̃s̄∗

j holds for all s ∈ Ui, s̄ ∈ U j, and

i, j ∈M\{0}.

Proof. Since the overall system dynamics given in (4.9) are exactly the same as the ones

given in (3.3), the proof directly follows from Theorem 3.3.

Remark 3. The proposed power update algorithm given in (4.7) does not require high com-

putational power, and the communication cost is minimized by keeping all the communica-

tion exchange in the network minimal.
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4.3. Power Update Algorithm III (PUA-III)

In this section, we present a new distributed power update algorithm (PUA-III) which

is the multiple subchannel/UE extension of the power control algorithm (PCA) given in (2.7).

A detailed study on PUA-III is also presented in [36]. PUA-III can described as follows:

ṗs
m(t) =−β

s
m

Γs
m(t)

ps
m(t)

[
f s
m(t)Γ

s
m(t)− ∑

j∈Nm

fm, j(t)Γ j,ave(t)− ∑
i∈S\s

f̃ i
m(t)Γ

i
m(t)

]
,s ∈ Um.

(4.10)

Here, the term β s
m is a positive value and it determines the update speed of the transmission

power of BS m, on subchannel s. Please notice that a high update constant β s
m may help us

to reach consensus more quickly, but it may also cause overshoots in transmission powers.

Nm is the set of neighboring cells of BS m. Γ j,ave(t) term, where j ∈ Nm, denotes the average

SINR value of the UEs of BS j, and it is given by (4.6). The fm, j(t) terms stand for the inter–

cell connection weights between the base stations. f̃ i
m(t) terms are the intra–cell connection

weights between the same cell’s subchannels which are considered as imaginary nodes of

the underlying graph. f s
m(t) is the weight that determines the importance of Γs

m(t) while

updating the transmission power of BS m on subchannel s. Some possible choices will be

shown in Section 4.3.1.

By using (4.10), BS m updates its transmission power on subchannel s in the following

way: BS m collects information of the average SINR values, which is denoted as Γ j,ave(t)

where j ∈ Nm, coming from its neighboring BSs. By the first summation sign inside the

bracket, BS m adds up these average SINR values after multiplying them by inter–cell con-

nection weights fm, j. Then, by the second summation sign, it adds up the SINR values of its

own subchannels other than s, after multiplying them by intra–cell connection weights f̃ i
m(t).

These SINR values are represented by Γi
m(t), where i ∈ S \ s. Finally, these two summation

results are compared with Γs
m(t) to decide the change in the transmission power ps

m(t).

For better understanding of the PUA-III, it should be stressed that BS m does not update

its transmission power on s if there is no user assigned to that subchannel (i.e., ρs
m,k = 0, ∀k ∈

Km).
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4.3.1. An Example Choice for Weights

The intra–cell connection weights f̃ s
m(t) are predefined by the corresponding BS in cell

m. They represent the status whether the subchannel s is in use or not. An example choice,

where BS m gives equal priority to all of its UEs, can be as follows:

f̃ s
m(t) =

1, s ∈ Um,

0, otherwise.
, s ∈ S, m ∈M\{0}. (4.11)

Here, if the subchannel s is assigned to any UE by BS m, that subchannel’s intra–cell weight

is taken as 1, otherwise it is 0. It should be noted that instead of 1, we could also pick any

other positive number, which would change the weighted priority of the subchannel s among

the other subchannels, in the cell m.

The term fm, j(t) denotes the weight of the inter–cell information link from BS j to BS

m. An example selection of these parameters can be done by cell j according to the number

subchannels that are in use. These choices are mathematically described as

fm, j(t) =U j, j ∈ Nm, (4.12)

where U j is defined in (4.1). According to this choice of parameters, each BS sends the total

number of its active subchannel to the neighboring BSs. It is important to see that all the UEs

in the network have the same priority when the intra–cell and inter–cell weights are chosen

as (4.11) and (4.12). The relative priorities between the UEs could be changed by another

choice of weight parameters.

For connection matrix L, which is defined later in Section 4.3.2, to be a Laplacian,

it should have zero row sums [22]. This can be satisfied by choosing the f s
m(t) weights as

follows:

f s
m(t) = ∑

i∈S\s
f̃ i
m(t)+ ∑

j∈Nm

fm, j(t). (4.13)
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4.3.2. Convergence Analysis of PUA-III

For the sake of simplicity, convergence analysis of the proposed algorithm (PUA-III)

is carried out by fixing the weights as given in (4.11), (4.12), and (4.13). By these weight

choices, PUA-III given in (4.10) becomes:

ṗs
m(t) =−β

s
m

Γs
m(t)

ps
m(t)

[(
Um−1+ ∑

j∈Nm

U j

)
Γ

s
m(t)− ∑

j∈Nm

∑
i∈U j

Γ
i
j(t)− ∑

i∈Um\s
Γ

i
m(t)

]
,s ∈ Um.

(4.14)

For later use, (4.14) can alternatively be simplified as

ṗs
m(t) =−β

s
m

Γs
m

2(t)
ps

m(t)
Zm

[
1−

Γs
m,re f (t)

Γs
m(t)

]
,s ∈ Um, (4.15)

where Zm is defined as

Zm =Um−1+ ∑
j∈Nm

U j, (4.16)

and Γs
m,re f (t) is given by

Γ
s
m,re f (t) =

∑
j∈Nm

U jΓ j,ave(t)+ ∑
i∈Um\s

Γi
m(t)

Zm
, s ∈ Um. (4.17)

In vector notation, (4.14) corresponds to

˙̃p(t) =−B̃Ĩ−1
d (t)L̃Γ̃̃Γ̃Γ(t), (4.18)

where Γ̃̃Γ̃Γ(t) is the vector that contains the SINR values of active subchannels of entire femto-

cell network. The length of Γ̃̃Γ̃Γ(t) is U , and its has identical order as p̃(t) defined in (4.4). B̃

and Ĩd(t) are U×U diagonal matrices with respectively β s
m > 0 and Ĩs

m = p̃s
m/Γ̃s

m > 0 values

on diagonals. Lastly, L̃ ∈ RU×U is the symmetric positive semi–definite Laplacian matrix.
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For the specific choice of weights defined in (4.11), (4.12), and (4.13), we state the

following theorem for the convergence properties of PUA-III.

Theorem 4.2. When Assumption 1 is satisfied and the weights are chosen as described in

(4.11), (4.12), and (4.13), PUA-III given in (4.10) converges to a fair solution Γ̃̃Γ̃Γ∗, where

Γ̃s∗
i = Γ̃s̄∗

j holds for all s ∈ Ui, s̄ ∈ U j, and i, j ∈M\{0}.

Proof. Consider the following function:

V (p̃(t)) = p̃T (t)B̃−1p̃(t) = ∑
i∈M\{0}

∑
s∈Ui

1
β s

i
ps

i
2(t), (4.19)

which is defined as sum of squares, meaning that it is non-negative for all t ≥ 0. For fixed

subchannel assignment vector, from (4.5), we have p̃(t) = Ĩd(t)Γ̃̃Γ̃ΓT (t). Then, the derivative

of V (p̃(t)) with respect to time is expressed as

V̇ (p̃(t)) = ˙̃p
T
(t)B̃−1p̃(t)+ p̃T (t)B̃−1 ˙̃p(t),

= −Γ̃̃Γ̃Γ
T (t)L̃Ĩd

−1
(t)p̃(t)− p̃T (t)Ĩd

−1
(t)L̃Γ̃̃Γ̃Γ(t),

= −2Γ̃̃Γ̃Γ
T (t)L̃Γ̃̃Γ̃Γ(t), (4.20)

where L̃ is a symmetric positive semi-definite Laplacian matrix. Hence, V̇ (p̃(t)) ≤ 0 holds

for all t ≥ 0. Since V (p̃(t))≥ 0 (lower bounded) and V̇ (p̃(t)) is non-increasing, by Lemma

3.1, V (p̃(t)) converges to a limit as t → ∞. This implies that p̃(t) is bounded together with

Γ̃̃Γ̃Γ(t) and Ĩd(t).

Note that (4.20) can also be written as

V̇ (p̃(t)) =−2 ∑
i∈M\{0}

∑
s∈Ui

ZiΓ
s
i (t)
(
Γ

s
i (t)−Γ

s
i,re f (t)

)
, (4.21)

whose time derivative can be expressed as

V̈ (p̃(t)) =−2 ∑
i∈M\{0}

∑
s∈Ui

Zi

[
2Γ

s
i (t)Γ̇

s
i (t)− Γ̇

s
i (t)Γ

s
i,re f (t)−Γ

s
i (t)Γ̇

s
i,re f (t)

]
. (4.22)
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Using (4.5) and (4.15), Γ̇s
i (t) can be calculated by

Γ̇
s
i (t) =

d
dt

(
ps

i (t)
Is
i,k(t)

)
=

ṗs
i (t)I

s
i,k(t)− ps

i (t)İ
s
i,k(t)

Is
i,k

2(t)

=
1

Is
i,k

2(t)

[
−β

s
i Zi
(
Γ

s
i (t)−Γ

s
i,re f (t)

)
− ps

i (t)İ
s
i,k(t)

]
=

1
Is
i,k

2(t)

[
−β

s
i Zi
(
Γ

s
i (t)−Γ

s
i,re f (t)

)
− ps

i (t) ∑
j∈M\i

hs
(i, j),k ṗs

j(t)
]

= −β
s
i Zi

Γs
i (t)−Γs

i,re f (t)

Is
i,k

2(t)
−

ps
i (t)

Is
i,k

2(t) ∑
j∈M\i

hs
(i, j),kβ

s
j
Γs

j
2(t)

ps
j(t)

Z j

[
1−

Γs
j,re f (t)

Γs
j(t)

]
(4.23)

Since it is already shown that Is
m,k(t), ps

m(t), β s
m,k, hs

(m, j),k and Γs
m(t) are bounded ∀t ≥ 0,

which implies Γs
m,re f (t) is also bounded, Γ̇s

m(t) is bounded ∀t ≥ 0. Furthermore, we have

i, j ∈M\{0}, whereM has a finite number of elements. Hence, V̈ (p̃(t)) is bounded ∀t ≥ 0.

From Lemma 3.2, we can conclude that V̇ (p̃(t))→ 0 as t→ ∞. In another words, we have

lim
t→∞

Γ̃̃Γ̃Γ
T (t)L̃Γ̃̃Γ̃Γ(t) = 0 (4.24)

which implies L̃Γ̃̃Γ̃Γ(t) = 0 when t → ∞. Since the underlying graph of the communication

network is assumed to be connected (Assumption 1), the Laplacian matrix L̃ has a simple

eigenvalue at zero [26]. In that sense, V̇ (p̃(t)) = 0 implies ˙̃p(t) = 0 and we can conclude

from (3.3) and (3.10) that Γ̃v∗
i = Γ̃w∗

j holds ∀v ∈ Ui, ∀w ∈ U j, and ∀i, j ∈M\{0}.

Remark 4. As long as (4.13) is satisfied, with any finite choice of weights, the proposed

power update algorithm, PUA-III given in (4.10), converges to a fair solution.

4.4. Simulation Results of PUA-II and PUA-III

In this section, simulation studies regarding the proposed algorithms PUA-II and PUA-

III are carried out by considering the network topology depicted in Figure 4.2, which shows

the relative locations of all BSs and UEs. The setup consists of 8 FBSs, each having 3 ran-

domly placed UEs. There also exists a single MBS with 3 UEs, which acts as a constant

source of interference to all FUEs. All base stations are assumed to have access to the same
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Figure 4.2. PUA-II and PUA-III simulation topology with edges.

S = 3 OFDMA subchannels. Dashed lines represent the communication links, on which the

required information is carried between the FBSs. The collection of all dashed lines repre-

sents the underlying graph which is connected for this network. In simulations of PUA-III,

specific weights are chosen according to (4.11), (4.12), and (4.13). Simulations of the algo-

rithms are carried out by its discrete time implementation. By Euler’s approximation, PUA-II

and PUA-III (with given weight choices becomes (4.15)) can respectively be discretized as

ps
m[k+1] = ps

m[k]−Tsβ
s
m

[
1−

Γs
m,re f [k]

Γs
m[k]

]
ps

m[k], (4.25)

and

ps
m[k+1] = ps

m[k]−Tsβ
s
mZm

[
1−

Γs
m,re f [k]

Γs
m[k]

]
Γs

m
2[k]

ps
m[k]

. (4.26)

Here, sampling period Ts and update constant β m
s are chosen same for all FBSs and subchan-

nels. While simulating PUA-II and PUA-III, they are respectively chosen as Tsβ
s
m = 0.48s

and Tsβ
s
m = 0.48µs.

FBSs start executing the algorithm with randomly chosen initial power vector (p̃[0]),

where all powers are less than 30 dBm (1 Watt). Transmission powers of MBS are randomly
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Figure 4.3. Simulation results of PUA-II and PUA-III

chosen within the 43− 50 dBm (20− 100 Watt) interval, where the thermal noise power is

taken the same as −80 dBm (10−11 Watt) on all subchannels. Initial assignment of available

subchannels are done randomly, and subchannel assignment is kept the same through the

simulations. The channel gains are calculated by gs
m,k = χ(s)d−α

m,k , where dm,k is the physical

distance between BS m and UE k. χ(s) value is generated randomly by Rayleigh distribution,

and taken as [1.4127 1.0509 1.2092] for each subchannel. Path loss exponent is taken as

α = 3.

Simulation results of both algorithms (PUA-II and PUA-III) are given in Figure 4.3.

As theoretically expected, at the end of each power update processes, all 24 FUEs reach

consensus on a common SINR value. As a superiority of PUA-II over PUA-III, this final

SINR value is found to be higher in PUA-II comparing to the PUA-III. Since the MBS is not

a part of the underlaying communication graph of the topology given in Figure 4.2, SINR

values of the MUEs are not expected to reach the consensus with the SINR values of FUEs.

Therefore, they are not shown in Figure 4.3.
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4.5. Chapter Summary

In this chapter, two new power update algorithms, namely PUA-II and PUA-III, are

proposed for the OFDMA femtocell networks where each FBS can have more than one UE.

It is analytically proven that both algorithms are capable of providing fairness when the

underlying communication graph is connected. Theoretical studies are also illustrated with a

numerical example. In terms of computational complexity, algorithms are easy to implement

and the required exchange of information are kept minimal for both algorithms. In next

chapter, we present two joint frequency/power update algorithms which can be considered

as the optimized versions of PUA-II and PUA-III.
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5. JOINT FREQUENCY/POWER UPDATE ALGORITHMS FOR

OFMDA FEMTOCELL NETWORKS

In OFDMA femtocell networks, frequency allocation plays an important role in in-

terference management and throughput maximization. In order to realize this importance,

consider a simple network with 2 BS/UE pairs each having access to the same 2 OFDMA

subchannels. When each UE gets service on the same subchannel, interference exposed by

each UE can be dramatically dropped by a simple subchannel change, which also results

in improved throughput. With a similar objective, by including frequency allocation in the

power update algorithms proposed in Chapter 4, the final SINR value that every UE con-

verges can be maximized.

In this chapter, we propose 2 suboptimal joint frequency/power update algorithms,

namely JFPUA-I and JFPUA-II, which are respectively one step optimized versions of the

PUA-II and PUA-III presented in Chapter 4. Each of these joint algorithms consists of con-

secutive usage of a frequency allocation phase and a power update part. In the frequency

allocation part, each BS updates its frequency assignment vector by solving an integer pro-

gramming problem. Then, the corresponding power update algorithm (PUA-II or PUA-III)

runs for the remaining time.

As the chapter organization, first, some preliminary definitions will be given in Section

5.1. Then, some important results about the infeasibility of noise–free network are presented

in Section 5.2. A frequency allocation scheme is derived in Section 5.3. Lastly, the joint

algorithms and their simulation results will be given in Sections 5.4 and 5.5, respectively.
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5.1. System Setup

Consider a femtocell network which is described in Section 4.1. When every active

UE has the same SINR value γ∗, the following holds:

Γ
s
m,k = ρ

s
m,kγ

∗, (5.1)

where Γs
m,k is either 0 or γ∗ depending on if BS m serves UE k on subchannel s or not. When

the fairness is achieved (i.e., Γs
m = γ∗,∀s ∈ U ,∀m ∈M\{0}), by using (4.5) and (5.1), the

following can be written:

ps
m = γ

∗
∑

k∈Km

ρ
s
m,k

(
∑

j∈M\m
hs
(m, j),k ps

j +η
s
m,k

)
,

= γ
∗

∑
k∈Km

∑
j∈M\m

ρ
s
m,khs

(m, j),k ps
j + γ

∗
∑

k∈Km

ρ
s
m,kη

s
m,k,

= γ
∗

∑
j∈M\m

ps
j ∑

k∈Km

ρ
s
m,khs

(m, j),k + γ
∗

∑
k∈Km

ρ
s
m,kη

s
m,k. (5.2)

In vector form, (5.2) can be represented as

p = Hpγ
∗+ηηηγ

∗. (5.3)

Here, p = [p1T
, p2T

, · · · , pST
]T contains the transmission power information of the entire

femtocell network where ps = [ps
1, ps

2, · · · , ps
M f

]T . Also the vector ηηη contains the normalized

noise values, and it is defined as ηηη = [η1T
,η2T

, · · · ,ηST
]T , where ηs = [ηs

1,η
s
2, · · · ,ηs

M f
]T

and each ηs
i term can be calculated as

η
s
i = ∑

k∈Ki

ρ
s
i,kη

s
i,k. (5.4)
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Finally, the block diagonal square H matrix can be defined as

H =


H(1) 0 . . . 0

0 H(2) . . .
...

...
... . . . 0

0 . . . 0 H(S)

 , (5.5)

where H(s) = [h(s)i j ] is an M f ×M f matrix with zero diagonal and non–negative elements on

off–diagonals. Then, the entries of each off-diagonal H(s) matrix can be defined as follows:

h(s)i j =


∑

k∈Ki

ρs
i,khs

(i, j),k, for i 6= j

0, otherwise
(5.6)

With the definitions given above, some results about the infeasibility of the noise free

network are given in the next section.

5.2. A Special Case: Noise Free System

When the thermal noise in the system is neglected (i.e., ηηη = 0), by dividing each side

of (5.3) by γ∗, we obtain

Hp∗ = 1
γ∗p
∗. (5.7)

For a non-negative M×M matrix A to be irreducible, the necessary and sufficient condition

is (I+A)M−1 > 0 [31], where I is the identity matrix with appropriate size. Since H is a

block diagonal matrix as described in (5.5), any power of (I+A) remains block diagonal.

Hence, we can conclude that H is reducible, and the Perron–Frobenius theorem is inconclu-

sive. However, by considering each off-diagonal H(s) matrix individually, we can draw the

following conclusion on the noise free system.
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Theorem 5.1. For the system described by (4.5), when the thermal noise is neglected (i.e.,

ηηη = 0), and all subchannels are assumed to be actively used by each BS, there is no feasible

solution for (5.7) unless the spectral radius of H(s) is the same for all s.

Proof. When all subchannels are actively used, the following holds:

∑
k∈Ki

ρ
s
i,k 6= 0,∀s,∀i ∈ I. (5.8)

Since H(s) is non–negative and H(s)n
> 0 for all n ≥ 1, as stated in Lemma 3.5, H(s) is

a primitive non–negative matrix for all s ∈ S. Therefore, by Lemma 3.6, the following

equation has its own unique feasible (γs∗, ps∗) solution for each s ∈ S:

H(s)ps∗ =
1

γs∗ ps∗, (5.9)

where 1
γs∗ = r(H(s)) and ps∗ is the Perron eigenvector of H(s). Since H is the block diagonal

matrix defined by (5.5), for (5.7) to have a feasible solution, γs∗ = γ s̄∗ should hold for all

s, s̄ ∈ S.

Remark 5. Since each H(s) matrix is constructed by different channels gain ratios, the pos-

sibility of them having the same spectral radii can be considered as zero.

Remark 6. Theorem 5.1 states the infeasibility of the network under the assumption that all

subchannels are actively used by each BS. This statement still holds for the relaxed assump-

tion that each subchannel is actively used by at least one BS. Theorem 8.3.1. of [31] can be

used to draw this conclusion.

5.3. A Frequency Allocation Scheme

In this section, we derive a suboptimal frequency allocation scheme with the purpose

of increasing the maximum achievable SINR in a given OFDMA femtocell network. Then,

this scheme will be used jointly with PUA-II and PUA-III.
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Consider a femtocell network which is described in Section 4.1. When every active

UE has the same SINR value, (5.3) holds. Dividing each side by γ∗, (5.3) can be written as

(
1
γ∗

I−H
)

p =ηηη . (5.10)

In order to have a p≥ 0 solution for all ηηη ≥ 0,
( 1

γ∗ I−H
)

should be a monotone matrix. Since

H has non–negative off–diagonal entries, being monotone for
( 1

γ∗ I−H
)

equivalently means

being an M–matrix [27]. Hence, γ∗ < 1
r(H) should hold, where r(H) denotes the spectral

radius of H. The SINR value γ∗ that every UE converges to has an upper limit of 1
r(H) . Since

H is made of the frequency assignment variables and channel gains, this upper limit can be

improved by a proper frequency allocation scheme.

By Gersgorin disc theorem [31], the following holds for the spectral radius of the off–

diagonal H(s) matrix for all s ∈ S:

r(H(s))≤max
i ∑

j 6=i

h(s)i j . (5.11)

Defining the diagonal matrix D(s) = diag(ps
1, ps

2, . . . , ps
M f

), where ps
i > 0, the H(s) matrix has

the same eigenvalues as D(s)−1H(s)D(s) [31]. Hence, the largest Gersgorin disc defined in

(5.11) can further be modified as

r(H(s))≤max
i

1
ps

i
∑
j 6=i

h(s)i j ps
j. (5.12)

Since H, given in (5.5), is a block diagonal matrix composed of H(s) matrices, by using

(5.6) and (5.12), r(H) can be defined as
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r(H) = max
s

r(H(s))

≤ max
s

max
i

1
ps

i
∑
j 6=i

h(s)i j ps
j

= max
s

max
i

1
ps

i
∑
j 6=i

ps
j ∑

k∈Ki

ρ
s
i,khs

(i, j),k

= max
s

max
i

1
ps

i
∑
j 6=i

∑
k∈Ki

ρ
s
i,khs

(i, j),k ps
j

= max
s

max
i

1
ps

i
∑

k∈Ki

∑
j 6=i

ρ
s
i,khs

(i, j),k ps
j

= max
s

max
i

∑
k∈Ki

ρ
s
i,k

1
ps

i
∑
j 6=i

hs
(i, j),k ps

j

= max
i

max
s ∑

k∈Ki

ρ
s
i,k

1
ps

i
∑
j 6=i

hs
(i, j),k ps

j. (5.13)

The proposed frequency allocation scheme is a discrete process which is performed

synchronously by each BS prior to the power update. Z, which is a predefined even number,

denoting the total number of iterations in frequency allocation scheme, all BSs set their

transmission powers to the random levels at each of the odd–numbered iteration steps z ∈

{1,3, . . . ,Z−1}. Then, by using (4.5), we obtain

1
ps

i [z]
∑
j 6=i

hs
(i, j),k ps

j[z] = ρ
s
i,k

1
Γs

i,k[z]
−

ηs
i,k

ps
i [z]

, (5.14)

where Γs
i,k[z] denotes the SINR of the downlink signal transmitted by BS i to UE k on sub-

channel s at iteration z. In order to find the expression on the left hand side of (5.14), we

need to eliminate the unknown ηs
i,k term. When each BS halves its transmission powers in

the next iteration (i.e., ps
i [z+1] = ps

i [z]
2 ), (4.5) becomes

1
ps

i [z]
∑
j 6=i

hs
(i, j),k ps

j[z] = ρ
s
i,k

1
Γs

i,k[z+1]
−

2ηs
i,k

ps
i [z]

. (5.15)

Using (5.14) and (5.15), the ηs
i,k term can be eliminated, and the following is obtained:

1
ps

i [z]
∑
j 6=i

hs
(i, j),k ps

j[z] = ρ
s
i,k

2
Γs

i,k[z]
−ρ

s
i,k

1
Γs

i,k[z+1]
. (5.16)
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Substituting (5.16) into (5.13), the spectral radius of the H matrix can be defined as

r(H)≤max
i

max
s ∑

k∈Ki

ρ
s
i,k

(
2

Γs
i,k[z]
− 1

Γs
i,k[z+1]

)
. (5.17)

Note that an alternative scaling, such as ps
i [z+ 1] = cps

i [z] where 0 < c < 1, can be utilized

instead of halving the transmission powers.

Since γ∗ < 1
r(H) , the maximum achievable SINR γ∗ can be maximized by minimizing

r(H). A so called pseudo–optimal solution for minimization of r(H) can be achieved by

reducing the upper bound of r(H) defined in (5.17). Then, letting f (ρρρ) denote this upper

bound, the objective function that we want to minimize can be expressed as

f (ρρρ) = max
i

max
s ∑

k∈Ki

ρ
s
i,k

(
2

Γs
i,k[z]
− 1

Γs
i,k[z+1]

)
. (5.18)

With the required constraints, the optimization problem that needs to be solved after iteration

z+1 is defined as follows:

minimize
ρρρ

f (ρρρ) = max
i

max
s ∑

k∈Ki

ρ
s
i,k

(
2

Γs
i,k[z]
− 1

Γs
i,k[z+1]

)
(5.19a)

subject to ∑
k∈Ki

ρ
s
i,k ≤ 1, ∀i ∈M\{0},∀s ∈ S, (5.19b)

∑
s∈S

ρ
s
i,k ≤ 1, ∀i ∈M\{0},∀k ∈ Ki, (5.19c)

ρ
s
i,k ∈ {0,1}, k ∈ Ki,∀i ∈M\{0},∀s ∈ S, (5.19d)

ps
i [z+1] =

ps
i [z]
2

, ∀i ∈M\{0},∀s ∈ S, (5.19e)

where constraint (5.19b) ensures that a BS can assign a subchannel to at most one UE.

Constraint (5.19c) makes sure that a UE can be served on at most one subchannel. Also,

by (5.19d), we specify that the decision variables can take binary values. Finally, constraint

(5.19e), specifies that the transmission powers at iteration z+ 1 should be equal to the half

of the transmission powers at iteration z.
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The SINR of the downlink signal transmitted by BS i to UE k on subchannel s at itera-

tion z is denoted by Γs
i,k[z]. Notice that, through an iteration step z, transmission powers on all

subchannels remain the same even though the frequency allocation gets changed. Therefore,

a frequency allocation change in BS j 6= i does not affect the SINR of the UEs of BS i. In

other words, Γs
i,k[z] and Γs

i,k[z+1] terms do not depend on the frequency allocation choice of

the BS j 6= i. Also, the same subchannels are assumed to be available for every BS. Which

means that the set of feasible solutions to problem (5.19), is actually a combination of set

of identical feasible solutions for each BS. As a consequence of these facts, problem (5.19)

can be partitioned into the individual subproblems. As an alternative to the centralized so-

lution of the problem (5.19), each BS i solves its own subproblem in a distributed manner:

minimize
ρi

fi(ρi) = max
s ∑

k∈Ki

ρ
s
i,k

(
2

Γs
i,k[z]
− 1

Γs
i,k[z+1]

)
(5.20a)

subject to ∑
k∈Ki

ρ
s
i,k ≤ 1, ∀s ∈ S, (5.20b)

∑
s∈S

ρ
s
i,k ≤ 1, ∀k ∈ Ki, (5.20c)

ρ
s
i,k ∈ {0,1}, k ∈ Ki,∀s ∈ S, (5.20d)

ps
i [z+1] =

ps
i [z]
2

, ∀s ∈ S. (5.20e)

In order to solve the problem defined in (5.20), BS i needs the SINR information of

all of its UEs in all possible subchannel assignment scenarios at iterations z and z+1. Since

FBSs are designed to serve up to 8 UEs [3], BS i can easily obtain Γs
i,k[z] and Γs

i,k[z+ 1]

values for all k ∈ Ki,s ∈ S . The problem given in (5.20) is an integer programming problem

with binary decision variables, various numerical tools such as [37] can be used to solve it.

Note that each BS sets its transmission powers to random values at odd–numbered

iterations (i.e., z ∈ {1,3, . . . ,Z− 1}), and halves them in the next even–numbered iteration

z+ 1. After each even–numbered iteration step z+ 1 (i.e., z ∈ {1,3, . . . ,Z− 1}), BSs solve

their individual subproblems defined in (5.20). If the iteration z+ 1 results in a better ob-

jective value than the iteration z− 1, BS i sets the solution of (5.20) at iteration z+ 1 as
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its current frequency allocation vector ρi. Otherwise, BS i continues with the next iteration

without changing its current frequency allocation vector. After Z iterations, where each BS

has solved the problem (5.20) Z/2 times, the frequency allocation algorithm stops.

1: The network starts with random ρρρ[0] and p[0] vectors;

2: Set fi(ρi[0]) to a large number, e.g. 106, for all i;

3: for z := 1 to (Z−1) step 2 do

4: Each BS sets its transmission powers to the positive random values in the range of

0 to pmax (i.e., 0 < ps
i [z]≤ pmax,∀i,∀s);

5: For p[z], each BS i acquires SINR information Γs
i,k[z] from its UEs for all possible

subchannel assignments;

6: Each BS halves its transmission powers (i.e., ps
i [z+1] = ps

i [z]
2 ,∀i,∀s);

7: For p[z+ 1], each BS i acquires SINR information Γs
i,k[z+ 1] from its UEs for all

possible subchannel assignments;

8: Having Γs
i,k[z] and Γs

i,k[z+1] for all k ∈ Ki and s ∈ S, each BS i finds the solution

ρi[z+1] to the problem (5.20);

9: if fi(ρi[z−1])< fi(ρi[z+1]) then

10: ρi[z+1]← ρi[z−1];

11: end if

12: end for

13: k← 0;

14: ρρρ[k]← ρρρ[Z];

15: ppp[k]← ppp[Z];

16: repeat with a proper sampling period Ts and fixed ρρρ[k]

17: ps
m[k+1]← ps

m[k]−Tsβ
s
m

[
1− Γs

m,re f [k]
Γs

m[k]

]
ps

m[k];

18: k← k+1;

19: until p[k] converges

Figure 5.1. Joint Frequency/Power Update Algorithm I.
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5.4. Joint Frequency/Power Update Algorithms (JFPUA-I and JFPUA-II)

In this section, we present 2 joint frequency/power update algorithms (JFPUA-I and

JFPUA-II) for OFDMA femtocell networks. In terms of final SINR value that every UE

converges, these algorithms are one step optimized versions of the power update algorithms

proposed in Sections 4.2 and 4.3. The JFPUA-I and JFPUA-II are simply created by merging

the frequency allocation scheme given in Section 5.3 with PUA-II and PUA-III, respectively.

Detailed description of the JFPUA-I is given in Figure 5.1. Since JFPUA-II differs

from JFPUA-I only by line 17, it is not given as another figure. Instead, JFPUA-II can be

obtained by replacing line 17 of JFPUA-I by (4.26). In both JFPUA-I and JFPUA-II, each

FBS first updates its frequency allocation vector by solving the optimization problem defined

in (5.20). Then, it executes the corresponding power update algorithm (PUA-II or PUA-III)

for the remaining time.

As a natural extension of Theorems 4.1 and 4.2, the following corollary reveals the

convergence properties of JFPUA-I and JFPUA-II:

Corollary 5.2. Under Assumption 1, JFPUA-I and JFPUA-II converge to a fair solution γ∗,

where Γi
s = γ∗ holds for all i ∈M\{0} and s ∈ U .

Proof. Since PUA-II and PUA-III converge to a fair solution for all initial frequency assign-

ment vectors, the proof directly follows from Theorems 4.1 and 4.2.

5.5. Simulation Results of JFPUA-I and JFPUA-II

In this section, numerical analyses of the JFPUA-I and JFPUA-II are presented. The

network topology used in the simulations is shown in Figure 4.2 where the locations of UEs

are randomly changed for each trial. It is assumed that there exist 8 FBSs each serving 3 UEs

where each FBS is assumed to have access to the same 3 OFDMA subchannels. The channel

gains are calculated by gs
m,k = χ(s)d−α

m,k , where dm,k is the physical distance between BS m

and UE k. χ(s) values are generated randomly before each trial. Also, the path loss exponent
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Figure 5.2. The outperformance of JFPUA-I relative to PUA-II

is taken as α = 3. Since the channel gains and the FUE locations are changed randomly,

different H matrices are used for each trial.

In the simulations, we first compared the performances of PUA-II and JFPUA-I in

terms of the SINR value reached by consensus. Comparison of the algorithms are achieved

by executing them on the identical networks. When this process is repeated 100 times, the

results given in Figure 5.2 are obtained. The frequency allocation part of the joint algorithm

is executed by 400 iterations (i.e., Z = 400). In the given 100 trials, JFPUA-I outperforms

PUA-II 90 times, where the average SINR increase is calculated as 0.78dB.

The effect of frequency allocation duration on the performance of JFPUA-I is also

investigated in the numerical analyses. Starting with Z = 21, the iteration number is doubled

until Z = 29. For each value of Z, JFPUA-I and PUA-II are compared 1000 times, and

the average SINR outperformance of JFPUA-I is shown in Figure 5.3. On the average of

1000 random trials, the performance of JFPUA-I gets better while the iteration number Z in

frequency allocation process is increasing. However, as Z increases, the performance of the

joint algorithm seems to have diminishing returns which can be observed by looking at the

slope of the curve.



47

24 8 16 32 64 128 256 512

Number of Iterations in Frequency Allocation (Z)

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

A
ve

ra
ge

 S
IN

R
 In

cr
ea

se
 in

 1
00

0 
T

ria
ls

 (
dB

)

Figure 5.3. Performance of JFPUA-I with respect to the frequency allocation duration
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Figure 5.4. Performance comparison of PUA-II, JFPUA-I, PUA-III, and JFPUA-II

A more comprehensive simulation is carried out by running PUA-II, PUA-III, JFPUA-

I and JFPUA-II 50 times on the identical networks with the same initial conditions. Figure

5.4 shows the results of these numerical analyses. Recall that JFPUA-I and JFPUA-II are

respectively derived by merging PUA-II and PUA-III with the frequency allocation scheme

given in (5.20a). Similar to the results given in Figure 5.2, JFPUA-II outperforms the PUA-

III most of the times. It can also be seen in Figure 5.4 that, most of the times, JFPUA-I

results in a higher consensus value compared to the other algorithms. Lastly, the superiority

of PUA-II over PUA-III can also be observed in the figure.
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5.6. Chapter Summary

In this chapter, OFDMA femtocell networks where FBSs may serve more than one UE

are investigated. Under the SINR fairness constraint, it is shown that there is no feasible so-

lution for the noise free systems. Then, in order to increase the maximum achievable SINR

level, a frequency allocation scheme is proposed by using the Gersgorin disc theorem. Merg-

ing this scheme with the PUA-II and PUA-III, two joint frequency/power update algorithms

(JFPUA-I and JFPUA-II) are proposed. Finally, the performances of these joint algorithms

are illustrated with the numerical results.
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6. CONCLUSION

In this thesis, power and frequency allocation problems in femtocell networks are stud-

ied. Some preliminary information about graph theory and consensus algorithms, along with

the power control algorithms that constitute the basis of this thesis, are briefly discussed in

the first chapter. Then, we propose an alternative (PUA-I) for the well known power control

algorithm of Foschini–Miljanic. The PUA-I is theoretically and numerically shown to be

converging to a fair solution by overcoming the infeasibility issue that was present in the

algorithm of Foschini–Miljanic. Subsequently, PUA-I and the consensus based power con-

trol algorithm of Şenel–Akar are adapted for the OFDMA femtocell networks where base

stations usually serve more than one user equipment. By theoretical and numerical analyses,

it is shown that these new algorithms, namely PUA-II and PUA-III, ensure the convergence

to a fair solution.

In order to increase the maximum achievable SINR in femtocell networks, a frequency

allocation scheme, which is based on the Gersgorin disc theorem, is proposed. Then, the

PUA-II and PUA-III are merged with this frequency allocation scheme for a higher conver-

gence level, and two new joint frequency/power update algorithms (JFPUA-I and JFPUA-II)

are proposed. By the numerical analyses, it is shown that the longer frequency allocation

part leads to the better performance of the joint algorithms.

In the future studies, the proposed algorithms are planned to be studied for cases where

the network model is time–varying in terms of the communication channels and topology.

Also, there still is room for improvement of the frequency allocation scheme proposed. Fi-

nally, the power control in partially connected networks stands as an interesting problem to

be studied.
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