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Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Mathematics

Boğaziçi University

2019



ii

COMPLEX REPRESENTATIONS OF FINITE GENERAL LINEAR GROUPS

APPROVED BY:
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ABSTRACT

COMPLEX REPRESENTATIONS OF FINITE GENERAL

LINEAR GROUPS

In this thesis, we determine complex irreducible representations of GL(2,K),

the group of 2 by 2 invertible matrices over a finite field K. Actually, this is done

by Ilya Piatetski-Shapiro in 1983. In his article [1], Shapiro classifies the irreducible

representations of the group GL(2,K) by using the definition of induced module de-

pends as a space of functions. The aim of this thesis is to rewrite the article using

the induction module definition constructed by a tensor product. We start the thesis

by reminding some basic definitions and theorems related to our topic. Then we de-

termine the commutator subgroup of GL(2,K) and introduce some special subgroups

of GL(2,K). The number of irreducible representations of a finite group is equal to

the number of conjugacy classes of that group. Hence we calculate the conjugacy

classes of GL(2,K). We determine irreducible representations of GL(2,K) through

irreducible representations of the subgroups of it and quotient groups.
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ÖZET

SONLU LİNEER GRUPLARIN KARMAŞIK TEMSİLLERİ

Bu savda, sonlu bir K cismi üzerine olan ikiye iki tersinir matrisler grubu

GL(2,K) in karmaşık indirgenemez temsillerini belirleyeceğiz. Aslında bu daha önce

Ilya Piatetski-Shapiro tarafından 1983 yılında yapıldı. Makalesinde ( [1]), Shapiro

GL(2,K) in indirgenemez temsillerini indüklenmiş modülün fonksiyonlar uzayına bağlı

tanımını kullanarak sınıflandırıyor. Bu savın amacı makaleyi tensör çarpımı üzerine

kurulu indüklenmiş modül tanımı kullanarak yeniden yazmaktır. Makaleye konumuz-

la alakalı temel tanım ve teoremleri hatırlatarak başlayacağız. Daha sonra GL(2,K) in

değişeç alt grubunu belirleyeceğiz ve GL(2,K) in bazı özel alt gruplarını tanıtacağız.

Sonlu bir grubun indirgenemez temsillerinin sayısı eşlenik sınıflarının sayısına eşittir.

Bu sebepten GL(2,K) in eşlenik sınıflarını hesaplayacağız. Bölüm grupları ve GL(2,K)

in indirgenemez temsilleri aracılığıyla GL(2,K) in indirgenemez temsillerini belirleye-

ceğiz.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
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1. INTRODUCTION

In this chapter we introduce basic definitions and theorems related to our topic.

The definitions and theorems in this section can be found in [2], [3] and [4].

Throughout the thesis, all vector spaces we considered are finite dimensional

and over C, the field of complex numbers.

Definition 1.1. Let G be a group and V be a vector space. A group homomorphism

ρ : G→ GL(V )

is called a (C-linear) representation of G on V . The vector space V is called the

representation space of ρ and is also denoted by Vρ.

Let ρ be a representation of G on V . Then it defines a G-action on V by

g · v = ρ(g)(v) for any g ∈ G, v ∈ V .

Definition 1.2. Let ρ be a representation of G on V . The subgroup

{g ∈ G | ρ(g) = Idn}

of G where n = dim(V ) is called the kernel of ρ and denoted by ker(ρ).

Remark 1.3. A representation ρ of G on V is called the trivial representation if

ρ(g) = Idn for all g ∈ G where n = dim(V ), equivalently, if ker(ρ) = G.

Remark 1.4. The dimension (or degree) of ρ is defined as the dimension of V .
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Definition 1.5. Let (M,+) be an abelian group. Let R be a ring with unity. We call

M a (left) R-module if there is a function R ×M → M , written (r,m) 7→ rm which

satisfies

� r(m1 +m2) = rm1 + rm2

� (r1 + r2)m = r1m+ r2m

� (r1r2)m = r1(r2m)

� 1Rm = m

for all m,m1,m2 ∈M and for all r, r1, r2 ∈ R.

Definition 1.6. Let k be a field. An algebra over k or a k-algebra is a ring M which

is also a k-vector space such that

k(xy) = (kx)y = x(ky) for all x, y ∈M, k ∈ k.

Definition 1.7. Let G be a finite group and k be a field. Consider the set of formal

sums

{∑
g∈G

rgg | rg ∈ k

}

and define multiplication and addition operations and scalar multiplication on it as

follows.

�

∑
g∈G

rgg +
∑
g∈G

sgg =
∑
g∈G

(rg + sg)g,

�

(∑
g∈G

rgg

)
.

(∑
h∈G

shh

)
=
∑

g,h∈G
(rg.sh)gh,

� r

(∑
g∈G

rgg

)
=
∑
g∈G

rrgg

where rg, sg, sh, r ∈ k.
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The above structure defines an algebra, called the group algebra of G over k and

denoted by k[G].

From now on we work with C[G]-modules. The following proposition shows that

C[G]-modules and C-linear representations of G are actually the same structures.

Proposition 1.8. Let ρ : G → GL(V ) be a representation, we can regard V as a

C[G]-module where the multiplication of G on V is given by

g · v = ρ(g)(v) for g ∈ G and v ∈ V .

For the other side, let V be a C[G]-module. Let B be any basis of V . Then

ρ : G→ GL(V )

g 7→ [g]B

defines a representation of G, where [g]B is the matrix representation of the linear

transformation

V → V

v 7→ g · v

in the basis B.

From now on we use the terms ‘representation of G over C’ and ‘C[G]-module’

to mean the same structure, under the above correspondence.

Definition 1.9. A non-zero representation ρ : G → GL(V ) of G is said to be irre-

ducible if it has no proper nonzero C[G]-submodules.

Notation. The set of irreducible representations of G is denoted by Irr(G).
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Lemma 1.10. Let G be a finite group. Then number of irreducible representations of

G is equal to the number of conjugacy classes of G.

Lemma 1.11. Let G be a finite group. We have

∑
ρ∈Irr(G)

(dimρ)2 = |G|.

Corollary 1.12. Let G be a finite abelian group and ρ be an irreducible representation

of G. Then dimρ = 1.

Now we introduce methods to produce new representations from given represen-

tations.

Definition 1.13. Let ρ : G → GL(V ) and µ : H → GL(W ) be representations of

finite groups G and H, respectively. Then we can define a representation ρ × µ of

G×H on V ⊗W by

(ρ× µ)(g, h)(v ⊗ w) = ρ(g)(v)⊗ µ(h)(w) for g ∈ G, h ∈ H, v ∈ V,w ∈ W .

Lemma 1.14. Let G and H be finite groups. Suppose {ρi | 1 ≤ i ≤ n} and

{µi | 1 ≤ i ≤ m} are the set of irreducible representations of G and H, respectively.

Then {ρi × µj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is the set of irreducible representations of

G×H.

Definition 1.15. Let G be a finite group and ρ and φ be representations of G on U

and V , respectively. Then we define a representation ρ⊕ φ of G on U ⊕ V by

(ρ⊕ φ)(g)(u⊕ v) = ρ(g)u⊕ φ(g)w for g ∈ G, u ∈ U and v ∈ V .

Definition 1.16. Let G be a finite group, H be a subgroup of G and ρ be a representa-

tion of G. The restriction of ρ from G to H, denoted by ResGHρ, is the representation
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of H given by

ResGHρ(h) = ρ(h) for all h ∈ H.

Definition 1.17. Let G be a finite group, N be a normal subgroup of G and ρ be

a representation of the group G/N . We define a representation InfGG/Nρ of G called

inflation of ρ from G/N to G by

InfGG/Nρ(g) = ρ(gN) for all g ∈ G.

Remark 1.18. (i) Inflation of an irreducible representation is irreducible.

(ii) Let G be a finite group and N be a normal subgroup of G. Let ρ1 and ρ2 be

representations of G/N . Then

InfGG/N(ρ1 ⊕ ρ2) = InfGG/Nρ1 ⊕ InfGG/Nρ2.

Remark 1.19. Let G be a finite group and N be a normal subgroup of G. If ρ1 and

ρ2 are two nonisomorphic representations of G/N , then InfGG/Nρ1 � InfGG/Nρ2.

Definition 1.20. Let G be a finite group and N be a normal subgroup of G. Let ρ

be an irreducible representation of G. We define a representation DefGG/Nρ of G/N

called deflation from G to G/N by

DefGG/Nρ(gN) =

ρ(g), if N ⊆ ker(ρ),

0, otherwise.

Moreover, for an arbitrary representation ρ of G, we define

DefGG/Nρ =
⊕

ρi∈Irr(G)

ciDefGG/Nρi. where ρ =
⊕

ρi∈Irr(G)

ciρi.
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Definition 1.21. Let G and H be finite isomorphic groups. Let ϕ : G → H be an

isomorphism between them. Let ρ be a representation of G. Then ρ ◦ ϕ−1 gives a

representation of H, denoted by Iso(ϕ)ρ and called isogation by φ.

Definition 1.22. Let G be a finite group, ρ : G → GL(V ) be a representation of G

and B be a basis for V . Then the character χ of ρ is defined by

χ : G→ C

g 7→ tr([g]B)

where tr([g]B) is trace of the matrix [g]B.

Remark 1.23. (i) Trace of a matrix of a linear transformation is independent of

the chosen basis. Thus the above map is well defined.

(ii) We have χ(1) = dim(V ). We call χ(1) the dimension (or the degree) of χ.

Note that we can identify 1-dimensional representations with 1-dimensional char-

acters. From now on, we consider them as the same.

Notation. The set of one-dimensional characters of a group G is denoted by Ĝ.

The following Lemma can be found in [5].

Lemma 1.24. Let G be a finite abelian group. Then Ĝ forms a group under multi-

plication and Ĝ is isomorphic to G.

Definition 1.25. Let G be a finite group. For any character χ of G, the function

χ : G→ C

g 7→ χ(g)

where χ(g) is the complex conjugate of χ(g), defines a character of G and called the

conjugate character of χ.
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Remark 1.26. Let G be a finite group, 1 be the trivial character and χ be any char-

acter of G. Then

� χ(g) = χ(g−1) for all g ∈ G,

� χχ = χχ = 1 if χ is one dimensional.

Definition 1.27. Let G be a group. The subgroup

< ghg−1h−1 | g, h ∈ G >

is defined as the commutator subgroup of G and denoted by G′.

Remark 1.28. The group G/G′ is the largest abelian quotient.

Lemma 1.29. The commutator subgroup G′ of the group G acts trivially on any

1-dimensional representation of G.

Lemma 1.30. Let G be a finite group. For any irreducible representation ρ of G/G′,

the representation InfGG/G′ρ is a one-dimensional representation of G. Moreover, all

one-dimensional representations of G can be obtained in this way. In particular, there

are |G : G′| many one-dimensional representations of G.

The definition of induced module in [1] is as follows:

Definition 1.31. Let G be a finite group and H be a subgroup of G. Let ρ be a

representation of H on W . Let

V = {ψ : G→ W | ψ(hg) = ρ(h)(ψ(g)) for all h ∈ H, g ∈ G}.

Note that the set V is a C[G]-module where the G-action on V is as follows:

(gψ)(g′) = ψ(g′g) for g, g′ ∈ G and ψ ∈ V .

The C[G]-module V is called the induced module of the C[H]-module W .
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On the other hand, in [4] there is an equivalent definition of induced module

given as follows:

Definition 1.32. Let G be a finite group and H be a subgroup of G. Assume W is a

left C[H]-module. Note that we can regard C[G] as a (C[G], C[H])-bimodule via left

and right multiplication. Then the tensor product

C[G]⊗C[H] W

is a left C[G]-module. It is called the induced module of the C[H]-module W and is

denoted by IndGHW .

Let V be as in Definition 1.31. Then the following C[G]-module isomorphism

provides that the definitions of induced representation of W , given in Definiton 1.31

and Definition 1.32 coincide.

C[G]⊗C[H] W → V(∑
g∈G

sgg

)
⊗ w 7→

(
ψ : x 7→

∑
h∈H

sx−1hhw

)

where sg ∈ C, x ∈ G, w ∈ W .

The above map can be found in [6] where the case is extended from C to any

field of characteristic zero.

Remark 1.33. We have

dim(IndGHW ) = |G : H|(dimW ).

The above maps between representations satisfy the following compatibility re-

lations, see [7].
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Let G be a finite group.

(i) Transitivity Relations :

a. Assume K and H are subgroups of G such that K ≤ H ≤ G. Let ρ and φ

be representations of G and K, respectively. Then

ResHKResGHρ = ResGKρ, IndGHIndHKφ = IndGKφ.

b. Assume ϕ : G → H and ψ : H → K are group isomorphisms and ρ is a

representation of G. Then

Iso(ψ)Iso(ϕ)ρ = Iso(ψϕ)ρ.

c. Assume N and M are normal subgroups of G such that N ≤ M . Let ρ and

φ be representations of G/M and G, respectively. Then

InfGG/N Inf
G/N
G/Mρ = InfGG/Mρ, Def

G/N
G/MDefGG/Nφ = DefGG/Mφ.

(ii) Commutation Relations : a. Assume ψ : G→ H is a group isomorphism, and K

is a subgroup of G. Let ρ and φ be representations of G and K, respectively.

Then

Iso(ψ′)ResGKρ = ResHψ(K)Iso(ψ)ρ, Iso(ψ)IndGKφ = IndHψ(K)Iso(ψ′)φ,

where ψ′ : K → ψ(K) is the restriction of ψ.

b. Assume ψ : G→ H is a group isomorphism, and N is a normal subgroup of

G. Let ρ and φ be representations of G and G/N , respectively. Then

Iso(ψ′′)DefGG/Nρ = DefHH/ψ(N)Iso(ψ)ρ, Iso(ψ)InfGG/Nφ = InfHH/ψ(N)Iso(ψ′′)φ,



10

where ψ′′ : G/N → H/ψ(N) is the group isomorphism induced by ψ.

c. (Mackey Formula) Assume H and K are subgroups of G. Let ρ be a repre-

sentation of K. Then

ResGHIndGKρ =
⊕

x∈[H\G/K]

IndHH∩xKIso(γx)ResKHx∩Kρ

where [H\G/K] is a set of representatives of (H,K)-double cosets in G, and

whereHx = {x−1hx | h ∈ H}, xK = {xkx−1 | k ∈ K} and γx : Hx∩K → H∩ xK

is the group isomorphism obtained by conjugation by x i.e. γx(a) = xax−1.

d. Assume N and M are normal subgroups of G. Let ρ be a representation of

G/M . Then

DefGG/N InfGG/Mρ = Inf
G/N
G/NMDef

G/M
G/NMρ.

Remark 1.34. Observe that when N = M ,

DefGG/N InfGG/Nρ = Inf
G/N
G/NDef

G/N
G/Nρ = ρ.

e. Assume H is a subgroup of G, and N is a normal subgroup of G. Let ρ and

ψ be representations of H and G/N , respectively. Then

DefGG/N IndGHρ = Ind
G/N
HN/N Iso(ϕ)DefHH/H∩Nρ,

ResGHInfGG/Nψ = InfHH/H∩N Iso(ϕ−1)Res
G/N
HN/Nψ

where ϕ : H/H ∩N → HN/N is the canonical group isomorphism.

f. Assume H is a subgroup of G and N is a normal subgroup of G such that

N ≤ H. Let ρ and ψ be representations of G and H/N , respectively. Then

Res
G/N
H/NDefGG/Nρ = DefHH/NResGHρ, IndGHInfHH/Nψ = InfGG/N Ind

G/N
H/Nψ.
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Definition 1.35. Let G be a finite group. A function ψ : G → C is called a class

function on G if it is constant on conjugacy classes of G.

Remark 1.36. Let G be a finite group. The set of class functions on G form a

C-vector space under function addition and usual scalar multiplication on functions.

Moreover, the set of irreducible characters of G form a basis for that vector space.

Definition 1.37. Let G be a finite group. For any two functions ψ, ζ : G→ C define

〈ψ, ζ〉 :=
1

|G|
∑
g∈G

ψ(g)ζ(g).

The definition above gives an inner product on the vector space of class functions.

Remark 1.38. Let ψ, ζ be two irreducible characters of G. Then

〈ψ, ζ〉 =

0, if ψ 6= ζ,

1, if ψ = ζ.

Theorem 1.39 ( Frobenius Reciprocity Theorem). Let G be finite group, H be a

subgroup of G, and let ζ and ψ be representations of G and H, respectively. Then

〈
ψ,ResGHζ

〉
=
〈
IndGHψ, ζ

〉
.

Theorem 1.40. Let G be a finite group and N be a normal subgroup of it, and let ζ

and ψ be representations of G and G/N , respectively. Then

〈
ζ, InfGG/Nψ

〉
=
〈
DefGG/Nζ, ψ

〉
.



12

2. THE GROUP GL(2,K)

Let K be a field with q elements where q > 2. Denote by GL(2,K) the set of

invertible matrices with entries coming from the field K. We will examine the complex

irreducible representations of GL(2,K). From now on, we use the letter G instead of

GL(2,K) for simplicity.

2.1. Commutator Subgroup of GL(2,K)

In this section we prove that G′ = SL(2,K) where SL(2,K) is the subgroup of

GL(2,K) consisting of matrices whose determinants are equal to 1 ∈ K. Observe that

for any g, h ∈ G the commutator of g and h satisfies

det(ghg−1h−1) = 1.

Moreover, the determinant of any element of G′ generated by these elements is equal

to 1. Hence we conclude that G′ ⊆ SL(2,K).

For the converse, let s =

 a b

c d

 ∈ SL(2,K) be arbitrary. Then we have

ad − bc = 1 i.e. d = a−1 + a−1bc. By standard computations from group theory, we

write

s =

 a b

c d

 =

 1 0

a−1c 1

 a 0

0 a−1

 1 a−1b

0 1

 .

Now we will show that each of the matrices in the decomposition above belongs to

the set of commutators of G.
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� Let k ∈ K be arbitrary. Choose x ∈ K× such that x + 1 6= 0 (such an x exists

since q > 2). Now let g =

 x+ 1 k

0 1

 and h =

 x k

0 1

 be elements in

GL(2,K). Observe that

ghg−1h−1 =

 1 k

0 1

 . (2.1)

Thus, for all k ∈ K we have

 1 k

0 1

 ∈ G′.
� Let k ∈ K be arbitrary. Let g′ = (ht)−1 and h′ = (gt)−1 where g, h are as above

and gt and ht are the transposes of h and g, respectively. Then,

g′h′g′−1h′−1 = (ht)−1(gt)−1htgt = (ghg−1h−1)t =

 1 0

k 1

 .

Thus, for all k ∈ K we have

 1 0

k 1

 ∈ G′.
� Let k ∈ K× be arbitrary. Now, suppose that g =

 k 0

0 1

 ∈ GL(2,K) and

h =

 0 1

1 0

 ∈ GL(2,K). Observe that ghg−1h−1 =

 k 0

0 k−1

 . Thus, for

all k ∈ K we have

 k 0

0 k−1

 ∈ G′.
Hence, we conclude that G′ = SL(2,K).

Remark 2.1. The function f : G/G′ → K× defined by f(gG′) = det(g) for g ∈ G is

a group isomorphism.

Now, we introduce some particular subgroups of GL(2,K) and assign some letters

to them for the rest of the thesis.
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(i) The subgroup of upper triangular matrices,

B :=


 α β

0 δ

 | α,δ ∈ K×; β ∈ K

 ,

is called the Borel subgroup of GL(2,K). It has q(q−1)2 many elements. Observe

that for any

 α β

0 δ

 ,

 α′ β′

0 δ′

 ∈ B,

 α β

0 δ

 α′ β′

0 δ′

 α β

0 δ

−1 =

 α′ δ−1(−α′β + αβ′ + βδ′)

0 δ′

 .

(2.2)

Claim 2.2. The set Γ :=


 1 0

γ 1

 | γ ∈ K
 and w =

 0 1

1 0

 form a

set of representatives for the right (and also left) cosets of B in GL(2,K).

Proof. For γ1, γ2, γ ∈ K such that γ1 6= γ2, we have

 1 0

γ1 1

 1 0

γ2 1

−1 =

 1 0

γ1 − γ2 1

 /∈ B

and

 1 0

γ 1

 0 1

1 0

−1 =

 0 −1

−1 −γ

 /∈ B.

The calculations above show that they form distinct coset representatives of B

in G. Also to see that they are complete set of representatives of B in G, take

s :=

 s11 s12

s21 s22

 ∈ GL(2,K);

� If s21 = 0, then s ∈ B.
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� If s21 6= 0 and s22 = 0 (which implies s12 6= 0 since s ∈ GL(2,K)), then

s =

 s12 s11

0 s21

 0 1

1 0

 ∈ Bw.
� If s21 6= 0 and s22 6= 0 (which implies s−122 exists), then

s =

 s11 − s12s−122 s21 s12

0 s22

 1 0

s−122 s21 1

 ∈ B
 1 0

γ 1


where γ = s−122 s21. Observe that s11 − s12s−122 s21 6= 0 since det(s) 6= 0.

Hence B has q+ 1 many cosets in G. Then |G| = |B||G : B| = (q− 1)2q(q+ 1).

(ii) The abelian subgroup of all unipotent upper triangular matrices

U :=


 1 β

0 1

 | β ∈ K


has q elements and isomorphic to the group (K,+) via the group isomorphism

from U to K defined by

 1 β

0 1

 7→ β. Here (K,+) corresponds to the

additive group structure of the field K. In (2.2), if we take α′ = δ′ = 1,

we see that U is a normal subgroup of B. Also, to obtain the commutator

elements of B, if we multiply (2.2) by

 α′ β′

0 δ′

−1 from the right, we get 1 β′δ′−1(αδ−1 − 1)− βδ−1(α′δ′−1 − 1)

0 1

 which is an element of U . Thus,

B′ is a subgroup of U . For the converse, as the elements g, h that are defined

in (2.1) are in B, (2.1) yields that any element of U is a commutator of some

elements from B. Therefore, U = B′.
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(iii) The subgroup of diagonal matrices is the group

D :=


 α 0

0 δ

 | α,δ ∈ K×
 .

It is isomorphic to K× ×K× via the group isomorphism ν : K× ×K× → D by

ν
(
(α, δ)

)
=

 α 0

0 δ

. It is also an abelian group. Observe that U,D ⊆ B,

U ∩D = {1} and |UD| = |U | · |D|
|U ∩D|

=
q(q − 1)2

1
= |B|. Hence, we conclude that

B = UD. Furthermore, B is the semi-direct product of U by D. Also, one can

easily check that θ : D → B/U by θ(d) = dU is an isomorphism. From now on,

we will use letter κ for the isomorphism κ : K× × K× → B/U defined by the

composition κ = θ ◦ ν.

(iv) Another normal subgroup of B,

P :=


 α β

0 1

 | α ∈ K×, β ∈ K

 ,

has (q − 1)q elements. Similarly, by letting δ′ = 1 in (2.2), one can easily see

that P is a normal subgroup of B. We have shown that B′ = U . The same

argument used to prove it can be applied to get P ′ = U .

(v) The center of G,

Z :=


 δ 0

0 δ

 | δ ∈ K×
 ,

is a subgroup of B with q − 1 elements. It is isomorphic to K× via the group

isomorphism ι : K× → Z defined by ι(δ) =

 δ 0

0 δ

. Notice that Z ∩ P = {1}.

Also, ZP = B since |ZP | =
|Z| · |P |
|Z ∩ P |

=
(q − 1)q(q − 1)

1
= |B| and Z, P ⊂ B.
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Therefore, B is the direct product of Z and P as they are normal in B.

(vi) The subgroup of P ,

A :=


 α 0

0 1

 | α ∈ K×
 ,

has (q − 1) elements and is isomorphic to K×. We assign letter η to the iso-

morphism η : K× → A defined by η(α) =

 α 0

0 1

. Observe that U,A are

subgroups of P such that U∩A = {1} and so |UA| = |U | · |A|
|U ∩ A|

=
q(q − 1)

1
= |P |.

Hence, we conclude that P = UA. Furthermore, P is the semi-direct product of

U by A. From now on, we will use the letter ξ for the isomorphism ξ : A→ P/U

given by ξ(a) = aU . Also observe that |AZ| = |A| · |Z|
|A ∩ Z|

=
(q − 1)(q − 1)

1
= |D|.

Hence D is the direct product of A and Z as D is abelian.

We summarize what is explained above in the following graph:

G

B

P D

U A Z

{1}

where we have equalities B = P × Z = U oD and U = B′ = P ′.
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2.2. Bruhat’s Decomposition

The following theorem gives us a decomposition of G, where we use it to calculate

some double coset representatives.

Lemma 2.3 ( [1]). We have a decomposition of G, called Bruhat’s decomposition

G = B tBwU

where w =

 0 1

1 0

 .

Proof. Let

 a b

c d

 ∈ G \B. So ad− bc 6= 0 and c 6= 0. Then

 a b

c d

 =

 b− ac−1d a

0 c

 0 1

1 0

 1 c−1d

0 1

 ∈ BwU.

Corollary 2.4. We have [B \G/B] = {1, w}.

2.3. The conjugacy classes of GL(2,K)

We know that the number of irreducible representations of a group is equal to

the number of conjugacy classes of it. Hence, we want to classify the conjugacy classes

of G. An element M of G has two eigenvalues.

Case 1: One of the eigenvalues of M belongs to K. Since characteristic polynomial

of M is degree 2, if one of the roots of the polynomial is in K, so does the other. If

both eigenvalues of M are equal, say to α, then the Jordan form of M is one of the
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followings

c1(α) =

 α 0

0 α

 , c2(α) =

 α 1

0 α

 .

If M has two distinct eigenvalues α and β in K, then M is diagonalizable and the

Jordan form of M is c3(α, β) =

 α 0

0 β

.

If we let α and β vary, we get different conjugacy classes. Thus, there are (q−1)

matrices in each of the forms c1(α) and c2(α). Also, there are 1
2

(q − 1)(q − 2) many

conjugacy classes of the form c3(α, β).

Case 2: Both eigenvalues of M do not belong to K. Let p(x) be the characteristic

polynomial of M and α, ᾱ be the roots of p(x) i.e. p(x) = x2 − (α+ ᾱ)x+ αᾱ. Then

they belong to the quadratic extension L := K[α]. Let v be any nonzero element of

the K-vector space K2.

Claim. The vectors v and Mv form a basis for K2.

Proof. By contradiction, assume they are linearly dependent. Then there exists λ ∈ K

such that Mv=λv , which implies that M has an eigenvalue in K, contrary to our

hypothesis.

Now we want to write the matrix M with respect to the basis {v,Mv}. Observe

that M sends v and Mv to Mv and M2v, respectively. By Cayley-Hamilton Theorem,

we have p(M) = 0. Thus, we obtain M2 − (α + ᾱ)M + αᾱ = 0. Hence,

M(Mv) = M2v = (α + ᾱ)Mv − αᾱv.
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Thus, the corresponding matrix to M in the basis {v,Mv} is

c4(α) =

 0 −αᾱ

1 α + ᾱ

 .

Observe that c4(α) = c4(ᾱ). Also, if α and β are different elements which are

not conjugate in K (i.e. which are not roots of the same quadratic polynomial in

K), then c4(α) is not conjugate to c4(β) since they have distinct eigenvalues. Thus,

the number of conjugacy classes of this form is equal to the half of the number of

the elements in L \ K. L has q2 elements as a quadratic extension of K which has

q elements. Thus there are ½(q2 − q) conjugacy classes of the form c4(α). Thus, we

proved the following.

Theorem 2.5 ( [1]). Conjugacy classes of G can be classified as below:

(i) (q − 1) classes of the form c1(α) where α ∈ K and c1(α) is the set of diagonal-

izable matrices in G whose both eigenvalues equal to α.

(ii) (q − 1) classes of the form c2(α) where α ∈ K and c2(α) is the set of non-

diagonalizable matrices in G whose both eigenvalues equal to α.

(iii) 1
2
(q− 1)(q− 2) classes of the form c3(α, β) where α, β ∈ K , α 6= β and c3(α, β)

is the set of matrices in G with eigenvalues α and β.

(iv) 1
2
(q2 − q) classes of the form c4(α) where α ∈ L \ K and c4(α) is the set of

matrices in K whose one of the eigenvalues equal to α.
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3. THE REPRESENTATIONS OF GL(2,K)

3.1. One-Dimensional Representations of G

Let µ1, µ2, . . . , µq−1 be all irreducible characters of the group K×. Then, all

characters of G/G′ can be formed by Iso(f−1)µi where f is as defined in Remark 2.1.

Lemma 3.1 ( [1]). There are (q−1) many one-dimensional irreducible representation

of G, which are µi ◦ det for i = 1, 2, . . . , q − 1.

Proof. By Lemma 1.30 there are |G/G′| = |K×| = q − 1 many one-dimensional

representations of G which are obtained by inflating characters from G/G′ to G.

Observe that for each character Iso(f−1)µi of G/G′ where i = 1, 2, . . . , q− 1, for each

g ∈ G

InfGG/G′(Iso(f−1)µi)(g) = (Iso(f−1)µi)(gG
′) = µi(f(gG′) = µi(detg) = µi ◦ det(g).

Hence we get the desired result by Remark 1.19.

3.2. Representations of P

For the rest of the thesis, we fix a non-trivial character ψ of (K,+). Now, for

every a ∈ A, we can form a non-trivial character ψa of U by

ψa(u) := ψ(a11u12), for u ∈ U

where a =

 a11 0

0 1

 and u =

 1 u12

0 1

. Now, one can easily check that

ψa(uu
′) = ψa(u).ψa(u

′), which shows that ψa is a one-dimensional character of U .
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Also, observe that

ψa = ψa′ ⇒ ψa(u) = ψa′(u) for all u ∈ U

⇒ ψ(a11k) = ψ(a′11k) for all k ∈ K

⇒ ψ((a11 − a′11)k) = 0 for all k ∈ K

⇒ a11 − a′11 = 0

⇒ a11 = a′11

⇒ a = a′.

Hence, each different choice of a ∈ A gives us a different character of U . Thus, by

this way, we get (q − 1) characters. These characters and the trivial character of U

are all the characters of U since U is abelian and has q elements.

Claim 3.2 ( [1]). ResPU IndPUψ1 =
⊕
a∈A

ψa.

Proof. We have equalities [U\P/U ] = [U\P ] = A, since U is a normal subgroup of P

and since P = UA, respectively. Then, by Mackey Formula

ResPU IndPUψ1 =
⊕

a∈[U\P/U ]=A

IndUU∩aU Iso(γa)ResUUa∩Uψ1

(∗)
=

⊕
a∈A

IndUU Iso(γa)ResUUψ1

=
⊕
a∈A

Iso(γa)ψ1 =
⊕
a∈A

ψa−1 =
⊕
a∈A

ψa

where Equality (*) is the result of that a ∈ P and U E P implies Ua = aU = U .

Theorem 3.3 ( [1]). Irreducible representations of the group P consists of

(a) (q− 1) many one-dimensional characters obtained by InfPP/U Iso(ξ)χ where χ

is a one-dimensional character of A, ξ is the isomorphism defined in Section 2.1 and

(b)A (q − 1)-dimensional irreducible representation that is π = IndPUψ1.
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Proof. (a) We have P ′ = U . By Lemma 1.30, every one dimensional character of

P is inflated from an irreducible (one-dimensional) character of the quotient group

P/U . Also since A ∼= P/U , for each irreducible character χ of A, InfPP/U Iso(ξ)χ gives

us an (distinct) irreducible character of P . As A has (q − 1) many one-dimensional

characters, by this way, we get (q − 1) many one-dimensional characters of P .

(b) By Remark 1.33, we have dim(π) = dim(IndPUψ1) = |P |
|U |dim(ψ1) = q − 1.

Also using Frobenius Reciprocity Theorem and by Claim 3.2, we get

〈π, π〉 =
〈
IndPUψ1, IndPUψ1

〉
=
〈
ψ1,ResPU IndPUψ1

〉
=

〈
ψ1,
⊕
a∈A

ψa

〉
= 1

Thus, π is an irreducible representation of P , having dimension q − 1. We have the

equality:

(dimπ)2 +
∑

χ∈Irr(A)

(dimInfPP/U Iso(ξ)χ)2 = (q − 1)2 + (q − 1) · 12 = (q − 1)q = |P |.

Thus, there is no additional representation of P by Lemma 1.11.

3.3. Representations of B

We have seen that B = P × Z. Therefore, by Lemma 1.14, all the irreducible

representations of B can be written as a product of an irreducible representation of P

and an irreducible representation of Z. The product of a one-dimensional character

of P and a one-dimensional character of Z gives us a one-dimensional character of B.

There are (q − 1)2 of them. The product of the (q − 1)-dimensional representation

π of P and a one-dimensional representation of Z gives us a (q − 1)-dimensional

representation of B. There are q − 1 of them. These representations are all distinct

and gives us all the irreducible representations of B.
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There is another way to see one-dimensional characters of B. Remember that κ

is an isomorphism from K××K× to B/U . For every character (µi×µj) of K××K×,

we get a distinct one-dimensional character of B via InfBB/U Iso(κ)(µi×µj) and denote

it by µi,j for simplicity. Hence, by this way, we get all (q− 1)2 many one-dimensional

characters of B.

We obtained the following theorem:

Theorem 3.4 ( [1]). The group B has

(i) (q−1)2 many one-dimensional characters obtained by InfBB/U Iso(κ)(µi×µj), and

denoted by µi,j where (µi × µj) is a character of K× ×K×.

(ii) (q − 1) many (q − 1)-dimensional irreducible representations obtained by π × χi
for an irreducible representation χi of Z.

Note that for any (q− 1)-dimensional irreducible representation π×χi of B, we

obtain ResBP (π × χi) = π.

Now, we make some observations about one-dimensional representations of B.

If µi,j is a one-dimensional character given by InfBB/U Iso(κ)(µi × µj) as above, then

µi,j

 α ∗

0 δ

 = InfBB/U Iso(κ)(µi × µj)

 α ∗

0 δ


= Iso(κ)(µi × µj)

 α ∗

0 δ

U


= (µi × µj)

κ−1
 α 0

0 δ

U


= (µi × µj)(α, δ) = µi(α) · µj(δ).
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Observe the relation between µi,j and µj,i on D:

µj,i

 α 0

0 δ

 = InfBB/U Iso(κ)(µj × µi)

 α 0

0 δ


= µj(α) · µi(δ)

= µi,j

 δ 0

0 α


= µi,j

w
 α 0

0 δ

w−1

 ,

i.e. µj,i(d) = µi,j(wdw
−1) for all d ∈ D where w is as described in Lemma 2.3.

Lemma 3.5. For one-dimensional representations µi,j and µk,l of B, we have

ResBDµi,j = ResBDµk,l if and only if µi,j = µk,l.

Proof. By transitivity and commutation relations in Section 1, we have

ResBDµi,j = ResBDInfBB/U Iso(κ)(µi × µj)

= InfDD/D∩U Iso(θ−1)Res
B/U
DU/U Iso(κ)(µi × µj)

= InfDDIso(θ−1)Res
B/U
B/U Iso(κ)(µi × µj)

= Iso(θ−1κ)(µi × µj).

= Iso(ν)(µi × µj).

Thus,

ResBDµi,j = ResBDµk,l if and only if

Iso(ν)(µi × µj) = Iso(ν)(µk × µl) if and only if

(µi × µj) = (µk × µl) if and only if

µi,j = µk,l.
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Lemma 3.6 ( [1]). We have µi,j = µj,i if and only if µi = µj.

Proof.

µi,j = µj,i if and only if

InfBB/U Iso(κ)(µi × µj) = InfBB/U Iso(κ)(µj × µi) if and only if

(µi × µj) = (µj × µi) if and only if

µi = µj.

3.4. Inducing One-Dimensional Characters from B to G

In this section, we find irreducible components of representations of G obtained

by inducing one-dimensional characters of B. First, the article [1] defines the Jacquet

Module of a representation ρ of G as

J(Vρ) = {v ∈ Vρ | ρ(u)v = v for every u ∈ U}

where Vρ is the representation space of ρ and shows that it is a B-space. Let V ′ be

the B complement of J(Vρ) in Vρ. Then no element of V ′ is fixed by U . Now observe

that

InfBB/UDefBB/UResGBVρ = InfBB/UDefBB/U(J(Vρ)⊕ V ′) = InfBB/UDefBB/UJ(Vρ) = J(Vρ).

Here, since U ⊆ ker(ρ) on J(Vρ) (also for all irreducible components of it) we have

the last equality by definition of deflation and inflation. Thus, from now on, we will

use the equality J(Vρ) = InfBB/UDefBB/UResGBVρ as the definition. The representation

of J(Vρ) is InfBB/UDefBB/UResGBρ. For simplicity, we will use the notation J(ρ) instead
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InfBB/UDefBB/UResGBρ. Note that for any one-dimensional character µi,j of B,

dim(IndGBµi,j) = |G : B| = q + 1.

Lemma 3.7 ( [1]). If µi,j is a one-dimensional representation of B, then we have

dim(J(IndGBµi,j)) = 2 and J(IndGBµi,j) has two irreducible components µi,j and µj,i.

Proof. By Mackey Formula, we have

ResGBIndGBµi,j =
⊕

x∈[B\G/B]

IndBB∩xBIso(γx)ResBBx∩Bµi,j

(∗)
= IndBB∩BResBBµi,j ⊕ IndBB∩wBIso(γw)ResBBw∩Bµi,j

= µi,j ⊕ IndBDIso(γw)ResBDµi,j

= µi,j ⊕ IndBDResBDµj,i

where Equality (*) comes from Corollary 2.4. Thus, we have

ResGBIndGBµi,j = µi,j ⊕ IndBDResBDµj,i. (3.1)

Then by commutation relations in Section 1 and Remark 1.34, we have the following

equations.
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J(IndGBµi,j)

= InfBB/UDefBB/UResGBIndGBµi,j

(∗)
= InfBB/UDefBB/U(µi,j ⊕ IndBDResBDµj,i)

= InfBB/UDefBB/Uµi,j ⊕ InfBB/UDefBB/U IndBDResBDµj,i

= InfBB/U���
���

��
DefBB/U InfBB/U Iso(κ)(µi × µj)

⊕ InfBB/UDefBB/U IndBDResBDInfBB/U Iso(κ)(µj × µi)

= InfBB/U Iso(κ)(µi × µj)⊕ InfBB/UDefBB/U IndBDResBDInfBB/U Iso(κ)(µj × µi)

= µi,j ⊕ InfBB/U Ind
B/U
DU/U Isoθ

((((
(((

(((
DefDD/D∩U InfDD/D∩U Isoθ−1Res

B/U
DU/U Iso(κ)(µj × µi)

= µi,j ⊕ InfBB/U��
��Ind
B/U
B/U
(((

(((IsoθIsoθ−1
��

��Res
B/U
B/U Iso(κ)(µj × µi)

= µi,j ⊕ InfBB/U Iso(κ)(µj × µi)

= µi,j ⊕ µj,i

where Equality (*) comes from (3.1). Since each µi,j and µj,i is one-dimensional,

J(IndGBµi,j) has dimension 2. Thus we have the conclusion :

J(IndGBµi,j) = µi,j ⊕ µj,i. (3.2)

Lemma 3.8 ( [1]). Let µi,j be a one-dimensional representation of B. Then

〈
ResGP IndGBµi,j, π

〉
= 1.
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Proof. We have, by Frobenius Reciprocity Theorem,

〈
ResGP IndGBµi,j, π

〉
=
〈
ResBPResGBIndGBµi,j, π

〉
(∗)
=
〈
ResBP (µi,j ⊕ IndBDResBDµj,i), π

〉
=
〈
ResBPµi,j, π

〉
+
〈
ResBP IndBDResBDµj,i, π

〉
= 0 +

〈
ResBDµj,i,ResBDIndBPπ

〉
=
〈
ResBDµj,i,ResBDIndBUψ1

〉
(∗∗)
=
〈
ResBDµj,i, IndD{1}ResU{1}ψ1

〉
=
〈
ResB{1}µj,i,ResU{1}ψ1

〉
= 1.

Equation 3.1 gives the Equality (*). Mackey formula and [D\B/U ] = {1} implies that

ResBDIndBUψ1 = IndDD∩UResUU∩Dψ1. Here U ∩D = {1} which gives Equality (**).

Lemma 3.9. If µi,j is a one-dimensional character of B, then

ResGBIndGBµi,j = J(IndGBµi,j)⊕ λ = µi,j ⊕ µj,i ⊕ λ

where λ is a (q − 1)-dimensional irreducible representation of B.

Proof. We have ResGBIndGBµi,j = µi,j ⊕ IndBDResBDµj,i by (3.1). Observe that the repre-

sentation IndBDResBDµj,i is a q-dimensional representation of B. All irreducible repre-

sentations of B are described in Theorem 3.4. Hence, we conclude that IndBDResBDµj,i

is either a sum of q many one-dimensional characters of B or it is a sum of a

one-dimensional character and a (q − 1)-dimensional irreducible representation of

B. However it can not be a sum of one-dimensional characters of B since in this

case ResGBIndGBµi,j would be a sum of one-dimensional characters of B and then

ResGP IndGBµi,j would be a sum of one-dimensional characters of P which contradicts

with Lemma 3.8. Therefore IndBDResBDµj,i is a sum of a one-dimensional character

and a (q − 1)-dimensional irreducible representation of B. By Frobenius Reciprocity

Theorem, we have
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〈
IndBDResBDµj,i, µj,i

〉
=
〈
ResBDµj,i,ResBDµj,i

〉
= 1.

Thus,

IndBDResBDµj,i = µj,i ⊕ λ

for some (q − 1)-dimensional irreducible representation λ of B. Thus, we obtain

ResGBIndGBµi,j = µi,j ⊕ µj,i ⊕ λ.

Hence, by using Equality 3.2, we conclude that

ResGBIndGBµi,j = J(IndGBµi,j)⊕ λ.

Lemma 3.10 ( [1]). If µi,j is a one-dimensional character of B, then IndGBµi,j has at

most two irreducible components. Moreover, IndGBµi,j is irreducible if µi,j 6= µj,i and

reducible otherwise.
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Proof. We have, by Frobenius Reciprocity Theorem,

〈
IndGBµi,j, IndGBµi,j

〉
=
〈
µi,j,ResGBIndGBµi,j

〉
(∗)
= 〈µi,j, µi,j ⊕ µj,i ⊕ λ〉

= 〈µi,j, µi,j〉+ 〈µi,j, µj,i〉+ 〈µi,j, λ〉

= 1 + 〈µi,j, µj,i〉+ 0

(∗∗)
=

1 if µi,j 6= µj,i

2 if µi,j = µj,i

where (*) comes from Lemma 3.9, here λ is a (q − 1)-dimensional irreducible repre-

sentation of B and (**) comes from Equation 3.2.

Lemma 3.11 ( [1]). If µi,j is a one-dimensional character of B and µi,j = µj,i then

IndGBµi,j has a one-dimensional component.

Proof. Let µi,j = µj,i. Then by Lemma 3.10, there are exactly two irreducible com-

ponents of IndGBµi,j i.e. IndGBµi,j = χ1 ⊕ χ2 for some irreducible representations χ1,

χ2 of G. Then restricting it to B and using Lemma 3.9 we get

µi,j ⊕ µi,j ⊕ λ = ResGBχ1 ⊕ ResGBχ2.

Also,
〈
ResGBχi, µi,j

〉
=
〈
χi, IndGBµi,j

〉
= 1 for each i. Without loss of generality, we

may assume that ResGBχ1 = µi,j which implies that dimχ1 = 1. Hence, we conclude

that IndGBµi,j has a one-dimensional component.

Corollary 3.12 ( [1]). If µi,j is a one-dimensional character of B and IndGBµi,j is

reducible, then IndGBµi,j has a one-dimensional component.

Proof. The result follows from Lemma 3.10 and Lemma 3.11.
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Lemma 3.13 ( [1]). Assume µi,j and µk,l are two distinct one-dimensional characters

of B. Then
〈
IndGBµi,j, IndGBµk,l

〉
6= 0 if and only if µk,l = µj,i

Proof. By using Frobenius Reciprocity Theorem, we have

〈
IndGBµi,j, IndGBµk,l

〉
=
〈
ResGBIndGBµi,j, µk,l

〉
(∗)
= 〈µi,j ⊕ µj,i ⊕ λ, µk,l〉

= 〈µi,j, µk,l〉+ 〈µj,i, µk,l〉+ 〈λ, µk,l〉

= 0 + 〈µj,i, µk,l〉+ 0

= 〈µj,i, µk,l〉

where (*) comes from Lemma 3.9. Therefore
〈
IndGBµi,j, IndGBµk,l

〉
6= 0 if and only if

µj,i = µk,l.

Lemma 3.14 ( [1]). Assume µi,j and µk,l are two distinct one-dimensional characters

of B. Then IndGBµi,j = IndGBµk,l if and only if µk,l = µj,i, or in the open form,

IndGBInfBB/U Iso(κ)(µk × µl) = IndGBInfBB/U Iso(κ)(µi × µj) if and only if µk = µj and

µl = µi.

Proof. Assume µi,j and µk,l are two distinct one-dimensional characters of B. If

IndGBµi,j = IndGBµk,l, then
〈
IndGBµi,j, IndGBµk,l

〉
6= 0. Hence, by Lemma 3.13 we have

µk,l = µj,i.

For the other side, assume µk,l = µj,i. Since µi,j and µk,l are distinct characters,

we get that µi,j 6= µj,i and µk,l 6= µl,k. Thus by Lemma 3.10, IndGBµi,j and IndGBµk,l are

irreducible and
〈
IndGBµi,j, IndGBµk,l

〉
6= 0 by Lemma 3.13. Hence we obtain IndGBµi,j =

IndGBµk,l.
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As a summary of this section, we have the following result.

Theorem 3.15 ( [1]). If µi,j and µk,l are one-dimensional characters of B, then

(i) dim(IndGBµi,j) = q + 1;

(ii) IndGBµi,j is irreducible if and only if µi,j 6= µj,i;

(iii) IndGBµi,j is a direct sum of a 1-dimensional and a q-dimensional irreducible rep-

resentation if it is reducible;

(iv) IndGBµk,l = IndGBµi,j if and only if µk,l = µi,j or µk,l = µj,i.

Now, based on this theorem, we will classify irreducible representations of G,

obtained by induction from B. Let µi,j = InfBB/U Iso(κ)(µi × µj) be a one-dimensional

character of B.

Case 1: If µi = µj, which is equivalent to say µi,j = µj,i, then by (ii) and (iii) of

Theorem 3.15 we get IndGBµi,j is the direct sum of a one-dimensional representation,

which we denote it by ρ′(µi,µi), and a q-dimensional irreducible representation, which we

denote it by ρ(µi,µi). Since K× has q−1 characters, by this way, we get (q−1) many one

dimensional characters of G and q−1 many q-dimensional irreducible representations

of G. Lemma 3.13 ensures that they are all distinct. Also observe that

InfBB/U Iso(κ)(µi × µi)

 α β

0 δ

 = µi(α) · µi(δ) = µi ◦ det

 α β

0 δ

 .

Thus,

〈
IndGBInfBB/U Iso(κ)(µi × µi), µi ◦ det

〉
=
〈
InfBB/U Iso(κ)(µi × µi),ResGBµi ◦ det

〉
= 1

i.e. ρ′(µi,µi) = µi ◦ det.
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Case 2: If µi 6= µj, which is equivalent to say µi,j 6= µj,i, then IndGBµi,j is a (q+1)-

dimensional irreducible representation of G by (ii) of Theorem 3.15. We denote it by

ρ(µi,µj). All distinct irreducible representations of B induce distinct representation of

G except the pairs µi,j and µj,i by (iv) of Theorem 3.15. Then there are
(q − 1)(q − 2)

2
many (q + 1)-dimensional irreducible representations of G obtained by this way.

Thus, we have the following theorem:

Theorem 3.16 ( [1]). The irreducible representations of G which are summands

of the induced representations IndGBµi,j where µi,j = InfBB/U Iso(κ)(µi × µj) is a one-

dimensional character of B consist of the followings:

(i) q − 1 many one-dimensional characters denoted by ρ′(µi,µi) and equal to µi ◦ det

where they are all the one-dimensional characters of G,

(ii) q − 1 many q-dimensional irreducible representations denoted by ρ(µi,µi),

(iii)
(q − 1)(q − 2)

2
many (q + 1)-dimensional irreducible representations denoted by

ρ(µi,µj).

3.5. Cuspidal Representations of G

Irreducible representations of G that are not components of IndGBµi,j, where µi,j

is one-dimensional character of B, are said to be cuspidal.

Lemma 3.17. There are 1
2
(q2 − q) many cuspidal representations of G.

Proof. By Lemma 1.10, Theorem 2.5 and Theorem 3.16.

Lemma 3.18 ( [1]). Let ρ be a representation of G. Then J(ρ) 6= 0 if and only if

there exists a one-dimensional character µi,j of B such that
〈
ρ, IndGBµi,j

〉
6= 0.

Proof. Let ρ be a representation of G and µi,j be any one-dimensional character of B.

Then, by using Theorem 1.40 and Frobenius Reciprocity Theorem,
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〈J(ρ), µi,j〉 =
〈
InfBB/UDefBB/UResGBρ, InfBB/U Iso(κ)(µi × µj)

〉
=
〈
ρ, IndGBInfBB/U���

��
���

DefBB/U InfBB/U Iso(κ)(µi × µj)
〉

=
〈
ρ, IndGBµi,j

〉
where the cancellation comes from Remark 1.34.

Let J(ρ) 6= 0. Since B/U is abelian, by Corollary 1.12 any representation of B/U

is a sum of some one-dimensional representations of B/U . Then by (ii) of Remark 1.18

and the fact that inflating a representation does not change the dimension, we conclude

that J(ρ) is sum of some one-dimensional representations of B. Thus 〈J(ρ), µi,j〉 6= 0

for some one-dimensional character µi,j of B. Hence, by the equations above, for that

character µi,j of B, we have
〈
ρ, IndGBµi,j

〉
6= 0.

For the other side, assume
〈
ρ, IndGBµi,j

〉
6= 0 for some one-dimensional character

µi,j of B. Then 〈J(ρ), µi,j〉 6= 0 for some one-dimensional character µi,j of B which

implies that J(ρ) 6= 0.

Lemma 3.18 shows us that an irreducible representation ρ of G is cuspidal if and

only if J(ρ) = 0.

Lemma 3.19 ( [1]). Let ρ be a cuspidal representation of G. Then ResGPρ = rπ for

some positive integer r. In particular dimρ = r.(q − 1) is a multiple of q − 1.

Proof. Let ρ be any irreducible representation of G. Assume that ResGPρ contains

a one-dimensional character of P as a summand. By Theorem 3.3 they are of the

form InfPP/U Iso(ξ)χ for some irreducible representation χ of A. Then for that χ, by



36

Frobenius Rciprocity Theorem and commutation relations in Section 1, we get

0 6=
〈
ResGPρ, InfPP/U Iso(ξ)χ

〉
=
〈
ResGBρ, IndBP InfPP/U Iso(ξ)χ

〉
=
〈

ResGBρ, InfBB/U Ind
B/U
P/U Iso(ξ)χ

〉
.

By similar argument as in proof of Lemma 3.18, we say that InfBB/U Ind
B/U
P/U Iso(ξ)χ is

a sum of some one-dimensional characters of B. Then by the inequality above, we

conclude that ResGBρ contains a one-dimensional representation of B which implies

that ρ is not cuspidal. Hence for any cuspidal representation ρ of G, there is no one-

dimensional component of ResGPρ. Therefore, ResGPρ = rπ for some positive integer r

by Theorem 3.3.

Lemma 3.20 ( [1]). (i) If ρ is a cuspidal representation of G, then ResGPρ = π and

dimρ = (q − 1).

(ii) Conversely, if ρ is a representation of G such that ResGPρ = π, then ρ is cuspidal.

Proof. (i) By Lemma 3.19, for any cuspidal representation ρ of G dimρ = r(q− 1).

By Lemma 1.11, Theorem 3.16 and Lemma 3.17 we get

|G| =
∑

σ∈Irr(G)

(dimσ)2

= (q − 1)12 + (q − 1)q2 +
1

2
(q − 1)(q − 2)(q + 1)2 +

1

2
(q2 − q)r2(q − 1)2.

Also |G| = (q − 1)2q(q + 1) implies that r = 1. Therefore, ResGPρ = π and dimρ

= (q − 1).

(ii) Let ρ be a representation of G such that ResGPρ = π. We see that ρ is irreducible

since its restriction to P is irreducible. By contradiction assume that ρ is not

cuspidal. Then for some one-dimensional character µi,j of B, we get
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0 6=
〈
ρ, IndGBµi,j

〉
=
〈
ResGBρ, µi,j

〉
by Frobenius Reciprocity Theorem. Thus we obtain that µi,j is a summand of

ResGBρ. Then if we restrict it to P we obtain that ResBPµi,j is a summand of

ResGPρ which is equal to π by assumption. It gives us a contradiction. Hence

ResGPρ = π implies that ρ is cuspidal.

3.6. Inducing (q − 1)-Dimensional Representations from B to G

In this section, we find irreducible components of representations of G obtained

by inducing (q − 1)-dimensional irreducible representations of B. We know that

Z ∼= K× and A ∼= K×. Then any character of Z can be seen of the form Iso(ι)µi and

any character of A can be seen of the form Iso(η)µi where ι, η are the isomorphisms

defined in Section 2.1 and µi is a character of K×. For simplicity, we assign letters µ̇i

and µ̈i for the representations Iso(ι)µi and Iso(η)µi, respectively.

Let µ̇r be a fixed character of Z. Then π × µ̇r is a (q − 1)-dimensional irre-

ducible representation of B by Theorem 3.4. In this section we will decompose the

representation IndGB(π × µ̇r).

Lemma 3.21. We have ResPAπ =
q−1⊕
k=1

µ̈k.

Proof. Observe that

ResPAπ = ResPAIndPUψ1
(∗)
= IndAA∩UResUA∩Uψ1 = IndA{1}ResU{1}ψ1

(∗∗)
=

q−1⊕
k=1

µ̈k
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where (∗) comes from Mackey Formula and the fact that P = AU and (∗∗) can be

seen by Frobenius Reciprocity Theorem.

We have seen that D is the direct product of A and Z. Therefore any irreducible

character of D can be seen as the direct product of the irreducible characters of A

and Z by Lemma 1.14. In view of this information, we have the following Lemma.

Lemma 3.22. Let π × µ̇i be a (q − 1)-dimensional irreducible representation of B.

Then

ResBD(π × µ̇i) =

q−1⊕
k=1

(µ̈k × µ̇i).

Proof. Let

 α 0

0 δ

 be an arbitrary element of D. Then

π × µ̇i

 α 0

0 δ

 = π × µ̇i

 αδ−1 0

0 1

 δ 0

0 δ


= π

 αδ−1 0

0 1

 µ̇i

 δ 0

0 δ


= ResPAπ

 αδ−1 0

0 1

 µ̇i

 δ 0

0 δ


= (ResPAπ)× µ̇i

 α 0

0 δ

 .

Thus, by Lemma 3.21 we have the result

ResBD(π × µ̇i)
(∗)
= (ResPAπ)× µ̇i =

(
q−1⊕
k=1

µ̈k

)
× µ̇i =

q−1⊕
k=1

(µ̈k × µ̇i) .
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First, we decompose the representation ResGBIndGB(π × µ̇r), then decompose the

representation IndGB(π × µ̇r) with the help of it. By Mackey Formula we have

ResGBIndGB(π × µ̇r) =
⊕

x∈[B\G/B]
={1,w}

IndBB∩xBIso(γx)ResBBx∩B(π × µ̇r)

= IndBB∩BResBB(π × µ̇r)⊕ IndBB∩wBIso(γw)ResBBw∩B(π × µ̇r)

= (π × µ̇r)⊕ IndBDIso(γw)ResBD(π × µ̇r)

(∗)
= (π × µ̇r)⊕

[
IndBDIso(γw)

(
q−1⊕
k=1

(µ̈k × µ̇r)

)]
(∗∗)
= (π × µ̇r)⊕

(
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r)

)

where (∗) is by Lemma 3.22. Thus we have

ResGBIndGB(π × µ̇r) = (π × µ̇r)⊕

(
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r)

)
(3.3)

Now, the next aim is to find the irreducible components of
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r).

Below, we describe two ways to obtain irreducible characters of D, one is through the

characters of K× × K× and the other is through the characters of A × Z. Observe

that the diagram

(
αδ 0

0 δ

) (
α 0
0 1

)(
δ 0
0 δ

)
(
α 0
0 δ

)
D A× Z

(
α 0
0 1

)(
δ 0
0 δ

)

K× ×K×

(α, δ)

ν

γw

ι× η
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does not commute. To compare the characters:

Iso(γw)(µ̈i × µ̇j) µ̈i × µ̇j

Iso(ν)(µi × µj) D A× Z µ̈i × µ̇j

K× ×K×

µi × µj

ν

γw

ι× η

The diagram does not commute also. The claim below, describe the conditions

on characters of K××K× and A×Z which makes the corresponding representations

in D equal.

Claim 3.23. Let Iso(γw)(µ̈k × µ̇l) and Iso(ν)(µi × µj) be two irreducible characters

of D where µk, µl, µi, µj are irreducible characters of K× and ν is the isomorphism

defined in Section 2.1. Then

Iso(γw)(µ̈k × µ̇l) = Iso(ν)(µi × µj) if and only if k = j and µkµl = µi

where µk is the conjugate character of µk.
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Proof. Observe that

Iso(γw)(µ̈k × µ̇l) = Iso(ν)(µi × µj)

⇐⇒ Iso(γw)(µ̈k × µ̇l)

 α 0

0 δ

 = Iso(ν)(µi × µj)

 α 0

0 δ

 ∀α, δ ∈ K×

⇐⇒ µ̈k × µ̇l

 δ 0

0 α

 = µi(α)µj(δ) ∀α, δ ∈ K×

⇐⇒ µ̈k × µ̇l

 δα−1 0

0 1

 α 0

0 α

 = µi(α)µj(δ) ∀α, δ ∈ K×

⇐⇒ µ̈k

 δα−1 0

0 1

 µ̇l

 α 0

0 α

 = µi(α)µj(δ) ∀α, δ ∈ K×

⇐⇒ µk(δα
−1)µl(α) = µi(α)µj(δ) ∀α, δ ∈ K×

⇐⇒ µk(δ)µk(α
−1)µl(α) = µi(α)µj(δ) ∀α, δ ∈ K×

(∗)⇐⇒ µk(δ)µk(α)µl(α) = µi(α)µj(δ) ∀α, δ ∈ K×

⇐⇒ µk(δ)µkµl(α) = µi(α)µj(δ) ∀α, δ ∈ K×

⇐⇒ µk = µj and µkµl = µi

⇐⇒ k = j and µkµl = µi

where (∗) is by Remark 1.26.

The following Lemma calculates one-dimensional irreducible components of the

representation
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r).

Lemma 3.24. Let µi,j = InfBB/U Iso(κ)(µi × µj) be a one dimensional character of B.

Then

〈
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r), µi,j

〉
=

1, if µi = µjµr,

0, otherwise.
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Proof. By Frobenius Reciprocity Theorem, we have

〈
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r), µi,j

〉
=

q−1∑
k=1

〈
IndBDIso(γw)(µ̈k × µ̇r), µi,j

〉
=

q−1∑
k=1

〈
Iso(γw)(µ̈k × µ̇r),ResBDµi,j

〉
(∗)
=

q−1∑
k=1

〈Iso(γw)(µ̈k × µ̇r), Iso(ν)(µi × µj)〉

(∗∗)
= 〈Iso(γw)(µ̈j × µ̇r), Iso(ν)(µi × µj)〉

(∗∗∗)
=

1, if µi = µjµr,

0, otherwise.

Here (∗) comes from the proof of the Lemma 3.5, (∗∗) and (∗ ∗ ∗) comes from Claim

3.23.

Corollary 3.25. The representation
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r) has (q− 1)-many one-

dimensional components of the form InfBB/U Iso(κ)(µjµr × µj) for j = 1, 2, . . . , q − 1.

The following Lemma calculates (q − 1)-dimensional irreducible components of

the representation
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r).

Lemma 3.26. Let π × µ̇j be a (q − 1)-dimensional irreducible representation of B.

Then

〈
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r), π × µ̇j

〉
=

q − 1, if j = r,

0, otherwise.
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Proof. First observe that

Iso(γw)(µ̈k × µ̇r) = µ̈l × µ̇j

⇐⇒ Iso(γw)(µ̈k × µ̇r)

 α 0

0 δ

 = µ̈l × µ̇j

 α 0

0 δ

 for all α, δ ∈ K×

⇐⇒ µ̈k × µ̇r

 δ 0

0 α

 = µ̈l × µ̇j

 α 0

0 δ

 for all α, δ ∈ K×

(∗)⇐⇒ µk(δ)µkµr(α) = µl(α)µlµj(β) for all α, δ ∈ K×

⇐⇒ µk = µlµj and µkµr = µl

⇐⇒ µk = µlµj and µlµkµr = µlµl

(∗∗)⇐⇒ µk = µlµj and µjµr = 1

⇐⇒ µk = µlµj and j = r

where (∗) is calculated before in the proof of Claim 3.23 and (∗∗) is by Remark 1.26.

If we fix j = r then there are (q−1) many pairs of (k, l) satisfying the above equality.

By Frobenius Reciprocity Theorem, we have

〈
q−1⊕
k=1

IndBDIso(γw)(µ̈k × µ̇r), π × µ̇j

〉
=

q−1∑
k=1

〈
IndBDIso(γw)(µ̈k × µ̇r), π × µ̇j

〉
=

q−1∑
k=1

〈
Iso(γw)(µ̈k × µ̇r),ResBD(π × µ̇j)

〉
(∗∗)
=

q−1∑
k=1

〈
Iso(γw)(µ̈k × µ̇r),

q−1⊕
l=1

(µ̈l × µ̇j)

〉

=

q−1∑
k=1

q−1∑
l=1

〈Iso(γw)(µ̈k × µ̇r), (µ̈l × µ̇j)〉

(∗∗∗)
=

q − 1, if j = r,

0, otherwise.

where (∗∗) is by Lemma 3.22 and (∗ ∗ ∗) is by the above observation.
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Corollary 3.27. The decomposition of ResGBIndGB(π × µ̇r) to irreducible components

is given by

ResGBIndGB(π × µ̇r) = q(π × µ̇r)⊕
q−1⊕
j=1

InfBB/U Iso(κ)(µjµr × µj)

Proof. Proof comes directly from (3.3), Corollary 3.25 and Lemma 3.26.

Corollary 3.27 gives the decomposition of ResGBIndGB(π× µ̇r) to irreducible com-

ponents. Now, we are ready to decompose IndGB(π × µ̇r).

Corollary 3.28. Let InfBB/U Iso(κ)(µi×µj) be a one dimensional character of B. Then

〈
IndGB(π × µ̇r), IndGBInfBB/U Iso(κ)(µi × µj)

〉
=

1, if µi = µjµr,

0, otherwise.

Proof. By Frobenius Reciprocity Theorem and by Corollary 3.27, we have

〈
IndGB(π × µ̇r), IndGBInfBB/U Iso(κ)(µi × µj)

〉
=
〈
ResGBIndGB(π × µ̇r), InfBB/U Iso(κ)(µi × µj)

〉
=

1, if µi = µjµr,

0, otherwise.

The following lemma proves that the representation IndGB(π × µ̇r) has no one-

dimensional component.

Lemma 3.29. Let χ be a one dimensional character of G. Then

〈
IndGB(π × µ̇r), χ

〉
= 0.
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Proof. By Frobenius Reciprocity Theorem, we have,

〈
IndGB(π × µ̇r), χ

〉
=
〈
π × µ̇r,ResGBχ

〉
= 0

since they are irreducible representations of G having different degree.

Now we examine the character µr and then continue from where we left off.

Definition 3.30. We call µr a square character of K× if µr = µiµi for some i ∈

{1, 2, . . . , q − 1}.

Remark 3.31. We know that any polynomial of degree n over a field has at most n

roots. Thus, for an element k ∈ K× the polynomial x2 − k has at most 2 roots in K,

indeed in K×. Also, since x2 − k is a polynomial of degree 2, it has either two roots

in K× or has no root in K×. Therefore, if µr is a square character of K×, then there

are exactly two irreducible characters µi and µj of K× which are solutions of x2 = µr.

This is because the character group of K×, denoted by K̂×, is isomorphic to the group

K× as K× is abelian.

Observe that {µ2
1, µ

2
2, . . . , µ

2
q−1} ⊂ {µ1, µ2, . . . , µq−1} where in the left side each

element stand twice by Remark 3.31. Hence there are (q−1)
2

many square characters

and (q−1)
2

many non-square characters of K×.

Remark 3.32. By Remark 3.31, if µr is a square character of K× then there exists

i, j ∈ {1, 2 . . . , q− 1} such that µr = µiµi = µjµj which is equivalent to say µiµr = µi

and µjµr = µj. For remaining k ∈ {1, 2 . . . , q − 1} \ {i, j} we have µr 6= µkµk which

is equivalent to say µkµr 6= µk. By Lemma 3.10 this implies that the representa-

tions IndGBInfBB/U Iso(κ)(µiµr × µi) and IndGBInfBB/U Iso(κ)(µjµr × µj) of G (or simply

IndGBInfBB/U Iso(κ)(µi × µi) and IndGBInfBB/U Iso(κ)(µj × µj)) are reducible and for re-

maining k ∈ {1, 2 . . . , q − 1} \ {i, j} IndGBInfBB/U Iso(κ)(µkµr × µk) is irreducible.
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Following Lemma investigates (q+1)-dimensional irreducible components of the

representation IndGB(π × µ̇r) for a square character µr of K×.

Lemma 3.33. Let µr be a square character of K× such that µr = µiµi = µjµj

for some i, j ∈ {1, 2 . . . , q − 1}. Then there are (q−3)
2

many (q + 1)-dimensional

irreducible components of IndGB(π × µ̇r) of the form IndGBInfBB/U Iso(κ)(µkµr × µk) for

k ∈ {1, 2 . . . , q − 1} \ {i, j}. We divided it by 2 since each counted as twice although

they appear in once.

Proof. We know by Theorem 3.16 and Lemma 3.20 that any (q + 1)-dimensional

irreducible representation of G is obtained by inducing one-dimensional characters of

B. Observe that, by Corollary 3.28, we have

〈
IndGB(π × µ̇r), IndGBInfBB/U Iso(κ)(µk × µkµr)

〉
= 1

since µkµrµr = µk. However, by Lemma 3.14

IndGBInfBB/U Iso(κ)(µk × µkµr) = IndGBInfBB/U Iso(κ)(µkµr × µk).

Then by Remark 3.32 for k ∈ {1, 2 . . . , q−1}\{i, j}, all (q+1)-dimensional irreducible

components of IndGB(π × µ̇r) are given by IndGBInfBB/U Iso(κ)(µkµr × µk) with each has

multiplicity 1.

Following Lemma investigates q-dimensional irreducible components of the rep-

resentation IndGB(π × µ̇r) for a square character µr of K×.

Lemma 3.34. Let µr be a square character of K× such that µr = µiµi = µjµj

for some i, j ∈ {1, 2 . . . , q − 1}. Then all q-dimensional irreducible components of

the representation IndGB(π × µ̇r) are ρ(µi,µi) and ρ(µj ,µj) where they are q-dimensional

components of the (q+ 1)-dimensional representations IndGBInfBB/U Iso(κ)(µi × µi) and

IndGBInfBB/U Iso(κ)(µj × µj), respectively as described in Theorem 3.15
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Proof. We know by Theorem 3.16 and Lemma 3.20 that any q-dimensional irreducible

representation of G is a component of a reducible representation obtained by inducing

one-dimensional representation of B. By (iii) of Theorem 3.15 a reducible represen-

tation obtained by inducing one-dimensional representation of B is the sum of a one-

dimensional character and a q-dimensional irreducible representation. Corollary 3.28,

Lemma 3.29 and Remark 3.32 implies that ρ(µi,µi) and ρ(µj ,µj) are all q-dimensional

irreducible components of IndGB(π × µ̇r) where they are q-dimensional components of

IndGBInfBB/U Iso(κ)(µi × µi) and IndGBInfBB/U Iso(κ)(µj × µj), respectively.

Up to here we have found that, for a square character µr, IndGB(π × µ̇r) has no

one dimensional component, (q−3)
2

many (q + 1)-dimensional irreducible components

and 2 many q-dimensional components. Following Lemma gives the number of q-

dimensional irreducible components of IndGB(π × µ̇r).

Lemma 3.35. Let µr be a square character. Then there are q−1
2

many (q − 1)-

dimensional irreducible components of IndGB(π × µ̇r).

Proof. Let n be the number of (q − 1)-dimensional irreducible components of the

representation IndGB(π × µ̇r). Then, we get n = q−1
2

by the equality

(q − 1)(q + 1) = dimIndGB(π × µ̇r) = 2q +
q − 3

2
(q + 1) + n(q − 1).

We proved the folllowing:

Proposition 3.36. Let µr be a square character such that µr = µiµi = µjµj for some

i, j ∈ {1, 2 . . . , q − 1}. Then irreducible components of IndGB(π × µ̇r) consist of the

following:

�

(q−1)
2

many (q − 1)-dimensional irreducible components.
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� 2 many q-dimensional irreducible components, ρ(µi,µi) and ρ(µj ,µj) where they are

described as in Theorem 3.15

�

(q−3)
2

many (q + 1)-dimensional irreducible components of the form

IndGBInfBB/U Iso(κ)(µkµr × µk) for k ∈ {1, 2 . . . , q − 1} \ {i, j} where of those that

the same counted at once.

Now we continue with the case that µr is not a square.

Remark 3.37. Let µr be not a square character. Then, by definition µr 6= µiµi for

all i ∈ {1, 2, . . . , q − 1} which is equivalent to say µiµr 6= µi. Then the representation

IndGBInfBB/U Iso(κ)(µiµr × µi) is irreducible for all i ∈ {1, 2, . . . , q− 1} by Lemma 3.10.

Following three Lemmas investigate (q+1)-dimensional, q-dimensional and (q−

1)-dimensional irreducible components of the representation IndGB(π × µ̇r) for a non-

square character µr of K×.

Lemma 3.38. Let µr be not a square. Then there are (q−1)
2

many (q+1)-dimensional

irreducible components of the representation IndGB(π × µ̇r) where they are of the form

IndGBInfBB/U Iso(κ)(µiµr × µi). We divided it by 2 since each counted as twice although

they appear in once.

Proof. The proof is almost same as the proof of Lemma 3.33. We have the result by

Corollary 3.28, by Lemma 3.14 and by Remark 3.37.

Lemma 3.39. Let µr be not a square. Then there is no q-dimensional irreducible

component of IndGB(π × µ̇r).

Proof. We know, by Theorem 3.16 and Lemma 3.20 that any q-dimensional irreducible

representation of G appear as a summand of a reducible representation obtained by

inducing one-dimensional representation of B. Then the result is followed by Corollary

3.28 and Remark 3.37.
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Up to here we have found that, for a square character µr, IndGB(π × µ̇r) has

no one dimensional component and no q-dimensional component by Lemma 3.29 and

Lemma 3.39, has (q−1)
2

many (q + 1)-dimensional irreducible components by Lemma

3.38. Following Lemma gives the number of q-dimensional irreducible components of

IndGB(π × µ̇r).

Lemma 3.40. Let µr be not a square character. Then there are (q+1)
2

many (q − 1)-

dimensional irreducible components of IndGB(π × µ̇r).

Proof. Let n be the number of (q − 1)-dimensional irreducible components of the

representation IndGB(π × µ̇r). Then, we get n = q+1
2

by the equality

(q − 1)(q + 1) = dim(IndGB(π × µ̇r)) =
(q − 1)

2
(q + 1) + n(q − 1).

We proved the folllowing:

Proposition 3.41. Let µr be a non-square character. Then irreducible components

of IndGB(π × µ̇r) consist of the following:

�

(q−1)
2

many (q − 1)-dimensional irreducible components.

�

(q−1)
2

many (q + 1)-dimensional irreducible components of the form

IndGBInfBB/U Iso(κ)(µiµr×µi) for i ∈ {1, 2 . . . , q−1} where of those that the same

counted at once.

Lemma 3.42. Let µr be a representation of K× which is either square or not a square.

Then each (q − 1) dimensional component of IndGB(π × µ̇r) has multiplicity 1.

Proof. Let ρ be a (q − 1)-dimensional irreducible summand of IndGB(π × µ̇r). By

Frobenius Reciprocity Theorem, we have
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1 ≤
〈
IndGB(π × µ̇r), ρ

〉
=
〈
π × µ̇r,ResGBρ

〉
where the right hand side is smalller or equal to 1 since both π × µ̇r and ResGBρ has

dimension (q − 1) and π × µ̇r is irreducible. Hence we have the result.

To sum up what we have done in this subsection, we have the following theorem

Proposition 3.43. Degree q − 1 irreducible representations of G can be classified as

follows:

(i) If µr is a square character of K×, then IndGB(π × µ̇r) has (q−1)
2

many (q − 1)-

dimensional irreducible representations as summands,

(ii) If µr is not a square character of K×, then IndGB(π× µ̇r) has (q+1)
2

many (q−1)-

dimensional irreducible representations as summands

where each is distinct.

The proposition covers

(q − 1)

2

(q − 1)

2
+

(q − 1)

2

(q + 1)

2
=
q(q − 1)

2

many (q − 1)-dimensional irreducible representations of G. They are all by Lemma

3.17.
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4. CONCLUSION

In this thesis, we study the irreducible representations of the group GL(2,K),

the group of invertible matrices over a finite field K. In Section 3.4, we found the irre-

ducible representations of G coming through induction of one-dimensional characters

of B and in Section 3.6 we classified irreducible representations of G coming through

induction of (q − 1)-dimensional representations of B.
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