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ABSTRACT

COMPLEX REPRESENTATIONS OF FINITE GENERAL
LINEAR GROUPS

In this thesis, we determine complex irreducible representations of GL(2,K),
the group of 2 by 2 invertible matrices over a finite field K. Actually, this is done
by Ilya Piatetski-Shapiro in 1983. In his article [1], Shapiro classifies the irreducible
representations of the group GL(2,K) by using the definition of induced module de-
pends as a space of functions. The aim of this thesis is to rewrite the article using
the induction module definition constructed by a tensor product. We start the thesis
by reminding some basic definitions and theorems related to our topic. Then we de-
termine the commutator subgroup of GL(2,K) and introduce some special subgroups
of GL(2,K). The number of irreducible representations of a finite group is equal to
the number of conjugacy classes of that group. Hence we calculate the conjugacy
classes of GL(2,K). We determine irreducible representations of GL(2,K) through

irreducible representations of the subgroups of it and quotient groups.



OZET

SONLU LINEER GRUPLARIN KARMASIK TEMSILLERI

Bu savda, sonlu bir K cismi iizerine olan ikiye iki tersinir matrisler grubu
GL(2,K) in karmagik indirgenemez temsillerini belirleyecegiz. Ashnda bu daha 6nce
Ilya Piatetski-Shapiro tarafindan 1983 yilinda yapildi. Makalesinde ( [1]), Shapiro
GL(2,K) in indirgenemez temsillerini indiiklenmig modiiliin fonksiyonlar uzayina bagh
tanimini kullanarak siniflandiriyor. Bu savin amaci makaleyi tensor ¢arpimi tizerine
kurulu indiiklenmis modiil tanimi kullanarak yeniden yazmaktir. Makaleye konumuz-
la alakali temel tanim ve teoremleri hatirlatarak basglayacagiz. Daha sonra GL(2,K) in
degiseg alt grubunu belirleyecegiz ve GL(2,K) in bazi 6zel alt gruplarimi tanitacagiz.
Sonlu bir grubun indirgenemez temsillerinin sayisi eglenik siniflarinin sayisina egittir.
Bu sebepten GL(2,K) in eglenik siiflarin1 hesaplayacagiz. Boliim gruplari ve GL(2,K)
in indirgenemez temsilleri aracihgiyla GL(2,K) in indirgenemez temsillerini belirleye-

cegiz.
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1. INTRODUCTION

In this chapter we introduce basic definitions and theorems related to our topic.

The definitions and theorems in this section can be found in [2], [3] and [4].

Throughout the thesis, all vector spaces we considered are finite dimensional

and over C, the field of complex numbers.

Definition 1.1. Let G be a group and V' be a vector space. A group homomorphism

p: G — GL(V)

is called a (C-linear) representation of G on V. The vector space V is called the

representation space of p and is also denoted by V,.

Let p be a representation of G on V. Then it defines a G-action on V' by

g-v=p(g)(v) foranyge G,veV.

Definition 1.2. Let p be a representation of G on V. The subgroup

{ge G| plg) =1d.}

of G where n = dim(V') is called the kernel of p and denoted by ker(p).

Remark 1.3. A representation p of G on V is called the trivial representation if

p(g) =1d, for all g € G where n = dim(V'), equivalently, if ker(p) = G.

Remark 1.4. The dimension (or degree) of p is defined as the dimension of V.



Definition 1.5. Let (M, +) be an abelian group. Let R be a ring with unity. We call
M a (left) R-module if there is a function R x M — M, written (r,m) — rm which

satisfies
o r(my +mg) =1rmy +1rme
e (ry+ro)m=rim+rom
o (riro)m = ri(rom)
e lpm=m

for all m, my, mo € M and for all r,r1,1r5 € R.
Definition 1.6. Let k be a field. An algebra over k or a k-algebra is a ring M which
15 also a k-vector space such that

k(zy) = (kx)y = z(ky) for all z,y € M, k € k.

Definition 1.7. Let G be a finite group and k be a field. Consider the set of formal

sums

{Zng | ry € k}

geG

and define multiplication and addition operations and scalar multiplication on it as

follows.

© D Tgg+ D 599 = 2 (rg+59)9;

geG geqG geqG

gelG heG g9,heG

. (z rgg) (Z oh) = < ot

()
geG geqG

where 1y, g, 5p, 7 € K.



The above structure defines an algebra, called the group algebra of G over k and

denoted by k[G].

From now on we work with C[G]-modules. The following proposition shows that

C[G]-modules and C-linear representations of G are actually the same structures.

Proposition 1.8. Let p: G — GL(V) be a representation, we can regard V as a
C|G]-module where the multiplication of G on V' is given by

g-v=np(g)(v) forgeGandveV.

For the other side, let V' be a C[G]-module. Let B be any basis of V.. Then

p: G— GL(V)

g lgls

defines a representation of G, where [g]s is the matriz representation of the linear

transformation

V-V

Vi g-v

i the basis 8.

From now on we use the terms ‘representation of G' over C’ and ‘C|G]-module’

to mean the same structure, under the above correspondence.

Definition 1.9. A non-zero representation p: G — GL(V) of G is said to be irre-

ducible if it has no proper nonzero C[G]-submodules.

Notation. The set of irreducible representations of G is denoted by Irr(G).



Lemma 1.10. Let G be a finite group. Then number of irreducible representations of

G is equal to the number of conjugacy classes of G.

Lemma 1.11. Let G be a finite group. We have

> (dimp)? = |G-
pelrr(G)

Corollary 1.12. Let G be a finite abelian group and p be an irreducible representation

of G. Then dimp = 1.

Now we introduce methods to produce new representations from given represen-

tations.

Definition 1.13. Let p: G — GL(V) and p: H — GL(W) be representations of
finite groups G and H, respectively. Then we can define a representation p X j of

GxHonVeW by
(0 % 1)(g, M) (v & w) = plg) (v) @ u(h)(w) forg € G,he Hyv € Viwe W,

Lemma 1.14. Let G and H be finite groups. Suppose {p; | 1 < i < n} and
{pi | 1 <i<m} are the set of irreducible representations of G and H, respectively.
Then {p; x pj | 1 <i<n,1<j<m} isthe set of irreducible representations of
G x H.

Definition 1.15. Let G be a finite group and p and ¢ be representations of G on U
and V', respectively. Then we define a representation p® ¢ of G on U &V by

(p® ) g)(udv)=p(g)ud ¢(g)w forge G,ueclU andv e V.

Definition 1.16. Let G be a finite group, H be a subgroup of G and p be a representa-
tion of G. The restriction of p from G to H, denoted by Res$p, is the representation



of H given by
ResGp(h) = p(h)  for allh € H.

Definition 1.17. Let G be a finite group, N be a normal subgroup of G and p be
a representation of the group G/N. We define a representation Infg/Np of G called
inflation of p from G/N to G by

Inf¢,yp(g) = p(gN)  for allg € G.

Remark 1.18. (i) Inflation of an irreducible representation is irreducible.
(i1) Let G be a finite group and N be a normal subgroup of G. Let p; and py be
representations of G/N. Then

Infg n(p1 @ pa) = Infyp1 & InfE y pa.
Remark 1.19. Let G be a finite group and N be a normal subgroup of G. If p1 and

p2 are two nonisomorphic representations of G/N, then Infg/Npl % Infg/NpQ.

Definition 1.20. Let G be a finite group and N be a normal subgroup of G. Let p
be an irreducible representation of G. We define a representation Defg/Np of G/N
called deflation from G to G/N by

f N Ck
Dt pl(g V) — p(g),  if N Cker(p),

0, otherwise.

Moreover, for an arbitrary representation p of G, we define

Defg/Np: ED cZ-Defg/N,oi. where p = EB Cipi-
pilrr(G) pilrr(G)



Definition 1.21. Let G and H be finite isomorphic groups. Let ¢o: G — H be an
isomorphism between them. Let p be a representation of G. Then p o p~! gives a

representation of H, denoted by Iso(p)p and called isogation by ¢.

Definition 1.22. Let G be a finite group, p: G — GL(V) be a representation of G
and B be a basis for V. Then the character x of p is defined by

x:G—C

g = tr([gls)

where tr([g]s) is trace of the matriz [gs.

Remark 1.23. (i) Trace of a matriz of a linear transformation is independent of
the chosen basis. Thus the above map is well defined.

(ii) We have x(1) = dim(V'). We call x(1) the dimension (or the degree) of x.

Note that we can identify 1-dimensional representations with 1-dimensional char-

acters. From now on, we consider them as the same.

Notation. The set of one-dimensional characters of a group G is denoted by G.

The following Lemma can be found in [5].

Lemma 1.24. Let G be a finite abelian group. Then G forms a group under multi-

plication and G is isomorphic to G.

Definition 1.25. Let G be a finite group. For any character x of G, the function

X:G—C

g x(9)

where x(g) is the complex conjugate of x(g), defines a character of G and called the

conjugate character of x.



Remark 1.26. Let G be a finite group, 1 be the trivial character and x be any char-
acter of G. Then

e X(9) =x(g") forall g € G,

o X\x = xX =1 if x is one dimensional.

Definition 1.27. Let G be a group. The subgroup
<ghg'h™' | gheG>

is defined as the commutator subgroup of G and denoted by G'.
Remark 1.28. The group G/G' is the largest abelian quotient.

Lemma 1.29. The commutator subgroup G’ of the group G acts trivially on any

1-dimensional representation of G.

Lemma 1.30. Let G be a finite group. For any irreducible representation p of G/G’,
the representation Infg/G,p 15 a one-dimensional representation of G. Moreover, all
one-dimensional representations of G can be obtained in this way. In particular, there

are |G : G'| many one-dimensional representations of G.

The definition of induced module in [1] is as follows:

Definition 1.31. Let G be a finite group and H be a subgroup of G. Let p be a
representation of H on W. Let

V={¢:G=W [ ¢(hg) = p(h)(¥(g)) for all h € H, g € G}.
Note that the set V is a C|G]|-module where the G-action on V' is as follows:

(g0)(¢") =(d'g) forg,gd € G andyp € V.

The C[G]-module V is called the induced module of the C[H|-module W .



On the other hand, in [4] there is an equivalent definition of induced module

given as follows:

Definition 1.32. Let G be a finite group and H be a subgroup of G. Assume W is a
left C[H]-module. Note that we can regard C[G] as a (C[G], C[H])-bimodule via left

and right multiplication. Then the tensor product
ClG] ®cim W

is a left C[G]-module. It is called the induced module of the C[H]-module W and is
denoted by IndGW .

Let V' be as in Definition 1.31. Then the following C[G]-module isomorphism
provides that the definitions of induced representation of W, given in Definiton 1.31

and Definition 1.32 coincide.

ClG] Qcm W =V

e

geG heH

where s, € C, x € G, we W.

The above map can be found in [6] where the case is extended from C to any

field of characteristic zero.

Remark 1.33. We have

dim(IndGW) = |G : H|(dimW).

The above maps between representations satisfy the following compatibility re-

lations, see [7].



Let G be a finite group.

Transitivity Relations:
a. Assume K and H are subgroups of G such that K < H < G. Let p and ¢

be representations of G and K, respectively. Then
ResfRes% p = Res%p, Ind%Ind¢ = nd%¢.

b. Assume ¢: G — H and ¢: H — K are group isomorphisms and p is a

representation of G. Then

Tso(4)Iso(i0)p = Iso(te)p.

c. Assume N and M are normal subgroups of G such that N < M. Let p and

¢ be representations of G/M and G, respectively. Then
Infg/NInfg%\\;p = Infg/MP, Defg;AN/[Defg/Ngb = Defg/Mgb.

Commutation Relations: a. Assume v: G — H is a group isomorphism, and K
is a subgroup of G. Let p and ¢ be representations of G and K, respectively.
Then

Iso(y)')Res%p = Resg(K)Iso(w)p, Iso(v)Ind ¢ = Indg(K)Iso(w’)Q

where ¢': K — 1(K) is the restriction of .
b. Assume ¢ : G — H is a group isomorphism, and N is a normal subgroup of

G. Let p and ¢ be representations of G and G/N, respectively. Then

Iso(y)")Def¢; p = Defjy /o Iso(1)p, Iso(y)Infg n o = Infij vy Is0(¥") o,
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where ¢": G/N — H/¢{(N) is the group isomorphism induced by ).
c. (Mackey Formula) Assume H and K are subgroups of G. Let p be a repre-
sentation of K. Then

Res%Ind%p = @ Ind% . Iso(7z ) Reste e
z€[H\G/K]

where [H\G/K] is a set of representatives of (H, K)-double cosets in G, and
where H* = {z7'hx |h € H},*K = {zkz™' |k € K} andv,: H'NK — HN*K
is the group isomorphism obtained by conjugation by z i.e. v,(a) = zaz™'.

d. Assume N and M are normal subgroups of G. Let p be a representation of

G/M. Then

Defg/NInfg/Mp = Infg%MDefgijp.

Remark 1.34. Observe that when N = M,

N N
Defg/NInfg/Np = InfngDefngp =p.
e. Assume H is a subgroup of G, and N is a normal subgroup of G. Let p and
1 be representations of H and G/N, respectively. Then

G/N
Defg/NIndgp = IndHéV/NISO(QO)DefZ/HﬁNpa

Resglnfgﬂvw = Infg/HmNIso(gp_l)Resg/N]\;Niﬂ
where ¢: H/HN N — HN/N is the canonical group isomorphism.
f. Assume H is a subgroup of G and N is a normal subgroup of G such that
N < H. Let p and ¢ be representations of G and H/N, respectively. Then

Resy;nDefGyp = DeffyResgp,  IndFInff ye = Infg yTndyy xob
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Definition 1.35. Let G be a finite group. A function ¢: G — C is called a class

function on G if it is constant on conjugacy classes of G.

Remark 1.36. Let G be a finite group. The set of class functions on G form a
C-vector space under function addition and usual scalar multiplication on functions.

Moreover, the set of irreducible characters of G form a basis for that vector space.

Definition 1.37. Let G be a finite group. For any two functions ¢, (: G — C define

(,¢) = l—é,Zw@@.

geG

The definition above gives an inner product on the vector space of class functions.

Remark 1.38. Let v, be two irreducible characters of G. Then

0, ¢#C,
, =g

(¥, ¢) =
1

Theorem 1.39 ( Frobenius Reciprocity Theorem). Let G be finite group, H be a
subgroup of G, and let ¢ and v be representations of G and H, respectively. Then

(¢, Res%¢) = (Ind§y, ().

Theorem 1.40. Let G be a finite group and N be a normal subgroup of it, and let
and 1) be representations of G and G /N, respectively. Then

<C7Infg/N¢> = <Defg/NC7w> .
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2. THE GROUP GL(2,K)

Let K be a field with ¢ elements where ¢ > 2. Denote by GL(2,K) the set of
invertible matrices with entries coming from the field K. We will examine the complex
irreducible representations of GL(2,K). From now on, we use the letter G instead of

GL(2,K) for simplicity.
2.1. Commutator Subgroup of GL(2,K)

In this section we prove that G’ = SL(2,K) where SL(2,K) is the subgroup of
GL(2,K) consisting of matrices whose determinants are equal to 1 € K. Observe that

for any g, h € G the commutator of g and h satisfies
det(ghg 'h™') = 1.

Moreover, the determinant of any element of G’ generated by these elements is equal

to 1. Hence we conclude that G’ C SL(2,K).

a
For the converse, let s = € SL(2,K) be arbitrary. Then we have
c d

ad —bc =11ie. d=a'+ atbc. By standard computations from group theory, we

write

a b 1 0 a 0 1 a'b
c d ate 1 0 a! 0 1

Now we will show that each of the matrices in the decomposition above belongs to

the set of commutators of G.
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e Let k € K be arbitrary. Choose x € K* such that z + 1 # 0 (such an x exists

r+1 k x
since ¢ > 2). Now let g = and h = be elements in
0 1 01
GL(2,K). Observe that
1 1 k
ghg—"h™ = (2.1)
01
1 k
Thus, for all £ € K we have ed.
0 1

e Let k € K be arbitrary. Let ¢ = (h')~! and i/ = (¢*)~! where g, h are as above

and ¢* and h! are the transposes of h and g, respectively. Then,

0
g/h/g/—lh/—l — (ht)—l(gt)—lht i aill (ghg—lh—l)t -
E 1
10
Thus, for all k € K we have eq.
k1
k0O
e Let k € K* be arbitrary. Now, suppose that g = € GL(2,K) and
0 1
0 1 k0
h = € GL(2,K). Observe that ghg~'h™! = . Thus, for
10 0 k7t
k0
all k € K we have ed.
0 k1

Hence, we conclude that G’ = SL(2,K).
Remark 2.1. The function f: G/G" — K* defined by f(gG') = det(g) for g € G is

a group isomorphism.

Now, we introduce some particular subgroups of GL(2,K) and assign some letters

to them for the rest of the thesis.
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(i) The subgroup of upper triangular matrices,

a p
B = |0 e K*; e K
0§

is called the Borel subgroup of GL(2,K). It has ¢(¢—1)? many elements. Observe

o Ckl /
that for any b , b € B,
0 o 0 o

a B[ B\ ([a B _1_ o) 5N (—a/B+af + BY)
5/

0 o 0 ¢ 0 o 0
(2.2)

01

v 1 10
set of representatives for the right (and also left) cosets of B in GL(2,K).

1
form a

Claim 2.2. The set T’ := |y e K ) and w =

Proof. For 71,72, € K such that v, # 7., we have

-1

1 0 1 0
= ¢ B
7 1 Yo 1 =7 1
and
1
10 01 0 -1
= ¢ B.
v 1 1 0 -1 —y

The calculations above show that they form distinct coset representatives of B

in GG. Also to see that they are complete set of representatives of B in G, take

S S
BT e GL2,K);

S91 S22

e If s, =0, then s € B.



o If s9; # 0 and s9o = 0 (which implies s15 # 0 since s € GL(2,K)), then

S12  S11 0 1

0 S21 10
o If 551 # 0 and s95 # 0 (which implies 55, exists), then

S11 — 81282_21821 S12 1 O 1 0
s = . eB
0 S99 852 S921 1 Y 1

where v = s5,'52;. Observe that s, — 519559 591 7 0 since det(s) # 0.

15

]

Hence B has ¢+ 1 many cosets in G. Then |G| = |BJ||G : B| = (¢ — 1)*q(q + 1).

(ii) The abelian subgroup of all unipotent upper triangular matrices

U= L h | e K

0 1

has ¢ elements and isomorphic to the group (K, +) via the group isomorphism

B

1
from U to K defined by — (. Here (K,+) corresponds to the

0 1

additive group structure of the field K. In (2.2), if we take o/ = § =

L,

we see that U is a normal subgroup of B. Also, to obtain the commutator

-1

Oé/ Bl

elements of B, if we multiply (2.2) by from the right, we get

0 o
1 B8 ad™t — 1) — B6~ (a6t — 1)

which is an element of U. Thus,

0 1

B’ is a subgroup of U. For the converse, as the elements g, h that are defined

in (2.1) are in B, (2.1) yields that any element of U is a commutator of some

elements from B. Therefore, U = B'.



(iii)

(iv)
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The subgroup of diagonal matrices is the group

«

0 ¢

-
I

| a6 € K~

It is isomorphic to K* x K* via the group isomorphism v: K* x K* — D by

a 0
1/((04,(5)) = . It is also an abelian group. Observe that U, D C B,
0 o
Ul-|D —1)2
UND={1} and [UD| = U] [P} _ala—1) = |B|. Hence, we conclude that

unD| 1
B = UD. Furthermore, B is the semi-direct product of U by D. Also, one can

easily check that 0: D — B/U by 6(d) = dU is an isomorphism. From now on,
we will use letter k for the isomorphism x: K* x K* — B/U defined by the

composition kK = 0 o v.

Another normal subgroup of B,

a B
P = |lae K*, e K },

0 1

has (¢ — 1)q elements. Similarly, by letting &' = 1 in (2.2), one can easily see
that P is a normal subgroup of B. We have shown that B’ = U. The same

argument used to prove it can be applied to get P’ = U.

The center of G,

5 0
Z = |0 e K* 3,
0 o

is a subgroup of B with ¢ — 1 elements. It is isomorphic to K* via the group

5 0
isomorphism ¢: K* — Z defined by ¢(§) = . Notice that Z N P = {1}.

0 o

1Z]- 1P| _ (¢—1)q(q —
|Z N P| 1

1
Also, ZP = B since |ZP| = ) = |B| and Z, P C B.
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Therefore, B is the direct product of Z and P as they are normal in B.

(vi) The subgroup of P,
a 0
A = | a € KX )
0 1

has (¢ — 1) elements and is isomorphic to K*. We assign letter 1 to the iso-

a 0
morphism 7: K* — A defined by n(a) = . Observe that U, A are

0 1

U-1A] _ alg—1)
U N A| 1
Hence, we conclude that P = UA. Furthermore, P is the semi-direct product of

subgroups of P such that UNA = {1} and so [UA| =

=[Pl

U by A. From now on, we will use the letter £ for the isomorphism : A — P/U

Al-|Z —1 -1
given by £(a) = aU. Also observe that |AZ| = ||A|ﬂ|Z|| = (g )1(q ) =|D|.

Hence D is the direct product of A and Z as D is abelian.

We summarize what is explained above in the following graph:

where we have equalities B=Px Z=UxD and U =B = P'.
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2.2. Bruhat’s Decomposition

The following theorem gives us a decomposition of GG, where we use it to calculate

some double coset representatives.

Lemma 2.3 ( [1]). We have a decomposition of G, called Bruhat’s decomposition

G = BU BwU

where w =

a b
Proof. Let € G\ B. So ad — bc # 0 and ¢ # 0. Then
d

a b b—ac'd a 01 1 ¢
— € BwU.

Corollary 2.4. We have [B\ G/B] = {1, w}.

2.3. The conjugacy classes of GL(2,K)

We know that the number of irreducible representations of a group is equal to
the number of conjugacy classes of it. Hence, we want to classify the conjugacy classes
of G. An element M of G has two eigenvalues.

Case 1: One of the eigenvalues of M belongs to K. Since characteristic polynomial
of M is degree 2, if one of the roots of the polynomial is in K, so does the other. If

both eigenvalues of M are equal, say to a, then the Jordan form of M is one of the
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followings

If M has two distinct eigenvalues a and 8 in K, then M is diagonalizable and the
a 0

0 B

Jordan form of M is c3(a, 5) =

If we let @ and (3 vary, we get different conjugacy classes. Thus, there are (¢—1)
matrices in each of the forms ¢; () and ¢s(cr). Also, there are £ (¢ — 1)(¢ — 2) many
conjugacy classes of the form c3(«, 3).

Case 2: Both eigenvalues of M do not belong to K. Let p(z) be the characteristic
polynomial of M and «, @ be the roots of p(z) i.e. p(z) = 22 — (a + @)x + aa. Then
they belong to the quadratic extension L := KJ[a]. Let v be any nonzero element of

the K-vector space K?2.

Claim. The vectors v and Mv form a basis for K2.

Proof. By contradiction, assume they are linearly dependent. Then there exists A € K
such that Mv=Mv , which implies that M has an eigenvalue in K, contrary to our

hypothesis. ]

Now we want to write the matrix M with respect to the basis {v, Mv}. Observe
that M sends v and Mv to Mv and M?v, respectively. By Cayley-Hamilton Theorem,
we have p(M) = 0. Thus, we obtain M? — (a + a@)M + aa = 0. Hence,

M(Mv) = M*v = (o + a)Mv — adav.
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Thus, the corresponding matrix to M in the basis {v, Mv} is

0 —aa
(@) = . ta
a—+a

Observe that ¢s(a) = c4(@). Also, if @ and /5 are different elements which are
not conjugate in K (i.e. which are not roots of the same quadratic polynomial in
K), then c4(a) is not conjugate to c4(5) since they have distinct eigenvalues. Thus,
the number of conjugacy classes of this form is equal to the half of the number of
the elements in L \ K. L has ¢* elements as a quadratic extension of K which has
q elements. Thus there are %(¢®> — q) conjugacy classes of the form cy(«). Thus, we

proved the following.

Theorem 2.5 ( [1]). Conjugacy classes of G can be classified as below:

(i) (¢ — 1) classes of the form ci(a) where o € K and ¢y(«) is the set of diagonal-
1zable matrices in G whose both eigenvalues equal to «.
(i1) (¢ — 1) classes of the form co(a) where a € K and co(a) is the set of non-
diagonalizable matrices in G whose both eigenvalues equal to .
(iti) 3(q—1)(q—2) classes of the form cs(cv, B) where o, f € K , a # 3 and cs(a, )
15 the set of matrices in G with eigenvalues o and 3.
(w) 3(¢* — q) classes of the form cs(a) where a € L\ K and cy(a) is the set of

matrices in K whose one of the eigenvalues equal to c.
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3. THE REPRESENTATIONS OF GL(2,K)

3.1. One-Dimensional Representations of GG
Let p1, pto, ..., pg—1 be all irreducible characters of the group K*. Then, all
characters of G/G’ can be formed by Iso(f~!)u; where f is as defined in Remark 2.1.

Lemma 3.1 ( [1]). There are (¢—1) many one-dimensional irreducible representation

of G, which are p;odet fori=1,2,...,q— 1.

Proof. By Lemma 1.30 there are |G/G'| = |K*| = ¢ — 1 many one-dimensional
representations of G which are obtained by inflating characters from G/G’ to G.
Observe that for each character Iso(f~1)u; of G/G’" where i =1,2,...,q— 1, for each
ged

Infg o (Iso(f i) (g) = (Iso(f ")) (9G") = pi(f(9G') = pa(detg) = p; o det(g).

Hence we get the desired result by Remark 1.19. ]

3.2. Representations of P

For the rest of the thesis, we fix a non-trivial character ¢ of (K,+). Now, for

every a € A, we can form a non-trivial character v, of U by
Va(u) = Y(ajuge), foru e U

a1 0 1 U12 .
where a = and u = . Now, one can easily check that

0 1 0 1
Yo (uu') = 1g(u).1by(u'), which shows that 1, is a one-dimensional character of U.
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Also, observe that

Vo = Vo = tha(u) = Yo (u) for allu € U
= Y(a k) = Y(al k) for all k € K
= Y((a;; —ayy)k) =0forall k € K
=ap —ay; =0
= ap; = a’11

=a=da.

Hence, each different choice of a € A gives us a different character of U. Thus, by
this way, we get (¢ — 1) characters. These characters and the trivial character of U

are all the characters of U since U is abelian and has ¢ elements.
Claim 3.2 ( [1]). ResjInd} i1 = @1b,.

a€cA

Proof. We have equalities [U\P/U]| = [U\P] = A, since U is a normal subgroup of P
and since P = UA, respectively. Then, by Mackey Formula

RespIndjyy = @ IndfnapIso(ya)Resfaqyth
a€lU\P/U]=A
© @Indglso(%)f{esgwl
acA
= Do(u)vr = Prus = P
ac€A acA acA

where Equality (*) is the result of that « € P and U < P implies U* = U = U. O

Theorem 3.3 ( [1]). Irreducible representations of the group P consists of
(a) (¢ — 1) many one-dimensional characters obtained by Infg/UIso(ﬁ)X where x

is a one-dimensional character of A, & is the isomorphism defined in Section 2.1 and

(b)A (q — 1)-dimensional irreducible representation that is © = Ind{ ;.
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Proof. (a) We have P’ = U. By Lemma 1.30, every one dimensional character of
P is inflated from an irreducible (one-dimensional) character of the quotient group
P/U. Also since A= P/U, for each irreducible character y of A, Infh o1so(§)x gives
us an (distinct) irreducible character of P. As A has (¢ — 1) many one-dimensional
characters, by this way, we get (¢ — 1) many one-dimensional characters of P.

(b) By Remark 1.33, we have dim(n) = dim(Indj ;) = %dim(zﬂl) =q-—1

Also using Frobenius Reciprocity Theorem and by Claim 3.2, we get

(m,7) = (Ind{¢br, Indfebr ) = (1, ResfIndfeh ) = <¢1,@¢a> =1
acA
Thus, 7 is an irreducible representation of P, having dimension ¢ — 1. We have the

equality:

(dimm)® + Y (dimInfpplso(€)x)* = (¢ = 1)* + (¢ = 1) - 17 = (¢ — 1)g = |P|.
xelrr(A)

Thus, there is no additional representation of P by Lemma 1.11. O

3.3. Representations of B

We have seen that B = P x Z. Therefore, by Lemma 1.14, all the irreducible
representations of B can be written as a product of an irreducible representation of P
and an irreducible representation of Z. The product of a one-dimensional character
of P and a one-dimensional character of Z gives us a one-dimensional character of B.
There are (¢ — 1)? of them. The product of the (¢ — 1)-dimensional representation
7 of P and a one-dimensional representation of Z gives us a (¢ — 1)-dimensional
representation of B. There are ¢ — 1 of them. These representations are all distinct

and gives us all the irreducible representations of B.
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There is another way to see one-dimensional characters of B. Remember that x
is an isomorphism from K> x K* to B/U. For every character (y; x p1;) of K* x K*,
we get a distinct one-dimensional character of B via Inf5 solso(k)(pi X 1) and denote
it by p; ; for simplicity. Hence, by this way, we get all (¢ — 1)* many one-dimensional

characters of B.

We obtained the following theorem:

Theorem 3.4 ( [1]). The group B has

(i) (¢g—1)* many one-dimensional characters obtained by Infg/UIso(/{)(ui X ), and
denoted by ji; j where (p; X w;j) is a character of K* x K*.
(i1) (¢ —1) many (q — 1)-dimensional irreducible representations obtained by m X y;

for an irreducible representation x; of Z.

Note that for any (¢ — 1)-dimensional irreducible representation 7 x x; of B, we

obtain ResB (7 x y;) = 7.

Now, we make some observations about one-dimensional representations of B.

If y1; ; is a one-dimensional character given by Infj Julso(k)(pi X p17) as above, then

ok B [0 3
i j = Infg,pIso(k) (1 % 1)
0 o 0 ¢
[0 3
= Iso(k) (i X 1) U
0 o
. a 0
= (i X pj) | K U
0 ¢

= (p; ¥ Mj)<a75> = pi() 'Mj(5)-
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Observe the relation between i, ; and y1;,; on D:

a 0 5 a 0
14, = Infg pIso(k) (1 % 1)
0 ¢ 0 ¢
= p(a) - pa(9)
b 0
:lu"L,]
0 o
a 0 .
= Hij | W w ,
0 ¢

ie. wi(d) = p;j(wdw™) for all d € D where w is as described in Lemma 2.3.

Lemma 3.5. For one-dimensional representations ji; ; and pu.; of B, we have

Resg,ui,j = ResPuy, if and only if Mig—= Ly

Proof. By transitivity and commutation relations in Section 1, we have
ResD i j = Resglnfg/UIso(li)(,ui X 145)
_ B/U
= Infg/DmUIso(Q 1)ResD{]/UIso(fi)(ui X 45)
= Infglso(efl)ResgfgIso(m)(ui X f15)
— Tso(6715) (11s % 11).

— Tso(v) (11  1y)-

Thus,
Resg,um = Resgum if and only if
Iso(v)(pi x pj) = Iso(v)(pg % pu) if and only if
(i x ) = (g x ) if and only if

Hij = Mkl
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Lemma 3.6 ( [1]). We have p; j = pj; if and only if p; = ;.

Proof.

i = fj; if and only if
Infg/UIso(Fa)(ui X i) = Infg/UIso(/f)(uj x p;) if and only if
(pi % p5) = (p; x ;) if and only if

Hi = g

3.4. Inducing One-Dimensional Characters from B to G

In this section, we find irreducible components of representations of G obtained
by inducing one-dimensional characters of B. First, the article [1] defines the Jacquet

Module of a representation p of G as
J(V,) ={veV,|plu)v=uofor every u € U}

where V, is the representation space of p and shows that it is a B-space. Let V' be
the B complement of J(V,) in V,,. Then no element of V" is fixed by U. Now observe
that

Inf}} ;; Defp ;ResGV, = Inff ;Defp i, (J(V,) & V') = Infg ;;Deff 1, J (V,) = J(V,).

Here, since U C ker(p) on J(V,) (also for all irreducible components of it) we have
the last equality by definition of deflation and inflation. Thus, from now on, we will
use the equality J(V,) = Infy /UDefg /UResng as the definition. The representation

of J(V,) is Inf5 /UDefg /UResgp. For simplicity, we will use the notation J(p) instead



27

Inf> /UDefg /UResgp. Note that for any one-dimensional character y; ; of B,
dim(Ind$p, ;) = |G : Bl = ¢+ 1.

Lemma 3.7 ( [1]). If u;; is a one-dimensional representation of B, then we have

dim(J(Ind%p, ;) = 2 and J(Ind$p; ;) has two irreducible components pu; ; and fij,;.

Proof. By Mackey Formula, we have

Res§IndG ;. ; = @ Ind5 . p1s0(ve)Resh. g

z€[B\G/B]
E IndgmBResgum © IndgmwBISO(%))ResgwnBM,j
= a5 ® Indplso(y, ) Resppus

= pij ® IndPResppy,
where Equality (*) comes from Corollary 2.4. Thus, we have
ResGIndG ;= pi; © IndBResb ;. (3.1)

Then by commutation relations in Section 1 and Remark 1.34, we have the following

equations.
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J(Ind s ;)

= Inf}} ;;Def}} ;; ResGIndG s 5

), Infg/UDefg/U(um S InngeSgﬂj,i)

= Infy, Defy i ; & Inf  Defp  Ind JRes

= Infy Def bty Tso(s) (i % 1)

@ Infg/UDefg/UInngesgInfg/Ulso(/—i)(uj X ;)

= Infg/UIso(/f)(yJ,- X i) & Infg/UDefg/UInngesgInfg/UIso(/f)(uj X [4)
= li; D Infg/UIndgg;UISOHDefD D/DNU ISOH_IResgg?UISO(I{) (e X p;)

= iy ® Inff, Ind 2/ Isedlsol " Rest/ ) Iso(k) (1 % i)
= Hij D Infg/UISO(“) (kX p:)

= i j D Wy

where Equality (*) comes from (3.1). Since each p;; and p;; is one-dimensional,

J(Ind$ f;.;) has dimension 2. Thus we have the conclusion :

J(IdG s 5) = iy ® pjs (3.2)

Lemma 3.8 ( [1]). Let p;; be a one-dimensional representation of B. Then

<Resg1ndg,ui,j, 7T> =1
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Proof. We have, by Frobenius Reciprocity Theorem,

<Resg1ndgm,j, 7r> = <Res§Res§Ind§m,j, 7T>
“ (ResB(p:; © IndBResBp;,), )
= <Resglum-, 7r> + <Resglnngesguj,i, 7T>
=04+ <Resguj,¢, Resglndgﬁ>
= <Resg,uj,i; Resglnd5¢1>
(g) <Resg/,l,]’“ Ind?l}ReS{Ul}w1>

= <Resj{91},uj,i, Resl{jl}z/J1> = 1.

Equation 3.1 gives the Equality (*). Mackey formula and [D\B/U] = {1} implies that
ResPIndfy, = IndD;Reslpth1. Here UN D = {1} which gives Equality (**). O

Lemma 3.9. If yi; ; is a one-dimensional character of B, then
Resglndgum = J(Indg,um) D A= i 5 D M D A

where X is a (¢ — 1)-dimensional irreducible representation of B.

Proof. We have Resglndg,um = pi; ® IndPResB ;. by (3.1). Observe that the repre-
sentation Inngesg,uj,i is a g-dimensional representation of B. All irreducible repre-
sentations of B are described in Theorem 3.4. Hence, we conclude that Inngesg,uj,i
is either a sum of ¢ many one-dimensional characters of B or it is a sum of a
one-dimensional character and a (¢ — 1)-dimensional irreducible representation of
B. However it can not be a sum of one-dimensional characters of B since in this
case Resglndgui,j would be a sum of one-dimensional characters of B and then
Resglndgum would be a sum of one-dimensional characters of P which contradicts
with Lemma 3.8. Therefore IndPRes5;,; is a sum of a one-dimensional character
and a (¢ — 1)-dimensional irreducible representation of B. By Frobenius Reciprocity

Theorem, we have
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<Inngesgum,uj’i> = <ReslB)uj,i, Resg,ujﬂ-> = 1.
Thus,
IndpResP ;s = pji ® A
for some (¢ — 1)-dimensional irreducible representation A of B. Thus, we obtain
ResGIndgp; = pis; ® pj: S A
Hence, by using Equality 3.2, we conclude that
Res§Ind$G ;= J(Ind G, ;) © .

O

Lemma 3.10 ( [1]). If p;; is a one-dimensional character of B, then Ind%u, ; has at
most two irreducible components. Moreover, Ind%y, ; is irreducible if y;; # ji;; and

reducible otherwise.
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Proof. We have, by Frobenius Reciprocity Theorem,

<Indg,ul-,j, Indg,ui,» = <,ui,j> Resglndgui,»
(*)

= (Wi Mij D s D A)

= (Wi g, Mig) + (i gy fga) + (Wi, A)

=1+ (uij, pji) +0

(%) Loaf sy # pa

20t =y,

where (*) comes from Lemma 3.9, here ) is a (¢ — 1)-dimensional irreducible repre-

sentation of B and (**) comes from Equation 3.2. O

Lemma 3.11 ( [1]). If pi; is a one-dimensional character of B and p;; = ji;; then

Ind%p, ; has a one-dimensional component.

Proof. Let p;; = p;,. Then by Lemma 3.10, there are exactly two irreducible com-
ponents of Indgum ie. Indg,ui,j = x1 @ x2 for some irreducible representations y1,

X2 of G. Then restricting it to B and using Lemma 3.9 we get
pij @ iy ® A = Resfx1 @ ResExa.

Also, <Resgxi,p,i7j> = <Xi,Indg,ui,j> = 1 for each i. Without loss of generality, we
may assume that ResGy; = ft;,; which implies that dimy; = 1. Hence, we conclude

that Ind%, ; has a one-dimensional component. O

Corollary 3.12 ( [1]). If jui; is a one-dimensional character of B and Ind$pu, ; is

reducible, then Indg,ui’j has a one-dimensional component.

Proof. The result follows from Lemma 3.10 and Lemma 3.11. [
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Lemma 3.13 ( [1]). Assume p; ; and py,; are two distinct one-dimensional characters

of B. Then <Indgui,j, Indguk,l> # 0 if and only if g = 115,

Proof. By using Frobenius Reciprocity Theorem, we have

<Indg,ui7j, Indg,uk» = <Resglndgm’j, ,Uk,l>

Y (11 ® 10 ® N, )

= (Wi js k1) + (Bgis ) + (A, L)
=0+ (1 py) +0

= <:uj,z'7 Mk,z>

where (*) comes from Lemma 3.9. Therefore <Indgum~, Indgukﬁ # 0 if and only if

i = [k [

Lemma 3.14 ( [1]). Assume i, j and pg,; are two distinct one-dimensional characters
of B. Then Indgui,j = Indgum if and only if py; = pji, or in the open form,
Indglnfg/UIso(/i)(uk X ) = Indglnfg/UIso(n)(ui X ;) if and only if pu, = p; and

My = i

Proof. Assume i, ; and py,; are two distinct one-dimensional characters of B. If

Indgum = Indgum, then <Indgui,j,1ndgukvl> # 0. Hence, by Lemma 3.13 we have

Mrg = Hji-

For the other side, assume py; = p;;. Since p; ; and py,; are distinct characters,
we get that p; ; # p;; and iy # . Thus by Lemma 3.10, Ind§p; ; and Ind$puy,, are
irreducible and <Indg,ui,j, Indgukﬁ # 0 by Lemma 3.13. Hence we obtain Indgui,j =
Ind% s, O
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As a summary of this section, we have the following result.

Theorem 3.15 ( [1]). If p;j and py, are one-dimensional characters of B, then

(i) dim(IndGu, ;) = q+ 1;
(i) Ind$p;; is irreducible if and only if pi; # pji;
(111) Indgum is a direct sum of a 1-dimensional and a q-dimensional irreducible rep-

resentation if it is reducible;

(iv) dGp, = IndGp; if and only if pry = pij or prg = i

Now, based on this theorem, we will classify irreducible representations of G,
obtained by induction from B. Let p; ; = Infg/UIso(m)(ui X ;) be a one-dimensional

character of B.

Case 1: If pu; = p;, which is equivalent to say p; ; = p;, then by (i) and (iii) of
Theorem 3.15 we get Indgui’j is the direct sum of a one-dimensional representation,
which we denote it by p’( i) and a ¢g-dimensional irreducible representation, which we
denote it by p(,, u,)- Since K has ¢—1 characters, by this way, we get (¢—1) many one
dimensional characters of G and ¢ — 1 many g-dimensional irreducible representations

of G. Lemma 3.13 ensures that they are all distinct. Also observe that

B a B a f
Infg Iso(k)(ps X pi) 0 s = pi(a) - pi(0) = p; o det 0 s

Thus,
<Indglnfg/UIso(/f)(ui X fi7), pui © det) = <Infg/UIso(f<;)(,ui X ), ResGp; o det) = 1

/

Le. P, ) = Hi© det.
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Case 2: If j1; # pj, which is equivalent to say p; ; # 4., then Indgum isa(qg+1)-
dimensional irreducible representation of G by (iz) of Theorem 3.15. We denote it by

Pusuy)- All distinct irreducible representations of B induce distinct representation of
(¢—1(@—2)
2

many (g + 1)-dimensional irreducible representations of G' obtained by this way.

G except the pairs p; ; and p;; by (iv) of Theorem 3.15. Then there are

Thus, we have the following theorem:

Theorem 3.16 ( [1]). The irreducible representations of G which are summands
of the induced representations IndGu; ; where ji; ; = Infg/UISO(/-i)(,ui X ftj) is a one-

dimensional character of B consist of the followings:

i) ¢ — 1 many one-dimensional characters denoted by p, . and equal to u; o det
(Mz /M)
where they are all the one-dimensional characters of G,

(ii) ¢ — 1 many q-dimensional irreducible representations denoted by p(., )

(¢ —1D(g—-2)

(111) oy many (q + 1)-dimensional irreducible representations denoted by

Plripg) -

3.5. Cuspidal Representations of G

Trreducible representations of G that are not components of Ind%; ;, where i, ;

is one-dimensional character of B, are said to be cuspidal.

Lemma 3.17. There are %(q2 — q) many cuspidal representations of G.

Proof. By Lemma 1.10, Theorem 2.5 and Theorem 3.16. [

Lemma 3.18 ( [1]). Let p be a representation of G. Then J(p) # 0 if and only if

there exists a one-dimensional character i, ; of B such that <p, Indgm’» # 0.

Proof. Let p be a representation of G and ; ; be any one-dimensional character of B.

Then, by using Theorem 1.40 and Frobenius Reciprocity Theorem,
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(J(p), piy) = <Infg/UDefg/UReSgp7 Infg/UISO("@>(Nz‘ X Nj)>

(p. IndGInef, Deff bt Tso(k) (i x 1))

= <p7 Indgﬂi7j>

where the cancellation comes from Remark 1.34.

Let J(p) # 0. Since B/U is abelian, by Corollary 1.12 any representation of B/U
is a sum of some one-dimensional representations of B/U. Then by (ii) of Remark 1.18
and the fact that inflating a representation does not change the dimension, we conclude
that J(p) is sum of some one-dimensional representations of B. Thus (J(p), pi ;) # 0
for some one-dimensional character y; ; of B. Hence, by the equations above, for that

character p; ; of B, we have <p, Indgui7j> # 0.

For the other side, assume <p, Indg,ui,j> # () for some one-dimensional character
pi; of B. Then (J(p),pi;) # 0 for some one-dimensional character p,; ; of B which
implies that J(p) # 0. O

Lemma 3.18 shows us that an irreducible representation p of GG is cuspidal if and

only if J(p) = 0.

Lemma 3.19 ( [1]). Let p be a cuspidal representation of G. Then ResGp = rr for

some positive integer r. In particular dimp = r.(q — 1) is a multiple of ¢ — 1.

Proof. Let p be any irreducible representation of G. Assume that Resgp contains
a one-dimensional character of P as a summand. By Theorem 3.3 they are of the

form Infg/UIso(f)X for some irreducible representation y of A. Then for that y, by
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Frobenius Rciprocity Theorem and commutation relations in Section 1, we get

0 # <Res]G3p7 Infi/UIso(g)X>
= <Resgp, Indglnfg/UIso(ﬁ)X>
= <Res§p, Infg/UIndﬁ//gIso(f)X> .
By similar argument as in proof of Lemma 3.18, we say that Inf? /UIndIEj;gIso(g )x is
a sum of some one-dimensional characters of B. Then by the inequality above, we
conclude that Resgp contains a one-dimensional representation of B which implies
that p is not cuspidal. Hence for any cuspidal representation p of GG, there is no one-

dimensional component of Res%p. Therefore, Res&p = 77 for some positive integer

by Theorem 3.3. O

Lemma 3.20 ( [1]). (i) If p is a cuspidal representation of G, then Res$p = 7 and
dimp = (¢ — 1).
(ii) Conversely, if p is a representation of G' such that ResGp = 7, then p is cuspidal.

Proof. (i) By Lemma 3.19, for any cuspidal representation p of G dimp = r(q—1).
By Lemma 1.11, Theorem 3.16 and Lemma 3.17 we get

G = ) (dimo)’
oelrr(G)

1 1

= (=D + (@@= D"+ 50— Dla=2(g+1)*+ (@ = 9)r*(g - 1)*
Also |G| = (¢ — 1)%¢(q + 1) implies that r = 1. Therefore, Res%p = 7 and dimp
=(¢—1).

(ii) Let p be a representation of G such that Resgp = m. We see that p is irreducible
since its restriction to P is irreducible. By contradiction assume that p is not

cuspidal. Then for some one-dimensional character y; ; of B, we get
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0 # (p,IndFp;;) = (Resgp, i)

by Frobenius Reciprocity Theorem. Thus we obtain that p;; is a summand of
Res§p. Then if we restrict it to P we obtain that Reshu;; is a summand of
Resgp which is equal to m by assumption. It gives us a contradiction. Hence

Res%p = 7 implies that p is cuspidal.

3.6. Inducing (¢ — 1)-Dimensional Representations from B to ¢

In this section, we find irreducible components of representations of GG obtained
by inducing (¢ — 1)-dimensional irreducible representations of B. We know that
Z = K* and A= K*. Then any character of Z can be seen of the form Iso(¢)u; and
any character of A can be seen of the form Iso(n)u; where ¢,  are the isomorphisms
defined in Section 2.1 and p; is a character of K*. For simplicity, we assign letters ji;

and fi; for the representations Iso(¢)u; and Iso(n)u;, respectively.

Let fi. be a fixed character of Z. Then 7 x i, is a (¢ — 1)-dimensional irre-
ducible representation of B by Theorem 3.4. In this section we will decompose the

representation Ind$ (7 x fi,.).

q—1
Lemma 3.21. We have Res!{m = € jix.
k=1

Proof. Observe that

q—1
Res/m = ReshIndfy = Indy ResY ¢ = Indfy Resty o = @B i
k=1
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where (%) comes from Mackey Formula and the fact that P = AU and (*x) can be

seen by Frobenius Reciprocity Theorem. ]

We have seen that D is the direct product of A and Z. Therefore any irreducible
character of D can be seen as the direct product of the irreducible characters of A

and Z by Lemma 1.14. In view of this information, we have the following Lemma.

Lemma 3.22. Let m X i; be a (¢ — 1)-dimensional irreducible representation of B.

Then

a 0
Proof. Let be an arbitrary element of D. Then
0 ¢

) a 0 ) ad™t 0 o 0
T X g =T X U
0 9 0 1 0 ¢
ad™t 0 _ o 0
=T i
0 1 0 ¢
, ad b 0 ' b 0
= Resym fLi
0 1 0 ¢
P . a 0
= (Resym) X fi; :
0 o
Thus, by Lemma 3.21 we have the result
q—1
Resp (7 x ﬂz) = (ReSAW X fu; = (@ Mk) i = (fir X f1i) -
k=1
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First, we decompose the representation ResGInd%(m x ji,), then decompose the

representation Ind% (7 x f1,) with the help of it. By Mackey Formula we have

Res@Ind%(m x ji,) = @ Ind2 .. gIso(v,)ResB. (7 X fi,.)
2€[B\G/B]
—(Lw)

= Ind% zResB(m x f1,) ® Ind5 . 5Is0(7 ) ResB w5 (1 X fi1r)
= (7 % f1,) ® IndBIso(7,)Res? (1 x fi1,.)

Ind2Iso(v,) <6_9(,Uk X /lr))]

9 x i) @

k=1

D x i) @ (@Indﬁlsom)wk x m))

k=1

where () is by Lemma 3.22. Thus we have

q—1
ResSIndS(m x f1,) = (7 X fir) @ (@ IndZTIso(y.) (i x m)) (3.3)
k=1
q—1
Now, the next aim is to find the irreducible components of @ IndBIso(v,)(jix X fir).

k=1
Below, we describe two ways to obtain irreducible characters of D, one is through the

characters of K* x K* and the other is through the characters of A x Z. Observe
that the diagram

(5 )\\/ o))

(@,9)
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does not commute. To compare the characters:

Iso(vyw ) (i X fi5) il X fu
Yw .. .
Iso(v)(pi % p5) D AXZ i X fi
v LXn
K* x K*
Hi X [

The diagram does not commute also. The claim below, describe the conditions
on characters of K* x K* and A x Z which makes the corresponding representations

in D equal.

Claim 3.23. Let Iso(v,)(jix X fu) and Iso(v)(p; X p;) be two irreducible characters

of D where pu, pu, i, 1t are irreducible characters of K* and v is the isomorphism

defined in Section 2.1. Then

Iso(Ya) (i % fu) = Iso(v)(p; x pj) if and only if k = j and fppm = 1

where Ji;, is the conjugate character of .
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Proof. Observe that

Iso () (fix X fu) = Iso(v) (i X 117)
a 0 a 0

< Is0(Vw) (fir X 1) = Iso(v)(p; x ;) Va,o € K~
0 6 0 ¢

0 0

> fu X fu . = pi(@)p;(0) Ve, b € K~
(6]

) . da~t 0 a 0 y
= i X [y = pi(a)p;(9) Vo,0 € K
0 1 0 «
da=t 0 ' a 0

— [k 1 = pi()p;(0) Ve,6 € K~
0 1 0 «

> g = iy and Trpy = i

k=7 and [igpu =

where (x) is by Remark 1.26. O

The following Lemma calculates one-dimensional irreducible components of the

q—1
representation @ Ind2Iso(yy,)(jix X fir).
k=1

Lemma 3.24. Let p;; = Infg/UIso(/i)(ui X ;) be a one dimensional character of B.

Then

a1 L, af  pi = djfhy,
<@Indg180(7w)(ﬂk X ﬂr)7ﬂi7j> =

k=1 0, otherwise.
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Proof. By Frobenius Reciprocity Theorem, we have

qg—1 q—1
<@Ind§180(7w)(ﬂk X ﬂr)>m7j> = (IndBIso(y) (jix X fir), i)

k1 k=1
q—1
k=1
qg—1

—

= (Iso(vw) (i X f1r-), Is0(v) (ki X p15))

N

(%) (Iso(yw) (ft; X fur), Iso(v)(pi X p5))

0, otherwise.

Here (%) comes from the proof of the Lemma 3.5, (x*) and (x * %) comes from Claim

3.23. .

q—1
Corollary 3.25. The representation @ IndBIso(v,)(jix X fir) has (¢ — 1)-many one-
k=1

dimensional components of the form Infg/UIso(/i)(ﬁj,ur X i) forj=1,2,...,q—1.

The following Lemma calculates (¢ — 1)-dimensional irreducible components of

qg—1
the representation @ IndBIso(v,)(jix X fir)-
k=1

Lemma 3.26. Let 7 x fi; be a (¢ — 1)-dimensional irreducible representation of B.
Then

q—1 . s
. . . q - 17 Zf j - T?
<@Indglso(’yw)(,uk X fiy), T X ,LLj> =
k=1

= 0, otherwise.



Proof. First observe that

ISO('Yw)(Nk X MT) = jiy X ft;

L a 0
> Iso(7w) (it X fir) 5
L o 0 L
= fe X by =y X [
(0%
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_ a 0
= [ X [4; for all a,0 € K*
o
«
for all o, € K~
)

() _ _
<= e (0) figptr () = () fp;(B) for all o, 0 € K*
> p = fupy; and fgpe = fu
> e = fupy; and fufigpey = [y
() - _
<~ i = fupy; and fiip, =1

— = fupj and j =r

where (x) is calculated before in the proof of Claim 3.23 and (xx) is by Remark 1.26.
If we fix j = r then there are (¢ — 1) many pairs of (k,[) satisfying the above equality.

By Frobenius Reciprocity Theorem, we have

q—1 qg—1
<EBInd§Iso<%><m X i), 7 X uj> = (IdBTso(yw) (jik X fir), 7 X fi;)

k=1

qg—1

= 3" (Is0(y) e % fir), Resti(m x i)
k=1

( )q—l q—1

5 ot ) B )
k=1 =1
qg—1 g—1

= (Iso(ya) (i X ), (iia X f17))
k=1 l=1

(*;*) q— 17 lf j =T,

0, otherwise.

where (xx) is by Lemma 3.22 and (* * %) is by the above observation. O
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Corollary 3.27. The decomposition of ResGInd$(m x fi,) to irreducible components

1S given by
q—1
ResndG(r x i) = a(r x i) & Q) Intf o) (e 1)
j=1
Proof. Proof comes directly from (3.3), Corollary 3.25 and Lemma 3.26. O

Corollary 3.27 gives the decomposition of Res&Ind§(m x fi;) to irreducible com-

ponents. Now, we are ready to decompose Ind% (7 x f,.).

Corollary 3.28. Let Infg/UIso(/@')(ui X ;) be a one dimensional character of B. Then

1a Zf i = [ s
<Indg(7r X ﬂr),lndglnfg/UIso(K)(ui X 1)) = ’

0, otherwise.

Proof. By Frobenius Reciprocity Theorem and by Corollary 3.27, we have

<Indg(7r X fir), Indglnfg/UIso(ﬁ)(ui )

]_, if i = /TL j
= <Resglndg(7r X fi), Infg/UISO(/i)(Mz‘ X ) = ’
0, otherwise.

The following lemma proves that the representation Ind% (7w x fi,) has no one-

dimensional component.

Lemma 3.29. Let x be a one dimensional character of G. Then

(Ind$(m x f1,),x) = 0.
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Proof. By Frobenius Reciprocity Theorem, we have,

(Ind$(m x f1,), x) = {7 X f1r, ResGx) = 0

since they are irreducible representations of G having different degree. O

Now we examine the character u, and then continue from where we left off.

Definition 3.30. We call p,. a square character of K* if p, = pip; for some i €
{1,2,...,q—1}.

Remark 3.31. We know that any polynomial of degree n over a field has at most n
roots. Thus, for an element k € K* the polynomial x> — k has at most 2 roots in K,
indeed in K*. Also, since 2> — k is a polynomial of degree 2, it has either two roots
in K or has no root in K. Therefore, if p,. is a square character of K>, then there
are exactly two irreducible characters p; and p; of K* which are solutions of 2% = pu,.
This is because the character group of K>, denoted by f(\x, 15 isomorphic to the group

K* as K* is abelian.

Observe that {uf, 13, ..., 2 1} C {p1, pi2, ..., ptg—1} where in the left side each

element stand twice by Remark 3.31. Hence there are @ many square characters
(¢=1)

and 5

many non-square characters of K*.

Remark 3.32. By Remark 3.31, if p, is a square character of K* then there exists
i,j €{1,2...,q— 1} such that p, = pip; = pjp; which is equivalent to say fi;p, =
and fijp = pj. For remaining k € {1,2...,q¢ — 1} \ {¢, 7} we have p, # pyp, which
is equivalent to say i, # pg. By Lemma 3.10 this implies that the representa-
tions Indglnfg/UIso(/i)(ﬁmr X ;) and Indglnfg/UIso(H)(ﬁjur X ;) of G (or simply

Indglnfg/UIso(m)(M X ;) and Indglnfg/UIso(/ﬁ)(,uj X pj)) are reducible and for re-

maining k € {1,2...,q— 1} \ {4, 7} Indglnfg/UIso(ﬁ)(ﬁkur X pug) 18 irreducible.
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Following Lemma investigates (¢+ 1)-dimensional irreducible components of the

representation Ind% (7w x fi,) for a square character i, of K*.

Lemma 3.33. Let p, be a square character of K* such that p, = pipt; = [

for some i,j € {1,2...,q — 1}. Then there are (q;?’) many (q + 1)-dimensional
irreducible components of IndG(w x j1,) of the form Indglnfg/UISO(/@)(ﬂkur X ) for
ke{l,2...,q—1}\{i,j}. We divided it by 2 since each counted as twice although

they appear in once.

Proof. We know by Theorem 3.16 and Lemma 3.20 that any (¢ + 1)-dimensional
irreducible representation of GG is obtained by inducing one-dimensional characters of

B. Observe that, by Corollary 3.28, we have

(Indf(m X fu,), IndGInfz ; Tso(k) (g X figpr)) = 1

since fig by = ptg. However, by Lemma 3.14

Indglnfg/UISO(/{)(ﬂk X g fly) = Indglnfg/UIso(/{)(ﬁk,ur X fig)-

Then by Remark 3.32 for k € {1,2...,¢g—1}\{4,j}, all (¢+1)-dimensional irreducible
components of Ind% (7 x fi,) are given by Indglnfg/[]lso(/{)(ﬂkur X ) with each has

multiplicity 1. O]

Following Lemma investigates g-dimensional irreducible components of the rep-

resentation Ind$(m x fi,) for a square character p, of K*.

Lemma 3.34. Let p, be a square character of K* such that p, = pipt; = [
for some i,5 € {1,2...,q — 1}. Then all g-dimensional irreducible components of
the representation Ind%(m x fi,) are Plui) and p(u; u;) where they are q-dimensional
components of the (q+ 1)-dimensional representations Indglnfg/UIso(ﬁ)(,ui X ;) and

Indglnfg/UIso(ﬁ)(uj X pj), respectively as described in Theorem 3.15
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Proof. We know by Theorem 3.16 and Lemma 3.20 that any ¢-dimensional irreducible
representation of GG is a component of a reducible representation obtained by inducing
one-dimensional representation of B. By (iii) of Theorem 3.15 a reducible represen-
tation obtained by inducing one-dimensional representation of B is the sum of a one-
dimensional character and a ¢-dimensional irreducible representation. Corollary 3.28,
Lemma 3.29 and Remark 3.32 implies that p(,, ,.,) and p(,; ., are all g-dimensional
irreducible components of Ind§ (7 x i) where they are g-dimensional components of

fB

Indglnfg/UIso(/f)(m x 11;) and Ind§In 5/ulso(k)(py X p17), respectively. O

Up to here we have found that, for a square character p,, Ind$ (7w x ji,) has no

(¢=3)

5~ many (g + 1)-dimensional irreducible components

one dimensional component,
and 2 many g¢-dimensional components. Following Lemma gives the number of ¢-

dimensional irreducible components of Ind$ (7 x fi,.).

Lemma 3.35. Let u, be a square character. Then there are Q;QI many (¢ — 1)-

dimensional irreducible components of Ind$(m x fi,).

Proof. Let n be the number of (¢ — 1)-dimensional irreducible components of the

representation Ind% (7 x fi,.). Then, we get n = q;21 by the equality

-3
(¢ = 1)(g+ 1) = dimInd§(r x i) = 20+ L"(g+ 1) + (g - 1)

We proved the folllowing;:
Proposition 3.36. Let u, be a square character such that p, = pip; = pip; for some
i,j € {1,2...,q — 1}. Then irreducible components of Ind§(m x f1,) consist of the
following:

(¢=1)

® 3

many (q — 1)-dimensional irreducible components.



48

e 2 many q-dimensional irreducible components, p(; ..y and p; ;) where they are

described as in Theorem 3.15

(¢=3)
2

Indglnfg/[]lso(/{)(ﬁkur X pg) for ke {1,2...,q—1}\ {4, j} where of those that

. many (q + 1)-dimensional irreducible components of the form

the same counted at once.

Now we continue with the case that p, is not a square.

Remark 3.37. Let u, be not a square character. Then, by definition p, # p;p; for
alli € {1,2,...,q — 1} which is equivalent to say fip 7 p;. Then the representation
Indglnfg/UIso(H)(ﬁiur X ;) is irreducible for all i € {1,2,...,q—1} by Lemma 3.10.

Following three Lemmas investigate (g + 1)-dimensional, g-dimensional and (g —
1)-dimensional irreducible components of the representation Ind$(z x i) for a non-

square character p, of K*.

Lemma 3.38. Let u, be not a square. Then there are @ many (q+1)-dimensional
irreducible components of the representation Indg(ﬂ X [i.) where they are of the form
Indglnfg/UISO(/i)(ﬁiuT X pi). We divided it by 2 since each counted as twice although

they appear in once.

Proof. The proof is almost same as the proof of Lemma 3.33. We have the result by
Corollary 3.28, by Lemma 3.14 and by Remark 3.37. [

Lemma 3.39. Let p, be not a square. Then there is no q-dimensional irreducible

component of Ind%(r x f1,.).

Proof. We know, by Theorem 3.16 and Lemma 3.20 that any g-dimensional irreducible
representation of G appear as a summand of a reducible representation obtained by
inducing one-dimensional representation of B. Then the result is followed by Corollary

3.28 and Remark 3.37. O]



49

Up to here we have found that, for a square character p,, Ind§(m x fi,) has
no one dimensional component and no g-dimensional component by Lemma 3.29 and
Lemma 3.39, has (q;—l) many (g + 1)-dimensional irreducible components by Lemma
3.38. Following Lemma gives the number of g-dimensional irreducible components of

Ind% (7 x f1,).

Lemma 3.40. Let p, be not a square character. Then there are (q"gl) many (q — 1)-

dimensional irreducible components of Ind$(m x fi,).

Proof. Let n be the number of (¢ — 1)-dimensional irreducible components of the

representation Ind% (7 x fi,.). Then, we get n = &21 by the equality

(- (g +1) = dim(na§ (e x 1)) = C=D g1 1) 4 n(g - 1)

We proved the folllowing:

Proposition 3.41. Let p, be a non-square character. Then irreducible components

of Ind$ (7 x f1,) consist of the following:

many (q — 1)-dimensional irreducible components.

o "= many (q + 1)-dimensional irreducible components of the form
Indglnfg/UIso(m)(ﬁiuT X ;) fori € {1,2...,q—1} where of those that the same

counted at once.

Lemma 3.42. Let u, be a representation of K> which is either square or not a square.

Then each (q — 1) dimensional component of Ind$(m % f1,) has multiplicity 1.

Proof. Let p be a (¢ — 1)-dimensional irreducible summand of Ind% (7 x f,). By

Frobenius Reciprocity Theorem, we have
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1 < (IndG(m x f1.), p) = (7 X fi,, Resp)

where the right hand side is smalller or equal to 1 since both 7 x f, and Resgp has

dimension (¢ — 1) and 7 X fi, is irreducible. Hence we have the result. O

To sum up what we have done in this subsection, we have the following theorem

Proposition 3.43. Degree g — 1 irreducible representations of G can be classified as

follows:

(i) If p, is a square character of K*, then Ind%(w x fi,.) has (qgl) many (¢ — 1)-

dimensional irreducible representations as summands,

(ii) If p, is not a square character of K*, then Ind$(r x 1,) has (1145_1) many (q—1)-

dimensional irreducible representations as summands

where each is distinct.

The proposition covers

2 2 2 2 2

(q—l)(q—1)+(q—1)(CJ+1) q(q—1)

many (¢ — 1)-dimensional irreducible representations of G. They are all by Lemma

3.17.
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4. CONCLUSION

In this thesis, we study the irreducible representations of the group GL(2,K),
the group of invertible matrices over a finite field K. In Section 3.4, we found the irre-
ducible representations of G coming through induction of one-dimensional characters
of B and in Section 3.6 we classified irreducible representations of G' coming through

induction of (¢ — 1)-dimensional representations of B.
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