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ABSTRACT 

 

3D OPTICAL PROFILOMETRY WITH A DOUBLE             

BEAM-SPLITTER SETUP 

 
In this thesis, it is demonstrated that a double beam splitter arrangement is very 

convenient and more practical to generate square shaped fringe patterns, and fringe 

distribution can be easily controlled in two dimensions. This enables to extract 3D height 

distribution of test objects without using any additional component as a projection unit. 

 

To approve the validity of the proposed technique, various frequencies of the fringe 

pattern are obtained by rotating a cubic beam splitter, and images that include deformed 

fringe patterns due to the height distribution of test objects are captured by a CCD camera. 

The resultant square fringe pattern is analyzed with two-dimensional continuous wavelet 

transform method and is separated into two fringe patterns in horizontal and vertical axes 

with a certain algorithm. The height-related phase map is acquired after analysis process. 
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ÖZET 

 

ÇİFT IŞIK BÖLÜCÜ DÜZENEĞİ İLE 3 BOYUTLU OPTİK 

PROFİLOMETRE 

 

 

 

Bu tezde, çift ışık bölücü düzeneğinin kare saçak deseni üretimi için uygun ve pratik 

olduğu, ayrıca saçak dağılımının iki boyutta kolayca kontrol edilebileceği gösterildi. Bu 

yöntem, üç boyutlu test objelerinin yükseklik dağılımının ilave herhangi bir projeksiyon  

ünitesi kullanılmaksızın elde edilmesine imkân sağladı. 

 

   Önerilen tekniğin geçerliliğini kanıtlamak için, küp şeklindeki ışık bölücünün açısı 

değiştirilerek çeşitli frekanslarda saçak desenleri elde edildi ve test objelerinin yükseklik 

dağılımdan dolayı deforme olan saçak desenlerini içeren görüntüler CCD kamera ile 

yakalandı. Oluşan kare saçak desenleri iki boyutlu sürekli dalgacık dönüşümü metodu 

kullanılarak analiz edildi ve belirli bir algoritma ile dikey ve yatay eksenlerdeki iki saçak 

desenine ayrıştırıldı. Analiz sonunda yüksekliğe bağlı faz haritası elde edildi. 
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1.INTRODUCTION 

 

          The fringe projection method is commonly applied for reconstructing the topography 

of 3D objects since it has the advantages of being non-contact, precise and fast [1]. This 

method has two main application areas including industrial and medical ones. Optical 

metrology, corrosion analysis, refractive index measurements, roughness and strain 

measurements, topography of translucent objects and vibration and temperature sensing are 

considered as industrial application areas [2]. Examples for the latter can be given as 

scoliosis diagnosis, vascular wall deformation analysis, diagnosis of skin cancer [3]. 

 

              The sinusoidal fringe pattern, which is projected onto a test object, is deformed 

depending on the height distribution of the object. This height distribution can be extracted 

by using a computational process on the deformed fringe pattern, such as Fourier transform 

(FT) [4], wavelet transform and phase shifting profilometry. After this process, unwrapped 

phase map is obtained between -π and π. Required transition from unwrapped phase map to 

the wrapped map can be achieved by adding 2π or -2π to the certain parts of the unwrapped 

phase map [5]. However, this method becomes chaotic/insufficient when the test object is 

discontinuous or specular, which causes π phase jumps. The nature of sinusoidal fringes is 

altered on discontinuous objects, where the obtained unwrapped phase map is also 

discontinuous. 

 

             Our purpose is to quickly measure robust surfaces via a newly developed setup by 

using double   beam splitters as a four-beam interferometer since they are compact and 

precise in measurements [6]. This arrangement has certain advantages. The most important 

one is that one can change the frequency of the fringes by rotating the beam splitters. This 

enables a great control over the fringe distributions. By applying multi-frequency fringes in 

two dimensions, the height distribution of the object is extracted in each dimension 

separately.  
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  In this thesis, a new, sensitive and compact optical profilometric system is 

constructed in order to retrieve the 3D topography of an object.  By utilizing double beam 

splitter system as a Gates’ interferometer, the height distributions of various objects are 

extracted. Acquired images are processed by using 2-D continuous wavelet transform (2-D 

CWT). In later sections, this transformation 2-D CWT is discussed in detail. 

   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, 
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2. REVIEW 

 

2.1. Generation Methods for Square-Shaped Fringe Patterns 

             Young’s double slit experiment is the pioneer of fringe pattern generation techniques 

which are widely used and are still in use in many fields [7]. The first study on retrieving the 

surface topography of an object was stated by Rowe and Welford in 1967 and new 

techniques are still developing today. In the following section, generation of square shaped 

fringe pattern method is summarized. An example of square - shaped pattern is shown in 

Figure 2.1. 

 

 

Figure 2.1: Square - shaped pattern that is captured by a charged couple camera (CCD) in a 

dark room. 

 

2.1.1. Lloyd’s Double Mirror Interferometer 

 

Lloyd’s arrangement utilizes a mirror and a single source to generate an interference 

pattern [8]. In Figure 2.2, there are two light beams. One of them comes directly from the 

source S and the other comes from the source S and reflected from the mirror, which can be 

considered as the imaginary source S’. The two beams interfere and form an interference 

pattern on the screen.  
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 This arrangement is a resemble of Young's double slit experiment. The same 

arrangement can be used to form a square-shaped fringe pattern, which can be achieved by 

using, for example, double mirrors.  

 

 

Figure 2.2: Lloyd’ mirror arrangement with a single mirror. 

 

In the setup shown in Figure 2.3, two mirrors accommodate perpendicular to each 

other, and there is an optical fiber as a single source (1) positioned between the mirrors. 

Therefore, virtual sources (2), (3) and (4) become new sources and the system seems to have 

four different sources for interference. The superposition of the electric fields of these 

sources generates square-shaped fringe patterns [9]. 

 

The system has a great advantage to change the fringe pattern distribution, which can 

be achieved by changing the distances between the source and the mirrors. The change in 

the distance is directly proportional to the fringe width, which results in an adjustable fringe 

frequency. In order to obtain fringe pattern with high frequency, the source fiber should be 

placed closer to the mirror plane. Another method for adjusting the frequency is rotating the 

mirror, which also changes the distances, and allows thinner or thicker fringes [10]. 
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Figure 2.3. Lloyd’s Double Mirror setup and interference of two fringe patterns by using 

four fiber sources [9]. 

 

2.1.2. Optical Fiber System 

 

Optical fiber is a device which guides light with the phenomenon of total internal 

reflection. One of the application fields of optical fiber is generating fringe pattern for 

interferometric profilometry measurements with a high resolution and large dynamic range 

[11]. 

 

Yuan and et al. worked with single-mode polarization – maintaining three optical 

fibers as a source for fringe projection, which is shown in Figure 2.4.  In this setup, changing 

the orientation of a fiber or a relative change in polarization angle by rotating the fiber around 

its axis result in generation of a square grid or hexagonal grid pattern, or a change in the 

visibility of the fringes. By using FT algorithm, topography is extracted from the modulated 
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pattern with the help of fusioning the three phases or calculating the arithmetic mean of the 

phases [12].  

 

 

Figure 2.4. Three optical fiber system for fringe projection[12] 

 

 

 

Another fringe projection method is using a four-core optical fiber. Each core can be 

regarded as a separate source. The combination of each couple of fibers results in different, 

two-dimensional fringe pattern. Vertical combination of the two cores generates horizontal 

fringes, and horizontal combination of the cores brings out vertical ones. Lastly, diagonal 

pairing of four cores in addition to the previous combinations generates square-shaped fringe 

patterns. 

 

Figure 2.5.  Formation of square shaped fringe pattern with four core optical fiber system. 
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In the wavelet transform analysis method, the shape of the deformed image is 

scanned horizontally and provides height distribution in the vertical axis for each shot. 

 In the case of having two-dimensional discontinuity in both vertical and horizontal 

axes, it is also needed to have vertical deformation, which can be achieved by a square-

shaped fringe pattern.  In the proposed method, this fringe is produced by using double beam 

splitter as a four-beam interferometer. In the following analysis part, electric field 

distribution of four beam interference will be derived. 

Total electric field vector is the sum of the electric fields of each source: 

                                                           �⃗� = 𝐸1
⃗⃗⃗⃗ + 𝐸2

⃗⃗⃗⃗ + 𝐸3
⃗⃗⃗⃗ + 𝐸4

⃗⃗⃗⃗                                                       (2.1) 

 

Intensity is proportional to the square of the time average of the magnitude of the 

electric field vector and its mathematical expression is as in Equation 2.2.  

                                                                     𝐼 = ⟨�⃗� 2⟩
𝑇
                                                                  (2.2) 

 

𝐼(𝑥, 𝑦) = 2𝐼0[2 + 2𝑐𝑜𝑠(𝑘(𝑑2 − 𝑑1)) + 2 cos(𝑘(𝑑3 − 𝑑1)) + 2𝑐𝑜𝑠(𝑘(𝑑4 − 𝑑1)) +

                        2 cos(𝑘(𝑑3 − 𝑑2)) +2𝑐𝑜𝑠(𝑘(𝑑4 − 𝑑2)) + 2 cos(𝑘(𝑑4 − 𝑑3))]                            (2.3) 

 

Two-dimensional intensity 𝐼(𝑥, 𝑦) can be expressed by the parameters 𝑑1, 𝑑2, 𝑑3 𝑎𝑛𝑑 𝑑4, 

which are the distances of each source to the target plane. Each distance can be computed 

by Pythagorean theorem: 

                                          𝑑𝑖 = [(𝑥 − 𝑛𝑖)
2 + (𝑦 − 𝜁𝑖)

2 + 𝑧2]
1

2⁄                                       (2.4) 

 

where i is an index and takes the values 1, 2, 3 and 4. By using Equation 2.4, equation for the 

distance can be written as 

 

                                        𝑑𝑖 = 𝑑  [1 +
𝜂𝑖

2+𝜁𝑖
2

2𝑑
−

𝜂𝑖𝑥+𝜁𝑖𝑦

𝑑
]

1

2
                                                (2.5) 

 

where 𝑑 = (𝑥2 + 𝑦2 + 𝑧2)
1

2⁄                                                                                                         
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For very large distance, we can use binomial approximation for Equation 2.5. Then, the 

distance equation becomes the following expression: 

𝑑𝑖 = 𝑑 +
𝜂𝑖

2+𝜁𝑖
2

2𝑑
−

𝜂𝑖𝑥+𝜁𝑖𝑦

𝑑
                                 (2.5) 

 

Then computation of each distance can be accomplished by using geometry according to 

Equation 2.6, and we substitute Equation 2.6 into Equation 2.3. 

𝐼(𝑥, 𝑦) = 2𝐼0 [2 + 2 cos (𝑘 (
𝛿𝑥

𝑑
)) +2 cos (𝑘 (

𝛿𝑦

𝑑
)) +

                                      cos (𝑘 (
𝛿(𝑥+𝑦)

𝑑
)) + cos (𝑘 (

𝛿(𝑥−𝑦)

𝑑
))]                                             (2.6) 

 

 

Where k is a propagation constant, which equals to 
2𝜋

𝜆
  , and the phase dependent 

height is written as 𝑧(𝑥, 𝑦) =
𝜆𝑓

2𝜋𝛿 sin𝜃
 ϕ(x, y) . Therefore, by using the phase dependent 

height, Equation 2.6 and geometrical properties in Figure 2.5, we get Equation 2.7, which is 

the intensity distribution of a four-point optical source captured by a camera. 

 

𝐼(𝑥, 𝑦) = 2𝐼0 [2 + 2 cos (2𝜋
𝛿

𝜆𝑑
(𝑥 cos 𝜃 − 𝑧(𝑥, 𝑦) sin 𝜃)) +2 cos (2𝜋

𝛿

𝜆𝑑
𝑦) +

cos (2𝜋
𝛿

𝜆𝑑
(𝑥 cos 𝜃 − 𝑧(𝑥, 𝑦) sin 𝜃 +𝑦)) + cos (2𝜋

𝛿

𝜆𝑑
(𝑥 cos 𝜃 − 𝑧(𝑥, 𝑦) sin 𝜃 −𝑦))]       

      (2.7) 

 

It is assumed that the intensity formula for a four-core interference in Equation 2.7 can be 

used for our experimental setup.   
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2.1.3. Moiré Pattern with Grating and Digital Fringe Projection 

 

Moiré is a geometric pattern that is generated by the superposition of two or more 

straight or nonlinear lines. Basic moiré pattern, which is shown in Figure 2.6, includes one 

grid pattern and a second pattern with different fringe width, which is tilted alpha degrees 

with respect to the first interference pattern and overlaps with the other pattern.  In order to 

get exact grid type pattern, two perpendicular binary or sinusoidal pattern should interfere 

with each other like in the last image of Figure 2.6.  

  

 

Figure 2.6. Moiré pattern generation [13]. 

 

 The last method in this part is digital fringe projection profilometry. Several devices 

are used for obtaining a profilometry, and its scheme is shown in Figure 2.7 [14]. Digital 

fringe patterns are produced by a computer software. Fringe profile is directly linked to 

transmittance function. The fringe production is achieved by multiplying the transmission 

function with the intensity of light source and then the intensity of fringe distribution is 
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geometrically established. Then, a projector is used to transmit the pattern to a target object 

and deformation of the pattern is captured by a camera to be analyzed.  

 

 

Figure 2.7. Scheme for a digital fringe pattern image processing system. [14]. 

 

 

            Square-shaped fringe patterns can also be produced digitally by using a software. 

The relation of gratings can be mathematically expressed with multiplication of transmission 

functions of grating. The transmission function of sinusoidal line grating is following: 

𝑡 = (1 + cos (𝑘𝑥))/2 

where k is a wave-vector and x is the coordinate axis. Multiplying two transmission functions 

results in one dimensional fringe pattern. Its three times multiplication with transmission 

function provides for square shaped fringe [15]. Various patterns can be generated in the 

same manner. 

 

2.2. Analysis Method for Square-Shaped Fringe Pattern 

 

2.2.1. Two-dimensional Continuous Wavelet Transform 

  

 2-D CWT and 1-D CWT are used in image processing, which have similar 

properties. However, 2-D continues wavelet become popular on fringe pattern analysis since 

this analysis method has advantage of being accurate and automatic in noisy or complex 

fringe analysis [16]. 2-D CWT has also the ability to change and manipulate the shifting and 

scaling parameters [17]. In this section, the properties and the theory of 2-D CWT is studied. 
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            Intensity of fringe signal can be written as in the following equation including the 

terms for both x and y components. 

    𝐼(𝑥, 𝑦) = 𝐼0(𝑥, 𝑦)[1 + 𝑉(𝑥, 𝑦)𝑐𝑜𝑠(2𝜋𝑓0𝑥 + 2𝜋𝑓0𝑦 + 𝜙(𝑥, 𝑦))] (2.8) 

 

where 𝐼0(𝑥, 𝑦) is background intensity,𝑉(𝑥, 𝑦) is the visibility of the fringes. Spacial carrier 

frequency is 𝑓0, which should fulfil the following requirement to recover the phase.  

 

                                                            2𝜋𝑓0 > |
𝑑𝜙(𝑥)

𝑑𝑥
|
𝑚𝑎𝑥

  (2.9) 

 

2-D continues wavelet transform is described as:  

 

            𝑊(𝑎, 𝑏, 𝜃) =
1

𝑎
∫

∞

−∞
𝐼(𝑥, 𝑦)𝜓∗ (

𝑥−𝑏𝑥

𝑎
,
𝑦−𝑏𝑦

𝑎
, 𝑟𝜃)𝑑𝑥𝑑𝑦 (2.10) 

 

In Equation (2.10)  𝜓∗ (
𝑥−𝑏𝑥

𝑎
,
𝑦−𝑏𝑦

𝑎
, 𝑟𝜃) is called mother wavelet. There are three 

main geometric operations to perform the wavelet transform including scaling or dilation, 

rotation, translation. a(𝑎 > 0) is the scaling parameter, 𝑏 ∈ 𝑅2 is the translation parameter, 

and the rotation parameter has the following expression:  

  

𝑟𝜃 = (
cos 𝜃 − sin 𝜃
sin 𝜃     cos 𝜃

) 

 

where 𝜃 is a rotation angle, which has a range between 0 to 2𝜋.  

 

Whole pixels are processed with the wavelet transformation. The mother wavelet is 

rotated with 𝑟𝜃 and also shifted in the x and y direction with the parameter 𝑏𝑥 and 𝑏𝑦 while 
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it is scaled with the parameter a on the fringes in every iteration of the code. Certain essential 

mathematical requirements must be satisfied to consider a function as a mother wavelet [18].  

 

  • The image signal I(x) can be reproduced from its wavelet transform J(a,b,θ) by the 

reconstruction formula: 

 

𝐼(𝑥) =
1

𝑐𝜓
∬ 𝑑2𝑏 ∫

𝑑𝑎

𝑎3
∫ 𝑑𝜃𝐽(𝑏, 𝜃, 𝑎)𝜓𝑏,𝜃,𝑎(𝑥)                (2.11)

2𝜋

0

∞

0𝑅𝟚

 

 

 where 𝑐𝜓 is admissibility constant, and the admissibility condition is given in Equation  

2.12 which should be satisfied by the two-dimensional wavelet transform and 𝜓 ∈

ℒ2(ℛ2,  𝑑2𝑥)  

 𝑐𝜓 = (2𝜋)2 ∫
∞

0

|Ψ(𝑓)|2

𝑓2
𝑑2𝑓 < ∞ (2.12) 

 

    • This condition implies that the wavelet has zero mean:  

                                                ∫
∞
−∞𝜓(𝑥)𝑑𝑥2 = 0                                                (2.13)                                  

 

• 2-D signal should have finite energy where I ∈ ℒ2(ℛ2,  d2x):  

∬ |𝐼(𝑥)|2𝑑𝑥
2

𝑅𝟚

< ∞                                                        (2.14) 

 

Wavelet transform conserves the norm of the fringe signal.Thus, its total energy 

forms a resolution of the identity: 

               ∬ |𝐼(𝑥)|2𝑑𝑥
2

𝑅𝟚

=
1

𝐶𝜓
∬ 𝑑2𝑏∫

𝑑𝑎

𝑎3

∞

0

∫ 𝑑𝜃|𝐽(𝑏, 𝜃, 𝑎)|2                
2𝜋

0𝑅𝟚

(2.15) 

 

which generates a resolution of the identity: 
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𝐽 =
1

𝑐𝜓
∬ 𝑑2𝑏 ∫

𝑑𝑎

𝑎3

∞

0

∫ 𝑑𝜃|𝜓𝑏,𝜃,𝑎⟩⟨𝜓𝑏,𝜃,𝑎|                       (2.16)
2𝜋

0𝑅𝟚

 

 

From the resolution identity, the following  can be derived  

∭ 𝑑2𝑏
𝑑𝑎

𝑎3
𝑑𝜃|𝐽(�⃗� , 𝑎, 𝜃)|

2
=

𝐺

 

 

= ∫ 𝑑2�⃗� 
ℝ2

∫ 𝑑2𝑘′⃗⃗  ⃗
ℝ2

∭ 𝑑2𝑏
𝑑𝑎

𝑎3
𝑑𝜃

𝐺

× ⅇ𝑖�⃗� ⋅(�⃗� −�⃗� ′)Ψ(𝑎𝑟−𝜃(�⃗� ))
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

Ψ (𝑎𝑟−𝜃(�⃗� 
′)) 𝐽(�⃗� )𝐽(�⃗� ′)

̅̅ ̅̅ ̅̅ ̅
 

 

= (2𝜋)2 ∫ 𝑑2�⃗� 
ℝ2

∫
𝑑𝑎

𝑎

∞

0

∫ 𝑑𝜃
2𝜋

0

|Ψ (𝑎𝑟−𝜃(�⃗� ))|
2

|𝐽(�⃗� )|
2
 

 

∫
𝑑𝑎

𝑎

∞

0

∫ 𝑑𝜃 |Ψ(𝑎𝑟−𝜃(�⃗� ))|
2

= 
2𝜋

0

∫
𝑑𝑎

𝑎

∞

0

∫ 𝑑𝜃|Ψ𝑝(𝑎𝜌, 𝜙 − 𝜃)|
2
 

2𝜋

0

 

 

 = ∫
𝑑𝜌′

𝜌′

∞

0

∫ 𝑑𝜃′|�̂�𝑝(𝜌
′, 𝜃′)|

2
 

2𝜋

0

 

 

= ∫
𝑑2�⃗� ′

|�⃗� ′|
2

ℝ2

 |�̂�(�⃗� ′)|
2
⋅ 

 

 

Where magnitude of the vector �⃗�  is equal to 𝜌, and Ψ𝑝(𝜌
′, 𝜃′) is the polar coordinate form 

of Ψ(�⃗� ′) 

 

= ∫
𝑑2�⃗� ′

|�⃗� ′|
2

ℝ2

 |Ψ(�⃗� ′)|
2
 

 



14 

 

2-D CWT can be written as a its general integral form in general: 

 

 

    𝒲(𝑎; 𝑏; 𝜃) = 𝑎 ∫ ∫ Ψ∗(𝑎𝑟−𝜃𝛼𝑥, 𝑎𝑟−𝜃𝛼𝑦)ℐ(𝛼𝑥, 𝛼𝑦)
∞

−∞

∞

−∞
                             (2.17) 

 

The selection of mother wavelet is significant for fringe analysis, and some examples 

of mother wavelets in two dimensions are Halo and Arc, Morlet, Mexican hat, Cauchy and 

Poisson wavelets. Morlet wavelet as mother wavelet is chosen in this study whose definition 

is as follows: 

 

                       𝜓(
𝑥−𝑏𝑥

𝑎
,
𝑦−𝑏𝑦

𝑎
, 𝑟𝜃) = ⅇ

(𝑖𝑐
(𝑥−𝑏𝑥) cos𝜃+(𝑦−𝑏𝑦)𝑠𝑖𝑛𝜃

𝑎
)
ⅇ

(−
(𝑥−𝑏𝑥)2+(𝑦−𝑏𝑦)

2

2𝑎
)

        (2.18) 

 

Firstly, Fourier transformations of the mother wavelet and the fringe intensity are 

taken, which are indicated with the letters Ψ and ℐ respectively. The symbol “ * “ denotes 

the complex conjugate. 

                                       Ψ(𝑎𝑟−𝜃𝛼𝑥, 𝑎𝑟−𝜃𝛼𝑦) = ⅇ
(−

(𝑎𝛼𝑥−𝑐 𝑐𝑜𝑠 𝜃)2+(𝑎𝛼𝑦−𝑐 𝑠𝑖𝑛𝜃)
2

2
)

                        (2.19) 

 

where Equation 2.19 shows FT of Morlet wavelet, and this integral will be evaluated by the 

convolution theorem with new variables 𝛼𝑥 and 𝛼𝑦. Then, the following equation explains 

FT of the signal: 

 

                                                                 ℐ(𝛼𝑥, 𝛼𝑦) =  𝒦1 + 𝒦2 + 𝒦3                                           (2.20) 

 

 𝒦1 = 2𝜋𝐼0(𝑏𝑥, 𝑏𝑦)𝛿(𝛼𝑥, 𝛼𝑦) 

 

 𝒦2 = 𝜋𝐼0(𝑏𝑥, 𝑏𝑦)𝑉(𝑏𝑥, 𝑏𝑦)ⅇ
(𝑖(𝜙𝑏 − 𝑏𝑥𝜙𝑥

′  − 𝑏𝑦𝜙𝑦
′ )) 𝛿 (𝛼𝑥 − 2𝜋𝑓0 − 𝜙𝑥

′ , 𝛼𝑦 − 2𝜋𝑓0 − 𝜙𝑦
′ ) 

 

 

 𝒦3 = 𝜋𝐼0(𝑏𝑥, 𝑏𝑦)𝑉(𝑏𝑥, 𝑏𝑦)ⅇ
( −𝑖 (𝜙𝑏 − 𝑏𝑥𝜙𝑥

′  − 𝑏𝑦𝜙𝑦
′ ))𝛿 (𝛼𝑥 − 2𝜋𝑓0 − 𝜙𝑥

′ , 𝛼𝑦 − 2𝜋𝑓0 − 𝜙𝑦
′ ) 
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where 𝜙𝑏=𝜙(𝑏𝑥, 𝑏𝑦), 𝜙𝑥
′ = 𝜕𝜙(𝑏𝑥, 𝑏𝑦) 𝜕𝑥⁄  and 𝜙𝑦

′ = 𝜕𝜙(𝑏𝑥, 𝑏𝑦) 𝜕𝑦⁄ . These parameters 

are defined by approximating fringe phase which depends on the localization property of    

2-D CWT [19] 

 

The last expression (2.21) is CWT for Morlet wavelet with the parameters a, 𝑏𝑥, 𝑏𝑦, 

and angle θ, which means that this equation is a four-dimensional matrix of complex wavelet 

coefficients and it is hard to visualize [20]:  

 

 𝒲(𝑎; 𝑏𝑥; 𝑏𝑦; 𝜃) = 𝜋𝐼0(𝑏𝑥, 𝑏𝑦) 𝑉(𝑏𝑥, 𝑏𝑦)ⅇ
(𝑖(𝜙𝑏 +2𝜋𝑓0𝑏𝑥 +2𝜋𝑓0𝑏𝑦))

 

 

                               × ⅇ−
1

2
((2𝜋𝑓0 + 𝑎𝜙𝑥

′  − 𝑐 cos𝜃)
2
+(2𝜋𝑓0+𝑎𝜙𝑦

′ −𝑐 sin𝜃)
2
)
                              (2.21) 

 

   

 

 

 

Modulus is magnitude of the wavelet coefficient, which can be calculated by the formula: 
 

ℳ(𝑎; 𝑏𝑥; 𝑏𝑦; 𝜃) = √𝐼𝑚[𝒲(𝑎; 𝑏𝑥; 𝑏𝑦; 𝜃)]
2
+ 𝑅ⅇ[𝒲(𝑎; 𝑏𝑥; 𝑏𝑦; 𝜃)]

2
        (2.22) 

 

We can consider on this critical point. Modulus becomes maximum when the two 

condition is satisfied at the same time. The first one is that frequency of the daughter wavelet 

is adjacent to the fringe pattern frequency, and second one is that rotation of mother wavelet 

has the similar orientation of the fringes. For corresponding conditions, modulus of wavelet 

𝒲(𝑎; 𝑏𝑥; 𝑏𝑦; 𝜃) reaches its maximum value, and generates ridge function 𝒲𝑟(𝑎𝑟; 𝑏𝑥; 𝑏𝑦; 𝜃) 

where the scale parameter 𝑎𝑟 is called ridge point [21]. 

Then the phase of the signal is obtained as follows:  

 

𝒫(𝑎𝑟; 𝑏𝑥; 𝑏𝑦; 𝜃) = tan−1 (
𝐼𝑚[𝒲𝑟(𝑎𝑟; 𝑏𝑥; 𝑏𝑦; 𝜃)]

𝑅ⅇ[𝒲𝑟(𝑎𝑟; 𝑏𝑥; 𝑏𝑦; 𝜃)]
)                    (2.23) 
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This is wrapped phase that ranges between -π and π so unwrapping procedure is 

required to get the phase, which includes real height information. Since the shifting 

parameter 𝑏 is directly related with x and y components, unwrapped phase can be written as: 

 

𝒫(𝑥, 𝑦) = tan−1 (
𝐼𝑚[𝒲𝑟(𝑎𝑟; 𝑏𝑥; 𝑏𝑦; 𝜃)]

𝑅ⅇ[𝒲𝑟(𝑎𝑟; 𝑏𝑥; 𝑏𝑦; 𝜃)]
)                               (2.12) 
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3.   EXPERIMENTAL 

 

3.1. Setup  

 

                The main component of the fringe projection system is the fringe production 

process, which is provided by a source (He-Ne) laser of 632.8 nm wavelength in this study. 

Laser light is expanded about 10 times via optical plano-convex collimating lenses and pass 

through two beam splitters. The optical system is called the Gates interferometers 

[22]. Firstly, expanded and collimated laser beam goes through the diagonal of a cubic beam 

splitter, which means that the cubic beam splitter is rotated exactly by 45 degrees with 

respect to the wave front of  the laser rays, then an equal portion of the laser beam is separated 

into two planes which form a sinusoidal projected fringe pattern [23]. The experimental 

setup is shown in Figure 3.1.  Micrometer stage is used to shift the object on a surface, then 

empty area with fringe patters is captured to use as a reference image.  

 

In order to get a square-pattern and two-dimensional information from the object, the 

second cubic beam splitter is rotated by 90 degrees with respect to the first beam splitter. 

While the first cube generates fringes in y-direction, the second cube generates fringes, 

which is also rotated as the second cube, in x-direction. Fields of the two perpendicular 

patterns superpose with each other to generate the square-shaped pattern, which is 

theoretically similar to four core interferences system in [24]. The images are captured by 

CCD camera, which is oriented at 90 degrees with respect to the reference plane. A 

photograph of the pattern is taken by a CCD camera and is turned into a digital signal. These 

signals are gathered and analyzed by a personal computer for the fringe processing with the 

aid of MATLAB. 

 

To analyze height distribution of a discontinuous object, each region with 

discontinuous height are cropped from the image and topographies of these discontinuous 

heights are obtained by using 2-D continues wavelet transform. After the analysis, every 

topography is combined to reconstruct the total shape of the object. 



18 

 

 

Figure 3.1.  Sketch of our experimental setup. 

 

 

3.2. Gates’ Interferometry and Double Beam-Splitter 

 

A beam splitter is an object used commonly to construct an interferometric setup, 

such as Michelson Interferometer, Linnie interferometer, Spectral interferometry etc. When 

a light beam is incident on a less dense medium with an angle, which is greater than the 

critical angle, it is expected to observe a total internal reflection. If the thickness of the less 

dense medium is crucially decreased, the incident light partially escapes to the forbidden 

regions and is transmitted into the medium after the less dense one. This phenomenon is 

called the optical tunneling [25].  
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Figure 3.2. Gates’ interferometer was sketched by CAD design tool, Tinkercad . 

                               

A famous example of this phenomenon is observed in a beam splitter, which consists 

of two biprisms and a thin film between with a lower refractive index than the biprisms [26]. 

By utilizing this principle, Köster used two biprisms to generate a fringe pattern in 1995 

[27]. Then Gates arranged Köster’s prisms and used beam splitter itself as a fringe pattern 

generator, which enables to design compact, simple and sensitive setup by using it as an 

optical interferometry [28-30]. The main advantage of the Gate’ Interferometer is creating 

two interferometers with relatively π phase shift difference  

 

Figure 3.3. Gates' interferometer shows transmission and reflection of incident rays [30]. 

 

Each beam splitter is placed such that the incoming laser beam splits into two beams 

with equal intensity and symmetric shape Each transmission of light generates a fringe 

pattern since the transmission of the cube. In order to get the square pattern and two-
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dimensional information from the object surface, the second beam splitter is rotated 90 

degrees around the axis of the beam propagation.   

Therefore, the second fringe pattern is also rotated with the cube and superposes with 

the other pattern as seen in Figure 3.4. The greatest advantage of using beam splitters is that 

they enable one to control fringe frequency precisely since the rotation of the cubic beam 

splitters change the fringe frequency [30].                       

 

Figure 3.4. Double beam splitter arrangement for interferometric measurements. 
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4. ANALYSIS 

 

4.1. Algorithm to Separate Fringe Patterns 

 

2-D CWT hinges on techniques that are constructed to demodulate fringes in a single 

image. However, this image may include complex or two-dimensional fringe patterns so as 

to enhance the quality of the topographies of objects. It is possible to extract some specific 

information from a given fringe family in the related dimension. In the case of analyzing 

discontinuous heights, this is achieved by separating overlapped fringes by a separation code 

using 2-D CWT [31]. The idea behind the separation algorithm is ridge extraction. Ridge 

function is directly related to the fringe family as it is modulus maxima. 

 

 

Figure 4.1. A complex fringe pattern [31]. 

 

Figure 4.1 shows complex moiré type fringe pattern to be tested by the fringe 

separation algorithm. This fringe is separated into horizontal and vertical components as 

seen in Figure 4.2.a and 4.2.b, respectively. 
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Figure 4.2.a and 4.2.b:  Horizontal and vertical phase components of separated complex 

fringe pattern.  

 

 

4.1.1.  Ridge Extraction & Construction of a Reliability Map 

 

 There are crucial steps to follow in order to split the fringe patterns into two families. 

Firstly, wavelet transform of signal is taken to obtain 𝒲(𝑎; 𝑏𝑥; 𝑏𝑦; 𝜃) modulus, which is the 

amplitude of the complex array, and it is calculated for each pixel using the formula 2.22 

Then, modulus is constructed as a function of wavelet coefficients, namely the scale 

parameter 𝑎 and angle 𝜃, which is called a scalogram and is a two-dimensional matrix shown 

in Figure 4.3. 
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Figure 4.3. An example of a scalogram with two local maxima related with two fringe 

families. 

 

If one fringe family exists, it is possible to see one peak in the scalogram. However, 

some maxima are divided due to splitting of the peaks, which are regarded as virtual in the 

scalogram. The virtual peak belongs to half part of a local maxima peak. In order to eliminate 

this problem and merge the peak distribution, it is required to cut and translate the map by 

𝜋

2
  rad in the angle axis. Then, the shortest distance between peaks is compared and selected, 

and  a new map is generated with these values by placing them into the exact pixel position 

in the real map. The new formed map is called reliability map.  

 

Several local maxima can appear as parasitic maxima in the scalogram, which should 

be eradicated. The highest reliability value in the map should be detected to generate ridge 

map construction. Starting from this maximum value, one local maxima in the scalogram is 

randomly chosen. Its complex value of wavelet coefficient is accumulated as a gain, and one 

of the adjacent four pixel with the highest reliability value goes through to the same 

procedure and this procedure is repeated for neighboring pixels.  
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 A two-dimensional CWT is used to analyze deformed square shaped fringes. Two 

specimen objects are tested by utilizing double beam splitter arrangement. Second object has 

discontinuous steps, which have 2 dimensional discontinuities in vertical and horizontal 

axes.  

 

                  

Figure 4.4. The photos of the specimen objects, which are produced via a 3-D printer. 

 

Vertical fringes are used to analyze horizontal steps as shown in Figure 4.2 and the 

horizontal fringes are utilized to eliminate higher step ambiguity on the vertical steps.    

 

4.1.2.  Phase Unwrapping Procedure 

 

Because of the nature of arctangent function, obtained phase map ranges between       

-π and π values. Therefore, the right-hand side of the Equation 4.1, which is mentioned 

before in 2-D CWT part, is needed to be unwrapped. 

 

                    𝒫(𝑥, 𝑦) = tan−1 (
𝐼𝑚[𝒲(𝑎;𝑏𝑥;𝑏𝑦;𝜃)]

𝑅𝑒[𝒲(𝑎;𝑏𝑥;𝑏𝑦;𝜃)] 
)                                                                 4.1           

  

 

                𝒫(𝑥, 𝑦) = tan−1 (
𝐼𝑚[𝒲(𝑎;𝑏𝑥;𝑏𝑦;𝜃)]

𝑅𝑒[𝒲(𝑎;𝑏𝑥;𝑏𝑦;𝜃)]
) = 2𝜋𝑓0𝑥 + 2𝜋𝑓0𝑦 + 𝜙(𝑥, 𝑦)                    4.2 
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          Wrapped map includes two terms in Equation 4.2. One of them is 2𝜋𝑓0, where 𝑓0  is 

the carrier frequency, and the other one is the term 𝜙(𝑥, 𝑦), which is the phase term related 

with the real height distribution. After the unwrapping process, the term 2𝜋𝑓0 should be 

removed to obtain the height distribution. This unwrapping process is executed by means of 

personal computer. Deformed fringe signal is captured by a CCD camera and converted into 

digital signal. FT of every row of the image signal is taken and then insert in 2-D CWT 

algorithm in MATLAB [32]. Thus, Fourier transformed 2-D signal and Fourier transformed 

2-D wavelet is multiplied and the integral of this multiplication is taken with the parameters 

𝑎, 𝑏, and 𝜃, which is processed like in Equation 2.8. By using maxima of scaling factor 𝑎𝑟, 

wavelet ridge function is calculated by ridge point. After this step, separation algorithm is 

applied which is mentioned in the previous part. Then, we have two wrapped phases. 

MATLAB codes used in the study are [33] and [34], which are applied to unwrapped phases, 

and 2𝜋𝑓0𝑥 + 2𝜋𝑓0𝑦 + 𝜙(𝑥, 𝑦) is collectible.  

A sample non-deformed fringe pattern is demonstrated in Figure 4.5, and it is analyzed and 

separated into two components as phase1 and phase2, respectively as seen in Figure 4.6.  

Then, the wrapped phases corresponding to these phases are obtained as seen in Figure 4.7.  
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Figure 4.5.  An example of a non-deformed, square shaped fringe pattern. 

 

Figure 4.6.  Horizontal and vertical phase components of separated fringe pattern. 

  



27 

 

 

Figure 4.7.  Wrapped phase maps of separated fringes. 

 

4.1.3.  Removing Carrier Frequency 

 

After obtaining the unwrapped phase, the process to acquire the exact height 

distribution starts with removing 2π𝑓0. Then, continues with extracting the phase 𝜙(𝑥, 𝑦), 

which is related to the object height. Reference image is used to remove the term 2π𝑓0. 𝑓0 is 

a constant directly related to the spatial frequency of the produced fringe pattern. An example 

of a reference image is demonstrated in Figure 4.11. The objects are positioned with the help 

of a micrometer stage, which provides movement in every direction for the object. Object 

shifted to x axis and empty space is filled by non-deformed fringe pattern, which is reference 

image. We captured the image of the reference plane, and the same algorithm is applied, and 

wrapped phase of the reference is illustrated in Figure 4.12.   

  

Figure 4.8. Marked area that is used as a reference plane. 
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4.2.  Results and Discussion  

 

4.2.1.  Flower Shaped Object 

 

The images are captured and processed with the aforementioned algorithm. Due to 

the illumination angle, shadows appear on the captured image, which result in holes in the 

obtained topography. One should be careful about the shadows and try to eliminate them as 

much as possible. The captured image for the object is seen in Figure 4.9. 

 

Figure 4.9. Captured and cropped flower shaped object. 

4.10.a Surface plot of the unwrapped phase map 4.10.b Mesh plot of the unwrapped phase 

map. 

                         Figure 4.10. Unwrapped phase maps for the object. 

 

Wrapped phase map of the object is shown in Figure 4.10 with two different plotting. 

The same procedure is applied on the reference image. Then, MATLAB unwrapping code 
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is applied for these two images. To generate the exact topography of the object, unwrapped 

phase map of the reference image seen in Figure 4.11 should be mathematically subtracted 

from the unwrapped phase map of the object in Figure 4.10. The subtracted phase map to 

get the topography as demonstrated in Figure 4.13. 

 

 

Figure 4.11.  Reference image for the flower shaped object. 

 

Figure 4.12.  Plot of the unwrapped phase map for the reference image. 

 

Figure 4.13. Topography for the flower shaped object after reference subtraction.  
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The fluctuations seen in the topography in Figure 4.14 stem from the error of the 

code. In order to get rid of the extra fluctuations, the size of the image is enlarged twice 

before and after the denoising process. 

 

 

Figure 4.14. Topography of the image with fluctuated surface. 

 

4.2.2. Object with Steps 

 

Figure 4.15. Captured and cropped image of an object with high steps. 

 

In Figure 4.15, cropped and denoised object with high steps is shown. The same 

procedure as before is applied here too. Since heights of the steps are not equal, the number 

of fringes on a single step in x any y directions are variously chosen, which are 13 and 15, 
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respectively. This is achieved by rotating beam-splitter cubes. The topography of the object 

with steps is shown in Figure 4.16. 

 

Figure 4.16.  3D mesh plot of the object with steps. 

 

As justified above, the interference pattern is easily produced by using a double beam 

splitter configuration, which is basically a four-beam interferometer, where a HeNe laser is 

utilized as the light source. It is crucial to transmit the beam almost equally to the two sides 

of the beam splitter cubes. In this way, equally distributed fringe pattern is obtainable. Due 

to the two cubic beam splitters in the experimental setup, we get 4 divided and symmetrical 

fringes, which have enough visibility. Therefore, using one portion of these pattern is enough 

for conducting the experiments. The system is compact and simple when compared to a 

digital fringe projection system or a four-core fiber configuration. Therefore, there is no need 

to any external manufacturing process like an additional projection unit. 

 

In this experimental setup, beam splitters are fixed onto multi axes stages to control 

the angle of the cubes with respect to the incoming beam and consequently the fringe 

frequencies on the screen. It is seen that this system is highly sensitive to the rotations. This 

aspect is the outstanding feature of the experimental setup. Depending on the complexity or 

roughness of the object, one can use the proposed setup to produce thinner or thicker fringes 

in a short interval of time. Thinner fringes are capable of extracting the details of an object, 

while thicker fringes are useful to extract information from rough object surfaces. Most 
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importantly, these are achievable separately on two perpendicular fringe patterns at the same 

time.  

 

In the topography of the object with discontinuous steps, deteriorations can be seen. 

The root of this problem is the shadows at the edge of the steps and resolution deficit. 

Resolution of images is not adequate to carry all information. As a result of this, 

deformations are seen in the Figure 4.16.  In the future work, topographies can be enhanced 

by capturing high resolution images. Also, phase should be calibrated to get the height 

distribution, because the deepest step in the object looks like it is on the same level as the 

reference plane. However, the phase value deviates from its real height. 

 

By its nature, beam splitter causes an extra fringe pattern with fixed frequency. This 

can be also a source of an error for height distribution, because the extra pattern makes fringe 

separation difficult [31]. In a future work, eliminating these additional fringes is also 

considered. Last but not least, surface of the objects illustrated in Figure 4.4 has slightly 

shinny regions in its distribution. This can also be a source of error. 

 

In this study, images are captured with Optoronis Cr600×2 CCD camera at 

256× 256 resolution. These images are analyzed using the software MATLAB and version 

2017b. The object is designed in the online 3D design tool Tinderkad and produced with a 

3D printer.  
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5. CONCLUSION 

  

In this thesis, it is demonstrated that a new setup is developed by using a double beam 

splitter configuration for fringe projection system, which is inspired from Gates’s 

interferometer. The setup accomplishes extraction of height distributions of various non-

specular objects. The main advantage of this system is that it has the ability to adjust fringe 

pattern distribution to get a higher quality topography of the objects.  

 

For the analysis part, two dimensional continues wavelet with morlet mother wavelet is 

mainly explained for separating two fringe families and is demonstrated that it is quite 

adequate to extract the topography of various objects. 

  



34 

 

REFERENCES 

 

1. Xu, Y., “Uniaxial three-dimensional shape measurement with projector 

defocusing.”, Optical Engineering, 51(2), p. 023604, doi:10.1117/1.oe.51.2.023604, 

2012. 

2. Xu, Y., H. Zhao, H. Jiang, and X. Li, “High-accuracy 3D shape measurement of 

translucent objects by fringe projection profilometry.”, Optics Express, 27(13), pp. 

18421-18434, doi:10.1364/oe.27.018421, 2019. 

3. Rey-Barroso, L., F. J. Burgos-Fernández, M. Ares, S. Royo, S. Puig, J. Malvehy, G. 

Pellacani, D. Esipnar, N. Sicilia, and M. V. Ricart, “Morphological study of skin 

cancer lesions through a 3D scanner based on fringe projection and machine 

learning.”, Biomedical Optics Express, 10(7), pp. 3404-3409, 

doi:10.1364/boe.10.003404, 2019. 

4. Takeda, M., and K. Mutoh, “Fourier transform profilometry for the automatic 

measurement of 3-D object shapes.”, Applied Optics, 22(24), pp. 3977-3982, 

doi:10.1364/AO.22.003977, 1983. 

5. Zhao, H., W. Chen, and Y. Tan, “Phase-unwrapping algorithm for the measurement 

of three-dimensional object shapes.”, Applied Optics, 33(20), pp. 4497-4500, 

doi:10.1364/ao.33.004497, 1994. 

6. Woolford, S., and I. S. Burnett, “Toward a one shot multi-projector profilometry 

system for full field of view object measurement.”, IEEE International Conference 

on Acoustics, Speech and Signal Processing (ICASSP), pp. 569-573, 

doi:10.1109/icassp.2014.6853660, 2014. 

7. Abramovici, A., Althouse, W. E., Drever, R. W., Gürsel, Y., Kawamura, S., Raab, 

F. J., ... & Vogt, R. E. (1992). LIGO: The laser interferometer gravitational-wave 

observatory. science, 256(5055), 325-333. 

8. Langenbeck, P. H., “Lloyd Interferometer Applied to Flatness Testing.”, Applied 

Optics, 6(10), pp. 1707-1714, doi:10.1364/ao.6.001707, 1967. 

9. Kart,  T.,  G.  Köseoğlu,  H.  Yüksel and  M.  N. İnci,  “Fourier  transform  optical  



35 

 

profilometry using fiber optic Lloyd’s mirrors”, Applied optics, Vol. 53, No. 35, 

pp. 8175–8181, 2014. 

10. Wathuthanthr, Theory of Lloyd’s Mirror Interferometer, 2012, 

https://www.academia.edu/11430326/Theory_of_Lloyd_s_Mirror_Interferometer, 

accessed in June 2019. 

11. Grattan, K. T., & Meggitt, B. T. (Eds.). (1995). Optical fiber sensor technology 

(Vol.1). London: Chapman & Hall. 

12. Yuan, L., Y. Liu, and W. Sun, “Fiber optic moiré interferometric profilometry.” 

Advanced Materials and Devices for Sensing and Imaging II, 5633, pp. 55-65, 

doi:10.1117/12.570131, 2005. 

13. Easton, Waves and Imaging, 2005, https://www.cis.rit.edu/class/simg712-

01/notes/11-Waves_in_imaging.pdf, accesed in June 2019. 

14. Hernández, I. R., Gustavo Rodríguez, Jorge Luis Flores, and Rumen Ivanov, “The 

2D Continuous Wavelet Transform: Applications in Fringe Pattern Processing for 

Optical Measurement Techniques, Wavelet Theory and Its Applications.” 

IntechOpen, doi: 10.5772/intechopen.74813, 2018 

15. Sayeljey, V., S. K. Kim, and J. Kim, “Moiré effect in displays: A tutorial.”, Optical 

Engineering, 57(3), doi:10.1117/1.oe.57.9.099801, 2018 

16. Wang, Z., J. Ma, and M. Vo, “Recent progress in two-dimensional continuous 

wavelet transform technique for fringe pattern analysis.” Optics and Lasers in 

Engineering, 50(8), pp. 1052-1058, doi:10.1016/j.optlaseng.2012.01.029, 2012. 

17. Reddy, V. K., K. K. Siramoju, and P. Sircar, “Object Detection by 2-D Continuous 

Wavelet Transform.”, 2014 International Conference on Computational Science and 

Computational Intelligence, 1, pp. 162-167, doi:10.1109/csci.2014.34, 2014. 

18. Antoine, J. P., P. Carrette, R. Murenzi, and B. Piette, “Image analysis with two-

dimensional continuous wavelet transform.”, Signal processing, 31(3), pp. 241-272, 

doi:10.1016/0165-1684(93)90085-O, 1993. 

19. Arfken GB, Weber HJ. “Mathematical Methods for Physicists”Academic Press: 

Boston, MA, USA, 2005 



36 

 

20. Yılmaz,  O¨ .  K.,  “Determination  of  height  profile  from  a  two-dimensional  

fringe signal using a two-dimensional continuous wavelet transform”, Turkish 

Journal of Physics, Vol. 41, No. 1, pp. 81–89, 2017 

21. Li, S., X. Wang, X. Su, and F. Tang, “Two-dimensional wavelet transform for 

reliability-guided phase unwrapping in optical fringe pattern analysis.” Applied 

Optics, 51(12), pp. 2026-2034, doi:10.1364/ao.51.002026, 2012. 

22. Gates, J. W., “Reverse-Shearing Interferometry.”, Nature, 176(4477), pp. 359-360, 

doi:10.1038/176359a0, 1955. 

23. Ghosh, N., and K. Bhattacharya, “Cube beam-splitter interferometer for phase 

shifting interferometry.”, Journal of Optics, 38(4), pp. 191-198, doi:10.1007/s12596-

009-0017-6, 2009. 

24. Baumeister, P. W., “Optical Tunneling and Its Applications to Optical Filters.”, 

Applied Optics, 6(5), pp. 897-905, doi:10.1364/ao.6.000897, 1967. 

25. Kasap, S., and R. K. Sinha, (2013) Optoelectronics and photonics: Principles and 

practices, Prentice Hall, Upper Saddle River, New Jersey, USA, 2013. 

26. Drude, P., The Theory of Optics, 1902.  

27. Kõsters, W., “Interferenzdoppelprisma für Messwecke”, German patent, p. 59521, 

1934. 

28. Gao, P., B. Yao, J. Min, R. Guo, J. Zheng, T. Ye, I. Harder, V. Nercissian, and K. 

Mantel, K. “Parallel two-step phase-shifting point-diffraction interferometry for 

microscopy based on a pair of cube beamsplitters.”, Optics Express, 19(3), pp. 1930-

1935, doi:10.1364/oe.19.001930, 2011. 

29. Ribak, E., and S. G. Lipson, “Complex spatial coherence function: Its measurement 

by means of a phase-modulated shearing interferometer.”, Applied Optics, 20(6), p. 

1102, doi:10.1364/ao.20.001102, 1981. 

30. Ferrari, J. A., and E. M. Frins, “Multi-frequency fringe projection profilometry based 

on wavelet transform.”, Optics Communications, 279(2), pp. 235-239, 

doi:10.1016/j.optcom.2007.07.038, 2007. 

31. Pokorski, K., & Patorski, K. “Separation of complex fringe patterns using two-

dimensional continuous wavelet transform”, Applied optics, 51(35), 8433-8439, 

2012. 



37 

 

32. Jacques, L., A. Coron, P. Vandergheynst and A. Rivoldini, The YAWTb toolbox : Yet 

Another Wavelet Toolbox, 2017, http://sites.uclouvain.be/ispgroup/yawtb, 

accessed in June 2019. 

33. Luong, B., Costantini phase unwrapping - File Exchange - MATLAB Central , 

2009, https://www.mathworks.com/matlabcentral/fileexchange/ 25154-

costantini-phase-unwrapping?requestedDomain=www.mathworks.com, 

accessed in July 2019. 

34. Kasim, M. F., 2D Weighted Phase Unwrapping  -  File  Exchange  -  MAT-  LAB   

Central, 2016, https://www.mathworks.com/matlabcentral/fileexchange/ 

60345-2d-weighted-phase-unwrapping?focused=7094234&tab=function, 

accessed in July 2019. 

 

 

 

 

 

 

 

  

http://sites.uclouvain.be/ispgroup/yawtb
http://www.mathworks.com/matlabcentral/fileexchange/
http://www.mathworks.com/

