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Boğaziçi University

2020



iii

ACKNOWLEDGEMENTS

For their supports and motivations during my thesis work, I would like to thank first to

my family and friends. Especially to Meltem Saman, who has consistently encouraged me

to complete this work with a success.

I would like to express my great appreciation to Dr. Orhan Ermiş and Dr. Gürkan Gür
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ABSTRACT

A BLOCKCHAIN BASED GROUP KEY AGREEMENT PROTOCOL

(B-GKAP)

Group key agreement protocols are crucial in the case of multiple parties agreeing on a

common key without a centralized entity. However, the decentralized characteristic of these

protocols causes performance challenges where parties need to communicate and verify other

participants in the group. To overcome this issue, we propose a new approach to the group

key agreement protocols by utilizing Hyperledger Fabric framework as a blockchain plat-

form. To this end, we migrate the communication and verification overhead of the group key

agreement participants to the blockchain network in our developed scheme. This paradigm

allows a flexible group key agreement protocol that considers resource-constrained entities

and trade-offs regarding distributed computation. According to our performance analysis,

participants with low computing resources can efficiently utilize our protocol. In addition,

the secret parameters of the participants are distributed among the isolated participants that

constitute the blockchain network. Thus, the only way for the network participants to com-

pute group keys is to collude maliciously. Furthermore, we have demonstrated that our

protocol has the same security features as other comparable protocols in the literature.
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ÖZET

BLOK ZİNCİRİ TABANLI BİR GRUP ANAHTAR ANLAŞMASI

PROTOKOLÜ

Birden fazla tarafın merkezi bir varlık olmadan ortak bir anahtar üzerinde anlaştığı

durumlarda, grup anahtar anlaşması protokolleri çok önemlidir. Bu protokollerin merkezi

bir sisteme ihtiyaç duymama özelliği, katılımcıların gruptaki diğer katılımcılarla iletişim

kurması ve doğrulaması gereken yerlerde performans sorunlarına neden olur. Bu sorunun

üstesinden gelebilmek için, bir block zinciri platformu olan Hyperledger Fabric çözümünü

kullanarak grup anahtar anlaşması protokollerine yeni bir yaklaşım öneriyoruz. Bu amaçla,

çalışmamızda grup anahtar anlaşması katılımcılarının iletişim ve doğrulama yükünü blok

zincir ağına taşıyoruz. Performans analizimize göre, limitli bilgi işlem kaynaklarına sahip

katılımcılar protokolümüzü verimli bir şekilde kullanabilirler. Ayrıca, katılımcıların gizli

parametreleri, blokzincir ağı üzerinde oluşturmuş olduğumuz birbirinden ayrık katılımcılar

arasında dağıtılmaktadır. Böylece, ağ üzerindeki katılımcıların grup anahtarlarını üretmesinin

önüne geçmekteyiz. Ek olarak, önerdiğimiz protokolün literatürde sunulan diğer protokoller

ile aynı güvenlik özelliklerini sağladığını çalışmamızda gösterdik.
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1. INTRODUCTION

The digitalization of human activities and daily life has become a reality via the emer-

gence of more prevalent and high-performance communications and networking. With the

help of more capable network technologies/standards such as 5G and Software-Defined Net-

working (SDN), innovative and collective solutions which consist of different type of ma-

chines are now much more feasible. Although some of these systems require ultra-reliable

and real-time connectivity such as telesurgery or industrial networks, several systems require

a dynamic environment (e.g. connected vehicles) where interaction between the network en-

tities changes frequently. Moreover, there are some requirements where devices with low

computing power and limited energy resources should operate seamlessly and efficiently

such as wireless sensor networks (WSN). In such systems, while the number of connected

devices increases rapidly, decentralized and efficient secure communication frameworks are

necessary to meet the demand.

As a secure communication facilitator, group key agreement (GKA) protocols where

participants can agree on a common secret key in the insecure channel have gained significant

importance. Starting with Diffie-Hellman [3], where two parties can agree on a secret key,

several protocols have been developed which enable multiple parties to agree on a common

key [4–6]. In these protocols, participants share key agreement parameters with each other

without a single trusted entity. There are several factors which affect the performance of these

protocols, the first one is the way of broadcasting these key agreement parameters and the

second one is validating the identity of participants via verification of received parameters.

To perform better in parameter distribution and verification stages, cluster-based approaches

[6–8] and tree-based methods [5, 9] are introduced.

As a decentralized computing platform, Blockchain technology has recently emerged

starting with ‘Bitcoin’ [1] as a monetary system based on cryptocurrency. The technology is

later decoupled from cryptocurrencies first in Hyperledger Fabric [10]. Hyperledger Fabric

is a generic decentralized application development platform, where transactions history is

shared among peers as computation nodes in the network.
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In our study, we propose a group key agreement protocol called B-GKAP which is an

improved version of KAP-PBC [11] protocol based on the Hyperledger Fabric platform to

improve key computation performance while keeping important security properties of known

group key agreement protocols.

Our main contributions in this thesis are as below:

• To reduce the number of parameter transmission in the protocol, in our proposal, group

key agreement participants communicate with the blockchain network instead of com-

municating with each other. In this way, the number of network transmissions is de-

creased significantly.

• We employ a blockchain application in Hyperledger Fabric, to perform verification of

group key agreement parameters. Therefore, instead of each participant performs veri-

fication of every other participant, we migrate verification operations to the blockchain

network.

• We propose two B-GKAP models which are B-GKAP1 and B-GKAP2. In B-GKAP1

we propose a single network entity as a network participant which follows the protocol

except for the key computation. All the B-GKAP parameters are stored and verified

in this entity. Additional to B-GKAP1, in B-GKAP2, we propose an organization

entity as a network participant, in which we distribute sensitive GKA parameters of

the participants between these entities. Therefore, even if a network participant has

malicious behavior, all of the organizations need to collude to compute the group key.

The outline of this thesis is as follows: in Chapter 2, we discuss the group key agree-

ment solutions and blockchain platforms in literature. Chapter 3 explains our proposed

model B-GKAP in terms of its system model, protocol flow and functions. Later on, in

Chapter 4, we prove that our protocol has the same security features with known group key

agreement protocols. Additionally, we discuss the security of B-GKAP1 and B-GKAP2

models. Last but not least, in Chapter 5, we discuss performance analysis of our models in

terms of communication and computation complexity analysis. Moreover, in this chapter,

we present our simulation results in graphics. Finally, Chapter 6 composes up our findings

in this study, and we discuss possible extensions.
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2. LITERATURE OVERVIEW

In this chapter, we present an overview of the contributions in the literature which are

related to our work. First of all, we go through the relevant group key agreement protocols.

Then, we concisely describe blockchain technology and known applications to render a tech-

nical background. Lastly, we elaborate on the Hyperledger Fabric (HF) [12] platform which

we have selected as the specific blockchain platform to implement and evaluate our protocol.

2.1. Group Key Agreement Protocols

In this section, first, we provide a mathematical background that is common in group

key agreement protocols. Then, we describe the protocols in the literature according to their

capabilities, security features, and usage areas.

2.1.1. Mathematical Background

Definition (Decisional Diffie-Hellman Problem (DDHP)): As stated in [13], p and q are

large prime numbers, where p = 2q+1. Let g 2 Z⇤
p be a generator of some cyclic group of

quadratic residues Gp in Z⇤
p. The two statements below are computationally indifferent from

each other.

• hga,gb,gabi, where a and b are integers randomly and independently selected from Zp.

• hga,gb,gci, where a,b and c are integers randomly and independently selected from

Zp.

Definition (Dynamic Groups): At time t0, let the participant group be U = {U1,U2, . . . ,UN}.

In time t1, the group be U0. In the case of where t0 6= ti and U 6= U0 conditions present, the

group can be considered as dynamic group [11]. The list of dynamic group key agreement

functions are defined as below:
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(i) Join: Let k be number of participants that joins the group. From the group U, partici-

pants Un+1,Un+2, . . . ,Un+k, . . . ,Un+k joins U where k � 1.

(ii) Leave: Let k be number of participants that leaves the group. From the group U,

participants Ui,Ui+1, . . . ,Ui+k leaves U where 0 < k < n.

Definition (Backward Confidentiality): Previously computed group keys cannot be com-

puted by the participants who joined the group [11].

Definition (Forward Confidentiality): Subsequently computed group keys cannot be com-

puted by the participants who left the group [11].

Definition (Asymmetric Group Key Agreement): A group key agreement protocol has asym-

metric property if decryption dk and encryption sk keys of the participants Ui,Uj 2 U meet

the equation dki 6= dk j 6= sk [14].

2.1.2. Static Group Key Agreement Protocols

Group key agreement (GKA) protocols allow multiple participants to agree on a secret

key in an insecure environment [15]. The first key exchange protocol is Diffie-Hellman [3]

where two participants agree on a common key. The security of Diffie-Hellman is based on

discrete logarithm problem [16] which is still the main security structure of the modern GKA

protocols.



5

The Diffie-Hellman protocol is represented in Figure 2.1 with two participants Alice

and Bob:

Figure 2.1. Diffie-Hellman Key Exchange

Although Diffie-Hellman protocol is a simple but powerful protocol for key agreement,

the protocol is vulnerable to man-in-the-middle attacks. This issue is later solved by [17] by

utilizing digital certificates to identify participants.

Ingemarsson et al. propose a conference key distribution system [18] where conference

participants are arranged as a logical ring. Each participant computes a temporary variable

and shares it with the next participant in the ring. For N participants, N�1 round is required

for the key computation.

Burmester et al. have introduced an efficient group key agreement protocol [19] where

only two rounds are required to compute the group key. In the first round, each participant
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produces a temporary parameter and broadcasts it. Next, each participant produces a sec-

ond parameter based on the next and previous parameters of participants and broadcasts it.

Finally, with the last parameter, participants can compute the group key.

2.1.3. Dynamic Group Key Agreement Protocols

The protocols mentioned before are all static group key agreement protocols. In static

GKA protocols, when participants in the group change, the protocol needs to be started from

the beginning. On the other hand, dynamic GKA protocols provide auxiliary operations

(defined in Section 2.1.1) that require much less computation effort such as in [5, 6, 11, 20–

23].

To increase efficiency in group key computation, tree-based group key agreement pro-

tocols are proposed in [5, 9]. Dutta et al. [5] propose a dynamic tree-based group key agree-

ment protocol where participants are hierarchically positioned as a tree structure. In the

lower leaves, subgroup of participants computes group key, and forwards to the participants

at the upper leaves. And this process goes until the common group key is computed in the

root of the tree.

Alternative approaches are introduced by utilizing cluster structures in [6, 8]. Ermis et

al. have proposed a cluster-based dynamic group key protocol called GKAP-MANET [6]. In

this protocol, the participants are grouped as a set of a clusters and each cluster has a cluster

head. Two types of communication occur between participants; first, between participants in

the same cluster and second, between the cluster heads. Therefore, the cluster key is firstly

agreed with the participants in the same cluster while, later on, cluster heads agree on the

common group key.

An asymmetric GKA protocol is proposed by Wu et al. in [14]. In this protocol,

instead of participants agreeing on a symmetric group key, a public key is shared among

the participants. This key is used to verify signatures, and encrypt transmitted messages.

The shared public key corresponds to the private keys of the participants, which can only be

generated by the owner. The participants use their private keys for decrypting and signing
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the messages. This protocol ensures key agreement in a single round.

2.1.4. Security Properties

In GKA protocols, the fault tolerance property is very crucial since it is necessary to

detect and eliminate malicious participants from the key agreement group. In other words,

even if there are malicious participants in the group, they should not be able to affect the key

computation of honest participants. Early protocol examples with this property are [24–26].

In this regard, in Tseng’s protocol [24], every participant keeps a verification matrix

Vi j. After the secret key distribution step, each participant checks the signature of other

participants. According to the result, the verification list is marked and submitted to other

participants. Afterwards, in the fault detection step, participants re-validate the verification

matrix and remove the faulty participants from the key agreement group. Finally, GKA

protocol is started from scratch with the remaining participants.

Forward secrecy (also stated as Perfect forward secrecy) is also a substantial property

that protects against the computation of group keys by malicious actors even if private keys

are compromised. Forward secrecy is utilized in protocols presented in [4, 27, 28].

Dynamic group key operations in group key agreement protocols must provide forward

and backward confidentiality properties defined in Section 2.1.1. Introduced by Ermis et al.,

KAP-PBC [11] protocol provides these properties within its dynamic operations. In join and

leave operations, last participants in the group re-compute the GKA parameters. Therefore,

joined participants cannot compute the former group keys, and leaving participants cannot

generate the subsequent keys. Moreover, KAP-PBC provides ‘Partial Backward Confiden-

tiality’ property, which enables the participants to compute the group keys just before joining

the group.
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2.1.5. Usage Areas

There is a correlation with usage areas of IoT systems and group key agreement proto-

cols. For instance, ad hoc networks are good candidates to utilize efficient GKA protocols.

In this area there are several proposals [6–8, 29], which are based on cluster structure. Since

participants are grouped as clusters, the required group key computation effort is minimized

in these smaller groups.

Wireless sensor networks (WSN) is also another convenient area to implement GKA

protocols. In [30], Lu et al. propose a three-factor GKA protocol which utilizes mutual

authentication with Elliptic Curve Cryptography. Moreover, Challa et al. introduce a GKA

protocol [31] for Wireless Healthcare sensor networks. This protocol provides high security,

low computation and communication costs which are suitable for healthcare applications.

Another GKA protocol is introduced by Tang et al. called PBAKA [32]. This protocol

provides a solution for Body Area Networks (BANs) where multiple bio-sensors collect

health-related information and provide intelligent health-care services. To solve authenticity,

a control unit is used to initiate authentication via collected physiological features from the

BAN sensors. These features are later utilized to negotiate session keys for the sensors.

Another protocol introduced in this area is [33].

Vehicular Ad-hoc Networks (VANET) platform is another promising usage area for the

group key agreement protocols. Islam et al. introduced a GKA protocol [34], which focuses

on controlling city traffic via an efficient protocol. To provide efficiency, password-based

authentication and group key generation are utilized instead of elliptic curve and bilinear-

pairing which have significant computational cost.

2.2. Hyperledger Fabric Platform

In this section, we first briefly explain the blockchain technology and the most common

applications. Subsequently, we account for the Hyperledger Fabric platform components and

its transaction flow.
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2.2.1. Background

The idea of the cryptographically secured chain of blocks was first introduced by Haber

et al. [35]. Later on, a pseudonym called ‘Nakamoto Satoshi’ [1] introduced a new mone-

tary system, namely ‘Bitcoin’, using blockchain technology in 2008. This technology has

enabled trusted decentralized applications by removing the center of trust from the network.

Blockchain networks consist of multiple peers that maintain synced transaction history called

ledgers. In the ledger, transactions are chained and collected in transaction blocks. Addi-

tionally, each transaction block is bounded together as a hash chain.

Figure 2.2. Chain of Transactions [1]

Figure 2.2 shows how transactions are stored in a transaction block. In this depiction,

each transaction contains the owner’s public key, hash, and signature which is signed by the

owner of the previous transaction. Hence, the public key in the transaction can verify the

following transaction.
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Figure 2.3. Chain of Transaction Blocks [1]

In Figure 2.3, the transaction block structure is represented. Each block contains the

hash of the previous block, nonce, and Merkle root. To keep track of the integrity of stored

transactions in the block, Merkle tree structure in [36] is utilized. In this way, any transaction

in the block can be validated efficiently. Peers in blockchain need to solve proof of work

(PoW) challenge to validate and add new transaction blocks. PoW is a consensus protocol

[37] which ensures the immutability of the ledger. Since each block is bounded to each

other by hashes, proof of work should be performed for all following blocks to modify a

transaction in a block. Therefore, altering a transaction becomes harder when new blocks

are added to the ledger.

After Bitcoin, blockchain technology has been used in many other projects. Among

these projects, Ethereum [38] is worth mentioning. Founded by Vitalik Buterin in 2013,

Ethereum introduced a novel method for running applications in its network which is called

smart contract. Smart contracts allow us to run business logic in a decentralized way such

that if any node in the Ethereum network fails the application will still be operational. To

run a smart contract in the network, the owner of the smart contract should pay ether (the

currency of Ethereum) as a fee. In this way, only deterministic smart contracts can run in

the network. As a consensus protocol, Ethereum utilizes proof of work, but with Ethereum

2.0 [39], proof of stake (PoS) [40] protocol will be utilized due to security vulnerabilities [41]

and efficiency problems of PoW.
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2.2.2. The Platform

Hyperledger Fabric (HF) platform [42] is originally contributed by IBM and Digital

Asset, later made an open-source project under Linux Foundation Projects [43]. Unlike

Bitcoin and Ethereum, Hyperledger Fabric does not rely on cryptocurrencies. This feature

enables HF to be a truly decentralized application development environment. Additionally,

both Bitcoin and Ethereum are public blockchain platforms where everyone can interact with

the network. On the other hand, Hyperledger Fabric is a permissioned blockchain platform

that only allows identified participants. Thus, with the identification of the network mod-

ules, Byzantine Fault Tolerant (BFT) [44–46] or Crash Fault Tolerant (CFT) [47] consensus

protocols can be utilized.

Another important feature of HF is that most of the HF components are designed to be

modular such as Membership Service Provider (MSP) and consensus protocol. The modular

design of the HF platform is made possible by its novel execute-order-validate architecture

as shown in Figure 2.5. In other applications [1, 38], order-execute architecture is utilized

where transactions first ordered via a consensus protocol, later on, they are executed by all

peers sequentially as represented in Figure 2.4. On the other hand, in Hyperledger Fabric,

execution of the transactions is performed first to allow running non-deterministic applica-

tions and the ordering phase is separated from the validation step to isolate consensus logic

from the peers. Therefore, the transactions can run in parallel without the necessity to keep

the order. After the consensus is provided by ordering state, the final state of the transaction

can be applied by all nodes individually.

Figure 2.4. Order-Execute Architecture [2]
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Figure 2.5. Execute-Order-Validate Architecture [2]

2.2.3. Fabric Components

Hyperledger Fabric Platform consists of several entities which are explained as below:

• Membership Service Provider (MSP): Membership Service Provider module is what

makes Hyperledger Fabric is a permissioned blockchain platform. In Fabric, MSP

maintains the identities of fabric nodes in the system including clients, peers and or-

derers. The interactions among the fabric nodes are performed by gRPC [48] and

authenticated via mutual Transport Layer Security (TLS). MSP is an abstraction layer

for a modular entity, which can be replaced with other identity providers. Hyperledger

Fabric comes with Fabric CA component as default MSP based on Public Key Infras-

tructure (PKI) with digital signatures.

• Fabric Peer: Peers in Hyperledger Fabric hold and maintain the blockchain ledger.

Prior to the commitment of transactions, Fabric peers simulate these transactions on its

copy of the ledger. In addition to the blockchain ledger, peers also keep the latest status

of the ledger as either in Go LevelDB [49] or in Apache CouchDB [50]. In Fabric, all

peers validate the transaction, but only limited number of peers are chosen as endorser

peers. Endorser peers manage the chaincode where transactions are simulated.

• Fabric Chaincode (Smart Contract): Chaincode is the replacement name of the smart

contract in Hyperledger Fabric. Chaincode should be installed on peers, and instan-

tiated to start the network. In Hyperledger Fabric, only the chaincode is permitted to

modify ledger.

• Fabric Orderer: Orderer maintains a consensus mechanism such as PBFT and Kafka

[51]. This entity decides if the endorsement policy requirements are completed based

on simulation results of the peers. After the simulation step is completed, transactions
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are collected as blockchain blocks. Finally the block sent back to peers and appended

to their ledger. Orderer solves concurrency, double spending and many security related

issues [41].

• Organization: In Hyperledger Fabric, organizations work together to set up common

functionality into the platform. They agree on an identical chaincode to run their col-

lective logic. Organizations in Fabric are partially trusted into each other, hence the

platform enforces to authorize common functionality by utilizing endorsement poli-

cies.

• Channels: Channels are isolated instances of Hyperledger Fabric where ledger and

transactions are separated from each other.

• Endorsement Policy: Endorsement policy defines a set of requirements that should be

performed in the transaction simulation (execution) phase to proceed ordering state.

For instance, after the transaction proposal is sent to multiple peers, a client collects

the endorsement results of the peers. Afterward, a client packs the endorsement results

as invocation request and submits to the Fabric Orderer. The orderer than verifies the

endorsement policy. If a specific set of endorsers are not satisfied, the transaction

proposal is denied. Endorsement policy can be a logical collection of organization

entities, for instance, AND(Org1,OR(Org2,Org3)) where Org1 and one of Org2 and

Org3 should verify the transaction request.



14

2.2.4. Fabric Transaction Flow

Figure 2.6 illustrates a transaction flow in Hyperledger Fabric platform.

Figure 2.6. Hyperledger Fabric Transaction Flow [2]

According to the figure, first, a client submits the transaction request to the endorser

peers (EP1, EP2, and EP3). Later on, the peers simulate the transaction request in parallel

via deployed chaincodes. After the simulation step, endorser peers generate the read-write

set and signs the endorsed transaction. Next, the client collects signed endorsements, create

an actual transaction and sends it to the ordering service. The ordering service validates

the endorsements via endorsement policy, orders collected transactions in a batch, signs

the batch and disseminates to all peers via gossip protocol [52]. Finally, the peers validate

endorsements together with the signature of the orderer and apply transaction output to their

ledgers.
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3. A BLOCKCHAIN BASED GROUP KEY AGREEMENT

PROTOCOL (B-GKAP)

In this chapter, we propose Blockchain Based Group Key Agreement Protocol (B-

GKAP) which is deployed on Hyperledger Fabric (HF) [12] as a blockchain platform. In

the first section, we provide a system overview that explains the positioning of the HF com-

ponents. Afterward, first, we present data flow between B-GKAP network and participants,

and then we give more details about B-GKAP.

3.1. System Overview

B-GKAP is based on the Key Agreement Protocol with Partial Backward Confiden-

tiality, called KAP-PBC [11] but extends and improves it with blockchain aspect. B-GKAP

utilizes Hyperledger Fabric platform in order to increase the key computation performance.

Moreover, in B-GKAP, we migrate the communication among participants to communica-

tion between participants and the network which, therefore, reduces the communication cost

during the key computation in terms of the length of the transmitted messages. Addition-

ally, to verify the variables of the participants, we utilize HF chaincodes. When a variable

is received as an invoke request by the network, the chaincode first performs the verification

operation depending on the variable type. Then if the verification succeeds, the chaincode

approves the operation.
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Figure 3.1. B-GKAP System Diagram.

The overview of B-GKAP is shown in Figure 3.1, which consists of the following main

components:

(i) B-GKAP participants are the entities which compute the group key.

(ii) B-GKAP admin sends initialization command to the network to start up the Hyper-

ledger Fabric platform and setup initial variables. Both B-GKAP participants and ad-

min use HF Software Development Kit (SDK) which enables them to communicate

with the network.

(iii) The peers are responsible for simulating incoming transactions by utilizing B-GKAP

chaincode. Additionally, each peer maintains a blockchain ledger and latest ledger

state. We have utilized HF ledger to store B-GKAP parameters.

(iv) HF Endpoint is the interaction point for B-GKAP participants. It can represent more

than one peer.

(v) B-GKAP Chaincode handles all ledger read-write requests of the participants. The

chaincode performs all the necessary verification operations, and if the request is valid,

it produces read-write set.
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(vi) HF Orderer performs the ordering of the produced transaction outputs sets as a block

of transactions and it disseminates to all HF peers, then peers update their ledger states.

(vii) HF Certification Authority (CA) maintains the identities of the HF components and

the B-GKAP participants.

3.2. General Definitions

In this section, we provide definitions that are used in B-GKAP based on [11, 13, 53].

Definition (Participants): Participant entity definition:

• Each participant is an entity and is represented as Ui.

• The participant list is represented as U = hU1,U2, . . . ,UN+Mi which consist of two

subgroups, |Unetwork|= M, and |Uparticipant |= N.

U = Uparticipant [Unetwork

• The participant group Uparticipant is circular so that UN+i = Ui for some positive 1 6
i 6 N. The order of the participants is known by each participant.

Definition (Public Parameters): B-GKAP uses the following public parameters based on the

definitions in [53]:

• p = 2q+1, where both p and q are large prime numbers.

• g is a generator for Gq = {i2|i 2 Z⇤
p}, where Gq is a cyclic subgroup of quadratic

residues in Z⇤
p.

• T is the time-stamp against replay attack.

Definition (Long-term Public Private Key Pair): The protocol uses the following long-term

key definitions based on [11]. Each entity in B-GKAP holds this key pair.

• xi 2 Z⇤
q is the private key and only the entity that holds the key knows it. This key is

never shared with other entities in the network.

• yi is the public key where yi = gximod p.
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Since our solution is based on KAP-PBC in [11], we assume that long-term public keys

of each participant are issued via Certification Authority (CA). Before transmission, each

variable is signed with long-term private key. Thus, during signature verification stage, iden-

tities of the participants are verified. For the signature method, Schnorr Signature scheme is

utilized [54].

Definition (Schnorr Signature Scheme): Using long term key pairs xi and yi: A message

M can be signed as e,s = SS(xi,yi,M) and the signature products e,s can be verified using

SV (yi,(e,s),M)
?
= True. In these equations, SS stands for ‘Schnorr Sign’ and SV stands for

‘Schnorr Verify’.

Definition (Ledger Functions): Each network participant Ui in Unetwork maintains its own

blockchain ledger and has two functionalities called readLedger(·) and writeLedger(·). A

variable x can be written to the ledger via writeLedger(x), and read from the ledger via

x = readLedger().

3.3. B-GKAP Protocol

In this section, B-GKAP protocol is expressed briefly via the activity diagram. Later

on, B-GKAP1 and B-GKAP2 models are accounted in detail.
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Figure 3.2. UML Activity Diagram of B-GKAP

According to the Figure 3.2, first, each participant Ui 2 U executes Public Key Dis-

tribution Step to distribute temporary public keys. Then, each network participant executes

Public Key Verification and Fault Correction Steps to remove dishonest participants from

the group. Later on, remaining honest participants execute Public Key Query to fetch the

temporary public key of the next participant in the group. Once this step is completed,

each participant executes the Secret Key Distribution Step to send the secret keys to the

network participants. Afterward, network participants perform Secret Key Verification and

Fault Correction steps to exclude malicious participants from the group. Finally, each partic-

ipant performs Secret Key Query and Group Key Computation Steps respectively to compute

the common group key. Besides, when a new participant joins the group or leaves the group,

Participant Join or Participant Leave Steps can be executed.
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3.3.1. B-GKAP1 Model

As represented in Figure 3.3, this model is the basis of B-GKAP implementation. It

has multiple peers that are bounded to a single organization and a single channel.

PARTICIPANT 1

PEER N

PEER 0

HF
 E

ND
PO

IN
T

PARTICIPANT 2

PARTICIPANT N

COMMON HF
COMPONENTS

PEER 1

Figure 3.3. B-GKAP1 System Model.

In this model, there is only one network participant Unetwork that does not involve di-

rectly into the group key computation stage. Instead, the network produces its B-GKAP

participant variables except for the secret key. Therefore, the network can verify the tempo-

rary public and secret keys of the participants.
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Figure 3.4. B-GKAP1 Protocol

Figure 3.4 indicates protocol steps and transmitted variables between B-GKAP net-

work participants and participants in each step.

Public Key Distribution: In this step, each participant Ui 2 U executes following function

in Figure 3.5 to distribute temporary public keys.

generateAndSendPublicKey(·):

1: randomly select t 2 Z⇤
q

2: w = gtmod p

3: Sign w, e,s = SS(y,x,w)

4: Send the message M = {w,e,s,T}

Figure 3.5. Public Key Distribution Function.

Public Key Verification: The network participant Unetwork executes following function in

Figure 3.6 to verify temporary public key of each participant Ui 2 U. If the participant is

verified the key is written to the network ledger.



22

veri f yPublicKeys(·):

1: for all Ui 2 Uparticipant do

2: if SV (yi,e1,i,s1,i,wi)) holds then

3: writeLedger(wi)

4: end if

5: end for

Figure 3.6. Public Key Verification Function.

Fault Correction: The network participant Unetwork removes any participant Ui 2 Uparticipant

whose temporary public key or secret key verification fails from the participant list with the

function in Figure 3.7.

f aultCorrection(·):

1: for all Ui 2 Uparticipant do

2: if Ui is faulty then

3: Ui is removed from the participant group, U0 = U �Ui

4: For the participant Ui, participantLeave(·) is executed

5: end if

6: end for

Figure 3.7. Fault Correction Function.

Public Key Query: After the fault correction step, each participant Ui 2 Uparticipant executes

the following function in Figure 3.8 to query temporary public key of the next participant

(Ui+1).
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queryPublicKey(·):

1: if Unetwork 2 Unetwork then

2: wi+1 = readLedger()

3: Sign temporary public key of Ui+1, en,sn = SS(yn,xn,wi+1)

4: Send the message M = (wi+1,en,sn,T ) to the participant Ui

5: end if

6: if Ui 2 Uparticipant then

7: Receive the message M

8: Check timestamp T

9: Verify signature of the network participant, SV (yn,en,sn,wi+1))

10: end if

Figure 3.8. Public Key Query Function.

Secret Key Distribution: Based on the received temporary public key, each participant Ui in

Uparticipant executes function in Figure 3.9 to generate and send secret key (CKi). The secret

key is encrypted with public key of the network (wn) and signed with long term private key

of the participant (SS(xi,yi,CKi)). Generated values are sent to the network participant.

generateAndSendSecretKey(·):

1: CKi = wti
(i+1) mod p = gtiti+1 mod p

2: Randomly select an integer a 2 Z⇤
q

3: k = (wa
nmod p) mod q

4: Randomly selects a line L(x);

L(x) = xci + CKi mod q,

ci = ga mod p.

5: di = L(k) mod q

6: d0
i = k�di

7: e2,i,s2,i = SS(yi,xi,CKi)

8: Ui sends the M to Unetwork, M = {s2,i,e2,i,ci,d0
i ,T}

Figure 3.9. Secret Key Distribution Function.

Secret Key Verification: The network participant executes function in Figure 3.10 to verify
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secret key of each participant Ui 2 Uparticipant . If the participant is verified, the key is written

to the network ledger.

veri f ySecretKeys(·):

1: for all Ui 2 Uparticipant do

2: Receive message M = {T,e2,i,s2,i,ci,d0
i}

3: Recover the sub-key CKi and checks time-stamp T .

4: k = (ctn
i mod p) mod q

5: di = d0
i � k

6: CKi = di � ci ⇤ k mod q

7: Check the signature of Ui.

8: if SV (yi,e2,i,s2,i,CKi) holds then

9: writeLedger(CKi)

10: end if

11: end for

Figure 3.10. Secret Key Verification Function.

Secret Key Query: After the network participant Unetwork performs fault correction, each

participant Ui 2 Uparticipant queries for secret keys as in Figure 3.11.
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querySecretKeys(·):

1: if Unetwork 2 Unetwork then

2: Randomly select an integer a 2 Z⇤
q

3: ki = (wa
i mod p)modq

4: for all Uj 2 Uparticipant �Ui do

5: Randomly select a line L(x);

L(x) = xcn + CKj mod q,

cn = ga mod p.

6: d j = L(ki) mod q

7: d0
j = ki �d

8: end for

9: Sign CK1...N , e2,n,s2,n = SS(yn,xn,CK1...N)

10: Send message to Ui: M = {s2,n,e2,n,cn,{d0
1,d

0
2, . . . ,d

0
N},T}

11: end if

12: if Ui 2 Uparticipant then

13: ki = (cti
n mod p) mod q

14: for all Uj 2 U �Ui do

15: d j = d0
j � ki

16: CKj = d j � cn ⇤ ki mod q

17: end for

18: Check timestamp T

19: Check the signature of Unetwork: SV (yn,s2,n,e2,n,CK1...N)

20: end if

Figure 3.11. Secret Key Query Function.

Group Key Computation: Each participant by Ui 2 Uparticipant computes the group key as in

Figure 3.12.
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groupKeyComputation(·):

1: for all Uk 2 U do

2: CK = ((CK0
1CK0

2 · · ·CK0
n)mod p)modq = (gt1t2+t2t3+...+tn�1tn+tnt1mod p)modq

3: end for

Figure 3.12. Group Key Computation Function.

Participant Join: When participant Ui is joined to key agreement group Uparticipant =U1,U2-

, ...,UN , the function in Figure 3.13 is called.

participantJoin(·):

1: if Ui 2 {U1,U2, . . . ,UN�1} then

2: Ui re-distributes generateAndSendPublicKey(·), generateAndSendSecretKey(·)

function outputs.

3: end if

4: if Ui 2 {UN ,UN+1, . . . ,UN+K} then

5: Ui performs generateAndSendPublicKey(·) function.

6: Network participants perform f aultCorrection(·)

7: UN�1 performs generateAndSendSecretKey(·) function.

8: Network participants perform f aultCorrection(·)

9: end if

10: for all Ui 2 {U1,U2, . . . ,UN+K} do

11: Ui performs querySecretKeys(·) and groupKeyComputation(·) functions.

12: end for

Figure 3.13. Participant Join Function.

Participant Leave: When a set of participants Ui,Ui+1, ...,Ui+N leaves the group Uparticipant ,

the function in Figure 3.14 is executed. Let the group with leaving participants be U 0
participant .
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participantLeave(·):

1: if |Uparticipant |� |U0
participant |< 2 then

2: The group key computation is terminated

3: end if

4: for each leaving participant Uj 2 U0
participant do

5: non-leaving participant(s) Uj�1 2 Uparticipant � U0
participant , performs

generateAndSendPublicKey(·).

6: Network participants perform f aultCorrection(·)

7: Uj�1 and Uj�2 2Uparticipant �U0
participant perform generateAndSendSecretKey(·).

8: Network participants perform f aultCorrection(·)

9: end for

10: for all Ui 2 Uparticipant �U0
participant do

11: Ui performs querySecretKeys(·) and groupKeyComputation(·) functions.

12: end for

Figure 3.14. Participant Leave Function.
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3.3.2. B-GKAP2 Model

In this model, we propose a new entity called the organization as a network participant.

As presented in Figure 3.15, each organization have multiple peers and an isolated ledger. In

this way, secret key variables can be stored and validated separately by each organization.
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Figure 3.15. B-GKAP2 Model

As shown in Figure 3.16, B-GKAP2 protocol steps and transmitted variables between

the participant and organization entities are presented in each step.
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Figure 3.16. B-GKAP2 Protocol

Public Key Distribution: Each organization Uj 2Unetwork and each participant Ui 2Uparticipant

execute the function in Figure 3.17 to distribute temporary public keys.

generateAndSendPublicKeyv2(·):

1: randomly select t 2 Z⇤
q

2: w = gtmod p

3: Sign w, e,s = SS(y,x,w)

4: Send the message M = {w,e,s,T}

Figure 3.17. Public Key Distribution Function v2.

Public Key Verification: Each organization Uj 2Unetwork execute the function in Figure 3.18

to verify temporary public key of each participant Ui 2 U. According to verification result,

the key is written to the ledger of Uj.
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veri f yPublicKeysv2(·):

1: for all Ui 2 Uparticipant do

2: Check the timestamp T

3: if SV (yi,e1,i,s1,i,wi) holds then

4: writeLedger(wi)

5: end if

6: end for

Figure 3.18. Public Key Verification Function v2.

Fault Correction: Each organization Uj 2Unetwork perform the function in Figure 3.19 to re-

move any participant Ui 2 Uparticipant whose temporary public key or secret key verification

fails.

f aultCorrectionv2(·):

1: for all Ui 2 Uparticipant do

2: if Ui is faulty then

3: Ui is removed from the participant group, U0 = U �Ui

4: For the participant Ui, participantLeave(·) is executed

5: end if

6: end for

Figure 3.19. Fault Correction Function v2.

Public Key Query: In this step, each participant Ui 2 Uparticipant requests for temporary

public key of next participant Ui+1 in the group from the target organization Uj 2 Unetwork

as in Figure 3.20.
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queryPublicKeyv2(·):

1: if Uj 2 Unetwork then

2: wi+1 = readLedger()

3: Sign temporary public key of Ui+1, e j,s j = SS(y j,x j,wi+1)

4: Send the message M to the participant Ui,

M = (wi+1,e j,s j,T )

5: end if

6: if Ui 2 Uparticipant then

7: Receive the message M

8: Check timestamp T

9: Verify signature of Uj, SV (y j,e j,s j,wi+1))

10: end if

Figure 3.20. Public Key Query Function v2.

Secret Key Distribution: Each participant Ui 2 Uparticipant performs the function in Figure

3.21 to generate and distribute secret key (CKi) to target organization Uj 2 Unetwork.

generateAndSendSecretKeyv2(·):

1: Generate CKi: CKi = wti
(i+1) mod p = gtiti+1 mod p

2: Select target organization Uj where j = i/(N/M)+1

3: Randomly select an integer a 2 Z⇤
q

4: k = (wa
jmod p) mod q

5: Randomly selects a line L(x);

L(x) = xci + CKi mod q,

ci = ga mod p.

6: di = L(k) mod q

7: d0
i = k�di

8: e2,i,s2,i = SS(yi,xi,CKi)

9: Sends the message M to Uj: M = {s2,i,e2,i,ci,d0
i ,T}

Figure 3.21. Secret Key Distribution Function v2.
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Secret Key Verification: Each organization Uj 2 Unetwork performs the function in Figure

3.22 to verify secret keys of participants Ui 2 Uparticipant .

veri f ySecretKeysv2(·):

1: for all Ui 2 Uparticipant do

2: Receives message M = {s2,i,e2,i,ci,d0
i ,T}

3: Recover the sub-key CKi and checks time-stamp T .

4: k = (ct j
i mod p) mod q

5: d = d0
i � k

6: CKi = d � ci ⇤ k mod q

7: Checks the signature of Ui.

8: if SV (yi,e2,i,s2,i,CKi) holds then

9: writeLedger(CKi)

10: end if

11: end for

Figure 3.22. Secret Key Verification Function v2.

Secret Key Query: After the fault correction step, each participant Ui 2 Uparticipant performs

the function in Figure 3.23 to query secret keys from all organizations Uj 2 Unetwork.
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querySecretKeysv2(·):

1: if Uj 2 Unetwork then

2: Randomly select an integer a 2 Z⇤
q

3: c j = ga mod p

4: ki = (wa
i mod p)modq

5: for all Uk 2 Uparticipant �Ui do

6: Randomly select a line L(x);

L(x) = xc j + CKk mod q.

7: dk = L(ki) mod q

8: d0
k = ki �dk

9: end for

10: Sign CK1...N , e2, j,s2, j = SS(y j,x j,CK1...N)

11: Send message M to Ui: M = {s2, j,e2, j,c j,{d0
1,d

0
2, . . . ,d

0
N},T}

12: end if

13: if Ui 2 Uparticipant then

14: ki = (cti
j mod p) mod q

15: for all Uk 2 Uparticipant �Ui do

16: dk = d0
k � ki

17: CKk = dk � c j ⇤ ki mod q

18: end for

19: Check timestamp T

20: Check the signature of Uj: SV (y j,s2, j,e2, j,CK1...N)

21: end if

Figure 3.23. Secret Key Query Function v2.

Group Key Computation: Each participant by Ui 2 Uparticipant , computes the group key as

in Figure 3.24.
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groupKeyComputationv2(·):

1: for all Uk 2 Uparticipant do

2: CK = ((CK0
1CK0

2 · · ·CK0
N)mod p)modq = (gt1t2+t2t3+...+tn�1tn+tnt1mod p)modq

3: end for

Figure 3.24. Group Key Computation Function v2.
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4. SECURITY ANALYSIS

In this chapter, we go trough the security features that our base protocol in [11] pro-

vides. Then we provide proofs that B-GKAP also assures the same security level for back-

ward confidentiality and forward secrecy features of dynamic group operations as in the base

protocol. Finally, we discuss security models of B-GKAP1 and B-GKAP2.

4.1. Security Properties of Group Key Agreement Protocols

In this section, we discuss about security properties that recent group key agreement

protocols provide [11, 28, 53].

4.1.1. Authentication

In group key agreement protocols, the authentication feature ensures that identifica-

tions of all involved participants are validated before proceeding to the further protocol steps.

For B-GKAP protocol, as a first level of authentication, all participants are pre-identified with

Hyperledger Fabric Certification Authority (CA) [10] component. As a requirement of inter-

acting with Hyperledger Fabric Network, all participants must use Transport Layer Security

(TLS) certificate to provide identification. The TLS certificate is created via HF Admin prior

to the network initialization. In B-GKAP, we use a common TLS certificate for all the par-

ticipants. For the second level of authentication, long-term key pairs of the participants are

used. All long-term public keys of the participants must be singed via trusted CA. During

variable transmissions between the participants and the network, payload is signed via long-

term private key of the sender entity. Eventually, receiving entity verifies the signature of

the payload by sender’s long-term public key. As the signature scheme, we utilize Schnorr’s

method [54].
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4.1.2. Fault Tolerance

In the course of group key agreement processes, malicious participants should be re-

moved from the group without affecting the operations of remaining honest participants.

In B-GKAP, detection and elimination of faulty participants occurs the during execution of

veri f yPublicKeys(·), veri f ySecretKeys(·) and f aultCorrection(·) functions. If a malicious

participant is detected in veri f yPublicKeys(·) or veri f ySecretKeys(·) functions, related key

of the participant is not written to the ledger. Therefore, f aultCorrection(·) detects the miss-

ing key, and removes related participant from the group.

4.1.3. Forward Secrecy

In order to provide forward secrecy property, our protocol must provide a security

mechanism to protect group keys even if produced private keys are compromised. In case of a

long-term private key of any B-GKAP entity (participant, network, organization) is compro-

mised, computed group keys will not be affected. Because in B-GKAP, long-term keys are

used only for signing the payloads of the B-GKAP functions. Additionally, each entity in B-

GKAP generates their temporary public and private keys in generateAndSendPublicKey(·)

function for every group key computation process. In case the temporary private key of a

participant is compromised, only the corresponding group key is compromised. Given the

statements above, B-GKAP ensures forward secrecy feature.

4.2. Protection Against Security Attacks

In this section, we provide that B-GKAP has no vulnerability against following secu-

rity attacks.

4.2.1. Impersonation Attack

Motivation of impersonation attacks is to take place any of B-GKAP entity during the

protocol execution. To do that, an attacker needs to be able to generate the signature of an

entity. Since our models are based on [11], we also utilize Schnorr signature scheme [54]
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for outputs of B-GKAP functions. As stated in [55] and [56], Schnorr is secure against

impersonation and related key attacks, respectively.

4.2.2. Eavesdropping Attack

The purpose of the eavesdropping attack in B-GKAP is to capture the computed group

key by sniffing the communication between the entities. In order to generate a group key, the

attacker must grab secret keys (CKi) of all participants (CK1,CK2, . . . ,CKN). In B-GKAP,

extraction of secret keys occurs in veri f ySecretKeys(·) and querySecretKeys(·) functions.

In those functions, secret keys are extracted using c, d0 variables of the sender and temporary

private key (t) of the receiver. Since only the participants in the key agreement group U

knows their temporary private key (t), to compute k = (ctmod p) equation, attacker should

try to extract t j from w j = gt jmod p for each participant Uj in U . Eventually, because of

solving this equation is infeasible due to discrete logarithm problem, B-GKAP is secure

against eavesdropping attack.

4.2.3. Replay Attack

During the communication between the B-GKAP entities, an attacker might sniff mes-

sages in the network and re-transmit sniffed messages for malicious reasons such as Denial

of Service (DoS) attacks. To protect against replay attacks, timestamp variable (T ) is added

into the protocol messages. Hence, the receiver entity can check T value against replay

attack attempts.

4.3. Security of Join and Leave Operations

Dynamic group operations enables group key agreement protocols to be more efficient

during re-generation of group keys. In order to overcome security weaknesses stated in [57],

a protocol must ensure forward and backward confidentiality features. Forward confidential-

ity feature assures that further group keys cannot be generated by a participant who lefts the

group. And backward confidentiality feature warrants that previous group keys cannot be

produced by recently joined participants. In the following sections, we prove that Leave and
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Join operations in B-GKAP provide the same security features as [11] assures.

Prior to applying dynamic group operations, let the participant group be Uparticipant =

{U1,U2, U3, . . . ,UN} and the group key be CK = ((gt1t2+...+ti�1ti+titi+1+...+tNt1)mod p)modq).

4.3.1. Join Operation Security

Lemma 1 Under the difficulty of discrete logarithm problem, join operation provides back-

ward confidentiality.

Proof. For the join operation, last participant in the group UN and joining participants should

re-create temporary public and secret keys as stated in participantJoin(·) and in Section 3.2.

In this case, let the joining participants be U 0 = UN+1,UN+2, . . . ,UN+k, thus new group key

is CK0 = ((gt1t2+...+tN�1t 0N+t 0NtN+1+...+tN+kt1)mod p)modq. Since the difference between CK

and CK0 are (gN�1tN+tNtN+1mod p)modq and (gN�1t 0N+t 0NtN+1mod p)modq, joined participants

should find out tN from (gtN�1tN mod p)modq or (gtNtN+1mod p)modq to compute the previous

group key. Since this state enforces joined participants to solve discrete logarithm problem,

join operation of B-GKAP ensures backward confidentiality.

4.3.2. Leave Operation Security

Lemma 2 Under the difficulty of discrete logarithm problem, leave operation provides for-

ward confidentiality.

Proof. For the group U , let U 0 = Ui,Ui+1,Ui+2, . . .Ui+k be leaving participants where U 0 ✓

U . As stated in function participantLeave(·) and in Section 3.2, the group key after the

leave operation is CK0 = ((gt1t2+...+ti�2t 0i�1+t 0i�1ti+k+1...+tNt1)mod p)modq. Since the difference

between CK and CK0 are gti�2ti�1+ti�1ti+titi+1 and gti�2t 0i�1+t 0i�1ti+k+1 , leaving participants should

figure out t 0i�1 from (gti�2t 0i�1mod p)modq to compute subsequent group key. Eventually, this

state enforces leaving participants to solve the discrete logarithm problem. Therefore, the

leave operation of B-GKAP ensures forward confidentiality.
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4.4. Security of B-GKAP Models

In B-GKAP1, all the protocol variables of the participants are stored in the network

entity. The network entity behaves as a participant except for the secret key generation and

key computation. During the network initialization step (generateAndSendPublicKey(·)),

the network generates its own temporary key pairs (tn,wn). Participants use the temporary

public key of the network (wn) to encrypt their secret keys before the submission. Thus, the

network can unveil the secret keys of the participants using its temporary private key (tn).

Additionally, the network also holds its own long-term key pair (xn,yn). These keys are used

for signing the protocol variables that are sent to the participants. Hence, participants can

ensure that they are receiving variables from a trusted entity.

Different than the model B-GKAP1, in B-GKAP2, secret key verification is distributed

among the organizations. Since the ledger of each organization is isolated via the Fabric

channels, the secret keys of the participants are kept isolated as well [58]. Therefore, even

if an organization needs to compute the group key, all the organizations should cooperate

together in a malicious manner. Hence, instead of trusting a single entity, we have distributed

the trust among the organizations.

Moreover, Hyperledger Fabric platform provides storage immutability via blockchain

ledgers. The ledger is distributed among peers, and to change the ledger data, a subset of

peers needs to generate the same output. This feature is forced by endorsement policies.

Additionally, the stored data is decentralized, hence, when a peer is compromised or failed,

the system remains operational.

Definition (Honest-But-Curious Adversary): The honest-but-curious (HBC) adversary is a

lawful participant in a communication protocol who has no other choice than following the

defined protocol, on the other hand, it will attempt to learn all possible information as an

intended recipient [59, 60].

Lemma 3 The existence of network participant identification and agreement on the common

chaincode implementation, leads to the existence of ‘Honest-But-Curious Adversary’ model.
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Proof. In B-GKAP protocol, prior to secret key distribution, identities of network partic-

ipants are verified via Uj 2 Unetwork, SV (y j,e2, j,s2, j,w j) 6= f alse, and secret key CKi of

each participant Ui 2 Uparticipant is encrypted via temporary public key w j of the network

participant Uj 2 Unetwork. Thus, network participants can only receive intended parameters

which are wi,si,ei,d0
i ,ci for Ui 2 Uparticipant . Moreover, in Hyperledger Fabric, the only way

to interact with the ledger is via Fabric chaincodes. Since implemented chaincode has de-

fined a set of functionality and is shared among the peers, the network has no other choice

but to follow the B-GKAP protocol. Given the properties, B-GKAP fits the HBC adversary

model.
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5. PERFORMANCE ANALYSIS

In this chapter, the performance analysis of B-GKAP models is presented. First, we

start with the complexity analysis of the system. This analysis includes two components:

communication complexity and computational complexity. Key computation and dynamic

group operations of two B-GKAP models are also explained. Later on, our simulation envi-

ronment is described. In the simulation environment section, hardware and software compo-

nents of our testing environment are detailed. In the simulation cases and results section, the

performance results of the system are presented. This section includes the effects of Hyper-

ledger Fabric Orderer parameters, performance comparison of B-GKAP versus conventional

implementation, and finally performance comparison of B-GKAP1 and B-GKAP2 models.

5.1. Complexity Analysis

Before discussing the simulation-based results, it is crucial to perform the complexity

analysis of the system. Therefore, we can better understand how the system behaves under

specific conditions.

5.1.1. Communication Complexity Analysis

In this section, we account communication complexity analysis of B-GKAP. The com-

munication complexity is represented as Ct .

5.1.1.1. Hyperledger Fabric (HF) Transaction. In HF, each transaction should travel be-

tween different components of HF. Firstly, a transaction request is generated by a B-GKAP

participant. This transaction should first reach to the endorser peers. After the endorser

peers simulate and validate the transactions, endorsements are collected by the participant.

Thereafter, the actual transaction is sent to the orderer. Lastly, the orderer broadcasts the

transaction to all of the peers.
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Given the information above;

• Let the number of endorser peers be Nep.

• Let the total number of peers be Np.

In order to be a HF transaction considered finished, it first goes backs and forth to the

endorser peers 2⇥Nep, it then goes to the orderer. Finally, the transaction is disseminated

to all of the peers, Nep. In total, the communication complexity of a HF transaction is 2⇥

O(Nep +1+Np) which can be simplified as: Ct = O(2⇥Nep +Np).

5.1.1.2. Analysis of B-GKAP Functions. In B-GKAP, variable transmission occurs between

participants (Ui 2Uparticipant) and network participants (Uj 2Unetwork). Since all transmitted

variables are modular base of p and q, length of a variable is equal to its modular base.

Table 5.1. Transmission length of each B-GKAP function in bits.

Function Variables Transmission length

generateAndSendPublicKey(·) |w|+ |e|+ |s| (2q+ p)

queryPublicKey(·) |w|+ |e|+ |s| (2q+ p)

generateAndSendSecretKey(·) |c|+ |d0|+ |e|+ |s| (3q+ p)

querySecretKeys(·)
|{d0

1, . . . ,d
0
N}�d0

i |+

|c|+ |e|+ |s|
(N +1)q+ p

Table 5.1 provides network transmission length of each function in B-GKAP.

5.1.1.3. B-GKAP1 Key Computation. During key computation in B-GKAP1, several vari-

able transmissions between participants and the network occur. While in protocol function

generateAndSendPublicKey(·), variable transmission occurs two times for each participant,

and for queryPublicKey(·), generateAndSendSecretKey(·), querySecretKeys(·) functions,

variable transmission occurs for each participant Ui 2 Uparticipant .
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Table 5.2. Communication cost of B-GKAP1 key computation for each participant.

Function Ct

generateAndSendPublicKey(·) |4q+2p|

queryPublicKey(·) |2q+ p|

generateAndSendSecretKey(·) |3q+ p|

querySecretKeys(·) |(N +1)q+ p|

According to Table 5.2, communication cost for each participant is |(N + 10)q+ 5p|

and the total communication complexity is: Ct = O(N)|(N +10)q+5p|.

5.1.1.4. B-GKAP2 Key Computation. Let M be organization count for Ui 2 Unetwork. In

B-GKAP2, for the functions generateAndSendPublicKeyv2(·) and querySecretKeysv2(·),

network transmission occurs for each organization.

Table 5.3. Communication cost of B-GKAP2 key computation for each participant.

Function Ct

generateAndSendPublicKeyv2(·) |4Mq+2Mp|

queryPublicKeyv2(·) |2q+ p|

generateAndSendSecretKeyv2(·) |3q+ p|

querySecretKeysv2(·) |(N +2M�1)q+Mp|

According to Table 5.3, communication cost for each participant |(N + 7M + 4)q+

(3M+2)p| bits and communication complexity is: Ct = O(N)|(N+7M+4)q+(3M+2)p|.

5.1.1.5. B-GKAP Join. For the join operation of B-GKAP, when a new participant joins the

group, the group key should be re-computed. Therefore, for joining K participants, K par-

ticipants should receive temporary public key of the network, K +1 participants should per-

form generateAndSendPublicKey(·) function, K+2 participants execute queryPublicKey(·)
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function, and K +2 participants should perform generateAndSendSecretKey(·). Finally, all

participants should perform querySecretKeys(·).

Table 5.4. Communication cost of B-GKAP join operation for K joining participants.

Function B-GKAP1 Ct B-GKAP2 Ct

generateAndSendPublicKey(·) (2K +1)|2q+ p| (2K +1)|2Mq+Mp|

queryPublicKey(·) (K +2)|2q+ p| (K +2)|2q+ p|

generateAndSendSecretKey(·) (K +2)|3q+ p| (K +2)|3q+ p|

querySecretKeys(·) (N +K)|(N +1)q+ p| (N +K)|(N +2M�1)q+Mp|

Based on Table 5.4, in B-GKAP1, 5⇥K+N +5 network transmissions occurs. Even-

tually, the communication complexity of the join operation is Ct = O(N +K).

For B-GKAP2, generateAndSendPublicKeyv2(·) and querySecretKeysv2(·) are exe-

cuted for each organization. The transmission cost of other functions are same with B-

GKAP1. Therefore, there are total M(3⇥K+N+1)+2⇥K+4 network transactions. If we

consider that M is negligible against K and N, communication complexity is Ct = O(N+K).

5.1.1.6. B-GKAP Leave. In leave operation of B-GKAP, for the leaving participant Ui, par-

ticipant Ui�1 executes generateAndSendPublicKey(·). Later on, participants Ui�1 and Ui�2

perform queryPublicKey(·). Moreover, participants Ui�1 and Ui�2 execute generateAnd-

SendSecretKey(·). Eventually, all participants execute querySecretKeys(·).

Based on Table 5.5, for B-GKAP1, total network transmission is N + 5 and commu-

nication complexity of leave operation is Ct = O(N) where N is the remaining participant

count in the group.

For B-GKAP2, generateAndSendPublicKeyv2(·) and querySecretKeysv2(·) are exe-

cuted for each organization. For the organization count M, total number of network opera-

tions is M(N +1)+4, and communication complexity is Ct = O(N).
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Table 5.5. Communication cost of B-GKAP leave operation.

Function B-GKAP1 Ct B-GKAP2 Ct

generateAndSendPublicKey(·) |2q+ p| |2Mq+Mp|

queryPublicKey(·) |4q+2p| |4q+2p|

generateAndSendSecretKey(·) |6q+2p| |6q+2p|

querySecretKeys(·) N|(N +1)q+ p| N|(N +2M�1)q+Mp|

5.1.2. Computation Complexity Analysis

In computational cost analysis, we consider modular exponential operations as princi-

pal factor for calculating our results since other operations such as XOR, multiplication, and

addition can be regarded as negligible in comparison with modular exponential operations.

Time cost of these operations can be stated as Texp = O(xy mod z). In this section compu-

tational cost is represented as Cc. On the other hand, ‘Block Size’ parameter of HF Orderer

also affect the performance of the system. For the ‘Block Size’ of B, and the number of

GKA participants N, N/B blocks will be processed by the orderer in each parameter distri-

bution round. Therefore, the network additionally perform (N/B)Texp modular exponential

operations during the following operations.

5.1.2.1. B-GKAP1 Key Computation. Key computation complexity analysis is expressed

for B-GKAP participants and the network for this model.

Table 5.6. Computation complexity of B-GKAP1 for each participant.

Function Cc

generateAndSendPublicKey(·) O(1)Texp

queryPublicKey(·) O(1)Texp

generateAndSendSecretKey(·) O(1)Texp

querySecretKeys(·) O(1)Texp
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According to the Table 5.6, for each participant, total key computation complexity of

the listed functions can be calculated as 2Texp+2Texp+4Texp+3Texp = 11Texp which can be

simplified as Cc = O(1)Texp.

Table 5.7. Computation complexity of B-GKAP1 for the network.

Function Cc

generateAndSendPublicKey(·) O(1)Texp

queryPublicKey(·) O(N)Texp

veri f yPublicKeys(·) O(N)Texp

veri f ySecretKeys(·) O(N)Texp

querySecretKeys(·) O(N)Texp

As specified by the Table 5.7, for the network, total key computation complexity of

the listed functions can be calculated as 2Texp +2NTexp +2NTexp +3NTexp +4NTexp = (2+

11N)Texp which can be simplified as Cc = O(N)Texp.

5.1.2.2. B-GKAP2 Key Computation. In this section, for the organization count M, key

computation analysis is described for each participant and organization respectively.

Table 5.8. Computation complexity of B-GKAP2 for each participant.

Function Cc

generateAndSendPublicKeyv2(·) O(1)Texp

queryPublicKeyv2(·) O(1)Texp

generateAndSendSecretKeyv2(·) O(1)Texp

querySecretKeysv2(·) O(1)Texp

Based on Table 5.8, for each participant, total number of modular exponential opera-

tions during key computation of the listed functions is 2MTexp+2MTexp+4Texp+3MTexp =
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(7M+4)Texp. Since the organization count M is significantly less than the participant count,

N, we can simplify this statement as Cc = O(1)Texp.

Table 5.9. Computation complexity of B-GKAP2 for each organization.

Function Cc

generateAndSendPublicKeyv2(·) O(1)Texp

queryPublicKeyv2(·) O(N)Texp

veri f yPublicKeysv2(·) O(N)Texp

veri f ySecretKeysv2(·) O(N)Texp

querySecretKeysv2(·) O(N)Texp

According to Table 5.9, for each organization, total key computation complexity of the

listed functions can be calculated as 2Texp+(2N/M)Texp+2NTexp+(3N/M)Texp+4NTexp =

(N(6M+5)/M+2)Texp . If we consider M is negligible compared to N, the expression can

be simplified as Cc = O(N)Texp.

5.1.2.3. B-GKAP Join Operation. During join operation, let the number of participants

joining the group be K and participants be UN+1,UN+2, . . . ,UN+K . As stated in Section 3.2,

to join K participants into the group, K participants should fetch temporary public keys from

the network, K +1 participants should perform generateAndSendPublicKey(·) function and

K+2 participants should execute generateAndSendSecretKey(·). And finally, K+N partici-

pants should perform querySecretKeys(·). For both B-GKAP1 and B-GKAP2 models, since

computational complexity of each function is O(1)Texp, the complexity of join operation is

Cc = O(1)Texp as well.

While in join operation of K participants, the network participant should execute genera-

teAndSendPublicKey(·) for K participants, veri f yPublicKeys(·) for K+1 participants, veri f y-

SecretKeys(·) for K +2 participants. And finally for K +N participants, the network should

run querySecretKeys(·) function. As defined in key computation analysis, for B-GKAP1

and B-GKAP2 models, the total cost of these function execution for K joining participants
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is Cc = O(K +N)Texp.

5.1.2.4. B-GKAP Leave Operation. During leave operation, let the leaving participant be

Ui, as stated in Section 3.2, Ui�1 executes generateAndSendPublicKey(·), and generateAnd-

SendSecretKey(·) is performed by Ui�1 and Ui�2. Lastly, the remaining participants exe-

cute querySecret-Keys(·). For the participants, computation complexity of each function is

O(1)Texp. Therefore, for B-GKAP1 and B-GKAP2 models, complexity of leave operation is

Cc = O(1)Texp.

When a participant Ui leaves from the group, the network executes veri f yPublicKeys(·)

for Ui�1, and veri f ySecretKeys(·) for Ui�1 and Ui�2. And finally, the network executes

sendTemporaryPublicKey(·), querySecretKeys(·) functions for the all participants in the

network. In this case, for the models B-GKAP1 and B-GKAP2, leave operation complexity

for the network is Cc = O(N)Texp

5.2. Key Computation Complexity Comparison

In this section, we compare the communication and computation complexity of known

GKA protocols. During the comparison, we take into account the complexity of each par-

ticipant. Moreover, for the communication complexity, only transmitted messages by each

participant are considered.
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Table 5.10. Communication complexity of known protocols.

Protocol Cc of a participant

Protocol in [26] (N +1)|q|+2|p|

Protocol in [27] (N +2)|q|+4|p|

Protocol in [28] (N +2)|q|+4|p|

Protocol in [23] (N +2)|q|+4|p|

KAP-PBC [11] (N +4)|q|+2|p|

GKAP-MANET [6] 2|q|+5|p|

B-GKAP 5|q|+2|p|

According to Table 5.10, B-GKAP is more efficient than most of the protocols in terms

of communication complexity for each participant. Additionally, in terms of total commu-

nication complexity, the other protocols perform network transmission to every other partic-

ipant in the key agreement group. On the other hand, B-GKAP participants only transmit

messages to the limited number of network participants. In other words, when the number

of participants increases in B-GKAP, the number of network transmissions increases linearly

instead of exponentially.

Table 5.11. Computation complexity of known protocols.

Protocol Cc of a participant

Protocol in [23] O(N)Texp

Protocol in [5]  O(log3 N)Texp

Protocol in [9]  O(log2 N)Texp

Protocol in [61] O(log2 N)Texp

GKAP-MANET [6] O(N)Texp

KAP-PBC [11] O(N)Texp

B-GKAP O(1)Texp
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In Table 5.11, the key computation complexity of known protocols is specified. In

terms of computation complexity for each participant, our protocol performs better than

other protocols. The reason is that in B-GKAP, participants only perform verification of

the network participants. In other protocols, each participant performs verification of other

participants.

5.3. Simulation Environment

In order to simulate B-GKAP, we have used a machine with Intel R� CoreTM i7-4870HQ

(2.2GHz ⇥ 4), L2 Cache 256KB, L3 Cache 6MB, 16GB RAM and 256GB HDD space.

The operating system of the machine is macOS Mojave (version 10.14.16). Since Hyper-

ledger Fabric network components runs on docker containers, we have used Docker Engine

(version 18.06.1-ce-mac73 (26764) stable) [62], and to orchestrate the containers we have

utilized Docker Compose (version 1.22.0) [63]. We have used Hyperledger Fabric version

1.4.3 [64]. For both the B-GKAP chaincode and B-GKAP participant simulation, we have

used Go programming language (version 1.13.3 darwin/amd64) [65].

5.4. Simulation Cases and Results

In this section, we present several simulation cases and results. As the first case, ef-

fects of batch size and batch count parameters are investigated. Later on, we compare key

computation performance of B-GKAP with our base GKAP model [11]. Lastly, performance

results of B-GKAP1 and B-GKAP2 models are presented.

During simulations, for each participant in B-GKAP, a new process is started. After all

processes are up and running, participants can start interacting with B-GKAP network. We

measure the time for the whole key computation operation and for each step in B-GKAP. At

the end of each simulation, these results are written to a file. To determine key computation

time, we compute the mean key computation times for each participant. Additionally, the

whole operation is repeated multiple times before being presented in the graphs.
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5.4.1. Effect of Batch Timeout and Batch Size

During our experiments, we investigate three parameters which are ‘Batch Timeout’,

‘Batch size’ and group key agreement participant count. ‘Batch Size’ and ‘Batch Timeout’

are two main parameters of Hyperledger Fabric (HF) Orderer component [66]. Before the

transactions are ordered, the orderer either waits for certain amount of transactions or waits

for a timeout counter to proceed ordering and disseminating collected transactions to the

peers. In this case, the number of maximum transactions in batch is controlled by ‘Batch

Size’, and the timeout can be controlled by ‘Batch Timeout’ parameters.

For this experiment, we have used B-GKAP1 model and we set participant count as

20, 50, 80 and for ‘Batch Timeout’ parameter as 1, 2, 3 seconds. Finally, we set ‘Batch

Size’ sequentially as 10, 20, . . . , 100.

Figure 5.1. Effect of Batch Size and Batch Timeout Parameters with 20 participants.
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Figure 5.2. Effect of Batch Size and Batch Timeout Parameters with 50 participants.

Figure 5.3. Effect of Batch Size and Batch Timeout Parameters with 80 participants.
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In B-GKAP, for functions veri f yPublicKeys(·) and veri f ySecretKeys(·), the orderer

needs to perform ordering and dissemination operations. In case of B-GKAP1, the number

of incoming transactions for each function is equal to the participant count. Therefore, if

we set participant count as N and batch size as K, the orderer needs to perform ordering

operation for N/K times if no timeout occurs.

Figure 5.1, 5.2, and 5.3 show that, until the ‘Batch Size’ parameter reaches to the

participant count, number of incoming transactions to the orderer exceeds the batch size.

Therefore, the orderer processes the transactions as multiple batches. And if there is not

enough transaction to fill the last batch, the orderer waits for the ‘Batch Timeout’, which

therefore increases the key computation time. When the batch size reaches to the participant

count, group key computation time drops down to the minimum level if the timeout does not

occur. The reason is that it is possible to process all the transactions in a single transaction

block which increases the efficiency of the system. Finally, after the ‘Batch Size’ parameter

surpasses the participant count, incoming transactions cannot fill the ‘Batch Size’ and the

orderer must wait for the ‘Batch Timeout’. This condition explains that when the ‘Batch

Timeout’ parameter increases, group key computation time increases accordingly.

5.4.2. Conventional versus B-GKAP Implementation

To implement the conventional method in [11], for each group key agreement partic-

ipant, a new process is started and an HTTP server is established. Port numbers for HTTP

servers are determined by basePort + participantId. For instance, if the base port is 2000,

and the participant count is 100, port numbers are 2000,2001,2002, . . . ,2100. Thus, partici-

pants use HTTP GET and POST methods to broadcast and get the protocol variables.

Let n be the participant count. Figure 5.4, compares the performance of conventional

and B-GKAP methods. In this comparison, we have used model B-GKAP1. As the orderer

parameters we have set batch size to n, and for the batch timeout we set 5 seconds. The setup

of B-GKAP is two peers and one orderer.
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Figure 5.4. B-GKAP and Conventional Model Comparison

The results show that group key computation time of the conventional method in-

creases exponentially as participant count increases. On the other hand, group key com-

putation of B-GKAP increases linearly. First of all, communication complexity of the con-

ventional method is O(N2) [11], in comparison, communication complexity of B-GKAP is

O(N) as stated in Section 5.1.1. For the computational complexity, the conventional method

has O(N) for each participant while B-GKAP has O(1) for each participant and O(N) for the

network.

5.4.3. Comparison of B-GKAP Models

In this section, we compare key computation performance of B-GKAP1 and B-GKAP2

models. As simulation parameters, batch timeout is set to 5 seconds, and batch size parameter

is set to N (participant count) for B-GKAP1 and N/2 for the B-GKAP2. In B-GKAP2, secret

keys of the participants are divided between each organization, and batch size parameter

affects each organization individually. Network setup of B-GKAP1 is two peer one orderer,

on the other hand, for B-GKAP2, each of the two organizations has two peers.
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Figure 5.5. B-GKAP1 and B-GKAP2 Model Comparison

Figure 5.5 shows that group key computation time for two B-GKAP models are lin-

early increased when number of participants increased. B-GKAP2 has taken more time to

compute group keys. There are two reasons for this result. The first reason is that each

participant has to connect to the endpoints of two organizations simultaneously, therefore

load of the network increased. The second reason is that, for N participant number, the or-

derer needs to process N incoming transactions as two transaction blocks for the function

veri f yPublicKeys(·).
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6. CONCLUSION AND FUTURE STUDY

In this study, we present B-GKAP which employs Hyperledger Fabric blockchain plat-

form to speed up the group key computation. With our protocol, the computation overhead of

the group key agreement participants is decreased significantly by migrating the verification

of the distributed parameters to the network participants. Thus, participants with low com-

putation power and energy resource can easily adopt our protocol. Additionally, we have

reduced the number of network transmissions for group key computation, leave and join

operations. Hence, for the IoT systems where participant group changes frequently, our so-

lution provides more efficient dynamic operations. Furthermore, with the B-GKAP2 model,

we have distributed secret keys of the participants among the organizations via Fabric Chan-

nels. In this way, malicious organizations cannot generate group keys without colluding.

Hyperledger Fabric platform provides immutable storage property for stored variables

via blockchain ledger. Additionally, in Fabric, not only valid but also invalid transactions are

stored in the ledger. This feature makes our system auditable for further investigations.

Another important feature of Hyperleger Fabric is its modular architecture [67]. For

instance, its consensus protocol can be replaced with more efficient methods as a future

extension. Moreover, with its modular membership service provider, various authentication

schemes can be utilized depending on the usage area of the protocol.

Additionally, to overcome the problem of colluding organizations, Fabric chaincode

runtime environment, and ledger storage can be transferred to a Trusted Execution Environ-

ment (TEE) [68–71]. In this way, even organizations cannot access the secret keys of the

participants.
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