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ABSTRACT

MAINTENANCE OPTIMIZATION OF MULTIPLE

COMPONENT SYSTEMS USING PROBABILISTIC

GRAPHICAL MODELS

Maintenance optimization is a di�cult task in today’s manufacturing environ-

ment, especially when the system has multiple components. Thus, it is essentially

critical to cope with the uncertainty and the complexity of the systems while deciding

on the correct maintenance actions. Taking maintenance decisions in a planning hori-

zon is one of the well-known stochastic sequential decision problems under uncertainty.

Partially Observable Markov Decision Processes (POMDPs) are powerful tools

for such problems under uncertainty in partially observable stochastic environments.

However, since their state spaces can quickly explode with the increasing number of

variables, POMDPs may not be preferable for addressing maintenance problems of

multi-component systems. Factored representations are used for POMDPs by exploit-

ing the inherent factored structure of the problem. This study aims to demonstrate

how to formulate the maintenance problem of systems consisting of partially observ-

able deteriorating components using factored POMDPs on two maintenance problems.

The first one is an experimental model to perform in depth sensitivity analyses and

to compare with some predefined policies proposed in the study. The second model

belongs to a real-life implementation in thermal power plants. Sensitivity analyses are

conducted under various scenarios with several settings. The results show that factored

POMDPs are advantageous in modeling, solving and analyzing of maintenance prob-

lems with multi-components. Furthermore, the generated factored POMDP policies

perform considerably better than the myopic policies.
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ÖZET

OLASILIKLI GRAFİKSEL MODELLERLE ÇOK

BİLEŞENLİ SİSTEMLERİN BAKIM ENİYİLEMESİ

Bakım optimizasyonu, çok bileşenli sistemler için günümüzün üretim dünyasında

zor bir görevdir. Bu nedenle, doğru bakım eylemlerine karar verirken sistemlerin belir-

sizliğini ve karmaşıklığını dikkate almak kritik öneme sahiptir. Bir planlama ufkunda

bakım kararları vermek, belirsizlik durumunda stokastik sıralı karar verme problem-

lerinden biridir.

Kısmen Gözlenebilir Markov Karar Süreçleri (POMDPler), kısmen gözlemlenebilir

stokastik ortamlarda belirsizlik altındaki problemler için güçlü araçlardır. Bununla bir-

likte, durum uzayları değişken sayısı ile hızlı bir şekilde büyüyebildiğinden, çok bileşenli

sistemlerin bakım problemlerini ele almak için POMDPler tercih edilmeyebilir. Bu tarz

problemler için, problemin doğasında halihazırda mevcut olan faktörlü yapıdan yarar-

lanarak faktörlü POMDPler kullanılır. Bu çalışma, iki ayrı bakım probleminde faktörlü

POMDPler kullanılarak kısmen gözlemlenebilir dinamik bileşenlerden oluşan sistem-

lerin bakım probleminin nasıl formüle edileceğini göstermeyi amaçlamaktadır. İlki,

detaylı duyarlılık analizleri yapmak ve çalışmada önerilen bazı tanımlanmış politika-

larla karşılaştırmak için deneysel bir modeldir. İkinci model termik santrallerde gerçek

hayattaki bir uygulamaya aittir. Duyarlılık analizleri, çeşitli ayarlarla çeşitli senary-

olar altında gerçekleştirilmiştir. Sonuçlar, faktörlü POMDPlerin çok bileşenli bakım

sorunla-rının modellenmesinde, çözümünde ve analiz edilmesinde avantajlı olduğunu

göstermek-tedir. Ayrıca, oluşturulan faktörlü POMDP politikaları miyop politikalar-

dan önemli ölçüde daha iyi performans göstermiştir.
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1. INTRODUCTION

Maintenance optimization and maintenance strategy selection play an essential

role in cost optimization with multi-component complex systems. All kinds of systems

used in the manufacturing sector, such as machines, equipment, vehicles have a life

cycle, and they need to be maintained during their life cycles. As technology evolves,

systems have had a more complex structure employing evolving automated technologies

and industry, which has increased maintenance costs. Coping with increased main-

tenance costs requires e�cient and e↵ective maintenance planning. Therefore, the

importance of the development of e↵ective maintenance strategies has increased.

1.1. Basic Concepts of Maintenance Management

A concise taxonomy of the maintenance strategies is presented in Figure 1.1 [1].

The maintenance strategies can be classified into two categories based on the repair

timing: reactive maintenance and proactive maintenance [2].

In reactive or unplanned maintenance, the maintenance activity is performed

after a fault, breakdown, or stop occurs to bring the component to its normal oper-

ating condition. Reactive maintenance can be divided into two subgroups: corrective

maintenance and emergency maintenance. Corrective maintenance is achieved to bring

the system to a functional level after a fault has occurred in the system. In corrective

maintenance, there is no further e↵ort to keep equipment running in optimal condition.

Emergence maintenance is an immediate maintenance activity to prevent unexpected

and severe consequences [3]. Although reactive maintenance does not require any

investment cost (installation of measurement systems), unplanned production down-

time results in increased costs. This method, therefore, is suitable for systems with

non-critical equipment or where system performance is not entirely dependent on the

reliability of any equipment [4].
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Figure 1.1: Taxonomy of maintenance strategies [1].

Over time, traditional unplanned or reactive maintenance could not meet the de-

mands of e↵ective maintenance and is replaced by proactive maintenance. In proactive

maintenance, maintenance activities are scheduled without waiting for system failure.

However, unnecessary maintenance activities can result in higher maintenance costs.

Thus, to avoid high maintenance costs, the maintenance activity based on observed

measurements has come to the forefront. In other words, acting with the ”right main-

tenance principle at the right time” is the first step towards developing more e↵ective

maintenance policies. Proactive maintenance activity is examined under two main

headings: preventive maintenance and predictive maintenance.

In preventive maintenance, the maintenance activities are achieved at specified

intervals based on the probability of the equipment failure. Preventive maintenance is a

type of scheduled maintenance activity, intending to improve equipment life and reduce

unplanned downtime. Regularly scheduled maintenance helps to avoid possible failures

and it results in lower maintenance costs. The downside of preventive maintenance is an

unnecessary shutdown or replacement of working equipment. Furthermore, preventive
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maintenance cannot eliminate reactive repairs [5].

Preventive maintenance can be grouped into three categories: constant-interval

maintenance, age-based maintenance, and imperfect maintenance, as shown in Fig-

ure 1.1. Constant-interval maintenance is the repair of the system or components at

pre-determined time intervals. The intervals are determined based on the system failure

time. The components are checked regularly, and any identified situation or condition

in the system that may cause failure is rectified. In the case of system failure out of

these pre-determined times, corrective maintenance is also performed [6].

Age-based maintenance is performed at the time of a specific age t. If the com-

ponent fails before reaching a certain age t, corrective maintenance is performed and

the coming maintenance is planned after t unit. Thus, the number of maintenance in-

tervals is reduced when compared to the constant-interval maintenance [7]. Imperfect

maintenance considers that the system state lies somewhere between the best state and

the worst state. The system will not move to its best state after maintenance, but it

will be younger. Imperfect maintenance considers the uncertainty of the current state

of the component when planning the next actions. The maintenance of deteriorating

systems is often imperfect [8]. The minor maintenance activity discussed in Chapter

5 is an example of imperfect maintenance. There, minor maintenance involves small

maintenance activities that only require labor costs. It requires much less cost than

perfect maintenance; however, it does not provide a gu arantee for improvement.

Predictive maintenance di↵erentiates from the preventive maintenance in schedul-

ing the maintenance activities. In the preventive maintenance, maintenance activities

are achieved on predetermined schedules, whereas in the predictive maintenance, main-

tenance activities are adaptively determined. Predictive maintenance is divided into

two types as reliability-centered maintenance and condition-based maintenance.
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Reliability-centered maintenance concentrates on maintaining the functional ca-

pability of the equipment with respect to cost, safety or environmental goals [9]. The

primary purpose is to minimize maintenance costs by focusing on the essential func-

tions of the system and eliminating unnecessary maintenance [10]. Condition-based

maintenance is a strategy in which maintenance decisions are determined by moni-

toring the system state. That is to say, in condition-based maintenance, decisions

are made based on the measurements taken from continuously monitored system pa-

rameters [11]. The benefits of condition-based maintenance are an early warning of

possible failures, improved accuracy in failure prediction and e↵ective inventory con-

trol. However, an obvious disadvantage of performing condition-based maintenance is

employing monitoring equipment and di�culty of managing decision-making strate-

gies [1]. The main focus of the thesis is to generate e↵ective maintenance policies for

the maintenance optimization problems of dynamic systems under the condition-based

maintenance strategies, using factored POMDPs.

1.2. Maintenance of Multi-Component Systems

Maintenance optimization is a di�cult task in today’s manufacturing environ-

ment, especially when the system has multiple components, and there exists uncer-

tainty. As technology evolves, systems become more complex, having more compo-

nents and thus causing the plan of the maintenance activities harder. That is why

maintenance management is an essential and critical process for companies with multi-

component systems. Since there are di↵erent maintenance procedures for each compo-

nent, selecting a maintenance procedure for the entire system is complicated. Modeling

the dependencies among the components is an essential point while studying the main-

tenance of a system because they directly a↵ect the maintenance policy. Since each

piece of equipment can have several maintenance procedures, it is di�cult to choose

the appropriate maintenance strategy for the entire system. Besides, by increasing the

number of components a↵ecting each other, the maintenance optimization problem is

getting more di�cult. Therefore, the interdependent structure among the components

of the system should be defined correctly.
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A multi-component system has three types of dependencies: stochastic, structural

and economic [12]. Stochastic dependency refers to the e↵ect of the degradation or

failure of a component on the lifetime distribution of other components. The stochastic

dependency of multi-component systems can be examined in three di↵erent types [12].

Type I failure interaction means that the failure of a component can trigger the failure of

the other components a probability [13]. In Type II failure interaction, if a component

has a failure, this a↵ects the failure rate of the other components [14]. In Type III

failure or shock damage interaction, failure of a component causes a random amount

of damage (shocks) on the other components [15]. Structural dependency requires

the replacement of the working components simultaneously, even if some of them are

not in their fail state [16]. Structurally dependent components cannot be repaired

independently of each other. Therefore, this is not a dependency on failure. It is a

dependency on the repair. If there is economic dependency among components when

the components are maintained together, savings or surpluses may incur the total

maintenance cost compared with the total of individual costs. In general, economic

dependency refers to the joint maintenance of some parts that can be economical than

performing them disjointly [17].

1.3. Solution Approaches to Maintenance Problems

Papakonstantinou [18] defines five approaches for categorizing maintenance pro-

cedures of aging construction infrastructures. Inspired by this study, it is possible

to split maintenance planning approaches into five types of predictive maintenance

strategy:

The first group includes approaches based on the simulation of various prede-

termined policies. According to the simulation results, the scenario with the best

performance which has the minimum cost or cost/benefit ratio is selected. The disad-

vantage of this approach is that although it performs better than other alternatives,

the selected policy is hard to be optimal.
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The second category has pre-determined safety or risk threshold approaches. The

fundamental logic of this approach is to perform maintenance when the simulation

model reaches the reliability or risk threshold. In these approaches, the system com-

ponent and unit breakdown ratio are assumed beforehand. Accordingly, reliability or

risk threshold is determined. Thus, optimum maintenance duration is set to keep the

reliability above a predetermined threshold. The third category is the approach where

default reliability threshold policies are determined with the optimization techniques.

In these operations, after identifying maintenance time based on reliability threshold

policies, maintenance activities are recommended by using optimization techniques.

The fundamental idea in the fourth category approach is to simulate the dis-

ruption based on a steady-state stochastic model. The optimum threshold value is

determined for each maintenance activity under defined target function. Perfect in-

spections are assumed and related activities will take place when a condition state is

passed throughout the structure life-cycle. This approach’s main weakness is that the

system cannot be fully observed with perfect observations and the unrealistic assump-

tion for various real-life problems. Besides, it may be challenging to find the optimal

global solution in non-convex areas.

The main interest in this thesis lies in the fifth category and it covers models based

on stochastic control and optimal sequential decisions. Generally, these approaches are

on a discrete state-space and determine the best maintenance activities by considering

real-time data. An MDP is a formulation of the sequential decision problem involving

uncertainty where the underlying system state is fully observed [19]. However, MDP

models are inadequate, especially for real-life problems where the system state is not

completely observed. In such systems, the system state can be estimated via obser-

vations that are collected with some signals or measurements. However, the accuracy

of these observations is also probabilistic. That is why MDPs have been extended to

POMDPs by providing information regarding the system’s state through noisy sensors.



7

1.4. Probabilistic Graphical Models

Probabilistic graphical models (PGMs) are powerful frameworks for encoding

probability distributions over complex domains under uncertainty. PGMs intersect

graph theory and probability theory and provide a flexible framework to model large

numbers of random variables interacting with each other. This section introduces the

fundamental concepts of the several types of probabilistic models which can be used

for representing deterioration and dependencies among system components such as

Bayesian networks (BNs), dynamic Bayesian networks (DBNs), Markov decision pro-

cesses (MDPs), partially observable Markov decision processes (POMDPs) and factored

partially Markov decision processes (Factored POMDPs).

Bayesian Networks are used to describe causal relations between the elements

of the system using conditional probability distributions. BNs are directed acyclic

graphs (DAGs) in which the variables are represented by nodes and the conditional

relationships between variables are represented by directional arrows [20]. BNs consist

of two main parts: The qualitative part specifies the probabilistic dependencies between

the variables represented as a graph, and the quantitative part defines the conditional

relationships identified in the qualitative part. BNs are used to explain the dependency

between the components of the system that has failed in decision-theoretic trouble-

shooting problems [21]. Reliability is another area where BNs are used frequently

[22]. Dynamic Bayesian networks (DBNs) are extended BNs, including the temporal

dimension [23]. A DBN is composed of a series of time slots, each of which includes the

same BN to represent dynamic behavior between random variables. Temporal arrows

indicate the temporal probabilistic dependencies between variables in di↵erent time

slices. The graphical structure provides an easier way of specifying this conditional

independence. Recently DBNs are also used for decision-theoretic trouble-shooting

problems, dependability and maintenance domains [24].

The Markov decision processes (MDPs) provide a basis to model sequential

decision-making problems in probabilistic domains [25]. MDPs are the extensions of
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Markov chains by a number of actions, and state-based rewards. In an MDP model,

at each step, an agent in a stochastic world observes the state in the environment as

input and determines the action to be selected as the output. The action performed by

the agent returns a reward and at the same time provides a stochastically transition

to a new state.

Partially observable Markov decision processes (POMDPs) are the extensions of

MDPs, where the state of the system is not fully observable. A POMDP provides a

framework for modeling probabilistic decision-making problems under partial observ-

ability. In such systems, the system state can be estimated via observations that are

collected with some signals or measurements [18]. POMDPs are applied widely in

robotics, health informatics, artificial intelligence and maintenance domains [26].

POMDPs are limited to solve problems with large state spaces. Factored POMDPs

are variants of POMDPs where variables are represented compactly via data struc-

ture representations such as decision trees (DTs) [27] and algebraic decision diagrams

(ADDs) [28] to reduce the computational complexity. ADDs have conditional inde-

pendence and context-specific independence that allow representing probability and

utility tables in smaller sizes [29]. Factored POMDPs have been widely used to design

dialogue management, assistive technology and human-robot interaction and active

sensing [30]. Factored POMDPs are particularly suited for maintenance problems

of multi-component systems because of the inherent factored structure of such prob-

lems [26].

1.5. Motivation and Contribution of the Thesis

In recent years sequential decision-making problems under decision making have

been studied extensively in maintenance problems. Maintenance optimization of multi-

component systems along a planning horizon is a complex problem because it requires

a joint decision of when to make maintenance and what to do at that maintenance

time. Since these two decisions are dependent, it is hard to define a predefined policy
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for such problems. Although maintenance optimization in a dynamic environment can

be modeled as such a sequential decision problem, POMDPs are not widely used for

tackling maintenance problems of multi-component systems because their state spaces

grow exponentially with the increasing number of components. Factored representa-

tion of POMDPs, however, allows the complexity of states to be simplified by exploit-

ing the inherent factored structure of maintenance problems. That is why the thesis

concentrates on handling two di↵erent maintenance problems of partially observable

multi-component dynamic systems to investigate the usability and appropriateness of

factored POMDP frameworks for such maintenance problems in terms of modeling,

solving and analysis.

To the best of our knowledge, there exists no application of maintenance problems

through factored POMDPs in the literature which is the main motivation of this study.

We focus first on solving an experimental maintenance problem of a multi-component

system in a factored partially observable setting by exploiting factored representations

and modeling. Relying on the conditional independence in the factored model, we

show how the state transition complexity in a POMDP is reduced by factoring in

multi-component systems. Then we apply our knowledge to formulate a real-life main-

tenance problem a regenerative air heater (RAH) system using factored POMDPs.

We obtain policies solving the multi-component experimental maintenance problem

and also regenerative air heater problem with a factored POMDP solver and perform

in-depth sensitivity analyses. Moreover, we develop some myopic predefined policies

under reactive and proactive maintenance strategies and compare their performances

with the ones obtained by factored POMDPs. The results show promising results both

for the experimental model and the real-life system.

The two maintenance POMDP models tackled have di↵erences in the following

aspects. The first problem has four independent components which are similar in terms

of costs and aging. All have two degrading states in addition to the default states

which are full working and failure. The second model is from a real-life maintenance

problem and have six components. There exist stochastic dependencies in some of
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them. The components di↵er significantly in maintenance costs, durations and aging.

Futhermore, there exists exogenous variables reflecting the environmental uncertainty.

Although the sensitivity analyses performed on the experimental POMDP model give

consistent results in all scenarios, some of the cases in the real-life maintenance problem

do not give qualitative policies. However, it should be noted that factored POMDPs

are convenient in terms of modeling due to the inherent factored structure of multi-

component systems. Because of this, they enable respectively easy formulation and

also easy structural changes in the model which would be troublesome if flat POMDPs

was to be used.

The rest of this thesis is organized as follows. Chapter 2 briefly overviews the

related work on applying the POMDP framework to the maintenance problem. Chapter

3 introduces the theoretical background of POMDPs. The performance comparison of

selected POMDP solvers is presented in Chapter 4. Chapter 5 covers the modeling

backgrounds and the results of an experimental maintenance problem using POMDPs.

Chapter 6 focuses on the problem of maintenance model implementation for a real-

life thermal power plant. Finally, Chapter 7 gives conclusions and future research

directions.
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2. LITERATURE REVIEW

This chapter presents the literature relevant to the concept of this thesis. In this

thesis, a partially observable Markov decision process, which is one of the state-of-art

sequential decision-making frameworks is used to model and solve the maintenance

problems. That is why a brief history of the development of POMDPs and related

works of the maintenance applications using POMDPs are provided. Furthermore, this

thesis focuses on addressing the maintenance problem in a factored partially observable

setting. Thus, applications using factored POMDPs are also presented.

2.1. Historical Development of POMDPs

At the heart of maintenance, planning and decision-making are required. E↵ec-

tive planning and decision-making ensure the improvement of the whole process and

the decrease of costs. Decision theory defines how the decision-maker should make

decisions based on its priorities. Decision-theoretical planning [31], which is the com-

mon working area of operations research and artificial intelligence, focuses on decision

making under uncertainty. Operations Research provides a mathematical basis for

quantitatively assessing decisions that enable the best decisions to be determined in

terms of perceived benefits or e↵ectiveness in achieving the given objectives. On the

other hand, in artificial intelligence, agents perceive their environment and make deci-

sions using various search techniques to maximize their chance of successfully achieving

their goals. MDPs are an essential framework for modeling sequential decision-theoretic

planning. Bellman [25] develops dynamic programming (DP), a recursive method to

solve sequential decision problems under uncertainty. Bellman also develops the value

iteration algorithm as a DP method. Howard [32] introduces the idea of policy it-

eration with the average reward for solving infinite horizon problems. A POMDP is

the generalization of an MDP allowing imperfect information about the system states.

An agent selects an action from the action set based solely on noisy information in

each decision period. The agent remembers its past observations and decisions. This
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is called “all history” and it is di�cult to process and keep it since it expands over

time. Astrom [33] points out that belief states are enough to summarize the whole

history without loss of optimality. Thus, POMDPs become belief-state MDPs, which

are a particular case of the continuous MDP through a continuous space containing

the probability values instead of discrete state space [34].

Sondik, in his dissertation [35] and in subsequent paper [36], is the first to address

and resolve the computational di�culties associated with POMDPs. In these studies,

it is proven that for finite horizon POMDPs, the continuous belief state MDP obtained

has a piece-wise linear convex value function at each period. He develops a one-pass

algorithm to compute the optimal policy and value function for POMDPs on the finite

horizon. Besides, Sondik [37] develops a policy-iteration algorithm exploiting exact

value function updates to compute "-optimal policies. This algorithm is later improved

by Hansen [38].

Monahan [39] provides comprehensive coverage of the theories, models, and al-

gorithms dealing with POMDPs. In this study, a wide range of models are discussed

in areas such as learning and optimal stopping, quality control, internal audit and

machine maintenance within the POMDP framework. Moreover, in this study, he

proposes an enumeration algorithm to compute the optimal policy and value function

for POMDPs on the finite horizon. The main idea of this algorithm is to generate

all possible next-horizon vectors and to eliminate the useless ones. Papadimitriou ve

Tsitsiklis [40] discuss the computational complexity of POMDPs. The main problem

of the optimal policy existence for finite POMDPs is proven to be PSPACE-complete.

Cheng [41] proposes two new exact algorithms called relaxed region and linear

support algorithms. These algorithms build on Sondik’s idea; however, they have

fewer restrictions. Littman [42] presents the witness algorithm for solving discounted

finite-horizon POMDPs exactly using value iteration. Cassandra et al. [43] implement

an incremental pruning algorithm with the main idea of combining the Monahan’s

enumeration algorithm and the witness algorithm.
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Recently, several computational and design challenges for the solution of POMDPs

lead to the development of various solution algorithms and procedures. For instance,

a series of approximations can achieve a near-optimal result. There are many approx-

imate POMDP solution methods in the literature. These include MDP-based heuris-

tics [44, 45], grid-based methods [46–49], point-based methods [50–52], history-based

methods [53] and policy search methods [54]. This study focuses, in particular, on the

point-based approaches.

Point-based approaches gain increasing popularity in solving large-scale POMDPs.

Due to the remarkable progress through sampling the belief space and approximate

computing solutions, state-of-art point-based solvers can solve hundreds of states [55].

Pineau [50, 56] develops a point-based value iteration algorithm (PBVI) which com-

putes the value function only for a limited belief space, accessible from the initial belief

state and iteratively added new points to the set as needed. Spaan [51] proposes the

Perseus algorithm which is similar to the PBVI algorithm, but instead of updating all

belief points in every iteration, it updates only unimproved belief points. Since Perseus

updates a small subset of beliefs each time, it can approach a policy quicker. Smith

and Simmons [52] presents heuristic search value iteration (HSVI), which uses heuris-

tics based on the value function’s higher and lower limits to collect the belief points.

Kurniawati [55] implements successive approximations of the reachable space under

optimal policies (SARSOP), exploiting the idea of optimally accessible belief spaces to

increase computational e�ciency.

POMDPs su↵er from the curse of dimensionality [34] and curse of history [56].

The former means that the size of the state space grows exponentially with the num-

ber of states, whereas the latter one refers to the exponential growth of the number of

action-observation histories with the planning horizon. Thus, POMDPs are limited to

address problems having large state spaces. To overcome the curse of dimensionality,

factored representations have been proposed for systems having inherent factored struc-

tures. In a classical POMDP representation, the system is represented by a single node

that has multiple states. However, factored POMDPs are e�cient tools for reducing
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the computational complexity since variables are represented compactly via data struc-

ture representations such as decision trees (DTs) [57] and algebraic decision diagrams

(ADDs) [28]. Poupart [58] presents symbolic Perseus, which is an updated version of

Perseus to handle the factored POMDP models. Smith and Simmons propose [59] sym-

bolic HSVI, which is a factored version of the heuristic search value iteration (HSVI)

algorithm for solving the factored POMDP models.

This thesis concentrates on showing how to formulate the maintenance problem

of systems consisting of partially observable deteriorating components with factored

POMDPs and to build successful maintenance strategies for such systems. That is

why ready-made POMDP solvers that are able to solve the maintenance models at

hand are investigated. Table 2.1 provides a summary of the most frequently used

solvers available in the literature. All solvers can be compiled in GNU/Linux and

Apple OS-X environments.

2.2. Applications of POMDPs

POMDPs are applied in a wide variety of di↵erent real-life problems. In this

section, an overview of selected applications is given. Robotics are one of the most

widely used application fields which includes navigation and localization of robots

[65–69], visual tracking [70], adaptive sensing [30, 71] and robot-assisted health care

[72, 73]. Another application domain of POMDPs is health informatics which covers

treatment prescription of heart disease [74], kinds of cancer [75], Parkinson’s disease [76]

and assistance of disabled people [77]. There has also been work on the use of POMDPs

in inventory control [78], dynamic pricing strategies [79] and marketing campaigns [80].

POMDPs are less prevalent in the domain of maintenance than other probabilistic

graphical approaches because of their high operational complexity. However, POMDPs

o↵er state-based maintenance policies that minimize operating costs and maximize the

machine’s production capacity. Early theoretical works studied by [81] and [82] are

pioneering in POMDP modeling. Monahan’s survey [39] presents an overview of the
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Table 2.1: POMDP solvers.

Solver Developer Language
Last

Update
Algorithms

POMDP-solve

[60]
Cassandra T. C 2015

Enumaration

Two Pass

Linear Support Algortihm

Witness Algorithm

Incremental Pruining

MADP [61] Oliehoek F. et al. C++ 2017

Enumaration

Incremental Pruining

Perseus

ZMDP [62] Smith T. C++ 2009

FRTDP

HSVI2

RTDP

LRTDP

APPL [63]

National

University of

Singapore

C++ 2012

SARSOP

DESPOT

MCVI

JULIA

POMDP [64]

Stanford

Intelligent

Systems

Laboratory

Julia 2018

QMDP

FIB

SARSOP

AEMS

POMCP

DESPOT

MCVI

Perseus [51] Spaan M. Matlab 2005 Perseus

Symbolic

Perseus* [58]
Poupart P.

Matlab

Java
2009 Symbolic Perseus

* uses factored representations.
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models and algorithms dealing with POMDPs. Machine replacement is also discussed

within the scope of this study. After these contributions, in literature, the number of

articles that provide theoretical frameworks for the management of the maintenance

has increased [83–85].

Papakonstantinou and Masanobu present a comprehensive study of two-part for

planning structural inspection and maintenance. In the first part, they perform an

extensive literature survey in the field of scheduling and maintenance planning through

dynamic programming and POMDPs [18]. In the second part, they apply theory from

the first part and obtain maintenance and inspection policies for a corroding reinforced

concrete structure [86].

Madanat et al. [87] adopt the latent Markov decision process (LMDP) for the

maintenance scheduling problem of highway-pavement networks. LMDP is an up-

dated version of the MDP by considering di↵erent condition states obtained from vi-

sual inspections considering measurement errors. In [88], a bridge inspection model is

developed for structural maintenance in infrastructure systems to address the imper-

fect assessment of the damage conditions due to inspection errors. The same authors

develop a model considering fatigue and corrosion as the degradation processes of a

highway bridge [89]. They also show how to formulate a POMDP model for risk-based

bridge inspection maintenance as a later work [90].

Ivy and Nembhard [91] combine statistical quality control (SQC) and POMDP to

determine optimal maintenance policies of deteriorating systems in the case of incom-

plete information. SQC methods are employed to describe observation distributions

for the POMDP by simulating the real world. Memarzadeh and Pozzi [92] propose

adaptive maintenance planning based on the POMDP and inspection scheduling based

on Value of Information quantification heuristics to gather information for civil infras-

tructure problems. Aldurgam and Du↵uaa [93] use POMDP models to create policy

graphs allowing the decision maker to asses the best maintenance action and speed

setting for a multi-state, multi-stage machine maintenance problem.
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2.3. Applications of Factored POMDPs

There has been work on the use of factored partially observable settings in liter-

ature. Factored POMDPs have been widely used to design the dialogue management

module of spoken dialogue systems. In dialogue systems, the control process is compli-

cated because automatic speech recognition is not a very secure process and therefore,

the state of the speech is unknown. Therefore, several studies are carried out using

decision-making models on dialogue management through factored POMDPs. Bui et

al. [94] show how to model e↵ective dialogue systems for a single-slot navigation dia-

logue problem and to develop an emotional dialogue model using factored POMDPs.

William et al. [95] present a factored representation for defining POMDPs to handle

the spoken dialogue management for buying train tickets. [96] explains how POMDPs

can provide a mathematical structure for modeling available uncertainty in spoken dia-

log systems for booking flights. The assistive technology and human-robot interaction

problem have recently become a subject for increasing research interest. Assistive tech-

nologies address the problem of elderly people by guiding an older adult using audio

or video. Hoey et al. [97] provide guidance of patients su↵ering from Alzheimer’s using

factored POMDPs. Jean et al. [98] propose a POMDP model for action scheduling and

identification of human error during activities of daily living. Taha et al. [99] adopt

POMDPs to model a disabled person’s interaction with a robotic wheelchair. Table 2.2

contains a summary of POMDP applications, grouped by the algorithm used, domain

area and subject.
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Table 2.2: POMDP applications by domain and method used.

Paper Method Algorithm Domain Subject

Ellis and Corotis (1995) [88] POMDP One-Pass Maintenance Structural Planning

Reyes et al. (2009) [100]
Factored

MDP
SPUDD Maintenance Power Supply Systems

Papakonstantinou and

Shinozuka (2014) [86, 101]
POMDP Perseus Maintenance Structural Planning

Sheng and Feng (2014) [102] POMDP Perseus Maintenance Power Supply Systems

Pozzi et al. (2014) [103] POMDP SARSOP Maintenance Wind Farms

Memarzadeh and Pozzi (2016) [104] POMDP SARSOP Maintenance Infrastructure Systems

Lin et al. (2016) [102] POMDP One-Pass Maintenance Power Supply Systems

Papakonstantinou

Memarzadeh (2017) [105]
POMDP

SARSOP

Perseus

HSVI

Maintenance Structural Planning

Ghandali et al. (2018) [106] POMDP
Perseus

Incremental Pruining
Maintenance Sustainability

Morato et al. (2018) [107] POMDP SARSOP Maintenance Wind Farms

Papakonstantinou et al. (2018)

[108–110]
POMDP

SARSOP

Perseus

ZMDP

Maintenance Structural Planning

Kim et al. (2008) [111]
Factored

POMDP
Symbolic HSVI AI Dialogue Systems

Williams et al. (2005) [95]
Factored

POMDP
Symbolic Perseus AI Dialogue Systems

Müller et al. (2012) [112]
Factored

POMDP
Symbolic Perseus AI Assistive Technologies

Hoey et al. (2007) [113]
Factored

POMDP
Symbolic Perseus AI Assistive Technologies

Araya-Lopez et al. (2010) [114] POMDP Pomdp-Solve AI Robotic

Wang et al. (2013) [115]
Factored

POMDP
Symbolic Perseus Ecology Bird Migration

Rout et al. (2014) [116] POMDP Pomdp-Solve Ecology Invasive Species

Erdoğdu et al. (2011) [117]
Factored

POMDP
Symbolic Perseus Genetic Gene Expression

Capitan et al. (2011) [118]
Factored

POMDP

Symbolic Perseus

SARSOP
Robotic Navigation

Küçükyazıcı et al. (2015) [119] POMDP Pomdp-solve Health Personalized Treatment
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3. METHODOLOGY

The main focus of this thesis is to model maintenance problems in realistic settings

through POMDPs. Besides, the complexity of the states is simplified by exploiting the

factored structure that is inherent to maintenance problems. Maintenance management

is one of the sequential decision-making processes under uncertainty. Such problems

can be solved by mathematical formulation provided by MDPs and POMDPs. That

is why, in this chapter, an overview of the MDPs and POMDPs and their solution

methods are provided. The basics of factored representations in POMDPs are also

covered.

3.1. Sequential Decision-Making Processes

Sequential decision-making processes are a wide field of study which includes ap-

plications in operations research, artificial intelligence, maintenance and robotics [18].

A sequential decision process involves an agent to maximize the reward by performing

the appropriate actions. The agents interact with the external environment at certain

time intervals. After each action taken by the agent, the environment changes in a

probabilistic way. At each step, the agent observes the state of the environment as

input and immediately determines the action to be selected as the output. The most

commonly used models of sequential decision processes are MDPs and POMDPs.

3.2. Markov Decision Processes

MDPs are the extension of Markov chains by a number of decisions, actions and

state-based rewards. In an MDP model, the interaction of the agent with the envi-

ronment is given in Figure 3.1. The agent’s major aim is to determine an appropriate

action policy to optimize the expected total reward. At any state s, the agent selects

an action from the action set. The action taken by the agent returns a reward and

provides a stochastic transition from the current state to a new state. A typical MDP
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model is given in Figure 3.2 where squares, circles and diamonds represent the action,

the state and the reward, respectively. The reward is dependent on the state, previous

state and the action, while the state is dependent on the previous state and action.

Figure 3.1: Interaction of an agent with the environment in an MDP model.

Figure 3.2: A typical MDP.

3.2.1. Formulation

An MDP can be defined by four-tuple: < S, A, T , R >

• States: System state space S is a set of all possible states. A state is the

definition of the environment at any point in the horizon.

• Actions: Action state space A is a set of all alternative actions. The agent’s

main goal is maximizing its reward by performing appropriate actions. At each

step an agent cannot take more than one action.

• Transition Function: Transition function T (s0|s, a) = Pr(s0|s, a) that deter-

mine the agent’s next state distribution s0, with Pr(s0|s, a) standing for the prob-
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ability of moving from state s to state s0 when an action a is executed. Transition

function satisfy the Markov property, i.e. the probability of moving state s to

s0 depends solely on the current state-action pair, regardless of past state-action

pairs. Pr(st+1|st, at, st � 1, at � 1, ..., s0, a0) = Pr(st+1|st, at).

• Reward Function: R(s, a, s0) : S ⇥ A ⇥ S ! < is the function of returning

rewards for taking action a when in state s.

The objective of an MDP is to calculate the optimal policy maximizing the expected

total reward. To achieve this aim, the agent starts from an initial state s0 and compares

the di↵erent alternative action plans in the long run, considering the immediate reward

r of each possible action a. Each of these plans is called “policy”. The optimal

policy that is the policy maximizing the long-term reward is the solution of the MDP.

There are two types of policies: stationary and non-stationary. The stationary policy,

⇡ : S ! A, is a mapping from the states to the actions. In this policy, the selection of

actions depends solely on the current states; the decision does not depend on the time

step. A non-stationary policy ⇡ is a sequence of state-action, sorted by time.

In an MDP model, two di↵erent performance criteria can be used to maximize

the expected long-term reward, first, finite horizon criterion.

E

"
TX

t=1

R(st, at)

#
, (3.1)

where rt is the reward received at the time step t and T is end time of the process.

The agent tries to develop an action strategy that maximize long-term reward over the

horizon length T . The optimal value function V ⇤ at the state s is calculated as in the

Equation 3.2 where V ⇡(s) refers to the value of the ⇡ policy starting with state s. The

MDP aims to find the optimal value for the initial state s0.

V ⇤(s) = max⇡(V
⇡(s)) (3.2)
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The value function is similar to the policy. The policy ⇡ maps an action to each state,

while the value function assigns a numeric value for each state. Second, the infinite

horizon criterion,

E

" 1X

t=0

�tR(st, at)

#
(3.3)

where T = 1. � 2 [0, 1] is a constant, namely discount factor, which ensures that

the sum of the rewards is finite. The objective of a discount factor is to reduce the

importance of future rewards by reducing their contributions to the selection of ac-

tions to be taken at earlier stages. If an MDP model does not have a specified time

horizon length for successive states, or if the time horizon length is large enough to

be considered infinite, the infinite horizon performance criterion can be used for the

solution. The expected number of time horizons of the agents is always 1/(1 � �).

That is, the expected distance to the horizon never changes and action strategies are

not a function of time. Therefore while finite horizon models induce a non-stationary

policy (time-independent), infinite horizon models induce a stationary policy (time-

dependent) [120].

The optimal value function of the agent moving from state s and by following

the policy ⇡ is calculated as in the Equation 3.4. The value function V ⇡(s) recursively

accumulates rewards during time horizon [121].

V ⇡(s) = R(s, a) + �
X

s02S

T (s0|s, a)(V ⇡(s0)) (3.4)

where R(s, a) is the immediate reward, T (s0|s, a) probability that taking action a at

state s leads to state s0 and V ⇡(s0) is the value of the ⇡ policy starting with the new

state s0. Let V ⇤(s) be the optimal value function maximizing the expected total revenue

of the process in the long-run for state s. Dynamic programming allows to compute

the long-term value V ⇤(s) for each (discrete) state s and is summarized by the Bellman
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Equation which is given in Equation 3.5 where 0  �  1 is the discount factor.

V ⇤(s) = maxa

(
R(s, a) + �

X

s02S

T (s0|s, a)(V ⇡(s0)

)
(3.5)

Optimal policy could be expressed by the same recursive equation which is given in

Equation 3.6:

⇡⇤(s) = argmax
a2A

(
R(s, a) + �

X

s02S

T (s0|s, a)(V ⇡(s0)

)
(3.6)

3.2.2. Solving MDPs

Dynamic programming (DP) methods is widely used to find optimal value func-

tions in MDPs. Value iteration [122] and policy iteration [32] are two popular DP

methods.

3.2.2.1. Value Iteration. MDPs aim to produce a state-to-action transition that rep-

resents the best actions to be selected in each case. In an MDP, the value of a state is

the expected cumulative reward returned after that state. It is possible to formulate

this statement recursively. At a given state, there are a finite number of possible next

states. Thus, to calculate the value of the current state, the value of all the next states

is needed. If the horizon length in the model is only one, that is, if the agent only

needs to decide once for a single state, there will be no future impact on the decision

because there is no next step. Thus, without considering the e↵ects of the future, it is

decided only based on immediate rewards of all possible actions. However, if the hori-

zon length is more than one in the model, the values of the actions to be selected at the

next time steps should be added to the immediate reward of the action by discounting

when evaluating all possible actions.
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The value iteration algorithm starts with an initial random guess of the value

function. Then it repeatedly calculates the next value and updates the overall reward

according to Equation 3.7.

V t+1(s) = maxa

(
R(s, a) + �

X

s02S

T (s0|s, a)(V t(s0)

)
(3.7)

3.2.2.2. Policy Iteration. Policy iteration is an algorithm based on improving policy

for a decision-making problem. The main idea behind policy iteration is, given policy,

it is possible to calculate a value function based on this policy. Unlike value iteration,

policy iteration takes any random policy ⇡ as the input; there is no initial policy. The

value of policy ⇡ first is calculated. Moreover, there is a policy improvement phase

after the value calculation phase. At this phase, a DP update is performed, and a new

policy is obtained. The policy obtained is compared with the current policy. If the

policy is improved, a new policy is obtained by DP updating. When an iteration does

not improve the policy anymore, the algorithm terminates, converging to the optimal

policy.

3.3. Partially Observable Markov Decision Processes

MDPs are the frameworks for modeling sequential decision making under un-

certainty where the transition dynamics are known with certainty over the planning

horizon. However, if the agent has partial knowledge of the system state, MDPs are in-

appropriate. In such systems, the state of the system can be estimated via observations

that are collected with some signals or measurements. However, the accuracy of these

observations is also probabilistic. For this purpose, MDPs are extended to POMDP,

by providing information regarding the system’s state through noisy sensors [18]. A

POMDP is a rich framework for modeling sequential decision-making problems under

imperfect observations. In a POMDP model, the interaction of the agent with the

environment is given in Figure 3.3. When the agent takes action, it obtains an ob-

servation. This observation a↵ects belief state probabilities at the next step. In other



25

words, the agent is obtained a hint for the next state.

A POMDP can be defined by six-tuple: < S, A, T , R, ✓, O >

• States: System state space S is a finite set of all possible states. A state is the

definition of the environment at any point on the horizon. In this thesis, discrete

models with a finite number of states will be studied.

• Actions: Action state space A is a set of all alternative actions. The agent’s

main goal is maximizing its reward by performing appropriate actions. At each

time step an agent can execute at most one action.

• Observations: Observation state space ✓ is all possible observations.

• Transition Function: Transition function T (s0|s, a) = Pr(s0|s, a) that deter-

mine the agent’s next state s0, where Pr(s0|s, a) denoting the probability of mov-

ing from state s to s0 when an action a is executed. Transition function satisfies

the Markov property, i.e. the probability of moving from state s to state s0 de-

pends solely on the current state-action pair, regardless of past state-action pairs.

Pr(st+1|st, at, st � 1, at � 1, ..., s0, a0) = Pr(st+1|st, at).

• Observation Function: O : S ⇥ A⇥ ✓ ! �(O) is a function giving the obser-

vation probabilities based on the state of the process and actions.

• Reward Function: R(s, a, o, s0) : S ⇥ A ⇥ O ⇥ S ! �(R) is the function of

returning rewards for executing action a when in state s. In this thesis, reward

is based on the current state, action and next state.

A typical POMDP representation is illustrated in Figure 3.4. Circles represent the

system and observation nodes as chance nodes. Squares represent the decision nodes

and diamonds represent reward (utility) nodes. Arrows demonstrate causal influence.

3.3.1. History and Belief States

In POMDPs, unlike MDPs, the agent cannot to observe the hidden state of the

environment; however, the agent can predict its state by receiving observations at each
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Figure 3.3: Interaction of an agent with the environment in a POMDP model.

Figure 3.4: A typical POMDP.

step. In the case of incomplete and noisy information, the agent has to remember

the full history of the actions and observations in the previous time steps to make the

best decision in the current time step. This is called all history” and it is di�cult to

process and keep it since it expands over time. However, for problems with a large

state space and a long horizon, this approach is not scalable. Instead of keeping all

history, an alternative representation has been developed that assigns probabilities

to every possible state, which are called belief states b(s)”. Belief state is su�cient

to summarize all the history without compromising its optimality with a properly

distributed probability distribution over the state space [33]. At each time step, the

agent performs an action, it is rewarded accordingly and its belief state needs to be

updated using Bayes’ rule as follows:
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b0(s0) = Pr(s0|o, a, b)

=
Pr(o|s0, a, b)Pr(s0|a, b)

Pr(o|a, b)

=
Pr(o|s0, a)

P
s2S Pr(s0|a, b, s)Pr(s|a, b)
Pr(o|a, b)

=
O(s0, a, o)

P
s2S T (s

0, a, s)b(s)

Pr(o|a, b)

(3.8)

where T is the transition probability function from the current belief b to next be-

lief b0 after performing an action a and observing o. The term Pr(o|a, b) is used for

normalization purpose. A set of all beliefs forms the belief space B.

3.3.2. Belief MDP

The policy of a POMDP is a mapping from belief states to actions. These belief

states can be considered as states in MDPs. Thus, POMDPs become belief-state

MDPs, which are a special case of continuous-state MDP through a continuous space

containing the probability values instead of discrete state space [34]. A belief MDP is

defined by a four-tuple: < S, A, T , Rbelief >

• States: System state space S is the belief space B of the POMDP

• Actions: Finite set of actions

• Transition Function: T is transition probability function from current belief b

to next belief b0 after performing an action a and observing o:

T (b0|o, a, b) = Pr(b0|b, a) =
X

o2O

Pr(b0|b, a, o)Pr(o|a, b) (3.9)

where

P (b0|a, b, o) =

8
><

>:

1, if b0 = ba
o
.

0, otherwise.
(3.10)
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• Reward Function: Rbelief (b, a) is the function of returning rewards for perform-

ing action a when in belief state b:

Rbelief (b, a) =
X

s2S

b(s)R(s, a) (3.11)

3.3.3. Value Functions

The value function in POMDPs is calculated on the belief space as in Equation

3.13. Belief space is continuous; however, for a finite horizon, the optimal value function

is piecewise-linear and convex. Thus, any finite-horizon solution is represented by a

limited set of alpha-vectors due to this property [37]. Alpha-vectors are a set of hyper-

planes defining belief functions. For every belief point, the value function is equal to

hyperplane gives the maximum value.

V ⇤(b) = max
a2A

(
X

s2S

R(s, a)b(s) + �
X

o2✓

X

s2S

P (o|s, a)b(s)V ⇤(b0)

)
(3.12)

The value function in POMDPs is calculated on the belief space as in Equation 3.13.

Belief space is continuous; however, for a finite horizon, the optimal value function

is piecewise-linear and convex. Thus, any finite-horizon solution is represented by a

limited set of alpha-vectors due to this property [37]. Alpha-vectors are a set of hyper-

planes defining belief functions. For every belief point, the value function is equal to

hyperplane gives the maximum value.

V ⇤(b) = max
a2A

(
X

s2S

R(s, a)b(s) + �
X

o2✓

X

s2S

P (o|s, a)b(s)V ⇤(b0)

)
(3.13)

3.4. POMDP Solution Algorithms

The solutions of POMDPs are the process of calculating an action policy for a

POMDP model. There are two main approaches to generate a POMDP policy: first,
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value iteration [36] based on exploring in the space of value functions and second, policy

iteration [123] based on exploring in the space of policies. In both approaches, the DP

update can be calculated exactly or approximately. The use of exact algorithms in

large-scale realistic problems is a challenge, as it requires significant calculation and

time. It is known that finding optimal policies for finite horizon POMDPs is a PSPACE-

complete problem [40] and POMDPs in the infinite horizon are undecidable [124].

However, a series of approximations can achieve a near-optimal result. The main

exact and approximate algorithms used in the solution of POMDPs are classified in

Figure 3.5.

Figure 3.5: POMDP solution approaches.

3.4.1. Exact Solution Algorithms

The exact algorithms contain all the alpha vectors describing the value function

for the whole belief space. Each belief state in B has an alpha-vector associated with

it and each hyperplane has an associated action from A. However, as the number of

observations increases with each iteration, it leads to the exponential growth in the

number of alpha-vectors required to represent the value function [125]. Each ↵-vector

is updated throughout the whole belief space. The value function is represented as a

vector of values over the belief space, known as ↵-vectors. The use of exact algorithms

in large-scale realistic problems is a challenge, as it requires significant calculation and

time.
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3.4.1.1. Enumeration and Pruning Algorithms.

• The main idea of Monahan’s enumeration algorithm [39] is enumerating all pos-

sible useful belief states and applying value iteration algorithm only considering

these belief states. Thus, the algorithm generates all possible vectors and then

gets rid of the useless ones. As too many vectors are generated in each iteration,

pruning is required.

• Incremental Pruning [43, 126] combines the Monahan’s enumeration algorithm

and witness algorithms. The similar feature with witness algorithms is construct-

ing sets of vectors for each action individually and then focusing on each one

observation at a time.

3.4.1.2. Search for Witness Points.

• One Pass [35] finds a value function and generates a vector component for a single

belief state, generate a vector for this point, then explore the belief space, on

which this component of the value function is dominating by examining possible

actions and outcomes. The region dominated by the vector is not fully known.

Thus, the same vector can be created for many belief points.

• Linear Support Algorithm [41] is based on one pass algorithm, but there are fewer

restrictions. The linear support algorithm relies on geometric properties of the

piece-wise linear value function by ignoring to focus on actions and future action

plans.

• In witness algorithm [127], the problem is handled from another perspective.

Using the same basic structure of one-pass and linear support algorithm, it defines

the regions for a vector and searches a point where this vector is not dominant.

However, it uses observations in order to simplify the calculation of the real value

of belief points.
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3.4.2. Approximate Solution Algorithms

Various computational and design challenges for the solution of POMDPs have

led to the emergence of di↵erent planning algorithms and techniques in the past years.

However, a series of approximations can achieve a near-optimal result. The approxi-

mation methods can be divided into two often classes: value-function approximations

and policy approximations. In policy approximations, instead of searching the space

of all possible policies, a subspace of it, which is believed to contain the optimal so-

lution or a good approximation, is searched. On the other hand, approximating value

function for only a subspace of belief space can be much easier than computing the full

value function. Value-function approximations are exploiting the advantage of heuris-

tics and branch and bound algorithms. Although value function approximations have

no guaranteed precision, in many cases they give upper and lower bounds. Approxi-

mate algorithms do not always guarantee that they will approach the optimal result

quickly, but often they approach the optimal solution with reasonable time and cost

and [128]. There are many value function approximations in the literature. These in-

clude MDP-based Heuristics, grid-based methods, point-based methods, history-based

methods, and policy search methods.

3.4.2.1. MDP-Based Approximations. As the solution of MDPs is much simpler than

a POMDP, a number of methods have been proposed that use heuristics based on the

underlying MDP. The “Most Likely State” (MLS) [44] heuristic selects the best action

by finding the state of the system with the highest probability.

⇡MLS(b) = ⇡⇤(argmaxsb(s)) (3.14)

Another heuristic method QMDP tries to approximate the value function with Q-

functions [129]. It selects one single ↵-vector for each action, for the whole belief space

at one time. The policy is created considering a weighted sum over the belief state

probability distribution. Thus, QMDP considers only the uncertainty in the current
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step and assumes full observability in all future steps [18].

⇡QMDP (b) = argmaxa(
X

s

b(s)Q⇤(s, a)) (3.15)

MLS and QMDP methods allow the state to be observable by ignoring partial

observability and their policies do not choose actions gaining more information about

the condition of the system. In order to improve these approaches, the Fast Informed

Bound (FIB) method [74], integrating the observation probabilities into the update

step is proposed. FIB chooses the best action per state with respect to the expected

observation.

↵a

t+1 = R(s, a) + �
X

o2Z

max↵t+12�t

X

s02S

O(o|s0, a)T (s0|s, a)↵t(s
0) (3.16)

3.4.2.2. Grid-Based Approximations. Grid-based approximations are based on ap-

proximating the value function over a continuous belief space with a finite set of the

guide point set. These points are often distributed according to a grid pattern, so the

name is grid-based approximation.

3.4.2.3. Point-Based Approximations. Recently, point-based approaches have gained

increasing popularity in solving large-scale POMDPS. Due to remarkable progress by

sampling the belief space and approximate computing solutions, state-of-art point-

based solvers can solve hundreds of states [55]. The key idea of point-based approaches

is sampling a set of points from belief space B and using this set for approximating

B. Point-based approaches optimize the update process, taking into account only a

selected subset of belief points. Therefore, it eliminates the problem of the complexity

of large state spaces due to computational issues. There are di↵erent point-based

algorithms with di↵erent characters in literature. Point-based solvers di↵er in belief

space subset selection and the order of value function updates, i.e., which points are
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updated, and how the backups are sorted [130].

The point-based value iteration (PBVI) algorithm [50] computes the value func-

tion only for a subset of belief space, reachable from the initial belief state and iter-

atively adds more points to the set as needed. The selection of these points is based

on the principle that at each iteration, PBVI extends the belief subset by greedily

selecting new accessible belief points as far from the existing belief points as possible.

Randomized point-based value iteration for POMDPs (Perseus) [51] is a random-

ized version of PBVI. The main argument of Perseus is randomly choosing the next

point for updating from the set of belief points, which were not yet improved. Perseus

creates a fixed set of achievable belief points B in the beginning by sampling the tra-

jectories of randomly chosen actions at each step, starting from the first belief b0. At

each iteration, it backs up at least as belief points as necessary over only on a random-

ized subset of B. This process is repeated until it guarantees that the value function

approach is improved for all points in the initial belief set. Then, iterations continue

until the stopping criterion is met.

Heuristic search value iteration (HSVI) [52] uses heuristics based on each the

higher and lower limits of the value function to collects the belief points and guide the

search in the belief space. As in all point-based solvers, HSVI iteratively forms the value

function starting from both the lower and upper limits. Using the heuristics accelerates

the step of defining critical belief points [18]. The belief space is approximate and only

deals with a subset of the belief points as in point-based value iteration. HSVI is a

strong algorithm for solving large POMDP problems with large state spaces. Unlike

PBVI and Perseus, it requires pruning process.

3.5. Factoring POMDPs

POMDPs are limited to solve problems with large state spaces. The curse of

history is solved by limiting the number of beliefs for value function in point-based
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value iteration [50]. However, “curse of dimensionality” remained a serious challenge

for this algorithm [131]. To address the “curse of dimensionality”, factored represen-

tations can be used. In a flat POMDP representation used by dynamic programming

algorithms, all possible states and state transitions are enumerated. However, factored

models can represent POMDP components more compactly by exploiting conditional

independence between variables and reduce the computational complexity of various

algebraic operations performed on vectors in backup iterations [28]. Thus, problems

with large state spaces can be represented and solved more e�ciently. Dimensionality

reduction can be provided by using “Decision Trees” (DTs) [57] or “Algebraic Decision

Diagrams” (ADDs) [28].

The main advantage of using the ADD notation is the high e�ciency in basic

function addition and multiplication. Therefore, these structures provide the compu-

tation time savings. An ADD is an extension of binary decision diagrams (BDDs) [132].

Binary decision diagrams that enable the unification of the branches provide a compact

representation of the decision trees. An example of a decision tree converted to ADD is

shown in Figure 3.6. In a classical POMDP representation, the system is represented

Figure 3.6: An example of decision tree and the corresponding algebraic decision dia-

gram (b) [133].

by a single node that has multiple states. In Figure 3.7, a classical POMDP represen-

tation and a factored POMDP for a maintenance model having of four components are

illustrated. In (a), the system is represented by a single node that has multiple states,

although the POMDP model has been factored into four components in (b). Sym-
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bolic Perseus [58] which includes an adapted variant of the point-based value iteration

algorithm to solve the factored POMDP models, is used in this thesis.

Figure 3.7: POMDP representations.

3.6. Symbolic Perseus

Symbolic Perseus implemented in Matlab (SPM) [58] is used as a policy generator

and simulator by exploiting the factored structure already available inherent in the

problem. SPM is an approximate point-based POMDP solver, implementing factored

representations of value functions and beliefs using algebraic decision diagrams. The

innovation of SP is limiting the number of vectors representing the value function

without loss of policy quality. Thus, the computational cost of the backup process is

reduced. In addition, a belief state approximation is used to solve the dimensionality

problem by merging states with values that di↵er by less than the Bellman error. This

is achieved with a compact factored representation of the belief state as a product of

the independent marginal of components. SP performs basic ADD operations more

e�ciently, so belief state backups and updates run faster. In other words, the ADDs

used for belief states and vectors provide significant savings in the required memory

and calculations.
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Real-life problems require POMDP algorithms that are robust against two major

challenges: dimensionality and history. Symbolic Perseus successfully overcomes large

state-space complexity with a limited backup of accessible beliefs. It also solves the

problem of dimensionality by compactly representing alpha vectors and belief states

using ADDs. The history problem is solved by limiting the number of vectors for the

value function. A sample input of Symbolic Perseus for a 2-component experimental

system is given in the Appendix.

3.7. Policy Simulation in SPM

After a policy is obtained, this policy is performed by a simulator to evaluate its

performance and to make sensitivity analyses under di↵erent scenarios. The flow of

the maintenance policy simulation is given in Figure 3.8.

Figure 3.8: SPM maintenance policy simulation flow.
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4. PERFORMANCE COMPARISONS OF SELECTED

POMDP SOLVERS

In this chapter, comparative analyses of four POMDP solvers having di↵erent

characteristics in terms of their solution methods for four partially observable stochas-

tically deteriorating maintenance problems setting are included. The primary objective

is to reach an exact solution, however, as mentioned, exact methods may not handle

problems with large state spaces. Hence, it is resorted to both exact and approxi-

mate algorithms to investigate the performance of solution methods through solving

problems at di↵erent levels of complexity.

4.1. Design of Experiments

To analyze the performance of solvers, four maintenance problem settings con-

sisting of partially observable components deteriorating in time are designed. The

main aim is to investigate the limitations of solutions methods by extending the state

space of the model. As the number of elements increases in the model, the state space

increases and the model becomes more complex. Moreover, the dependencies among

the elements of the model increase the complexity further. Model 1, 2, 3 and 4 refer to

a system having one, two, three and four components respectively. The relationships

between the components and the processes of the models are shown in Figure 4.1 for

two periods. There are two states of all components W, F and the observation node

G, R and all processes have two states W, F where W and F stand working and fail

respectively and G and R stand for green and red respectively. The assumptions about

the empirical maintenance models are as follows:

• The components degrade or deteriorate over time. All components degrade or

deteriorate with the same probabilities.

• All components can be replaced at any time.
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Figure 4.1: Empirical models.

• Direct monitoring of components and processes is not possible. However, they

are estimated by the observation node.

• At any time, at most one of the components can be replaced.

• The processes are defined as the result of the interaction between their parents.

The main processing node P is directly connected to the observable node used to

collect information from the processing node. Model 1 contains only the obser-

vation node. Other models have process nodes and observation nodes.

• All components are in their “working” state initially.

• Two di↵erent type of maintenance actions are considered: “Do nothing” and

“ReplaceCi” where i is the index of components. When a “Do nothing” action

is performed, the system experiences the natural deterioration process. Relevant

component is replaced to a new one by “ReplaceCi” action.

• Rewards -costs for the maintenance problems- are collected by two means: actions

and observations. Maintenance costs depend on the observations received and

the maintenance performed. The total maintenance costs are defined as the

summation of the downtime cost and cost of the replacement of the relevant

component. The downtime cost is the cost of loss in production resulting from

system downtime. When a green or yellow signal is observed, the component

replacement costs are 100 TL, 200 TL, 300 TL, 400 TL respectively; when a

red signal is received, the component replacement costs are 200 TL, 400 TL, 600
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TL, 800 TL respectively. When the system receives a green or yellow signal the

downtime cost of 2,500 TL incurs, when a red signal is received, more downtime

incurs. The total maintenance cost of each component is given in Table 4.5,

depending on the observation received and the action performed. Herein, the

downtime cost when the red signal is observed is shown parametric.

Transition probabilities of components C1, C2, C3 and C4; the conditional probabilities

of nodes P1, P2, P and observation node are given in Table 4.1, Table 4.2, Table 4.4

and Table 4.3 respectively where the transitional and conditional probabilities for each

component are represented in each column.

Table 4.1: Transition probabilities of components.

Action Node Y N

Self [t-1] W F W F

W 1 1 0.95 0

F 0 0 0.05 1

Table 4.2: Conditional probabilities of P1 and P2.

C2 W F

C1 W F W F

W 1 0.5 0.5 0

F 0 0.5 0.5 1

Table 4.3: Conditional probabilities of O.

P3 W NW

Green 0.95 0

Red 0.05 1
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Table 4.4: Conditional probabilities of P .

P2 W F

P1 W F W F

W 1 1 1 0

F 0 0 0 1

Table 4.5: Maintenance costs of the experimental model.

Action Observation

Green Yellow Red

Do nothing 0 0 Downtime Cost + 200

Replace C1 2,600 2,600 Downtime Cost + 400

Replace C2 2,700 2,700 Downtime Cost + 600

Replace C3 2,800 2,800 Downtime Cost + 800

Replace C4 2,900 2,900 Downtime Cost + 1,000

4.2. POMDP Solvers

Pilot models are formulated as flat and factored POMDPs and solved by four

di↵erent POMDP solvers which are POMDP-solve (PS) [60], successive approximations

of the reachable space under optimal policies (SARSOP) [55], Symbolic Perseus Matlab

(SPM) [58] and Symbolic Perseus Java (SPJ) [134]. PS solves flat POMDP problems

exactly. It implements a number of POMDP solution algorithms include enumeration

[35,39], two pass [35], linear support [41], witness [34,43], incremental pruning [43,135].

It uses the basic dynamic programming approach for all algorithms, solving one stage

at a time working backward in time. SARSOP solves also flat POMDP problems

approximately. This algorithm uses the point-based value iteration to reach the near-

optimal solution. SPM compute the policies factored POMDPs using a point-based

value iteration algorithm. It is based on Perseus solver [51], it uses algebraic decision

diagrams (ADDs) as a data structure. SPM is implemented in Matlab and Java. SPJ
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is a re-implemented version of SPM in Java.

4.3. General Policy Simulation

POMDP solvers returns policies and the policy is simulated using DBNs in order

to evaluate its performance. We use BNT toolbox [136] to construct the DBN model

and to compute the required inferences such as sampling the observations and inferring

the belief states. Policy simulations are performed within MATLAB environment. The

overview of the maintenance policy simulation is given in Figure 4.2.

Figure 4.2: Maintenance Policy Simulation.

4.4. Results of Experiments

First PS is run for computing the value of the exact policy. Simultaneously,

approximate policies are obtained by SARSOP, SPJ and SPM solvers and they are also

simulated for the same planning horizon. The policies generated by PS, SARSOP and

SPJ are simulated using DBNs on the planning horizon of 100 days and the simulation

is replicated 50 times and also the policies produced by SPM are executed in the SPM’s

simulator with the same parameters. The discount factor is set as 0.999. Results of

sensitivity analyses of models are given in the following tables where TCost, TRed,

TRep, DC and ACR denote the total cost, the total number of red signals obtained
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and the total number of replacements, the downtime cost and the average component

replacement respectively in 100 days of a horizon. Average and standard deviation of

these measures are reported in the tables. Furthermore, the average total replacements

for each component are also given.

4.4.1. Experimental Results of Model 1

Model 1 is the most primitive maintenance problem having one component and

one observation node. Table 4.6 shows the results of running the maintenance policies

generated by the solvers.

Table 4.6: Simulation results of POMDP solvers for Model 1 when DC=5,000.

TCost TRed TRep ACR

Avg Std Avg Std Avg Std. C1

SPM 46,074 14,917 9.32 3.01 9.32 3.01 9.32

SPJ 46,912 13,891 9.48 2.81 9.44 2.74 9.44

PS 44,424 14,843 9.00 3.02 8.60 2.70 8.60

SARSOP 47,939 15,402 9.70 3.11 9.04 2.78 9.04

The main experimental focus is comparing policies generated by the POMDP

solvers. The performance measure of POMDP policies is the comparison of average

total maintenance cost calculated on the planning horizon given in this study. For

the statistical comparison, one way ANOVA is used to check whether there is any

significant di↵erence between the means of simulation. Assumptions of normality and

homogeneity of variance have been checked. Although the assumption of normality is

fulfilled homogeneity of variance assumption is violated. For this reason, the Games-

Howell post-hoc test (GH) [137] which is used in the case of the lack of homoscedasticity

is applied. Results of sensitivity analysis including the groupings given in Table 4.7.

The same letter indicates the policies which are insignificant in terms of the total

maintenance cost.
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Table 4.7: GH test results for model 1 when DC=5,000.

Solver Avg. Total Cost Std. 95% CI GH Group

SPM 44,214 14,726 (40,029, 48,399) A

SPJ 46,912 13,891 (42,964, 50,860) A

PS 44,424 14,843 (40,205, 48,642) A

SARSOP 47,939 15,402 (43,562, 52,316) A

The results show that the policies tend to be reactive at the downtime cost of

5,000. That is to say, no action is taken to prevent failures in almost all maintenance

actions. To initiate proactive policies, the downtime cost has been increased to 10,000.

The results are given in Table 4.8.

Table 4.8: Simulation results of POMDP solvers for model 1 when DC=10,000.

TCost TRed TRep ACR

Avg Std Avg Std Avg Std C1

SPM 91,132 27,061 9.40 2.80 9.40 2.80 9.40

SPJ 86,218 21,252 8.86 2.19 8.86 2.19 8.86

PS 96,896 24,073 10.00 2.50 9.44 2.37 9.44

SARSOP 86,970 28,758 8.98 2.97 8.50 2.84 8.50

Results of the sensitivity analysis are given in Table 4.9. According to the GH

post-hoc test, there is no statistically significant di↵erence between the four groups in

terms of the average total maintenance costs.

POMDP solvers are expected to produce more proactive behavior at that down-

time cost. However, the solvers produce reactive policies. It stems from that the

system performance only depends on a single component whose deterioration speed is

very low. For this reason, the downtime cost has been increased to a higher value. The

results of the simulations at a downtime cost of 55,000 are given in Table 4.10.
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Table 4.9: GH test results for model 1 when DC=10,000.

Solver Avg. Total Cost Std. 95% CI GH Group

SPM 91,132 27,061 (83,441, 98,822) A

SPJ 86,218 21,252 (80,178, 92,258) A

PS 96,896 24,073 (90,055, 103,738) A

SARSOP 86,970 28,758 (78,797, 95,144) A

Table 4.10: Simulation results of POMDP solvers for model 1 when DC=55,000.

TCost TRed TRep ACR

Avg Std Avg Std Avg Std C1

SPM 482,051 132,810 9.02 3.02 10.02 3.02 10.02

SPJ 495,960 116,784 9.40 2.52 10.32 2.51 10.32

PS 511,269 118,109 5.28 2.36 100.00 0.00 100.00

SARSOP 482,104 107,912 4.70 2.16 100.00 0.00 100.00

This scenario’s sensitivity analysis results given in Table 4.11 demonstrate that

there is no significant di↵erence between performances of POMDP solvers.

Table 4.11: GH test results for model 1 when DC=55,000.

Solver Avg. Total Cost Std. 95% CI GH Group

SPM 482,051 132,810 (458,216, 533,705) A

SPJ 495,960 116,784 (448,862, 515,241) A

PS 511,269 118,109 (477,703, 544,835) A

SARSOP 482,104 107,912 (451,436, 512,772) A

These results indicate that, for such small problems, the qualities of the exact
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and the approximate solutions are very close to each other. Exact solution algorithms

are expected to achieve better results than approximate algorithms. However, after PS

returns the exact policy, it is simulated using DBNs in order to evaluate the total main-

tenance cost. Since there is the observation sampling process during the simulation,

randomness occurs.

It is worth to mention that PS can generate policies for such a small problem.

By increasing the number of components in the system we investigate the maximum

state space the exact solver can handle.

4.4.2. Experimental Results of Model 2

For the next experiment, it is aimed to analyze the performances of solvers for

a system having two components, one process node, and the observation node. The

process node is defined as the result of the interaction between the components. The

observation node O is used to gather information provided by the process node P in

the model. The evaluations of policies generated by POMDP solvers are shown in

Table 4.12.

Table 4.12: Simulation results of POMDP solvers for model 2 when DC=5,000.

TCost TRed TRep ACR

Avg Std. Avg Std Avg Std C1 C2

SPM 80,398 20,520 15.94 4.07 15.94 4.07 7.28 8.66

SPJ 77,128 20,110 15.36 4.00 15.32 3.98 9.36 5.96

PS 80,093 16,118 15.98 3.20 15.72 2.99 9.26 6.46

SARSOP 75,209 18,307 14.98 3.63 14.78 3.59 8.86 5.92

The solvers are compared in terms of their performance and the results are given

in Table 4.13. Although the SARSOP policy achieves better total maintenance costs,
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there is no significant di↵erence between the four solvers.

Table 4.13: GH test results for model 2 when DC=5,000.

Solver Avg. Total Cost Std Dev. 95% CI GH Group

SPM 80,398 20,520 (74,566, 86,230) A

SPJ 77,128 20,110 (71,413, 82,843) A

PS 80,093 16,118 (75,512, 84,674) A

SARSOP 75,209 18,307 (70,007, 80,412) A

For the system having two components, the majority of the actions are performed

reactively at the downtime cost of 5,000, but still, the small number of proactive

maintenance is achieved. To illustrate, the average total red signal received for the PS

solver is 15.98; the average total component replacement is 15.72. This di↵erence is

detected in the policy file and confirmed during the simulation. When both components

are changed in successive periods, the policy proposes the “do nothing” action in the

next period, even if the system receives red observation. As this is rare, TRed is

slightly smaller than TRep in the replication results. We have increased the downtime

cost to 10,000 to favor the policies to behave more proactively and investigate di↵erent

behaviors of solvers. Performances of the solvers and the GH test results are given in

Table 4.14 and Table 4.15 at the downtime cost of 10,000 respectively.

As the number of components in the system increases, the probability of system

downtime also increases. Therefore, more proactive policies have been achieved at a

downtime cost of 10,000 to avoid the system downtime. As a result of the sensitivity

analysis, there is no statistically significant di↵erence between the total maintenance

costs obtained by carrying out the policies. As seen in the table, all selected algorithms

managed to solve this complex but small scale problem e�ciently.
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Table 4.14: Simulation results of POMDP solvers for model 2 when DC=10,000.

TCost TRed TRep ACR

Avg Std Avg Std Avg Std C1 C2

SPM 140.877 37.483 13,28 3,83 17,70 3,96 9,62 8,08

SPJ 153.786 37.193 13,72 3,45 21,70 5,04 11.24 10,46

PS 138.354 38.749 12,48 3,77 19,04 4.82 10.02 9,02

SARSOP 154.747 38.415 13,96 3,73 21,14 4,72 11,16 9,98

Table 4.15: GH test results for model 2 when DC=10,000.

Solver Avg. Total Cost Std. 95% CI GH Group

SPM 140,877 37,483 (130,225, 151,530) A

SPJ 153,786 37,193 (143,216, 164,356) A

PS 138,354 38,749 (127,342, 149,367) A

SARSOP 154,747 38,415 (143,829, 165,664) A

4.4.3. Experimental Results of Model 3

As a next step, one more component has been added to make the system more

complex. As can be seen in Figure 4.1, the process P1 is defined as the result of

the interaction between C1 and C2. In model 3, C3 is directly connected to the

main processing node P . Table 4.16 summarizes the results based on each solver at a

downtime cost of 5,000 and the GH test results are given in Table 4.17 at the downtime

cost of 5,000.

PS solver could not handle this POMDP model, whereas the approximate meth-

ods generate good policies. Since the real-life model will be more complex than the size

of this problem, it has been decided not to use PS as a solver. The results show that

SPM and SPJ behave always reactively, while SARSOP occasionally behaves proac-

tively at the downtime cost of 5,000. According to the Games–Howell post hoc test,
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Table 4.16: Simulation results of POMDP solvers for model 3 when DC=5,000.

TCost TRed TRep ACR

Avg Std Avg Std. Avg Std C1 C2 C3

SPM 125,910 24,985 24.56 4.82 24.56 4.82 7.98 9.54 7.04

SPJ 120,400 24,598 23.54 4.76 23.54 4.76 9.80 7.32 6.42

SARSOP 128,838 26,854 21.58 4.86 31.80 5.69 6.90 11.08 13.82

Table 4.17: GH test results for model 3 when DC=5,000.

Solver Avg. Total Cost Std. 95% CI GH Group

SPM 125,910 24,985 (118,810, 133,011) A

SPJ 120,400 24,598 (113,410, 127,391) A

SARSOP 128,838 26,854 (121,207, 126,470) A

since the groups have the same letter designation, there are no statistical di↵erences

between them.

In order to favor SPM and SPJ solvers to generate policies that recommend having

maintenance before the red signal is received, the downtime cost has been increased

to 10,000. The comparison of the maintenance policies of the solvers and the GH test

results are given in Table 4.18 and Table 4.19 respectively.

Table 4.18: Simulation results of POMDP solvers for model 3 when DC=10,000.

TCost TRed TRep ACR

Avg Std Avg Std. Avg Std C1 C2 C3

SPM 238,303 51,034 22.10 5.08 30.00 5.57 11.90 10.28 7.82

SPJ 230,465 48,016 21.08 4.73 29.58 5.47 10.08 11.30 8.20

SARSOP 239,357 45,057 20.38 4.48 34.70 5.60 11.78 10.26 12.66
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Table 4.19: GH test results for model 3 when DC=10,000

Solver Avg. Total Cost Std. 95% CI GH Group

SPM 238,303 51,034 (223,799, 252,806) A

SPJ 230,465 48,016 (216,818, 244,111) A

SARSOP 239,357 45,057 (226,552, 252,162) A

All three solvers behave more proactively as expected. SARSOP policy has per-

formed more proactive actions than the others, however, SPJ gives better results.

Notably, the solvers do not statistically distinguish from each other in terms of the

total maintenance cost.

4.4.4. Experimental Results of Model 4

For the last experiment, a system having components nodes a↵ecting each other,

three process nodes, and one observation node to represent a more complex system is

designed. The processes P1 and P2 are defined as the result of the interaction between

their predecessor components. The main process node P is directly linked to the

observable node O collecting information from the P . The POMDP policies generated

via solvers are executed to compare their performances. Simulation summaries and

GH test results are given in Table 4.20 and Table 4.21.

Table 4.20: Simulation results of POMDP solvers for model 4 when DC=5,000.

TCost TRed TRep ACR

Avg Std Avg Std. Avg Std C1 C2 C3 C4

SPM 164,960 24,493 31.72 4.67 31.72 4.67 9.68 7.80 8.08 6.16

SPJ 163,855 26,602 31.50 5.07 31.46 5.10 9.52 8.40 7.16 6.38

SARSOP 167,380 27,164 33.38 5.30 33.16 5.37 9.42 7.58 5.46 10.70

The results demonstrate that although the di↵erence between the total mainte-
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Table 4.21: GH test results for model 4 when DC=5,000

Solver Avg. Total Cost Std. 95% CI GH Group

SPM 164,960 24,493 (157,999, 171,921) A

SPJ 163,855 26,602 (156,294, 171,415) A

SARSOP 167,380 27,164 (159,660, 175,101) A

nance costs of solvers is not statistically significant, SPM has achieved better results

than the other solvers. It is interesting that SPM, which performs only reactive main-

tenance actions during the planning horizon, gives the best results, although the other

two solvers perform slightly proactive maintenance actions. The solver behaviors are

further investigated at the downtime cost 10,000. The comparison of the maintenance

policies of the solvers and the GH analysis results are given in Table 4.22 and Table 4.23

at the downtime cost of 10,000.

Table 4.22: Simulation results of POMDP solvers for model 4 when DC=10,000.

TCost TRed TRep ACR

Avg Std Avg Std. Avg Std C1 C2 C3 C4

SPM 320,049 49,691 29.86 4.74 38.04 5.91 7.44 8.84 11.64 10.12

SPJ 318,678 56,267 28.06 5.29 42.76 6.85 9.58 11.38 12.10 9.70

SARSOP 329,223 56,513 31.20 5.60 37.68 5.90 6.70 11.20 10.38 9.40

Table 4.23: GH test results for model 4 when DC=10,000

Solver Avg. Total Cost Std. 95% CI GH Group

SPM 320,049 49,691 (305,927, 334,171) A

SPJ 318,678 56,267 (302,687, 334,669) A

SARSOP 329,223 56,513 (313,163, 345,284) A

All three solvers generate proactive maintenance policies. However, while SPM

and SPJ policies behave in a similar way, it can be said that SARSOP performs less
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proactive maintenance than the other two solvers. As a result of the sensitivity analysis,

there is no statistically significant di↵erence between the costs obtained by carrying

out the policies generated by the four di↵erent solvers discussed.

4.4.5. Evaluation of Experimental Results

In this chapter, it is focused on comparing the performances of di↵erent four

POMDP solvers in terms of the total maintenance cost, time and memory needed to

solve the problem. The SARSOP solver is run under time constraint of 300 seconds.

According to results, the PS solver using exact algorithms, is able to solve a maximum

of 2-component model. Moreover, according to results, the quality of selected approx-

imate solvers are very close to each other. As a result of all experiments done, there is

no significant di↵erence between the solvers in terms of the total maintenance cost.

The solution has two stages: Policy Generation and Simulation (Evaluation). In

the first stage, each solver produce a policy file containing actions and the corresponding

↵-vectors. The policies generated by PS, SARSOP and SPJ are simulated using DBNs.

SPM uses its own simulator to execute the policy. The comparison of solvers in terms of

time performance is given in Table 4.24. Due to the time advantage, SPM is preferred

as the solver for further studies.

Table 4.24: Computational time performances of the solvers (in seconds).

PS SARSOP SPJ SPM

Solver Simulation Solver Simulation Solver Simulation Solver Simulation

M1 104.24 1,771.48 300 1,819,39 2.24 2,249.70 10,85 5.44

M2 449.81 2,131.69 300 2,154,63 3.21 3,234.01 12,98 7.92

M3 - - 300 2,738.74 4,48 4,247.45 18,94 14.79

M4 - - 300 3,499.78 6,82 3,883.68 30,91 24.59
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5. POLICY ANALYSIS OF AN EXPERIMENTAL MODEL

USING FACTORED POMDPS

5.1. Model Building

In this chapter, main motivation is to show how to formulate a factored POMDP

model for the maintenance problem of a multi-component dynamic system and how to

simulate and evaluate the obtained policy before implementing it in real life. The model

in hand is an empirical dynamic system built to represent the complexity of a real-life

maintenance problem. There are symbolically four hidden components degrading over

time, three processes and one observable node. The relationships between components

and processes are shown in Figure 5.1.

5.1.1. System Structure

Each component has 4 states which are “working”, “degraded 1”, “degraded

2” and “fail” where “degraded 2” is assumed to be a worse state than “degraded

1”. The processes are determined as the result of the interaction of the preceding

components and their interactions, and they are unobservable. The main process node

P3, which is also not observed, is directly connected to the observable node used to

gather information. Direct observation of the components and the processes is not

possible. However, their states can be estimated through noisy signals obtained from

the observation node. Observation node has 3 states which are “green”, “yellow” and

“red”. It is assumed that all components can be replaced at any time. All components’

initial states are “working”.

5.1.2. Action Structure

Maintenance activities are defined in accordance with real-life maintenance mod-

els. Thus, two di↵erent maintenance activities have been defined as “minor” and
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Figure 5.1: Empirical POMDP model for two time slots.

“major”. Minor maintenance involves small maintenance activities that require only

labor costs. It incurs much less cost than major maintenance; however, it does not

provide a guarantee for improvement (imperfect repair). On the other hand, a ma-

jor maintenance activity behaves as a perfect repair since it replaces the respective

component.

5.1.3. Probability Structure

Minor maintenance activities do not guarantee success. If minor maintenance is

successful, the state of the component can only pass to the better state. By way of

example, a component which is in the “degraded 2” state, after minor maintenance has

been performed, passes to “degraded 1” if the maintenance activity is successful. A
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component in a “fail” state cannot pass to any better states with minor maintenance,

it remains in its “fail” state. Major maintenance for a component in a “fail” state

is essential. When major maintenance is performed, all components transit to their

“working” state with probability 1. Components C1, C3 and components C2, C4 have

the same degradation probabilities respectively. Components C2 and C4 deteriorate

more slowly than components C1 and C3. Processes P1 and P2 are defined by proba-

bilistic gates, hence, even if one of the components is in its fail state, the related process

node can continue to work with a low probability. When both components fail, the

related process also fails. The process P3 is defined by the OR gate. Thus, if any of

P1 and P2 is in its fail state, P3 is in its fail state. The accuracy of the observations is

probabilistic. The observation node is more sensitive to the system downtime. When

the system fails, a red signal is received with very close to certainty. Transitional and

causal probabilities are given in Tables C.1-C.3 respectively.

5.1.4. Cost Structure

The labor cost of the minor maintenance activity for each component is taken

as 500. It is assumed that minor maintenance does not incur production loss. When

the green or yellow signal is observed, the total cost of the major maintenance activity

for each component consists of the replacement cost of the relevant component, the

labor cost and the cost of lost production for a limited time. On the other hand, when

a red signal is received, the system is in its fail state with a very high probability.

Thus, a downtime cost (DC) incurs because of the system halt. This downtime cost

includes the penalty cost due to unrealized production commitments, overtime labor

costs and all other types of costs that are caused because of unplanned downtime.

That’s why this cost is left as a parameter in this study so that sensitivity analyses are

conducted for various levels of downtime costs with respect to di↵erent real-life prob-

lems. Maintenance costs depending on the observation received and the maintenance

activity performed can be seen in Table 5.1 where DC stands for the downtime cost

and all costs are in Turkish Lira.
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Table 5.1: Maintenance costs.

Observation

Action Green Yellow Red

Do nothing 0 0 DC

Minor-C1 500 500 500+DC

Minor-C2 500 500 500+DC

Minor-C3 500 500 500+DC

Minor-C4 500 500 500+DC

Major-C1 2,000 2,000 2,000+DC

Major-C2 2,200 2,200 2,200+DC

Major-C3 2,400 2,400 2,400+DC

Major-C4 2,600 2,600 2,600+DC

5.2. Proposed Methodology

The empirical maintenance problem is first formulated as a factored POMDP

and it is solved for a maintenance policy using Symbolic Perseus, a factored POMDP

solver. Some smart predefined policies by imitating the behavior of the POMDP poli-

cies are proposed to compare the performance of the maintenance policy obtained by

the POMDP solver. Sensitivity analyses are conducted under various scenarios with

several cost and probability parameters to achieve stronger results. The policy is ana-

lyzed by restricting and extending the action space under several downtime cost values

and success rates of minor actions. Furthermore, the policies have been analyzed un-

der di↵erent aging behaviors of the components to test the robustness of the POMDP

policies in various realistic domains.
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5.2.1. Factored POMDP Model

The flat POMDP state variable s in the model is a composite variable comprised

of four components and three process variables. If the flat representation was to be

used, the transition matrix for each action state would be a 2048⇥2048 square matrix.

Because each of the four components has four states and each of the three processes

has two states (44 ⇥ 23 = 2048). On the other hand, factored representation of the

model reduces this cumbersome transition matrix to factored four 4⇥4 square matrices

(for the four components, each having four states), two 16⇥2 matrices (for conditional

probabilities of P1 and P2) and finally one 4⇥2 matrix (for the conditional probability

of P3). By exploiting the conditional independence in the factored model, the state

transition of the flat POMDP state variable s can be calculated by using the conditional

probabilities in the factored model as in Equation 5.1. To emphasize how the state

transition in a POMDP is reduced by factoring, the sizes of the matrices in the left and

right sides of Equation 5.1 are given in Equation 5.2. Let X, be a random variable, x

and x’ denotes the values of X at time t and t+ 1.

P(s0|s, a) = P(c10|c1, a) . P(c20|c2, a) . P(c30|c3, a) . P(c40|c4, a)

. P(p10|c10, c20) . P(p20|c30, c40) . P(p30|p10, p20)
(5.1)

[ ]2048⇥2048 ! [ ]4⇥4 , [ ]4⇥4 , [ ]4⇥4 , [ ]4⇥4 , [ ]16⇥2 , [ ]16⇥2 , [ ]4⇥2 (5.2)

In the given maintenance model, the flat POMDP action variable a is also another

composite variable which can be factored into four nodes each for one component and

having three states (Do nothing, Do minor, Do major). The transition matrix of each

of the action state for each of the respective component can be modeled with a decision

diagram in the factored representation of the maintenance problem in SPM and can be
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called in the definition of the actions. Let the following decision diagrams are defined:

DefaultCi is transition probability of Ci when no maintenance is done to Ci, MinorCi is

the transition probability of Ci when minor maintenance is done to Ci, MajorCi is the

transition probability of Ci when major maintenance is done to Ci and finally SamePi

is the conditional probability of Pi which is not a↵ected by the transitions. To give an

example, let “DoMajorC3” be an action state in the flat POMDP model meaning that

minor maintenance will be performed to C3 and no maintenance will be done to the

other components. So other than C3, the others will age with their default transition

probabilities.

In the maintenance problem, it is assumed that only one maintenance action can

be performed at a time slot. However, one may want to include also the combinations

of actions as we will do in the sensitivity analysis. In the flat representation, each extra

action will increase the state transition by one 2048 ⇥ 2048 matrix which will cause the

explosion of the input file further. By using the factored representation and the decision

diagrams, it is possible to define the combination of any actions in the maintenance

problem easily as shown in Figure 5.3 where the defined action “DoMajorC1C3” does

major maintenance to both C1 and C3, but nothing to C2 and C4 at a time slot.

action DoMajorC3

C1 (DefaultC1)

C2 (DefaultC2)

C3 (MajorC3)

C4 (DefaultC4)

P1 (SAMEP1)

P2 (SAMEP2)

P3 (SAMEP3)

observe ...

cost ...

endaction

Figure 5.2: Code example for actions in SP.
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action DoMajorC1C3

C1 (MajorC1)

C2 (DefaultC2)

C3 (MajorC3)

C4 (DefaultC4)

P1 (SAMEP1)

P2 (SAMEP2)

P3 (SAMEP3)

observe ...

cost ...

endaction

Figure 5.3: Code example for combined actions in SP.

5.2.2. Predefined Policies

To analyze the performance of the policy generated by the POMDP solver, SPM

results are compared with some predefined corrective and proactive maintenance strate-

gies. In the design of predefined policies, three important criteria, which are mainte-

nance decisions of time, component and action, are considered. Time decision is made

by means of corrective (Cor) or proactive (Pro) policies. In corrective maintenance,

the red signal always triggers the maintenance. In proactive policies, a yellow sig-

nal always initiates major or minor maintenance according to the respective policy.

Moreover, when a green signal is observed, proactive maintenance decision is taken

depending on the predefined number of consecutive green signals.

Once a maintenance time is decided, component selection is done with a random

(RND) or an ordered (ORD) method. As their names imply, in the random method,

components are selected randomly whereas, in the order method, they are selected in

the order of their component numbers. In all predefined policies, when a red signal is

received, major maintenance is performed at the selected component. At a proactive

maintenance time (when either yellow or green signal is received) after component se-
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lection is done, one needs lastly to decide on the type of maintenance that is to select

whether major (Maj) or minor (Min) activity. All proposed predefined maintenance

policies are illustrated in Figure 5.4. To give an example for the meaning of the names

of the predefined policies, in “MinProORD”, when a green or yellow signal is received,

a minor maintenance is done by the selecting components in the order of their compo-

nent numbers, otherwise in the case of receiving a red signal, a major maintenance is

performed by selecting components in order of their component numbers.

Figure 5.4: Overview of predefined policies.

5.3. Experimental Results

For all experimental analyses in this study, the policy is simulated for a 100 day

decision horizon with 50 simulation runs. The discount factor is set to 0.999.
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Table 5.2: Experimental design for SPM.

p DC Action Space

Exp. 0.3 0.5 0.7
500-

6,000

10,000-

100,000
Majors

Majors,

Minors

Majors,

Minors,

Combinations

Location

1 * * *

Section 5.3.22 * * *

3 * * *

4 * * *

Section 5.3.35 * * *

6 * * *

7 * * * Section 5.3.4.1

8 * * *

Section 5.3.4.2
9 * * *

10 * * *

11 * * *

5.3.1. Scenario Design

In this study, various scenarios have been created and analyzed with several cost

and probability parameters. The success probability (p) of minor activities for the

scenarios is taken as 0.3, 0.5 and 0.7. The downtime cost (DC) has been experimented

at di↵erent levels in the range of [500-100,000]. The policy is also analyzed by restricting

and extending the action space under several DC values and the success rates of minor

actions. The maintenance actions within the action space are analyzed in three levels.

In the base scenarios, the action space covers minor and major actions. In the restricted

scenarios, the action space is restricted to only major actions whereas, in the extended

scenarios, combinations of two major actions are also included in the action space. The

experimental design for the SPM policy simulation is tabulated in Table 5.2.

In addition to these experiments, the performances of the predefined proactive

and corrective maintenance policies have also been assessed and compared to the poli-
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Table 5.3: Experimental design for predefined policies.

Aging Behavior p DC f

Exp. Similar Dissimilar 0.7 1,000 7,000 70,000 1-3 1-9 3-19 Location

1 * * * *

Section 5.3.5.12 * * * *

3 * * * *

4 * * * *

Section 5.3.5.25 * * * *

6 * * * *

cies generated via the POMDP solver for DC values of 1,000, 7,000 and 70,000. In the

constructed model, components have almost the same aging probabilities. That is why,

we change the deterioration probabilities of the components to obtain dissimilar aging

behaviors so that analyses in all kinds of real-life systems are also covered. The exper-

imental design for the predefined strategies is tabulated in Table 5.3 where f denotes

the frequency of the proactive maintenance, in consecutive number of green signals

received, which is used as a checkpoint for proactive maintenance. For instance, when

f=3, it means that the proactive maintenance condition in the predefined policies is

satisfied when three consecutive green signals are observed.

5.3.2. Sensitivity to Minor Repair Probability

Success probability (p) of minor maintenance is taken as 0.3, 0.5 and 0.7, respec-

tively of which the results of the sensitivity analyses are given in Tables 5.4-5.6. In

the tables, TCost and TRed denote the total cost of the given horizon and the total

number of red signals observed in that horizon respectively. TRep is the sum of the

total number of repairs due to minor maintenance and major maintenance performed

in the given horizon. The averages (Avg) and the standard deviations (Std) of these

measurements are given in the tables. Besides, the distribution of the minor and major

maintenance among the components are also reported.
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Table 5.4: Sensitivity analysis under di↵erent DC values with p=0.3.

TCost TRed TRep
Minor

Maintenance

Major

Maintenance

DC Avg Std Avg Std Avg Std C1 C2 C3 C4 Total C1 C2 C3 C4 Total

500 41,921 3,514 88.46 7.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 71,241 14,211 27.98 5.12 20.94 4.43 0.00 0.00 0.00 0.00 0.00 7.54 4.22 5.96 3.22 20.94

2,000 102,580 17,822 20.22 4.59 59.28 4.79 17.72 5.82 12.24 1.96 37.74 6.86 5.14 5.68 3.86 21.54

3,000 120,555 18,333 15.82 3.86 91.36 3.03 26.48 4.36 40.60 0.86 72.30 5.98 5.12 3.50 4.46 19.06

4,000 138,562 22,712 15.52 4.11 100.00 0.00 44.74 0.00 31.96 4.64 81.34 4.22 4.90 5.34 4.20 18.66

5,000 153,191 24,269 16.00 3.75 100.00 0.00 3.68 0.00 72.00 6.00 81.68 8.52 4.86 1.78 3.16 18.32

6,000 162,484 30,703 14.86 4.05 100.00 0.00 17.44 13.32 47.68 3.40 81.84 7.26 3.94 2.96 4.00 18.16

Table 5.5: Sensitivity analysis under di↵erent DC values with p=0.5.

TCost TRed TRep
Minor

Maintenance

Major

Maintenance

DC Avg Std Avg Std Avg Std C1 C2 C3 C4 Total C1 C2 C3 C4 Total

500 41,921 3,514 88.46 7.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 69,105 14,956 28.82 6.15 37.52 6.40 0.00 0.00 12.88 9.90 22.78 6.00 3.78 3.38 1.58 14.74

2,000 95,141 16,052 18.02 4.39 70.64 6.38 3.66 8.58 27.92 13.60 53.76 7.86 4.02 2.62 2.38 16.88

3,000 115,825 18,815 15.24 4.23 100.00 0.00 1.78 0.00 69.84 12.68 84.30 8.32 4.48 1.10 1.80 15.70

4,000 130,648 22,798 14.74 4.20 100.00 0.00 26.82 0.00 37.62 19.78 84.22 2.50 7.08 2.48 3.72 15.78

5,000 146,798 31,319 14.74 4.84 100.00 0.00 43.54 2.66 32.68 4.20 83.08 2.64 6.54 3.44 4.30 16.92

6,000 158,446 35,095 14.88 4.60 100.00 0.00 0.14 4.74 45.34 33.38 83.60 8.80 4.04 1.80 1.76 16.40

Table 5.6: Sensitivity analysis under di↵erent DC values with p=0.7.

TCost TRed TRep
Minor

Maintenance

Major

Maintenance

DC Avg Std Avg Std Avg Std C1 C2 C3 C4 Total C1 C2 C3 C4 Total

500 42,130 3,464 87.90 7.51 0.98 1.27 0.42 0.00 0.56 0.00 0.98 0.00 0.00 0.00 0.00 0.00

1,000 67,001 16,155 29.60 6.91 37.86 7.30 0.00 8.28 5.16 11.44 24.88 6.16 2.10 3.64 1.08 12.98

2,000 90,209 16,764 18.78 4.55 64.02 6.10 0.00 7.04 34.08 7.68 48.80 8.32 3.16 1.64 2.10 15.22

3,000 110,011 17,632 14.22 3.95 99.00 0.00 1.36 1.66 54.80 26.94 84.76 7.34 4.30 1.48 1.12 14.24

4,000 121,242 24,606 13.24 4.46 100.00 0.00 41.18 19.22 15.26 10.88 86.54 2.88 2.64 4.60 3.34 13.46

5,000 138,684 28,224 14.28 4.39 100.00 0.00 2.86 38.22 23.22 21.16 85.46 7.94 2.26 2.32 2.02 14.54

6,000 148,062 27,655 13.20 3.66 100.00 0.00 51.54 5.68 27.46 1.36 86.04 1.64 3.88 1.80 6.64 13.96

As can be seen from the tables above, the average total cost increases as expected

as the DC increases in all three success probability values. Moreover, as the DC

increases, the average total number of red signals decreases and the average total
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number of maintenance increases. In other words, as the DC increases, the policy

tends to maintain more proactively without waiting for a red signal. For the first

two levels of success probability (p=0.3 and p=0.5), the DC of 500 is quite low for

the system, thus the system stops continuously without performing any maintenance

activity. Besides, when the success probability of the minor action is quite small, i.e.,

p= 0.3, it does not perform minor maintenance even at a DC of 1,000. In all three

models, the system is more proactive as the DC increases, thus more minor actions are

performed. Furthermore, as the success probability of minor actions increases, the total

cost decreases for the same DC value since the number of minor (major) maintenance

performed in the policy relatively increases (decreases). Since P3 has an OR gate

probability structure, all components should e↵ort to make it work. In all three levels

of success probability scenarios, when there is a remarkable imbalance in the major

maintenance distribution among the components, the ones with less share there have

significantly more share in the minor maintenance distribution. In this context, C3

seems to be more (less) preferred in the minor (major) maintenance.

5.3.3. Sensitivity to Downtime Cost

The average total number of red signals vs the average total number of minor and

major maintenance with respect to DC values in [500,6000] are shown in Figure 5.5

for p=0.3, 0.5 and 0.7 respectively. After a DC of 3,000, all policy indicators (TRed,

TRep, TRep-Minor, TRep-Major) almost reach a steady state. The policy prefers to

perform either minor or major maintenance in all periods of which minor maintenance

has a significantly greater share than major maintenance. It can be concluded that

the policy behaves almost in a similar way in all three success probability scenarios.

Although the model has the opportunity to decrease the total number of red signals

received by performing more e↵ective actions such as major maintenance, the policy

does not prefer this due to the cost structure of the model.
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It would be interesting to see whether the policy tends to perform more major

maintenance with considerably increasing DC values. Hence, in the next step, the DC

of the system is increased extremely in the range of [10,000;100,000] to encourage the

system to perform more major actions. The policy results are depicted graphically in

Figure 5.6 for the three levels of success probability of minor actions.

As can be seen from Figure 5.6, as the DC increases, the number of major mainte-

nance actions increases as expected and the number of red signals received falls slightly

consequently. In each success probability value, the policy favors more major main-

tenance actions as the DC increases when compared to the respective policy behavior

in Figure 5.5. This justifies that the policy behaves expectedly at extreme DC values.

Higher success probabilities of minor maintenance actions lead to a lower deceleration

rate of minor maintenance tendency of the policy as seen in Figure 5.6 especially when

p=0.7. It should be highlighted that the DC where minor and major maintenance has

an equal share (50 of each) in total maintenance number is approximately 90,000 for

p=0.7. This value, where the equilibrium is provided, is greater than the two other DC

values at p=0.3 and p=0.5. For p=0.3 and p=0.5, when the DC is at its utmost level

in the sensitivity study, the policy favors major maintenance instead of the minor ones

almost in all periods without waiting for a red signal to escape from the very high DC.

For p=0.7, the aforementioned dominance e↵ect of the major maintenance comes later

with greater DC values than 100,000. Because minor actions, in these scenarios, has a

stronger e↵ect on the system performance due to the fact that their success probability

is relatively higher than the other two scenarios. Notably, the policy behavior in the

p=0.7 case di↵erentiates obviously than the other two cases for extremely large DC

values as seen in Figure 5.6 when compared to smaller DC values as seen in Figure 5.5.

5.3.4. Sensitivity to Action Space

There are three available actions per each component, i.e. do nothing, minor

maintenance, major maintenance in the base model. In this section, two di↵erent

scenarios of action spaces are considered, restricted which includes only major mainte-
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nance and extended action space which includes also combined maintenance to carry

out sensitivity analyses under di↵erent downtime costs.

5.3.4.1. Restricted Action Space. Minor maintenance improves a component state by

one with a success probability of p only if it is in the “degraded 2” or “degraded

1” state. Besides, minor maintenance only includes the labor cost of 500 for each

component and it does not lead to production loss. To assess the impacts of minor

actions on the maintenance policy, minor actions were removed from the model in this

section. The results of the sensitivity analyses are given in Table 5.7.

Table 5.7: Sensitivity analysis under di↵erent DC values for restricted action space.

TCost TRed TRep
Major

Maintenance

DC Avg Std Avg Std Avg Std C1 C2 C3 C4 Total

500 42,467 3,592 89.60 7.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,000 74,304 12,149 26.18 4.08 23.24 3.90 8.78 4.48 6.56 3.42 23.24

3,000 119,750 19,310 24.28 3.96 23.88 3.84 9.52 4.56 6.66 3.14 23.88

7,000 204,448 34,256 21.90 3.94 27.74 4.25 10.96 4.38 9.48 2.92 27.74

10,000 261,555 48,456 19.88 4.25 34.40 4.07 15.04 4.92 10.88 3.56 34.40

30,000 537,587 113,802 12.34 3.91 88.06 1.63 39.08 23.44 8.22 17.32 88.06

70,000 953,894 256,252 11.14 3.84 100.00 0.00 41.22 23.90 11.36 23.52 100.00

100,000 1,194,318 402,139 10.30 4.24 100.00 0.00 36.78 24.62 14.54 24.06 100.00

5.3.4.2. Extended Action Space. As a further study, the assumption of replacing only

one component at a time has been extended; new actions that replace two components

at a time have been added. Thus, action space has been extended to 14 actions for

the system. The new actions added to action space are “replace C1 and C2”, “replace

C1 and C2”, “replace C1 and C4”, “replace C2 and C3”, “replace C2 and C4” and

“replace C3 and C4”. For combined major actions, the component replacement costs

are calculated by adding the replacement costs of the relevant components. The total

cost of major maintenance activities consists of the labor cost of major maintenance, the
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replacement costs of the relevant components and the downtime cost. It is important

to note that one DC incurs when a red signal is received. The results of the sensitivity

analyses are given in Table 5.8 and Table 5.9 for p=0.3 and p=0.7 respectively.

Table 5.8: Sensitivity analysis under di↵erent DC values for extended action space with

p=0.3.

TCost TRed TRep Maintenance

Downtime

Cost
Avg Std Avg Std Avg Std

Minor

Total

Major

Total

Combination

Total

500 41,921 3,514 88.46 7.13 0.00 0.00 0.00 0.00 0.00

1,000 70,600 13,674 30.72 5.15 10.76 2.67 0.00 2.30 8.46

3,000 111,844 18,427 15.60 2.57 15.60 2.57 0.00 0.00 15.60

7,000 162,971 28,098 11.34 2.80 100.00 0.00 88.46 1.38 10.16

10,000 195,719 39,248 11.26 2.98 100.00 0.00 88.62 0.66 10.72

30,000 386,263 85,391 9.06 2.71 100.00 0.00 78.80 0.04 21.16

70,000 672,738 173,129 6.38 2.59 100.00 0.00 48.40 0.00 51.60

100,000 806,619 201,054 4.92 2.12 100.00 0.00 24.18 0.00 75.82

Table 5.9: Sensitivity analysis under di↵erent DC values for extended action space with

p=0.7.

TCost TRed TRep Maintenance

Downtime

Cost
Avg Std Avg Std Avg Std

Minor

Total

Major

Total

Combination

Total

500 42,180 3,463 87.90 7.51 1.08 1.34 1.08 0.00 0.00

1,000 71,812 15,842 26.36 5.13 31.18 5.00 22.88 0.00 8.30

3,000 108,777 23,414 12.56 4.13 81.00 2.97 71.56 0.58 8.86

7,000 159,406 30,041 10.72 2.88 100.00 0.00 17.74 0.16 10.56

10,000 175,261 32,466 9.66 2.45 100.00 0.00 90.34 0.22 9.44

30,000 351,958 78,888 9.24 2.41 100.00 0.00 89.14 0.24 10.62

70,000 652,081 172,547 6.62 2.54 100.00 0.00 56.66 0.00 43.34

100,000 813,462 223,462 5.04 2.36 100.00 0.00 24.90 0.00 75.10
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5.3.4.3. Comparison of Action Space Scenarios. Comparison of the action space sce-

narios (restricted, base and extended models) are given in Figure 5.7 and Figure 5.8

with respect to TCost, TRed and TRep with increasing DC values ([500; 10,000] and

[10,000; 100,000]) for the two success probability values respectively. In both success

probability scenarios, TCost of the extended model is the lowest after a DC value of

3,000 where proactive maintenance starts in the policy. As DC increases step by step,

the success of the extended model in reducing TCost, due to having the alternative of

performing combined actions at a time point, can be seen more obviously. Moreover,

the base model is also more successful than the restricted model due to having the

alternative of performing minor actions at a time point. For extreme DC values in

the range [10,000; 100,000], the base model approaches the restricted model in TCost,

especially after DC=40,000. This is because of the fact that minor maintenance does

not help to reduce the total cost and major maintenance starts to replace them for

extreme DC values. Hence, it can be concluded that using minor maintenance has its

advantage in DC values greater than 4,000 and less than 40,000 when p=0.7.

TRed of the base and the extended model is lower than the TRed of the restricted

model until a DC value of 20,000. After this value, the base model does not result in

a lower number of red observations whereas it succeeds to keep its cost at most equal

to the cost of the restricted model. That is to say, although the base model may result

in more TRed, it is still e↵ective in reducing its total cost.

The most remarkable di↵erence between p=0.3 and p=0.7 scenarios with respect

to TRep is that the base and the extended model reach the maximum number of

maintenance, i.e., TRep=100, quicker when p=0.7. The more a policy favors minor

maintenance, the quicker it reaches the full maintenance capacity utilization.

5.3.5. Comparisons with Predefined Policies

In this section, we compare the performance of the policy generated by the

POMDP solver with the predefined policies of which the details are already explained
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in Section 5.2.2. The comparisons are done under two main headings according to the

deterioration behavior of the components. In Section 5.3.5.1, the system is handled

with the aging probabilities already used in the previous sensitivity analyses where

the components deteriorate with similar probabilities. Components C1 and C3 have

a working transitional probability of 0.97 whereas components C2 and C4 deteriorate

slightly faster with a transitional probability of 0.95. To make our analyses to be

valid also for the systems with components aging in dissimilar probabilities, we dis-

turb the balance of the system by di↵erentiating the aging with distinct transitional

probabilities which are 0.99, 0.96, 0.93 and 0.90 for C1, C2, C3 and C4 respectively.

Based on the previous sensitivity results, it is observed that the policies result in

more minor actions when p=0.7, justifying the inclusion of minor actions in the action

space. That is why, in this section, all comparisons are conducted under the success

probability of p=0.7. Three downtime cost values are decided, on purpose, according to

the previous results such that corrective, minor proactive and major proactive strategies

all show up themselves at one of the DC values. The smallest DC value is set to 1,000

from the findings in Table 5.6 where the SPM policy starts doing corrective actions. On

the other hand, a high value of DC=70,000, where maintenance is done in all periods,

is selected because of the significancy of both minor and major actions in the policy.

For an intermediate DC value, 7,000 is chosen to be used in the comparisons.

5.3.5.1. Comparisons under Similar Aging Behaviors. When the components have al-

most similar deterioration probabilities, the behaviors of the policies in terms of the

ratios of the total maintenance costs to the total cost of the SPM policy are given for

a DC value of 1,000 with increasing maintenance frequencies in Figure 5.9. At such

a small DC value, it is obvious from the SPM policy that maintenance is not required

significantly. Furthermore, since the proactive policies convergence to the corrective

counterparts as proactive maintenance frequency increases, the maximum frequency f

in this part of the study is decided to be set to a reasonably high value. Due to these

facts, we take f at values greater than one in the range [3; 19]. For the statistical com-

parison, a Games-Howell post-hoc test is applied due to the lack of homoscedasticity.



71

The best promising frequency values of each method are chosen for the statistical test.

The grouping results are available in Table 5.10. The same letter indicates the policies

which are insignificant at a significance level of 0.05 in terms of the total maintenance

cost. Compared with the predefined strategies, SPM policy achieves significantly less

maintenance cost than all the others. Each of the RND method, as expected, perform

significantly worse than the respective ORD method. Since selecting the right com-

ponent to be maintained at the right time is very essential in maintenance decisions,

random methods are not successful in component selection at a maintenance time. This

is because there is a possibility that a component in good condition can be maintained

consecutively and a component in poor condition may not be maintained for a long

time. Although there is no statistical di↵erence between the strategies using the ORD

method, the performance of the CorORD policy is the one closest to the performance

of the SPM. This behavior can be explained by the very low DC value. Under the DC

value of 1,000, the SPM policy performs proactive maintenance rarely and generally

shows a corrective behavior.

Figure 5.9: Maintenance policies at DC=1,000 with similar aging behaviors.

The performances of the policies are investigated in terms of the total mainte-

nance cost for the DC value of 7,000. We test with di↵erent f values in the range

[1;9]. The ratios of the total maintenance costs to the total cost of the SPM policy are

given in Figure 5.10 whereas post-hoc test results are given in Table 5.11. According

to the results, the SPM policy yields the minimum cost compared to the other poli-

cies. However, the performances of the SPM and MinProORD (f=1) methods are not
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Table 5.10: GH results at DC=1,000 with similar aging behaviors.

Strategy f TCost GH

SPM - 67,001 C

CorORD - 77,907 B

MinProORD 7 78,498 B

MajProORD 19 79,791 B

CorRND - 99,212 A

MinProRND 1 101,276 A

MajProRND 19 107,587 A

significantly di↵erent. The reason of this is that both SPM and MinProORD (f=1)

policies prefer to perform minor proactive maintenance to ensure that the system will

work without receiving the red signal. ORD methods yield better results than RND

methods. This is because of the similar aging behavior and replacement costs of the

components, so that selecting the components in an order provides a more successful

policy. In the case of systems with dissimilar aging behavior and costs, ORD methods

may not be so successful. At DC=7,000, doing minor proactive maintenance almost at

every period unless a red signal is observed, f = 1, performs significantly better than

both corrective and major proactive counterparts.

Figure 5.10: Maintenance policies at DC=7,000 with similar aging behaviors.
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Table 5.11: GH results at DC=7,000 with similar aging behaviors.

Strategy f TCost GH

SPM - 162,393 E

MinProORD 1 186,109 D,E

MajProORD 5 209,643 C,D

CorORD - 216,650 C

MinProRND 1 243,503 B,C

MajProRND 9 282,489 A,B

CorRND - 296,137 A

We investigate the performance of the SPM policy at an extreme DC value of

70,000. Because of the very high DC value, frequent proactive maintenance should be

essential. The behavior of the policies are illustrated in Figure 5.11 for f values of 1

and 3 whereas post-hoc test results are given in Table 5.12. It is interesting to see

that both MajProORD and MinProORD results do not distinguish from SPM results

significantly at f = 1 and DC=70,000. CorORD and CorRND result in worse policies

than the other proactive policies at f = 1, which shows that corrective methods are

not preferable at such a huge DC value. Furthermore, this DC value is the one where

proactive (both major and minor) policies are found to be statistically close to the

SPM policy.

5.3.5.2. Comparisons under Dissimilar Aging Behaviors. In the previous section, some

predefined policies using the ORD component selection method give insignificant re-

sults compared to the SPM policy. An interesting question arises whether this will

be valid for the systems having components with dissimilar aging behavior. Thus, the

deterioration rates of the components are changed such that the transitional working

probabilities of the components become as 0.99, 0.96, 0.93 and 0.90 for C1, C2, C3 and

C4 respectively. The predefined policies using the ORD method are tested again at

the same DC and frequency values as in the previous section. The results are given in
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Figure 5.11: Maintenance policies at DC=70,000 with similar aging behaviors.

Table 5.12: GH results at DC=70,000 with similar aging behaviors.

Strategy f TCost GH

SPM - 891,416 C

MajProORD 1 938,193 C

MinProORD 1 1,081,340 C

MinProRND 1 1,440,899 B

MajProRND 1 1,511,439 B

CorORD - 1,632,404 B

CorRND - 2,279,184 A

Figures 5.12, 5.13 and 5.14 Tables 5.13, 5.14 and 5.15 respectively. When the behavior

of the policies and post-hoc results are investigated, it can be concluded that SPM pol-

icy distinguishes significantly from all the predefined policies at all DC values tested.

This result indicates that although the performance of the predefined policies depends

on the system structure, SPM always gives robust policies independent of the system

structure. One can try to improve the quality of a maintenance policy by scrutinizing

the SPM policy up to a point. However, that policy does not guarantee to achieve

the best performance in all cases. Another important point to mention is that in a

predefined policy, the maintenance decisions of time and components are decoupled
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which prohibits finding the optimum joint maintenance decision.

Figure 5.12: Maintenance policies at DC=1,000 with dissimilar aging behaviors.

Figure 5.13: Maintenance policies at DC=7,000 with dissimilar aging behaviors.

Figure 5.14: Maintenance policies at DC=70,000 with dissimilar aging behaviors.
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Table 5.13: GH results at DC=1,000 with dissimilar aging behaviors.

Strategy f TCost GH

SPM - 73,123 B

MajProORD 17 90,813 A

CorORD - 90,973 A

MinProORD 19 91,557 A

Table 5.14: GH results at DC=7,000 with dissimilar aging behaviors.

Strategy f TCost GH

SPM - 159,423 B

MinProORD 1 242,858 A

MajProORD 3 255,163 A

CorORD - 255,669 A

Table 5.15: GH results at DC=70,000 with dissimilar aging behaviors.

Strategy f TCost GH

SPM - 961,006 D

MajProORD 1 1,212,615 C

MinProORD 1 1,617,387 B

CorORD - 1,937,044 A
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6. POLICY ANALYSIS OF THE REGENERATIVE AIR

HEATER SYSTEM USING FACTORED POMDPS

In the previous chapters, experimental models are built to represent the com-

plexity of a real-life maintenance problem using factored POMDPs. In this chapter,

regenerative air heater (RAH), which is one of the major subsystems of a thermal

power plant is formulated as a factored POMDP and e↵ective policies are obtained for

the maintenance problem of the RAH under various scenarios.

6.1. Model Building

The RAH is the most important element of the air-gas system in coal-based

thermal power plants. It consists of a motor group (ball bearing, winding-insulation,

rotor-shaft), hub reduction gear, RAH insulation and honeycombs. The working mech-

anism of the RAH is shown in Figure 6.1. The RAH is used to heat the air. In the

RAH system, moving on a rotating component, the air and gas passing through the

honeycomb consisting of a set of plates exchange heat. The gas losing its heat goes

to the electro filter and the heated air is transferred to the boiler to dehumidify the

coal. For detailed information of the RAH system please refer [138, 139] where the

RAH system consists of two parallel motor lines and one observation setting related

to the RAH exit temperature. In this study, only one complete line of the system is

considered. Additionally, an auxiliary observation is added to the rotor shaft to gather

information from the motor group in the model.

6.1.1. System Structure

The maintenance problem of the RAH is formulated as a POMDP model. The

relationships between nodes are shown in Figure 6.2. The model has four node types:

dynamic nodes, process nodes, exogenous nodes and observation node. Dynamic and

process nodes are represented by purple and pink respectively, while observation and



78

Figure 6.1: Regenerative air heater [140].

exogenous nodes are indicated by orange and blue respectively in the figure. The arrows

indicated with “1” denote the temporal relationships between two successive time slices.

Other arrows represent the causal relations between the nodes. The condition of the

ball bearing a↵ects both the winding insulation and the rotor shaft. Hence, there exits

stochastic dependency between them. Furthermore, a structural dependency exists

between the honeycomb and the RAH insulation since maintaining the honeycomb

requires the maintenance of the RAH insulation. Table 6.1 shows the abbreviations,

types and state spaces of all nodes in the POMDP model.

6.1.2. Action Structure

There are six maintenance activities which are represented by green color, as can

be seen in Figure 6.2 and Table 6.2 shows the action nodes and their state spaces. When

a “Do nothing” action is performed, the system experiences the natural deterioration

process. The relevant component is replaced with a new one by “Replace” action. The

“Clean” action in the honeycomb symbolizes the special cleaning of the combs using

chemicals. The “Grind” action in the rotor shaft also represents the grinding of the

rotor in the case of an axis shift.
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Figure 6.2: POMDP model of the RAH system.

6.1.3. Probability Structure

Transitional probabilities of the components and conditional probabilities of the

nodes and the observation node are given in Tables D.1-D.13 respectively. In this

study, probabilities in [139] are revisited to handle the problem within the POMDP

environment. The accuracy of the observations is probabilistic. The RAH temperature
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Table 6.1: Nodes and state spaces of the RAH.

Nodes Abbrev. Node Type Observability State Space

Ball Bearing BB Dynamic Non-Observable {Normal, Loose, Locked}

Winding Insulation WI Dynamic Non-Observable {Original, Burned}

Rotor Shaft RS Dynamic Non-Observable {Normal, Unaligned}

Hub Reduction Gear HRG Dynamic Non-Observable {Normal, Fail}

Honeycomb HC Dynamic Non-Observable {Cleaned, Dirty}

RAH Insulation RI Dynamic Non-Observable {FullInt, MediumInt, LowInt}

Slagging Slag. Exogenous Non-Observable {No, Yes}

Coal Rank CR Exogenous Non-Observable {Good, Bad}

Rotor Rotation RR Process Non-Observable {Rotate, NotRotate}

HRG Rotation HRG Rot. Process Non-Observable {Rotate, NotRotate}

RAH Rotation RAH Rot. Process Non-Observable {Rotate, NotRotate}

RAH Exit Temperature RAH Exit Process Non-Observable {Normal, Low, VLow}

RAH Measured Temperature RAH Temp. Observation Observable {Normal, Low, VLow}

Vibration Vib. Observation Observable {N/A, Low, High}

Table 6.2: Action nodes in the POMDP model.

Action Nodes Action Space A↵ected Component

BB Main. {Replace, Do Nothing} BB

WI Main. {Replace, Do Nothing} WI

RS Main. {Grind, Do Nothing} RS

HRG Main. {Replace, Do Nothing} HRG

RI. Main. {Replace, Do Nothing} RI

HC Main. {Clean, Do Nothing} HC, RI

is more sensitive to the system downtime.

6.1.4. Cost Structure

The maintenance costs incurred at each t depends on the observation received,

the maintenance action performed, maintenance duration, and the unit downtime cost.

The total maintenance cost consists of the downtime cost and the repair of the relevant

component. A unit downtime cost of 10,000 TL per hour incurs when a normal or low
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temperature measurement is observed, and the system is assumed to have a unit down-

time cost of 25,000 TL per hour when a very low (VLow) temperature measurement

is received. Maintenance costs of each component including both the downtime costs

(obtained by multiplying the maintenance time required with the unit downtime cost)

depending on the observations received and also the cost of the action taken are given

in Table 6.3 where DC denotes the downtime cost.

Table 6.3: Maintenance costs of the RAH system.

Component
Main. Observation

Dur. No/Low VLow

(hour) Action Cost DC Action Cost DC

BB 1 1,000 10,000 2,000 25,000

WI 4 7,500 40,000 15,000 100,000

RS 4 750 40,000 1,500 100,000

HRG 2 1,000 20,000 2,000 50,000

RI 2 50 20,000 100 50,000

HC 6 800 60,000 1,600 150,000

6.2. Proposed Methodology

The RAH system is formulated as a factored POMDP and it is solved for a main-

tenance policy using Symbolic Perseus implemented in Matlab (SPM) [58]. To model

the RAH with the flat representation, it is required to employ 13, 824⇥ 13, 824 square

matrix for each action to create the state transition matrix. However, by exploiting

the conditional independence in the factored model, this huge burden of the transi-

tion matrix can be reduced. Equation 6.1 illustrates how the state transition in a flat

POMDP is reduced by factoring the elements of the RAH model. Using the factored

POMDP enables us to represent the huge matrix demonstrated in the left hand side
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of the equation with the small instance matrices in the right hand side.

[RAH ]13,824⇥13,824 ![ BB ]3⇥3 , [WI ]6⇥2 , [RS ]6⇥2 , [HRG ]12⇥2 ,

[HRGRot ]4⇥2 , [RAHRot ]2⇥2 , [ CR ]2⇥1,

[ Slag ]2⇥2, [HC ]4⇥2, [RI ]3⇥3, [RAHExit ]12⇥3

(6.1)

6.3. Computational Results

The discount factor is set to 0.9999. SPM is run infinitely to generate maintenance

policies and the policies are implemented on the system during a 900 working day hori-

zon (three years excluding the scheduled maintenance duration) with 100 replications.

Sensitivity analyses are conducted with several unit downtime costs. Two predefined

corrective policies are proposed to compare the performance of the maintenance pol-

icy obtained by the POMDP solver. The policy is analyzed to identify the critical

components of the system in terms of the probabilities and also maintenance costs.

Various scenarios with exogenous variables are designed to highlight their impact on

the RAH system. Furthermore, the policy is analyzed by restricting and extending the

observation space and by adding an inspection node to the action space.

6.3.1. Comparisons with Predefined Policies

In order to analyze the performance of the policy generated by the POMDP

solver, two predefined corrective maintenance policies, CorORD and CorRND proposed

in Chapter 5 are used where the components are maintained randomly or in order by

node ID when a VLow measurement is observed. Results of sensitivity analysis for the

unit downtime cost of 25,000, are given in Table 6.4 where TCost, TVLow, TRep and

TRepPro denote the total cost, the total number of VLow measurements received, the

total number of replacements and the total number of proactive replacements respec-

tively in 900 days of a horizon. Average and standard deviation of these measures are

reported in the table. Furthermore, the average total replacements for each component
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are also given. In order to make a consistent comparison, besides the base POMDP

policy, a policy called “SPM-Cor” is generated which does not provide any cost ad-

vantage to the proactive maintenance in the POMDP model, thus forcing the policy

to act reactively. The cost of CorRND policy is considerably higher than that of the

Order policy indicating the importance of e↵ective component selection. Although the

CorORD strategy gives much better results than the Random strategy; its cost is still

higher than that of both SPM policies. The reason for this can be explained by the

fact that the RAH consists of di↵erent components in terms of cost and aging behavior

structure. For instance, SPM policy maintains BB more than the others, while the

Order strategy leads a balanced selection policy. Moreover, maintaining components

in order can cause unnecessary maintenance. For example, as can be seen from Table

6.4, the honeycomb is maintained on the average 3.38 times with the CorORD strat-

egy. Considering that the reactive downtime cost of the honeycomb is 150,000 TL,

it is obvious that 570,000 of the total cost comes from the honeycomb maintenance.

This situation demonstrate the success of condition-based maintenance strategies. The

obtained POMDP policies become more significant since the maintenance actions are

determined adaptively using the beliefs from the information provided by the observa-

tion and action history. An additional important finding is that the SPM-Base policy is

able to perform maintenance proactively before waiting for a VLow measurement when

compared to the SPM-Cor policy due to the cost advantage of the proactive mainte-

nance. Thus, a cost saving of 171,183 TL is achieved via the proactive maintenance

performed.

Table 6.4: Comparison with predefined policies when unit DC=25,000.

Policy
TCost TVLow TRep TRepPro Avg. Comp. Replacements

Avg Std Avg Std Avg Std Avg Std BB WI RS HRG RI HC

SPM-Base 676,816 255,864 14.65 6.26 16.89 6.72 2.24 1.36 9.55 1.26 1.57 2.79 1.72 0.00

SPM-Cor 847,999 353,088 18.12 8.18 18.13 8.17 0.01 0.10 9.61 1.72 1.67 3.84 1.29 0.00

CorORD 1,800,589 949,227 21.26 10.65 21.26 10.65 0.00 0.00 3.94 3.92 3.80 3.46 3.20 2.94

CorRND 3,547,248 1,423,050 44.82 16.38 44.82 16.38 0.00 0.00 7.98 7.68 7.42 7.08 7.08 7.58
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6.3.2. Sensitivity to Unit Reactive Downtime Costs

Results of sensitivity analysis with respect to several unit reactive downtime cost

values, are given in Table 6.5. According to the results, as downtime cost increases,

the average total number of VLow temperature measurements decreases whereas the

average total number of replacements increases. It can be said that more replacements

are performed proactively before waiting for a VLow measurement as downtime cost

increases. An important finding of these replication results is that the policy does not

prefer to maintain the honeycomb up to the downtime cost of 100,000. This may be due

to the high maintenance duration of the honeycomb. Since honeycomb’s maintenance

duration is relatively long compared to the other components, its maintenance is costly.

Therefore, the general behavior of the policies obtained is to maintain the system

by improving the condition of the other components, rather than maintaining the

honeycomb at a high cost. As can be seen from the table, the policy recommends

the average 1.2 honeycomb maintenance. It is essential to highlight that all of this

maintenance is proactive rather than reactive.

The average total number of VLow measurements, the average total number

of replacements and the average total number of proactive replacements for di↵erent

downtime cost values are depicted in Figure 6.3 where it is seen obviously that TRep

and TProRep increase as downtime cost increases. On the other side, TVLow first

does not change, then decreases by the increase in downtime cost. An additional

finding is that as the unit downtime cost increases, the system tends to perform more

proactive maintenance because high downtime cost triggers the system to behave more

proactively to escape from unexpected system halts.

6.3.3. Sensitivity to Costs of Components

The RAH is a complex system that involves components with di↵erent aging

behaviors, maintenance duration, and dependencies among the components. In this

section, a scenario called “SPM-SameCosts” is developed to generate a policy consid-
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Table 6.5: Sensitivity analysis under di↵erent unit reactive DC values.

URDC
TCost TVLow TRep TRepPro Avg. Comp. Replacements

Avg Std Avg Std Avg Std Avg Std BB WI RS HRG RI HC

25,000 676,816 255,864 14.65 6.26 16.89 6.72 2.24 1.36 9.55 1.26 1.57 2.79 1.72 0.00

50,000 1,327,721 558,467 14.53 6.56 18.57 7.94 4.04 2.10 8.95 1.42 1.67 3.28 3.25 0.00

75,000 1,926,710 767,268 13.48 5.71 19.74 7.48 6.26 2.56 8.77 1.27 1.81 2.97 4.92 0.00

100,000 2,125,404 924,524 12.22 5.32 20.64 6.28 8.42 2.05 8.09 1.40 1.71 2.91 5.33 1.20

Figure 6.3: TVLow, TRep and TProRep.

ering only probabilities of the components in order to understand the importance of

the components regardless of the maintenance cost. This is achieved by setting the

costs of all components to the median of all costs in the POMDP model. The results

are given in Table 6.6.

It is worthwhile to mention that the policy recommends maintaining the honey-

comb more than twice; however, it does not o↵er any maintenance to the RAH insula-

tion. This is because of the structural dependency; that is the activity of maintaining

the honeycomb a↵ects both the honeycomb and the RAH insulation. As a result, after

the maintenance of honeycomb, both the honeycomb and the RAH insulation pass to

their best states. Since it is possible to perform both maintenances at a single cost,

the policy does not prefer to perform maintenance on the RAH insulation. The second

important finding is that most of the analyses performed with di↵erent settings do not
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provide honeycomb maintenance, while the SPM-SameCosts policy proposes on the

average 4.81 maintenance. This is due to the exclusion of the high maintenance cost

of the honeycomb in this scenario.

On the other hand, SPM-SameCosts policy proposes on the average 2.45 ball

bearing maintenance while SPM-Base policy proposes on the average 9.55 ball bearing

maintenance. In SPM-Base policy including the costs, as the ball bearing is cheaper

than the components, the policy tends to improve the state of the system by main-

taining the ball bearing much more than the other components. However, giving too

much attention to the ball bearing causes the other components to be deprived of the

maintenance they need. The results of the average total number of replacements and

Table 6.6: Sensitivity to costs of the components.

Policy
TCost TVLow TRep TRepPro Avg. Comp. Replacements

Avg Std Avg Std Avg Std Avg Std BB WI RS HRG RI HC

SPM-Base 676,816 255,864 14.65 6.26 16.89 6.72 2.24 1.36 9.55 1.26 1.57 2.79 1.72 0.00

SPM-SameCosts 1,119,140 500,970 11.30 5.70 13.78 6.25 2.48 1.57 2.45 1.55 1.77 3.20 0.00 4.81

the average total number of proactive replacements proposed by the SPM-Base and

the SPM-SameCosts policies are also given in Figure 6.4. As can be seen from the

figures, more proactive maintenance activities are o↵ered to the ball bearing and the

honeycomb compared to the other components in the SPM-Base policy. This may

indicate that these components are critical components of the system. As can be seen

in most of the results, the ball bearing is generally maintained much more than the

other components.

6.3.4. Sensitivity to Critical Components

According to the results obtained in Section 6.3.3, the major di↵erence between

the two cases belongs to maintenance of the ball bearing and the honeycomb. To

make further analysis, the honeycomb is favored to be maintained by reducing the

maintenance duration to two hours. Another scenario is designed where the ball bearing
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Figure 6.4: Maintenance distribution of the components a) SPM-Base b) SPM-

SameCost.

is directed to be maintained less by increasing the maintenance duration to two hours

in the base model. The results are given in Table 6.7. As can be seen from the table,

the honeycomb is maintained when its duration is reduced. Moreover, the total number

of VLow received and the total number of replacements also decrease. In addition, the

ball bearing is maintained less. There is also a decrease in the total cost as expected.

On the other hand, when the maintenance duration of the ball bearing is increased, it

is maintained less. Interestingly, when the total maintenance number of ball bearing

reduces, the total maintenance number of the HRG increases. As can be seen in Figure

6.3, HRG is one of the important components of the system. If it does not rotate, the

system halts immediately.

Table 6.7: Sensitivity to the maintenance costs.

Policy
TCost TVLow TRep TRepPro Avg. Comp. Replacements

Avg Std Avg Std Avg Std Avg Std BB WI RS HRG RI HC

SPM-Base 676,816 255,864 14.65 6.26 16.89 6.72 2.24 1.36 9.55 1.26 1.57 2.79 1.72 0

SPM-BB (2 hours) 870,357 362,696 13.38 6.07 15.61 6.18 2.23 1.46 2.75 1.65 2.00 5.38 3.83 0.00

SPM-HC (2 hours) 606,882 269,218 10.87 4.82 13.78 5.36 2.91 1.54 5.61 1.34 1.61 3.00 0.00 2.22

6.3.5. Sensitivity to Exogenous Variables

Coal rank and slagging are two important exogenous components for the RAH

system. Slagging, which prevents heat exchange, occurs when there exist very small
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particles of ash on the heat transfer surfaces. The coal quality directly a↵ects slag-

ging. Because low-quality coal first increases the gas temperature and then is slagged.

Probability of using low quality coal is taken as 0.5, 0.7 and 0.9 respectively in the

sensitivity analysis, of which the results the sensitivity analyses are given in Table 6.8.

As the quality of coal decreases, the average total number of VLow signals received

and the total maintenance cost also increase. The unexpected results of the case with

p=0.9 are discussed in detailed in Section 6.4.

Table 6.8: Sensitivity analysis with di↵erent coal rank probabilities.

CR (low)
TCost TVLow TRep TRepPro Avg. Comp. Replacements

Avg Std Avg Std Avg Std Avg Std BB WI RS HRG RI HC

0.5 676,816 255,864 14.65 6.26 16.89 6.72 2.24 1.36 9.55 1.26 1.57 2.79 1.72 0.00

0.7 769,642 349,826 15.41 7.43 18.28 8.28 2.87 1.85 9.20 1.65 1.89 3.53 2.01 0.00

0.9 9,189,085 6,029,555 353.09 235.25 355.13 235.49 2.04 1.29 349.73 0.98 0.00 2.60 1.82 0.00

As mentioned before, coal quality directly a↵ects slagging. When coal quality is

low, the probability of slagging (p) is 0.4 in the base scenario. Sensitivity analyses are

conducted for p=0.4, 0.6 and 0.8 respectively and their results are given in Table 6.9.

According to the results, as the probability of slagging increases, the average total

number of VLow signals received, the total number of maintenance activities performed

and the total maintenance cost also increase. One of the noteworthy finding observed

in the table is the increase in the number of the RI maintenance as the probability

of slagging increases. Under normal circumstances, maintaining the honeycomb is

expected because of the causal relation between slagging and the honeycomb. However,

the policy avoids to maintain the honeycomb due to its high maintenance cost. Instead,

it is preferable to improve the state of the RI, which is relatively cheaper than the

honeycomb. To strengthen this statement, a further analysis is conducted by reducing

the maintenance duration of HC to four and two hours when of the probability of

using low coal quality is 0.9. The results are given in Table 6.10. Obviously, when the

honeycomb maintenance duration is reduced to two hours, if the quality of the coal

is very low, the policy proposes on the average 2.51 honeycomb maintenance. It is

important to state that 2.46 of these maintenance activities are performed proactively.
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It can be said that the policy tends to protect the system against the danger of slagging.

Therefore, a remarkable decrease in the total number of vlow received is achieved.

This is a good example to show the importance of the relationship between costs and

probabilities in the maintenance planning of the RAH system.

Table 6.9: Sensitivity analysis with di↵erent slagging probabilities.

Slagging
TCost TVLow TRep TRepPro Avg. Comp. Replacements

Avg Std Avg Std Avg Std Avg Std BB WI RS HRG RI HC

0.4 676,816 255,864 14.65 6.26 16.89 6.72 2.24 1.36 9.55 1.26 1.57 2.79 1.72 0.00

0.6 704,673 311,058 14.67 6.81 17.89 7.66 3.22 1.63 9.53 1.33 1.70 2.83 2.50 0.00

0.8 767,738 315,181 14.96 7.01 18.32 8.00 3.36 1.89 8.68 1.64 1.84 3.43 2.73 0.00

Table 6.10: Sensitivity analysis with HC Duration.
HC

Duration

TCost TVLow TRep TRepPro Avg. Comp. Replacements

Avg Std Avg Std Avg Std Avg Std BB WI RS HRG RI HC

2 hours 660,936 314,515 11.32 5.37 14.70 5.96 3.38 1.48 5.60 1.70 1.68 3.21 0.00 2.51

4 hours 941,999 365,959 19.80 7.08 23.40 7.48 3.60 1.42 12.20 1.80 2.00 4.00 3.40 0.00

6 hours 9,189,085 6,029,555 353.09 235.25 355.13 235.49 2.04 1.29 349.73 0.98 0.00 2.60 1.82 0.00

6.3.6. Sensitivity to Observation Space

The original model [139] has one observation node that only measures the perfor-

mance of the RAH Exit Temperature. In this study, an auxiliary observation is added

to the rotor shaft to improve the quality of the policy by gathering information from

the motor group. Two di↵erent scenarios are designed. In the “No Auxiliary Obs.”

scenario, we remove the auxiliary observation receiving signals for each epoch. On the

other hand, “Inspection with cost” refers to the scenario that auxiliary observation

is received with an inspection cost of 120 TL per inspection action performed. In

this case, inspection is defined as an another action in the model. Comparison of the

observation space scenarios (no auxiliary observation, inspection and base) are given

in Table 6.11 with respect to TCost, TVLow and TRep. Since auxiliary observation

provides more information from the engine group, remarkable improvement results are
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achieved in terms of the total cost, VLow measurements received and the total number

of replacements.

Table 6.11: Sensitivity analysis for di↵erent observation space.

Policy
TCost TVlow TRep TRepPro Avg. Comp. Replacements Ins.

Avg Std Avg Std Avg Std Avg Std BB WI RS HRG RI HC

NoAuxiliaryObs. 895,460 389,846 17.35 7.15 19.91 7.43 2.56 1.16 9.41 2.15 2.31 3.91 2.13 0.00 -

WithInspectionCost 719,480 305,116 15.00 6.77 900.00 0.00 885.00 6.77 9.55 1.34 1.96 2.80 1.86 0.00 882.49

WithAuxiliaryObs. (Base) 676,816 255,864 14.65 6.26 16.89 6.72 2.24 1.36 9.55 1.26 1.57 2.79 1.72 0.00 900

6.4. Discussion

SPM has some major advantages in modeling and solving POMDPs. First, SPM

performs basic ADD operations more e↵ectively, thus the backups and updates of the

beliefs state are achieved faster. Second, SPM provides the advantage of performing

sensitivity analysis in terms of changing in input parameters. For instance, creating,

adding or removing elements in the model is highly easy by exploiting its factored

structure. However, in some of the experiments performed, we have observed that the

SPM is not so successful in generating qualitative policies in some of the scenarios com-

pared to the previous scenario studies achieved in Chapter 5. That is, the generated

policy proposes the same component repetitively when successive undesirable observa-

tions (very low temperature readings) are received. In order to address this problem,

we use more ↵-vectors and more belief points during solution to improve the quality of

the policies obtained from SPM. Although computational e↵ort required increases, the

results show no sign of improving in the quality of the policies. The following reasons

are believed to be the potential causes of this drawback.

• System structure is complex because of the stochastic dependencies between ball

bearing and the two components which are the winding insulation and the rotor

shaft.

• The components are not equivalent in terms of the maintenance activities and

the downtime e↵ects they cause. For instance, the reactive cost of replacing the
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ball bearing is 27,000 TL whereas cleaning the honeycomb incurs 151,600 TL.

• Except for the ball bearing and the RAH insulation, the other four components

have two states. Deterioration states such as the ones defined in Chapter 5

(degrade1 and degrade2) would be helpful to improve the quality of the factored

POMDP policy.

• Exogenous variables are uncontrollable components of the model. As mentioned

in Section 6.3.5, they are highly e↵ective in the model. Therefore, having more

states in the modeling of the exogenous variables could improve the quality of the

factored POMDP policy. Thus, more adaptive POMDP policies can be produced.
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7. CONCLUSION

This research focuses on exploring, formulating, solving and analyzing multi-

component maintenance problems through factored POMDPs. Developing mainte-

nance strategies for multi-component systems is quite challenging due to the depen-

dencies in the systems and partial observability inherent in the maintenance problems.

POMDPs provide a rich framework for generating e↵ective policies under uncertainty in

partially observable stochastic environments and they are particularly suited for tack-

ling maintenance problems. After a comprehensive review of the literature covering

a wide range of POMDP solution algorithms and POMDP applications, it is realized

that although POMDPs are applied in a wide range of di↵erent real-world problems,

they have received little attention in the domain of maintenance of multi-component

systems because of the fact that POMDP problems su↵er from the curse of dimension-

ality. However, employing factored representations, which is another important finding

from the literature, can reduce the complexity of the problems. Although there is a re-

search community actively working on modeling and solving the maintenance problems

with one large system node, to the best of our knowledge, there exists no application of

maintenance problems through factored POMDPs in the literature, which is the main

motivation of this study.

First, existing POMDP solvers available in the platforms are explored and re-

ported in order to decide which is convenient for maintenance problems at hand.

To analyze the performance of the selected solvers using flat or factored representa-

tions, four maintenance problem settings at increasing complexity levels are designed.

POMDP solvers are evaluated by comparing the total maintenance cost and their

solution times. According to the results, the exact solver could not generate a suc-

cessful policy in problems with large state space. Although approximate solvers using

both flat and factored representation are successful in solving larger problems, the

factored POMDP solver, Symbolic Perseus (SP), stands out with some advantages it

provides. In the case of using flat representation, constructing the transition matrix is
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performed by calculating the joint probabilities for each combination of system state.

However, when constructing the state transition function for the factored representa-

tion, the complexity is reduced by factoring in multi-component systems by exploiting

the conditional independence. Furthermore, SP provides the advantage of performing

sensitivity analysis in terms of easy formulation and easy structural changes in the

model. For instance, creating, adding revising probabilities in the model, or removing

elements and is highly easy by exploiting its factored structure. Therefore, by exploit-

ing factored representations, the eventual goal of this study is to solve the maintenance

problems of a multi-component system in a factored partially observable setting using

Symbolic Perseus solver.

This study proposes to formulate such maintenance problems as factored POMDPs

allowing the complexity of states to be simplified by exploiting the inherent factored

structure of maintenance problems. To achieve this purpose, first, an experimental

maintenance problem consisting of partially observable components deteriorating in

time is designed. The factored POMDP policy is investigated in depth by conducting

various sensitivity analyses. Then, the regenerative air heater (RAH) system, which

is one of the major subsystems of thermal power plants, is formulated as a factored

POMDP.

The first problem involves an empirical dynamic system having symbolically four

hidden independent components degrading over time, three processes and one observ-

able node. The experimental model is very rich in terms of the system and action

state spaces to provide more suitability to real-life applications. There are two levels

of degradation states and there exist two types of maintenance as minor and major,

each with its own characteristics. The components are similar in terms of costs and

aging. The performance maintenance policy obtained via factored POMDP solver is

compared with some smart predefined policies proposed in this study by imitating the

behavior of the factored POMDP policies. Sensitivity analyses are conducted under

various scenarios with several costs and probability parameters to achieve robust find-

ings. The policy is investigated by restricting and extending the action space under
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several downtime cost values and success rates of minor actions. Furthermore, the

policies are monitored under di↵erent aging behaviors of the components to test the

robustness of the factored POMDP policy in various realistic domains.

The second model is a variant of a real-life maintenance problem from the litera-

ture. It consists of six components having stochastic interdependencies, four processes,

two observations, one of them providing auxiliary information and two exogenous vari-

ables reflecting the environmental uncertainty. The components have di↵erent mainte-

nance costs, maintenance durations and aging. The sensitivity of the policy obtained

by the factored POMDP solver is analyzed under several unit downtime costs. The

performance of the factored POMDP policy is compared with two predefined reactive

policies. The critical components of the system in terms of the probabilities and main-

tenance costs are identified by various analyses. The e↵ects of the exogenous variables

are discussed with di↵erent scenarios. The policy is also analyzed by restricting and

extending the observation space and by adding an inspection node to the action space.

Results of the experimental study and real-life implementation shows that POMDP-

based formulations of maintenance problems are superior to the predefined myopic poli-

cies. Number of system halts and total maintenance costs are considerably reduced by

factored POMDP policies. However, it should be noted that although the consistency

of all scenarios in the experimental factored POMDP model, some of the scenarios in

the real-life implementation could not achieve qualitative policies. The main probable

reasons are complex stochastic dependencies between some components, huge discrep-

ancy between maintenance costs of the components and lack of deterioration states of

components and the e↵ects of exogenous variables.

To sum up, POMDPs are powerful tools to build successful maintenance strate-

gies since the maintenance actions are determined adaptively using the information

provided by the observation and action history. On the other hand, factored rep-

resentations are advantageous in modeling and solving the maintenance problem of

multi-component systems due to the inherent factored structure of such problems.
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The promising results at hand mostly show that e�cient maintenance policies can be

generated using factored POMDPs for multi-component maintenance problems.

As a future study, the real-life model can be enriched especially in the problem

domain where the system and action state space is extended to enables the belief about

the system state to be calculated more correctly. More levels of degradation states can

be defined for the components. Parallel to this, action space can be enriched covering

also the minor activities. Furthermore, intermediate states can be defined for the

exogenous variables.
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APPENDIX C: TRANSITIONAL AND CONDITIONAL

PROBABILITIES OF EXPERIMENTAL MODEL

Table C.1: Probabilities of C1 and C3.

Action Major Minor Do nothing

Self [t-1] W Deg1 Deg2 F W Deg1 Deg2 F W Deg1 Deg2 F

W 1 1 1 1 1 0.5 0 0 0.95 0 0 0

Deg1 0 0 0 0 0 0.5 0.5 0 0.04 0.90 0 0

Deg2 0 0 0 0 0 0 0.5 0 0 0.07 0.85 0

F 0 0 0 0 0 0 0 1 0.01 0.03 0.15 1

Table C.2: Probabilities of C2 and C4.

Action Major Minor Do nothing

Self [t-1] W Deg1 Deg2 F W Deg1 Deg2 F W Deg1 Deg2 F

W 1 1 1 1 1 0.5 0 0 0.97 0 0 0

Deg1 0 0 0 0 0 0.5 0.5 0 0.02 0.92 0 0

Deg2 0 0 0 0 0 0 0.5 0 0 0.06 0.87 0

F 0 0 0 0 0 0 0 1 0.01 0.02 0.13 1

Table C.1: Probabilities of P1 and P2.

C2 W Deg1 Deg2 F

C1 W Deg1 Deg2 F W Deg1 Deg2 F W Deg1 Deg2 F W Deg1 Deg2 F

W 1 0.7 0.5 0 0.8 0.5 0.3 0 0.6 0.4 0.1 0 0 0 0 0

F 0 0.3 0.5 1 0.2 0.5 0.7 1 0.4 0.6 0.9 1 1 1 1 1
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Table C.2: Probabilities of P3.

P2 W F

P1 W F W F

W 1 0 0 0

F 0 1 1 1

Table C.3: Probabilities of O1.

P3 W F

Green 0.96 0.005

Yellow 0.03 0.015

Red 0.01 0.98
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APPENDIX D: TRANSITIONAL AND CONDITIONAL

PROBABILITIES OF RAH SYSTEM

Table D.1: Transition probabilities of BB.

BB Main. Replace Do Nothing

Self [t-1] Normal Loose Locked Normal Loose Locked

Normal 1 1 1 0.997503 0 0

Loose 0 0 0 0.001665 1 0

Locked 0 0 0 0.000832 0 1

Table D.2: Transition probabilities of WI.

WI Main. Replace Do Nothing

BB Normal Loose Locked Normal Loose Locked

Self [t-1] Normal Locked Normal Locked Normal Locked Normal Locked Normal Locked Original Burned

Original 1 1 1 1 1 1 0.993356 0 0.2 0 1 0

Burned 0 0 0 0 0 0 0.006644 1 0.8 1 0 1

Table D.3: Transition probabilities of RS.
RS Main. Replace Do Nothing

BB Normal Loose Locked Normal Loose Locked

Self [t-1] Normal Unaligned Normal Unaligned Normal Unaligned Normal Unaligned Normal Unaligned Normal Unaligned

Normal 1 1 1 1 1 1 0.999667 0 0.02 0 1 0

Unaligned 0 0 0 0 0 0 0.000333 1 0.98 1 0 1

Table D.4: Conditional probabilities of RR.
RS Normal Unaligned

WI Original Burned Original Burned

BB Normal Loose Locked Normal Loose Locked Normal Loose Locked Normal Loose Locked

Rotate 1 0.5 0 0 0 0 0.3 0.1 0 0 0 0

Not Rotate 0 0.5 1 1 1 1 0.7 0.9 1 1 1 1
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Table D.5: Conditional probabilities of HRG.

HRG Main. Replace Do Nothing

Self [t-1] Normal Fail Normal Fail

Normal 1 1 0.998335 0

Fail 0 0 0.001665 1

Table D.6: Conditional probabilities of HRG Rot.

HRG Normal Fail

RR Rotate Not Rotate Rotate Not Rotate

Work 1 0 0 0

Fail 0 1 1 1

Table D.7: Conditional probabilities of RAH Rotation.

HRG Rot. Work Fail

Rotate 1 0

Not Rotate 0 1

Table D.8: Transition probabilities of RI.
RI Main. Replace Do Nothing

HC Main. Clean Do Nothing Clean Do Nothing

Self [t-1] fullInt mediumInt lowInt fullInt mediumInt lowInt fullInt mediumInt lowInt fullInt mediumInt lowInt

fullInt 1 1 1 1 1 1 1 1 1 0.997669 0 0

mediumInt 0 0 0 0 0 0 0 0 0 0.001665 0.996672 0

lowInt 0 0 0 0 0 0 0 0 0 0.000666 0.003328 1

Table D.9: Conditional probabilities of Slagging.

Coal Rank Good Bad

No 0.95 0.6

Yes 0.05 0.4
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Table D.10: Transition probabilities of HC.

HC Main. Replace Do Nothing

Self [t-1] Cleaned Dirty Cleaned Dirty

Slagging [t-1] No Yes No Yes No Yes No Yes

Cleaned 1 1 1 1 0.999334 0.996672 0 0

Dirty 0 0 0 0 0.000066 0.003328 1 1

Table D.11: Conditional probabilities of RAH Exit Temp.

RI fullInt mediumInt lowInt

HC Cleaned Dirty Cleaned Dirty Cleaned Dirty

RAH Rot. R NR R NR R NR R NR R NR R NR

Normal 1 0 0.95 0 0.99920 0 0.92 0 0.00019 0 0.0014 0

Low 0 0 0.04 0 0.00035 0 0.05 0 0.68 0 0.69 0

VLow 0 1 0.01 1 0.0045 1 0.03 1 0.31981 1 0.3086 1

Table D.12: Observational probabilities of RAH Measured Temp.

RAH Exit Temp. Normal Low VLow

No 0.99989 0.00015 0.00005

Low 0.0001 0.99 0.0099

VLow 0.00001 0.00985 0.99

Table D.13: Observational probabilities of Vibration.

Rotor Shaft Normal Unaligned

N/A 0.99989 0.00015

Low 0.0001 0.00985

VLow 0.00001 0.99


