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ABSTRACT

APPROXIMATE PROCESSOR DESIGN WITH RISC-V

ISA

With the rise of the Internet of Things (IoT), low-cost resource-constrained de-

vices have to be more capable than traditional embedded systems, which operate on

stringent power budgets. To add new capabilities such as learning, power consump-

tion planning has to be revised. Approximate computing is a promising paradigm for

reducing power consumption at the expense of inaccuracy introduced to the computa-

tions. In this thesis, we propose a processor with approximate processing functionality

for resource-constrained IoT devices. A microprocessor with a dual-datapath mecha-

nism is described in C++ and synthesized with a High-Level Synthesis (HLS) tool. A

standard datapath exists for the parts of applications where the calculation should be

exact. Additionally, an approximate datapath, which includes approximate computing

features that will be more likely to exist in the next generation, low-cost, resource-

constrained, and learning IoT devices, is introduced. Coarse-grain control for setting

the accuracy of approximate operations is adopted to reduce the number of control

signals by grouping the bits so that they can be turned on-off simultaneously. The size

of the operands of the approximate operators is dynamically adjusted at the data path

without affecting the performance. Based on these features, we propose new approxi-

mate adder and multiplier designs and integrate these blocks with a CPU, which ben-

efits from RISC-V ISA. Targeting machine learning applications such as classification

and clustering, we have demonstrated that our processor reinforced with approximate

operations can save power up to 23% for ASIC implementation while at least 90% top-1

accuracy is achieved on the trained models and test datasets.
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ÖZET

RISC-V KOMUT KÜMESİ MİMARİSİYLE YAKLAŞIK

İŞLEMCİ TASARIMI

Nesnelerin interneti (IoT)’nin yaygınlaşmasıyla beraber; düşük güç tüketimli,

düşük maliyetli ve sınırlı kaynağa sahip IoT cihazlarının, geleneksel gömülü sistemlere

göre daha kapsamlı bir yapıda olmasına ihtiyaç duyulmaktadır. Öğrenme gibi yeni ka-

biliyetlerin bu cihazlara eklenebilmesi için, güç tüketimi yeniden gözden geçirilmelidir.

Yaklaşık hesaplama yöntemleri, hesaplamaların tam olarak doğru yapılmasından taviz

vererek de olsa, güç tüketimini önemli ölçüde düşürebilmektedir. Bu tez çalışmasında,

sınırlı kaynağa sahip IoT cihazları için yaklaşık hesaplama yöntemini kullanan bir

işlemci tasarımı sunulmuştur. İki veriyolu olan bu işlemci, C++ programlama diliyle

tasarlanmış ve Yüksek Seviye Sentez - High-Level Synthesis (HLS) - araçlarıyla sente-

zlenmiştir. Normal veriyolunda hesaplamalar tam olarak doğru bir şekilde yapılırken;

yeni nesil, düşük maliyetli, kaynakları sınırlı ve öğrenme kabiliyeti olan IoT cihazlarında

var olacağını düşündüğümüz yaklaşık veriyolu kısmında ise hesaplamalar yaklaşık olarak

yürütülmektedir. Kontrol sinyalleri sayısını düşürmek için bitler gruplandırılmış ve

hassasiyet seviyesi düşük bir doğruluk kontrolü mekanizması tasarlanmıştır. Yaklaşık

veriyolunda işlenen terimlerin boyutları, performansı etkilemeden, dinamik olarak veriy-

olunda ayarlanmaktadır. Bu özellikler temelinde, yeni yaklaşık toplayıcı ve çarpıcı blok-

ları literatüre sunulmuş ve RISC-V komut kümesi mimarisiyle tasarlanan bir işlemciye

bu bloklar entegre edilmiştir. Sınıflandırma ve kümeleme gibi makine öğrenmesi al-

goritmalarını hedef alarak yapılan deneylerin sonucunda; önemli ölçüde güç tasarrufu,

yüksek doğruluk seviyesiyle beraber elde edilebilmektedir. Tasarlanan işlemcinin uygu-

lamaya özel tümdevre (ASIC) tasarımında, eğitilmiş modeller ve test veri kümeleri

üzerinde %23’e varan güç tasarrufu, en az %90 doğrulukla elde edilebildiği gösterilmiştir.
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1. INTRODUCTION

As benefits from technology scaling have been diminishing, it has become more

important for designers to discover new sources for efficient computing. Besides, the

emergence of heavy workloads in some engineering applications, e.g., recognition, min-

ing, inference, data analytics, and vision, desire a considerable amount of power and

requires a very long run-time. This point has also drifted people to seek new de-

cent ways in computations to improve power efficiency. Approximate computing has

gained the attention of many researchers in recent years because of addressing these

needs by proposing energy-efficient computing mechanisms. It is a way to improve the

performance or efficiency of computation by sacrificing fully accurate results. Many

applications, e.g., image or signal processing, classification, and clustering operations

in Machine Learning (ML), where precise results may not be necessary, have benefited

from the advantage introduced by this phenomenon. For example, an approximate

Multiply and Accumulate (MAC) unit introduced in [1] to perform two dimensional

(2D) convolution for image processing. It can improve power savings more than 60

percent, compared to standard, exact MAC, while image quality degradation is in a

tolerable range.

Areas of interest for our design are these kinds of applications that show error

resiliency, accept incorrect results, or inexact calculation with negligible quality loss.

In this study, ML algorithms for classification, clustering, and artificial neural network

(ANN) applications are examined. In our RISC-V core design, the main goal is to

improve the power efficiency of main calculation loops in these algorithms by taking

advantage of the approximate calculations. Desired outputs in these applications need

not be unique and fully accurate, finding the true classes for the output is enough.

Hence approximate operations are pretty well suited to these ML applications. It is

possible with this idea to control the accuracy of the results by adjusting the hard-

ware blocks used in addition, subtraction, and multiplication operations. By means

of removing some parts of these blocks used for exact calculation in hardware, we can

propose power-efficient and cost-effective designs with the trade-off of precise results,
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which may already be unnecessary for the applications. This idea is specialized in

this study and carried out for an approximate core design for the resource-constrained

Internet of Things (IoT) devices that benefit from ML algorithms for learning.

Learning methods have been recently introduced in IoT applications for improving

efficiency in processing massive and complex data [2]. However, feeding sensor data to

cloud so as to learn from data has turned out to be inefficient due to network latencies

and processing energy [3]. Inefficiency in the processing of all data on the cloud due to

network latency and processing energy has pushed researchers to seek efficient ways to

implement ML-based operations such as clustering and classification on the resource-

constrained IoT edge devices, not only on the cloud. In [4], the classification quality is

improved with clustering algorithms to identify anomalies in network traffic on IoT end-

devices. Distributed denial of service (DDoS) attacks on critical internet infrastructure

are classified in [5] to automatically detect IoT botnets by using a variety of machine

learning algorithms on IoT devices.

We utilize our core as an approximate IoT processor for IoT end-devices so that

ML algorithms can also be processed at IoT devices. This study aims to design a

low-power processor for IoT end-devices that is specialized to implement classification,

clustering, and neural network-based ML algorithms in a more power-efficient way.

As mentioned previously, error resiliency in these applications make approximate com-

puting more attractive to save a dramatic amount of energy, which helps to extend

the battery life of IoT devices. Thus, we use an approximate computing mechanism in

our core to provide energy saving in heavy computation workloads of these algorithms

when they are processed on IoT devices. As explained in [6], a common issue for many

IoT devices is heavy workloads. Besides, their computation methodology is mainly

designed to compute precise results even when it is not necessary. Thus, such a design

is welcomed for IoT applications that can tolerate inexact operations for the sake of

power efficiency.

While designing our Approximate IoT Processor, we follow a guideline that we de-

rived from various studies in the literature: Firstly, approximate low-power computing
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at resource-constrained IoT processors needs to be handled at the instruction set level

that supports approximate operations [6,7]. Besides, the precision of the computations

needs to be adjustable to serve different application requirements [8–10]. Finally, there

should be an application framework support to map user-defined regions of software to

approximate computing modules [11]. So, in this paper, we propose an embedded pro-

cessor, which has approximate processing functionality, with the following properties:

• The instruction set extension is minimal: In machine learning, the majority of

operations are addition, subtraction, and multiplication. So, we extend base

Reduced Instruction Set Computer - V (RISC-V) lnstruction Set Architecture

(ISA) only with XADD, XSUB, and XMUL, which stand for the approximate

addition, subtraction, and multiplication, respectively. Code pieces that can

benefit from approximate instructions can be handled via the plug-in developed

in [12] for RISC-V GNU Compiler Collection (GCC).

• We propose a coarse-grain control mechanism for setting the accuracy of approx-

imate operations during run-time. In our proposal, the number of control signals

is minimized by setting each control signal to activate a group of bits. To achieve

this, we design a parallel-prefix adder and a Wallace tree multiplier. We present

three approximation levels to control the accuracy of the computations.

• Exact data types are used so that memory utilization will be maximized, and

memory access time will not increase. To reduce power consumption, we adjust

the size of the operands of the approximate operators dynamically at the data

path. Since approximate operators are faster than the exact ones, dynamic sizing

does not deteriorate the performance.

• For monitoring the quality of the decisions resulting from the ML algorithms

running on our approximate processor, we rely on the interaction of the IoT

device with the IoT user or other constituents of IoT ecosystem.

The rest of the thesis is organized as follows. The second chapter discusses related

works. The third chapter introduces the designed processor and approximate units in

detail. Conducted experiments are described in the fourth chapter, and discussion of
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the results is presented in the fifth chapter. The last chapter summarizes our work and

provides outputs of the study.
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2. RELATED WORKS

In this chapter, we will set forth related research under five subsections. We

summarize approximate computing studies in literature and discuss our approximate

adder design with existing methods in the first subsection. In the second section,

dynamic accuracy control methods for approximate designs in literature are examined

and compared with our method. In the third part, we will introduce several significant

points for designing an approximate processor design and make comparisons between

existing approximate processors and our proposal. We mention several studies that

implement clustering and classification algorithms on IoT devices. We mention studies

that implement clustering and classification algorithms on IoT devices in the fourth

subsection. In the last section, we discuss the RISC-V ISA that we use in our design.

2.1. Approximate Computing

Approximate computing has been one of the most promising phenomena to ad-

dress the need for reducing power consumption in computer systems. Current re-

searches in the field of approximate computing have mainly focused on probabilistic or

imprecise designs at circuit, architecture, and software level [13]. SALSA (Systematic

logic synthesis of approximate circuits) [14] is one of the good examples in the litera-

ture for circuit-level approximation, which proposes approximate versions of the logic

circuits. Designing an arithmetic datapath using imprecise, approximate adders [13,15]

and/or multipliers [16,17] are also very popular examples of circuit-level application of

approximate computing. ANN can use approximate calculation methods for complex

algorithms to achieve architectural improvement to identify critical neurons in an easier

way [18]. Software can also be approximated using techniques like code perforation [13].

Another example at the programming language level, a systematic tool was proposed

in [19] to divide the program into the approximate parts and the precise parts. Both

parts are mapped to different hardware with different supply voltages, speed-grades,

etc., respectively. This technique makes it possible to present a relatively high service

quality. In the meantime, due to approximation, energy can be reduced. On hard-
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ware, similar ideas can be applied, too. As an example, [20] proposes a ripple carry

adder on which a non-uniform voltage scaling technique is applied. Our methodology

in this paper covers the first two groups, namely circuit and architecture level approx-

imations. By introducing new approximate adder and multiplier, we will be focusing

on circuit-level approximation, while integrating these blocks with a microprocessor to

execute some chosen instructions in approximate mode will be a kind of architecture

level approximation.

Approximation at circuit-level for adders covers a general implementation flow,

which is generating larger approximate blocks by using smaller exact or inexact sub-

adders. In [21], 8-bit approximate sub-adders are reconfigured to create 32-bit and 64-

bit more efficient approximate designs in terms of critical path delay, area, and power

consumption. In [15], fixed sub-adders are used to create a reconfigurable generic

adder structure. In [22], the pipeline mechanism is used to generate an approxima-

tion methodology by implementing sub-adders. Using sub-adders can provide a good

opportunity to reconfigure the structure and diminish critical path delay to a degree.

However, critical path delay can still harm the performance of the operation, especially

in high-performance applications.

At this point, we believe that proposing an approximation methodology for par-

allel prefix adders would be useful to implement to reduce critical path length because

this type of adders have a better latency than the others [23]. There is a study in the lit-

erature that uses parallel-prefix adders in the approximate adder design [24]. Their ap-

proximation method includes precise and approximate parts, but parallel-prefix adders

are used only in the precise part. Thus, there is no approximation methodology for

parallel-prefix adders. As a result, the approximation methodology for this type of

adders should be investigated to propose energy-efficient ways for high-performance

and error-resilient applications. To address this need, we introduce a simple approxi-

mation methodology for parallel-prefix adders, which can be further improved for other

applications. In our scenario, we specialized the approximate adder to add a coarse-

grain dynamic accuracy control mechanism. We used Sklansky adder as a case study,

which has a moderate area and the best delay among parallel-prefix adders. We control
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only gray cells in the tree for approximation in order to lower the energy consumption,

reduce critical path, and still have acceptable accuracy. This method can be gen-

eralized to convert other parallel-prefix adders into approximate ones. For example,

Brent-Kung, Kogge-Stone, and other parallel-prefix adders share a similar structure

with Sklansky. Hence this idea can also be directly implemented on them.

2.2. Dynamic Accuracy Control

A further point for approximate computation studies in the literature is control-

ling the accuracy of the approximate modules dynamically [8–10,22]. [8] proposes a new

methodology to arrange the degree of approximation in accordance with the changes in

the application’s noise tolerance within the course of execution. They implement ap-

proximate floating-point operations aimed at recognition, mining, and synthesis (RMS)

applications, which process massive but noisy input data by probabilistic algorithms,

therefore it is suitable to control the accuracy within the course of execution. [9] also

proposes a dynamic accuracy configurable mechanism for the calculations in partial

product trees of the multipliers and [22] also configure the accuracy of the results dur-

ing run-time while proposed approximate adder can operate in accurate or approximate

mode.

Our approximate processor offers dynamic accuracy control functionality as a

programmable feature because each IoT application may require a different accuracy.

Fine-grain control, as proposed in [10], offers fine-tuning of the accuracy at the cost

of increased latency, size, and power consumption of the controller. However, apply-

ing approximate computing in low-cost and resource-constrained IoT processors should

come with no or very little overhead in terms of the area while reducing power con-

sumption and lowering the execution time, if possible. Hence, we have preferred to use

coarse-grain accuracy control. We create certain power-saving levels by putting three

approximation levels for each approximate block. Accuracy levels can be adjusted by

users or IoT ecosystems in accordance with their power and accuracy requirements,

as shown in Figure 2.1. Approximation Level Control Unit can be configured for IoT

end-devices.
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Figure 2.1. Flow diagram of dynamic accuracy control in our Approximate IoT

processor.

In the literature, dynamic accuracy control is also achieved via dynamic voltage

scaling (DVS) [24,25]. There is no dedicated approximate operation block in DVS;

the selected parts of the processor are forced to behave inexactly by lowering the

supply voltage. In DVS, accuracy control takes longer than a cycle, especially when an

accuracy change is required from approximate mode to exact mode. Besides, it comes

with 9% -20% area overhead in the related studies. In our approach, dynamic accuracy

control is applied only on the approximate ALU that is augmented in the datapath.

Hence the accuracy control circuit need not be big. Its overhead on the entire CPU

is much less than 1% in our design. If we calculate the area overhead due to dynamic

accuracy control on each approximate block as calculated in [24,25], then it becomes

about 4% at most, which is still very small compared to their overhead. Another

advantage of our design is that accuracy control takes less than a cycle when switching

between different levels of approximation or between one of the approximation levels

and exact mode. Since our approximate operators execute faster than the exact ones,

dynamic accuracy control circuit does not cause additional latency.

Datatype size and dynamically adjustable operations may also affect consumed

power amount, dramatically, as highlighted in [19]. We consider adjusting the size

of our approximate blocks in accordance with the size of the operands at run-time

just before the execution stage to improve power efficiency a bit more. Adjustment is
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implemented at the hardware level, and dynamic configuration is achieved by switching

operations.

2.3. Approximate Processor Design

Architectural considerations for approximate calculations in a microprocessor

should also be given special attention. According to [7], for the best implementa-

tion, designed approximate hard blocks for these operations should be integrated into

the architecture at the instruction level. Thus ISA extensions should be made to sup-

port these operations in the architecture. We also extend RISC-V ISA for our case to

identify approximate operations at the instruction level.

Another architectural issue that is also stressed in [7] is the coverage of the ap-

proximate operations. We agree with the idea that approximate calculations must be

restricted to only certain operations. For example, we cannot use approximate addition

for the immediate value used for branch operations, because any deviation from the

real result will collapse the running code. We confine our approximate computations to

multiplication, addition, and subtraction by marking instructions that are computed

as either approximately or exactly. Approximate result storage may also be taken into

consideration separately. While proposed architecture in [7] uses approximation aware

cache designs controlled by software or in [19] splits the data memory into two parts

as approximate or precise; we did not need to expose our memory parts any modifica-

tion. Partitioning storage for approximate and exact data causes the under-utilization

of both partitions. Besides, memory access time dramatically increases due to the

software and hardware incorporated in the data distribution.

The idea of carrying the approximate operations into action by means of a proces-

sor is also realized in [11]. In Quora [11], vector operations are approximately executed,

but scalar operations are handled with exact operators. The main hardware approxi-

mation methodologies in Quora are clock gating, voltage scaling, and truncation. The

first method is actually a common low-power technique used in ASIC designs. The

second one is also a low-power technique but can also be used in approximation in
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the sense that voltage can be dynamically lowered too much to diminish the power

consumption at the cost of some error. They truncate least significant bits (LSB)s to

control precision dynamically, but as they stressed in [11], there does not exist a hard-

ware module that calculates results directly in an approximate fashion. They have a

quality monitor unit that follows the error rate and truncates LSBs accordingly. In our

design, we implement scalar operations with approximate and exact operators which

can be selected by software. Separate hardware blocks exist for calculating the result

approximately and controlling the accuracy dynamically. Hence, two designs have a

different approach in terms of approximate CPU design.

A patented work [25] about an approximate processor design can also be found

to show the increasing interest in translating approximate design methodologies into

processor systems. A proposed processor in [25] includes execution units, such as an

integer unit, a single instruction multiple data (SIMD) unit, a multimedia unit, and

a floating-point unit. Considering resource-constrained low-power IoT devices, using

all of these blocks creates too much area overhead together with a significant increase

in energy consumption. We simplify the architecture of the core by putting execu-

tion blocks for only logic and integer operations to minimize power consumption and

to make it suitable for resource-constrained IoT end-devices. Basic integer addition,

subtraction, and multiplication operations can be approximately executed via an ad-

ditional datapath, namely approximate datapath, added to our CPU with a small area

overhead.

2.4. IoT Applications

In our CPU, classification, clustering, and artificial neural network algorithms

are implemented. We have conducted experiments on K-nearest neighbor, K-means,

and neural network codes to show that an important amount of energy can be saved

by our approximate CPU in the ML applications in which these codes are widely used.

There are several applications that use K-nearest neighbor [4,26,27], K-means [28,29]

and neural networks [30,31] at IoT devices in such a way that classification, clustering

and machine learning processes used in IoT systems can also be carried out on the
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resource-constrained IoT devices, not only on the cloud. So, an approximate CPU

can help them to decrease power consumption while calculating intensive computation

loads of these algorithms. Core architecture, and approximate level control mechanism

in this study are designed for IoT end-devices that may have the architecture shown

in Figure 2.1.

2.5. RISC-V ISA

RISC-V is an open and free ISA which is more likely to initialize a new era of

processor innovation through open standard collaboration. It is born in University

of California, Berkeley, (UCB), and its infrastructure is constructed in academia and

research. A new level of free, extensible, open for any improvement software and hard-

ware freedom on architecture is delivered by this new architecture [32]. A GNU/GCC

software toolchain, an LLVM compiler, a GDB/GNU debugger, a Spike (ISA simula-

tor), QEMU, and a verification suite are the basic tools of RISC-V software.

Providing a long-lived open ISA with broad and significant infrastructure support

can be mentioned as the basic intent of RISC-V. It involves documentation, compiler

toolchains, operating system ports, reference software simulators, cycle-accurate FPGA

emulators, high-performance FPGA computers, efficient ASIC implementations of var-

ious target platform designs, configurable processor generators, architecture test suites,

and teaching materials [32]. The reason we choose to design new architecture based

on RISC-V is the key features of RISC-V. These features can be summarized as:

(i) Introducing a novel software level and free hardware design with the capability

of improvement.

(ii) Being an open-source, easier support opportunity from wide-ranging operating

systems, tool developers, and software vendors.

(iii) Unlimited potential for future growth due to being open-source, especially for

hardware.

(iv) There is no alternative ISA architected like the RISC-V ISA, which allows user

extensibility of the architecture without affecting existing extensions or suffering
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software fragmentation.

RISC-V has emerged as a new era on the processor design for several years as

introducing a new instruction set architecture (ISA) to the literature. Due to being free

and an open ISA, there is no need for any microarchitecture licenses in use of RISC-V

ISA. This makes all kinds of optimizations, such as low power, performance, security,

etc. possible in the architecture level, which attracts a wide variety of researchers from

both academic community [33,34], and private sector [35–37].

This architecture flexibility leads people from very different fields to attempt

to design their own microprocessors specialized for the type of their applications. A

number of hard/soft cores ranging from simple cores [38, 39] to the most complex

superscalar, out-of-order one [35, 40, 41], have been introduced as open-source and

hundreds of academic papers related with this ISA have been published so far, and, for

sure, a number of projects are also ongoing. Some commercial products from different

vendors are also available in the market [36,37,42].

Another point behind this interest is that the RISC-V structure enables all users

to make suggestions for the architecture at a much earlier point, which was not pos-

sible in previous ISAs [32]. Besides, RISC-V has the flexibility to add new custom

instructions to the frozen base instructions of the ISA in order to accelerate particular

operations or perform special functions [32].

These benefits of RISC-V have also attracted our interest in order to realize the

idea of designing a new application-specific approximate microprocessor for resource-

constraint IoT end-devices that aims to perform ML algorithms. New instructions

(XADD, XSUB, and XMUL) for approximate operations are proposed. RISC-V com-

piler is specialized for our instructions to compile the new instructions.
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3. APPROXIMATE PROCESSOR

This chapter describes the designed core and approximate blocks and explains

their structure in detail.

3.1. Proposed RISC-V Core Structure

Our RISC-V core has been developed in C++ and synthesized with 18.1 version

of Vivado High-Level Synthesis (HLS) tool. Although [43] indicates that HLS is not the

best solution to develop programmable architectures like CPUs, we can benefit from

HLS tools for fast prototyping of complex digital hardware in a simpler way by using a

high-level or modeling language. Hence, our concern in this paper is to study the effects

of approximate arithmetic units in the datapath of a processor. We focus on improving

the power efficiency for selected ML applications via simply configurable and adaptable

CPU design in which operations can be approximately executed to save power. Our

32-bit core is able to implement all instructions of RV32IM, which is the base integer

instructions of RISC-V ISA plus integer multiplication and division instruction sets,

except fence and ecall instructions. This simple core aims specific applications where

the operations can be handled by using only integer implementations. We followed a

similar approach with Arm Cortex M0 and M3 and did not add a floating-point unit

(FPU) to reduce area and lower the energy consumption for low-cost IoT devices.

The generated core implements each instruction like a finite state machine (FSM).

It controls the system with ap reset, ap start, ap idle, ap ready and ap done signals.

After instructions are loaded into the instruction memory, with ap start becomes high,

the first instruction is taken. When the ap done signal becomes high, then the Program

Counter (PC) increments and next instruction is taken. This process continues until

the implemented code is finished, which means the PC reaches to the value where

ebreak instruction resides.
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Figure 3.1. General flow diagram of the implementations in the proposed core.

Figure 3.1 shows the general structure of the core. Instruction Memory, where

the instruction is fetched from, gives the instruction to the Control Unit, which decodes

the signal. Here, conditional operations, namely, branch, and jump, are also decided

and executed. It is worth noting that there is no branch prediction block in this design

for the sake of simplicity. Immediate values and operands for necessary operations are

also determined at the Control Unit. Apart from the conditional operations, process

flow varies for different types of instructions after Control Unit. For OP1, and OP2, the

execution stage is the next, and the result of the operation is registered after execution.

For OP3, which represents load-store operations, data are transferred from the memory

to the register or vice versa.

Execute stage consists of two distinct parts, i.e., exact and approximate blocks

plus conventional exact shifter block. Exact Part includes ALU and MULDIV blocks,

which perform exact calculations for arithmetic and logic instructions. The second main

part is Approximate Part, which contains XALU and XMULDIV blocks. Approximate

calculations are performed on these blocks. In our current implementation, XALU

block contains XADD and XSUB operations, which stand for approximate addition

and subtraction, and XMULDIV has only XMUL operation, which is approximate
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Figure 3.2. C code for XALU block in HLS. op 1 and op 2 refer to two operands and

XLEN is the length of a register which is 32.

multiplication. Approximate blocks for other operations, such as division, can be

easily added to the Approximate Part of the core. Hence there is no need for further

modifications on the architecture. All instruction parsing operations are done for these

parts, but specific approximate operations are not defined yet, except for multiplication,

addition, and subtraction. Figure 3.2 gives the general structure of the C code for

XALU in HLS. Desired approximate counterparts of the exact operations can be added,

as shown in Figure 3.2.

New approximate parts of the datapath require new instructions to be added to

RISC-V ISA, because there are not any instructions in RISC-V ISA for approximate

operations. New instructions are introduced in such a way that they do not overlap with

the existing instructions of whole RISC-V ISA. Instead of creating new instructions for

approximate operations from scratch which needs more effort for deciding proper and

available values for all parts of an instruction, i.e. funct7, funct3, opcode, it is more

beneficial to modify exact counterparts of the instructions. For approximate part, R-
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Table 3.1. R-type RISC-V instruction structure and modification for approximate

ADD, SUB and MUL - XADD, XSUB and XMUL - operations.

Instruction
[31:25] [24:20] [19:15] [14:12] [11:7] [6:0]

funct7 rs2 rs1 funct3 rd opcode

ADD 0000000 rs2 rs1 000 rd 0110011

XADD 1000000 rs2 rs1 000 rd 0110011

SUB 0100000 rs2 rs1 000 rd 0110011

XSUB 1100000 rs2 rs1 000 rd 0110011

MUL 0000001 rs2 rs1 000 rd 0110011

XMUL 1000001 rs2 rs1 000 rd 0110011

type instructions are our target. As it can be seen in Table 3.1, both MUL and ADD

instructions can be converted to approximate instructions by only changing the most

significant bit (MSB) of them which is a part of funct7 codes. As far as we know, there

are not any instructions in R-type instructions of RISC-V ISA that uses 1 in MSB,

therefore approximate operations can be readily distinguished within the ISA without

any clash. Hence, new instructions, shown in Table 3.1, are introduced in such a way

that they do not overlap with the existing instructions of whole RISC-V ISA. This

small change also facilitates our work in control unit of the core where the MSB of the

instruction is just controlled to determine the operation is approximate or not.

3.2. Approximate Units

The architecture of the proposed RISC-V core datapath is customized to pro-

cess approximate operations together with the exact operation, as described in the

previous section. In this section, more detailed information about approximate blocks

will be presented. We introduce new approximate designs by focusing on circuit-level

approximation while integrating these blocks with a softcore to execute some chosen

instructions in approximate mode will be a kind of architecture level approximation. In

our design, the precision of the approximate hardware modules is controlled by approx-

imation levels. Our approximation is based on bypassing selected sub-blocks that exist
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in the proposed hardware modules. Hence, our approach is different from truncating

the least significant bits of the results, as applied in [19, 44]. Approximate operations

of our core are addition, subtraction, and multiplication. However, as discussed in the

previous section, further approximate modules can also be added to the datapath, as

shown in Figure 3.2.

An HLS tool takes the design description in a high-level language as the input

and generates the hardware by synthesizing the program constructs to the primitives of

the target architecture. HLS provides a fast prototyping and design space exploration

for the target hardware. The quality of the design is strongly dependent on the vendor-

specific library primitives and user-selected directives that are applied during the code

development. Attempting to design an RTL circuit with a high-level language and

applying HLS usually produces inefficient hardware. Hence, the approximate adder

and multiplier of our core are designed with Verilog Hardware Description Language

(HDL) instead of C++. HDL has other several advantages over C++ in such designs

because of being a low-level language. It gives us the possibility to control the hardware

blocks in the design more efficiently and modify the blocks with more freedom because

the hardware blocks used for the operation can be determined directly by the user.

There is another critical point in this configuration, which is worth to mention

that describing the core with C++ in HLS and approximate blocks with Verilog creates

some difficulties in system integration, although the approximate blocks integration is

done at low-level. Approximate operation conditions and instruction parsing should

be done in HLS to make the design of the control unit easier for the core.

As can be noticed in the code given in Figure 3.2, a C function, namely approx add

which is shown in Figure 3.3, is defined to conduct the approximate operation when it

is called. However, this C function does not include the real approximate block. Thus

it does not perform the approximate operation; it just represents the approximate

operation in HLS. The main task of this pseudo C function, approx add, is to bring

the required inputs for the approximate operation and open an output port to return

a result to the system.
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Figure 3.3. approx add C function in HLS and dummy operations inside of it.

Figure 3.4. Synthesized verilog code of approx add C function in HLS. This code is

modified to call the approximate adder as a submodule.
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approx add function asks from the HLS tool to create necessary port declarations

which are used for the operation later, and integrate the approximate operation with

the core. However, it is not enough to declare the inputs of the function and leave the

body of it empty, because, in synthesizing process, the tool realizes that the block is

empty and discard them from the core. We solve this issue by using stub codes for the

functions that correspond to the approximate operations. These stub codes include

dummy operations as shown in Figure 3.3. Dummy operations are added into the

approximate functions so that the tool does not remove the blocks or change the size

of their input/outputs. Consequently, the synthesized core contains the synthesized

stub codes which we replace by the approximate blocks developed in Verilog. We

remove the dummy operations in the approx add, approx mul modules at synthesized

Verilog codes, and instantiate our approximate blocks as submodules in these modules,

as shown in Figure 3.4 and they perform inexact operations when their service is

requested.

Adding our approximate adder to the core is done at HDL level, as stressed in

the previous paragraphs. Approximate level control bits are also added to the system

at HDL level, not in HLS. Three-bit approximate levels for each operation are added to

the top module of the design as inputs. Hence, these bits can be configured independent

of the operation of the core. These inputs directly go to approx add or approx mul

modules, as shown in Figure 3.4, and controls the gray cells in the adder tree. As it can

be noticed in Figure 3.4, our approximate Sklansky adder has a three-bit approx level

input. approx level add or approx level sub inputs of approx add module is assigned

to this input according to the operation type. add sub input of approx add module

determines which operation, subtraction or addition, is implemented. If add sub is

zero, then approx level add is appointed to approx level. Otherwise, approx level sub

is appointed to approx level. approx level determines which gray cells are bypassed.

If it is ”000”, it implies no approximation. ”001” means the first approximate level,

which is bypassing the first seven gray cells. ”011” is for the second level, and ”111” is

used for the third level of approximation. Section 3.2.2 gives more detail about these

levels in the adder tree.
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We design a dynamically sizeable 32-bit Sklansky parallel-prefix adder and a

16x16 bit Booth Encoded Wallace Tree Multiplier with Verilog HDL as an exact adder

and an exact multiplier. Structural coding style is used to facilitate the control of

each sub-block more conveniently, although it is more challenging to write the codes

in this way. These exact blocks are modified to make approximate calculations. Both

approximate designs consist of approximate levels, which can be individually arranged

to act as selective-precision approximate operators at run-time. These approximation

levels are stored in registers. Each register can be controlled from a circuit, which is

out of the core. Thus, the user or the IoT ecosystem can adjust the approximation

level while the system is running. We give a direct control for these registers that the

approximate levels can be controlled independent of the operation. We only put coarse-

grained three levels of approximation for each approximate design to create distinct

three levels for power saving modes. Dynamic sizing for unused leading zeros of the

operands is controlled directly by datapath. A general diagram for approximation level

control and dynamic sizing flow is shown in Figure 3.5.

Subsections describe their dynamically sizeable structure first and then each ap-

proximate design separately.

3.2.1. Dynamic Sizing

Data size and dynamically adjustable operations may affect consumed power

amount, dramatically, as highlighted in [19]. We considered adjusting the size of our

approximate blocks in hardware in accordance with the size of the operands at run-time

just before the execution stage to improve power efficiency a bit more. Dynamic sizing

produces the minimum size for a block for the exact realization of an operation. Our

32-bit RISC-V core has the capability to implement all 32-bit algebraic operations.

However, for the operations that need fewer bits for accurate calculation, unused bits

can be fully shut down to avoid consuming power. However, operands change for

each operation, so does their size. Therefore, it is difficult to determine a specific size

for these blocks. It might be considered to evaluate the dataset before processing it.

However, it may cause a big overhead on a processor, especially for big datasets.
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Figure 3.5. Flow diagram of dynamic control of the approximation levels and

dynamic sizing.

An alternative and efficient way is adjusting the size of the blocks for each op-

eration. In this study, the size of the adder and multiplier blocks that are used for

approximate calculations is dynamically adjustable for each operation. Although this

operation is performed on the approximate blocks, it has nothing about approximation,

meaning that we still have an accurate adder or multiplier. It is just a way to improve

the power efficiency of these blocks a bit more.

Implementation of the dynamic sizing begins inside of the core architecture for

this design. The size adjustment part in Figure 3.2 describes the required sizing oper-

ations for XADD operation. To determine the minimum size required for a block to

handle the operation without any loss, the real size of the operands should be taken

into consideration. The real size can be obtained by determining how many bits are

actively used to represent the stored value in registers. For an operation, finding all

leading zeros of each operand can help us to investigate the real size of the operation.

The number of active bits, which is the minimum number of bits that represents the

stored value precisely, for an operand can be evaluated by subtracting the register size,

XLEN, from the number of the leading zeros as shown in Figure 3.2. Therefore all we
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Figure 3.6. fast clz32 C function to find the leading zeros for 32-bit operands.

need is to find the number of leading zeros with a simple trick.

An instruction set draft for bit manipulation in RISC-V is published on [45], but

it has not been officially accepted as a standard by the RISC-V Foundation, yet. In

this set, a specific instruction, namely clz, which counts leading zeros in a register, is

introduced. It may seem useful; however, it requires two more instructions to be added

to calculate the real sizes of the operands before the desired operation executed. For

example, for single addition or multiplication operation, we need two extra operations

for calculating the sizes of the two operands. It will clearly create significant overhead

for MAC loops, which is not desired. Instead, fast clz32 C function, shown in Figure

3.6, is used to count the leading zeros quickly. builtin clz() C function, which is

provided by GCC, is used to count the leading zeros quickly in this function.

After the approximate operation is received, the leading zeros of the two operands

are calculated by this builtin function and subtracted from the full length, 32, to

determine the active bits of the operands. The results are given to the approximate

blocks, as shown in Figure 3.4 before the operation is executed, and approximate

blocks are adjusted accordingly to perform the desired operation more efficiently. For

the approximate adder, the active bits are determined for the bigger operands, and

the adder size is simply chosen as one bit more of this value due to the possibility of

having a carry on MSB. For the multiplier, it is chosen as the sum of the sizes of the

two operands.
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Dynamic sizing operation for signed values requires a comparison of the two

operands. In the case of having negative operands, it is necessary to know which

absolute value is greater so as to know whether the result will have leading ones or

zeros. Thus, it results in a more complex control mechanism. During our experiments,

we found that this complex hardware does not contribute to power reduction. Thus,

we use dynamic sizing for operands when they have leading zeroes.

It is observed from several experiments that adjusting the size of the approximate

blocks dynamically affects the power significantly. Furthermore, it has no effect on the

accuracy of the result, because any operations for the sake of approximate computing

are not implemented yet. We can achieve power saving up to 12.8 % compared to the

calculations performed on the Exact Part. Experimental results will be explained in

Section 4.3.1.

3.2.2. Approximate Adder/Subtractor Design

In this study, we propose a new approximation methodology for parallel-prefix

adders. An exact Sklansky adder [46] is designed and modified for the approximate

addition operation. We designed a 32-bit signed Sklansky adder [46] and modified it for

approximate addition and subtraction operation. The basic addition mechanism of the

parallel-prefix adders is given in Figure 3.7. Parallel-prefix adders create a carry chain

by taking Propagate (P) and Generate (G) signals as inputs. P0 values represent XOR

of two inputs calculated for each bit of two operands, and G0 values AND of each bit of

two operands. As it can be seen in Figure 3.8, each row in the tree also includes 32-bit

P and G values created by the cells. There are two types of cells in the adder tree,

namely black cell, and gray cell. Black cell performs ANDOR operation for the G value

of the next row and AND operation for the P value of the next row. The gray cells

are used to determine the last values of the G bits. Hence there is no need for further

computations of the P values. As a result, they perform only ANDOR operation to

find the last G value for each column. After all final carry values are obtained, they
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Figure 3.7. Basic addition mechanism of the tree adders. Approximation is

implemented in the gray cells of the adder tree.

XORed with the P values calculated from the inputs, and the final result of the 32-bit

addition operation is obtained.

The coding of the adder tree is implemented row by row. Black and gray cells

in a row of the adder tree are coded separately by using generate construct. P and G

networks in the tree are coded as two 6x32 arrays, including the P and G inputs. Each

next bit for P and G is determined by the corresponding cell. If there is no associated

cell for a position in a row, shown as a white cell in Figure 3.8, then P and G values

are directly buffered to the next row.

Approximation is performed on gray cells. As shown in Figure 3.8, gray cells are

the last cells to determine the final G value for a column in the adder tree. Instead

of performing this last ANDOR operation of gray cells, the G value of the previous

row can be directly taken as the final G value in order to save the power consumed

by these cells. In other words, they can be omitted for the sake of power efficiency,

although the final result may be inaccurate. Three approximation levels are defined to

control accuracy. The first level omits the gray cells used for the least significant byte.
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The second level controls the gray cells used for the next eight bits, and the third level

gives the decision about the gray cells used the last sixteen bits. We assume that when

the approximation level is two, the first level is already approximated, and when it is

three, the first two levels are also approximated, although all levels can be controlled

independently. Thus, we create test scenarios based on this assumption. When we

refer to the approximation level of two, it means that all gray cells in the first four

rows are approximated. For the approximation level of three, it omits all gray cells in

the tree.

It should be highlighted that this approximate operation is different from trun-

cating LSBs [19,44] because we do not remove these bits. Instead, we bypass the gray

cells and directly use the input value of the gray cells as the tree outputs; hence it still

affects the final results.

Subtractor is implemented by negating the second operand and using the same

adder block when approximate subtraction (XSUB) operation comes. This provides us

an approximate subtractor without consuming any additional resources on-chip.

3.2.3. Error Probability Analysis of the Proposed Adder

The proposed approximate adder can give erroneous results, and the probability

of the inaccurate results can be evaluated with different methodologies proposed in lit-

erature [15,47,48]. [15] tries to model the error probability introduced by their specific

adder, GeAr, while [47] calculates the error probability and the mean error in a conven-

tional probability evaluation. [48] provides an efficient error calculation methodology

to evaluate arithmetic error rate for deterministic approximate adder architectures by

using visibility phenomenon, which shows the restriction of determining each output

bit with a subset of the input bits. In this paper, we calculated the error probability

of the proposed adder by calculating the error probability for each bit of the output,

as calculated in [47]. To do so, we calculated the error probability provided by gray

cells that we bypass when the approximate operations are executed.
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Table 3.2. Truth table for ANDOR operation in the gray cells and its comparison

with the approximate results.

In the approximation process, we omit gray cells in different levels and directly

buffer previous G values to the outputs of the adder tree. In a gray cell, ANDOR

operation is implemented. Instead of this ANDOR operation, buffering Gi:k to the

output directly can only be wrong for one possibility out of the eight, as shown with the

gray color in Table 3.2. Π1 is the probability of being true, and Π0 is the probability of

being false. Let ΠE3 denote the error probability for all gray cells when the approximate

level is 3. Then the error probability ΠE3 becomes the multiplication of the probabilities

of Pi:k and Gk−1:j being true, and the probabilities of Gi:k being false as shown in

Equation 3.1.

ΠE3 = Π1(Pi:k) · Π0(Gi:k) · Π1(Gk−1:j) (3.1)

For the first gray cell, at (1:1) - row 1 : column 1, in Figure 3.8 - P0:1 is the

XOR of the two input, therefore it is true with 1/2 probability. G0:1 is the result of

AND operation, thus its probability of being false is 3/4. G0:0 is also the result of

AND operation; thus, its probability of being true is 1/4. Then, the error probability
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for the first gray cell becomes (1/2)*(3/4)*(1/4) = 3/32 = 0.09. For the gray cell at

(2:2), the error probability depends on the probability of the previous gray cell. It

is (1/2)*(3/4)*(29/32) = 87/256 = 0.34. For the gray cell at (2:3), the calculation

becomes more difficult because of the additional black cell in the chain. The black cell

at (1:3) output should be P = 1 and G = 0 for the wrong case. The possibility for P

= 1 is (1/2)*(1/2) = 1/4 and for G = 0 is (1/2) ∗ (3/4) ∗ (3/4) + (1/2) ∗ (3/4) ∗ (3/4) +

(1/2) ∗ (3/4) ∗ (1/4) = 21/32. Then the error probability for this gray cell (2:3) is

(1/4)*(21/32)*(29/32) = 0.15. Calculating the error probabilities becomes much more

complicated for the further gray cells because of the difficulties in the evaluation of

accumulated probabilities for Pi:k, Gi:k, and Gk−1:j which are the inputs of these gray

cells. For the sake of simplicity, we prepare tree tables which show the probabilities of

being true for P and G values after each operation at the associated cell in the adder

tree and error probabilities after the last gray cells, as colored cells, in Table 3.3.

In the adder tree, we defined three approximate levels. The first level includes

the gray cells in the first three rows of the tree, the second level covers the gray cells in

the first four rows, and the third level controls all gray cells. For the approximation of

level one, although we do not have any approximation on the gray cells in the fourth

and fifth rows, the omission of the gray cells in the first three rows also has an effect

on the fourth and fifth rows where the gray cells take the outputs of the last gray cell

in the third row. The same effect also exists between the fourth and fifth rows in the

approximation level of two. Outputs of the last gray cell in the third row become Gk−1:j

for the gray cells in the fourth row, and it may affect the result with two possibilities

out of eight, as shown in Table 3.4. For the gray cells in the fourth and fifth row, the

error probability can be calculated in the same manner. The error probabilities in these

cases, ΠE1 and ΠE2, are equal to the sum of the probabilities of the two conditions,

which makes the result independent of the probability of Gk−1:j being true or false.

Therefore, the error probability at the next row where the approximate operations are

not used becomes the multiplication of the probabilities of Pi:k for being true, and Gi:k
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Table 3.4. Truth table for ANDOR operation in the gray cells and its comparison

with the effect of the approximate results on the other gray cells.

being false as shown in Equation 3.2.

ΠE1 = ΠE2 = Π1(Pi:k) · Π0(Gi:k) (3.2)

The tree table for the probabilities of being true for G values and the error

probability for each bit is given in Tables 3.5 and 3.6 for the approximate levels of 1

and 2, respectively. Note that the yellow cells in Tables 3.5 and 3.6 show the error

probabilities of the omitted gray cells due to approximation, while the blue cells show

the error probabilities on corresponding cells caused by the approximation on the yellow

cells.

The final result of the approximate adder is the XOR of the G5 bits, which is

the G outputs of the last gray cells, with the P0, as shown in the diagram of Figure

3.7. However, this XOR operation does not affect error probability. Hence, the error
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probability of each bit in the final results will be the same with the one calculated for

the adder tree and shown as colored in Table 3.3 for the first approximation level, and

in Tables 3.5 and 3.6 for the second and third levels of approximation in this adder

design.

Error probability analysis can be beneficial to develop more accurate approxima-

tion methodologies from this topology, although we do not make use of it in this study.

The first gray cell of each row has a higher error probability than the others, as shown

in Tables 3.5 and 3.6. This may cause significant error rates at corresponding bits of

the output. For example, when the approximation level is 3, gray cells at (2:2), (3:4),

(4:8), and (5:16) have an error probability of about 0.35, which is not small, as shown

in Table 3.3. The error probabilities on the other cells are lower than the half of this

rate. This means that we are more likely to have erroneous results on these bits. These

gray cells can be excluded from the approximation, and more precise results can be

achieved.

3.2.4. Approximate Multiplier Design

16x16 bit booth encoded Wallace tree exact multiplier is designed in Verilog

HDL. Booth encoding idea is chosen to lower the number of partial products (PP)

in multiplication operation, which leads to faster calculation of the final results and

reduce the consumed power and covered area, substantially. In this multiplier design,

partial products are computed as Radix-4 Booth in the same manner proposed in [49].

A conventional Booth encoder and selector for the Radix-4 Booth proposed in [50]

are chosen and implemented, as shown in Figure 3.9. After Radix-4 Booth operation,

the number of the PPs decreases from N to (N + 1)/2 while the length of each PP

increased by one bit to accommodate the double of the multiplicand. In our multiplier,

the number of the PP decreases from 16 to 9, and the length of the PPs becomes 17-bit

due to Radix-4 Booth implementation.

In Radix-4 Booth encoding design; instead of having 0, Y , 2Y , and 3Y , we have

0, Y , 2Y , −Y , and −2Y as partial products where Y is the multiplicand. According to
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Figure 3.9. Booth encoder and selector circuits to generate partial products.

Table 3.7. Truth table for booth selection.

three adjacent X - multiplier - value, partial product type is chosen by single, double,

or negative signals. The truth table and obtained partial products for these signals are

given in Table 3.7. Constructed partial product structure is also given in Figure 3.10.

Like the approximate adder, the multiplier block is also designed in such a way that its

size is dynamically adjustable during execution in accordance with the operand sizes.

After partial products are obtained, the Wallace tree structure depicted in Fig-

ure 3.11 is built to sum all partial products. Carry Save Adders (CSA) with three

(3:2), and four (4:2) inputs are used for fast calculation. For the CSAs, we used an

approximation methodology described in [47], which proposes approximate (3:2) and
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Figure 3.10. Partial products structure after booth encoding. s represents the sign

extension and black dots are the partial product bits.

Figure 3.11. Wallace tree structure for the summation of partial products. All CSAs

and final adder are approximate.

(4:2) compressors. The other approximate part of this multiplier is the final adder.

Instead of using an exact carry propagate adder (CPA), we used the same Sklansky

adder designed for the approximate adder. Hence, the same approximation levels and

structure are valid for this multiplier, too. Apart from the adders in the Wallace tree,

the other parts make exact operations to guarantee the convergence of the outputs to

the real results.



35

4. EXPERIMENTS

We implemented some basic ML algorithms on our microprocessor to evaluate

how much power efficiency can be provided by the processor at the expense of accuracy

in such applications. Besides, the degree of accuracy loss relative to the amount of

saved energy is also essential to measure the effectiveness of the design. K-nearest

neighbor (KNN), K-means (KM), and ANN algorithms are chosen and implemented

on this CPU for clustering and classifying different types of datasets to make a proof-

of-concept study. We mainly compared the results obtained by running the codes in

Exact Part with the results in Approximate Part. In Approximate Block, we also used

some different approximate adders and multipliers proposed in the literature to make

some comparisons between our designs and others and show the design flexibility in

terms of modifying subblocks of the core easily.

4.1. Experimental Setup

We synthesized a sample core for Zynq-7000 (xc7z020clg484-1) FPGA by using

Xilinx Vivado HLS 18.1. It can run safely with a clock frequency of 100 MHz. This

CPU occupies about 3% of on-chip resources in Zynq-7000 FPGA. Resource utilization

on the target FPGA can be seen in Table 4.1. For memories, we use 40 KB BRAM for

instruction memory and 90 KB BRAM for data memory. Synthesized cores are merged

with approximate blocks as described in Section 3.2, and experiments are conducted

on the approximate processor.

C codes for KNN, KM, and ANN algorithms are specified, and which parts of

the codes will be implemented in an approximate manner is decided by software as

described in Section 4.1.1. These C codes for the benchmark algorithms are compiled

with 32-bit RISC-V GCC [51] for exact and approximate executions. Compiling the

C codes with RISC-V GCC is implemented with Linux commands shown in Appendix

A.3. start.S and link.ld files, which are also given in Appendix A.1 and Appendix

A.2, respectively, together with C codes, are used as inputs. start.S file describes the
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Table 4.1. Resource utilization of the core in the target FPGA without approximate

blocks.

Resource Utilization Available Utilization (%)

LUT 1725 53200 3.24

LUTRAM 2 17400 0.01

FF 938 106400 0.88

DSP 6 220 2.72

general flow of the compilation process, while link.ld file describes basic initialization

steps related to memory operations. Memory sizes are also specified in link.ld file.

Hence, it should be in accordance with the addresses used in load-store operations.

Implemented commands create two output files, which are machine code versions of

the instructions, and the data should be saved in the data memory at the beginning

of the code. These two files are given to the core as inputs, and their data are read

by readmemh Verilog command in instruction and data memories, respectively. After

instruction memory takes the codes and required values are written into the data

memory, codes are begun to run when the start signal, ap start, is given. Machine

codes for the approximate operations are created manually from the exact version

of the code. Which instructions will be approximate is firstly determined, and their

machine codes are changed with the approximate counterparts.

We measure two things in the experiments, namely, power consumption and the

accuracy of the result. The last two subsections explain the detail of the setup for

these measurements. The first subsection describes the modifications that are done on

the software side for marking the operations as approximate or exact.

4.1.1. Approximate Regions in the Codes

In this study, classification, clustering, and artificial neural network algorithms

are conducted on our core. Addition, subtraction, and multiplication operations in the

main calculation loops are approximately calculated. It is worth to note that we are
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not doing any approximate operations for datasets as proposed in [19]. Approximable

regions can be created in the code with the help of pragma and attribute operations in

C, as described in [12]. The code generator desicribed in [12] adds our custom instruc-

tions into the RISC-V GCC with the help of riscv-binutils [52]. After the specialization

of the compiler for our approximate instructions, the machine codes created by this

compiler can be directly used in our core. Details of this process are described in our

published paper [53].

4.1.2. Accuracy Evaluation

For accuracy measurement, exact benchmark codes are executed by using the

behavioral simulator of Xilinx Vivado HLS. The files that contain the results of exact

executions are regarded as the golden files. Then, the same codes are executed on the

synthesized core to verify that its results are the same as the ones in the golden files.

Firstly, the core is started to compute the results in Exact parts. These results should

be the same with the results coming from the HLS version of the core in order to assure

that the machine codes are appropriately generated, and core performs without errors.

After this validation, all approximate tests are run on the processor, and results are

saved on a text file to calculate their accuracy. Simulations are performed in Xilinx

Vivado 18.1 tool, and a Verilog testbench shown in Appendix A.5, which directly reads

the memory addresses where the results will be stored after execution is finished, is

written to run the tests and write the results into a text file automatically for each

case. These results are compared in an excel sheet.

The accuracy metric here is top-1 accuracy, which means that the test results

must be exactly the expected answer. Let n denote the number of tests carried out in

both exact CPU and approximate CPU, which uses approximate operators only in the

annotated regions. Approximate CPU tries to find exactly the same class as the exact

CPU model finds. We compare all the results obtained from both parts for n tests,

and the percentage of matching cases in all tests gives us the accuracy rate.
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4.1.3. Power Consumption Analysis

Making power analysis is the other part of the experiments. Analyses of the con-

sumed power for running codes on the designed core are performed on Power Estimator

tool of Xilinx Vivado 18.1. To obtain the best power estimation with high confidence

in the tool, these steps should be followed:

(i) A constraint file that describes the inputs and outputs ports, clock specifications,

timing exceptions should be added to the design.

(ii) Design should be synthesized and implemented on a target FPGA to obtain

placement of the design blocks on the physical device.

(iii) A SAIF ( Switching Activity Interchange Format) file, which calculates the toggle

rate of the signals should be used to estimate dynamic power accurately. Without

a SAIF file, the tool gives a default toggle value, 12.5 %, for all signals except

clock for dynamic power estimation. As can be guessed, this does not assure the

accuracy of the power estimation. SAIF files can be obtained from the simulation.

(iv) To receive the best estimation from the tool, SAIF file should be written during

the post-implementation functional simulation, because this simulation performs

the operations based on the placement implemented on the target FPGA. How-

ever, it consumes too much time and progresses very slowly compared to the

other functional simulation types.

(v) After implementing the design, reading this SAIF file in the report power option

gives a power estimation with high confidence.

A constraint file, including clock information, 100 MHz system clock, and pri-

mary input-output (I/O) ports on the target FPGA (Zedboard) is written as shown

in Appendix A.6. Our core is synthesized and implemented in the tool for the FPGA.

After the implementation process, we begin the post-implementation functional sim-

ulations and save the toggle counts of all signals in a SAIF file with the commands

shown in Appendix A.7. This file is given to the Power Estimator tool to calculate the

dynamic power of the system more accurately. All power calculations are done in this
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manner, although creating SAIF files with post-implementation simulation requires a

considerable amount of time. Power consumption of all cases is recorded and compared

with each other.

In experiments, we report dynamic power consumption on the core, because the

main difference between the exact and approximate operation can be observed with

the change in the dynamic activity of the core. Besides, static power consumption in

the conventional FPGAs mainly stemming from the leakages that are independent of

the operation. On the other hand, due to the domination of static power in FPGAs,

it may not be convenient to design the final product as an FPGA, hence presented

power saving here is just to verify the idea. An ASIC implementation where static

power is negligible (<1%) may be more beneficial to save significant total power in

these applications. ASIC implementation of the core is also done, and obtained results

are presented in Section 5.1.

4.2. Datasets and Algorithms

In this section, chosen datasets and algorithms for experiments are explained in

detail.

4.2.1. Datasets

KNN, KM, and ANN algorithms are implemented with different datasets to ob-

serve the change in the results under the data with different lengths and attributes.

Three different datasets are chosen and used in these three algorithms. The first dataset

is a wireless indoor localization dataset (W) used in [54, 55]. These data are collected

in indoor space by observing signal strengths of seven WiFi signals visible on a smart-

phone. The decision variable is one of the four rooms. This dataset has a maximum of

8-bit integer numbers. Two different datasets for implementation are extracted from

this dataset. One includes 200 data, which refers to short data (SW), and the other

contains 2000 data, which is long dataset (LW). Specifying two different lengths in one

dataset will help us to measure the effect of the amount of the sample data in the
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Table 4.2. Implemented datasets and their properties.

Datasets Abbre- # of # of # of max.
viations test points attributes class bit-length

Wifi Localization SW 200 7 4 8
Data Short Version

Wifi Localization LW 2000 7 4 8
Data Long Version

Robot Sensor SR 200 4 4 16
Data Short Version

Robot Sensor LR 2000 4 4 16
Data Long Version

Banknote B 300 4 2 16
Authorization Data

results. The second dataset is the wall following robot sensor data (R) used in [56].

This dataset includes four attributes to decide which direction the robot is following.

It contains floating numbers, which is converted to 16-bit integer numbers in order to

function in our system. This dataset represents the big value dataset because of in-

cluding some 16-bit values. Therefore it also has long and short versions (SR and LR).

The last dataset is the banknote authentication dataset (B). Like the other datasets,

this is also taken from UCI Machine Learning Repository [57]. This dataset has four

attributes to decide the two classes. This dataset is chosen to observe the accuracy

of the results when we have only two classes. In total, we have five datasets obtained

from three different sources, and they are combined with three algorithms to obtain

15 different benchmarks to compare the results. All datasets and their properties are

shown in Table 4.2.

4.2.2. Algorithms

KNN is one of the essential classification algorithms in ML and used in some

IoT applications [26]. It finds intense application in pattern recognition, data mining,
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Figure 4.1. classifyAPoint function and MAC loop, highlighted with yellow circle,

inside of it where the approximate operations implemented.

and intrusion detection. Because of trying to suggest a low power approximate mi-

croprocessor for these kinds of applications, it is beneficial for us to implement this

algorithm in our processor to show the improvement. We give some prior data in the

mentioned datasets with their class information for training. Then we give some set

of test data that are allocated in the best-suited class by analyzing the training set.

This analysis is done with the help of distance calculation loops inside a C function

called classifyAPoint shown in Figure 4.1. In these loops, for a given test point, its

distances to the training points are calculated. Then the classes of the shortest three

points are found by selectionsort function. Finally, the most used class for these three

points determines the class of the given point. This loop is implemented for all test

points. Distances calculations are MAC loops, highlighted in Figure 4.1, which is quite

suitable to implement approximately. It is worth noting that this structure of the KNN

algorithm allows us to make a case study for real-time on-chip training. We put some

reference data points with known classes into the data memory so that incoming data

can be classified correctly and in real-time.

The second ML algorithm for this study is KM, which is also an elementary ML

algorithm that makes clustering operation for given datasets. As its name suggests,

the KM algorithm identifies k number of centroids, and then allocates every data
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Figure 4.2. Main error calculation loop for implemented KM code and MAC loop,

highlighted with yellow circle, where the approximate operation implemented.

point to the nearest cluster, while keeping the centroids as small as possible. Unlike

KNN, there is no prior training in KM, which makes it unsupervised learning. A

similar distance calculation mechanism can be seen in KM, too. Therefore similar

MAC loop approximation is possible for our case study. Main error calculation loop

for implemented KM code and where the approximate operations are used shown in

Figure 4.2.

Our last algorithm is ANN, which is also very popular in ML. A specific ANN

algorithm, genann proposed in [58], is specialized for our case with our datasets. We

do training with our datasets and obtain weights for each dataset. Then we give these

weights as inputs together with test data to detect their class in our core. Unlike KNN,

the training session is implemented outside of the core for the ANN algorithm. In the
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ANN algorithm, the input number is the attribute number of the used dataset, 4 and

7, hidden layer is one which has two units for the datasets that have four attributes,

and four units for the datasets that have seven attributes. Two units for the output

layer are used to determine the classes of the test data. Loop operations in all layers

of the neural network are approximately operated, as shown in Figure 4.3, to make a

case study for our work.

It should be noted that the calculations in ANN experiments contain only addition

and multiplication operations. Thus, we confined our approximation level only to

addition and multiplication in this code. That is the reason why we can observe the

impact of the approximate subtraction operations on the power consumption in only

KNN and KM tests.

A considerable amount of the tests for these benchmark ML algorithms with cho-

sen datasets makes it difficult to conduct all the experiments manually. This situation

pushed us to write a script for the automatic generation of the Vivado projects for each

specific case. Written scripts are given in Appendix A.8. This script creates Vivado

projects with chosen settings, synthesize and implement them. After the implementa-

tion, post-implementation functional simulation automatically starts, and saves a SAIF

file. It finally reports power including the SAIF file and saves it as a text file. This

script generation allows us to run the systems without a GUI, which helps us to save

a notable amount of time.

4.3. Experiments

4.3.1. Dynamic Sizing

The first experimental point is to measure the effect of dynamic sizing on power

consumption. Here, AppANew refers to the experiments when the approximate op-

erations are confined to addition operations. AppMNew represents the case when

the only approximate operations are multiplications. Finally, AppAMNew represents

when both of our approximate operators are running. All tests are implemented with
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Figure 4.3. Main error calculation loop for implemented ANN code and MAC loop,

highlighted with yellow circle, where the approximate operation implemented.
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our new designs by choosing the approximation levels as zero, which means the oper-

ations are implemented exactly, although they are performed in Approximate Parts.

This is the best way to see the effectiveness of the dynamic sizing on power savings.

All results of the experiments for dynamically sizing operations are shown in Table

4.3. In this table, power savings are shown in terms of average power and maximum

power obtained from different datasets for each algorithm. AppANew refers to the new

adder, AppMNew refers to the new multiplier, and AppAMNew refers to the design

where both new designs are used. Comparisons are made among different algorithms

and different designs. Accuracy of the results is not given because the approximation

level is zero, which means that the results are already full-accurate although working

in Approximate Parts. Hence, accuracy is not studied in this part. Table 4.3 shows

that dynamic sizing can provide power savings up to 12.8%.

Table 4.3. Contributions of dynamic sizing to the power saving percentages of the

new approximate blocks, given as the average and maximum of the results from

different datasets for each algorithm.

KNN KM ANN

Avg. Max. Avg. Max. Avg. Max.

Approximate Power Power Power Power Power Power

Design Name Saving Saving Saving Saving Saving Saving

(%) (%) (%) (%) (%) (%)

ApANew 3.1 5.2 2.1 2.9 1.8 2.5

ApMNew 4.5 7.6 4 5.2 4.9 6.5

ApAMNew 8.2 12.8 5.8 7.9 7.3 10.1

4.3.2. Approximate Addition and Subtraction with Exact Multiplication

Tests

In this part, we have confined the approximate operations to the approximate

addition and approximate subtraction with XADD and XSUB and executed multipli-

cation on the exact multiplier with MUL instructions. We also tested another approx-
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Table 4.4. Resources for approximate blocks and their area overhead on the CPU.

Approximate Module LUT amount Area overhead on the core (%)

ApA1 58 2.2

ApA2 52 2

ApANew 95 3.5

ApASNew 95 3.5

ApM1 227 8.4

ApM2 235 8.7

ApMNew 250 9.3

ApAM1 285 10.6

ApAM2 287 10.7

ApAMNew 345 12.8

ApASMNew 345 12.8

imate adder from the literature. We used a 32-bit AA7 type of adder in DeMAS [59],

which is an open-source approximate adders library designed for FPGAs. We used

32-bit AA7 type of adder in DeMAS [59]. This library aims FPGA implementations,

and it is described in VHDL, hence very suitable for our implementation. It is possible

with this adder to specify how many bits will be approximate. We obtained two ap-

proximate adders from AA7: AppA1 has 28 exact and 4 approximate bits, AppA2 has

24 exact and 8 approximate bits. In our design, ApANew represents only approximate

addition, and ApASNew refers to approximate addition and subtraction operations

that are implemented on our adder design. The approximation levels of our designs

are modified with the bit-length of the datasets. For the 8-bit datasets, it is 2, and for

the 16-bit datasets, it is 3.

Approximate blocks cause area overhead on the CPU. Area overheads, shown

in Table 4.4, for AppA1, AppA2 and AppANew are reported as 2.2%, 2% and 3.5%,

respectively. Area overhead for ApASNew is the same as ApANew because it uses

the same design for subtraction. All three algorithms with five different datasets are
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implemented on the core with these four different approximate blocks. The average

accuracy of the results and the average and maximum percentage of power gain com-

pared to the operation implemented fully on Exact Part are given in Table 4.5 and

Table 4.6, respectively.

Table 4.5. Accuracy rates of the approximate adders, given as the average of the

results from different datasets for each algorithm.

KNN KM ANN

Approximate Average Average Average

Design Name Accuracy Accuracy Accuracy

(%) (%) (%)

ApA1 99 97.6 91.6

ApA2 90.8 92.4 87.4

ApANew 98 97.9 94.8

ApASNew 92 94.3 -

4.3.3. Exact Addition and Subtraction with Approximate Multiplication

Tests

In this part, we have confined the approximate operation to the approximate

multiplication with XMUL and executed addition and subtraction on the exact adder

with ADD and SUB instructions. Two 16x16 bits approximate multipliers, AppM1

and AppM2, are chosen in SMApproxLib [60] which is an open-source approximate

multiplier library designed for FPGAs by considering the LUT structure and carry

chains of modern FPGAs. Our multiplier design, AppMNew, together with these two

multipliers are added to our core separately. The approximation level of our multiplier

is again 2 for the 8-bit datasets, 3 for the 16-bit datasets. AppM1, AppM2 and

AppMNew have 8.4%, 8.7% and 9.3% area overhead, shown in Table 4.4, respectively.

Test results are shown in Table 4.7 and Table 4.8.
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Table 4.6. Power saving percentages of the approximate adders, given as the average

and maximum of the results from different datasets for each algorithm.

KNN KM ANN

Avg. Max. Avg. Max. Avg. Max.

Approximate Power Power Power Power Power Power

Design Name Saving Saving Saving Saving Saving Saving

(%) (%) (%) (%) (%) (%)

ApA1 4.3 6.7 3.8 5.2 5.5 7.9

ApA2 8.2 12.1 6.2 8 8.9 10.4

ApANew 9.8 13.7 9.3 12.5 11.7 14.3

ApASNew 19.5 24.1 18.5 23.5 - -

Table 4.7. Accuracy rates of the approximate multipliers, given as the average of the

results from different datasets for each algorithm.

KNN KM ANN

Approximate Average Average Average

Design Name Accuracy Accuracy Accuracy

(%) (%) (%)

ApM1 89.2 88.8 86.4

ApM2 88.5 87.4 85

ApMNew 95 95.6 92
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Table 4.8. Power saving percentages of the approximate multipliers, given as the

average and the maximum of the results from different datasets for each algorithm.

KNN KM ANN

Avg. Max. Avg. Max. Avg. Max.

Approximate Power Power Power Power Power Power

Design Name Saving Saving Saving Saving Saving Saving

(%) (%) (%) (%) (%) (%)

ApM1 7.8 11.5 8.9 12.5 8.5 10.5

ApM2 8.7 12.1 10.1 13.2 9.2 13.1

ApMNew 13.1 17.9 14.1 17.7 14.7 17.8

4.3.4. Approximate Addition, Subtraction and Multiplication Tests

In the fourth experiment, XADD, XSUB, and XMUL are used together to observe

the maximum power gain and the quality of results. ApA1 and ApM1 are combined as

ApAM1, while ApA2 and ApM2 are used together and marked as ApAM2. Our ap-

proximate modules are also combined as ApAMNew and ApASMNew. They are used

together with two different combinations, approximate addition, and multiplication,

and approximate addition, subtraction, and multiplication, to show the improvement

in terms of power. ApAM1, ApAM2 and ApAMNew have 10.6%, 10.7% and 12.8%

area overhead, shown in Table 4.4, respectively. Results can be observed in Table 4.9

and Table 4.10.

4.3.5. Approximation Level Modification at Run-time

The last experiments are about changing the approximation level while codes are

running on the CPU. In previous experiments, we fixed the approximation level for the

whole codes, but in this part, we split each experiment into three equal parts. In the

first part, the codes begin with the first approximation level. In the second, we set the

approximation level to two while codes are running. When the last interval comes, the

approximation level is set to three. These experiments will show us whether we can
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Table 4.9. Accuracy rates of the approximate multipliers, given as the average of the

results from different datasets for each algorithm.

KNN KM ANN

Approximate Average Average Average

Design Name Accuracy Accuracy Accuracy

(%) (%) (%)

ApAM1 87.6 86.1 84.2

ApAM2 86.5 84.2 82.3

ApAMNew 93 94 90.2

ApASMNew 90 91.8 -

Table 4.10. Power saving percentages of the approximate multipliers, given as the

average and the maximum of the results from different datasets for each algorithm.

KNN KM ANN

Avg. Max. Avg. Max. Avg. Max.

Approximate Power Power Power Power Power Power

Design Name Saving Saving Saving Saving Saving Saving

(%) (%) (%) (%) (%) (%)

ApAM1 11.3 16.2 11.1 14.5 12.7 15.2

ApAM2 16.1 20.2 14.9 19.8 16.7 20.8

ApAMNew 22.1 27.5 21.5 27.6 23.4 29.8

ApASMNew 31.7 40.3 30.6 35.2 - -
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Figure 4.4. Approximation level modification at run-time (a) accuracy and (b) power

saving results.

save power or not for dynamically controllable (programmable) approximations. The

results shown in Figure 4.4 verify that changing the approximation level dynamically

in the course of execution does not give too much overhead on our system, and it can

give a similar accuracy and power saving rates with the other experiments that we

fixed the approximation level. These experiments are implemented in only our new

designs due to the inability to control the other designs in this setup. Figure 4.4 gives

the average results for all codes implemented with 16-bit datasets.
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5. DISCUSSION

Test results are shown in Tables 4.3 - 4.10 in terms of averages of the results ob-

tained from different datasets for a specific approximate block type. We also add max-

imum power savings to the tables to indicate the utmost power-saving point reached

in these experiments.

In the case of dynamic sizing, Table 4.3 suggests, dynamic sizing can provide up

to 12.8% power savings. The overall average of the experimental results shows that

the dynamic sizing operations provide about 30% of the power saving in new designs.

As seen in Table 4.5, approximate adders usually give the best accuracy of the

result with the least power gain. We have observed that using a longer dataset can

provide better accuracy because of having more reference data in the data memory.

Accuracy of the ANN is generally the lowest accuracy achieved with the same dataset

and the same adder, because the longest datasets which have 2000 points may still not

be large enough to yield the best result from the ANN algorithm. Longer data also have

a good impact on the improvement in power gain because increasing the amount of the

data leads the MAC loops to dominate the codes. Hence most of the running time is

covered by these operations, which are performed approximately. Generally, datasets

with lower bit-length may be less accurate due to the difficulties of the convergence in

smaller intervals for approximate calculations. It may also provide less power saving

percentage because used hardware blocks may be much smaller than the longer one.

However, it still depends on the length of the dataset and the approximate adder type.

ApANew provides the best power saving rates with almost fully accurate results

for almost all cases in the approximate addition and exact multiplication operations.

ApA1 and ApA2 provides a good example of accuracy and power efficiency trade-

off. ApA1 gives very accurate results with less power saving, but ApA2 may improve

the power efficiency significantly with a tolerable error rate, which may be more desir-

able. Making subtraction operations also approximate has yielded a vital power saving.
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ApASNew can save power up to 24.3%, which can be regarded as a dramatic power

improvement without having an extra subtraction block.

Approximate multipliers reduce power more than the adder because the multiplier

hardware blocks are generally much bigger than the adders. However, the accuracy of

the results is generally worse than the adder case, since the possibility of the significant

deviation from the real result is higher in the multiplication process. It is possible to

reach 18% power saving together with the 95% accuracy rate. Bit-length and amount of

the data in the datasets are observed to affect the accuracy. The power consumption is

similar to the approximate adder cases. ApMNew generally provides the best accuracy

for all cases, together with the best power saving rates.

The last case where both addition and multiplication are approximately executed

provides the most power-efficient design at the expense of accuracy loss, as expected.

Table 4.10 shows that the approximate calculations can provide significant power sav-

ings up to 40.3% together with a quality loss, which depends on the approximate adder,

algorithm, and dataset. For ApAMNew and ApASMNew, average accuracy is above

90% for all codes, while average power saving is above 20% for all cases.

5.1. ASIC Implementation of the Proposed System

The primary disadvantage of the implementations in FPGA for low power appli-

cations is static power. Although we do not take the static power into consideration in

the experiments, it may dominate the total power such that the power saving obtained

from approximate operations does not improve the battery life of the IoT devices, as

suggested. In our case, static power is responsible for about 65% of the total consump-

tion. If we include static power in the calculations, power-saving becomes 14% at most,

which can also be considered as an important save, but not enough to say that the

final target for this design should be an FPGA. Hence, we also synthesized our designs

with fo ASIC implementation.
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Table 5.1. Power saving and area overhead of approximate designs in ASIC

implementation.

Approximate Average Area overhead

Module Power Saving on the core (%)

ApANew 7.7 2.3

ApASNew 12.3 2.3

ApMNew 11.6 6.2

ApAMNew 17.3 8.5

ApASMNew 23.1 8.5

We have performed another synthesis run with TSMC 65nm Low Power (LP)

library on Cadence tools targeting ASIC. We have used TSMC memories for our data

and instruction memories with the same sizes in FPGA. We did not change the main

structure of the experiments, and the same tests are implemented on the new design

only for power measurements. We calculate the power consumption with the help of

a tcf file, which is similar to SAIF, created from the simulation tool to count toggle

amounts of all signals. The power consumption of the system for ASIC synthesis is

reported in Table 5.1. In ASIC, 23% of the power can be saved while the accuracy

rate is above 90%, and static power is less than 1%. Power saving for ASIC design can

be further improved by implementing other low power techniques like dynamic voltage

scaling and clock gating.

5.2. Bit-truncation in the Approximate Blocks

Bit-truncation is a significant way to save energy, mainly when it is used for

floating-point units [19,44]. However, truncation at integer units affects accuracy more

dramatically than floating-point operations. To see the effect of bit truncation instead

of omitting gray cells, we have performed tests without changing our approximate level

control circuit. When first level bits are truncated, accuracy drops to less than 15%

with a power saving of more than 30%. When the second level bits are truncated,

accuracy drops 5% with a power saving of more than 50%. The best case is achieved
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when the approximation level is set to 1. In this case, the accuracy is less than 45%,

and power-saving is less than 18%. This error rate is too high, and energy-saving is

moderate compared to our design. Hence, it turns out to be inconvenient to implement

bit truncation in our system. However, the bit-truncation approach may give better

results when bit-by-bit fine-grain control is adopted. A new hybrid approach may be a

future work to develop a more efficient design. Coarse-grain approximation levels with

fine control bit-truncation inside of these levels can be discussed to implement a new

proposal.

5.3. Approximate Processor and IoT Use Case Discussion

Most of the IoT devices are required to run on batteries or other limited en-

ergy sources for years, such as home/building automation devices [61]. Thus, energy-

efficient hardware solutions that help them to improve their quality of service and

extend their battery life are of great importance. In this context, we can provide an

efficient framework for IoT end-devices to execute clustering and classification based

ML implementations in Approximate Part of our CPU when it is possible.

In our system, we can control the accuracy levels independent of the core. Ex-

isting approximate processors [11,25] correct the precision of arithmetic operations by

observing the error at the output of the arithmetic operator. However, this is not the

case in our approach. The precision of the arithmetic operations is corrected by receiv-

ing the feedback from the IoT device user or other components in the IoT ecosystem.

Thus, one of the basic novelty in our approach relies on the method that we handle

accuracy adjustment.

We are controlling the accuracy via the approximation levels. However, the user

can also view these operations as power control modes. We show an example in Ta-

ble 5.2, which provides eight different power-saving modes. In the user side, it will be

called as power-saving modes, because the higher level will consume more power. How-

ever, these modes will control and define our approximate levels for each approximate

block, as shown in Table 5.2. In this solution, the user will know that the results may
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Table 5.2. Power saving modes and their corresponding approximation levels for case

study proposal.

Power Saving Approximation Level of

Modes Adder Subtractor Multiplier

0 0 0 0

1 1 1 0

2 1 1 1

3 2 2 1

4 2 2 2

5 3 2 2

6 3 3 2

7 3 3 3

not be fully accurate in power-saving modes, but the accuracy of the system will be

controlled by the IoT ecosystem. If the accuracy decreases below a certain level, then

the user will receive a warning from the IoT cloud.

As we mentioned throughout this paper, we have targeted the applications where

clustering and classifications are heavily used. These are basic ML operations that can

also be used in IoT devices mainly to detect attack traffic from IoT botnet [5,26]. For

example, in [26], the authors deal with improving the KNN-based classifiers for online

anomaly network traffic identification with the help of clustering. The paper seems to

merge classification and clustering algorithms, which are the areas we are also focusing

on, to reach better performance for the detection of anomalous network traffic. It can

be another use case for this design. Our Approximate IoT processor will be running

classification and clustering algorithms in the Approximate Part of our core to improve

the performance in terms of power consumption while keeping the accuracy level high

by receiving feedback from the IoT server.
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Another not-too-distant future use case is also described in our published paper

[53], which proposes a smart cooker that uses a neural network model for cooking. The

cooker senses the ingredients via the sensors and combines them with user preferences

to decide on the cooking profile and duration by making approximate computations.

After the cooking time is over, the food is cooked either properly or not. Based on the

feedback from the user or the customer services via IoT ecosystem, the processor will

adjust its accuracy level.
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6. CONCLUSION

In this thesis, the approximate computing phenomenon is studied. A wide vari-

ety of studies in the literature show that a significant amount of energy can be saved

by approximate computing for fault-tolerant applications. We use a circuit-level ap-

proximation technique in a microprocessor to achieve better performance in terms of

power-saving. An approximate datapath is introduced and added to a 32-bit integer

RISC-V microprocessor. This new datapath includes approximate hardware for addi-

tion and multiplication operations. Examining approximate designs in the literature

allows us to get familiar with different approximate techniques, including circuit-level,

architecture-level, and software-level approximations. Based on circuit-level approx-

imation, we propose our methodology for designing approximate adders. Targeting

parallel-prefix adders, we offer an approximation technique based on the adder tree

structure of parallel-prefix adders. The proposed method is implemented with a 32-bit

Sklansky adder. The same adder is used in a Radix-4 Booth Encoded Wallace tree

multiplier to introduce an approximate multiplier.

Dynamically controlling the accuracy of the results can be assessed as a further

point in the approximate computing research. From our examination, we deduce that

while fine-grain accuracy control is encouraged to have better control over the accuracy

of the result, it may require more hardware blocks and may create significant area

overhead on the design. On the other hand, using coarse-grain accuracy control to

create certain accuracy levels may be more efficient. We define three approximation

levels and achieve dynamic coarse-grained accuracy control. It provides better area

overhead compared to the fine-grain control and still have certain levels to arrange the

accuracy in the course of execution.

In the microprocessor design, we keep the architecture very simple and avoid

using power-hungry blocks like a floating-point unit to improve power efficiency a bit

more. We create custom instructions for our approximate operations and add them

to the RISC-V ISA. We control the size of the operands for approximate datapath
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and provide dynamic sizing without affecting the accuracy of the results. This idea

improves the power saving significantly and does not deteriorate the performance of

the core.

Experimental tests on classification and clustering algorithms are implemented

to show the effectiveness of the proposed design. MAC loops in these algorithms are

calculated approximately, and power savings for different datasets are demonstrated.

Subtraction operations in these loops are also approximated to increase power efficiency

at the expense of more accuracy loss. Achieved power saving on these ML-based

algorithms shows that the proposed processor can be used in IoT end devices that are

capable of implementing these types of algorithms for learning. Designed core structure

allows configuring the approximation levels for specific IoT applications, as suggested

in the use cases in Section 5.3.

Several future works can also be proposed based on this study. Firstly, the error

probability analysis of the proposed approximate adder shows that the accuracy of

the system can be improved with simple modifications on the same structure for the

applications that more sensitive to the erroneous results, while power-saving can still

be high. Another future work is to implement the method to the other parallel-prefix

adders. The idea of omitting gray cells can be directly applied to them. The technique

can also be modified for a specific type of parallel-prefix adders. Truncating operations

can also be introduced in the approximate designs together with this method. We

analyze that it is inefficient to use truncation in this system directly instead of our

approximation method. However, a hybrid format can be proposed to improve power

efficiency in the LSBs. ASIC implementation of the design can be further improved by

using clock gating and dynamic voltage scaling. Creating power domains for exact and

approximate datapaths to shut-down these blocks when they are not used can also be

considered to reduce power consumption in ASIC implementation.

In conclusion, we propose and demonstrate the design of an approximate proces-

sor which is specialized to perform classification and clustering ML algorithms on IoT

end-devices. As it is shown in Fig 3.2, the design is flexible enough to add new ap-
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proximate operators though our current processor includes approximate blocks only for

addition, subtraction, and multiplication operations. We try to give an approximate

methodology for parallel-prefix adders and make a case study on Sklansky adders with

a coarse-grain dynamic precision control. We use the same adder for subtraction and

for enhancing an approximate multiplier proposed in the literature. Combining with

dynamic sizing of the operands during execution time, we achieve significant dynamic

power savings for FPGAs, up to 40.3%, in the conducted experiments. Experimental

results point out that 30% of overall power savings are obtained by the dynamic sizing

idea introduced in this study. ASIC implementation of the core is also demonstrated.

In ASIC implementation, power can be saved up to 23%, and static power, which

dominates in FPGAs, can be decreased below 1%. Possible application scenarios that

implement ML algorithms on IoT end devices are also presented. Experimental results

are discussed in detail to explain different factors that affect the results. Several future

works that will improve the results obtained from this study are also discussed. This

study shows that approximate computing can be efficiently utilized for microprocessor

systems to meet the stringent power constraint of IoT end devices that are capable of

learning.



61

REFERENCES

1. Esposito, D., A. G. M. Strollo and M. Alioto, “Low-power approximate MAC

unit”, 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics

(PRIME), pp. 81–84, June 2017.

2. Mohammadi, M., A. Al-Fuqaha, S. Sorour and M. Guizani, “Deep Learning for IoT

Big Data and Streaming Analytics: A Survey”, IEEE Communications Surveys

Tutorials , Vol. 20, No. 4, pp. 2923–2960, Fourthquarter 2018.

3. La, Q. D., M. V. Ngo, T. Q. Dinh, T. Q. Quek and H. Shin, “Enabling intelligence in

fog computing to achieve energy and latency reduction”, Digital Communications

and Networks , Vol. 5, No. 1, pp. 3 – 9, 2019, http://www.sciencedirect.com/

science/article/pii/S2352864818301081, artificial Intelligence for Future Wireless

Communications and Networking.

4. Su, M.-Y., “Using clustering to improve the KNN-based classifiers for online

anomaly network traffic identification”, Journal of Network and Computer Ap-

plications , Vol. 34, No. 2, pp. 722 – 730, 2011, http://www.sciencedirect.com/

science/article/pii/S1084804510001785, efficient and Robust Security and Services

of Wireless Mesh Networks.

5. Doshi, R., N. Apthorpe and N. Feamster, “Machine Learning DDoS Detection for

Consumer Internet of Things Devices”, 2018 IEEE Security and Privacy Work-

shops (SPW), pp. 29–35, May 2018.

6. Agarwal, V., R. A. Patil and A. B. Patki, “Architectural Considerations for Next

Generation IoT Processors”, IEEE Systems Journal , Vol. 13, No. 3, pp. 2906–2917,

Sep. 2019.

7. Esmaeilzadeh, H., A. Sampson, L. Ceze and D. Burger, “Architecture Support

for Disciplined Approximate Programming”, Proceedings of the Seventeenth In-



62

ternational Conference on Architectural Support for Programming Languages and

Operating Systems , ASPLOS XVII, pp. 301–312, ACM, New York, NY, USA, 2012,

http://doi.acm.org/10.1145/2150976.2151008.

8. Yesil, S., I. Akturk and U. R. Karpuzcu, “Toward Dynamic Precision Scaling”,

IEEE Micro, Vol. 38, No. 4, pp. 30–39, Jul 2018.

9. Leon, V., G. Zervakis, S. Xydis, D. Soudris and K. Pekmestzi, “Walking through

the Energy-Error Pareto Frontier of Approximate Multipliers”, IEEE Micro,

Vol. 38, No. 4, pp. 40–49, Jul 2018.

10. Liu, Z., A. Yazdanbakhsh, T. Park, H. Esmaeilzadeh and N. S. Kim, “SiMul: An

Algorithm-Driven Approximate Multiplier Design for Machine Learning”, IEEE

Micro, Vol. 38, No. 4, pp. 50–59, Jul 2018.

11. Venkataramani, S., V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan,

“Quality programmable vector processors for approximate computing”, 2013 46th

Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp.

1–12, Dec 2013.

12. Karaca, M., RISCV approximate adder code generator plugin for GCC , 2019, https:

//github.com/karacasoft/riscv approximate codegen plugin for gcc, accessed at

December 2019.

13. Shafique, M., R. Hafiz, S. Rehman, W. El-Harouni and J. Henkel, “Invited:

Cross-layer approximate computing: From logic to architectures”, 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2016.

14. Venkataramani, S., A. Sabne, V. Kozhikkottu, K. Roy and A. Raghunathan,

“SALSA: Systematic logic synthesis of approximate circuits”, DAC Design Au-

tomation Conference 2012 , pp. 796–801, June 2012.

15. Shafique, M., W. Ahmad, R. Hafiz and J. Henkel, “A low latency generic accuracy



63

configurable adder”, 2015 52nd ACM/EDAC/IEEE Design Automation Confer-

ence (DAC), pp. 1–6, June 2015.

16. Rehman, S., W. El-Harouni, M. Shafique, A. Kumar, J. Henkel and J. Henkel,

“Architectural-space exploration of approximate multipliers”, 2016 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), pp. 1–8, Nov 2016.

17. Lin, C. and I. Lin, “High accuracy approximate multiplier with error correction”,

2013 IEEE 31st International Conference on Computer Design (ICCD), pp. 33–38,

Oct 2013.

18. Zhang, Q., T. Wang, Y. Tian, F. Yuan and Q. Xu, “ApproxANN: An approximate

computing framework for artificial neural network”, 2015 Design, Automation Test

in Europe Conference Exhibition (DATE), pp. 701–706, March 2015.

19. Sampson, A., W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze and D. Grossman,

“EnerJ: Approximate Data Types for Safe and General Low-power Computation”,

SIGPLAN Not., Vol. 46, No. 6, pp. 164–174, Jun 2011, http://doi.acm.org/10.

1145/1993316.1993518.

20. Kedem, Z. M., V. J. Mooney, K. K. Muntimadugu and K. V. Palem, “An ap-

proach to energy-error tradeoffs in approximate ripple carry adders”, IEEE/ACM

International Symposium on Low Power Electronics and Design, pp. 211–216, Aug

2011.

21. Balasubramanian, P. and D. L. Maskell, “Hardware Optimized and Error Reduced

Approximate Adder”, Electronics , Vol. 8, No. 11, 2019, https://www.mdpi.com/

2079-9292/8/11/1212.

22. Kahng, A. B. and S. Kang, “Accuracy-configurable adder for approximate arith-

metic designs”, DAC Design Automation Conference 2012 , pp. 820–825, June 2012.

23. Yezerla, S. K. and B. Rajendra Naik, “Design and estimation of delay, power



64

and area for Parallel prefix adders”, 2014 Recent Advances in Engineering and

Computational Sciences (RAECS), pp. 1–6, March 2014.

24. Macedo, M., L. Soares, B. Silveira, C. M. Diniz and E. A. C. da Costa, “Explor-

ing the use of parallel prefix adder topologies into approximate adder circuits”,

2017 24th IEEE International Conference on Electronics, Circuits and Systems

(ICECS), pp. 298–301, Dec 2017.

25. Henry, G. G., T. Parks and R. E. Hooker, “Processor That Performs Approxi-

mate Computing Instructions”, , July 2016, https://patents.google.com/patent/

US9389863B2/en, uS Patent 9 389 863 B2.

26. Alsouda, Y., S. Pllana and A. Kurti, “A Machine Learning Driven IoT Solution

for Noise Classification in Smart Cities”, CoRR, Vol. abs/1809.00238, 2018, http:

//arxiv.org/abs/1809.00238.

27. Viegas, E., A. O. Santin, A. França, R. Jasinski, V. A. Pedroni and L. S. Oliveira,

“Towards an Energy-Efficient Anomaly-Based Intrusion Detection Engine for Em-

bedded Systems”, IEEE Transactions on Computers , Vol. 66, No. 1, pp. 163–177,

Jan 2017.

28. Yu, Z., “Big Data Clustering Analysis Algorithm for Internet of Things Based on

K-Means”, International Journal of Distributed Systems and Technologies , Vol. 10,

pp. 1–12, 01 2019.

29. Suarez, J. and A. Salcedo, “ID3 and k-means Based Methodology for Internet of

Things Device Classification”, pp. 129–133, 11 2017.

30. Moon, J., S. Kum and S. Lee, “A Heterogeneous IoT Data Analysis Framework

with Collaboration of Edge-Cloud Computing: Focusing on Indoor PM10 and

PM2.5 Status Prediction”, Sensors , Vol. 19, No. 14, 2019, https://www.mdpi.

com/1424-8220/19/14/3038.



65

31. Kang, J. and D.-S. Eom, “Offloading and Transmission Strategies for IoT Edge

Devices and Networks”, Sensors , Vol. 19, No. 4, 2019, https://www.mdpi.com/

1424-8220/19/4/835.

32. RISC-V , https://riscv.org, accessed on 23 Dec 2019.

33. Shakti-Open Source Processor Development Ecosystem, http://shakti.org.in, ac-

cessed on 16 Jan 2020.

34. PULP Platform, https://pulp-platform.org, accessed on 19 Jan 2020.

35. Cores-SweRV , https://github.com/chipsalliance/Cores-SweRV, accessed on 15

Jan 2020.

36. Open, Lowest Power, Programmable RISC-V Solutions., https://www.microsemi.

com/product-directory/mi-v-embedded-ecosystem/4406-risc-v-cpus, accessed on

19 Jan 2020.

37. Rumble Development Corporation, https://www.rumbledev.com, accessed on 19

Jan 2020.

38. A 32-bit Microcontroller featuring a RISC-V core, https://github.com/onchipuis/

mriscv, accessed on 18 Jan 2020.

39. DarkRISCV-opensouce RISC-V implemented from scratch in one night! , https:

//github.com/darklife/darkriscv, accessed on 18 Jan 2020.

40. XuanTie C910 - High-performance 64-bit RISC-V architecture multi-core processor

with AI vector acceleration engine, https://www.t-head.cn/product/c910?spm=

a2ouz.12987052.0.0.5c5c6245WIbjoG, accessed on 16 Jan 2020.

41. BOOM: Berkeley Out-of-Order Machine, https://github.com/riscv-boom/riscv-

boom, accessed on 16 Jan 2020.



66

42. Sifive, https://www.sifive.com, accessed on 19 Jan 2020.

43. Liu, G., J. Primmer and Z. Zhang, “Rapid Generation of High-Quality RISC-V

Processors from Functional Instruction Set Specifications”, 2019 56th ACM/IEEE

Design Automation Conference (DAC), pp. 1–6, June 2019.

44. Tolba, M. F., A. H. Madian and A. G. Radwan, “FPGA realization of ALU for

mobile GPU”, 2016 3rd International Conference on Advances in Computational

Tools for Engineering Applications (ACTEA), pp. 16–20, July 2016.

45. Wolf, C., RISC-V Bitmanip (Bit Manipulation) Extension, 2019, https://github.

com/riscv/riscv-bitmanip, accessed at April 2019.

46. Sklansky, J., “Conditional-Sum Addition Logic”, IRE Transactions on Electronic

Computers , Vol. EC-9, No. 2, pp. 226–231, June 1960.

47. Esposito, D., A. G. M. Strollo, E. Napoli, D. D. Caro and N. Petra, “Approxi-

mate Multipliers Based on New Approximate Compressors”, IEEE Transactions

on Circuits and Systems I: Regular Papers , Vol. 65, pp. 4169–4182, 2018.

48. Echavarria, J., S. Wildermann, E. Potwigin and J. Teich, “Efficient Arithmetic

Error Rate Calculus for Visibility Reduced Approximate Adders”, IEEE Embedded

Systems Letters , Vol. 10, No. 2, pp. 37–40, June 2018.

49. Macsorley, O. L., “High-Speed Arithmetic in Binary Computers”, Proceedings of

the IRE , Vol. 49, No. 1, pp. 67–91, Jan 1961.

50. Goto, G., T. Sato, M. Nakajima and T. Sukemura, “A 54*54-b regularly structured

tree multiplier”, IEEE Journal of Solid-State Circuits , Vol. 27, No. 9, pp. 1229–

1236, Sep. 1992.

51. RISC-V, RISC-V GCC , 2019, https://github.com/riscv/riscv-gcc, accessed on 18

March 2018.



67

52. RISC-V binutils , https://github.com/riscv/riscv-binutils-gdb, accessed on 25 Nov

2019.
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APPENDIX A: Test System for Experiments

A.1. start.S File

Please see the footnote.1

.section .text

.global _start

_start:

reset_handler:

li x1, 0

li x2, 0

li x3, 0

li x4, 0

li x5, 0

li x6, 0

li x7, 0

li x8, 0

li x9, 0

li x10, 0

li x11, 0

li x12, 0

li x13, 0

li x14, 0

li x15, 0

.option push

.option norelax

1This part is originally prepared by Mehmet Alp Şarkışla and Ömer Faruk Irmak.
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la gp, __global_pointer$

.option pop

la sp, _stack_start

call __libc_init_array

call main

ebreak

.global _init

.global _fini

_init:

_fini:

ret

A.2. link.ld File

Please see the footnote.2

SEARCH_DIR(.)

__DYNAMIC = 0;

MEMORY

{

/*///////////// instruction memory ////////////////*/

rom : ORIGIN = 0, LENGTH = 40K

/*///////////// data memory ////////////////*/

ram : ORIGIN = 40K, LENGTH = 80K

/*///////////// stack memory ////////////////*/

stack : ORIGIN = 120K, LENGTH = 10K

2This part is originally prepared by Mehmet Alp Şarkışla and Ömer Faruk Irmak, and modified
by İbrahim Taştan for use in this study.
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}

/* Stack information variables */

_min_stack = 0x0; /* (1K - 4) minimum stack space */

_stack_len = LENGTH(stack);

_stack_end = ORIGIN(stack);

_stack_start = ORIGIN(stack) + LENGTH(stack);

__global_pointer$ = 0; /* 2K */

/* We have to align each sector to word boundaries as our current

*s19->slm conversion scripts are not able to handle

*non-word aligned sections. */

SECTIONS

{

.vectors :

{

. = ALIGN(4);

KEEP(*(.vectors))

} > ram

.text : {

. = ALIGN(4);

_stext = .;

*(.text)

_etext = .;

__CTOR_LIST__ = .;

LONG((__CTOR_END__ - __CTOR_LIST__) / 4 - 2)

*(.ctors)

LONG(0)
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__CTOR_END__ = .;

__DTOR_LIST__ = .;

LONG((__DTOR_END__ - __DTOR_LIST__) / 4 - 2)

*(.dtors)

LONG(0)

__DTOR_END__ = .;

*(.lit)

*(.shdata)

_endtext = .;

} > rom

/*-------------------------------------------------------*/

/* Global constructor/destructor segement */

/*-------------------------------------------------------*/

.preinit_array :

{

PROVIDE_HIDDEN (__preinit_array_start = .);

KEEP (*(.preinit_array))

PROVIDE_HIDDEN (__preinit_array_end = .);

} > ram

.init_array :

{

PROVIDE_HIDDEN (__init_array_start = .);

KEEP (*(SORT(.init_array.*)))

KEEP (*(.init_array ))

PROVIDE_HIDDEN (__init_array_end = .);

} > ram

.fini_array :
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{

PROVIDE_HIDDEN (__fini_array_start = .);

KEEP (*(SORT(.fini_array.*)))

KEEP (*(.fini_array ))

PROVIDE_HIDDEN (__fini_array_end = .);

} > ram

.rodata : {

. = ALIGN(4);

*(.rodata);

*(.rodata.*)

} > ram

.shbss :

{

. = ALIGN(4);

*(.shbss)

} > ram

.data : {

. = ALIGN(4);

sdata = .;

_sdata = .;

*(.data);

*(.data.*)

edata = .;

_edata = .;

} > ram

.bss :

{
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. = ALIGN(4);

_bss_start = .;

*(.bss)

*(.bss.*)

*(.sbss)

*(.sbss.*)

*(COMMON)

_bss_end = .;

} > ram

/* ensure there is enough room for stack */

.stack (NOLOAD): {

. = ALIGN(4);

. = . + _min_stack ;

. = ALIGN(4);

stack = . ;

_stack = . ;

} > stack

.stab 0 (NOLOAD) :

{

[ .stab ]

}

.stabstr 0 (NOLOAD) :

{

[ .stabstr ]

}

.bss :

{
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. = ALIGN(4);

_end = .;

} > ram

}

A.3. Linux Commands for Compiling C Codes

Please see the footnote.3

############ VARIABLES ############

##### set variables

######### Specify the C code which is converted to assembly.

C_CODE = "./knn/knn_sel_robot_1960_40"

######### Specify the instruction set (which extensions of RISC-V ISA)

######### for RISC-V GCC.

I_SET = "rv32im"

######### Specify the optimization level (0, 1, 2 or 3) for RISC-V GCC.

OPT_LEV = "3"

############ COMMANDS ############

##### run commands

######### Remove previous .exe file for any possible clash.

rm _$OPT_LEV.exe

######### Generate new .exe file by using link.ld and start.S files.

riscv32-unknown-elf-gcc -g0 -O$OPT_LEV -march=$I_SET -Wl,--no-relax

-nostartfiles start.S $C_CODE.c -T link.ld -o _$OPT_LEV.exe -lm

######### Generate .hex file for instructions

riscv32-unknown-elf-objcopy -O binary -j .text -j .text.startup

_$OPT_LEV.exe $C_CODE$OPT_LEV.hex

######### Dump .hex file for readability with pseudo names

3This part is originally prepared by Mehmet Alp Şarkışla and modified by İbrahim Taştan for use
in this study.
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######### for instructions and registers

riscv32-unknown-elf-objdump -d _$OPT_LEV.exe > $C_CODE$OPT_LEV.idump

######### Dump .hex file for readability with real names

######### for instructions and registers

riscv32-unknown-elf-objdump --disassembler-options=no-aliases,numeric

-D -g _$OPT_LEV.exe > $C_CODE$OPT_LEV.all

######### Generate .mem file for the data stored in the memory

riscv32-unknown-elf-objcopy -O binary --remove-section

.text --remove-section .text.startup

--strip-debug _$OPT_LEV.exe $C_CODE$OPT_LEV.mem

######### Dump .mem file for readability

riscv32-unknown-elf-objdump -s -b binary --adjust-vma=0xa000

$C_CODE$OPT_LEV.mem > $C_CODE$OPT_LEV.mdump

A.4. Verilog Codes for the Approximate Adder

//// SKLANSKY APPROXIMATE ADDER TOP MODULE ////

module Sklansky_sizeable(

size_enable,approx_level,a,b,ci,co,s);

input [31:0] size_enable;

input [2:0] approx_level;

input [31:0] a,b;

output [31:0] s;

input ci;

output co;

wire [31:0] P,C;

wire [31:0] G0;
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//// P & G generation ////

pg_gen U1 (

.size(size_enable),

.a(a),

.b(b),

.G(G0),

.P(P)

);

//// tree adder instantiation ////

sklansky_tree sklansky_tree_32_bit (

.approx_level(approx_level),

.G0(G0),

.P0(P),

.C(C)

);

//// XOR operations to obtain the results ////

xor2 s0 (

.a(ci),

.b(P[0]),

.en(size_enable[0]),

.o(s[0])

);

genvar i;

generate

for (i=1; i<32; i=i+1) begin: sum

xor2 s1_31 (

.a(C[i-1]),

.b(P[i]),
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.en(size_enable[i]),

.o(s[i])

);

end

endgenerate

assign co = C[31];

endmodule

//// SKLANSKY TREE CODE ////

module sklansky_tree(

input [31:0] G0,P0,

input [2:0] approx_level,

output [31:0] C

);

wire [31:0] P[5:0], G[5:0];

assign G[0] = G0;

assign P[0] = P0;

//// creating gray cells row by row //////

gray_cell row_1_g (

.approx(approx_level[0]),

.G_ik(G[0][1]),

.P_ik(P[0][1]),

.G_k1j(G[0][0]),

.G_ij(G[1][1])
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);

genvar i;

generate

for (i=2; i<4; i=i+1)

begin: row2_g

gray_cell row_2_g (

.approx(approx_level[0]),

.G_ik(G[1][i]),

.P_ik(P[1][i]),

.G_k1j(G[1][1]),

.G_ij(G[2][i])

);

end

endgenerate

genvar j;

generate

for (j=4; j<8; j=j+1)

begin: row3_g

gray_cell row_3_g (

.approx(approx_level[0]),

.G_ik(G[2][j]),

.P_ik(P[2][j]),

.G_k1j(G[2][3]),

.G_ij(G[3][j])

);

end
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endgenerate

genvar k;

generate

for (k=8; k<16; k=k+1)

begin: row4_g

gray_cell row_4_g (

.approx(approx_level[1]),

.G_ik(G[3][k]),

.P_ik(P[3][k]),

.G_k1j(G[3][7]),

.G_ij(G[4][k])

);

end

endgenerate

genvar l;

generate

for (l=16; l<32; l=l+1)

begin: row5_g

gray_cell row_5_g (

.approx(approx_level[2]),

.G_ik(G[4][l]),

.P_ik(P[4][l]),

.G_k1j(G[4][15]),

.G_ij(G[5][l])

);

end
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endgenerate

//// creating black cells row by row //////

genvar m;

generate

for (m=3; m<32; m=m+2)

begin: row1_b

black_cell row_1_b (

.G_ik(G[0][m]),

.P_ik(P[0][m]),

.G_k1j(G[0][m-1]),

.P_k1j(P[0][m-1]),

.G_ij(G[1][m]),

.P_ij(P[1][m])

);

end

endgenerate

genvar n;

genvar nn;

generate

for (n=6; n<32; n=n+4) begin: xx2

for (nn=0; nn<2; nn=nn+1)

begin: row2_b

black_cell row_2_b (

.G_ik(G[1][n+nn]),

.P_ik(P[1][n+nn]),

.G_k1j(G[1][n-1]),

.P_k1j(P[1][n-1]),
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.G_ij(G[2][n+nn]),

.P_ij(P[2][n+nn])

);

end

end

endgenerate

genvar p;

genvar pp;

generate

for (p=12; p<32; p=p+8) begin: xx3

for (pp=0; pp<4; pp=pp+1)

begin: row3_b

black_cell row_3_b (

.G_ik(G[2][p+pp]),

.P_ik(P[2][p+pp]),

.G_k1j(G[2][p-1]),

.P_k1j(P[2][p-1]),

.G_ij(G[3][p+pp]),

.P_ij(P[3][p+pp])

);

end

end

endgenerate

genvar r;

generate

for (r=24; r<32; r=r+1)

begin: row4_b

black_cell row_4_b (
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.G_ik(G[3][r]),

.P_ik(P[3][r]),

.G_k1j(G[3][23]),

.P_k1j(P[3][23]),

.G_ij(G[4][r]),

.P_ij(P[4][r])

);

end

endgenerate

//// creating buffer cells row by row //////

genvar a;

generate

for (a=0; a<31; a=a+2)

begin: row1

buffer_cell row_1_buff (

.in1(P[0][a]),

.in2(G[0][a]),

.out1(P[1][a]),

.out2(G[1][a])

);

end

endgenerate

genvar b;
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genvar bb;

generate

for (b=0; b<32; b=b+4) begin: yy2

for (bb=0; bb<2; bb=bb+1)

begin: row2

buffer_cell row_2_buff (

.in1(P[1][b+bb]),

.in2(G[1][b+bb]),

.out1(P[2][b+bb]),

.out2(G[2][b+bb])

);

end

end

endgenerate

genvar c;

genvar cc;

generate

for (c=0; c<32; c=c+8) begin: yy3

for (cc=0; cc<4; cc=cc+1)

begin: row3

buffer_cell row_3_buff (

.in1(P[2][c+cc]),

.in2(G[2][c+cc]),

.out1(P[3][c+cc]),

.out2(G[3][c+cc])

);

end

end

endgenerate
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genvar d;

genvar dd;

generate

for (d=0; d<32; d=d+16) begin: yy4

for (dd=0; dd<8; dd=dd+1)

begin: row4

buffer_cell row_4_buff (

.in1(P[3][d+dd]),

.in2(G[3][d+dd]),

.out1(P[4][d+dd]),

.out2(G[4][d+dd])

);

end

end

endgenerate

genvar e;

generate

for (e=0; e<16; e=e+1) begin: yy5

buffer_cell row_5_buff (

.in1(P[4][e]),

.in2(G[4][e]),

.out1(P[5][e]),

.out2(G[5][e])

);

end

endgenerate

assign C = G[5];
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endmodule

//// GRAY CELL CODE ////

module gray_cell(

input G_ik,P_ik,G_k1j,

input approx,

output G_ij

);

reg G_out;

reg G1, G2, P1;

always @(*) begin

case (approx)

1’b0: begin

G_out <= (G_ik)|(P_ik & G_k1j);

end

1’b1: begin

G_out <= (G_ik);

end

endcase

end

assign G_ij = G_out;

endmodule
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A.5. Verilog Testbench for the Results of the Tests

module core_tb;

// Inputs

reg ap_clk;

reg ap_rst;

reg ap_start;

// Outputs

wire ap_done;

wire ap_idle;

wire ap_ready;

reg [16:0]Data_Result_Address;

wire [7:0]Data_Result;

// Instantiate the Unit Under Test (UUT)

riscv_core uut (

.ap_clk(ap_clk),

.ap_rst(ap_rst),

.ap_start(ap_start),

.ap_done(ap_done),

.ap_idle(ap_idle),

.ap_ready(ap_ready),

.Data_Result_Address(Data_Result_Address),

.Data_Result(Data_Result)

);

integer f;

initial begin

forever #5 ap_clk = ~ap_clk;

end
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initial begin

f = $fopen("output.txt","w"); // change the name for the core

ap_clk = 0;

ap_rst = 0;

ap_start = 0;

#100;

ap_rst = 1;

ap_start = 1;

#100;

ap_rst = 0;

ap_start = 1;

#155424420; // specify the time when the code finishes.

/// After finishing the code, write the results into a file. ///

for (Data_Result_Address=40240; Data_Result_Address<40840;

Data_Result_Address=Data_Result_Address+4 ) begin

/* Data_Result_Addresses specifies where

the results reside in memory. */

#10;

$fwrite(f,"%d\n",Data_Result);

end

$fclose(f);

$finish;

end

endmodule

A.6. Constraint File

### Clock description

set_property PACKAGE_PIN Y9 [get_ports {ap_clk}]; # "GCLK"

create_clock -period 10 -name CLK -waveform {0 5} [get_ports ap_clk]



89

set_property IOSTANDARD LVCMOS33

[get_ports -of_objects [get_iobanks 13]]

### Input description

set_property PACKAGE_PIN P16 [get_ports ap_rst]

set_property PACKAGE_PIN R16 [get_ports ap_start]

set_property IOSTANDARD LVCMOS25

[get_ports -of_objects [get_iobanks 34]]

### Output description

set_property PACKAGE_PIN T22 [get_ports ap_done]

set_property PACKAGE_PIN T21 [get_ports ap_idle]

set_property PACKAGE_PIN U22 [get_ports ap_ready]

set_property IOSTANDARD LVCMOS33

[get_ports -of_objects [get_iobanks 33]]

A.7. Writing SAIF File

### Open post-implementation functional simulation in Vivado

restart

open_saif "core.saif" ## change the name of the SAIF file.

log_saif [get_objects -r *] ## record activity of all signals

add_force {/core_tb/ap_clk} -radix hex {1 0ns} {0 5000ps}

-repeat_every 10000ps

add_force {/core_tb/ap_rst} -radix hex {1 0ns}

add_force {/core_tb/ap_start} -radix hex {1 0ns}

run 100 ns

add_force {/core_tb/ap_rst} -radix hex {0 0ns}

run 43556245 ns ## specify the time when the code finishes.

close_saif
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A.8. TCL Script for Vivado

##################################

###### SET DESIGN VARIABLES ######

##################################

#### COMPUTER LOCATION #### change it for different computers,

#### it specifies where "THESIS" file resides

set COMPUTER_LOCATION "C:/Users/ASUS/Desktop"

#### PROJECT LOCATION ####

#### change it for each algorithm type. Such as KNN_ROBOT_200

set PROJECT_LOCATION

"${COMPUTER_LOCATION}/THESIS/CORES/KNN_ROBOT_200/PROJECTS"

#### PROJECT NAME ####

#### change it for each subcore ExAdd_ExMul, ExAdd_AppMul etc.

set PROJECT_NAME "ExAdd_ExMul"

#### Setting board and FPGA #### do not touch them.

set FPGA "xc7z020clg484-1"

set BOARD "em.avnet.com:zed:part0:1.4"

#### testbench and constraint locations #### do not touch them.

set TESTBENCH_LOCATION "${COMPUTER_LOCATION}/THESIS/TESTBENCHES"

set CONSTRAINT_LOCATION "${COMPUTER_LOCATION}/THESIS/CONSTRAINTS"

#### Instruction types ####

#### defines type of instruction and instruction memory.

#### EI -> exact instructions

#### AI_1 -> exact mul approximate add instructions

#### AI_2 -> exact add approximate mul instructions

#### AI_3 -> approximate add & mul instructions

set Instruction_Memory "EI"

#### approximate code locations ####

#### specify which types of the approximate codes.

set APP_ADD_LOCATION
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"${COMPUTER_LOCATION}/THESIS/APPROXIMATE_CODES/ADD"

set APP_MUL_LOCATION

"${COMPUTER_LOCATION}/THESIS/APPROXIMATE_CODES/MUL/MUL16x16/app_acc"

#### approximate code types ####

#### specify which types of the approximate codes.

set App_Add_Type "AppAddAcc"

set App_Mul_Type "AppMulAcc"

#### power results directory ####

#### it specifies where power_reports & saif files are written.

set POWER_ANALYSIS_DIR

"${PROJECT_LOCATION}/POWER_REPORTS"

#### simulation time ####

#### it specifies the amount of time required for the simulation.

#### change for different algorithms

set SIMULATION_TIME "43556245"

#########################################

###### START DESIGN and READ FILES ######

#########################################

## start_gui ## commented, if you want GUI, uncomment it.

create_project ${PROJECT_NAME}

${PROJECT_LOCATION}/PROJECTS/${PROJECT_NAME} -part ${FPGA}

set_property board_part ${BOARD} [current_project]

add_files -norecurse {${PROJECT_LOCATION}/RAW_CODES/datapath.v

${PROJECT_LOCATION}/RAW_CODES/${Instruction_Memory}.v

${PROJECT_LOCATION}/RAW_CODES/${Instruction_Memory}.dat

${PROJECT_LOCATION}/RAW_CODES/riscv_core_udiv_3cud.v

${PROJECT_LOCATION}/RAW_CODES/riscv_core_sdiv_3bkb.v

${PROJECT_LOCATION}/RAW_CODES/${App_Add_Type}.v

${PROJECT_LOCATION}/RAW_CODES/${App_Mul_Type}.v
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${PROJECT_LOCATION}/RAW_CODES/datapath_rf.v

${PROJECT_LOCATION}/RAW_CODES/datapath_rf_ram.dat

${PROJECT_LOCATION}/RAW_CODES/alu.v

${PROJECT_LOCATION}/RAW_CODES/datapath_mem.v

${PROJECT_LOCATION}/RAW_CODES/datapath_mem_ram.dat

${PROJECT_LOCATION}/RAW_CODES/riscv_core.v}

add_files ${APP_ADD_LOCATION}

add_files ${APP_MUL_LOCATION}

add_files -fileset sim_1 -norecurse ${TESTBENCH_LOCATION}/core_tb.v

import_files -force -norecurse

import_files -fileset constrs_1 -force -norecurse

${CONSTRAINT_LOCATION}/constr_1.xdc

update_compile_order -fileset sources_1

update_compile_order -fileset sources_1

###################################

###### SYNTHESIZE THE DESIGN ######

###################################

launch_runs synth_1 -jobs 8

##################################

###### IMPLEMENT THE DESIGN ######

##################################

launch_runs impl_1 -jobs 8

#######################################

###### REPORT POWER WITHOUT SAIF ######

#######################################
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report_power

-file ${POWER_ANALYSIS_DIR}/${PROJECT_NAME}_pwr_imp_rpt.txt

##########################

###### WRITING SAIF ######

##########################

launch_simulation -mode post-implementation -type functional

source core_tb.tcl

restart

open_saif "${POWER_ANALYSIS_DIR}/${PROJECT_NAME}.saif"

log_saif [get_objects -r *]

add_force {/core_tb/ap_clk} -radix hex {1 0ns} {0 5000ps}

-repeat_every 10000ps

add_force {/core_tb/ap_rst} -radix hex {1 0ns}

add_force {/core_tb/ap_start} -radix hex {1 0ns}

run 100 ns

add_force {/core_tb/ap_rst} -radix hex {0 0ns}

run ${SIMULATION_TIME} ns //

close_saif

####################################

###### REPORT POWER WITH SAIF ######

####################################

read_saif {${POWER_ANALYSIS_DIR}/${PROJECT_NAME}.saif}

report_power -file

${POWER_ANALYSIS_DIR}/${PROJECT_NAME}_pwr_imp_rpt_with_saif.txt


