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OZET

KISMi TUREVLI DENKLEMLER iCIiN DIFERANSIYEL KARELEME
YONTEMI

MOHAMMEDALI, Sagvan Kareem
Yiiksek Lisans Tezi, Matematik Anabilim Dali )
Tez Danigmani : Yrd. Dog. Dr. Nagehan ALSOY-AKGUN
Ocak 2017, 49 sayfa

Bu tez calismasinda, kismi tlirevli denklemler ile tanimlanmig problemlerin
diferansiyel kareleme yontemiyle ¢oziimleri verilmistir. Ilk {i¢ problemin denklemleri
teorik ¢oziimleri meveut olan Poisson, Helmholtz ve conveksiyon-difiizyon-reaksiyon
denklemleri olup Dirichlet tipindeki siir kosullarina sahiptirler. Elde edilen sonuglar
grafikler ve tablolar yardimiyla teorik ¢dziimler ile karsilagtirmali olarak verilmistir.

Sonraki iki problemde sirastyla zamana bagli diftizyon ve konveksiyon-difiizyon
denklemleri yine diferansiyel kardleme yontemi ile ¢oziilmiistiir. Bu denklemler orijinal
halleri ile ¢oziilmek yerine homojen olmayan modifiye edilmis Helmholtz
denklemlerine doniistiirtilmiis ve sonra diferansiyel kareleme yontemi ¢6ziim prosediirii
uygulanmistir. Homojen olmayan modifiye edilmis Helmholtz denklemlerini elde etmek
icin 6nce denklemin zaman tiirevleri ileri sonlu farklar yontemi kullanilarak iki zaman
diizeyinde agilmistir. Ayrica Laplace terimleri iginde bulunan bilinmeyen fonksiyon i¢in
bir parametre yardimiyla yeni bir acilim yapilmistir. Bunlar denklem icerisinde yerine
konulup denklemler yeniden yazildiginda iteratif formda homojen olmayan modifiye
edilmis Helmholtz denklemleri elde edilmistir. Boylece zaman tiirevi igin farkli bir
yontem kullanmaya gerek kalmamis ve dolayisiyla sayisal kararlilik analizi yapma
ihtiyac1 ortadan kalkmustir.

Ayrica bu problemlerde sinir kosullar1 Dirichlet ve Neumann tipinde olup
Neumann tipindeki sinir kosullarinin diferansiyel kareleme yontemindeki uygulamasi

detayli olarak verilmistir.

Anahtar kelimeler: Diferansiyel kareleme yo6ntemi, Difiizyon denklemi,
Helmholtz tipindeki denklemler, Kismi tiirevli denklemler, Konveksiyon-difiizyon,

Konveksiyon-difiizyon-reaksiyon denklemi.
i






ABSTRACT

DIFFERANTIAL QUADRATURE METHOD FOR PARTIAL DIFFERENTIAL
EQUATION

MOHAMMEDALI, Sagvan Kareem
M. Sc. Thesis, Mathematics )
Supervisor : Asst. Prof. Dr. Nagehan ALSOY -AKGUN
January 2017, 49 sayfa

In this thesis, partial differential equations are solved by using differential
quadrature method. First three problems are Poisson, Helmholtz and convection-
diffusion-reaction equations with the Dirichlet type boundary conditions which have the
exact solutions. Obtained results are given using graphs and tables, and are compared
with the exact solutions.

Next two problems are time dependet diffusion and convection-diffusion
equations, respectively, and these are again solved by using differential quadrature
method. For these equations differential quadrature solution procedure performed after
transforming the give equations into the modified Helmholtz equation. In order to
obtain modified Helmholtz equation, first, time derivatives are approximated using
forward difference approximation at two time levedl. Also, unknown function located in
the Laplace term is approximated using a relaxation parameter. These approximations
are inserted into the equations. Nonhomogeneous modified Helmholtz equations in an
iterative form are obtained by rearranging the equations. Therefore, the need of another
time integration scheme is eliminated, and stability problems are diminished.

Also, in these problems, the boundary conditions are taken as both Dirichlet and
Neumann types and the procedure for Neumann type boundary condition is explained in
details.

Keywords. Convection-diffusion equation, Convection-diffusion-reaction

equation, Differentiad quadrature method, Diffusion equation, Helmholtz-type
equations, Partial differential equation.
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1. INTRODUCTION

Partial Differential Equations (PDE’s) together with the suitable boundary conditions
represent many mathematical model of engineering or physical problems. For example, acoustic
and microwaves can be modeled by Helmholtz equation. Usually, it is not possible to find a
closed-form solution for the PDE’s. Due to its importance in many research area, it is necessary
to develop an approximate solution for these equations.

There are many numerical solution techniques and each of them has different advantages
to the other. In the solution procedure of any numerical method, a finite set of number which
are stored in a computer memory is used for representing a continuous function in a differential
equation. So, choosing a computationally efficient numerical method in terms of computer
memory is an important step for the solution of PDE. Among currently used solution procedure,
finite difference method (FDM), finite element method (FEM), differential quadrature method
(DQM), boundary element method (BEM) and dual reciprocity boundary element method
(DRBEM) are the most commonly used methods. When these methods are compared it is
understood that the differences of the methods are the type of approximation of the variables
and domain discretization where the problems are defined.

DQM is a numerical solution technique which was proposed by Bellman in the early
70s (Bellman et al., 1971; Bellman et al., 1972). Then, the method was used for the solution
of many problems in engineering and physical sciences. The important point for the method to
determine the weighting coeflicients and for the first order derivative two different methods are
suggested by Bellman et al. (Bellman et al., 1972). In the engineering, most early applications
of DQM are used Bellman’s method for computing the weighting coefficients (Bellman et al.,
1971; Bellman et al., 1972; Bellman et al., 1974; Bellman et al., 1975a,b; Hu and Hu, 1974;
Mingle, 1977; Wang ,1982; Civan and Sliepcevich, 1983a,b; Civan and Sliepcevich, 1984a,b;
Naadimuthu et al., 1984; Bert et al., 1988; Bert et al., 1988; Bert et al., 1989; Jang et al.,
1989). Lagrange interpolation polynomials are used as a test function to compute weighting
coefficients (Quan and Chang, 1986a,b). Also, explicit formulations to the weighting coefficients
for first and second order derivatives are obtained in the same studies. Generalization of these
formulas for higher order derivatives using the higher order polynomial approximation and a

recurrence relationship for the weighting coefficients using the simple algebraic formulation of



the weighting coefficients for the first order derivative are given by Sue and Richards (Sue and
Richards 1990; Sue 1991). A numerical study is presented using DQM for one dimensional
inverse heat equation by Repaci in (Repaci, 1991). Itis called inverse problem due to its missing
boundary condition and this problem is eliminated by using a measurement of the temperature
in an inner point of the space domain as a missing boundary condition. The DQM is extended
by Lam for the solution of two-dimensional partial differential equations to encompass problems
with arbitrary geometry (Lam, 1993). The results of thermal and torsional problems showed
reasonably good accuracy when they are compared with the other solutions.

In the literature, there are many applications of DQM such as fluid mechanics, static
and dynamic structural mechanics, lubrication mechanics, static aeroelasticity and biosciences.
DQM solution of a model of an isothermal reactor with axial mixing is presented by (Civan,
1994). In this study, DQ method alleviates the numerical difficulties encountered in finite
difference and quadrature solutions while satisfying the boundary conditions accurately. DQM
is accepted as a good alternative to the conventional numerical solution techniques such as
the finite difference and finite element methods. A state-of-the-art review of the differential
quadrature method is presented in (Berta and Malik, 1996).

Wu and Liu claim that boundary-value and initial-value differential equations with a
linear or nonlinear nature can be solved using Differential Quadrature Method (Wu and Liu,
1999). The difference between the classical DQM is the function values and some derivatives
wherever necessary are chosen as independent variables. Differential Quadrature Element
Method (DQEM) is proposed by Chang to solve steady-state heat conduction problems (Chang,
1999). He used the irregular elements and the numerical results are presented by demonstrating
the developed DQEM steady-state heat conduction analysis model.

The first comprehensive work as a text book for the DQM is presented by Shu (Shu,
2000). First order initial value problems was solved by Fung using the DQM (Fung, 2001).
In the solution procedure, the time derivative is taken at a sampling grid point as a weighted
linear sum of the given initial condition and the function values which gives an unconditionally
stable algorithm. The roots of Legendre Polynomials are taken the sampling grid points. In
the second part of the study, this algorithm was extended for the solution of second order

initial value problems. In (Tanaka and Chen, 2001), a numerical application of dual reciprocity



BEM (DRBEM) and differential quadrature (DQM) for the time-dependent diffusion problems
is presented by Tanaka and Chen. The spatial partial derivatives and the time derivative are
discretized by using DRBEM and DQM, respectively. Another study was presented by Fung for
the imposition of boundary conditions containing higher order derivatives (Fung, 2003). In this
study, the weighting coefficient matrices in the DQM is modified which overcome the limitation
of the previous solution procedure for the imposition of boundary conditions.

Ece and Biiyiik solved steady natural convection flow under a magnetic field in an
inclined rectangular enclosure heated and cooled on adjacent walls with various Grashof and
Hartmann numbers by using DQM (Ece and Biiyiik, 2006). Lo et al. used DQM as solution
technique for the solution of the benchmark problem of 2D unsteady natural convection flow in a
cavity in (Lo et al., 2007). In their study, they used second order finite difference approximation
for the time derivative.

A study for unsteady natural convection in a cavity under a magnetic field by presented
by Alsoy-Akgiin and Tezer-Sezgin in (Alsoy-Akgiin and Tezer-Sezgin, 2013) using DQM and
DRBEM. In the study, the vorticity transport and energy equations in the governing equations
are transformed to the modified Helmholtz equation and the results obtained from DRBEM and
DQM are compared in terms of accuracy and computational cost. Alsoy-Akgiin extended this
study to the natural convection flow of water-based nanofluid in the study (Alsoy-Akgiin, 2016).

In this thesis, some partial differential equations such as Poisson equation, Helmholtz
equation, modified Helmholtz equation, diffusion equation, convection-diffusion equation are
solved by using DQM. Time dependent equations are transformed to the modified Helmholtz
equations by approximating time derivative terms using forward difference approximation. The
need of another time integration scheme for time derivatives is eliminated by solving obtained
nonhomogeneous modified Helmholtz equations. In the solution procedure, Chebyshev-Gauss-
Lobatto grid points which are located near the end point are used for all problem. Numerical

results are given as tables and graphs, and are discussed by comparing with the exact solution.



2. DIFFERENTIAL QUADRATURE METHOD

Differential Quadrature Method (DQM) is a numerical discretization procedure for the
solution of differential equations. First, it was developed by R. Bellman and his associates in the
early 1970’s. Bellman introduced that an accurate solution can be obtained using considerably
small number of mesh points with DQM in (Bellman et al, 1971; Bellman et al, 1972). In the
DQM, all the derivatives of any order can be expressed as a linear summation of all the function
values along a mesh line. In the solution procedure, the weighting coefficients are determined
by using the mesh information. So, it is easy to obtain a system of algebraic equations for any
differential equation.

In this thesis, the physical problems governed by partial differential equations are
solved with polynomial-based differential quadrature method by using non-uniform mesh point
distribution. In this chapter, first, polynomial-based differential quadrature method will be
described for one-dimensional problem. Non-uniform mesh point distribution is explained in
the next section. Then, the DQM discretization of the governing partial differential equations
together with the implementation of the of boundary conditions for both Dirichlet and Neumann

type boundary conditions are described.
2.1 Polynomial-based Differential Quadrature Method

The aim of the any numerical method is to obtain a solution for the initial or boundary
value problems by transforming the governing equation into the algebraic equations in terms of
the discrete values of the function at discrete points of the solution domain. Differential Quadra-
ture Method (DQM) is based on the approximation of the first order derivative of sufficiently
smooth function with respect to coordinate direction at any mesh point using a linear sum of
the values of function at all the points in one direction (Shu, 2000). In this section, DQM is
explained for one-dimensional problem.

First order derivative for one dimensional problem can be approximated as

N

a(x,-):Za,-jf(xj), for  i=1,2,..,N 2.1.1)

J=1



where a;; is the weighting coeflicients and N is the number of the mesh points in the domain.
The weighting coefficients can be changed depending on the location of the x; and determination
of the weighting coefficient is the first step of the DQM.

Mathematical theories claim that a well-posed PDE have a solution function but, in
general, this solution may not be written in a closed form. On the other hand, this solution
function can be written in approximated form using the higher order polynomials.

Weierstrass’ first theorem: Let f(x) be a real valued continuous function defined in
a closed interval [a, b]. Then there exists a sequence of polynomials P,(x) which converges to
f(x) uniformly as n goes to infinity or for every € > 0, there exists a polynomial P,(x) of degree

n = n(e) such that the inequality

|/(x)=Pu(x)| < € (2.1.2)

holds through the interval [a, b].
So, a solution function of a PDE can be approximated as

N-1

S~ Py(x) = ) exx* (2.1.3)

k=0
where Py(x) is a polynomial of degree less than N — 1, ¢ is a constant coefficient. A polynomial
of degree less than N —1 sets up a N dimensional linear vector space Vy together with the
operation of vector addition and scalar multiplication.

The set of {1, x, x2, .., xN s linearly independent in the vector space Vy. Therefore,
Si(x)=x*1, k=12..,N

is a basis of this vector space.

In order to obtained a numerical solution of a PDE, the solution domain must be
discretized and than discreet values of solution function are found out at these discrete points.
So, for one dimensional problem, a closed interval [a, b] is divided into N — 1 parts using N
mesh points with the coordinates a = xy, xp, ..., x, = b. Evaluating f(x;) at mesh point x; using

Equation (2.1.1), we can obtain the following the system of equations



co+c1x +czxf +... +cN_1x{V_1 = f(x1)

co+clx2+czx§+...+cN_1x£V'1 = f(x2) 2.1.4)

co+C1xy + clez\, +...+ cN_lx%‘l = f(xn).

The coeflicient matrix of this system is of Vandermonde form. Since it is nonsingular matrix,
this system has a unique solution. So, after solving the system we can obtain the coeflicients co,
c1, ..., cy—1 and approximated matrix Py(x). But, if N increases, the dimension of the coefficient
matrix increases and it becomes ill-conditioned. So, the inverse of the coefficient matrix cannot
be obtained easily.

This problem can be eliminated using the Lagrange interpolation polynomial

N
JOEDIWICVIEN (2.1.5)
k=1
where
B M(x)
W) = S o=
Mi(x) = (x = x1)(x = x2) -+ (x = xx) = N(x, x¢)(x = x1)
N (2.1.6)
MO () = (x —x1) - (= x4 1) (X% = Xpg1) - (X —x3) = 1_[ (xr — x;)
k=1,k+i

N(xg,x;) = MO (x)0k;
Therefore, the approximated polynomial can be obtained using the functional values at the mesh

points. Here, /;(x) is the k-th degree Lagrange polynomial and it also can be written as

N(x, xz)
l(x) = ——— 2.1.7
k() MO0 (2.1.7)
where it has the property
1, when k=i
le(x;) = (2.1.8)

0, otherwise.
First and second order derivatives of f(x) can be obtained by differentiating Equation

(2.1.5) as
N
70 = >0 1), (2.1.9)
k=1
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N
SO0 =Y 1200 fxi) (2.1.10)
k=1
and the first and second derivatives of Lagrange function are
ND(x,
10 (x) = N0 xi) @.1.11)
MD(xy)
N®(x,
[ x) = 2 Loxe) 2.1.12)
MD(xy)

For the computation of the weighting coefficients a practical notation is used by Shu (Shu, 2000)

as
V() = ZN:az-kf(xk), (2.1.13)

kavl
SO0 =) b f (i) (2.1.14)

where y
aij = ]\;(;f)—x(l;k])c) (2.1.15)
by = %&X) (2.1.16)

where N(x,x;) and N®(x,x;) are the first and second order derivatives of N(x,x;) with
respect to x. A recurrence relation formulation can obtained for the higher order derivatives of

M(x) by successive differentiating with respect to x as

M™(x)= N, x ) (x=x0) +mN" V(x,xy) m=12---,N—1 (2.1.17)

where M")(x) and N (x, x;) are the m-th order derivative of M(x) and N(x, x;), respectively.

Using Equation (2.1.17) we get

MO,
NO(xx =20y
Xi— X[
M(Z)(xi)
2

(2.1.18)
NO(xx) =




and

~ MP(x) = 2N (i, x)
B Xj— Xj ’
MO(x;
NO(x,x;) = 3(x ).
Substituting equations (2.1.18) and (2.1.19) into equations (2.1.15) and (2.1.16), respectively,

N®(x;, xz) i#k

(2.1.19)

we achieved

_ M(l)(xi)
(= xp) M (xg)’
. M(x)

Qjj = ————

2MM(x;)

i #k,

ik

(2.1.20)

and

_ M (x) = 2N (x;, x)
T (=MD (xg)

_ M(3)(xi)

C3MO(x)

Thus, the weighting coefficients can be computed easily using the mesh point x; for i # k.

b;ii R i+k

(2.1.21)

ii

On the other hand, for the computation of the weighting coefficients a;; and b;;, we need to
compute M (x) and M®)(x), and their computations are very difficult. But, using the property
of linear vector space, if one set of base polynomials satisfies a linear operator so does another
set of polynomials (Shu, 2000), this problem can be eliminated. As it mentioned before, x*~!,

k =1,...,N is another set of base polynomial and when & = 1 it satisfies the property

N N
Maw=0 or ai=- Y ax (2.1.22)
k=1 k=T k#i
and
N N
Dbik=0  or  bi=— Y by (2.1.23)
k=1 k=1 ki

So, equations (2.1.22) and (2.1.23) are good alternative for the computation of the weighting
coeflicients a;; and b;;, respectively. Also, using the equations (2.1.20) and (2.1.21) we can

obtain
1

Xi — Xk

bir =2a;y (a,',' - ), i#k. (2.1.24)



A general formulation for the higher order derivatives is

(m=1)

w..
Wl.(;.n) =m aijwfim_l)—l]— 5 l'ij
Xi—Xj
N (2.1.25)
(m)  _ (m) P
Wii __Zwij’ =J
j=Li#j

where m =2,3,..,.N—1,i,j=1,2,..,N and a;; are the weighting coefficients of the first order
derivative. This formulation is called Shu’s recurrence relation formulation for high order

derivatives.
2.2 The Type of Grid Point Distribution

Generally, numerical solution methods prefer to use uniform grid point distribution due
to its simplicity. It is also possible for the differential quadrature method. However, nonuniform
grid point distributions give more stable results than the uniform grid point distributions. In
this thesis, Chebyshev-Gauss-Lobatto (CGL) points which enable one to take grid points close
to the boundary points, are used for all problems.

The definition of i—th degree Chebyshev polynomial is
Ti(x) = cosif @ = arccos x (2.2.1)

and the roots of |7y(x)| =1 in the interval [1,—1] are taken as the Chebyshev-Gauss-Lobatto
points which are given by

in
i = —|. 1 =0,1,...,N. 222
X; = CoSs ( N) I ( )
For any physical domain [a, b], the following coordinate transformation

b;“ (1-&)+a (2.2.3)

X =

which maps the interval [a, b] in the x-domain onto the interval [1,—1] in the £-domain.
DQM is going to be applied to some problems which have exact solution. Numerical
results are given in terms of tables and graphics which involves the comparison with the exact

solution.



3. APPLICATION OF DQM

In this chapter, some applications of Differential Quadrature Method are presented.
There are five different problems with the exact solution. All problems are defined in a rectan-
gular domain. First three equations are Poisson, convection-diffusion-reaction and Helmholtz
equations and all of them have the Dirichlet type boundary conditions. Next two problems are
diffusion and convection-diffusion equations and they have both Dirichlet and Neumann type
boundary conditions.

Solutions for all problems are presented graphically and numerical solutions are com-
pared with the exact solutions using the contourlines on the same graphics. In the computations,

maximum absolute error is defined as
Max. Abs. Error =max|Uum(x,y;)—Uex(xiy;)l Lj=1,...N
i
where N is the number of mesh points in one direction. Computer programs are written using
FORTRAN Language and all the graphs are drawn using MATLAB.

3.1 Problem1

Consider the Dirichlet problem (Bialecki and Karageorghis, 2004)

-Au = f in Q=[-11]x[-1,1]
u = on 0Q

(3.1.1)
with
F(x,y) = 3272 sin(4nx) sin(47y)

where the exact solution is

u(x,y) = sin(4nx)sin(4ny).

DQM discretization of the Equation (3.1.1) at the point (x;, y;) is

N N
- (Z Bikttgj + ) | bjku,-k) = /(xi,y) (3.12)
k=1 k=1
where b;; and ij are the weighted coefficients of second order derivatives of # with respect to

x and y, respectively. Since the all value of » are known at the boundary, DQM discretization



can be written as

N-1 N-1 B
- Z bixug; + Z bikuik | = fi; (3.1.3)
k=2 k=2

fori=2,..,N-landj=2,...,N—1 and f] is
fij = F i) = (binu; + bivu + bjuin + byvuin).

This problem is solved using different number of mesh points and the results are
compared with the exact solution. Computations are carrying using N = 16, 20, 24, 28 and 32

in one direction and the discretization of mesh points are taken as

—1
X; = —CoSs ! b4 i=1..,N
N-1

—1
yj :—cos(zjv_l)ﬂ' j=1..,N.

Table 3.1 Maximum absolute errors for Problem 1 with different mesh points.

N Max. Abs. Error
16 1.91x1072
20 2.40x 107
24 1.25x10°%
28 5.90x 1077
32 6.00x 1077

The results for the problem 1 are given in terms of maximum absolute errors in Table
(3.1). From the table, the minimum error can be obtained for higher values of mesh points.
When the number of mesh points N is increased the contours and graphs become smooth as can
be seen from Figures (3.1.1)-(3.1.3). For this problem, there is no need to increase N since the
solution obtained with N = 24 is already very accurate. Because, when N increases, the size of
the coeflicient matrix increases, thus, it causes extra computational effort.

For the next problems, the results are going to be given for suitable number of mesh

points for obtaining accurate results and for drawing the contours.
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(b) Exact Solution (c) DQM Solution

Figure 3.1.1 DQM Solution of Problem 1 for N = 16.



(b) Exact Solution (c) DQM Solution

Figure 3.1.2 DQM Solution of Problem 1 for N = 24.

3.2 Problem 2

The next Dirichlet problem is defined as (Bialecki and Karageorghis, 2004)

-V(p(x,y)Vu)+u =f in Q=[-1,1]x[-1,1]
u =0 on 0Q

(3.2.1)
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(a) Contourlines

(c) DQM Solution

(b) Exact Solution

=32.

of Problem 1 for N

Figure 3.1.3 DQM Solution

where

= 1+xzy2

p(x,y)

and the exact solution is

sin?(7rx) sin®(mry)e*™.

u(x, y)
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Using the exact solution inhomogeneous term is obtained as
f(x,y)= =2xy*e**Vsin’(7y) [sinz(ﬂx) +7 sin2(27rx)]
—2x2ye*™ sin?(nx) [sin®(7y) + msin®(2y)]
—(1 +x2y?)e**y ( sin?(y) [sin?(rrx) + 27 sin(27x) + 2% cos(27x) |
+sin®(rx) [sin?(my) + 27 sin(27y) + 2% cos(2my) | ) +sin?(nx)sin®(zy)e**.

After using DQM, the discretized form of the Equation (3.2.1) is

N N
P(x;,y;) Z bixukj + P(x;,y;) Z bjkuik) +tui; = fij  (3.2.2)
=1 =1

N N
Px(xi,)’j)zaikukj + Py(x;, Yj)zajkuik

k=1 k=1
where g;; and a; are the weighted coeflicients of first order derivatives of «, and b;; and b ik are
the weighted coeflicients of second order derivatives of u with respect to x and y, respectively.

Imposing the Dirichlet boundary conditions to the Equation (3.2.2) we get,

N1 N-1 N-1 N-1
- (Px(xi, yj) Z ajrugj +Py(xi, yj) Z ajrur | = | P(xi,y;) Z bikugj + P(xi,y)) Z bjkuik) +uii=fij (3.2.3)
= = = =

where
fip= fii= A= |Pelxiy)anuij + Py(xi, y))a; i | - [P(xi, yj)bituyj + P(x;, yj)zjluil]
— | Pe(xis yj)ainun + Py(xi yj)a;nuin | = [P (xi, y))binurj + P(xi, Yj)szUiN] }

In the computations, the same mesh points are used with the previous problem and the
results are compared with the exact solution. The maximum absolute errors are computed for
N =12, 16, 20, 24 and 26 and results are listed in Table (3.2). In Figures (3.2.1)-(3.2.3), exact
and numerical results are given numerically.

From the table and figures, N = 20 is enough to obtain accurate solutions and there is
no need to increase the number of mesh points. As compared with the Problem 1 the method

require less mesh points to obtain numerical results with the higher of the accuracy for the

problem.
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Table 3.2 Maximum absolute errors for Problem 2 with different mesh points.

N Max. Abs. Error
12 6.96 x 1074
16 1.19x 1076
20 4.00% 1078
24 2.00x 1078
26 1.00x 1078

3.3 Problem 3

Consider the problem

Vu+05¢ =f in  Q=[0,1]x][0,1]

(3.3.1)
2= on 0Q
with
f(x,y) = (=27 +0.5) sin(rx) sin(rry)
where the exact solution is
u(x,y) = sin(zx)sin(my).
Mesh points which are used at the discretization are
—1
X; :E(l—cos(;[_l)ﬂ) i=1,..,.N
1 j—1
Nz :E(I—COS(N_l) ) j=1..N
At any point (x;,y;) Equation (3.3.1) can be discretized as
N N
Zbikukj +ijku,-k+0.5u,-j :f(x,-,yj) (332)
k=1 k=1

where b;; and ij are the weighted coefficients of second order derivatives of u with respect to
x and y, respectively. Since the all value of » are known at the boundary, DQM discretization

can be written as

=

-1

=

-1
bikukj + Ejku,-k + 0.514,']' = ﬁ:j (333)
2

>
Il

2

b
Il
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fori=2,..,N-landj=2,...,N—1 and f] is
fij = F i) = (binu; + byt + bjuin + byyuin).

Table 3.3 Maximum absolute errors for Problem 3 with different mesh points.

Max. Abs. Error
2.412x 107!
5.511x1073
2.125%x 107
1.520x 1077
11 1.510x 1077
13 1.510x 1077

= N 4

Computations are carried out using the different number of mesh points and the maxi-
mum absolute errors are given in Table (3.3). Also, the results are given in Figures(3.3.1)-(3.3.3)
graphically. From the table and figures it can be seen that the best accuracy comparing with
the exact solution of the problem is obtained when the number of mesh points increases, as in

previous examples.

3.4 Problem 4

The usual form of the diffusion equation is

1 ou
2, _ 1ou ) _
u=zz in @=Ll
u(0,,0)=0,  u(x,0,1) =0, (3.4.1)

Q(L’yat):(), Q(X,L,t)zo
where £ is the diffusivity coefficient. The square plate initially at the temperature uo and the

exact solution of the problem is give in (Patridge et al., 1992),

u(x,y,t) = i i Ajp, Sin (lﬂTx) sin (lﬂTy) exp [— (klzﬂz + kmznz)t]

2 2
/=1 m=1 L L
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where
4LIO

(1) = 1][(-1)" = 1].

In the computation, the parameters are taken as L = 1.5, k = 1.25 and u = 30.

Apy =
! Immn?

The diffusion equation can be written in the form of a modified Helmholtz equation. For
this aim, first, the time derivative is approximated using the forward difference approximation

as

1 (n+1) _,(n)
(u) (3.4.2)

Viu=—
! At

where At is the time step, #'") and 4! represent the value of u at current and advance time level,
respectively. Approximating the u located in the Laplace term using the relaxation parameter

0 < 8 < 1, Equation (3.4.2) can be written as

1 /D — )
V2 (0u* D+ (1= 0)u) = - (F——). 343
u (I-6)u A A7 (3.4.3)
Rewriting the Equation (3.4.3) a modified Helmholtz equation can be obtained as
2,41 _ 2,40 — _ (120 g2, 00 _ 32,0
V2D - 2y = - (=2 )92 - 2 (3.4.4)
0

where A2 = Equation (3.4.4) is the inhomogeneous modified Helmholtz equation since

kAt
the right hand side of the equation can be computed using know value of . Now, this equation
can be solved using DQM.

In the DQM solution procedure, the Neumann and Dirichlet type boundary conditions

are imposed separately. Discretization points are taken as

; —E 1—cos i1 ]
YTy N-1)" !

Il
—_
s
S

After discretizing Equation (3.4.4) at the domain with N mesh points and imposing the Dirichlet

type boundary conditions we get
N N
1 - 1 1
D bl 4 b - 2l = s (3.4.5)
k=2 k=2

where

N N
1-6 n 7 n n 7
s,-j:_(T)[§ bt} + bjkugk)]-Azugj)—(b,-lulj+bﬂu,-1). (3.4.6)
k=1 k=1
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Neumann type boundary conditions are defined at the top and the right walls as

N

Davalt) =0, i=2,..N

k=1

N (3.4.7)
Dlavat =0, j=2,.,N-1.

k=1

Thus, Equations (3.4.5) and (3.4.7) give a set of algebraic equations and it can be solved
iteratively.

In the solution procedure, Crank-Nicolson (6 = 1/2) and Galerkin (6§ = 2/3) schemes
are used as in (Patridge and Sensale, 2000). N = 24 mesh points are used in one direction and

all the results are given to show that the effects of time increment Az and relaxation parameter 6.

Table 3.4 Maximum absolute errors for Problem 4 at ¢ = 1.2 with N = 24.

Relaxation Parameter Iteration Max. Abs. Err.
Case 1 0=1/2 96 227177
Ar=0,01250 0=2/3 96 0.04716
Case 2 0=1/2 192 1.74417
At = 0,00625 0=2/3 192 0.02359
Case 3 0=1/2 384 0.03492
At =0,003125 0=2/3 384 0.01180
Case 4 0=1/2 768 0.04125
At =0,001575 0=2/3 768 0.01065

From the Table (3.4) it can be concluded that the Galerkin Scheme with the smallest
time increment (case 4) shows the very well agreement with the exact solution of the problem.

In Figures (3.4.1) and (3.4.2), we give the results for case 4 since the smaller A7 gives better
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accuracy for both, Galerkin and Crank-Nicolson schemes. Since the Galerkin scheme gives very
good agreement with the exact solution of the problem, it will be used in the rest of the analysis
of the problem.

In the problem, results are also obtained and compared with the exact solution at
different time levels. Computations are carried out to show that a comparison of the time
variation at 7 = 0.5, 1.0, 1.5, and 2.0, and results are given in the Figures (3.4.3), (3.4.4), (3.4.5)
and (3.4.6), respectively. From the figures it is observe that contourlines show a circular behavior
and it takes the maximum value at the right bottom corner of the cavity. Also, the value of
the solutions decrease at time advances and the steady state results are obtained around with
t=2.25.

A comparison between the exact and numerical solutions at the right bottom corner
for increasing time levels are given in Figure (3.4.7). From the figure, the largest error occur
at the beginning of the solution procedure and then the error starts to decrease. This behavior
is expected for the thermal shock problem. Because the shock is applied to the mathematical

model suddenly but to the computational model linearly.
3.5 Problem 5

The next problem of the convection diffusion equation is modeled as in (Patridge and

Sensale, 2000)
v2 1 du ou Ou

U= ——+Cyr— +Cy—
Kot Tox oy

with the boundary conditions in a square region [0, 1] X [0,0.7]

+du (3.5.1)

u(0, y,1) = 300, q(x,0,¢) =0,
u(l,y,t) =10, q(x,0.7,¢1) = 0.

Here, K is the dispersion coefficient, ¢, and c, are the velocity components and d is the coefficient

of the chemical reactor. In the computations these coeflicients are taken as

K=1,
d

10
— dy+log — — 2
=X TIo8300 72

¢y =0
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The exact solution of the problem is (Patridge and Sensale, 2000)

d 10 d
u(x,y,t) = 3006Xp(5x +ﬁx—5x

A modified Helmholtz equation can be obtained for the convection diffusion equation
using the same procedure with the previous problem. So, first, the time derivative is expanded

using the forward difference approximation as

0 (n+1) _,,(n)
ou_uw  Tuw’ (3.5.2)
ot At

Then, using the relaxation parameter 6 the solution term # in the Laplace term is approximated

as

u™D = gD (1= 9)u™.

After substituting these approximations into the Equation (3.5.1) and taking all the other terms

at n-th time level new form of the equation is written as

1-6 1 Au™ Au™

2, (n+1) _ 92 (n+1 2 2

V2D — 22D = ( - )V ") _ 22 <”)+—9 5 o5y +du™ (3.5.3)
here 12 = ——.

where oA

Now, the iterative form of the convection diffusion equation can solve using DQM.

Equation (3.5.3) is discretized at the domain using N mesh points in one direction. In the

discretization the mesh points are taken as

1 i—1 .
X; —5(1—cos(N_1)7r) i=1,...N

0.3 j—1 .
yj = EX (1 Cos(N_l)ﬂ) j=1..,N.

For the unknown value of « at the interior points of the domain, using the boundary conditions,

Equation (3.5.3) takes to form

N-1 N
Z b,‘kll%jﬂ) + szkufzﬂ) - /12u57+1) = S,'j (354)
= k=1
where
=0\, .\ (n) <> S S (n)
- T 2
Sij: —(T)[;bikuk’;-l-;bjkuil’;] —Au i (cx;a y; +dlln

—(biyurj + binun;)
(3.5.5)
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Due to the Neumann type boundary conditions, the equations are obtained for the bottom and

top wall using the DQM as

N
Zalku@“) -0, i=2..N-1

ik
1§v=1 (3.5.6)
Dayag) =0, i=2,.,N-1.
k=1

Thus, together with the Equations (3.5.4) we have N X (N —2) equation for N X (N —2)
unknowns and obtained system can be solved iteratively.

In the solution procedure of the problem for all analysis, 8 = 2/3 is used as a relaxation
parameter and N = 24 mesh points are used in one direction. In the first analysis, time variation
of uat y =0.61is given for d = 1. When time increases, the DQM solution converges to the steady
state exact solution and the behavior of the solution at different time level is given in Figure
3.5.1. The numerical results at the steady state time level 7 = 0.1 are also given for the values of
d =1,5,20 and 40 in Figures 3.5.2, 3.5.3, 3.5.4 and 3.5.5, respectively. From the figures for all

values of d, obtained results are good agreement with the steady state exact solutions.
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Figure 3.2.1 DQM Solution of Problem 2 for N = 12.
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(a) Contourlines
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Figure 3.2.2 DQM Solution of Problem 2 for N = 16.
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DQM Solution of Problem 2 for N = 20.
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Figure 3.3.1 DQM Solution of Problem 3 for N =5.
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Figure 3.3.2 DQM Solution of Problem 3 for N =9.
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Figure 3.3.3 DQM Solution of Problem 3 for N = 13.
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Figure 3.4.1 DQM Solution of Problem 4 for 8 = 1/2, N =24 and t = 1.2.
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Figure 3.4.2 DQM Solution of Problem 4 for § =2/3, N =24 and t = 1.2.
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Figure 3.4.3 DQM Solution of Problem 4 for § =2/3, N =24 and t = 0.5.
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Figure 3.4.4 DQM Solution of Problem 4 for 8 =2/3, N =24 and ¢ = 1.0.
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Figure 3.4.5 DQM Solution of Problem 4 for 8 =2/3, N =24 and 7 = 1.5.
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Figure 3.4.6 DQM Solution of Problem 4 for § =2/3, N =24 and ¢ = 2.0.
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Figure 3.5.1 Time variation of # at y = 0.6.
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Figure 3.5.2 DQM Solution of Problem 5 for 8 =2/3, N =24, T =1.0 and d = 1.0.
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Figure 3.5.3 DQM Solution of Problem 5 for 8 =2/3, N =24, T =1.0 and d = 5.0.
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Figure 3.5.4 DQM Solution of Problem 5 for § =2/3, N =24, T = 1.0 and d = 20.0.
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Figure 3.5.5 DQM Solution of Problem 5 for § =2/3, N =24, T = 1.0 and d = 40.0.



4. CONCLUSION

This thesis is devoted to the differential quadrature solution of partial differential equa-
tions. First, polynomial-based differential quadrature method is explained for one-dimensional
problem. The implementation of boundary conditions is described for both Dirichlet and Neu-
mann type boundary conditions. In this section also nonuniform grid point distribution is
explained by giving Chebyshev-Gauss-Lobatto grid points.

Then DQM is expanded to the two-dimensional problem. As test problems Poisson,
Helmholtz and modified Helmholtz equations are used and implementation of Dirichlet boundary
conditions are given for these problems. DQM solution of inhomogeneous Helmholtz-type
equations which are the transformed form of time-dependent are given at the next problems.
In order to obtain nonhomogeneous modified Helmholtz equation, the forward finite difference
discretization is used for the time derivative and relaxation parameter is used for the unknown
function which is located in the Laplace terms. Therefore we do not need to use any time
integration scheme for the time derivative and eliminate the stability problems. Two different
relaxation parameters are used in the computations which are Crank-Nicolson (6 = 1/2) and
Galerkin (6 = 2/3) schemes.

DQM is a domain discretization method but very accurate results can be obtained using
considerably small number of the mesh points. Behind this, DQM is quite simple since it
is based on interpolation of solution and its derivatives by polynomials and at the end of the

solution procedure the system of ordinary differential equations in time is constructed.
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APPENDIX

GENISLETILMIS TURKCE OZET

EXTENDED TURKISH SUMMARY

Bu tez calismasinda, diferansiyel kareleme yontemi kullanilarak kismi tiirevli den-
klemler ile tanimlanmig problemlerin niimerik ¢oziimleri grafikler ve tablolar yardimiyla tam
coziimler ile karsilastirmali olarak verilmistir. Diferansiyel kareleme yonteminde bir fonksiy-
onun her hangi bir mertebeden tiirevleri, bir dogru boyunca ki sebeke noktalarindaki fonksiyonun
degerlerinin lineer toplami seklinde ifade edilebilir. Az sayida sebeke noktasi kullanilarak ¢ok
iyi sonuglar elde edilebildiginde oldukca kullanigh bir niimerik ¢6ziim yontemidir. Metodun
uygulaniginda ki en 6nemli nokta agirliklandirilmig katsayilarin elde edilmesidir ve bu katsayilar
sebeke noktalarinin koordinatlar1 kullanilarak hesaplanabilmektedir. Boylece, bir diferansiyel
denklem icin cebirsel bir denklem sistemi elde etmek oldukg¢a kolaydir.

Bu calismada kismi tiirevli diferansiyel denklemlerin diferansiyel kareleme yontemi ile
elde edilmis ¢oziimleri diizgiin olmayan sebeke dagilimlari kullanilarak elde edilmistir. Ikinci
boliimde, once bir boyutlu problemler icin yontem ag¢iklanmigtir. Birinci ve ikinci mertebeden
tiirevler icin katsayilarin hesabi verildikten sonra birinci mertebeden tiirevlerde kullanilan kat-
sayilar yardimiyla yiiksek mertebeden tlirevlerin katsayilarinin hesabi i¢in formiiller verilmistir.
Bu caligmada diizglin olmayan sebeke olarak Chebyshev-Gauss-Lobatto noktalart kullanilmig
ve bu noktalarm tanimlart yine bu bolimde verilmisgtir.

Uciincii boliimde diferansiyel kareleme yonteminin uygulama problemleri verilmistir.
Biitiin problemler iki boyutlu olup yontem iki boyutlu problemler icin genisletilmistir. Coziilen
problemlerin tam ¢6ziimleri mevcut oldugu icin elde edilen niimerik sonuclar kari£jlastif;rma

yapilarak verilmistir. Tk problem

-Au = f in Q=[-1,1]x[-1,1]
u = on 0Q

(4.0.1)
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seklinde bir Poisson denklemidir. Sag taraf fonksiyonu
f(x,y) = 3272 sin(47x) sin(47y)
ve problemin tam ¢oziimii
u(x,y) = sin(4nx)sin(4ny)

seklindedir.

Ikinci problem

_V(p(x,y)Vu) +u = f in Q= [_1, 1] X [_1’ 1] (402)

Oyleki
plx,y)=1+x%y*

seklinde modifiye edilmis Helmholtz denklemidir ve tam ¢oziimii

u(x, y) = sin®(zrx)sin®(ry)e*™.

seklindedir. Tam ¢oziimii kullanilarak sag taraf fonksiyonu
f(x,y)= =2xy*e**Vsin’(ry) [sinz(nx) +7 sin2(27rx)]
—2x2ye*™ sin’(nx) [sin®(7y) + msin®(2y) |
—(1+x%y%)e*™y ( sin?(my) [sinz(ﬂx) +2msin(2nx) + 272 cos(27rx)]
+sin®(mx) [sinz(ﬂy) +2msin(27y) + 272 cos(27ry)] ) +sin?(7rx) sin?(my)e* Y.

seklinde elde edilir.

Uciincii problem

Vu+05u =f in  Q=[0,1]x[0,1]
u =0 on 0Q

(4.0.3)
seklinde bir Helmholtz denklemidir ve nonhomejen terim

f(x,y) = (=27 +0.5)sin(zx) sin(rry)
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seklindedir. Problemin tam ¢oziimii
u(x,y) = sin(zx)sin(zy)

olarak verilmistir.

Sonraki iki problemde sirasiyla zamana bagh difiizyon ve konveksiyon-difiizyon den-
klemleri yine diferansiyel kareleme yontemi ile ¢oziilmiistiir. Bu denklemler orijinal halleri ile
¢oziilmek yerine homojen olmayan modifiye edilmis Helmholtz denklemlerine doniistiiriilmiis ve
sonra diferansiyel kareleme yontemi ¢oziim prosediirii uygulanmistir. Homojen olmayan modi-
fiye edilmis Helmholtz denklemlerini elde etmek icin 6nce denklemin zaman tiirevleri ileri sonlu
farklar yontemi kullanilarak iki zaman diizeyinde ag¢ilmigtir. Ayrica Laplace terimleri icinde bu-
lunan bilinmeyen fonksiyon i¢in bir parametre yardimiyla yeni bir acilim yapilmistir. Bunlar
denklem icerisinde yerine konulup denklemler yeniden yazildiginda iteratif formda homojen
olmayan modifiye Helmholtz denklemleri elde edilmistir. Bdylece zaman tiirevi icin farkl
bir yontem kullanmaya gerek kalmamis ve dolayisiyla sayisal kararlilik analizi yapma ihtiyact
ortadan kalkmistir.

Dordiincii problem difiizyon denklemidir

i
kot
U(O’y’t):(), u(x,(),t):(),
Q(L’yat):(), Q(X,L,t)zo

seklinde tanimlanir. Burada £ diffiisiviti katsayisidir. Problemin tam ¢ozimii

u(x,y,t) = 2 ZAI,,, sin (MTx) sin (MTy) exp [— (klz;rz + kn2227r2>t]

VZu in  Q=[0,L]x][0,L]

(4.0.4)

Oyleki

= (-1 = 11" - 1)

seklinde verilmistir. Modifiye edilmis Helmholtz denklemi formundaki difiizyon denklemi ise

VZu(n+l) _ /lZU(n+l) — _( 1 ; G)VZU(H) _ /lZu(n) (4.0.5)

1
oyleki A2 = VINTR Modifiye edilmis Helmholtz denklemi elde eldilirken zamana bagl tiirev i¢in

ou  u"tH —y ™

= _ 4.0.6
ot At ( )
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ve Laplace terimi i¢indeki bilinmeyen fonksiyon u i¢in
u=0u""V+(1-6)u"™ (4.0.7)

yaklagimlar1 kullanilmistir. Burada Az zaman artirimi, ) ve »”*! u’nun siras1 ile simdiki ve
ileri zamandaki degerlerini temsil eder.

Son olarak konveksiyon-diftizyon denklemi

1 0u ou ou
2, 7= -z -
U= ; +cy +cy +du (4.0.8)

ve [0, 1] %[0, 1] karesel bolgedeki sinir kosullari

u(0, y,t) = 300, q(x,0,¢) =0,
u(l,y,t) =10, q(x,0.7,1) = 0.

seklinde tanimlanmistir. Hesaplamalarda katsayilar

K=1,

10 d
= log — — =
Cx dx+og300 >
¢y, =0

seklinde alinmistir. Problemin tam ¢6ziimii ise

1
u(x, y,t) = 300exp (gx2 + %x - gx) .

seklindedir. Diflizyon denkleminde kullanilan yaklagimlar bu denklem i¢in de kullanildiginda

ou™ ou™

1-6 1 .,
o5 +du' >) (4.0.9)

v2, 1) _ 2 (n+1):_( )VZ () _ 324m 4
u u g u u X0 Cx

oyleki 1% = seklinde modifiye edilmis Helmholtz denklemi elde edilir.

KOAt
Biitiin problemler icin elde edilen diferansiyel kareleme yontemi coziimleri deger-
lendirildiginde, kullanim olarak oldukca basit bir yontem olmasina karsin yontem gayet iyi

sonuclar elde edilebilmistir.
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