# ANKARA YILDIRIM BEYAZIT UNIVERSITY SOCIAL SCIENCES INSTITUTE

T.C.

# EFFICIENCY ANALYSIS OF TURKEY SUGAR FACTORIES AND THE COMPARISON WITH EU

MASTER'S THESİS **Şeyma Nur MUTLU** 

## MASTER OF BUSINESS ADMINISTRATION

Asst. Prof. Dr. Hande ÖZGEN

ANKARA, 2019

### **ONAY SAYFASI**

Şeyma Nur Mutlu tarafından hazırlanan "Efficiency Analysis of Turkey Sugar Factories and the Comparison with EU" adlı tez çalışması aşağıdaki jüri tarafından oy birliği / oy çokluğu ile Ankara Yıldırım Beyazıt Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı'nda Yüksek Lisans tezi olarak kabul edilmiştir.

| Ünvan Adı Soyadı           | Kurumu                   | İmza    |    |
|----------------------------|--------------------------|---------|----|
| Dr. Öğr. Üyesi Hande ÖZGEN | AYBÜ YÖN. VE ORG.        | Stadt L | A  |
| Doç. Dr. Derya FINDIK      | AYBÜ.YÖN.BİL.SİS.        | fonden. |    |
| Dr. Öğr. Üyesi Başak       | GAZİ ÜNİV. PSİKOLOJİK    | Bruke   | do |
| BEYDOĞAN TANGÖR            | DANIŞMANLIK VE REHBERLİK | priver  | 0  |
| Doç Dr. Hasan Engin ŞENER  | AYBÜ İŞLETME             |         |    |
| Prof. Dr. Neşe SONGÜR      | AHBVU YÖN. VE ORG.       |         |    |

Tez Savunma Tarihi: 05.11.2019

Ankara Yıldırım Beyazıt Üniversitesi Sosyal Bilimler Enstitüsü İşletme Anabilim Dalı'nda Yüksek Lisans tezi olması için şartları yerine getirdiğini onaylıyorum.

Sosyal Bilimler Enstitüsü Müdürü

Ünvan Ad Soyad

### ETHICS STATEMENT

I hereby declare that all information in this thesis has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work; otherwise, I accept all legal responsibility.

Name, Last Name : ŞEYMA NUR MUTLU

Signature: Mulla

### ACKNOWLEDGEMENTS

I am grateful to Asst. Prof. Dr. Hande Özgen who has valuable contribution at each stage from the start to the end of my graduate study; thanks to the interest and understanding she has shown. I should express my gratitude to Assoc. Prof. Dr. Derya Fındık and Asst. Prof. Dr. Başak Beydoğan Tangör for their help in getting the latest version of the thesis. I also want to thank Dr. Hüsnü Tekin (my father), my daughther and my husband for their support during this tough process.

Şeyma Nur MUTLU

**ANKARA, 2019** 

#### ABSTRACT

### Efficiency Analysis of Turkey Sugar Factories and the Comparison With EU

The purpose of the study is to determine whether Turkey, the candidate country for EU membership, is capable of competing with the sugar industry in the process of integration with the sugar industry of the Union and to show how to compete under the current competitive conditions. In addition, by using input sets per factory, the efficiencies of all sugar factories belonging to the state and private sector in Turkey are analyzed and are revealed the improvement potentials. For doing this, Turkish and European Union's sugar factories 2016 data was used as an input for the Data Envelopment Analysis (DEA) method (CCR total activity analysis, BCC technical activity analysis) and thus efficiencies of sugar factories in Turkey and EU were compared.

In the study, three models were created. With the first model; state-owned sugar factories operating in Turkey is aimed to measure the production performance. For this purpose, efficiency measurements were made by using non-parametric DEA with 2016 data of 21 sugar factories operating in public sector. In the second model, comparison of public and private sugar factories in Turkey was made using input and output sets to measure the adequacy of production efficiency. The purpose of the third model created in our study is to reveal whether Turkish sugar industry can compete with the European Union sugar industry or not, and to make suggestions on how they can compete in the current competitive conditions.

As a result of the analyses, it has emerged that the sugar industry of Turkey does not have an efficient structure in production if we compare it with EU countries. With the findings, potential improvements in how inefficient factories will direct their inputs are illustrated by graphs. In addition, efficient factories which are taken as a reference by inefficient factories have been determined. In the first model built by taking the basic inputs that reflects cost of production and solved with the DEA-SOLVER-LVS software, 76% of the factories analyzed according to CCR method and 57% of the factories analyzed according to the BCC method were found inefficient. In the analysis of the second model; Afyon, Erciş, Çumra, Kayseri, Boğazlayan, Keskinkılıç, Ereğli, Kars and Kırşehir Sugar Factories were found efficient. In the third model which is made according to the CCR approach, Belgium, UK, Croatia and Denmark were in top five and Greece, Italy, Turkey, Hungary and Finland were found last five in terms of efficiency.

For the inefficient sugar factories to be efficient in Turkey, it is recommended that inefficient factories should be closed, capacity of existing efficient beet processing factories should be increased and number of workers in the factories should be decreased and hereby the amount of sugar per factory would be increased.

Key Words: Data Envelopment Analysis, Efficiency Measurement, European Union (EU), Sugar Factories, Sugar Industry.



### ÖZET

## Türkiye Şeker Fabrikalarının Verimlilik Analizi ve AB ile Karşılaştırılması

Araştırmanın amacı, AB'ye aday ülke olan Türkiye'nin, Birliğe entegrasyon sürecinde şeker sanayiinin, Birliğin şeker sanayiiyle rekabet edebilecek kapasitede olup, olmadığını belirlemek ve mevcut rekabet koşulları altında nasıl rekabet edebilir hale dönüştürüleceğini göstermektir. Ayrıca, Türkiye'deki devlete ve özel sektöre ait tüm şeker fabrikalarının etkinlikleri analiz edilerek, her fabrika için girdi setleri kullanılarak iyileştirme potansiyellerini ortaya çıkarmaktır. Bu amaçla, Türkiye ve AB şeker fabrikaları 2016 yılı verileri esas alınarak, Veri Zarflama Analizi (VZA) yöntemi (CCR toplam etkinlik analizi, BCC teknik etkinlik analizi) kullanılmış ve böylece Türkiye ve AB'deki şeker fabriklarının üretim etkinlikleri ölçülmüştür.

Çalışmada üç model oluşturulmuş ve ilk model ile Türkiye'de faaliyet gösteren devlete ait şeker fabrikalarının üretim performansının ölçülmesi hedeflenmiştir. Bu amaçla kamu sektöründe faaliyet gösteren 21 şeker fabrikasının 2016 yılı verileri ile parametrik olmayan DEA kullanılarak verimlilik ölçümü yapılmıştır. Araştırmada oluşturulan ikinci modelle, bazı girdi faktörleri çerçevesinde, kamuya ait pancar şekeri fabrikaları ve özel sektör pancar şekeri üretim fabrikaları da dahil olmak üzere, Türkiye'deki tüm pancar şekeri üretim fabrikaları da dahil olmak üzere, Türkiye'deki tüm pancar şekeri üretim fabrikaları ölçünek amaçlanmıştır. Çalışmada oluşturulan üçüncü modelin amacı; Türkiye'deki şeker endüstrisinin Avrupa Birliği şeker endüstrisi ile rekabet edip edemediği ve mevcut rekabet koşullarında nasıl rekabet edebileceği konusunda önerilerde bulunulması olarak özetlenebilir.

Yapılan analizler sonucunda, Türkiye şeker sanayiinin, AB ülkeleri arasında, üretimde etkin bir yapıya sahip olmadığı ortaya çıkmıştır. Elde edilen bulgularla, etkin olmayan fabrikaların, girdilerinin nasıl yönlendirileceği konusunda potansiyel iyileştirmeler grafiklerle gösterilmiştir. Bu fabrikaların referans alacakları etkin fabrikalar belirlenmiştir. Üretim maliyetini yansıtan temel girdiler alınarak kurulan birinci modelde, CCR yöntemine göre analiz edilen fabrikaların %76'sı, BCC yöntemine göre analiz edilen fabrikaların %57'si DEA-Solver-LVS programı ile çözülerek etkisiz bulunmuştur. İkinci modelin analizinde, Afyon, Erciş, Çumra, Kayseri, Boğazlayan, Keskinkılıç, Ereğli, Kars ve Kırşehir şeker fabrikaları etkin bulunmuştur. Üçüncü modelde CCR analizi kullanılmış ve yüksek verimliliğe sahip ülkeler Belçika, İngiltere, Hırvatistan ve Danimarka olarak belirlenmiştir. Verimliliği son sırada olan beş ülke ise Yunanistan, İtalya, Türkiye, Macaristan ve Finlandiya'dır.

Türkiye şeker fabrikalarını verimli hele getirebilmek için, verimsiz şeker fabrikalarının kapatılması, mevcut verimli pancar işleme fabrikalarının kapasitelerinin artırılması, fabrikalardaki işçi sayısının azaltılması ve böylece fabrika başına şeker miktarının artırılması ihtiyacı bulunmaktadır.

Anahtar Kelimeler: Avrupa Birliği (AB), Etkinlik Ölçümü, Şeker Fabrikaları, Şeker Sanayii, Veri Zarflama Analizi.

### **TABLE OF CONTENTS**

| TABLE OF CONTENTSI                                                            |
|-------------------------------------------------------------------------------|
| ABBREVIATIONSIV                                                               |
| LIST OF FIGURES                                                               |
| LIST OF TABLES                                                                |
| 1. INTRODUCTION                                                               |
| 2. OVERVIEW OF SUGAR AND SUGAR SECTOR IN TURKEY                               |
| 2.1. Overview of Sugar Term                                                   |
| 2.1.1. White Sugar (Table Sugar)                                              |
| 2.1.2. Starch Based Sugar15                                                   |
| 2.2. The Historical Development of Sugar Sector In Turkey17                   |
| 2.3. Developments and Policies Implemented in the Sugar Sector in Turkey      |
| 2.4. Sugar Sector in Turkey                                                   |
| 2.4.1. Starch-Based Sugar in Turkey25                                         |
| 3. SUGAR SECTOR IN EUROPEAN UNION                                             |
| 3.1. The History of Sugar Sector in European Union                            |
| 3.2. EU Common Agricultural Policy                                            |
| 3.3. The EU Sugar Common Market Organization (CMO)                            |
| 3.4. The EU Sugar Regime                                                      |
| 3.4.1. The 2006 Reform of the EU Sugar Regime                                 |
| 3.4.2. The EU Sugar Sector After The Quotas End                               |
| 4. BASIC CONCEPTS, EVENT MEASUREMENT METHODS AND DATA<br>ENVELOPMENT ANALYSIS |
| 4.1. Basic Concepts                                                           |

| 4.1.1. Productivity                                                                                                         | 6      |
|-----------------------------------------------------------------------------------------------------------------------------|--------|
| 4.1.2. Efficiency                                                                                                           | .7     |
| 4.1.3. Effectiveness                                                                                                        | 0      |
| 4.2. Efficiency Measurement Methods                                                                                         | 1      |
| 4.2.1. Rate Analysis                                                                                                        | 1      |
| 4.2.2. Parametric Methods                                                                                                   | 1      |
| 4.2.3. Non-parametric Methods                                                                                               | 2      |
| 4.3. Data Envelopment Analysis5                                                                                             | 3      |
| 4.3.1. Objectives in Implementation of Data Envelopment Analysis                                                            | 4      |
| 4.3.2. Application Steps of Data Envelopment Analysis5                                                                      | 5      |
| 4.3.3. Models in Data Envelopment Analysis5                                                                                 | 6      |
| 4.3.4. Strengths and Weaknesses of Data Envelopment Analysis                                                                | 1      |
| 5. AN APPLICATION ON EFFICIENCY BY DATA ENVELOPMENT ANALYSIS<br>METHOD: TURKEY SUGAR FACTORIES AND THE COMPARISON WITH EU 6 | S<br>4 |
| 5.1. The Purpose and The Method of The Research                                                                             | 4      |
| 5.2. Limitations of Research                                                                                                | 6      |
| 5.3. Data Collection                                                                                                        | 7      |
| 5.4. Reliability of Research Data                                                                                           | 8      |
| 5.5. Data Envelopment Analysis                                                                                              | 9      |
| 5.6. Selection of Decision Making Units to Be Evaluated                                                                     | 9      |
| 5.6.1. Determining The Input and Output Set                                                                                 | 9      |
| 5.6.2. Choosing The Appropriate Data Envelopment Analysis Model                                                             | 4      |
| 5.6.3. Choosing The Type of Return on Scale                                                                                 | '4     |

| 5.6.4. Measurement of Efficiency with Data Envelopment Analysis                |
|--------------------------------------------------------------------------------|
| 5.7. Empirical Results (Comparison Parameters)75                               |
| 5.7.1. Empirical Results for The First Model75                                 |
| 5.7.2. Empirical Results for the Second Model                                  |
| 5.7.3. Empirical Results for the Third Model                                   |
| 6. CONCLUSION AND EVALUATION                                                   |
| 6.1. Evaluation of The Result of Analysis of The Established Models            |
| 6.1.1. Model 1 (civil servant-worker-temporary worker-fuel-electricity) 104    |
| 6.1.2. Model 2 (Capacity-Processed Beet-Worker)                                |
| 6.1.3. Model 3 Efficiency Comparison Between Turkey and EU Member<br>Countries |
| 6.2. General Evaluation107                                                     |
| REFERENCES                                                                     |
| APPENDIX-I121                                                                  |
| APPENDIX-II                                                                    |
| APPENDIX-III                                                                   |
| APPENDIX-IV124                                                                 |
| CURRICULUM VITAE                                                               |

### **ABBREVIATIONS**

| BIOSAD   | Journal of Biotechnology and Strategic Health Research |
|----------|--------------------------------------------------------|
| CAP      | The Common Agricultural Policy                         |
| СМО      | Common Market Organization                             |
| DEA      | Data Envelopment Analysis                              |
| DMU      | Decision Making Units                                  |
| ECSC     | European Coal and Steel Community                      |
| EP       | European Parliament                                    |
| etc.     | Et cetera                                              |
| EU       | European Union                                         |
| HFCS     | High fructose corn syrup                               |
| HIS      | High-intensity sweeteners                              |
| IP       | Improvement Potential                                  |
| ISO      | International Sugar Organization                       |
| IMF      | International Money Fund                               |
| SBC      | Starch-based candies                                   |
| SBS      | Starch Based Sugar                                     |
| TBMM     | Turkish Grand National Assembly                        |
| TEL QUEL | The same                                               |
| TL       | Turkish Lira                                           |
| TSFI     | Turkey Sugar Factories Inc.                            |
| USA      | United States of America                               |
| VAT      | Value-Added Tax                                        |
| WSE      | White Sugar Equivalent                                 |

### LIST OF FIGURES

| Figure 1. Distribution of Sweeteners in the World Sweetener Market                                     |
|--------------------------------------------------------------------------------------------------------|
| Figure 2. Classification of Sugars9                                                                    |
| Figure 3. 2016/17 PY World's 10th Largest Producer (one thousand tons, tel quel). 10                   |
| Figure 4. Top 10 Countries in World Sugar Production, Consumption, Import and Export                   |
| Figure 5. White Sugar Consumption Quantities of 2016/17 PY Countries and Consumption per Capita        |
| Figure 6. World Sugar Production and Consumption13                                                     |
| Figure 7. European Commission Sugar Market Situation                                                   |
| Figure 8. Sugar Stock Market Prices (\$ / ton)15                                                       |
| Figure 9. HFCS Major Producing Countries16                                                             |
| Figure 10. HFCS World Prices17                                                                         |
| Figure 11. The Sales Prices of Privatized Sugar Factories                                              |
| Figure 12. Beet and Sugar Price in domestic25                                                          |
| Figure 13. Average Prices for Glucose, Isoglucose and Crystal Sugar27                                  |
| Figure 14. EU Reference Price and EU Market Price for White Sugar                                      |
| Figure 15. EU Sugar Balance Sheet 2014/2015 to 2018/2019                                               |
| Figure 16. EU Cumulated Imports Last Three Marketing Years                                             |
| Figure 17. EU Cumulated Exports Last Three Marketing Years                                             |
| Figure 18. EU Sugar Beet Area (ha)45                                                                   |
| Figure 19. Technical Efficiency and Scale Efficiency                                                   |
| Figure 20. Classification of Measurement Techniques Based on the Boundary Production Function Approach |

| Figure 21. Returns to Scale                                  | . 58 |
|--------------------------------------------------------------|------|
| Figure 22 Model 1 Sugar Factories Efficiency Analysis Model  | . 70 |
| Figure 23. Model 2 Sugar Factories Efficiency Analysis Model | . 71 |
| Figure 24. Model 3 Sugar Factories Efficiency Analysis Model | . 72 |
| Figure 25. Model 3 Output-Inputs Elements                    | . 73 |
| Figure 26. Improvement Potential of Civil Servants           | . 78 |
| Figure 27. Improment Potential Permanent Workers             | . 79 |
| Figure 28. Improment Potential Temporary Workers             | . 80 |
| Figure 29. Improment Potential of Electricity Consumption    | . 81 |
| Figure 30. Improment Potential of Fuel Consumption           | . 82 |
| Figure 31. Improvement Potential of Employee                 | . 86 |
| Figure 32. Improvement Potential of Processed Beet           | . 87 |
| Figure 33. Improvement Potential of Capacity                 | . 88 |
| Figure 34. Improment Potential of Employee                   | . 93 |
| Figure 35. Improment Potential of Capacity                   | . 93 |
| Figure 36. Improment Potential of Processed Beets            | . 94 |
| Figure 37. Improment Potential of Processed Beets            | . 99 |
| Figure 38. Improment Potential of Capacity                   | 100  |

### LIST OF TABLES

| <b>Table 1.</b> World Sugar Market Thousand Tons, tel quel                                                   |
|--------------------------------------------------------------------------------------------------------------|
| <b>Table 2.</b> Sugar Quatos and Increases in Turkey                                                         |
| Table 3. Production Quotas, Capacities and Quantities of Sugar Factories in Turkey                           |
|                                                                                                              |
| <b>Table 4.</b> Situation of Sugar Factories Which Produce Beet Sugar and are Privatized in2018 in Turkey.22 |
| <b>Table 5.</b> Situation of Sugar Factories of TSFI Which Produce Beet Sugar                                |
| <b>Table 6.</b> The Sales Prices of Privatized Sugar Factories.       24                                     |
| <b>Table 7.</b> Increase of Quotas and Isoglucose and Glucose Prices       26                                |
| <b>Table 8.</b> Final Production of Marketing Year 2015/2016 (EU 28)                                         |
| Table 9. Final Production of Marketing Year 2016/2017 (EU 28)                                                |
| <b>Table 10.</b> Provisional Productions of the 2017/2018 MY (EU 28)43                                       |
| Table 11. Input-Oriented CCR Model    59                                                                     |
| Table 12. Output-Oriented CCR Model    59                                                                    |
| Table 13. BBC Model for Input                                                                                |
| Table 14. BCC Model for Input61                                                                              |
| Table 15. Model 1 Output-Input Elements    70                                                                |
| Table 16. Model 2 Output-Input Elements    71                                                                |
| Table 17. Model 2 Output-Input Elements    72                                                                |
| Table 18. Model 3 Output-Input Elements    73                                                                |
| Table 19. Empirical Results for Model 1 (CCR)                                                                |
| Table 20. Reference Data for Model 1                                                                         |
| Table 21. Empirical Results for Model 1 (BCC)    83                                                          |

| Table 22. Reference Data for Model 1            |  |
|-------------------------------------------------|--|
| Table 23. Empirical Results for Model 2 (CCR)   |  |
| Table 24. Empirical Results for Model 2 (BCC)   |  |
| Table 25. Reference Data for Model 2            |  |
| Table 26. Empirical Results for Model 3.1 (CCR) |  |
| Table 27. Reference Data for Model 3.128.       |  |
| Table 29. Empirical Results for Model 3.1 (BCC) |  |
| Table 30. Reference Data for Model 3.1.         |  |
| Table 31. Empirical Results for Model 3.2 (CCR) |  |
| Table 32. Empirical Results for Model 3.2 (BCC) |  |
| Table 33. Reference Data for Model 3.1.         |  |

### **1. INTRODUCTION**

There are many factors determining the performance of an economy. Those factors are industrial structure, existing technology, capital accumulation, labor force, raw material scarcity and in addition to them, there are lots of tangible and intangible factors such as business relations, quality of labor force, intellectual capital, information technology, production, productivity, development, income distribution and other economic indicators.

In the contemporary world, the main concerns of managers include determining organizations success in utilizing the extent of the facilities, comparing their performance, identifying inefficient organizations, distinguishing the source of inefficiency, analyzing their strengths and weaknesses and providing appropriate solutions to improve their status. Nowadays, it is seen that only capacity increases are not sufficient in the measurement of successfulness of economic enterprises. Besides that, efficiency increase and productivity improvement in existing capacity are the major parts of development plans.

In globalized world economy, various concepts are used to evaluate the outputs obtained from the inputs of all small and large businesses. Efficiency and productivity, being used more frequently in recent years, are the most important ones. Efficiency researches are carried out to determine the components of productivity, technological progress and the effects of them.

The technological development mentioned here can be embodied by tangible assets such as capital and intermediate goods. But, capacity increase as a singular factor is not sufficient in the analysis of economic enterprises. Form of new business structures, organizational structures, developments in science and technology, methods and techniques are also important. The unexplained portion of those developments on total is considered as a surplus resulting from the composition of all production factors and is analyzed by total factor productivity. Total factor productivity includes knowledge of the capacity of an economy.

Another aim of efficiency research is to focus on the "efficiency" that expresses acquiring the highest output by using the present technology and the present inputs. Efficiency analysis can be divided by three bases which are technological development, efficiency change and scale effects. By doing this, the information obtained through this decomposition can be used to create policies of the units analyzed, and may be a source of analysis for the determination of other variables related to production. The determination of those values enables the determination of inefficient factors causing the bussiness' getting away from the effective situation and also it enables taking action to fix it. Efficient use of resource usage without wasting them will directly affect productivity. Productivity increases will be the basis for high economic growth (Mülga Devlet Planlama Teşkilatı, 2008: 16-17).

The most widely used method in production-based productivity measurement is efficiency measurement. There is no absolute criterion in the literature about efficiency measurement. Therefore, in practice, the relative efficiency of enterprises operating in the same sector is generally measured. Parametric and non-parametric methods are used to measure efficiency, which is a relative performance indicator. The most preferred technique among the non-parametric methods in recent years is Data Envelopment Analysis (DEA) developed by Charnes et al. (1978).

In literature, DEA based on the logic of linear programming comes at the beginning of efficiency measurement methods. "DEA is a nonparametric technique which aims to measure the relative performances' of the decision making units (DMUs), in circumstances where inputs and outputs having different unit of measures or measured at different scales which are causing difficulty for comparison" (Ramanathan 2003: 26-27).

"The relative efficiency of a decision unit in DEA, is defined as the ratio of the weighted sum of the outputs to weighted sum of the inputs and is also referred to as technical efficiency" (Cooper, Seiford, and Tone, 2004: 3-4. In later years, BCC multiple inputmultiple output efficiency measurement method that is based on variable return assumption instead of constant returns assumption in CCR is developed by Banker, Charnes and Cooper (1984).

DEA which is a mathematical programming technique that can be applied in two ways: one is input oriented model aiming at obtaining a certain output level with minimum amount of input and the other one is output oriented model aiming at providing maximum output with a certain input level. DEA helps making relative comparisons and separates the Decision Making Units (DMU) as efficient and inefficient. This method gives an idea about how to make inefficient DMU more efficient by changing their inputs and outputs. DEA can measure the efficiency of the units to which it is applied for only one period. In other words, DEA cannot measure how the efficiency of units changes over time. (Cooper, Seiford and Tone, 2002: 2) Let us briefly explain why the DEA method used in the analysis of our thesis. One reason is that it is one of the most suitable tools for the efficiency analysis of sugar factories. Sugar; from the agricultural sector to the industrial sector; from employees (civil servants, workers) to consumers; from farmers to merchants; has a multidimensional structure. It is a basic and strategic food item and also it is related with the health concerns. Efficiency of production factors of table sugar, starch based sugar, sugar alcohols and high intensity sweeteners, that we consume in our daily lives directly or in other food products, has been among the priority policies for all countries. DEA is a model in production systems that helps to calculate both efficiency comparison of production factors and total factor productivity. Therefore, it is aimed to inform decision makers correctly in order to ensure efficient and productive use of production factors by comparing the efficiency of sugar factories in our country among themselves and with the EU.

DEA identifies alternative ways to increase the performance of an inefficient decisionmaking unit to the level of relatively efficient units in its cluster, and allows decision makers in particular to choose the optimal improvement path and to better recognize the production process (about all inputs and outputs). Since the objectives determined in DEA efficiency analysis are based on the best performing units, the meaning and validity of the efficiency analysis are strengthened. DEA is a more advantageous efficiency analysis method for deterministic situations than the other parametric methods as DEA is not parametric and does not carry the assumption that the data conform to a specific functional distribution rule.

In our country, when we look at the distribution of 33 sugar factories which have been included efficiency analysis, we see 25 of which are state-owned enterprise (Turkey Sugar Factories Inc.), six of which are owned by beet growers cooperative and two of which are owned by private companies. Due to this different distribution, each company's production, management and technology accumulation and the legal regulations they are subject to differ. Therefore it was preferred the use of DEA as it was a method to analyze where the productivity differences in these factories stem from and how others can reach the best sampling by applying improvement alternatives.

In Turkey, in many areas such as energy, manufacturing industry, health and agriculture, efficiency measurement using DEA analysis was made. Also by using DEA, Turkish and the EU sugar industry efficiency analysis was carried out. (See Emre Güneşer

Bozdağ Ph. D. Thesis, 2007). However, after this study conducted using the 1990-2005 data, major changes have occurred in the sugar sector in both the EU and Turkey.

With the 2006 reform in the EU, many factories were closed, production factors began to be used more productively and efficiently, and the economies of scale began to be used. Finally, in 2017, the quota application was abolished and thus the market was opened to competition. In Turkey due to the economic crisis in 2000, Sugar Law No. 4634 came into force in 2001 to ensure the stability, efficiency and privatization of sugar production. The purpose of this law is to produce beet sugar to meet the domestic demand, to direct the sector according to the rules of competition in the domestic market, to prepare the legal infrastructure to ensure privatization, to be harmonized to international commitments.

In Turkey, Turkish Sugar Factories Inc. has the largest share (%59 for 2017, after privatization of 15 factories %43 for 2018) in sugar industry (in terms of sugar quota). Besides that big advantage, it has big inefficiency problems as well. These problems caused by their production process also have affected the company's income statement and the company's cumulative loss has reached a billion TL in the last five years. The need for efficiency analyses in sugar factories started especially from the start of the quota application in terms of analyzing the effects of quotas. And also, privatization of the sugar factories especially whose privatization made in 2018. Due to the data unavailability of 2017/2018 marketing year, this thesis's analysis is based on the data of 2016 therefore does not cover the privatization effects which were made in 2018 and the EU quota abolition which was made in 2017. Production efficiency of 18 EU-28 countries' sugar factories have been analyzed, but Romania is not included in the analysis due to lack of the data.

The problems stemming from the inefficiency of the sugar industry in Turkey has affected the sugar consumer prices and resulted in the consumption of all confectionery at prices higher than the world price levels.

The purpose of the study is to determine whether Turkey, the candidate country for EU membership, is capable of competing with the sugar industry in the process of integration with the sugar industry of the Union and to show how to compete under the current competitive conditions. In addition, by using input sets per factory, the activities of all sugar factories belonging to the state and private sector in Turkey are analyzed and this study revealed the improvement potentials. The production efficiency of Turkey's sugar factories

(including the private sugar factories) and the EU sugar factories, based on the data of 2016, were compared for each country. As a result of all these analyses, this study will come to a conclusion about whether the sugar industry in Turkey can compete with the EU and what should be done for the increasing competition.

Turkish sugar sector has a very important role in the economy as it employs nearly 19 thousand employees in the factories, as the number of sugar beet producer is nearly 110 thousands and as it generate nearly 9.5 billion revenue per year. Having been aware of the importance of this sector in Turkish economy, we will make three analysis for determining the inefficiency factors in the sector.

These analyzes can be summarized as follows:

1- In the first analysis, taking the inputs as the number of employees of state-owned sugar factories in Turkey (officials, workers, temporary employees) and energy consumption and taking the ouputs as sugar production in the factory, comparison of the sugar factories will be conducted. Thus, the relative ranking of public sector plants was made and the development potential of inefficient factories was determined.

2- The public and private sugar factories in Turkey by using the number of employees, their capacities and processed beet data, as inputs, and the amount of sugar produced, as output, were compared. By doing this, their efficiencies will be measured and we get the chance of comparing public and private sugar factories.

3- The sugar factories in Turkey and EU countries by using the number of employees, their capacities and processed beet as inputs, and the amount of sugar produced as output, were compared. By this analysis, we will determine the relative efficiency of Turkey and EU sugar factories.

The input-output sets used in the analyzes are the basic production factors.

This thesis consists of six chapters. In the introduction chapter, general information about the subject and study was explained. In the second chapter, information about issues such as the history of sugar, sugar types, sugar market in the world, import and export figures, the quota system for sugar sector in Turkey, the share of public and private sector sugar market, starch-based sugar, high intensity sweeteners were given.

In the third chapter of the study, the European Union (EU) 2006 reform on sugar sector and the objectives of this reform, new regulations introduced, closure of sugar beet processing factories, the place where the market has arrived as of today and market expectations and the realization of quotas removed in 2017 was examined.

In the fourth chapter of the study, general information about performance measurement in enterprises, three basic elements of performance control which is consisting of productivity, efficiency and effectiveness concepts were explained, the methods of efficiency measurement were mentioned and detailed information about DEA used in the measurement of sugar factories in this study was given.

In the fifth chapter of the study, three different models was set. In the first model, efficiency analysis was carried out with DEA according to the data of 2016 in Turkish public sugar factories using input and output sets reflecting production costs. In the second model, comparison of public and private sugar factories in Turkey was made using input and output sets to measure the adequacy of production efficiency. In the third model, efficiency analysis of all sugar beet factories between Turkey and EU was performed within the framework of the selected data.

In the conclusion and evaluation chapter of the study, various recommendations were made by making general evaluations about sugar factories in Turkey and EU data according to the results of the analysis.

### 2. OVERVIEW OF SUGAR AND SUGAR SECTOR IN TURKEY

Sugar has a strategic importance in the world. Sugar has been a protected product all over the world owing to the fact that, contribution to agricultural production, by-products and its contribution to employment, being the main ingredient of nutrition (Erdinç, 2017: 9-26).

In this chapter, general information about the concept of sugar, such as; history of sugar, classification of sugar, raw material of sugar, etc. will be given. In addition, the state of the sugar market in the world and in Turkey, sugar production, sale, import and export figures will be given and thus one who will read this thesis will get the knowledge about sugar market.

#### 2.1. Overview of Sugar Term

There are two types of sugar used in the world for sweetening:

1. Crystal sugar (sucrose) is known as white sugar or table sugar which is obtained from beet or cane,

2. Starch-based sugar, which two main types of glucose and isoglucose, obtained from agricultural products such as starch-containing corn, rice, potatoes.

Crystal sugar can be consumed directly, but is also used as an input in some industries such as pastry, beverage, yeast, medicine, animal feed, alcohol, biofuels, chemistry and fertilizers (Leblebici J. and Leblebici F., 2011: 6-7).

Starch-based sugar (SBS), which are carbohydrate pattern sweeteners have two basic types that are glucose and isoglucose syrup and are produced from starch that is included in wheat, potatoes, mostly corn plants. SBS, which is also presented to the market with liquid forms (commercial basis), is used to sweeten foods, extend the shelf life of foods and color the foods in food industry. The most common species of SBS are isoglucose (HFCS: High Fructose Corn Syrup) syrups which contain 42% and 55% fructose in the market. HFCS is generally used in drink industry (Hannah and Spence, 1996: 110-111).

There are two types of sweeteners as an alternative to crystal sugar which is known sugar in public (Republic of Turkey Ministry of Agriculture and Forestry, 2019a):

1. High-intensity sweeteners (HIS): High-intensity sweeteners are aspartame, saccharin, sucralose etc. which have the degree of sweetness about 30-20 000 times of the sugar.

2. Sugar alcohols: Sugar alcohols has about the degree of sweetness of half of the sugar. Its examples are orbitol, xylitol etc. which are used in sugar-free chewing gum.

High-intensity sweeteners, which are called alternative sweeteners, provides the same taste as sugar due to their high sweetness by using much less than sugar. The majority of HIS are artificial sweeteners. These are high intensity sweeteners that can cause health problems when food usage limits are exceeded and they are not produced in Turkey. HIS are used directly in the products or in beverages such as tea and coffee, and they can only be imported (Gültekin, Öner, Savaş and Doğan, 2017: 34-38).

### 2.1.1. White Sugar (Table Sugar)

In the world sweetener market, the share of sucrose, which is known as table sugar or white sugar, is % 77; the share of High Fructose Syrup based on starch which is known as izoglucose, is %8; the share of Glucose Syrup based on starch which is known as glucose, is %5; the share of High-intensity sweeteners like aspartame, saccharin, sucralose is %9; the share of sugar alcohols is %1 (Figure 1) (Abolished Sugar Authority, 2017: 6-7).





We can classify the sweeteners in general as in Figure 2.



Figure 2. Classification of Sugars

In the last completed period of 2017/2018 world sugar production approximately 78% of white sugar is produced from cane and the remaining 22% from beet. There is no difference between the sugars obtained from both raw materials in quality. In this respect, they are seen as being identical. Sugar is produced in 113 countries across the globe; 71 of these are sugar cane grower; 36 of these are sugar beet grower, and six of these are from both. The production cost of sugar obtained from sugar cane which can be widely grown in the region of tropical and similar climatic zones is lower than beet sugar. For this reason, the world sugar stock market prices are determined by cane sugar which is low cost. As the climate is not suitable for growing sugarcane economically in Turkey like in the European Union (EU) and Ukraine and so on sugar is produced from beet (TSFI, 2018: 2-8).

Although the world sugar production amount has shown significant fluctuations from year to year, mainly depending on climatic conditions, annual sugar production in 2017/2018 marketing year has exceeded 184 million tons. Brazil is the world's largest sugar producer and has more than one- fifth of world sugar production alone. The other major sugar producing countries following Brazil are respectively Thailand, China and US (Figure 2.3.). While the world white sugar production increased about 4 million tons between from 2015/16 period to 2016/17 period, also white sugar consumption increased about 2 million

tons. In the period of 2017/2018, production increased about 20 million tons, consumption increased about 2 million tons compared to the previous year (FO Licht's, 2017a).



**Figure 3.** 2016/17 PY World's 10th Largest Producer (one thousand tons, tel quel) Source: ISO World Sugar Balances November 2017- F. O. Licht Balances 19/06/2017

Note: Tel quel, literally means "as is" or "as it comes", shows the amount of sugar converted by the ISO close to the White Sugar Equivalent (WSE). The industry standard conversion of 96-polarization raws to whites is to multiply the raws by 0.92. The formula as provided by the ISO is (2P - 100) /0.92, where P is the degree of polarization tested by polariscope. Refined sugar has about 99.9 polarization, and in real world raw sugar has not 96 polarization but its polarization level ranges between 97 and 99.5 for most countries. For example, 100 tonnes actual or tel quel of raw sugar will commonly equal to about 106 tonnes raw sugar with the 96 degrees polarisation level (Pairault, 2004: 4-5).

Distribution of the top 10 countries in World sugar production, consumption, import and export is shown in the Figure 4.

| PRODUCTION         | CONSUMPTION        | IMPORT             | EXPORT             |
|--------------------|--------------------|--------------------|--------------------|
| %77 of World Sugar | %61 of World Sugar | %46 of World Sugar | %83 of World Sugar |
| Production         | Consumption        | Import             | Export             |
| •Brazil            | • India            | •China             | •Brazil            |
| •EU                | •EU                | •Indonesia         | • Thailand         |
| • India            | •China             | •USA               | • Australia        |
| Thailand           | •Brazil            | •Bangladesh        | •EU                |
| •China             | •USA               | •UAE               | • India            |
| •USA               | • Indonesia        | •Korea             | •Guatemala         |
| • Pakistan         | •Rusia             | • Malaysia         | •UAE               |
| •Rusia             | • Pakistan         | •Algeria           | • Pakistan         |
| • Mexico           | • Mexico           | • Saudi Arabia     | • Mexico           |
| • Australia        | • Egypt            | •Nigeria           | •Cuba              |
|                    |                    |                    |                    |
|                    |                    |                    |                    |
|                    |                    |                    |                    |
|                    |                    |                    |                    |

**Figure 4.** Top 10 Countries in World Sugar Production, Consumption, Import and Export. Source: ISO Quarterly Market Outlook, Feb. 2018.

The world sugar consumption reached 175.5, million tonnes as tel quel in 2017/18 marketing year. India ranks first with its consumption of around 24 million tons, followed by EU, China, Brazil and US. World consumption of crystal sugar is growing at around 2% every year. White sugar consumption quantities of 2016/17 PY countries and consumption per capita is below (Figure 5).



**Figure 5.**White Sugar Consumption Quantities of 2016/17 PY Countries and Consumption Per Capita. Source: F.O.Licht Balances 25/09/2017

International sugar trade is made on the basis of world stock exchange prices. The international stock exchanges which determine the world market price for sugar are the London stock exchange for white sugar and the New York stock exchange for raw sugar. World sugar prices are determined by cane sugar which constitutes four-fifths of sugar production and the entire of sugar exports. The main determinant in the formation of world sugar prices is the supply / demand situation of sugar. Foreign factors such as oil and commodity prices, energy policies, freight prices, exchange rate changes, interest rates, trade policies and preferential agreements, inflation, political and financial turmoil, speculative transactions, countries' economic conditions, are increasingly playing an increasing role on prices. It is a fact that sugar produced below the demand leads to a decrease in stocks, thus increasing the prices, and the opposite situation causes the prices to fall (Abolished Sugar Authority, 2017: 14).

In 2016/17 marketing year, the amount of sugar traded around the world is around 60 million tons and Brazil realizes about half of the world sugar exports. The second and third largest exporters are Thailand and Australia; the largest importers are China, Indonesia, EU and USA (Table 1). The EU was a net exporter before the sugar reform but it is now a net importer.

Table 1. World Sugar Market thousand tons, tel quel

| Period  | Production | Consumption | Import | Export | Stock at the<br>end of period | Balance |
|---------|------------|-------------|--------|--------|-------------------------------|---------|
| 2008/09 | 142 961    | 151 520     | 48 395 | 48 390 | 69 490                        | -8 559  |
| 2009/10 | 148 391    | 151 960     | 53 993 | 53 997 | 65 917                        | -3 569  |
| 2010/11 | 156 177    | 153 096     | 53 870 | 53 865 | 69 013                        | 3 081   |
| 2011/12 | 163 597    | 157 962     | 54 325 | 54 321 | 74 652                        | 5 635   |
| 2012/13 | 171 804    | 163 572     | 60 655 | 60 579 | 82 960                        | 8 232   |
| 2013/14 | 174 146    | 165 344     | 58 361 | 57 917 | 92 206                        | 8 802   |
| 2014/15 | 169 393    | 166 920     | 58 278 | 58 257 | 94 700                        | 2 473   |
| 2015/16 | 164 141    | 169 989     | 66 228 | 66 283 | 88 797                        | -5 848  |
| 2016/17 | 169 594    | 172 441     | 65 324 | 65 317 | 85 957                        | -2 847  |
| 2017/18 | 184 170    | 175 573     | 58 604 | 59 045 | 94 113                        | 8 597   |

Source: ISO 2018 August Balance

Between 2008/09 and 2017/18 marketing years, the change in world sugar production and consumption has been shown in the Figure 6.



Figure 6. World Sugar Production and Consumption Source: ISO 2018 August Balance Report

If we look at world sugar prices, its prices is one of the most volatile in the world stock market in recent years. As shown in the table above (Table1); because of the continuation of world sugar supply surplus since 2010 prices showed an overall downward trend due to the completion of the recovery process of stocks and the world price of white sugar decreased to \$290/ton in 2015. Finally, the average price of the world white sugar market was \$499/ton in 2016. Average world price of white sugar was \$391/ton in 2017 and was \$343/ton in 2018. The sugar stock market price as of March 31, 2019 is \$334 /ton. World Sugar Prices are given in detail (Figure 7).



**Figure 7.** European Commission Sugar Market Situation Source: European Commission Sugar Market Situation

According to the projections for 2018/19 marketing year, international sugar prices are expected to remain on a downward trend as the world's sugar production will give over 4 million tons of surplus. Moreover, a significant increase is expected in the sugar imports of China and the US in 2018/19 period.

Another important issue in the sugar markets in the world is the production of ethanol which is directly related to the sugar industry and which is used as an alternative fuel. Sugar crops are major feed stocks for renewable bio-ethanol production for using as a transportation fuel. Brazil is the world's leader in fuel ethanol production from sugarcane as it is in the production of sugar. Brazil's ethanol production was 30.7 billion liters in 2018.

Between the years 2011 and 2017, the raw sugar and white sugar stock market prices and the white sugar premium are shown in the graph below (Figure 8). In the world sugar trade, the white sugar premium (raw sugar and white sugar price difference) is taken into consideration in evaluating the cost of processing the raw sugar into white sugar.



**Figure 8.** Sugar Stock Market Prices (\$ / ton) Source: ISO 2018 August Balance Report

### 2.1.2. Starch Based Sugar

Starch based sugar (SBS) have the second largest share after sucrose in the World. SBSs are carbohydrate-type sugars produced from starch derived from plants such as corn, potatoes, wheat, cassava (tapioka) and found in two main variety, generally glucose syrup and isoglucose (LMC, 2017b).

In the world, starch based sugar which is only produces from corn are called corn syrup, and syrups including fructose and glucose are called high fructose corn syrup (High Fructose Corn Syrup= HFCS). Starch-based syrups including about 42% fructose and 53% glucose are called HFCS-42; syrups containing about 55% fructose and 41% glucose are named HFCS-55. The HFCS-55 is accepted to be a substitute for sucrose produced from beet (Hannah and Spence, 1996: 110-111).

In 2016, total HFCS production reached to 14.1 million tons on a dry weight basis (approximately 19 million tons on a commercial basis) in the world. The United States ranks the first in the HFCS production with 7.7 million tons. It is followed by China with 2.7 million tons, by Japan with 0.9 million tons and by EU with 0.7 million tons respectively. The US alone has more than half of the total HFCS production without significant change over the years (Figure 9) (FO Licht's, 2017a).



Figure 9. HFCS Major Producing Countries

Source: FOLicht's International Sugar and Sweetener Report, Vol.149, No.23 /16.08.2017

The USA dominated world HFCS production as of 2012-2017. In USA the prices of HFCS-55 and HFCS-42 which are the most widely used types of starch-based sugars are given in the chart below (Figure 10) (SSQ, 2017).



#### Figure 10. HFCS World Prices

Source:. SSQ Sugar and Sweetener 2nd Quarterly Report, Q2 2017.

HFCS's prices have been declining since 2012. For the first six months of 2017, the average price was \$ 500 (\$ 375 in commercial base) for both types of HFCS.

### 2.2. The Historical Development of Sugar Sector In Turkey

Turkey Sugar Factories are first industrial enterprises in Turkey. The study of establishing a sugar factory was first initiated by a farmer named Nuri Seker in Uşak. While this study was continuing, a Sugar Factory was inaugurated on November 22, 1926 in Alpullu and this factory has been the first sugar factory to operate in Turkey (Damlibağ, 2017: 167-168). The construction of factory was completed 11 months and the factory was established with 600 000 Turkish Lira capital. Alpullu Sugar Factory's partners are "private individuals, Türkiye İş Bankası, Ziraat Bankası and Trakya City Administrations. After 21 days from opening of Alpullu Sugar Factory, Uşak Sugar Factory was started to operate (Veldet, 1958: 407). Until 1933, sugar needs of Turkey were met by Uşak and Alpullu Sugar Factories. In the light of the experiences obtained from these two factories about beet farming and sugar factory management, Eskişehir Sugar Factory opened on December 5, 1933 and Turhal Sugar Factory opened on October 19, 1934. In 1935, these four factories were assembled under a single company and in this way Turkey Sugar Factories Inc. which has 22 million TL capital has been established (Damlıbağ, 2018:147-152). Between 1951-1956, 11 new sugar factory were built and started to operate. The number of sugar factories in Turkey were also reached 15. In Ankara in 1962, in Kastamonu in 1963, in Afyon in 1977, in Muş and Ilgin in 1982, in Ağrı in 1984, in Elbistan in 1985, in Erciş, Ereğli and Çarşamba

in 1989, in Çorum in 1991, in Kars in 1993, in Yozgat in 1998 and in Kırşehir in 2001 sugar factories were established and started to operate (TSFI, 2017: 5-6).

Prior to the entry into force of the Sugar Law No. 4634, Çumra, Boğazlıyan and Aksaray Sugar Factories that were allowed to operate with decision of the Council of Ministers were started to operate by giving quota as much as its own installed capacity (Sugar Law, 2001).

From the date of their establishment until the early 1990s, management of Amasya, Kayseri and Konya Sugar Factories, which are owned by Limited Liability Sugar Beet Growers Cooperative Association, have been transferred to Turkey Sugar Factories Corporation as a result of the decisions taken at their management boards. After again as a result of the decisions taken by their management boards, Amasya Sugar Factory in 1991, Kayseri and Konya Sugar factories in 1992 removed management powers given to Turkey Sugar Factories Corporation and these factories began to be governed by its own Sugar Beet Growers Cooperative (Erdinç, 2017: 9-26).

In today, beet sugar production in Turkey are scheduled at 33 sugar factories. Turkish Sugar Factories Corporation which have 15 of these factories and private sector has 18 of these factories. In 2018, 14 factories of Turkey Sugar Factories Corporation has been started to be privatized and no demand was received for a factory, for three factories the buyer firms could not fulfill the obligation due to the economic crisis and the remaining 10 factories were sold (TSFI, 2018: 2-8).

In Turkey, annual sugar production installed capacity is 4 700 thousand tons of sugar and 3 500 thousand tons belong to the facilities of production beet sugar, 1 200 thousand tons belong to the facilities of starch-based (TSFI, 2018: 33-34).

### 2.3. Developments and Policies Implemented in the Sugar Sector in Turkey

Supply and demand are important in sugar production. Many policies are followed to ensure stability in production and supply. But Turkey has been following an unstable production process with its exporter and importer identity in sugar. Especially in the 1990s, the instabilities in the amount of sugar production have left the sugar sector sometimes with the risk of import and sometimes with the stock problem. For these reasons, planning and control of production is very important. The need for establishing a new legal infrastructure has been brought on the agenda in the sugar sector for the loss of the functioning of many substances of No. 6747 dated June 22, 1956 Sugar Law that is regulate the sugar regime in Turkey. In this reason, in 1996, study on the reorganization of the sugar regime was initiated and The Draft Law on Sugar was consigned to Turkish Grand National Assembly (TBMM) on December 14, 2000 by The Council of Ministers and it was adopted in the General Assembly of TBMM on April 4, 2001 (Bozdağ, 2007: 63).

The sugar policy of Turkey is based on to meet the domestic demand with domestic production. In accordance with this aim, with the Sugar Law No. 4634 entered into force in 2001, new important regulations have been introduced. The purposes of the sugar law are to supply the domestic demand with domestic production and to regulate the sugar regime, and to determine pricing, marketing terms and methods with procedures and principles in sugar production in Turkey. In other words, the essence of the law is based on self-sufficiency to provide planning of sugar production and supply and to provide income guarantee for producers and industrialists (Turkish Court Accounts, 2014).

Since 2002/2003 marketing year, sugar industry in Turkey has been organized within the framework of Sugar Law No. 4634 and the "regulations" were issued based on this Law. The principles of this law are as follows (Sugar Law, 2001):

- In this context, the Sugar Authority, in cooperation with all relevant institutions and organizations, in the light of all the developments in the sector, determines the policies and strategies that will take care of the interests of the country and the sector and ensures their implementation. Also this Authority directs the activities of the companies operating in the sector towards the production and supply of sugar.

In accordance with the demand for domestic sugar, the power of the allocation of sugar quotas to all companies within the scope of the Law belongs to the Sugar Board.

Quota A: It is the amount of sugar which is produced according to domestic demand and given to the domestic market at the marketing year.

Quota B: It is the amount of sugar which is produced for the safety margin and corresponds to a certain ratio of quota A.

Quota C: It is the amount of sugar which is produced outside of A and B quotas and which cannot be marketed domestically. According to Sugar Law, C Sugar is produced only for export and cannot be marketed domestically (Sugar Law, 2001).

Table 2 below shows quotas and the increases of quotas over the years.

| MARKETING | BEET SUGAR     | SBS QUOTA | THE INCREASE   | TOTAL |
|-----------|----------------|-----------|----------------|-------|
| YEAR      | QUOTA (A + B ) | (A)       | OF SBS QUOTA % | QUOTA |
| 2004/2005 | 2 149          | 234       | 50             | 2 500 |
| 2005/2006 | 2 191          | 234       | 50             | 2 542 |
| 2006/2007 | 2 191          | 234       | 50             | 2 542 |
| 2007/2008 | 2 191          | 234       | 35             | 2 507 |
| 2008/2009 | 2 520          | 267       | 25             | 2 854 |
| 2009/2010 | 2 560          | 271       | 50             | 2 966 |
| 2010/2011 | 2 288          | 244       | 50             | 2 655 |
| 2011/2012 | 2 288          | 244       | 35             | 2 617 |
| 2012/2013 | 2 288          | 244       | 38             | 2 625 |
| 2013/2014 | 2 266          | 244       | 25             | 2 571 |
| 2014/2015 | 2 318          | 250       | 30             | 2 568 |
| 2015/2016 | 2 363          | 250       | 25             | 2 613 |
| 2016/2017 | 2 505          | 265       | 0              | 2 770 |
| 2017/2018 | 2 656          | 267       | -              | 2 923 |

 Table 2. Sugar Quatos and Increases in Turkey

After the Sugar Authority has charged its regulatory and supervisory duties for a period of 16 years, with the Decree Law No. 696 prepared in the state of emergency, the Sugar Authority was closed and the duties of the Authority were transferred to the Ministry of Agriculture and Forestry.

### 2.4. Sugar Sector in Turkey

Turkey is the World's 5 th, and the Europe's 4 th largest sugar producer country which is producing sugar from beet. It is following USA, France, Russia and Germany as of 2017/18 marketing year. Some data of Turkey's sugar sector are given below (Table 3) (Republic of Turkey Ministry of Agriculture and Forestry, 2019b: 4).

The economic size of the sugar sector is approximately 9.5 billion TL. The market value of sugar is 8.5 billion TL, the value of by-products like molasses, pulp and etc. is 1
billion TL. Total established sugar production capacity of Turkey is, totaling 4.7 million tons with 3.5 million tons of beet sugar and 1.2 million tons of SBS. Sugar production in Turkey directly or indirectly concerns about 2 million people (Abolished Sugar Authority, 2016a: 27-32).

| ŷ                       |                                           |                                             | ta,                            |                             |                                       |                                    |                                     | C Sales                 | of sugar                                  |              |
|-------------------------|-------------------------------------------|---------------------------------------------|--------------------------------|-----------------------------|---------------------------------------|------------------------------------|-------------------------------------|-------------------------|-------------------------------------------|--------------|
| Factory/ Compan<br>Name | Beet processing<br>capacity<br>(Tone/Day) | Sugar production<br>capacity<br>(Tone/Year) | 2018/2019 A Quo<br>(Tone/year) | Sugar Quota,<br>(Tone/year) | Amount of<br>processed beet<br>(Tone) | Amount of sugar<br>produced (Tone) | Capacity<br>utilization rate<br>(%) | Direct export<br>(Tone) | Manufacturer-<br>Exporter Sales<br>(Tone) | Total (Tone) |
| Adapazarı               | 6 000                                     | 99 000                                      | 63 000                         | 55 500                      | 497 200                               | 65 870                             | 67                                  | 0                       | 14 689                                    | 14 689       |
| Sugar Factory           |                                           |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| Amasya Sugar            | 5 800-                                    | 99 070                                      | 74 300                         | 69 100                      | 654 500                               | 82 885                             | 84                                  | 850                     | 3 722                                     | 4 572        |
| Factory                 | 6 000                                     |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| Kayseri                 | 12 960                                    | 241 056                                     | 328 800                        | 328 800                     | 1 385 000                             | 196 676                            | 82                                  | 4 999                   | 11 085                                    | 16 084       |
| Boğazlıyan              | 15 000                                    | 288 000                                     |                                |                             | 1 450 000                             | 202 928                            | 70                                  | 0                       | 4 464                                     | 4 464        |
| Kayseri Sugar           | 27 960                                    | 529 056                                     | 328 800                        | 328 800                     | 2 835 000                             | 399 604                            | 76                                  | 4 999                   | 15 549                                    | 20 548       |
| Factory                 |                                           |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| Konya                   | 9 284                                     | 278 505                                     | 435 500                        | 435 500                     | 1 404 000                             | 207 100                            | 74                                  | 0                       | 5 820                                     | 5 820        |
| Çumra                   | 14 850                                    | 325 215                                     |                                |                             | 2 388 000                             | 329 700                            | 101                                 | 1 000                   | 11 252                                    | 12 252       |
| Konya Sugar             | 24 134                                    | 603 720                                     | 435 500                        | 435 500                     | 3 792 000                             | 536 800                            | 89                                  | 1 000                   | 17 071                                    | 18 071       |
| Factory                 |                                           |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| Kütahya                 | 3 500                                     | 45 400                                      | 43 800                         | 40 500                      | 334 300                               | 49 080                             | 108                                 | 0                       | 5 650                                     | 5 650        |
| Sugar Factory           |                                           |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| Keskinkılıç             | 6 333                                     | 107 016                                     | 107 000                        | 107 000                     | 744 586                               | 110 299                            | 103                                 | 78                      | 122                                       | 200          |
| Sugar Factory           |                                           |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| Private Total           | 73 827                                    | 1 483 262                                   | 1 052 400                      | 1 036 400                   | 8 857 586                             | 1 244 538                          | 84                                  | 6 927                   | 57 899                                    | 64 825       |
| Türkiye Şeker           | 47 311                                    | 842 842                                     | 636 850                        | 624 350                     | 4 452 700                             | 561 869                            | 67                                  | 0                       | 8 454                                     | 8454         |
| Fabrikaları             |                                           |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| AŞ. Total               |                                           |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| Privatization           | 57 281                                    | 1 193 360                                   | 875 750                        | 875 750                     | 7 157 300                             | 963 181                            | 81                                  | 0                       | 8 711                                     | 8 711        |
| Total                   |                                           |                                             |                                |                             |                                       |                                    |                                     |                         |                                           |              |
| Grand Total             | 178 419                                   | 3 519 464                                   | 2 565 000                      | 2 536 500                   | 20 467 586                            | 2 769 588                          | 79                                  | 6 927                   | 75 063                                    | 81 990       |

Table 3. Production quotas, capacities and quantities of sugar factories in Turkey

Source: Abolished Sugar Authority (2016)

Within the scope of privatization TSFI's loss are 936.8 million TL in last five years (2013-2017). Furthermore TSFI made lose 1.4 billion TL in 2018. It is foreseen that the

privatization activities will be accelerated due to the factors that hamper the competitive conditions such as the inefficiency of some factories, the high cost of production and the energy consumption, the high number of public factories in the sector and the high domestic sugar prices.

In this context, the privatization of 14 factories of TSFI in 2018 has been started and no demand was received for a factory (Kastamonu Sugar Factory), for three factories (Bor Sugar Factory, Ilgin Sugar Factory, Yozgat Sugar Factory) buyer companies were unable to fulfill the obligation due to the economic crisis and the remaining 10 factories were sold. The following table shows the factories', which are sold, capacity, quotas, amount of beet processed, amount of produced sugar, number of farmers and total number of employees in 2017/2018 marketing year (Table 4).

| Factory/        | Beet                                 | Sugar                                 | 2018/2019 A           | L                              | 2017                                        | /2018 Mar                                | keting year                         | •                      |                        |
|-----------------|--------------------------------------|---------------------------------------|-----------------------|--------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------|------------------------|------------------------|
| Company<br>Name | processing<br>capacity<br>(Tone/Day) | production<br>capacity<br>(Tone/Year) | Quota,<br>(Tone/year) | Sugar<br>Quota,<br>(Tone/year) | Amount<br>of<br>processed<br>beet<br>(Tone) | Amount<br>of sugar<br>produced<br>(Tone) | Capacity<br>utilization<br>rate (%) | Number<br>of<br>Farmer | Number<br>of<br>Worker |
| Afyon           | 6 500                                | 151 000                               | 115 000               | 115 000                        | 987 500                                     | 135 150                                  | 90                                  | 3 973                  | 299                    |
| Alpullu         | 4 000                                | 48 000                                | 25 000                | 25 000                         | 115 000                                     | 11 000                                   | 23                                  | 793                    | 194                    |
| Bor             | 3 655                                | 83 360                                | 62 000                | 62 000                         | 446 000                                     | 59 765                                   | 72                                  | 2 169                  | 298                    |
| Burdur          | 5 319                                | 110 000                               | 74 000                | 74 000                         | 595 500                                     | 78 900                                   | 72                                  | 5 020                  | 286                    |
| Çorum           | 6 700                                | 131 000                               | 95 750                | 95 750                         | 844 000                                     | 113 170                                  | 86                                  | 2 678                  | 282                    |
| Elbistan        | 3 557                                | 69 000                                | 50 000                | 50 000                         | 415 500                                     | 51 720                                   | 75                                  | 2 710                  | 270                    |
| Erzincan        | 1 854                                | 41 000                                | 26 500                | 26 500                         | 194 000                                     | 28 080                                   | 68                                  | 1 939                  | 224                    |
| Erzurum         | 2 815                                | 72 000                                | 50 500                | 50 500                         | 317 500                                     | 46 500                                   | 65                                  | 2 617                  | 321                    |
| Ilgın           | 5 400                                | 162 000                               | 107 500               | 107 500                        | 1 073 000                                   | 140 300                                  | 87                                  | 6 621                  | 344                    |
| Kırşehir        | 3 600                                | 72 000                                | 70 250                | 70 250                         | 641 800                                     | 90 220                                   | 125                                 | 3 307                  | 270                    |
| Muş             | 3 681                                | 58 000                                | 40 500                | 40 500                         | 314 500                                     | 43 100                                   | 74                                  | 4 037                  | 348                    |
| Turhal          | 7 200                                | 135 000                               | 100 750               | 100 750                        | 848 000                                     | 113 026                                  | 84                                  | 7 027                  | 414                    |
| Yozgat          | 3 000                                | 61 000                                | 58 000                | 58 000                         | 365 000                                     | 52 250                                   | 86                                  | 2 721                  | 272                    |
| TOPLAM          | 57 281                               | 1 193 360                             | 875 750               | 875 750                        | 7 157 300                                   | 963 181                                  | 81                                  | 45 612                 | 3 822                  |

**Table 4.** Situation of Sugar Factories which produce beet sugar and are privatized in 2018 in Turkey.

| Table 5.  | Situation | of Sugar | Factories  | of TSFI   | which  | produce | beet sugar |
|-----------|-----------|----------|------------|-----------|--------|---------|------------|
| I abic 5. | Situation | or bugur | 1 40101105 | 01 1 01 1 | winten | produce | occi sugui |

| Factory/        | Beet                                 | Sugar                                 |                                      | 2017/2018 M                   | larketing yea                         | r                                        |                                     |
|-----------------|--------------------------------------|---------------------------------------|--------------------------------------|-------------------------------|---------------------------------------|------------------------------------------|-------------------------------------|
| Company<br>Name | processing<br>capacity<br>(Tone/Day) | production<br>capacity<br>(Tone/Year) | 2018/2019 A<br>Quota,<br>(Tone/year) | Sugar<br>Quota<br>(Tone/year) | Amount of<br>processed<br>beet (Tone) | Amount of<br>sugar<br>produced<br>(Tone) | Capacity<br>utilization<br>rate (%) |
| Ağrı            | 3 600                                | 50 000                                | 22 000                               | 490 850 +                     | 142 000                               | 19 948                                   | 40                                  |
| Ankara          | 3 603                                | 70000                                 | 74 000                               | 133 500                       | 454 000                               | 57 640                                   | 82                                  |
| Çarşamba        | 3 000                                | 43 000                                | -                                    |                               | 0                                     | 0                                        | 0                                   |
| Elazığ          | 1 800                                | 29 000                                | 27 000                               |                               | 154 000                               | 20 400                                   | 70                                  |
| Erciș           | 2 100                                | 36 000                                | 31 000                               |                               | 159 000                               | 24 300                                   | 68                                  |
| Ereğli          | 8 500                                | 193 842                               | 158 000                              |                               | 1 142 000                             | 149 930                                  | 77                                  |
| Eskişehir       | 7 200                                | 147 000                               | 139 300                              |                               | 970 000                               | 127 100                                  | 86                                  |
| Kars            | 1 754                                | 26 000                                | 14 700                               |                               | 74 700                                | 10 400                                   | 40                                  |
| Kastamonu       | 3 504                                | 67 000                                | 31 750                               |                               | 267 200                               | 34 750                                   | 52                                  |
| Malatya         | 3 500                                | 60 000                                | 52 100                               |                               | 369 000                               | 45 161                                   | 75                                  |
| Susurluk        | 7 000                                | 84 000                                | 59 000                               |                               | 533 000                               | 47 780                                   | 57                                  |
| Uşak            | 1 750                                | 37 000                                | 28 000                               |                               | 187 800                               | 24 460                                   | 66                                  |
| TOTAL           | 47 311                               | 842 842                               | 636 850                              | 624 350                       | 4 452 700                             | 561 869                                  | 67                                  |

The sales prices of the factories sold and the companies selling the factories are given below (Figure 11).



Figure 11. The Sales Prices of Privatized Sugar Factories

The sales prices of privatized sugar factories are given below (Table 6).

| Sugar Factory    | First company in the tender /<br>Company that sign contract | Amount of the sales<br>Million TL |
|------------------|-------------------------------------------------------------|-----------------------------------|
| Afyon            | Doğuş                                                       | 725                               |
| Bor              | Doğuş                                                       | 336                               |
| Çorum            | Çorum Sugar                                                 | 528                               |
| Elbistan         | Mutlucan Sugar                                              | 297                               |
| Erzincan-Erzurum | Albayrak                                                    | 287                               |
| Kırşehir         | Tutgu Gıda                                                  | 330                               |
| Muş              | Muş Sugar                                                   | 230                               |
| Turhal           | Kayseri Sugar                                               | 589                               |
| Alpullu          | Binbirgıda                                                  | 150                               |
| Burdur           | Eser GrupSterk Plast Joint Venture Group                    | 487                               |
| Ilgın            | Alteks Textile                                              | 637                               |
| Yozgat           | Doğuş                                                       | 275                               |
| TOTAL            |                                                             | 4.871                             |

**Table 6.** The sales prices of privatized sugar factories.

Source: Minister of Agriculture and Forestry - Department of Sugar -November 2018

The production capacity of 33 sugar factories of 14 companies, whose quota is allocated under the Sugar Law, is 3.1 million tons/year. Thirteen of the fourteen companies are private companies and one of them which is state-owned Turkey Sugar Factories Incorporated Company within the scope of privatization. In Turkey, 2 million 536 thousand tons of beet sugar A-quota was designated for in 2017/18 marketing year and 2 million 565 thousand tons of A-quota was designated in 2018/2019 marketing year. In the 2017/2018 marketing year, 2 million 769 thousand tons of sugar was produced and 2 million 364 thousand tons of domestic sales and 56 thousand tons C-sugar were sold and a total of 2 million 420 thousand tons of sugar was sold.

On the other hand, the C-sugar demand of the the manufacturer exporters was met from within the country until the 2014/15 marketing year. However, beet production decreased due to adverse climate conditions in 2014/15 marketing year. Sugar production has been realized below the total A quota of the country which can be supplied to the domestic market and there has not been sufficient C-sugar production. In order to avoid any disruption in meeting the sugar demands of exporters, C-sugar was met by imports (Abolished Sugar Authority, 2016a: 33-34).

As for sugar prices; average sales factory prices of beet sugar excluding VAT determined by companies are given in the figure below (Figure 12).



**Figure 12.** Beet and Sugar Price in Domestic. Source: Abolished Sugar Authority

## 2.4.1. Starch-Based Sugar in Turkey

SBS is produced from corn in Turkey and in the first marketing year (2002/2003) which is immediately after the entry into force of Sugar Lawand corn production has shown a significant increase in Turkey.

SBS sugar production capacity of five factories of five companies which are allocated the quota under the Sugar Law are 1 million 53 thousand tons/year. In addition, the production capacity of five factories, which do not have a quota right and which produce starch based sugar only for export to abroad, is 350 thousand tons and the total production capacity of SBS is 1 million 403 thousand tons in the country. In the 2001/02 marketing year before the quota application, the domestic sales of SBS was 461 thousand tons, whereas in the 2017/18 marketing year in our country, the domestic sales of SBS is 281 thousand tons (Figure12) (Abolished Sugar Authority, 2017).



**Figure 12.** SBS Sell (A and C) Source: Abolished Sugar Authority

The table below shows the increased quotas of the SBS and the prices of glucose / isoglucose with TL / Kg. In the 2018/2019 marketing year, the SBS Quota was reduced by 50% with the Law No 7103 (Table 7).

**Table 7.** Increase of quotas and Isoglucose and Glucose Prices

| Years     | Amount of SBS Quotas (Increased)<br>(x1000 Tone) | Isoglucose TL/Kg | Glucose TL/Kg |
|-----------|--------------------------------------------------|------------------|---------------|
| 2012/2013 | 336                                              | 1.49             | 1.42          |
| 2013/2014 | 308                                              | 1.61             | 1.43          |
| 2014/2015 | 330                                              | 1.79             | 1.59          |
| 2015/2016 | 330                                              | 1.93             | 1.71          |
| 2016/2017 | 318                                              | 1.96             | 1.84          |
| 2017/2018 | 260                                              | 2.14             | 2.08          |
| 2018/2019 | 135                                              | 2.33             | 3.02          |

The following figure shows the average prices of crystal sugar, glucose and isoglucose by years. It is seen that the price of glucose used in sugary products has a sudden rise in the 2017/2018 marketing year (Figure13). The reason for this is that due to the lack of glucose in the market as a result of the fall in the SBS quota, and the fact that imports cannot be

realized in a short period of time, the average sold price has reached and even exceeded the price of crystal sugar.



Figure 13. Average Prices for Glucose, Isoglucose and Crystal Sugar

In this chapter, general information about the concept of the sugar and sugar sector in Turkey was given. In the next chapter the sugar market, market regulations, competition potential, market forecasts after the sugar quota abolished in 2017 will be discussed.

#### **3. SUGAR SECTOR IN EUROPEAN UNION**

In this chapter general information about sugar sector in European Union (EU), such as; sugar production, consumption, export, import, abolished quota etc. is given. The EU is the world's leading producer of beet sugar, with around 50% of the total. However, beet sugar represents only 20% of the world's sugar production; the other 80% is produced from sugar cane. In order to support European growers and processors, the sugar sector was originally subject to production quotas and a minimum price. However, as part of the process of making European agriculture more market-orientated, the quota system ended on September 30, 2017. Sugar is a part of the common market organization (CMO) between EU countries. Beet farmers can get income support in the form of direct payments. EU countries also have the option to grant additional support to specific sectors in difficulty – including sugar beet and sugar cane production.

### 3.1. The History of Sugar Sector in European Union

Sugar was only discovered by western Europeans as a result of the Crusades in the 11th Century AD. The subsequent centuries saw a major expansion of Western European trade with the East, including the importation of sugar. Sugar cane could not be grown in Europe due to climate, so the countries in Europe turned to the refining process by importing sugar. By 1750 there were 120 sugar refineries operating in Britain. Their combined output was only 30,000 tons per annum. At this stage sugar was still a luxury and vast profits were made to the extent that sugar was called "white gold". Sugar beet was first identified as a source of sugar in 1747. Also in this process; as a result of the desire of countries to establish dominance against each other in Europe, wars emerged. During the war, countries have tried to prevent mutual damage by preventing the entry of imported products by sea, to harm each other's economy and to win the war. Because sugar is the top of these products, there has been a crisis against sugar throughout the war period on the whole continent. Thus, sugar inflow stopped to the European continent. Due to the failure to meet sugar needs, beet farming started to do domestic production to meet the need for sugar. By 1880 sugar beet had replaced sugar cane as the main source of sugar on continental Europe (Sucrose.com, 2019). Thus, the birth of beet sugar has started in Europe and after that day it has achieved until today continuously developing. Beet sugar has been competing for cane sugar. France is the world's largest beet sugar producer.

Factories has been started to establish in country like Germany, France, Australia, Hungary, Russia, Belgium and Holland. And this situation has affected the supply of metal and iron in the world. In order to make coal and steel more efficient in Europe, France, the Federal Republic of Germany, Italy, Belgium, Luxembourg and the Netherlands have established a European Coal and Steel Community (ECSC) by signing the treaty of Paris in 1951. First time in history of Europe with the treaty, states left their management of national sovereignty to the supranational organization. This treaty emerged the Treaty of Rome, which constituted the idea of the unification of Europe over the years. With the Treaty of Rome, the foundation of today's European Union and Europe's The Common Agricultural Policy (CAP) has been established (Economic Development Foundation).

The Treaty of Rome enabled the creation of the European Economic Community (EEC). With this treaty;

- 1. To remove all barriers to trade in the domestic market and establish a common market within 12 years,
- 2. To create common customs tariff for third countries,
- 3. To remove barriers to the free movement of goods, capital, service and persons among the member states,
- 4. To create common policy in agricultural field,
- 5. To create common fund in the field of transport,
- 6. To establish a system that will not distort competition for a common market,
- 7. To establish of European Social Fund and European Investment Bank,

were targeted (Roma Treaty, 1958).

## **3.2. EU Common Agricultural Policy**

Common Agricultural Policy is a program that is an implementation of EU subsidies to agriculture and planning of agriculture. The purpose of the Common Agricultural Policy; to provide farmers with a reasonable standard of living, to produce quality goods at a fair price to consumers, to carry out the use of technical innovations and inventions and modernization, to ensure food safety and sustainable production in agriculture, to keep the rural economy alive and to preserve biodiversity (Treaty of Amsterdam, 1997). There are three main dimensions to achieve the goals and objectives of the EU common agricultural policy; these are market support, income support and rural development. The agricultural sector is more dependent on weather and climate than other sectors. At the same time, minor delays in meeting the demand can show great effects on price and consumption. That's why; the first dimension is market support is of great importance for ensuring stability and security in agriculture. The second dimension is income support aiming to prevent inequality in income distribution by providing direct income support to farmers. Rural development dimension is also very important to reduce the difficulties in rural areas for ensuring regional development. Although the three dimensions are interrelated, a general sustainability can be achieved when applied together. The budget of the first two dimension is provided from the EU budget, the third dimension is financed by the member states (European Commission, 2019).

All EU member states are obliged to implement CAP as part of the European agricultural market. The collective implementation of this policy also contributes to national policies by making better use of budgetary resources. CAP has been established on the basis of three principles to achieve its goals and objectives in the Stresa Conference in 1958 (JRC Scientific and policy reports, 2014).

- 1. **Community Preference Principle,** is aimed to prevent the importation of the products produced in the third party countries by preferring the agricultural products produced in the EU.
- 2. **Common Financial Responsibility Principle,** is aimed to cover all expenditures with the participation of all members of the community.
- 3. **Single Market Principle,** allows the implementation of European agricultural reforms and establish a common commercial policy with other countries of the EU and establishes a common commercial policy and enables the EU to act as a single trade partner with other countries. In this context, the same price applies to the same products within the community (Keskin, 2005: 1-10).

## **3.3.** The EU Sugar Common Market Organization (CMO)

The Sugar CMO is one of the most important elements of the EU's CAP. In 1968, the sugar common market system was established because of the necessity of quota management to prevent overproduction, to stabilize the sugar markets, to create an intervention price for

refined sugar and raw cane sugar, and because of the need for special interventions for the establishment of the balance between producers and manufacturers. The EU Sugar Sector has become an active sector with this system that has been going on for about 50 years. It was characterized by a system of supply quotas, which were defined by EU legislation for each Member State. The arrangements for transferring quota (owned by factories) and delivery rights (issued to growers) within national boundaries were a matter of national competence (Benesova, Rezbova, Smutka, Tomsik and Laputkova, 2015: 1825–1838)

Since 1977, the production of isoglucose for supply into the EU market has also been subject to quota under CAP sugar sector regulations. From 1994 onwards, insulin syrup was also included within the sugar regime and subject to supply quotas.

The main products included in the EU sugar regime are white sugar, raw sugar, isoglucose and insulin syrup. The tools used by the Sugar CMO are as follows; intervention price, quota system, production taxes, minimum stock system, storage regulation.

With the **price system** is intended to provide price stability by avoiding the excessive fall and excessive rise in the prices that may occur in the common market order and to realize a fair income distribution. There are four institutional prices used in the EU sugar regime (European Commission, 2003);

- Target Price: It is the price which is determined by the opinion that the producers will increase their income levels to the most reasonable levels and which is expected to be the result of the supply-demand movements of the community.
- Intervention Price: The base price, which represents the lowest level of guarantee available to manufacturers. This price is determined on the basis of the highest rate of agricultural production in the community, for ensuring self-sufficiency in the EU region.
- Basic Beet Price: It is calculated by taking into consideration the intervention price for white sugar and the process margins, the income from beet growers' sales of molasses, and the expenses incurred during the transportation of beet to the processors.
- 4. Minimum Beet Price: It is the price that sugar producers should pay for beet suitable for processing as sugar.

There is also a reference price described in the Council Regulation as follows.

*Reference price*: It should be fixed for standard qualities of white sugar and raw sugar. Such standard qualities should be average qualities representative of sugar produced in the Community and defined on the basis of criteria used by the sugar trade. It should also be possible to review the standard qualities to take into account, in particular, of commercial requirements and developments in technical analysis (Official Journal of the EU, 2006).

# **Reference Prices:**

- 1. For white sugar, the reference price shall be:
- (a) EUR 631.9 per tonne for each of the marketing years

2006/2007 and 2007/2008;

- (b) EUR 541.5 per tonne for the marketing year 2008/2009;
- (c) EUR 404.4 per tonne as from the marketing year 2009/2010.
- 2. For raw sugar, the reference price shall be:
- (a) EUR 496.8 per tonne for each of the marketing years 2006/2007 and 2007/2008;
- (b) EUR 448,8 per tonne for the marketing year 2008/2009;
- (c) EUR 335.2 per tonne as from marketing year 2009/2010.'

The above mentioned reference prices are the prices applied to the unpackaged sugar from the factory. Since January 1, 2009, the reference price has been applied as 404 euro (European Commission, 2009).

In a given marketing year, a temporary and limited purchasing intervention system is implemented to contribute to the balancing of the market when market prices fall below the reference price for the next marketing year.

Also, new market instruments to be managed by the Commission were introduced. First, if market prices fall below the reference price for white sugar, operators can benefit from a special storage program under the conditions set by the Commission. Second, it is possible for the Commission to decide to attract sugar from the market as long as it needs to re-balance the market, in order to keep the structural balance of the sugar in the market close to the reference price (Official Journal of the EU, 2006). The quota system was put into practice in 1968 and the practice was continued for five years. Quotas which are shared between member states by the Council of Ministers reduce the possible costs and enable each country to produce in a certain share. The quota system have three elements. These are A-quota B-quota and C-quota. Quotas-A and B are the quantities that can be produced within the borders of the EU. Apart from these, it is forbidden to put into C-sugar to the country. The total quota was 17.4 million tons. 82% of this amount is allocated as quota-A and 18% of this amount is as quota B. The quota system has three main objectives:

- 1. To limit the total amount of sugar to be transported to the EU sugar market.
- 2. Limit the potential cost of intervention purchases.
- 3. To guarantee a share in the EU sugar market for each member state.

Production taxes are the taxes collected at certain rates of quotas given for financing of sugar costs and for supplying source to intervention purchases within EU.

Minimum stock system was put into practice in the EU due to sugar shortage in 1970s. According to this system, if 5% of the quota A or the actual production is below the quota, it is obligatory to have a quota B of 5%.

Stock regulation: due to seasonality of sugar production (sugar is not produced in every period, only produce in a short period of year) there is a restriction on sugar sales by the community for. A resource is paid for storage costs. These benefits are paid to traders and intervention agencies that store sugar. The chart below shows the EU market price, world market price and the EU reference price for white sugar over the years.



Figure 14. EU Reference Price and EU Market Price for White Sugar

As can be seen from the figure, before 2017 the EU market price was above world price and reference price, after 2017, world price and EU market price fell below the reference price (Figure 14).

### 3.4. The EU Sugar Regime

The EU is the world's leading producer of beet sugar, with around 50% of the total. However, beet sugar represents only 20% of the world's sugar production; the other 80% is produced from sugar cane. While the EU countries have a common market organisation for sugar, the EU has agreements with other countries worldwide on sugar import and export. The EU also has an important refining industry that processes imported raw cane sugar. For the period from 2014/2015 marketing year until 2018/2019 marketing year in the European Union; the figure below shows the production, export and import balance sheets (Abolished Sugar Authority, 2016b).



Figure 15. EU Sugar Balance Sheet 2014/2015 to 2018/2019

Source: European Commission EU Sugar Market Observatory (https://ec.europa.eu/agriculture/market-observatory/sugar/balance-sheets en)

Most of the EU's sugar beet is grown in the northern half of Europe, where the climate is more suited for growing beet. The most competitive producing areas are in northern France, Germany, the United Kingdom and Poland. The EU also has an important refining industry that processes imported raw cane sugar. In the European Union for 2015/2016 and 2016/2017; sugar quota amount, beet cultivated agricultural land, sugar produced during the campaign, stock amount transferred from the previous year, isoglucose production, quota excess isoglucose and total sugar production is given below for 28 member countries separately.

| +              | COSE             | lable       | QUOTA<br>UCTION                  |                   | 790 815 | 89198  | 372 459 | 372 383 | 954 894   | 156 899 | 552 290 | 004811    | 432 220  | 190376  | 538 091 | 90 252  | 355 686 | 804 888    | 351 027 | 448 470   | 6 438        | 9 859       | 104689  | 180414  | 80 999  | 293 186 | 056 474   | 236 817    |
|----------------|------------------|-------------|----------------------------------|-------------------|---------|--------|---------|---------|-----------|---------|---------|-----------|----------|---------|---------|---------|---------|------------|---------|-----------|--------------|-------------|---------|---------|---------|---------|-----------|------------|
| SUCRE          | ISOGLI           | avai        | PROD                             |                   |         |        |         |         | 7         |         |         | 3         |          |         |         |         |         |            |         | 1         |              |             |         |         |         |         | 1         | 14         |
| ISOGLUC<br>OSE | OUT OF           | QUOTA       | export /<br>elease EU<br>narket) |                   | 0       | 23 210 |         |         | 0         |         | 0       |           |          |         | 0       |         | 37 793  |            |         | 0         | 0            |             |         | 0       |         |         |           | 61 003     |
| UCOSE          |                  | U           | <u> </u>                         |                   | 114 580 | 89 198 |         |         | 56 638    | 0       | 53 810  |           |          |         | 29 712  |         | 250 266 | 0          |         | 42 861    | 6 438        |             |         | 68 095  | 0       |         |           | 711 598    |
| ISOGI          | QUOTA            |             |                                  |                   |         |        |         |         |           |         |         |           |          |         |         |         |         |            |         |           |              |             |         |         |         |         |           |            |
|                | OUT OF           | QUOTA       | (indust. +<br>carryf.)           | (g)= (f) -<br>(h) | 125 991 |        | 134 049 | 383     | 755 402   | 0       | 13 500  | 1 143 473 | 122 497  | 0       | 0       | 43 766  | 18 830  | 124 448    | 57 231  | 249 728   |              | 0           | 93 176  | 87 869  | 50438   | 47 578  | 112 947   | 3 181 306  |
|                | PRODUCTION       | under Quota |                                  | (h)               | 676 235 | 0      | 372 459 | 372 383 | 2 898 256 | 156 899 | 498 480 | 3 004 811 | 432 220  | 190 376 | 508 379 | 90 252  | 105 420 | 804 888    | 351 027 | 1 405 608 | 0            | 9 859       | 104 689 | 112 320 | 80 999  | 293 186 | 1 056 474 | 13 525 219 |
|                | Total            | Production  |                                  | (f) = (c) + (d) - | 802 226 | 0      | 506 508 | 372 766 | 3 653 657 | 156 899 | 511 980 | 4 148 284 | 554 717  | 190 376 | 508 379 | 134 018 | 124 250 | 929 336    | 408 258 | 1 655 336 | 0            | 9 859       | 197 865 | 200 189 | 131 437 | 340 764 | 1 169 421 | 16 706 525 |
| SUCRE          | carry forward    | from 15/16  | to 16/17                         | (e)               | 34 750  | 0      | 14 669  | 3 135   | 220 594   | 0       | 120 762 | 60 798    |          | 3 613   | 166 137 | 0       | 4 584   | 25 000     | 80      | 90 160    |              |             | 13 612  | 0       | 0       | 0       | 168 949   | 926 845    |
|                | carry<br>forward | from 14/15  | to 15/16                         | (p)               | 87 605  | 0      | 65 300  | 65 000  | 921 094   | 6 180   | 80 535  | 197 310   |          | 74 413  | 194 118 | 6 000   | 0       | $189\ 000$ | 91      | 321 716   |              |             | 34 593  | 0       | 11 229  | 83 000  | 360 759   | 2 697 944  |
|                | Production       | ofthe       | campaign                         | ( c)              | 749 371 |        | 455 877 | 310 901 | 2 953 158 | 150 719 | 552 207 | 4 011 772 | 554 717  | 119 576 | 480 398 | 128 018 | 128 834 | 765 336    | 408 248 | 1 423 780 | 0            | 9 859       | 176 884 | 200 189 | 120 208 | 257 764 | 977 611   | 14 935 427 |
|                |                  | ie          | t/ha                             | (p)               | 13.6    |        | 9.3     | 12.5    | 11.8      | 5.I     | 15.2    | 13.0      |          | 6.7     | 7.3     | 8.1     | 7.5     | 13.4       | 9.4     | 8.5       |              |             | 6.0     | 7.7     | 4.8     | 10.3    | 13.2      | 10.9       |
|                |                  | Superfic    | '000 ha                          | (a)               | 53.7    |        | 53.6    | 24.8    | 282.7     | 4.9     | 37.0    | 349.6     |          | 16.2    | 38.1    | 12.3    | 15.0    | 56.9       | 45.4    | 171.6     |              | 0.1         | 23.6    | 21.7    | 12.5    | 19.0    | 74.2      | 1 313      |
|                | QUOTA            |             | R 183/2009                       |                   | 676 235 |        | 372 459 | 372 383 | 2 898 256 | I58 702 | 498 480 | 3 004 811 | 432 220  | 192 877 | 508379  | 90 252  | 105 420 | 804 888    | 351 027 | I 405 608 | 0            | 9 953       | 104 689 | 112 320 | 80 999  | 293 186 | I 056 474 | 13 529 618 |
|                | tons             | white sugar | equivalent                       |                   | BE      | BG     | CZ      | DK      | DE        | EL      | ES(**)  | FR (met.) | FR (Dom) | HR      | IT      | LT      | HU      | NL         | AT(*)   | PL        | PT (continen | PT (Açores) | RO      | SK      | FI      | SE      | UK        | TOTAL      |

 Table 8. Final production of Marketing Year 2015/2016 (EU 28)

Source: European Commission, 2017

|              |                  |             |      |            |                  | UCRE             |                       |             |                        | ISOGLUCOSE | ISOGLUCOSE           | SUCRE+         |
|--------------|------------------|-------------|------|------------|------------------|------------------|-----------------------|-------------|------------------------|------------|----------------------|----------------|
| nnes         | QUOTA            |             |      | Production | carry<br>forward | carry<br>forward | Total                 | PRODUCTION  | OUT OF                 |            | OUT OF               | ISOGLUCO<br>SE |
| hite sugar   |                  | areas yield |      | ofthe      | from<br>15/16    | from<br>16/17    | Production            | under Quota | QUOTA                  | QUOTA      | QUOTA                | available      |
| quivalent    | R<br>183/2009    | '000 ha     | t/ha | campaign   | to 16/17         | to 17/18         |                       |             | (indust. +<br>carryf.) | ,          | (export /<br>release | QUOTA          |
|              |                  | (a)         | (þ)  | ( c)       | (p)              | (e)              | (f) = (c) + (d) - (e) | (h)         | (g)=(f) -(h)           |            | EU market)           | ON             |
| BE           | 676235           | 56.4        | 11.4 | 729 058    | 34 750           | 29 786           | 734 022               | 676 235     | 57 787                 | 114 580    |                      | 790 815        |
| BG           |                  |             |      |            | 0                | 0                | 0                     | 0           |                        | 89 198     | 11 581               | 89198          |
| CZ           | 372 459          | 52.3        | 11.9 | 593 684    | 14 669           | 47 872           | 560 481               | 372 459     | 188 022                |            |                      | 372 459        |
| DK           | 372 383          | 32.7        | 12.2 | 400 284    | 3 135            | 8 600            | 394 819               | 372 383     | 22 436                 |            |                      | 372 383        |
| DE           | 2 898 256        | 310.4       | 12.3 | 3 567 861  | 220 594          | 233 312          | 3 555 144             | 2 898 256   | 656 888                | 56 638     |                      | 2 954 894      |
| EL           | 158 702          | 5.3         | 6.0  | 221 421    | 0                | 13 519           | 207 902               | 158 702     | 49 200                 | 0          |                      | 158 702        |
| ES           | 498 480          | 32.8        | 14.6 | 468 244    | 120 762          | 90 526           | 498 480               | 498 480     | 0                      | 53 810     |                      | 552 290        |
| FR (Met.)    | 3 004 811        | 375.0       | 12.4 | 4 132 626  | 60 798           | 351 619          | 3 841 805             | 3 004 811   | 836 994                |            |                      | 3 004 811      |
| FR (Dom)1    | 432 220          |             |      | 547 674    |                  |                  | 547 674               | 432 220     | 115454                 |            |                      | 432 220        |
| HR           | 192 877          | 18.8        | 11.0 | 362 990    | 3 613            | 60 213           | 306390                | 192 877     | 113 513                |            |                      | 192 877        |
| Ţ            | 508379           | 32.4        | 7.8  | 377 838    | 166 137          | 35 785           | 508 190               | 508 190     | 0                      | 30 256     |                      | 538 446        |
| LT           | 90 252           | 14.7        | 9.7  | 163 229    | 0                | 38 076           | 125 153               | 90 252      | 34 901                 |            |                      | 90 252         |
| ΗU           | 105 420          | 13.7        | 10.5 | 158 250    | 4 584            | 22 582           | 140 253               | 105 420     | 34 833                 | 225 239    | 37 701               | 330 659        |
| NL           | 804888           | 66.8        | 13.1 | 872 805    | 25 000           | 27 500           | 870 305               | 804 888     | 65 417                 | 0          |                      | 804888         |
| AT           | 351 027          | 43.6        | 12.0 | 486 518    | 80               | 81 270           | 405 328               | 351 027     | 54 301                 |            |                      | 351 027        |
| PL           | <i>I 405 608</i> | 202.9       | 10.3 | 1 960 739  | 90 160           | 265 840          | 1 785 060             | 1 405 608   | 379 452                | 42 861     |                      | 1 448 470      |
| PT (Contine) | 0                |             |      | 0          |                  | 0                |                       |             |                        | 3 740      |                      | 3 740          |
| PT (Açores)  | 9953             | 0.1         |      | 9 937      |                  | 0                | 9 937                 | 9 937       | 0                      |            |                      | 9 937          |
| RO           | 104 689          | 23.7        | 7.0  | 170 995    | 13 612           | 21 320           | 163 287               | 104 689     | 58 598                 |            |                      | $104\ 689$     |
| SK           | 112 320          | 21.7        | 9.5  | 221 046    | 0                | 52 127           | 168 919               | 112 320     | 56 599                 | 68 095     |                      | 180 414        |
| FI           | 80 999           | 11.6        | 6.1  | 137 953    | 0                | 27 842           | 110 111               | 80 999      | 29 112                 | 0          |                      | 80 999         |
| SE           | 293 186          | 30.1        | 10.8 | 336 477    | 0                | 27 000           | 309 477               | 293 186     | 16 291                 |            |                      | 293 186        |
| UK           | I 056 474        | 70.6        | 12.7 | 917 064    | 168 949          | 22 510           | 1 063 503             | 1 056 474   | 7 029                  |            |                      | 1 056 474      |
| OTAL         | 13 529<br>618    | 1 416       | 11.5 | 16 836 694 | 926 845          | 1 457 299        | 16 306 240            | 13 529 413  | 2 776 827              | 684 417    | 49 282               | 14 213 830     |

 Table 9. Final production of Marketing Year 2016/2017 (EU 28)

Source: European Commission, 2017.

With regard to employment, there are roughly 145 000 sugar beet growers in 20 different Member States in the EU and 28 000 direct jobs in the sugar beet processing in 2017.

The EU was one of the largest importers of cane sugar through economic partnership agreements with the African, Caribbean and Pacific countries until 2017. Moreover, the EU was a sugar exporter, which exports predominantly to neighbouring countries in Middle East and North Africa until the same year.

The following figure shows the import (Figure 16) and export (Figure 17) figures for the EU 2015/2016, 2016/2017 and 2017/2018 period, and the countries in which they are made.



**Figure 16.** EU Cumulated Imports Last Three Marketing Years. Source: EU Sugar Market Situation 25 October 2018



**Figure 17.** EU Cumulated Exports Last Three Marketing Years. Source: EU Sugar Market Situation 25 October 2018

The volume of sugar imported and the sugar produced is used for the domestic market in the drink and food industry. Only a minor part of the sugar is consumed in the market. Before the abolishment of quotas, out-of-quota sugar was used for exports, specified chemical uses and bioethanol production. The remaining volume of out-of-quota sugar would be carried to the next marketing year as quota sugar.

Sugar is the only agricultural sector in the EU where its production is dependent on a quota system until 2017. It was declared with the first rules on the Sugar Common Market Organisation (CMO) in 1968, together with a support price for producers at a level importantly over the world market price. At the time, one of its basic objective of the recently announced Common Agricultural Policy (CAP) had the self-sufficiency of the continent for its food production by encouraging agricultural production with remunerative and stable prices for farmers. Together with a support prices, quotas gave a welcome encouraging to achieve these aims in the sugar sector.

The CAP is a dynamic policy which has constantly adapted over time to fit with the realities and evolving challenges of food production, market demands, environmental concerns and farmers' needs. The shift from product support (through prices) to producer support (through income support via direct payments) started in 1992. After, in 2003 an

additional reform consolidated this transition by decoupling the direct payments from the production of any specific product.

The quota system works are below:

-The total EU production quota of 13.5 million tonnes of sugar is shared between 20 Member Countries.

-In surplus of the quota production is known as "out-of-quota" sugar and strict rules govern its use.

-There is also a small quota of 0.72 million tonnes for an alternative sweetener named Glucose Fructose Syrup (also known as isoglucose) and excess production of isoglucose is subject to similar restrictions.

## 3.4.1. The 2006 Reform of the EU Sugar Regime

In the case of sugar, the way for the transition was paved with a significant reform in 2006. The 2006 Reform of the EU Sugar Regime, operational since July 1, 2006, had the main objective of encouraging sugar production to migrate to more cost efficient regions by offering higher cost producers an opportunity to leave the industry above compensation and surrender production quotas. With the Reform, the European Commission targeted a cut in overall EU sugar production of as much as 6 mln tonnes. In September 2007, new elements were agreed to speed up the Reform. "The European Commission, in a 2011 full impact assessment study, considered the 2006 Reform to be relatively successful, as it eliminated some key market control measures of domestic support, such as price intervention, production and export refunds" (European Commission, 2011).

The reform included the gradually reduction of support prices for sugar and beet, the phasing out of public intervention until 2008/2009, ceasing paying export refunds as from 2008, and also a mechanism to support the restructuring of the whole industry that took place between 2006 and 2010. In 2015, Member Countries agreed on the principle of the end of quotas. A system of voluntary compensation (value  $\in$ 5.4 billion) for ceasing the activity resulted in the decreased the quota production by about 6 million tonnes and led to the creation of a more competitive EU sugar sector ready to compete on a deregulated EU market closer to international prices and to led to benefiting advantages from market opportunities, both in the world and the domestic markets.

After this important transition, and following initially agreeing the end of the quota system for sugar in 2015, the European Parliament (EP) and Member States decided to postpone 2013 CAP reform which is landmark for two years until the end of the 2016/17 sugar marketing year.

There is also a long established and wide consensus among EP, agricultural stakeholders and Member States about the CAP needs to be simplified. The quota and price management required administrative resources and complex monitoring both for the authorities and the operators.

Key Policy Changes of the 2006 EU Sugar Reform are summarized below (ISO-MECAS, 2014: 2-6);

1- Reference sugar prices, which have changed intervention prices, were decreased by 36% over four years starting from 2006/07. The 2006/07 white sugar support price of EUR 631.9/tonne was reduced to EUR 404.4/tonne by the end of the transition period in 2009/10. The reference price for raw sugar was set at initially EUR 523.7/tonne in 2006/07, and was reduced to EUR 335.2/tonne by 2009/10; (European Commission, 2011: 98).

2- The Sugar price intervention (an obligation of the Commission to buy from the industry any unsold quota sugar at a guaranteed price) was abolished after 2009/10 and replaced with a system of private storage. Producers taking advantage of the scheme are paid a private storage aid. Intervention up to 2009/10 was limited to 600 thousand tonnes per marketing year and the buying- in took place at 80% of the reference price of the following marketing year; (European Commission, 2011: 100).

3- For sugar, export refunds were suspended from 2008,

4- Direct payments to compensate farmers leaving the sector comprised 64.2% of the revenue loss,

5- A restructuring fund paid a basic EUR 730/tonne up to 2007/08 for producers to renounce their quotas and quit the industry, with at least EUR 73/tonne going to ex-growers (the fund was paid for by a levy on continuing processors). To qualify for the restructuring money, which fell to EUR 625/tonne in 2008/09 and EUR 520/tonne in 2009/10, sugar firms had to give up their rights to the quota, stop production altogether in at least one factory, close the

factory (or factories) and restore good environmental conditions of the site and help the redeployment of factory staff;

6- The quota system was simplified: the "A" and "B" quotas were merged into a single quota.

After the 2006 Reform of the EU Sugar Regime, sugar production quotas were significantly reduced in Italy, Spain and Greece and production stopped altogether in five Member States - Ireland, Latvia, Slovenia, Bulgaria and continental Portugal. As a result, there has been a further concentration of production in the leading Member States: the market share of France and Germany increased from 43% of EU production to 52% on average. Table 8-9 shows that the largest seven sugar producers in the EU-28 (Germany, France, Poland, United Kingdom, Netherlands, Belgium and Italy) today account for a massive 85% of overall production quotas in the bloc. This is significantly up from the 76% of EU production quotas held by the seven largest producers prior to the 2006 Reform.

A major result of the Reform is a leaner industry, with importantly higher sugar beet/sugar products from a much-reduced number of factories and on a reduced product fields. The number of beet sugar factories decreased from 191 prior in 2006 to 108 in 2012/2013. Sugar beet fields declined from 2.2 mln ha in 2002/2003 to 1.7 mln ha in 2012/2013. Contrary on them, average sugar beet areas increased from approximately 60 tonnes/ha to over 70 tonnes/ha in recent years. Average sugar areas per ha also rose importantly from 9 tonnes/ha to over 11 tonnes/ha. Sugar production dropped by 20% over the period while the use of sugar beet for ethanol production has risen from less than 5 mln tonnes to nearly 9 mln tonnes (ISO, 2013).

|                |         |       | SUGAR           | ISOGLUCOSE |
|----------------|---------|-------|-----------------|------------|
| Tonnes         |         |       | Production      | Production |
| white sugar    | areas   | yield | of the          | of the     |
| equivalent     | '000 ha | t/ha  | Campaign        | campaign   |
|                | (a)     | (b)   | (c) = (a) * (b) |            |
| BE             | 64.7    | 15.0  | 972 109         |            |
| BG             |         |       |                 |            |
| CZ             | 58.1    | 11.3  | 655 468         |            |
| DK             | 34.4    | 11.5  | 396 893         |            |
| DE             | 384.8   | 13.4  | 5 161 378       |            |
| EL             | 6.2     | 5.9   | 36 514          |            |
| ES             | 36.8    | 14.6  | 536 390         |            |
| FR (Met.)      | 442.9   | 13.8  | 6 096 118       |            |
| FR (Dom.)      |         |       | 233 836         |            |
| HR             | 22.3    | 10.3  | 229 143         |            |
| IT             | 38.0    | 8.0   | 305 254         |            |
| LT             | 15.2    | 9.3   | 140 615         |            |
| HU             | 15.3    | 9.3   | 142 000         |            |
| NL             | 86.2    | 15.4  | 1 325 501       |            |
| AT             | 42.8    | 10.9  | 467 735         |            |
| PL             | 231.7   | 10.0  | 2 312 844       |            |
| PT (Continent) |         |       |                 |            |
| PT (Açores)    | 0.1     |       | 0               |            |
| RO             | 27.6    | 7.9   | 218 477         |            |
| SK             | 22.5    | 8.0   | 179 591         |            |
| FI             | 10.5    | 6.1   | 64 181          |            |
| SE             | 30.8    | 10.0  | 306 906         |            |
| UK             | 107.0   | 12.7  | 1 363 546       |            |
| TOTAL          | 1 678   | 12.6  | 21 144 497      | 600 000    |

Table 10. Provisional productions of the 2017/2018 MY (EU 28)

Source: European Commission EU Sugar Market Observatory (https://ec.europa.eu/agriculture/market-observatory/sugar/balance-sheets en)

One of the most notable consequences of the 2006 Reform of the EU Sugar Regime was concentration of the EU sugar industry on the most efficient producing groups. The EU hosts many of the world's largest sugar companies, such as EU Sugar Südzucker, Tereos, Nordzucker, Pfeifer und Langen and Cristal Union, which have maintained offensive consolidation/expansion over the past few years. These top producing companies dominate sugar production in the EU. They have expanded to reach 80% of the bloc's total production. This situation makes the EU one of the world's most concentrated producers today. For example, Südzucker, the world's largest sugar conglomerate, has stakes in 32 plants in Europe, including nine in Germany, five in France and other 18 factories in other nine European countries (For full details about location and production capacity, see ISO paper on "FDI and M&A in the World Sugar Industry in 2017).

#### 3.4.2. The EU Sugar Sector After The Quotas End

Removal of the sugar quotas means that there are no more limits to exports or to production, allowing production to better adjust to market demand, both outside and within the EU. The Commission is continuously providing market transparency and information to make possible the sector to respond to market developments. A Sugar Market Observatory is operational. The goal of the organization is to provide the sugar sector with greater transparency by means of disseminating short-term analysis and market data timely. The Commission is confident that, after one or two marketing years, sugar and beet producers will have competely adapted to the new market environment. The Commission will pursue vigilant to these probable developments and will not hesitate to make use existing safety net measures to support producers. Member States have the option of providing voluntary coupled support linked to production to address sectors in difficulties, including sugar beet production.

The 2017/2018 marketing year (now coming to a close) has been characterised by significant shifts resulting from the abolition of EU production quotas. Beet production reached 142 million ton, a level never reached in the past 15 years and 27 % above the last five-year average. The driving forces behind the exceptional harvest are 1.75 million hectares, an 17% increase in the area, and an unprecedented high yield of 81.6 tons / hectares (over 13% of the five-year average). EU sugar production reached 21.1 million t, 26 % more than in 2016/2017 (European Commission, 2016).

The average EU sugar beet efficiency is predicted to reach 78.4 t/ha by 2030. Yield prospects will result in a loss in profitability for producer in the short term and the sugar beet field is predicted to reduce by 0.1 million ha over the outlook period as compared with 2018/2019 (Figure 18).





Source: European Commission, 2018.

The lower beet production will automatically convert into lower sugar production. Estimated sugar production levels for 2019 is 18.8 million t and for 2020 this is 18.4 million t. This, together with some reduction in stocks over the coming years, will make it possible to maintain exports and to satisfy domestic demand, so that the EU remains a net exporter. Accounting for predicted efficiency developments, production could reach 19.3 million t by 2030. This is 13 % more than average production over the sugar quota regime from last years, but is 12 % below the especially high 2017/2018 level (European Commission, 2018).

In the next chapter, after explaining the efficiency measurement methods and basic concepts in this subject, detailed information will be given about the DEA method which is one of the efficiency measurement methods.

#### 4. BASIC CONCEPTS, EVENT MEASUREMENT METHODS AND DATA

# **ENVELOPMENT ANALYSIS**

Businesses felt the need to improve their performance in order to sustain their lives in under increasing competition conditions. Productivity and efficiency approaches have gained more importance in each time period.

In this chapter, the basic concepts such as productivity, efficiency and effectiveness which are prominent in the production and service sector and are used in the analysis chapter of thesis are given. After explaining the concepts, brief explanations are given about the methods of efficiency measurement. And DEA's, one of the efficiency measurement, basic methodology how it works was explained.

There are three basic concepts used in performance measurement: productivity, efficiency, effectiveness. These concepts are explained below and the differences between them are given.

### 4.1. Basic Concepts

Basic concepts are outlined on three titles: Productivity, Efficiency and Effectiveness.

### 4.1.1. Productivity

Productivity; which is one of the performance criteria widely used and productionoriented concept, is defined between relationship the output that produces a production or service system and the input or inputs that uses to produce this output (Prokopenko, 2003: 19). Briefly, productivity is expressed mathematically as the ratio of output to input. Productivity=outputs/inputs.

Productivity in a firm consists of depending on many factors as well as hardware such as labor force, raw material, machine etc., the amount of capital, technological level, management and organizational structure of the company, innovation and openness to information (Bakırcı, 2006: 40). It is not enough for decision-makers to explain this relationship with a single and simple ratio such as output / input. There is a necessity to monitor this ratio for determined time periods or to compare it for different units (Akal, 2006: 45-48).

When the production involves a single output and a single input, the calculation is a insignificant issue. However, when there is more than one input a method must be used for aggregating these inputs into a single index of inputs. The same problem occurs with multiple outputs. The productivity means total factor productivity that describes a productivity measure involving all factors of production (Coelli at all, 2005: 61-82). However, the measurement or calculation of productivity varies according to many factors such as the structure of the production system, the purposes of efficiency measurement. It is essential that productivity should be measured by a model or an approach which is in a good way take something in hand the inputs and outputs of the production process and representing of the main function of the production activity efficiency. The DEA that will be mentioned in the future provides new expansions in this regard.

### 4.1.2. Efficiency

When we mean the efficiency we are referring to a level of performance which is described as using the least amount of input to get the highest amount of output. Efficiency requires reducing the number of unneeded resources used to produce a specific output, including energy and personal time. It is a measurable concept that can be determined by using the ratio of useful output to total input.

In terms of input or resource utilization coefficient, the efficiency rate can be defined as the relationship between the amount of resources to be consumed in order to achieve the goals set in a production unit and the amount of resources actually consumed (Debreu, 1951: 273-292).

Efficiency which is one of the dimensions of performance is defined as the capacity to achieve maximum results with minimum effort or cost in the economic sense (Kök and Deliktaş, 2003: 43-44). In addition, efficiency, as a result of the organization's activities to be implemented to achieve their defined goals and strategic objectives, determines the degree of reach these goals and objectives (Kubalı, 1998: 36-37). Measuring efficiency is important for all organizations. Information obtained as a result of efficiency measurement will help managers to ensure resource utilization, increase efficiency and make the right decisions (İlkay and Doğan, 2009: 191-218).

#### 4.1.2.1. Technical Efficiency

Production is the process of converting inputs into outputs. Technical activity is the success of producing the maximum amount of output possible by a production unit using its inputs in the most efficient way. In DEA, the efficiency limit is the set of all possible production facilities of active decision-making units. The decision units which are given below limits the units that do not use some of their resources efficiently. As the measure of inefficiency, the efficiency score of the decision units on the efficiency limit is 1, the efficiency scores of the other decision units are calculated based on radial distances (Charnes et al. 1978: 429-431). What we call technical efficiency is defined as: "an input output vector is technically efficient if, and only if, increasing any output or decreasing any input is possible only by decreasing some other output or increasing some other input." (Koopmans 1951: 60).

While all the decision units on the production frontier are defined as technically efficient, it is thought that the decision units that fall below this limit have relatively wasted resources.



Figure 19. Technical Efficiency and Scale Efficiency

Based on the above figure; While the decision units A, B, C and E are defined as technically efficient, it is concluded that the decision-making units D and P wasted resources, they are not technically efficient.

The reason for this is examined on the figure; It appears that P decision unit uses the same amount of input as the B decision unit. However, when looking at the amount of output, it is seen that the output amount is higher. The same applies to the D decision-making unit. The decision-making unit D used the same amount of input as the C unit, but the C decision-making unit produced more output. Similarly, the decision-making unit D and the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same amount of output, but the decision-making unit B produced the same output amount using more inputs than the decision-making unit B. As a result of all these investigations; P and D decision making units are interpreted as technical inefficiency.

When the above figure, which explains the difference between technical efficiency and productivity, is examined; the slope of the ray, which starts from the point of origin and passes through the point representing the decision unit, gives the productivity value for this decision unit. The increase in the slope of this ray indicates that the efficiency has increased. For example; when the decision units A and D are compared, the productivity of the decision-making unit D is higher than the productivity of the decision-making unit A, although the decision-making unit D is technically inefficient. Thereby, a technically efficient unit can be found to be unproductive when compared to a technically inefficient unit. Although the decision units D and E have the same productivity level, the D decision unit is not technically efficient. The decision making unit P may increase its technical efficiency and productivity by shifting towards decision making unit B (Tarım, 2001: 5-40).

### 4.1.2.2. Scale Efficiency

The scale efficiency can be defined as the success of production in the appropriate scale (Dikmen, 2008:4). In a production process; when the inputs are increased at the same rate, if the increase in the output level is more than the increase rate in the inputs, the increasing return according to the scale and if it is lesser, decreasing return according to the scale are mentioned. If the amount of output increases at the same rate as the increase in inputs, the scale refers to the fixed return according to the scale (Aktaş, 2001: 165). For example; in the above-mentioned figure, it appears that the C unit which is the most efficient scale size with D decision-making unit are in the same input scale. While the decision-making unit D is at the optimum scale, it has no technical efficiency by wasting its resources. Both C and D decision units are said to be efficient in scale but only C is technically efficient,

and D is technical inefficient. The decision units (A, F, B), which pass through the C point and remain to the left of the line parallel to the Y axis, can be made the comment to is going to increase their productivity when they increase their scale, provided that they are technical efficiency. This situation is called increasing returns according to the scale. It is seen when the input units in this section are increased by 1 unit, an increase in output amounts by more than 1 unit. The decision units (E) that pass through point C and to the right of the line parallel to the Y axis will see an increase in efficiency when they decrease their scale while maintaining their technical efficiency. This situation is also referred to as decreasing returns by scale. The E decision unit in this section can reduce the amount of input to C level and end the inefficiency due to excessive production. Another decision unit D, has at the same scale with E decision unit which is the most efficient scale size. As a result, although D unit produces at an optimum scale it produces less output than E, for this reason it can be concluded it does not use its resources well (Tarım, 2001: 165).

#### 4.1.2.3. Allocation Efficiency

Allocation efficiency means the use of resources to obtain the highest value (Çetin, 2010:187). In other words, the allocation efficiency is defined as the success of selecting the most appropriate input combination by taking into account the input prices of a company using multiple inputs (Bakırcı, 2006: 202).

## 4.1.3. Effectiveness

"Effectiveness is a performance dimension that determines the extent to which organizations achieve the objectives as a result of their activities. Effectiveness is a performance dimension that determines the extent to which organizations achieve the objectives as a result of their activities" (Horngren, Foster and Datar, 2000: 229). Organizational effectiveness is generally described in the literature as the level of obtaining the 'result' that the organization aims to achieve.

Effectiveness, which is often used in the same sense as efficiency, actually refers to a concept quite different from the efficiency. Although the efficiency is a concept related to the use of available resources, Effectiveness is a concept related to objectives and outputs. Effectiveness is defined as achievement of defined objectives and efficiency as a measure of achievement of results with minimum resources. Effectiveness seems to be more of an answer to the following questions:

- Are there really needed, useful goods and services produced?
- What is intended to be achieved in output production, but what has happened?

• In conclusion, how many of our plans at the beginning of the period have realized effectiveness.

Briefly; the most important problem in measuring the effectiveness that we define as the degree of accomplishing the objectives is the measurement of objectives. In cases where the objectives can be measured quantitatively, there is no significant problem.

#### 4.2. Efficiency Measurement Methods

Efficiency measurement methods are outlined on three titles: Rate Analysis, Parametric Methods and Non-parametric Methods.

### 4.2.1. Rate Analysis

In enterprises, the most simple and widely used method for performance measurement is ratio analysis. Ratio analysis is widely used because it requires very little information and allows it to compare with a similar asset in another organization or an associated unit within the same organization. The reason for the widespread use of this analysis, which is limited to single input and single output, is that it evaluates single output by a single input. Ratio analysis is insufficient in cases where more than one input and output are required. For this reason, it was seen that in the cases where multiple inputs and outputs will be used, they are insufficient to measure performance because they are one-dimensional and can not interpret proper (Baysal, 2004: 438).

### 4.2.2. Parametric Methods

Parametric methods are the approaches where parameters of this function are determined by assuming that the production function of the sector or production units to be measured for efficiency has an analytical structure. The relationship between inputs and outputs is studied on a parametric basis. Regression techniques and ordinary least-squares methods are frequently used by these methods. Econometric methods allow statistical tests related to parameter values and are used frequently in recent years. Econometric methods allow statistical tests related to parameter values and are used frequently in recent years. There are different approaches to estimating variables such as econometrics, production function, productivity and technological development. Stochastic boundary approach, which

enables the simultaneous estimation of technical activity, is a method which is widely used in recent years (Taymaz, Voyvoda and Yılmaz, 2008: 24-27). At the beginning of the missing aspects of the parametric method is that this analysis take into account only one output and all outputs of the decision units are reduced to a single value through a common unit. The outputs of decision-making units may not always be evaluated on the same unit and in this case analysis is impossible. Another problem is that the units are not ranked according to the most efficient unit, but all units above the average value are evaluated to be effective. This situation causes the decision units to not be fully compared in terms of efficiency. The most important deficiency of this analysis is that the production function can be determined parametrically and the production function is to be different in different decision units (Tarım and Cingi, 2000: 7-8).

## 4.2.3. Non-parametric Methods

Unlike parametric methods, these methods can be expressed as deterministic models. The deterministic methods do not require a complete definition of the production function and therefore parameter estimation and assume that there are deterministic relations between inputs and outputs. Therefore, they have the flexibility to measure efficiency in the production areas where there are multiple inputs and outputs. In this case, it can be said that these techniques are more sensitive to measurement errors.

The majority of non-parametric efficiency measurement methods are independent of input and output units. With these features, it allows different dimensions of the enterprise to be measured at the same time (Bakırcı, 2006: 104). Being extremely sensitive to data sets is one of the biggest disadvantages of non-parametric methods. Because of the sensitivity to these data sets, the fact that the data sets correctly represent the production process and that the data is correct prevents the measurement of errors that may occur and allows the specified input and output components to represent the production process (Yolalan, 1993:5).

Measurement techniques based on the boundary production function can be classified as follows (Figure 20) (Yavuz, 2003:23-33):

|                             | Deterministic                                 | Stochastic                                                                                         |
|-----------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------|
|                             |                                               | Stochastic Production Limit                                                                        |
| Parametric<br>(Econometric) | Cobb-Douglas type production<br>function      | • Malmquist Total Factor<br>Productivity Index (Stochastic<br>determination of distance functions) |
| Nonparametric<br>(Linear    | Data Envelopment Alysis                       |                                                                                                    |
| programming)                | Malmquist Total Factor     Productivity Index |                                                                                                    |

Figure 20. Classification of measurement techniques based on the boundary production function approach

## 4.3. Data Envelopment Analysis

DEA is a non-parametric method of measuring the efficiency of a DMU such as a firm or a public sector agency, first introduced into the Operations Research (OR) literature by Charnes, Cooper, and Rhodes (CCR) (1978). "The original CCR model was applicable only to technologies characterized by constant returns to scale globally. In what turned out to be a major breakthrough, BCC extended the CCR model to accommodate technologies that exhibit variable returns to scale" (Banker at all, 1984: 1078-1092). "In subsequent years, methodological contributions from a large number of researchers accumulated into a significant volume of literature around the CCR–BCC models, and the generic approach of DEA emerged as a valid alternative to regression analysis for efficiency measurement" (Ray, 2004: 10)

DEA is a methodology based on the interesting linear programming application. It was essentially developed for performance measurement. It has been successfully employed for assessing the concerned performance of a set of firms that use a variety of identical inputs to produce a diversity of identical outputs. In today's increasingly complex management systems, performance measurement, the need to analyze enterprises and production systems in detail, and the need to improve the systems at every level are becoming more and more important (Ramanathan, 2003: 26-27).

Data envelopment analysis method is an important tool in cases where production or service systems use more than one input and produce more than one output. This method, which enables the analysis of inputs and outputs with different units, can be easily applied in a wide range of systems producing goods or services.

Under the conditions of today's intense competition, businesses have to use their scarce resources effectively during the production process. The measurement of whether companies use their resources effectively can be realized by comparing them with the enterprises producing similar products using the same production factors.

DEA provides information on the extent to which rate of efficiency of the enterprises or other decision-makers with the increase or decrease of their inputs and outputs will vary. In cases where it is difficult to convert a large number of inputs and multiple outputs into a weighted input or output set, DEA produces very valid and meaningful results. While any statistical method is evaluated according to an average manufacturer with an average trend approach, DEA compares each producer with only the best producers (Aydemir, 2002: 45). DEA is a method for measuring the relative efficiency of decision-making units with multiple outputs and inputs, as well as for determining the amount of inefficiency in the DMUs and providing information about where the inefficiency comes from. With this feature, DEA can provide support to managers by determining the amount of input reduction and / or output increase required in inactive units (Ramanathan, 2003: 27).

## 4.3.1. Objectives in Implementation of Data Envelopment Analysis

The objectives of the implementation of DEA can be listed as follows;

• Define the relative inefficiencies and resources of each of the decision-units to be compared, in each of the input-output dimensions,

• Classification of decision-making units according to the efficiency values,

• Evaluation of the management of the decision-making units,

• Establishing a quantitative basis for the use of resources for decision-making units and replacing limited resources with units that can be used more effectively to achieve the desired output level,

• Providing that standards which determined for specific input-output relationships with realized performance are compared and investigated,

• To determine the adequate standards for the sector in which the decision making units are compared,

• Determining reference input and output amounts for inefficient decision-making units by using efficient decision-making units according to the determined standard,

• Showing inefficient decision units how much they need to reduce input amounts or increase output amounts in order to become efficient, based on reference decision units (Başkaya and Avcı, 2011: 89-90).

#### 4.3.2. Application Steps of Data Envelopment Analysis

1- Selection of observation set (selection of decision-making units): The first stage in the DEA includes the selection of decision making units (DMU) to be compared with each other. The fact that these units are similar to each other in terms of production technology, in other words, "homogeneous" observation cluster is very important for the results to be meaningful (Keçek, 2010: 78).

The homogeneous group of decision-making units must have the following characteristics.

• All decision-making units must have similar objectives in carrying out similar tasks.

• All decision-makers should operate under the same market conditions.

• All factors (inputs and outputs) that characterize the performance of the decision-making units within the group should be the same except for their density or size (Çekin, 1991: 29-30).

The number of DMU within the observation set should be above a certain value. Otherwise, the decision unit, which is advantageous at any output / input ratio, maximizes all weights for itself and reaches the efficiency limit (Yolalan, 1993: 3-6). The number of decision-making units to be analyzed and measured by DEA is very important. There are many opinions that the number of decision-making units should be above a certain value in order to obtain meaningful and accurate results, but there is no consensus or theoretical acceptance of what the number should be. In short, Vassiloglou and Giokas (1990) stated that the number of decision-making units should be more than three times the sum of the input and output. Another point of view is that the number of inputs and outputs depends on the number of the decision making unit should be at least 20 based on their experience (Norman and Stoker, 1991: 262). Bowlin (1998) stated that there should be at least three

decision units per input and output variable. Another view (Boussofiane at all, 1991: 1-15) is that there should be at least one more decision making unit than the sum of the number of inputs and outputs.

2- Selecting input and output sets: Since DEA is a data-based activity measurement technique, getting healthy measurement results is directly proportional of meaningful inputs and outputs.

3- The aim at this stage is; the selection of the inputs and outputs that can best express the production technology. For this reason, the list of all candidate inputs and outputs to be associated with production should be made and work should be started. Then, the variables, that is determined with some preliminary statistical analysis, have very high correlation between them and have no direct effect on production should be eliminated. (Yolalan, 1993: 3-6).

4- Relative efficiency measurement with DEA: After the observation set consisting of the decision units which will be made comparative analysis and the related input output sets are selected, the analyst who will measure the activity chooses the DEA model which is most suitable for the present production environment (Yolalan, 1993: 65-70). For each of the decision units, efficiency values ranging from 0 to 1 are calculated. Decision units with an efficiency value equal to 1 are considered efficient (Keçek, 2010: 80).

5- Detail analysis for each decision unit: After the measurement of the relative efficiency, the measures to be taken in order to improve the decision-making units which are not efficient according to the results are determined (Yolalan, 1993: 65-70).

6- Evaluation of the results: In the final stage of DEA, common findings for the efficient and inefficient decision-making units of the observation cluster are investigated. In addition, information and comments can be made about the preventions that need to be taken in order to convert the company into an efficient state (Yolalan, 1993: 65-70).

# 4.3.3. Models in Data Envelopment Analysis

If there are multiple decision-making units (DMU) for a decision-maker, it is important to measure the efficiency of the decision-making units and to shape the decision as a result of this activity measurement. Decision makers want to increase the efficiency of inefficient decision-making units because there are many costs involved (Yücel, 2015: 37) The decision-maker wants to know how much, to what extent, or what input or input sets, and what output or output sets should be set.
DEA mathematically, is based on the ratio of the sum of the weighted outputs of "a" decision unit to the sum of the weighted inputs, and in this respect uses linear programming as a solution technique.

The Efficiency of any decision-making unit (for any "j" DMU) is as follows:

$$E = \frac{u_1 y_1 + u_2 y_2 + \dots + u_s y_s}{v_1 x_1 + v_2 x_2 + \dots + v_m x_m}$$

In formula, there are "s" output and "m" input for "j" decision making unit. Here, " $u_s$ s." the weight of the output, " $y_s$  s." the amount of output, " $v_m$  m" the weight of the input and " $x_m$  m." indicates the amount of input.

There are two ways to increase the efficiency of "a" decision unit, as the overall efficiency formula is the ratio of outputs to inputs:

I. Decreasing the amount of input while keeping the outputs fixed (for input)

II. Increasing the amount of output while keeping inputs fixed (for output)

The first approach is known as input oriented, and the second is known as output oriented. For input-DEA models focus on how to use the most appropriate input composition to be used to provide the most efficient output composition. Output-oriented DEA models with the same thought emphasizes the maximum output that can be achieved with the combination of a particular input composition.

Models can also be classified according to efficient limit types. This distinction is referred to as constant return to scale models and variable return to scale models. One unit increase in inputs in constant income model leads to an increase in output at the same rate; in the variable-return to scale model, a one-unit increase in the input leads to a different rate of output increase (Çiftçi, 2004: 126).

### 4.3.3.1. The CCR Model

These models, named after the initials of Charnes, Cooper and Rhodes, are based on the constant returns to scale. This model measures the total efficiency under the assumption of constant return to scale. There are many researches and publications on health sector, banking, energy and education institutions where data envelopment analysis is used. Although various models have been developed, the CCR model is widely used today (Tarım, 2001: 5-40). (See Özden, 2008, Baysal, Uygur, and Toklu, 2004: 437-442, Cingi, Selçuk and Armağan 2000, National Productivity Center 2001)

Once the CCR model is solved "n" times, the input and output weights and their efficiency limits are obtained. This limit is considered to be a relative efficiency criterion and it is thought that at least one decision unit will be on this boundary (Yıldırım, 2009: 69). Like all linear programming models, DEA models can be expressed in two different forms: primal and dual. In the data envelopment analysis, the dual model is more used to achieve the best solution according to the primal model, both because it requires less mathematical processing and provides important managerial information.

The optimal weights may vary from one DMU to another DMU. This generally will happen. Thus, the weights in DEA are derived from the data instead of being fixed in advance. Each DMU is appointed a best weights group with variables values.

The total value of dual variables in the optimal solution of the CCR model established for any "k" decision-unit indicates the direction of return to scale for the decision-unit "k" (Banker at all, 1984: 1078-1092):

$$\begin{split} &\sum_{i=1}^n \lambda_{j_i} = 1 \quad \Rightarrow \quad \text{CSR (constant returns to scale)} \\ &\sum_{i=1}^n \lambda_{j_i} < 1 \quad \Rightarrow \quad \text{IRS (increasing returns to scale)} \\ &\sum_{i=1}^n \lambda_{j_i} > 1 \quad \Rightarrow \quad \text{DSR (diminishing returns to scale)} \end{split}$$

Figure 21. Returns to Scale.

The CCR primal and dual model for input can be defined as follows (Norman and Stoker 1991: 6-195).

### Input-oriented CCR model

| Table 11. | Input-oriented | CCR model |
|-----------|----------------|-----------|
|-----------|----------------|-----------|

| Primal Model                                                                            | Dual Model                                                                |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $Max \ e_0 = \sum_{r=1}^s u_r y_{rj0}$                                                  | Min $\theta$                                                              |
| s.t.                                                                                    | s.t.                                                                      |
| $\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} \le 0 \qquad j = 1, 2, \dots, n$ | $\sum_{j=1}^{n} \lambda_{j} y_{rj} \ge y_{rj0} \qquad r = 1, 2, \dots, s$ |
| $\sum_{i=1}^{m} v_i x_{ij0} = 1$                                                        | $-\sum_{j=1}^n \lambda_j x_{ij} + \theta x_{ij0} \ge 0$                   |
| $u_r \ge 0, v_i \ge 0$                                                                  | $\lambda_j \ge 0, \ \theta$ :free                                         |
| $r = 1, 2, \dots, s; i = 1, 2, \dots, m$                                                | j = 1, 2,, n                                                              |

In the primal model, the weighted sum of the inputs is limited to 1 and it is aimed to maximize the weighted output sum of the decision unit by selecting the appropriate values for " $u_{r}$ " and " $v_{i}$ ". A decision-making unit in the dual model; only if the efficiency rate value " $\theta$ " is equal to 1 and all slack variables are equal to zero is determined as efficiency. In the dual model, weights ( $\lambda_j$ ) are calculated on the decision units instead of the weights on the input or output. In addition, weights should be equal to or greater than zero in the dual model (Norman and Stoker, 1991: 255-275).

### Output-oriented CCR model

| <u>Primal Model</u>                                                                | <u>Dual Model</u>                                                         |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| $Min \ e_0 = \sum_{i=1}^m v_i x_{ij0}$                                             | Max $\theta$                                                              |
| s.t.                                                                               | s.t.                                                                      |
| $-\sum_{r=1}^{s} u_r y_{rj} + \sum_{i=1}^{m} v_i x_{ij} \ge 0  j = 1, 2, \dots, n$ | $\sum_{j=1}^{n} \lambda_{j} x_{ij} \le x_{ij0} \qquad i = 1, 2, \dots, m$ |
| $\sum_{r=1}^{s} u_r y_{rj0} = 1$                                                   | $-\sum_{j=1}^n \lambda_j y_{rj} + \theta y_{ij0} \le 0$                   |
| $u_r \ge 0, v_i \ge 0$                                                             | $\lambda_j \ge 0,  \theta \text{ free}$                                   |
| $r = 1, 2, \dots, s; i = 1, 2, \dots, m$                                           | $r = 1, 2, \dots, s; j = 1, 2, \dots, n$                                  |

Table 12. Output-oriented CCR model

The objective function of the CCR primal model for the output refers to the minimization of the weighted input sum of the "n" decision-making unit. The output efficiency for the n decision-making unit of the dual model is calculated for a given set of inputs (Yavuz, 2001: 54-57).

### 4.3.3.2. The BCC Model

The BCC model, which is a model obtained by modifying the assumptions of the CCR model, was established under the assumption of variable return to scale. It was developed by Banker-Charnes-Cooper in 1984. Using the BCC model, can also be determined direction of return to scale for all decision units. The BCC limit is always below the CCR limit, so a DMU's CCR efficiency score will be less than or equal to the BCC efficiency score (Yıldız, 2006: 216).

This approach, which allows the efficiencies of units to be divided into two parts as "scale efficiency" and "technical efficiency", may reveal whether causing of the inefficient decision-making units have "activity inefficiency" or "scale inefficiency".

The BCC models for input and output are defined as follows (Norman and Stoker, 1991: 6-195).

BCC model for input:

| Table 13 | B. BBC | model | for | input |
|----------|--------|-------|-----|-------|
|----------|--------|-------|-----|-------|

| Primal Model                                                                                  | Dual Model                                                 |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------|
| $Max \ e_0 = \sum_{r=1}^{s} u_r y_{rj0} + c_0$                                                | Min $	heta$                                                |
| s.t.                                                                                          | s.t.                                                       |
| $\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} + c_0 \le 0 \qquad j = 1, 2, \dots, n$ | $\sum_{j=1}^{n} \lambda_{j} y_{rj} \ge y_{rj0} \ r=1,2,,s$ |
| $\sum_{i=1}^{m} v_i x_{ij0} = 1$                                                              | $-\sum_{j=1}^n \lambda_j x_{ij} + \theta x_{ij0} \ge 0$    |
|                                                                                               | $\sum_{j=1}^n \lambda_j = 1$                               |
| $u_r \ge 0, v_i \ge 0$                                                                        | $\lambda_j \ge 0,  \theta:$ free                           |
| $r = 1, 2, \dots, s; i = 1, 2, \dots, m; c_0$ :free                                           | $i = 1, 2, \dots, m;  j = 1, 2, \dots, n$                  |

The above-mentioned input-oriented BCC models are very similar to the input-side CCR models. However, the difference between the BCC model is that the sum of " $\lambda_j$  s" equal to 1, ie convexity constraint.

### BCC model for input

Table 14. BCC model for input

| Primal Model                                                                             | Dual Model                                                                              |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $Min \ e_0 = \sum_{i=1}^m v_i x_{ij0} - c_0$                                             | Max $	heta$                                                                             |
| s.t.                                                                                     | s.t.                                                                                    |
| $-\sum_{r=1}^{s} u_r y_{rj} - \sum_{i=1}^{m} v_i x_{ij} - c_0 \ge 0  j = 1, 2, \dots, n$ | $\sum_{j=1}^{n} \lambda_{j} x_{ij} \le x_{ij0} \qquad i = 1, 2, \dots, m$               |
| $\sum_{r=1}^{s} u_r y_{rj0} = 1$                                                         | $-\sum_{j=1}^n \lambda_j y_{rj} + \theta y_{ij0} \le 0 \mid \sum_{j=1}^n \lambda_j = 1$ |
| $u_r \ge 0, v_i \ge 0$                                                                   | $\lambda_j \ge 0,  \theta$ :free                                                        |
| $r = 1, 2, \dots, s; i = 1, 2, \dots, m; c_0$ :serbest                                   | $r = 1, 2, \dots, s; j = 1, 2, \dots, n$                                                |

As in the input-oriented BCC model, the output-oriented BCC model is similar to the CCR model. Similarly, difference from the output-oriented CCR model is that the sum of " $\lambda_j$ " in the dual model is equal to 1. The aim is to add variable return to scale assumption to the model.

### 4.3.4. Strengths and Weaknesses of Data Envelopment Analysis

As in every method, DEA also has strengths and weaknesses. These are briefly summarized below (Yavuz, 2001: 51-54):

### -Strengths Aspects

• DEA provides the ability to include multiple inputs and multiple outputs as a result of the use of linear programming.

• DEA allows decision makers to better understand the production process by identifying all relevant inputs and outputs.

• DEA enables simultaneous measurement of different dimensions of enterprises.

• DEA provides the opportunity to reduce the different dimensions of the enterprise to a single efficiency criterion in production environments where there are many inputs and many outputs.

• DEA does not require any assumptions about the analytical structure of the production function. In this respect, it has a more flexible structure than the parameters.

•DEA calculates the relative efficiency for each decision unit, maximizes the objective functions separately, and determines the optimal solution for each decision unit (Yolalan, 1993: 86).

• Since efficiency analysis is performed according to the boundary function generated by the best observations, instead of the average function generated by the statistical limit estimation methods, the determined targets are made by taking the best performing units as examples. This strengthens the meaning and validity of efficiency analysis with DEA.

• DEA determines the decision units which are compared, which are efficient and which are not efficient. DEA establishes alternative ways to determine the performance of an inefficient decision-making unit and to reach the level of relatively efficient decision-makers within the observation set.

-Weaknesses Aspects

• Qualitative input and output measurements may weaken the results.

• The fact that the relevant inputs and outputs accurately reflect the production process is of vital importance in terms of giving the method healthy results. The results of the method may be biased and misleading when a critical output or input is excluded from the review.

• The difference between observed performance and best performance in DEA is only based on measurement errors which are ignored for end-observation points and inefficiency. Ignoring externalities may have misleading consequences.

•Although DEA can determine the efficient and inefficient decision-making units separately, it is insufficient to compare the decision units that make up the efficiency limit (Yolalan, 1993: 86-87). • DEA models are static and single time section models. In real life, the production process is a dynamic feature, since it will take longer than a period for decision-making units to convert certain inputs into outputs.

• Some decision units with extremely large or small input/output values in the observation set in DEA can create problems in determining the efficiency limit..

• The fact that the decision-making units in the reference group are superior to others makes it difficult to make a comment about whether these units are really efficient when evaluated on their own. For this reason, the efficiency results of DEA should be evaluated within the framework of relativism (Aydemir, 2002: 90- 93).

In the previous chapters, Turkey and EU sugar markets were mentioned, in this chapter, information about the efficiency measurement methods and the DEA is given. In the next chapter the application of the thesis and analysis will be made within the framework of the established models and the results of the analysis will be evaluated.

### 5. AN APPLICATION ON EFFICIENCY BY DATA ENVELOPMENT ANALYSIS METHOD: TURKEY SUGAR FACTORIES AND THE COMPARISON WITH EU

This section constitutes the application part of the thesis. In the light of theoretical knowledge in the previous sections, DEA method was used to make efficiency analysis of the sugar factories in Turkey and compared with the EU.

### 5.1. The Purpose and The Method of The Research

In this study, three models were set up in various combinations using "number of civil servant (actual average)", "temporary workers", "permanent workers", "fuel consumed for 1 ton sugar", "electricity consumed for 1 ton sugar" and "beet processing capacity" as input and "the amount of sugar produced " as output. Here it is aimed to measure relative efficiency in sugar factories and countries which have sugar factories.

Model 1 (civil servant-permanent worker-temporary worker-electricity consumption-fuel consumption model);

• Variable cost items reflecting the production costs of factories; "civil servant" "permanent worker" "temporary worker" "consumed electricity" "consumed fuel" was used as input. The output was based on the amount of sugar produced.

• It is aimed to measure relative efficiency with DEA in 21 sugar factories of TSFI. Thus, a comparison of efficiency measurement results will be made between public factories with the data of 2016. In addition, the model, in terms of the "civil servant" "temporary worker" "permanent worker" in the factories provides the opportunity to compare the level of efficiency according to the distinction.

Model 2 (number of employees- processed beets, daily capacity model)

• "*Number of employees (actual average)*" "*processed beet*", and "*daily capacity*" which reflect the production capacity of the factories is used as input. In the same way, the output is based on the "the *amount of sugar produced*".

• Based on the 2016 year for the selected beet sugar production data; It is aimed to measure relative efficiency in 29 factories, that are 21 sugar factories connected to TFSI and eight private sugar factories, (public and private). In the second model, which measures

productivity in all sugar factories in Turkey including public and private factories; three inputs were used in parallel to the production data used in the model. Thus, it is aimed to provide ease of interpretation between the second and third models.

Model 3 will be in the form of two analyzes. First, Analysis of Model 3 will be explained.

### Model 3.1 (Turkey-EU efficiency model)

The "*daily capacity*", "*processed beet*" and "*number of employees (actual average*)" which reflect the production capacity of the factories are used as inputs. In the same way, output is also based on the "amount of sugar produced". Based on the 2016 year for the selected sugar beet production data; it is aimed relative efficiency measurement in some EU countries (EU 28) and Turkey.

### Model 3.2 (Turkey-EU efficiency model (employees per factory-capacity per factory)

Reflecting the capacity of production between countries "capacity per factory" and "employees per factory (actual average)" used as input. The output is based on "the amount of produced sugar per factory"

It is intended to measure relative efficiency between EU countries (E.U. 28) and Turkey with selected production data for 2016 year.

The data are provided from 2016 Annual Reports of TSFI, Sugar Industry Cost and Analysis Book, Turkish Sugar Authority, European Commission Reports, CEFS Sugar Statistics 2016 and Market Evaluation, Consumption and Statistics Committee (MECAS).

In this study using data envelopment analysis; The results obtained by dissolving the Model 1 and 2, that both to ensure the see their own situation of factories belonging to TSFI and to evaluate the data of all beet sugar producers operating in Turkey and thus it is thought to be able to facilitate making decisions which are concerning the sugar sector.

The purpose of the third model established in the study; can be summarized as determining whether the sugar industry in Turkey is capable of competing with the sugar industry of the European Union and making recommendations on how to compete under the current competitive conditions. Therefore, on third model; relative production efficiency in the sugar sector of EU countries and Turkey are based on the data of 2016 year were analysed on the basis of country.

As the data used in previous studies in this field are not up-to-date, the diversity of inputs is not kept much and no detailed comparative analysis is made with the EU, the analyzes conducted in the research reveal the superiority of this study.

### 5.2. Limitations of Research

In the first model, 2016 year data were taken (civil servant-permanent workertemporary worker-fuel consumption-electricity consumption). Since the privatizations were made in 2018 and the data related to private sector factories have not been published yet, the most recent data is based on 2016 data. In addition, the scope of the study was determined as the public sugar factories and the Susurluk, Alpullu, Çarşamba, Ağrı Factories, which are belonging to the TSFI, did not produce sugar in 2016, and so the data of 21 sugar factories were taken as basis.

In the second model (capacity-worker-processed beet), 2016 data were taken due to the fact that it is easy to compare with the third model and the 2017-2018 data is not yet available. Member countries of the E.U. 28 from which have sugar factories and Turkey on the third Model is based on the data of 2016. Because, in 2006, the EU was reformed, many sugar factories were closed, market regulation were renewed, and also in 2017 sugar quotas were abolished in the EU and thus the market was opened to competition. Although, in Turkey, the state-owned sugar factory was included in the scope of privatization in 2000 and the quota of the production was started in 2003, it was possible to privatize 10 factories in 2018. For this reason, our analysis is based on the data of 2016 in order to obtain meaningful results in comparison of factories.

It is possible to evaluate the units analyzed in their fields and in relative terms in this study. For this reason, only a factory that is efficient in an analysis of the public sugar factories, may not be efficient in a study where all sugar factories, including the public and private are evaluated, or by taking other production data are analyzed. Therefore, the analyzes performed in this study should be evaluated within the framework specified.

### 5.3. Data Collection

The Data Collection is a process by which the researcher collects the information from all the relevant sources to find answers to the research problem and evaluate the outcomes. The data collection component of research is common to all fields of study including physical and social sciences, humanities, business, etc. While collecting the data, the researcher must identify the type of data to be collected, source of data, and the data is to be collected should be well addressed by the researcher (Reponsible Conduct of Research.com, 2019).

The data collection methods can be classified into two categories. First is the primary data are the first-hand data, collected by the researcher for the first time and is original in nature but however it is costly and time-consuming. Second is secondary data are collected by someone else for his research work and has already passed through the statistical analysis. One of the advantages of the secondary data is that it is less expensive than the primary data. The secondary data are readily available from the other sources and as such, there are no specific collection methods.

The secondary data can be both qualitative and quantitative. The qualitative data can be obtained through newspapers, diaries, interviews, transcripts, etc., while the quantitative data can be obtained through a survey, financial statements and statistics.

In this study, three models were set up in various combinations using "number of workers", "fuel consumed for 1 ton sugar", "electricity consumed for 1 ton sugar" and "beet processing capacity" as inputs and "the amount of sugar produced" as output.

In the first model, 2016 year data were taken (civil servant-permanent workertemporary worker-fuel consumption-electricity consumption). Since the privatizations were made in 2018 and the data related to private sector factories have not been published yet, the most recent data is based on 2016 data. In addition, the scope of the study was determined as the public sugar factories and the Susurluk, Alpullu, Çarşamba, Ağrı Factories, which are belonging to the TSFI, did not produce sugar in 2016, and so the data of 21 sugar factories were taken as basis. In the second model, which measures relative efficiency in all sugar factories in Turkey including public and private factories, 3 inputs were used in parallel to the production data used in the model. In the third model, relative production efficiency in the sugar sector of EU countries and Turkey were analysed on the basis of country. Because, in 2006, the EU was reformed, many sugar factories were closed, market regulation were renewed, and also in 2017 sugar quotas were abolished in the EU and thus the market was opened to competition. For this reason, our analysis is based on the data of 2016 in order to obtain meaningful results in comparison of factories. Thus, it is aimed to provide ease of interpretation between the second and third models.

The data are provided from Turkish Statistical Institute, 2016 Annual Reports of TSFI, Sugar Industry Cost and Analysis Book, Abolished Turkish Sugar Authority, European Commission Reports, (CEFS) Sugar Statistics 2016, International Sugar Organization Reports and Market Evaluation, Consumption and Statistics Committee (MECAS) Reports. Since Turkish Sugar Authority (TSA) is a member of ISO on behalf of Turkey, to the reports of ISO and MECAS (their non-public data are only given to its members) have been reached through the TSA. In addition, some unpublished information and reports of the TSA has also been provided through bilateral relations.

### 5.4. Reliability of Research Data

• On Model 1 "Civil servant (actual average)", "permanent worker" "temporary worker" "fuel consumed for 1 ton of sugar", "electricity consumed for 1 ton of sugar " are used as input and "the amount of sugar produced" is used as output. These data were obtained from the 2016 Annual Report of TSFI, Sugar Industry Cost and Analysis Book and Turkish Sugar Authority for the relevant years.

• On Model 2 "Number of employees (actual average)" "processed beets" and "daily capacity" used as input and "the amount of sugar produced" as output. It was taken from 2016 Annual Report of TSFI, Capacity Reports of the Turkish Sugar Authority.

• The data which are belonging to Turkey and the countries of the EU members, on Model 3.1 "Number of employees", "daily capacity" and "processed beet" used as input, "the amount of sugar produced" used as output; and on Model 3-2 "the capacity per factory", "number of employees per factory (actual avarage)" used as input, "the amount of sugar produced per factory" used as output; were obtained from CEFS Reports, European Commission Reports, 2016 Annual Report of TSFI, and Abolished Turkish Sugar Authority.

That's why they are considered reliable data. The data are presented in Appendix-1, Appendix-2 and Appendix-3 and Appendix-4.

#### 5.5. Data Envelopment Analysis

For three different models were set up, five application steps of DEA described below have been carried out. Decision making units for each model were selected in step 1. Input and output sets were determined in step 2. Appropriate data envelopment analysis was selected in step 3. Return on scale type was chosen in step 4. DEA application was realized step 5.

### 5.6. Selection of Decision Making Units to Be Evaluated

Charnes at all. (1978) named the responsible units for converting the input into output and producing similar outputs using similar inputs, as "decision making unit - DMU". These DMU can be institution, company, factory, department, business, university as well as yearly values that show the inputs and outputs of a single institution (Kaynar and Bircan, 2007: 362). However, these DMU should do the same for the same purpose and work under the same market conditions. Homogeneity is necessary for to make comparisons and to make comparisons meaningful (Baysal at all, 2005: 69). Data envelopment analysis can measure the relative efficiency of these decision units that have multiple inputs and outputs (Kaynar and Bircan, 2007: 363). Ahn has attracted attention to two points at DMU choices. First, each DMU that responsible for the outputs produced with the sources it uses, must be defined as any unit. The other, the number of DMU studied should be large enough to make the results of the efficiency limit measurement meaningful (Ahn, 1987). According to Boussofiane, for reliability of the work, be on the point of being "m" the number of inputs and "n" being the number of outputs, there must be at least "m + n + 1" DMU (Keçek, 2010: 78).

### 5.6.1. Determining The Input and Output Set

### -Input and output set for the first model (permanent worker- temporary worker- civil servant-fuel consumed- electricity consumed)

In the first model, taking into account the studies in the literature, five inputs and one output representing the important cost items that were not taken into account before, were determined. The input and output variables are shown in Appendix-1, Appendix -2, Appendix-3 and Appendix-4 of the study for the evaluation of the efficiency analysis of 25 public sugar factories analyzed for 2016 year. Table 15 shows the explanatory information about the input and output factors used in the model (Figure 22).

| Table 1 | 5. | Model | 1 | output-input elements |  |
|---------|----|-------|---|-----------------------|--|
|         |    |       |   | 1 1                   |  |

| ТҮРЕ                             | UNIT    | DESCRIPTION                                                                                 |
|----------------------------------|---------|---------------------------------------------------------------------------------------------|
| INPUT                            |         |                                                                                             |
| Permanent Worker                 | Piece   | The number of permanent workers working at the factory during the relevant campaign period. |
| Temporary Worker                 | Piece   | The number of temporary workers working at the factory during the relevant campaign period. |
| Civil Servant                    | Piece   | The number of civil servant working in the factory during the relevant campaign.            |
| Total Fuel<br>Consumption        | 7000    | The total fuel consumed during the campaign period                                          |
| (7000 Kcal/kg)                   | kcal/kg | 5                                                                                           |
| Total Electricity<br>Consumption | Kwh     | The total electricity consumption during the campaign period.                               |
| OUTPUT                           |         |                                                                                             |
| Produced Sugar                   | Tone    | The total amount of sugar produced in each factory during the relevant campaign period.     |



Figure 22. Model 1 Sugar Factories Efficiency Analysis Model

### -Input and output output for the second model (daily capacity-processed beetemployee)

Three inputs and one output were determined to be used for analysis taking into account the studies in the literature. The data on the efficiency study for input and output variables of 33 factories of Turkey analyzed for 2016 marketing year, are given in Appendix-2 of the study. Table 16 shows the explanatory information about the input and output factors used in the model (Figure 23).

Table 16. Model 2 output-input elements

|                               | UNIT      | DESCRIPTION                                                                                                          |
|-------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------|
| INPUT                         |           |                                                                                                                      |
| Employees<br>(Actual Average) | Piece     | The number of actual employees (permanent and temporary) working at the factory during the relevant campaign period. |
| Processed Beet                | Tone      | The amount of beet processed in the relevant campaign period.                                                        |
| Daily Capacity                | Tone/Year | It shows the beet processing capacity in the relevant campaign period.                                               |
| OUTPUT                        |           |                                                                                                                      |
| Produced Sugar                | Tone      | The total amount of sugar produced in each factory during the relevant campaign period.                              |



Figure 23. Model 2 Sugar Factories Efficiency Analysis Model

### -Input and Output Set for The Third Model (Turkey-EU efficiency)

## a. Input and Output Set for 1st Application to belong Third Model (Turkey- EU efficiency (country-based)

Three inputs and one output were determined to be used for analysis taking into account the studies in the literature. The data on the efficiency study for input and output variables of Turkey and some of the EU member states (EU-28) analyzed for 2016 marketing year, are given in Appendix-3 of the study. Table 17 shows the explanatory information about the input and output factors used in the model.

| ТҮРЕ           | UNIT      | DESCRIPTION                                                                                                          |
|----------------|-----------|----------------------------------------------------------------------------------------------------------------------|
| INPUT          |           |                                                                                                                      |
| Employees      | Number    | The number of actual employees (permanent and temporary) working at the factory during the relevant campaign period. |
| Daily Capacity | Tone/Year | The number of beet processing capacity during the relevant campaign period                                           |
| Processed Beet | Tone      | The number of beet during the relevant campaign period                                                               |
| OUTPUT         |           |                                                                                                                      |
| Produced Sugar | Tone      | Total amount of sugar produced in each factory during the relevant campaign period.                                  |

 Table 17. Model 2 output-inputs elements



Figure 24. Model 3 Sugar Factories Efficiency Analysis Model

# b. Input and Output Set for 2st Application to belong Third Model (Turkey- EU efficiency (factory-based)

Two inputs and one output were determined to be used for analysis taking into account the studies in the literature. The data on the efficiency study for input and output variables of Turkey and some of the EU member states (EU-28) are analyzed for 2016 marketing year, are given in Appendix-4 of the study. Table 16 shows the explanatory information about the input and output factors used in the model (Figure 25).

| ТҮРЕ                          | UNIT     | DESCRIPTION                                                                                                          |
|-------------------------------|----------|----------------------------------------------------------------------------------------------------------------------|
| INPUT                         |          |                                                                                                                      |
| Employees per factory         | Number   | The actual average number of employees in the factory (permanent and temporary) during the relevant campaign period. |
| Capacity per Factory          | Tone/day | The number of beet processing capacity in a factory during the relevant campaign period                              |
| OUTPUT                        |          |                                                                                                                      |
| Produced Sugar per<br>Factory | Tone     | Total amount of sugar produced in a factory during the relevant campaign period.                                     |

Table 18. Model 3 output-inputs elements



Figure 25. Model 3 Output-Inputs Elements

#### 5.6.2. Choosing The Appropriate Data Envelopment Analysis Model

Selection of input minimization or output maximization model should be done carefully (Baysal at all, 2005: 69). Many researchers have preferred to use the input-oriented approach in their studies on account of the fact that, most decision making units have to produce a certain amount of output. However, this is not the same for all sectors. Some industries that have limited resources and want to benefit from them, may want to produce as many output as possible. In such cases, it would be better to use the output-oriented approach. In many studies, it is observed that the difference between them is not much looking at the results of different approaches (Erken and Emiral, 2002: 16).

In this study input oriented models that aims to minimize input factors used in sugar production were used. The reason of not using output oriented model is the quota system in the sugar sector.

### 5.6.3. Choosing The Type of Return on Scale

Return on scale, can be fixed or variable. Return on scale, are related to the direction of the change in output when change in inputs. It can be modeled with constant return on the scale, if the process produces twice the output, when inputs are doubled. On the other hand, it can be modeled with variable returns on the scale, if the process produces more or less than twice the output when inputs are doubled (Cooper at all, 2002: 130-140).

### 5.6.4. Measurement of Efficiency with Data Envelopment Analysis

In Model 1, the input-oriented dual CCR-DEA and dual BCC-DEA models were installed and solved separately for each of the 21 sugar factories in Turkey for 2016 marketing year.

In the Model 2, the input-oriented dual CCR-DEA and dual BCC-DEA models were installed and resolved separately for each of the 29 sugar factories and the factories producing special beet sugar for 2016 marketing year.

In the Model 3, dual CCR-DEA and dual BCC-DEA models were installed and resolved separately for each country by taking the total of all beet sugar producer factory data from some EU member countries and in Turkey for the 2016 marketing year.

### 5.7. Empirical Results (Comparison Parameters)

### 5.7.1. Empirical Results for The First Model

In the Analysis 1 study, is obtained the efficiency measurements among the public sugar factories in Turkey. Analysis results are shown in Table 19. The table are included the results of Model-1 that is used "permanent worker", "temporary worker", "civil servant (actual average)", "fuel consumed for 1 ton sugar" and "electricity consumed for 1 ton sugar" data as inputs and "the amount of sugar produced" as output. In addition, efficiency scores and reference sets obtained from DEA models are shown.



| "I                   | Drd                | ovement      | t Potential (IP) |                     |          |                     |         |           |             |                    |         |            |                     |                            |          |           |            |                |         |         |         |            |           |
|----------------------|--------------------|--------------|------------------|---------------------|----------|---------------------|---------|-----------|-------------|--------------------|---------|------------|---------------------|----------------------------|----------|-----------|------------|----------------|---------|---------|---------|------------|-----------|
| Civil Projected Ci   | Civil Projected Ci | Projected Ci | 12               |                     | Permaner | nt Projected        |         |           | Femporary F | rojected           |         |            | lectricity 1        | Projected                  |          | <u> </u>  | uel .      | Projected Fuel |         |         | Sugar   |            |           |
| Servant Servant      | Servant Servant    | Servant      |                  |                     | Worker   | Permanent<br>Worker |         |           | Worker 7    | emporary<br>Vorker |         | <u>0 2</u> | onsumption 1<br>IWH | Electricity<br>Consumption |          | <u> </u>  | onsumption | Consumption    |         |         |         |            |           |
| Rank Data Projection | Data Projection    | Projection   |                  | IP Diff. %          | 6 Data   | Projection          | IP I    | Diff. % I | Data F      | rojection          | IP D    | iff. % D   | ata I               | Projection                 | IP I     | biff. % I | bata ]     | Projection     | IP      | Diff. % | Data    | Projection | Diff<br>% |
| 1 61 61              | 61 61              | 61           |                  | 0,0 0               | 207      | 207                 | 0,0     | 4         | 8           | 8                  | 0,0 0   | 31         | 1860,673            | 31860,673                  | 0,0      | 4         | 9129       | 9129           | 0,0     | 0       | 137310  | 137310     | 0         |
| 1 110 110            | 110 110            | 110          |                  | 0,0 0               | 483      | 483                 | 0,0     |           | 20 2        | 0                  | 0,0 0   | 15         | 5203,157            | 15203,157                  | 0,0      | 1         | 9557       | 9557           | 0,0     | 0       | 63110 6 | 53110      |           |
| 18 55 30,791         | 30,791             | 30,791       | 42995            | 24,2 -44,01         | 16 229   | 162,3343198         | 66,7 -  | 29,112 5  | 54 3        | 8,6869714          | 15,3 -  | 28,357 16  | 5280,054            | 11663,44414                | 4616,5 - | 28,357 2  | 9151       | 7053,53477     | 12097,4 | -41,499 | 68145 ( | 58145      |           |
| 10 56 28,912         | 56 28,912          | 28,912       | 211098           | 27,1 -48,37         | 71 201   | 165,3117304         | 35,7 -  | 17,755 5  | 56 4        | 0,8031732          | 15,2 -  | 27,137 18  | 8969,002            | 15061,65277                | 3907,4 - | 20,599 2  | 2655       | 8632,52365     | 4022,4  | -17,755 | 80315 8 | 30315      |           |
| 1 38 38              | 38 38              | 38           |                  | 0,0 0               | 219      | 219                 | 0,0     | - CV      | 52 5        | 2                  | 0,0     | 15         | 9465                | 19465                      | 0,0      | 5         | 3395       | 23395          | 0,0     | 0       | 103018  | 103018     |           |
| 20 66 5,60           | 5,60               | 5,60         | 3363983          | 60,4 -91,51         | 1 156    | 30,0376263          | 126,0 - | 80,745    | 9 99        | ,48237107          | 59,5 -9 | 90,178 29  | 912                 | 1991,936387                | 920,1    | 31,596 3  | 992        | 2730,704004    | 1261,3  | -31,596 | 11480   | 11480      |           |
| 21 33 18,6           | 33 18,6            | 18,6         | 0854838          | 14,4 -43,61         | 1 180    | 98,96643575         | 81,0 -  | 45,019 1  | 101 2       | 6,4008673          | 74,6 -  | 73,861 12  | 4896,2 8            | 3399,898739                | 6496,2 - | 43,61 2   | 1717       | 2246,11652     | 9470,8  | -43,61  | 48050 4 | 18050      |           |
| 6 26 9,3             | 36 9,3             | 9,3          | 59645887         | <b>16,6</b> -64,00  | )1 256   | 53,94111709         | 202,1 - | 78,929 1  | 107         | 2,8079365          | 94,2 -8 | 88,03 57   | 759,601             | 4794,355452                | 965,3 -  | 16,759 6  | 167        | 5762,339882    | 404,7   | -6,562  | 25374 2 | 25374      |           |
| 1 42 42              | 12 42              | 4            |                  | 0,0 0               | 215      | 215                 | 0,0     |           | 33          |                    | 0,0     | 26         | 5700,739 2          | 26700,739                  | 0,0      | 4         | 3007       | 13007          | 0,0     | 0       | 153705  | 153705     |           |
| 19 67 14             | 57 14              | 4            | ,14058492        | <b>52,9</b> - 78,89 | 35 141   | 74,94510005         | 66,1 -  | 46,847 4  | t1 1        | 5,908158           | 25,1 -0 | 51,2 68    | 851,883             | 4692,897781                | 2159,0 - | 31,509 9  | 663        | 617,79374      | 3045,2  | -31,514 | 27560 2 | 27560      |           |
| 7 48 15              | 15 15              | 15           | ,34120251        | 32,7 -68,03         | 39 247   | 88,41377235         | 158,6 - | 64,205 5  | 53 2        | 0,9932245          | 32,0 -0 | 50,39 86   | 565,6               | 7858,329127                | 807,3 -  | 9,316 1   | 0309       | 0444,932439    | 864,1   | -8,382  | 41590 4 | 11590      |           |
| 12 87 50,            | 37 50.             | 50.          | ,07413646        | 36,9 -42,44         | 44 296   | 236,0437624         | - 0,09  | 20,255 6  | 57 5        | 3,4288246          | 13,6 -  | 20,255 31  | 1026,5              | 24741,93173                | 6284,4 - | 20,255 4  | 2042       | 13526,18871    | 8515,6  | -20,255 | 120300  | 120300     |           |
| 8 48 43,             | 18 43,             | 43.          | 83181301         | 4,2 -8,684          | 4 267    | 196,7426722         | - 70,3  | 26,314 7  | 74 6        | 7,5740451          | 6,4 -8  | 8,684 29   | 9629,365            | 26048,83947                | 3580,4 - | 12,084 4  | 9446       | 11382,26931    | 8063,7  | -16,308 | 137850  | 137850     |           |
| 17 27 4,1            | 27 4,1             | 4,1          | 54186647         | <b>22,8</b> -84,61  | 14 131   | 23,94123357         | 107,1 - | 81,724 3  | 35 5        | ,68467646          | 29,3 -8 | 83,758 29  | 096                 | 2127,92745                 | 832,1 -  | 28,111 3  | 479        | 2557,557805    | 921,4   | -26,486 | 11262   | 11262      |           |
| 15 46 12             | 16 12              | 12           | ,21139046        | 33,8 -73,45         | 53 146   | 64,72036942         | 81,3 -  | 55,671 4  | 1 1         | 3,7378143          | 34,3 -  | 71,38 53   | 350,7               | 4052,647576                | 1298,0 - | 24,259 7  | 679        | 5714,930734    | 1964,1  | -25,577 | 23800 2 | 23800      |           |
| 1 40 40              | 10 40              | 육            |                  | 0,0 0               | 212      | 212                 | 0,0     | 4         | 15 4        | Ś                  | 0,0     | 1          | 3274,975            | 13274,975                  | 0,0      | 1         | 8720       | 8720           | 0,0     | 0       | 77960   | 17960      |           |
| 16 77 19             | 77 19              | 19           | ,7207281         | <b>57,3</b> -74,38  | 39 209   | 108,9723143         | 100,0   | 47,86     | 50 2        | 4,525888           | 35,5 -: | 59,124 10  | 974,2               | 8278,674849                | 2695,5 - | 24,562 1  | 4116       | 0648,77387     | 3467,2  | -24,562 | 45761 4 | 15761      |           |
| 13 41 14             | 11 14              | 4            | ,97602361        | 26,0 -63,47         | 73 237   | 86,30918869         | 150,7 - | 63,583 9  | 96 2        | 0,493506           | 75,5 -  | 78,653 97  | 758,883             | 7671,27104                 | 2087,6 - | 21,392 1  | 1639       | 0220,107166    | 2418,9  | -20,783 | 40600 4 | 10600      |           |
| 9 75 46              | 75 46              | 46           | ,08349063        | 28,9 -38,55         | 55 287   | 250,2178481         | 36,8 -  | 12,816    | 56 5        | 7,1482573          | 8,9 -   | 13,412 21  | 1192,905            | 18476,80517                | 2716,1   | 12,816 2  | 8532       | 24875,31582    | 3656,7  | -12,816 | 104240  | 104240     |           |
| 14 39 13             | 39 13              | 13           | ,46844536        | <b>25,5</b> -65,46  | 56 167   | 71,38276039         | 95,6 -  | 57,256 3  | 37 1        | 5,152001           | 21,8 -: | 59,049 57  | 739,33              | 4469,831885                | 1269,5 - | 22,119 9  | 149        | 5303,232427    | 2845,8  | -31,105 | 26250 2 | 26250      |           |
| 11 29 23             | 19 23              | 53           | ,43739519        | 5,6 -19,18          | 31 211   | 129,0476065         | 82,0 -  | 38,84 4   | 16 3        | 0,1751003          | 15,8 -  | 34,402 12  | 2572,905            | 10161,24631                | 2411,6-  | 19,181 1  | 6496       | 3331,83693     | 3164,1  | -19,181 | 56320 5 | 56320      |           |
|                      |                    |              |                  |                     |          |                     |         |           |             |                    |         |            |                     |                            |          |           |            |                |         |         |         |            |           |

 Table 19. Empirical results for Model 1 (CCR)

Table 19 shows that five of the 21 sugar factories (Afyon, Ankara, Çorum Ereğli, Kırşehir Sugar Factories) examined according to CCR-DEA model are total efficient (CCR / CRS). The other 16 factory total efficiency values are less than 1, so they are inefficient. Among these DMUs, the Elbistan sugar factory has the lowest efficiency score with a score of 0.5639. The decision unit that should be taken as reference for the Elbistan Sugar Factory to be efficient is Çorum (0.077), Ereğli (0.133), Kırşehir (0.253) as seen in Table 20.

| No | DMU       | Score  | Rank |          | Refere | ence(Laml | oda)  |          |       |        |       |
|----|-----------|--------|------|----------|--------|-----------|-------|----------|-------|--------|-------|
| 1  | Afyon     | 1      | 1    | Afyon    | 1      |           |       |          |       |        |       |
| 2  | Ankara    | 1      | 1    | Ankara   | 1      |           |       | V - /    |       |        |       |
| 3  | Bor       | 0.7164 | 18   | Ereğli   | 0.113  | Kırşehir  | 0.651 |          |       |        |       |
| 4  | Burdur    | 0.8224 | 10   | Çorum    | 0.707  | Ereğli    | 0.049 |          |       |        |       |
| 5  | Çorum     | 1      | 1    | Çorum    | 1      |           |       |          |       |        |       |
| 6  | Elazığ    | 0.684  | 20   | Çorum    | 0.019  | Kırşehir  | 0.122 |          |       |        |       |
| 7  | Elbistan  | 0.5639 | 21   | Çorum    | 0.077  | Ereğli    | 0.133 | Kırşehir | 0.253 |        |       |
| 8  | Erciş     | 0.9344 | 6    | Çorum    | 0.246  |           |       |          |       |        |       |
| 9  | Ereğli    | 1      | 1    | Ereğli   | 1      |           |       |          |       |        |       |
| 10 | Erzincan  | 0.6849 | 19   | Kırşehir | 0.354  |           |       |          |       |        |       |
| 11 | Erzurum   | 0.9162 | 7    | Çorum    | 0.404  |           |       |          |       |        |       |
| 12 | Eskişehir | 0.7974 | 12   | Afyon    | 0.33   | Ankara    | 0.029 | Çorum    | 0.686 | Ereğli | 0.016 |
| 13 | Ilgın     | 0.9132 | 8    | Afyon    | 0.263  | Ereğli    | 0.662 |          |       |        |       |
| 14 | Kars      | 0.7351 | 17   | Çorum    | 0.109  |           |       |          |       |        |       |
| 15 | Kastamonu | 0.7574 | 15   | Kırşehir | 0.305  |           |       |          |       |        |       |
| 16 | Kırşehir  | 1      | 1    | Kırşehir | 1      |           |       |          |       |        |       |
| 17 | Malatya   | 0.7544 | 16   | Çorum    | 0.253  | Kırşehir  | 0.253 |          |       |        |       |
| 18 | Muş       | 0.7922 | 13   | Çorum    | 0.394  |           |       |          |       |        |       |
| 19 | Turhal    | 0.8718 | 9    | Çorum    | 0.363  | Ereğli    | 0.054 | Kırşehir | 0.75  |        |       |
| 20 | Uşak      | 0.7788 | 14   | Kırşehir | 0.337  |           |       |          |       |        |       |
| 21 | Yozgat    | 0.8082 | 11   | Çorum    | 0.288  | Ereğli    | 0.032 | Kırşehir | 0.279 |        |       |

 Table 20. Reference Data for Model 1

Among the efficient factories according to CCR-I model, Afyon, Ereğli, Çorum and Kırşehir factories are the most referenced decision units for inefficient factories and these DMVs are the best performing decision units. In 2016, the average total activity score of 21 factories was 0.8348. The tables below show improvable potential graphs of the one by one inputs.





As shown in Figure 26, 67 civil servants are employed in Erzincan, but 15 civil servants are sufficient for the efficient operation of the factory. Furthermore, employing more staff than the number of civil servants required is an extra cost for the factory.

It is seen that Ankara is efficient in terms of the civil servant in the chart. However, we know that it is efficient in fuel consumption and electricity consumption, but it is not efficient in terms of number of civil servants. It's a constraint of the DEA and the reason why it appears to be efficient in the analysis.





In terms of permanent workers, the efficiency status and improvement figures of the factories are shown in the Figure 27. As can be seen in the figure, Erciş Sugar Factory will be efficient if it reduces the number of its workers below 100. In terms of permanent workers, the most efficient sugar factory is Afyon Sugar Factory.





In terms of temporary workers (Figure 28), we can say that Muş and Elbistan Sugar Factories will be more efficient if they reduce the number of their workers.



Figure 29. Improment Potential of Electricity Consumption

In terms of electricity consumption, Eskişehir and Turhal Sugar Factories need to decrease the amount of electricity they currently use to be efficient. In terms of this output, as can be seen in the figure above, Çorum and Afyon Sugar Factories is efficient.



Figure 30. Improment Potential of Fuel Consumption

In terms of fuel consumption (Figure 30), Ilgin and Elbistan Sugar Factories need to decrease the amount of fuel they currently use to be efficient. In terms of this output, as can be seen in the figure above, Çorum and Afyon Sugar Factories are efficient. The Ilgin and the Elbistan sugar factories can become more efficient, if they reduce their fuel consumption from 49 000 to 40 000 and from 21 000 to 15 000 respectively.

| Mo | del=BCC-  | Ŀ      |      |        |            |          |        |            |          |              |            |          |             |            |          |            |            |          |        |            |             |
|----|-----------|--------|------|--------|------------|----------|--------|------------|----------|--------------|------------|----------|-------------|------------|----------|------------|------------|----------|--------|------------|-------------|
|    |           |        |      | CivilS | ervant     |          | Perman | ent Worker |          | T empoi      | rary Worke | ŗ        | Electricity | Consumpt   | ion MWH  | Fuel Const | umption    |          | Sugar  |            |             |
| No | DMU       | Score  | Rank | Data   | Projection | Diff.(%) | Data   | Projection | Diff.(%) | Data         | Projection | Diff.(%) | Data        | Projection | Diff.(%) | Data       | Projection | Diff.(%) | Data   | Projection | Diff<br>.(% |
| 1  | Afyon     | 1      | 1    | 61     | 61         | 0        | 207    | 207        | 6        | 48           | 48         | 0        | 31860,67    | 31860,67   | 0        | 49129      | 49129      | 0        | 137310 | 137310     | 0           |
| 5  | Ankara    | 1      | -    | 110    | 110        | 0        | 483    | 483        |          | ล            | 20         | 0        | 15203,16    | 15203,16   | 0        | 19557      | 19557      | 0        | 63110  | 63110      | 0           |
| m  | Bor       | 0,8098 | ล    | 55     | 38,94526   | -29,19   | 677    | 185,4373   | -19,023  | 2            | 43,72757   | -19,023  | 16280,05    | 13183,1    | -19,023  | 29151      | 19185,48   | -34,186  | 68145  | 68145      | 0           |
| 4  | Bundur    | 0,9213 | 15   | 56     | 35,62404   | -36,386  | 201    | 185,1856   | -7,868   | 8            | 51,594     | -7,868   | 18969       | 15261,89   | -19,543  | 22655      | 20872,54   | -7,868   | 80315  | 80315      | 0           |
| Ś  | Çonm      | 1      | 1    | 38     | 38         | 0        | 219    | 219        | 6        | 2            | 52         | 0        | 19465       | 19465      | 0        | 23395      | 23395      | 0        | 103018 | 103018     | 0           |
| 9  | Elazığ    | 1      | -    | 39     | 65,99923   | -0,001   | 156    | 155,9985   | 0,001    | 8            | 65,99926   | 1000     | 2912        | 2011989    | 0        | 3992       | 3991,985   | 0        | 11480  | 11480      | 0           |
| ~  | Ebistan   | 0,9165 | 16   | 8      | 30,24332   | 8,354    | 180    | 164,9636   | 8,354    | 101          | 46,4356    | -54,024  | 14896,2     | 9574,402   | -35,726  | 21717      | 13805,59   | -36,43   | 48050  | 48050      | 0           |
|    | Ercis     | 1      | 1    | 26     | 25,99978   | -0,001   | 256    | 255,9973   | -0,001   | 107          | 106,9988   | 1000-    | 5759,601    | 5759,588   | 0        | 6167       | 6166,995   | 0        | 25374  | 25374      | 0           |
| 6  | Ereğli    | 1      | -    | 4      | 42         | 0        | 215    | 215        |          | 8            | 83         | 0        | 26700,74    | 26700,74   | 0        | 43007      | 43007      | 0        | 153705 | 153705     | 0           |
| 2  | Erzincan  | 0,9972 | 10   | 67     | 28,71601   | -57,14   | 141    | 140,6098   | 0,277    | 41           | 40,49174   | -1,24    | 6851,883    | 567635     | -17,156  | 9663       | 8001,699   | -17,192  | 27560  | 27560      | 0           |
| Ξ  | Erzurum   | 0,9718 | 12   | 48     | 30,31548   | -36,843  | 247    | 178,0107   | -27,931  | ន            | 51,50697   | -2,817   | 8665,6      | 8421,486   | -2,817   | 10309      | 10018,59   | -2,817   | 41590  | 41590      | 0           |
| ם  | Eskişehir | 0,8123 | ย    | 87     | 45,98563   | 47,143   | 302    | 214,606    | -27,498  | 5            | 54,4213    | -18,774  | 31026,5     | 24379,35   | -21,424  | 42042      | 34148,96   | -18,774  | 120300 | 120300     | 0           |
| ព  | Ilgm      | 1126-0 | 14   | 48     | 44,5298    | -7,23    | 792    | 214,5172   | -19,656  | 7            | 68,6501    | -7,23    | 29629,37    | 25834,87   | -12,807  | 49446      | 39195,18   | -20,731  | 137850 | 137850     | 0           |
| 1  | Kars      | 1      | -    | 77     | 26,99974   | -0,001   | 131    | 130,9992   | 0,001    | 8            | 34,99989   | 0        | 2960        | 166'6567   | 0        | 3479       | 3478,989   | 0        | 11262  | 11262      | 0           |
| ង  | Kastamon  | 0,9479 | ព    | 46     | 28,32006   | -38,435  | 146    | 138,3925   | -5,211   | \$           | 39,2247    | -18,282  | 5350,7      | 5049,677   | -5,626   | 7679       | 6958,297   | -9,385   | 23800  | 23800      | 0           |
| 16 | Kurşehir  | 1      | -    | 40     | 40         | 0        | 212    | 212        |          | <del>2</del> | 45         | 0        | 13274,98    | 13274,98   | 0        | 18720      | 18720      | 0        | 77960  | 09611      | 0           |
| 11 | Malatya   | 0,7988 | 21   | 4      | 32,19723   | -58,185  | 209    | 166,9505   | -20,119  | 8            | 41,23041   | -31,283  | 10974,2     | 8766,258   | -20,119  | 14116      | 11275,95   | -20,119  | 45761  | 45761      | 0           |
| 8  | Muş       | 0,84   | 18   | 41     | 20,973     | -26,895  | 237    | 199,0709   | -16,004  | 8            | 64,28776   | -33,034  | 9758,883    | 8197,089   | -16,004  | 11639      | 9776,315   | -16,004  | 40600  | 40600      | 0           |
| ଶ  | Turhal    | 0,8895 | 17   | 75     | 39,29533   | 47,606   | 287    | 216,2005   | -24,669  | 8            | 55,25609   | -16,279  | 21192,91    | 18852,1    | -11,045  | 28532      | 25380,58   | -11,045  | 104240 | 104240     | 0           |
| ล  | Uşak      | 0,9743 | 11   | 39     | 33,64786   | -13,723  | 167    | 162,7114   | -2,568   | 31           | 36,04983   | -2,568   | 5739,33     | 5591,942   | -2,568   | 9149       | 7300,488   | -20,205  | 26250  | 26250      | 0           |
| ដ  | Y ozgat   | 1      | 1    | ห      | 28,99985   | -0,001   | 211    | 210,9975   | -0,001   | 46           | 45,99976   | 100'0-   | 12572,91    | 12572,84   | -0,001   | 16496      | 16495,91   | -0,001   | \$6320 | \$6320     | 0           |

 Table 21. Empirical results for Model 1 (BCC)

| No. | DMU       | Score  | Rank |          | Refere | ence(Lam | bda)  |          |       |          |       |
|-----|-----------|--------|------|----------|--------|----------|-------|----------|-------|----------|-------|
| 1   | Afyon     | 1      | 1    | Afyon    | 1      |          |       |          |       |          |       |
| 2   | Ankara    | 1      | 1    | Ankara   | 1      |          |       |          |       |          |       |
| 3   | Bor       | 0.8098 | 20   | Afyon    | 0.144  | Ereğli   | 0.039 | Kars     | 0.32  | Kırşehir | 0.496 |
| 4   | Burdur    | 0.9213 | 15   | Afyon    | 0.04   | Çorum    | 0.395 | Ereğli   | 0.195 | Kars     | 0.37  |
| 5   | Çorum     | 1      | 1    | Çorum    | 1      |          |       |          |       |          |       |
| 6   | Elazığ    | 1      | 1    | Elazığ   | 1      |          |       |          |       |          |       |
| 7   | Elbistan  | 0.9165 | 16   | Ereğli   | 0.186  | Kars     | 0.585 | Yozgat   | 0.23  |          |       |
| 8   | Erciş     | 1      | 1    | Erciş    | 1      |          |       |          |       |          |       |
| 9   | Ereğli    | 1      | 1    | Ereğli   | 1      |          |       |          |       |          |       |
| 10  | Erzincan  | 0.9972 | 10   | Ereğli   | 0.114  | Kars     | 0.886 |          |       |          |       |
| 11  | Erzurum   | 0.9718 | 12   | Çorum    | 0.291  | Erciș    | 0.158 | Kars     | 0.53  | Kırşehir | 0.021 |
| 12  | Eskişehir | 0.8123 | 19   | Afyon    | 0.326  | Çorum    | 0.554 | Ereğli   | 0.12  |          |       |
| 13  | Ilgın     | 0.9277 | 14   | Afyon    | 0.186  | Çorum    | 0.253 | Ereğli   | 0.561 |          |       |
| 14  | Kars      | 1      | 1    | Kars     | 1      |          |       |          |       |          |       |
| 15  | Kastamonu | 0.9479 | 13   | Ereğli   | 0.088  | Kars     | 0.912 |          |       |          |       |
| 16  | Kırşehir  | 1      | 1    | Kırşehir | 1      |          |       |          |       |          |       |
| 17  | Malatya   | 0.7988 | 21   | Çorum    | 0.191  | Ereğli   | 0.016 | Kars     | 0.573 | Kırşehir | 0.219 |
| 18  | Muş       | 0.84   | 18   | Çorum    | 0.21   | Erciş    | 0.346 | Kars     | 0.366 | Kırşehir | 0.078 |
| 19  | Turhal    | 0.8895 | 17   | Çorum    | 0.526  | Ereğli   | 0.173 | Kırşehir | 0.301 |          |       |
| 20  | Uşak      | 0.9743 | 11   | Afyon    | 0.011  | Ankara   | 0.05  | Kars     | 0.774 | Kırşehir | 0.165 |
| 21  | Yozgat    | 1      | 1    | Yozgat   | 1      |          |       |          |       |          |       |
| 1   |           |        |      |          |        |          |       |          |       |          |       |

Table 22. Reference Data for Model 1

Table 21 shows efficient companies and reference factories in terms of BCC (techinical efficiency). For example, the reference factory is still itself because the efficient score of Afyon is one. Muş factory is not efficient in terms of technical efficiency and the reference of the Muş factory is determined as Çorum (0.526) Eregli (0.173) and Kırşehir (0.301).

### 5.7.2. Empirical Results for the Second Model

As can be seen in the table below (Table 23), Analysis 2 results that are used "capacity" "processed beet" and "employees" as input and "the amount of sugar produced" as output, and efficiency scores and reference sets obtained from DEA models are available.

| Mod | lel = CCR- | ŀ          |      |         |            |             |          |           |            |             |          |        |            |          |           |            |      |
|-----|------------|------------|------|---------|------------|-------------|----------|-----------|------------|-------------|----------|--------|------------|----------|-----------|------------|------|
|     |            |            |      | Daily C | apa city   |             |          | Processed | Beet       |             |          | Employ | ee         |          | Sugar Pro | oduced     |      |
| No. | DMU        | Score      | Rank | Data    | Projection | Improvement | Diff.(%) | Data      | Projection | Improvement | Diff.(%) | Data   | Projection | Diff.(%) | Data      | Projection | Diff |
|     |            |            |      |         |            | Potential   |          |           |            | Potential   |          |        |            |          |           |            | (%). |
| 1   | Afyon      | 0,9237     | 12   | 7500    | 6927,6415  | 572,358504  | -7,631   | 1027000   | 948625,042 | 78374,95781 | -7,631   | 652    | 602,243    | -7,631   | 137310    | 137310     | 0    |
| 7   | Ankara     | 0,8147     | 26   | 3800    | 2128,41541 | 1671,584592 | -43,989  | 503000    | 409773,176 | 93226,82357 | -18,534  | 783    | 294,0761   | -62,442  | 63110     | 63110      | 0    |
| ŝ   | Bar        | 0,9264     | II   | 3800    | 2298,22323 | 1201,776771 | -39,52   | 477600    | 442465,427 | 35134,57284 | -7,356   | 508    | 317,5378   | -37,493  | 68145     | 68145      | 0    |
| 4   | Burdur     | 0,8438     | 33   | 5200    | 2708,66239 | 2491,337609 | -47,91   | 618000    | 521485,227 | 96514,77317 | -15,617  | 546    | 374,2469   | -31,457  | 80315     | 80315      | 0    |
| s   | Çonun      | 0,9101     | 14   | 7500    | 3474,33209 | 4025,667905 | -53,676  | 735000    | 668895,787 | 66104,21344 | -8,994   | 645    | 480,0369   | -25,576  | 103018    | 103018     | 0    |
| 9   | Ehzě       | 0,8874     | 18   | 1800    | 387,168577 | 1412,831423 | -78,491  | 84000     | 74539,6303 | 9460,369744 | -11,262  | 369    | 53,49379   | -85,503  | 11480     | 11480      | 0    |
| 7   | Elbistan   | 0,7591     | 28   | 3800    | 1620,50959 | 2179,490408 | -57,355  | 411000    | 311988,609 | 87095,11099 | -24,09   | 484    | 223,9004   | -53,74   | 48050     | 48050      | 0    |
| 8   | Erciş      | 0,9663     | 7    | 2000    | 855,750476 | 1144,249524 | -57,212  | 170500    | 164753,36  | 5746,639536 | -3,37    | 478    | 118,2362   | -75,264  | 25374     | 25374      | 0    |
| 6   | Ereğli     | 0,9074     | 15   | 8500    | 7713,06602 | 786,9339785 | -9,258   | 1209700   | 1097705,41 | 111994,5922 | -9,258   | 720    | 653,3421   | -9,258   | 153705    | 153705     | 0    |
| 10  | Erzincan   | 0,8793     | 19   | 1850    | 929,474388 | 7113225029  | -49,758  | 203500    | 178947,057 | 24552,94339 | -12,065  | 332    | 128,4224   | 61£19-   | 27560     | 27560      | 0    |
| Ξ   | Erzurun    | 0,9442     | ×    | 3300    | 1402,64295 | 9402552646  | -57,496  | 286000    | 270043,835 | 15956,1653  | -5,579   | 496    | 193,7985   | -60,928  | 41590     | 41590      | 0    |
| 12  | Eskişchir  | 0,7749     | 27   | 7500    | 4057,17594 | 3442,82406  | -45,904  | 1008000   | 781107,798 | 226892,2021 | -22,509  | 786    | 560,5665   | -28,681  | 120300    | 120300     | 0    |
| 13  | Ilgm       | 0,8426     | 24   | 8000    | 5822,75343 | 2177,246572 | -27,216  | 1084000   | 913411,065 | 170588,9353 | -15,737  | 747    | 629,4447   | -15,737  | 137850    | 137850     | 0    |
| 14  | Kars       | 0,9935     | 9    | 1750    | 379,816421 | 1370,183579 | -78,296  | 73600     | 73124,1564 | 475,8435587 | -0,647   | 271    | 52,47797   | -80,635  | 11262     | 11262      | 0    |
| 15  | Kastamo    | п 0,8538   | 20   | 3800    | 802,666562 | 2997,333438 | -78,877  | 181000    | 154533,38  | 26466,6202  | -14,622  | 410    | 110,9018   | -72,951  | 23800     | 23800      | 0    |
| 16  | Krşchir    | 0,9339     | 10   | 4000    | 2629,23887 | 1370,761128 | -34,269  | 542000    | 506194,214 | 35805,78617 | -6,606   | 477    | 363,2732   | -23,842  | 77960     | 77960      | 0    |
| 17  | Malatya    | 0,8208     | 25   | 3600    | 1543,31196 | 2056,688045 | -57,13   | 362000    | 297126,134 | 64873,86584 | -17,921  | 507    | 213,2343   | -57,942  | 45761     | 45761      | 0    |
| 18  | Muş        | 0,8504     | 22   | 3800    | 1369,25472 | 2430,745277 | -63,967  | 310000    | 263615,766 | 46384,23446 | -14,963  | 544    | 189,1854   | -65,223  | 40600     | 40600      | 0    |
| 19  | Turhal     | 0,9134     | 13   | 7500    | 3515,54464 | 3984,455362 | -53,126  | 741000    | 676830,232 | 64169,76847 | -8,66    | 764    | 485,7311   | -36,423  | 104240    | 104240     | 0    |
| 20  | Uşak       | 0,8518     | 21   | 1800    | 885,294002 | 914,7059981 | -50,817  | 200100    | 170441,228 | 29658,77228 | -14,822  | 324    | 122,3181   | -62,247  | 26250     | 26250      | 0    |
| 21  | Yozgat     | 0,9377     | 6    | 3800    | 1899,41936 | 1900,58064  | -50,015  | 390000    | 365685,712 | 24314,2878  | -6,234   | 456    | 262,4364   | -42,448  | 56320     | 56320      | 0    |
| 22  | Adapazau   | n 0,8954   | 17   | 6000    | 3380,78956 | 2619,210441 | -43,654  | 474700    | 425047,253 | 49652,74719 | -10,46   | 309    | 276,6792   | -10,46   | 62388     | 62388      | 0    |
| 23  | Amasya     | 0,733      | 29   | 0009    | 2592,7479  | 3407,252104 | -56,788  | 681000    | 499168,789 | 181831,2113 | -26,701  | 672    | 358,2313   | -46,692  | 76878     | 76878      | 0    |
| 24  | Kayseri    | 1          | 1    | 6000    | 6000       | 0           | 0        | 1155150   | 1155150    | 0           | 0        | 829    | 829        | 0        | 177907    | 177907     | 0    |
| 25  | Boğazhya   | <b>u</b> 1 | 1    | 14400   | 14400      | 0           | 0        | 1411850   | 1411850    | 0           | 0        | 1015   | 1015       | 0        | 217441    | 217441     | 0    |
| 26  | Keskinki   | 1<br>1     | 1    | 6960    | 6960       | 7,27596E-12 | 0        | 766414    | 766414     | 0           | 0        | 478    | 478        | 0        | 110229    | 110229     | 0    |
| 27  | Konya      | 766,0      | Ś    | 16500   | 8814,4173  | 7685,582701 | -46,579  | 1496836   | 1492416,05 | 4419,947624 | -0,295   | 563    | 561,3375   | -0,295   | 170188    | 170188     | 0    |
| 28  | Cuntra     | 1          | 1    | 10315   | 10315      | 0           | 0        | 1757164   | 1757164    | 0           | 0        | 656    | 656        | 0        | 199787    | 199787     | 0    |
| 29  | Kūtahya    | 0,8964     | 16   | 3000    | 1655,24684 | 1344,753158 | -44,825  | 355500    | 318676,398 | 36823,60166 | -10,358  | 283    | 228,6999   | -19,187  | 49080     | 49080      | 0    |

Efficient factories are Çumra, Kayseri, Boğazlıyan and Keskinkılıç factories, inefficient factories are Eskişehir, Elbistan and Amasya according to CCR (total efficiency) in Turkey.



Figure 31. Improvement Potential of Employee

As can be seen in the figure above (Figure 31), Ankara is the worst in terms of employees. The number of workers is too high as it should be in there. It is thought to be more efficient if the number of workers are reduced. The most efficient factories are Boğazlıyan, Kayseri, Konya, Çumra and Keskinkılıç. Considering this, it can be said that private sugar factories are more efficient than public sugar factories in terms of workers.



Figure 32. Improvement Potential of Processed Beet

In terms of processed beets, Afyon, Bor, Çorum, Ereğli, Erciş, Erzurum, Kırşehir, Uşak, Yozgat, Keskinkılıç, Kütahya, Boğazlıyan, Çumra and Kayseri Sugar Factories are more efficient than other sugar factories (Figure 32). In terms of this output, Amasya, Elbistan and Eskişehir sugar factories can be developed according to the current situation.





In terms of capacity, Çumra, Keskinkılıç, Kayseri and Bağazlıyan Sugar factories are more efficient than others factories (Figure 33). If Adapazarı and Amasya sugar factories will rise their current capacity, the efficiency score of they can be increased.

The results of the BCC (technical analysis) are shown in Table below (Table 24). Accordingly, inactive factories are Amasya, Elbistan and Eskişehir.

The technical efficiency score of 11 (Erciş, Erzincan, Kars, Uşak, Kayseri, Boğazlıyan, Keskinkılıç, Konya, Çumra, Adapazarı and Kütahya Sugar Factories) of the 29 sugar factories which are examined according to the BCC-DEA model was one. In other words, BCC is active in these 14 factory. Amasya sugar factory is the lowest efficiency score decision unit with activity score of 0.7334 from 18 factories which are not efficient. Reference point of Amasya Sugar Factory is Kars and Kayseri Sugar Factories.

| Model | =BCC-I     |        |      |          |            |          |           |             |          |               |            |          |           |            |              |
|-------|------------|--------|------|----------|------------|----------|-----------|-------------|----------|---------------|------------|----------|-----------|------------|--------------|
|       |            |        |      | Daily Ca | apacity    |          | Processed | Beet        |          | Employ        | ee         |          | Sugar Pro | duced      |              |
| No.   | DMU        | Score  | Rank | Data     | Projection | Diff.(%) | Data      | Projection  | Diff.(%) | Data          | Projection | Diff.(%) | Data      | Projection | Diff.<br>(%) |
| 1     | Afyon      | 0,9238 | 17   | 7500     | 6928,591   | -7,619   | 1027000   | 948755,0583 | -7,619   | 652           | 602,32551  | -7,619   | 137310    | 137310     | 0            |
| 2     | Ankara     | 0,8153 | 26   | 3800     | 3072,2813  | -19,15   | 503000    | 410100,9664 | -18,469  | 783           | 444,60734  | -43,217  | 63110     | 63110      | 0            |
| e     | Bar        | 0,9271 | 16   | 3800     | 3200,6905  | -15,771  | 477600    | 442778,8401 | 1651-    | 508           | 461,46671  | -9,16    | 68145     | 68145      | 0            |
| 4     | Burdur     | 0,8608 | 21   | 5200     | 3591,2556  | -30,937  | 618000    | 532002,8339 | -13915   | 546           | 470,02192  | -13,915  | 80315     | 80315      | 0            |
| 5     | Çonun      | 0,9104 | 19   | 7500     | 4090,0676  | -45,466  | 735000    | 669109,622  | -8,965   | 645           | 578,2367   | -10,351  | 103018    | 103018     | 0            |
| 6     | Elazığ     | 0,9726 | 12   | 1800     | 1750,7101  | -2,738   | 84000     | 75440,15314 | -10,19   | 3 <b>(</b> 9) | 271,76857  | -26,35   | 11480     | 11480      | 0            |
| 7     | Ebistan    | 0,7748 | 28   | 3800     | 2735,9327  | -28,002  | 411000    | 318453,934  | -22,517  | 484           | 375,01631  | -22,517  | 48050     | 48050      | 0            |
| 8     | Erciş      | 1      | 1    | 2000     | 1999,9947  | 0        | 170500    | 170499,5456 | 0        | 478           | 477,98415  | -0,003   | 25374     | 25374      | 0            |
| 6     | Ereğli     | 0,9081 | 20   | 8500     | 7718,9394  | -9,189   | 1209700   | 1098541,294 | -9,189   | 720           | 15968,623  | 681'6-   | 153705    | 153705     | 0            |
| 10    | Erzincan   | 1      | 1    | 1850     | 1849,9938  | 0        | 203500    | 203499,3212 | 0        | 332           | 331,99889  | 0        | 27560     | 27560      | 0            |
| 11    | Erzurun    | 0,9456 | 14   | 3300     | 2523,4499  | -23,532  | 286000    | 270433,0736 | -5,443   | 496           | 372,54901  | -24,889  | 41590     | 41590      | 0            |
| 12    | Eskişehir  | 0,7819 | 27   | 7500     | 4584,499   | -38,873  | 1008000   | 788126,7555 | -21,813  | 786           | 614,55122  | -21,813  | 120300    | 120300     | 0            |
| 13    | llgm       | 0,8479 | 24   | 8000     | 6088,4289  | -23,895  | 1084000   | 919134,7977 | -15,209  | 747           | 633,38902  | -15,209  | 137850    | 137850     | 0            |
| 14    | Kars       | 1      | 1    | 1750     | 1749,9854  | -0,001   | 73600     | 73599,99492 | 0        | 2Л            | 19166012   | -0,001   | 11262     | 11262      | 0            |
| 15    | Kastamon   | 0,8562 | 22   | 3800     | 2069,7459  | -45,533  | 181000    | 154973,4169 | -14,379  | 410           | 312,98035  | -23,663  | 23800     | 23800      | 0            |
| 16    | Krşehir    | 19567  | 13   | 4000     | 3545,5687  | -11,361  | 542000    | 518553,796  | -4,326   | 477           | 456,36561  | -4,326   | 09611     | 77960      | 0            |
| 17    | Malatya    | 0,8218 | 25   | 3600     | 2629,8243  | -26,949  | 362000    | 297503,4631 | -17,817  | 507           | 386,51534  | -23,764  | 45761     | 45761      | 0            |
| 18    | Muş        | 0,8516 | 23   | 3800     | 2498,2016  | -34,258  | 310000    | 264007,8313 | -14,836  | 544           | 369,23406  | -32,126  | 40600     | 40600      | 0            |
| 19    | Turbal     | 0,9137 | 18   | 7500     | 4121,2326  | -45,05   | 741000    | 677040,5776 | -8,632   | 764           | 582,32848  | -23,779  | 104240    | 104240     | 0            |
| 20    | Uşak       | 1      | 1    | 1800     | 1166'6611  | 0        | 200100    | 200099,0093 | 0        | 324           | 323,99812  | -0,001   | 26250     | 26250      | 0            |
| 21    | Yozgat     | 0,9385 | 15   | 3800     | 2899,1138  | -23,708  | 390000    | 366032,8906 | -6,145   | 456           | 421,87146  | -7,484   | 56320     | 56320      | 0            |
| 3     | Adapazan   | 1      | 1    | 6000     | 5999,9363  | -0,001   | 474700    | 474698,8307 | 0        | 309           | 308,99924  | 0        | 62388     | 62388      | 0            |
| 23    | Amasya     | 0,7334 | 29   | 6000     | 3423,4109  | -12,943  | 681000    | 499457,2652 | -26,658  | 672           | 490,7086   | -26,978  | 76878     | 76878      | 0            |
| 24    | Kayseri    | 1      | 1    | 6000     | 0009       | 0        | 1155150   | 1155150     | 0        | 829           | 673        | 0        | 177907    | 177907     | 0            |
| 25    | Boğazhyan  | 1      | 1    | 14400    | 14400      | 0        | 1411850   | 1411850     | 0        | 1015          | 1015       | 0        | 217441    | 217441     | 0            |
| 26    | Keskinkılı | 1      | 1    | 6969     | 6969       | 0        | 766414    | 766414      | 0        | 478           | 478        | 0        | 110229    | 110229     | 0            |
| 27    | Konya      | 1      | 1    | 16500    | 16499,445  | -0,003   | 1496836   | 1496835,681 | 0        | 563           | 562,99988  | 0        | 170188    | 170188     | 0            |
| 28    | Çunna      | 1      | 1    | 10315    | 10315      | 0        | 1757164   | 1757164     | 0        | 636           | 656        | 0        | 199787    | 199787     | 0            |
| ୟ     | Kütahya    | 1      | 1    | 3000     | 2099,9807  | -0,001   | 355500    | 355499,4039 | 0        | 283           | 282,99953  | 0        | 49080     | 49080      | 0            |

### Table 24. Empirical Results for Model 2 (BCC)

| Table 25. | Reference | Data for | Model 2 |
|-----------|-----------|----------|---------|
|           |           |          |         |

| No. | DMU        | Score  | Rank |            | Referenc | e(Lambda   | )     |            |       |       |       |
|-----|------------|--------|------|------------|----------|------------|-------|------------|-------|-------|-------|
| 1   | Afyon      | 0,9238 | 17   | Kayseri    | 0,31     | Boğazlıya  | 0,011 | Keskinkılı | 0,624 | Çumra | 0,056 |
| 2   | Ankara     | 0,8153 | 26   | Kars       | 0,689    | Kayseri    | 0,311 |            |       |       |       |
| 3   | Bor        | 0,9271 | 16   | Kars       | 0,659    | Kayseri    | 0,341 |            |       |       |       |
| 4   | Burdur     | 0,8608 | 21   | Kars       | 0,368    | Kayseri    | 0,351 | Kütahya    | 0,281 |       |       |
| 5   | Çorum      | 0,9104 | 19   | Kars       | 0,449    | Kayseri    | 0,551 |            |       |       |       |
| 6   | Elazığ     | 0,9726 | 12   | Kars       | 0,985    | Uşak       | 0,015 |            |       |       |       |
| 7   | Elbistan   | 0,7748 | 28   | Kars       | 0,65     | Kayseri    | 0,183 | Kütahya    | 0,167 |       |       |
| 8   | Erciş      | 1      | 1    | Erciş      | 1        |            |       |            |       |       |       |
| 9   | Ereğli     | 0,9081 | 20   | Kayseri    | 0,314    | Boğazlıya  | 0,066 | Keskinkılı | 0,451 | Çumra | 0,169 |
| 10  | Erzincan   | 1      | 1    | Erzincan   | 1        |            |       |            |       |       |       |
| 11  | Erzurum    | 0,9456 | 14   | Kars       | 0,818    | Kayseri    | 0,182 |            |       |       |       |
| 12  | Eskişehir  | 0,7819 | 27   | Kars       | 0,2      | Kayseri    | 0,612 | Kütahya    | 0,188 |       |       |
| 13  | llgın      | 0,8479 | 24   | Kayseri    | 0,498    | Keskinkılı | 0,403 | Kütahya    | 0,099 |       |       |
| 14  | Kars       | 1      | 1    | Kars       | 1        |            |       |            |       |       |       |
| 15  | Kastamor   | 0,8562 | 22   | Kars       | 0,925    | Kayseri    | 0,075 |            |       |       |       |
| 16  | Kırşehir   | 0,9567 | 13   | Kars       | 0,344    | Kayseri    | 0,325 | Kütahya    | 0,331 |       |       |
| 17  | Malatya    | 0,8218 | 25   | Kars       | 0,793    | Kayseri    | 0,207 |            |       |       |       |
| 18  | Muş        | 0,8516 | 23   | Kars       | 0,824    | Kayseri    | 0,176 |            |       |       |       |
| 19  | Turhal     | 0,9137 | 18   | Kars       | 0,442    | Kayseri    | 0,558 |            |       |       |       |
| 20  | Uşak       | 1      | 1    | Uşak       | 1        |            |       |            |       |       |       |
| 21  | Yozgat     | 0,9385 | 15   | Kars       | 0,73     | Kayseri    | 0,27  |            |       |       |       |
| 22  | Adapazar   | 1      | 1    | Adapazar   | 1        |            |       |            |       |       |       |
| 23  | Amasya     | 0,7334 | 29   | Kars       | 0,606    | Kayseri    | 0,394 |            |       |       |       |
| 24  | Kayseri    | 1      | 1    | Kayseri    | 1        |            |       |            |       |       |       |
| 25  | Boğazlıya  | 1      | 1    | Boğazlıya  | 1        |            |       |            |       |       |       |
| 26  | Keskinkılı | 1      | 1    | Keskinkılı | 1        |            |       |            |       |       |       |
| 27  | Konya      | 1      | 1    | Konya      | 1        |            |       |            |       |       |       |
| 28  | Çumra      | 1      | 1    | Çumra      | 1        |            |       |            |       |       |       |
| 29  | Kütahya    | 1      | 1    | Kütahya    | 1        |            |       |            |       |       |       |

For example in the reference table above (Table 25); In order for the Elbistan Factory to be effective; Kars (0,65), Kayseri (0,183) and Kütahya (0,167) Factories are shown as reference (Table 22). It is stated that if Elbistan Factory's input are increased as much as the reference factories' specified rates, it will be efficient.

### 5.7.3. Empirical Results for the Third Model

Sugar factories in the EU and sugar factories in Turkey will be compared in terms of efficiency in Model 3. The analysis here will be two-way that are factory-based and country-based format. First, country-based comparison will be made.

### 5.7.3.1. Empirical Results for 3/1 Model

Analysis, that is used "daily capacity", "processed beet", "employees" as inputs and "the amount sugar produced" as output of sugar factories in Turkey and sugar factories in EU (EU-28) results are shown in the table below. Efficiency scores and reference sets obtained from DEA models are appeared in the table as well.

As can be seen in the figure below (Table 26), efficiency score of Belgium, UK and Croatia is number 1. That's why they are the most efficient countries among EU countries.



| Å         | del = CCR | Ţ.     |      |           |                        |                            |          |                   |                                |                             |          |                                 |                                 |                             |         |                   |            |            |
|-----------|-----------|--------|------|-----------|------------------------|----------------------------|----------|-------------------|--------------------------------|-----------------------------|----------|---------------------------------|---------------------------------|-----------------------------|---------|-------------------|------------|------------|
|           |           |        |      | Employees | Projected<br>Employees |                            |          | Daily<br>Capacity | Projected<br>Daily<br>Canacity |                             |          | Projected<br>Processed<br>Beets | Projected<br>Processed<br>Reets |                             |         | Sugar<br>Produced |            |            |
| No        | DMU       | Score  | Rank | Data      | Projection             | Improvemen.<br>t Potential | Diff.(%) | Data              | Projection 1                   | Improvemen I<br>t Potential | Diff.(%) | Data                            | Projection                      | Improve me n<br>t Potential | Diff.(% | Data              | Projection | Diff<br>%) |
| 1         | Austria   | 0,9557 | 12   | 777       | 343,56213              | 433,4                      | 55,784   | 24700             | 23606,45                       | 1093,5                      | 4,427    | 2557011                         | 2443803,823                     | 113198,9                    | 4,427   | 402985            | 002985     |            |
| 2         | Belgium   | 1      | 1    | 657       | 657                    | 0,0                        |          | 46040             | 46040                          | 0,0                         | 0        | 4441830                         | 441830                          | 0,0                         | 0       | 740009            | 740009     | (          |
| ÷         | Croatia   | 1      | 1    | 603       | 603                    | 0,0                        |          | 21000             | 21000                          | 0,0                         | 0        | 706296                          | 706296                          | 0,0                         | 0       | 119576            | 119576     | (          |
| 4         | Czechia   | 0,9947 | 5    | 1372      | 719,72864              | 652,3                      | 47,542   | 35186             | 31691,51                       | 3494,3                      | -9,931   | 2707108                         | 2692715,923                     | 14401,8                     | -0,532  | 455877            | 155877     | )          |
| 5         | Demark    | 1      | 1    | 491       | 491                    | 0,0                        | 0        | 21620             | 21620                          | 0,0                         | 0        | 1836975                         | 1836975                         | 0,0                         | 0       | 311000            | 311000     | )          |
| 9         | Finland   | 0,928  | 15   | 272       | 97,186628              | 174,8                      | 64,27    | 7000              | 6495,849                       | 504,1                       | -7,202   | 795553                          | 738256,0398                     | 57295,7                     | -7,202  | 120208            | 120208     |            |
| 5         | Етапсе    | 0,988  | 6    | 6450      | 6265,1256              | 184,9                      | 2,866    | 296725            | 293168,4                       | 3557,7                      | -1,199   | 25753975                        | 25445281,46                     | 308790,2                    | -1,199  | 4295763           | 005763     | _          |
| <b>00</b> | Germany   | 0,9841 | 7    | 5164      | 4645,2089              | 518,8                      | 10,046   | 247000            | 204540,6                       | 42459,3                     | ولر11-   | 17660750                        | 17379068,87                     | 281689,0                    | -1,595  | 2942281           | 2942281    |            |
| 6         | Greece    | 0,7523 | 61   | 578       | 212,27333              | 365,7                      | 63,275   | 14000             | 10532,76                       | 3467,2                      | -24,766  | 1238350                         | 931660,3356                     | 306689,8                    | -24,766 | 156899            | 156899     |            |
| 10        | Hungary   | 0,8806 | 16   | 279       | 96,734167              | 182,3                      | 65,328   | 7035              | 6196,586                       | 838,4                       | -11,918  | 690£16                          | 804251,6539                     | 108819,6                    | -11,918 | 128834            | 128834     | _          |
| II        | ltaly     | 0,8466 | 17   | 1000      | 399,90813              | 600,1                      | 60009    | 32065             | 27146,46                       | 4918,5                      | -15,339  | 3461081                         | 2930176,512                     | 530895,2                    | -15,339 | 480398            | 480398     | _          |
| 13        | Lithuania | 0,9713 | 6    | 265       | 180,74584              | 84,3                       | 31,794   | 8930              | 8673,709                       | 256,3                       | -2,87    | 781551                          | 759120,52                       | 22430,5                     | -2,87   | 128018            | 128018     | _          |
| 13        | Netherlan | 0,9302 | 13   | 744       | 692,04196              | 52,0                       | 6,984    | 53700             | 48227,31                       | 5472,6                      | -10,191  | 5104460                         | 4747984,56                      | 356495,5                    | 6,984   | 788639            | 788639 (   |            |
| 14        | Poland    | 0,9657 | п    | 4682      | 2305,6018              | 2376,4                     | -50,756  | 123000            | 101521,6                       | 21478,3                     | -17,462  | 8931933                         | 8625932,533                     | 306008,0                    | -3,426  | 1460371           | 1460371    |            |
| 15        | Slovakia  | 0,9297 | 14   | 492       | 154,42:225             | 337,6                      | 68,613   | 10812             | 10052,34                       | 759,7                       | -7,026   | 1336375                         | 1242480,219                     | 93893,7                     | -7,026  | 200189            | 200189     | _          |
| 16        | Spain     | 0,9676 | 9    | 1814      | 592,45927              | 1221,5                     | 6734     | 36621             | 35435,85                       | 1185,1                      | -3,236   | 3410791                         | 3300408,66                      | 110373,2                    | -3,236  | 552207            | 552207     | _          |
| 11        | Sweden    | 0,9808 | -    | 416       | 256,54228              | 159,5                      | -38,331  | 16650             | 16329,57                       | 320,5                       | -1,925   | 1573651                         | 1543365,973                     | 30292,8                     | -1,925  | 257764            | 257764     |            |
| 18        | Turkcy    | 0,8304 | 18   | 18468     | 2138,831               | 16329,2                    | -88,419  | 178419            | 1481 <i>57</i> ,8              | 30261,6                     | -16,961  | 17949200                        | 14904883,56                     | 3044363,8                   | -16,961 | 2467898           | 2467898    | _          |
| ଶ         | UK        | 1      | 1    | 730       | 730                    | 0,0                        | _        | 46600             | 46600                          | 0,0                         | 0        | 611125                          | 6111125                         | 0,0                         | 0       | 08/1780           | 08/1/180   |            |

Table 26. Empirical Results for Model 3.1 (CCR)




Turkey is the most inefficient country in terms of the number of personnel employed and Poland is the country following it (Figure 34). It is inevitable that Turkey should go to reduction in the number of employees in order to be more efficient.



Figure 35. Improment Potential of Capacity

In Figure 35 the comparison of capacities of the factories is shown. It is thought that they will be more efficient if Germany increased its capacity from 200 000 to 250 000, and Turkey rises capacities of the factories from 150 000 to 180 000.



Figure 36. Improment Potential of Processed Beets

Figure 36 shows efficiency level of the countries in terms of beet processed. It is thought that Turkey will be more efficient if it raises the level of beet processed.

| Mod | lel = CCR-I |        |      |         |                   |         |        |
|-----|-------------|--------|------|---------|-------------------|---------|--------|
| No. | DMU         | Score  | Rank |         | Reference(Lambda) |         |        |
| 1   | Austria     | 0.9557 | 12   | Belgium | 0.409             | UK      | 0.103  |
| 2   | Belgium     | 1      | 1    | Belgium | 1                 |         |        |
| 3   | Croatia     | 1      | 1    | Croatia | 1                 |         |        |
| 4   | Czechia     | 0.9947 | 5    | Denmark | 1.466             |         |        |
| 5   | Denmark     | 1      | 1    | Denmark | 1                 |         |        |
| 6   | Finland     | 0.928  | 15   | Belgium | 0.071             | UK      | 0.069  |
| 7   | France      | 0.988  | 6    | Belgium | 1.011             | Denmark | 11.407 |
| 8   | Germany     | 0.9841 | 7    | Denmark | 9.461             |         |        |
| 9   | Greece      | 0.7523 | 19   | Belgium | 0.069             | Denmark | 0.34   |
| 10  | Hungary     | 0.8808 | 16   | Belgium | 0.005             | UK      | 0.128  |
| 11  | Italy       | 0.8466 | 17   | Belgium | 0.395             | UK      | 0.193  |
| 12  | Lithuania   | 0.9713 | 9    | Belgium | 0.042             | Denmark | 0.312  |
| 13  | Netherlands | 0.9302 | 13   | Belgium | 0.988             | UK      | 0.059  |
| 14  | Poland      | 0.9657 | 11   | Denmark | 4.696             |         |        |
| 15  | Slovakia    | 0.9297 | 14   | Belgium | 0.047             | UK      | 0.169  |
| 16  | Spain       | 0.9676 | 10   | Belgium | 0.546             | Denmark | 0.476  |
| 17  | Sweden      | 0.9808 | 8    | Belgium | 0.294             | Denmark | 0.129  |
| 18  | Turkey      | 0.8304 | 18   | Belgium | 2.835             | UK      | 0.378  |
| 19  | UK          | 1      | 1    | UK      | 1                 |         |        |

**Table 27.** Reference Data for Model 3.128

In Table 27 the efficiency measures and reference numbers is shown. Most efficient countries are Belgium, Croatia, and Denmark. The lowest ones are Italy, Turkey and Greece.

| Mo | del = BCC | T.     |      |           |            |          |                   |            |          |                    |             |          |                   |            |              |
|----|-----------|--------|------|-----------|------------|----------|-------------------|------------|----------|--------------------|-------------|----------|-------------------|------------|--------------|
|    |           |        |      | Employees |            |          | Daily<br>Capacity |            |          | Processed<br>Beets |             |          | Sugar<br>Produced |            |              |
| No | DMU       | Score  | Rank | Data      | Projection | Diff.(%) | Data              | Projection | Diff.(%) | Data               | Projection  | Diff (%) | Data              | Projection | Diff.(<br>%) |
| -  | Austria   | 0,9597 | 15   | 777       | 486,554549 | -37,38   | 24700             | 23705,144  | -4,028   | 2557011            | 2454020,793 | -4,028   | 402985            | 402985     | •            |
| 3  | Belgium   | 1      | 1    | 657       | 657        | 0        | 46040             | 46040      | 0        | 441830             | 4441830     | 0        | 740009            | 740009     | 0            |
| ŝ  | Croatia   | 1      | 1    | 603       | 603        | 0        | 21000             | 21000      | 0        | 706296             | 706296      | 0        | 119576            | 119576     | 0            |
| 4  | Czechia   | 86660  | 6    | 1372      | 707,656066 | -48,422  | 35186             | 31622,199  | -10,128  | 2707108            | 2706542,908 | -0,021   | 455877            | 455877     | 0            |
| S  | Dennark   | -      | 1    | 491       | 491        | 0        | 21620             | 21620      | 0        | 1836975            | 1836975     | 0        | 311000            | 311000     | 0            |
| 9  | Finland   | 1      | 1    | 272       | 271,997869 | -0,001   | 7000              | 6999,993   | 0        | 795553             | 795552,1993 | 0        | 120208            | 120208     | 0            |
| ٢  | France    | -      | 1    | 6450      | 6449,99984 | 0        | 296725            | 296725     | 0        | 25753975           | 25753974,73 | 0        | 4295763           | 4295763    | 0            |
| œ  | Germany   | 0,9983 | 10   | 5164      | 4425,9403  | -14,292  | 247000            | 203281,64  | -17,7    | 17660750           | 17630222,05 | -0,173   | 2942281           | 2942281    | 0            |
| 6  | Greece    | 0,7685 | 19   | 578       | 295,879067 | -48,81   | 14000             | 10758,674  | -23,152  | 1238350            | 951643,1547 | -23,152  | 156899            | 156899     | 0            |
| 10 | Hungary   | 1      | 1    | 279       | 278,997892 | -0,001   | 7035              | 7034,99    | 0        | 913069             | 913067,7027 | 0        | 128834            | 128834     | 0            |
| 11 | ltaly     | 0,8488 | 18   | 1000      | 531,14873  | -46,885  | 32065             | 27218,085  | -15,116  | 3461081            | 2937907,234 | -15,116  | 480398            | 480398     | 0            |
| 12 | Lithnamia | 1      | 1    | 265       | 264,998833 | 0        | 8930              | 8929,9959  | 0        | 781551             | 781550,6407 | 0        | 128018            | 128018     | 0            |
| 13 | Netherlan | 0,9336 | 16   | 744       | 694,612545 | -6,638   | 53700             | 47323,82   | -11,874  | 5104460            | 4765620,905 | -6,638   | 788639            | 788639     | 0            |
| 14 | Poland    | 0,978  | 13   | 4682      | 2209,82313 | -52,802  | 123000            | 100971,7   | -17,909  | 8931933            | 8735629,957 | -2,198   | 1460371           | 1460371    | 0            |
| 15 | Slovakia  | 96796  | 12   | 492       | 315,380591 | -35,898  | 10812             | 10591,914  | -2,036   | 1336375            | 1309172,147 | -2,036   | 200189            | 200189     | 0            |
| 16 | Spain     | 0,9678 | 14   | 1814      | 592,774058 | -67,322  | 36621             | 35442,235  | -3,219   | 3410791            | 3301003,68  | -3,219   | 552207            | 552207     | 0            |
| 17 | Sweden    | 9066 0 | 11   | 416       | 385,796356 | -7,26    | 16650             | 16493,031  | -0,943   | 1573651            | 1558815,281 | -0,943   | 257764            | 257764     | 0            |
| 18 | Turkey    | 0,8908 | 17   | 18468     | 3298,86285 | -82,137  | 178419            | 158931,76  | -10,922  | 17949200           | 14932802,22 | -16,805  | 2467898           | 2467898    | 0            |
| 19 | UK        | 1      | 1    | 730       | 730        | 0        | 46600             | 46600      | 0        | 6111125            | 6111125     | 0        | 977780            | 977780     | 0            |

Table 29. Empirical Results for Model 3.1 (BCC)

As can be seen in the Table above (Table 29), the most efficient countries are Belgium, Croatia, Denmark, Finland, Hungary, UK and Lithuania in terms of technical efficiency. Inefficient countries are Greece, Turkey and Italy.

| No. | DMU         | Score  | Rank |           | Referen | nce(Lambda) |       |        |       |
|-----|-------------|--------|------|-----------|---------|-------------|-------|--------|-------|
| 1   | Austria     | 0.9597 | 15   | Denmark   | 0.565   | Lithuania   | 0.233 | UK     | 0.202 |
| 2   | Belgium     | 1      | 1    | Belgium   | 1       |             |       |        |       |
| 3   | Croatia     | 1      | 1    | Croatia   | 1       |             |       |        |       |
| 4   | Czechia     | 0.9998 | 9    | Denmark   | 0.964   | France      | 0.036 |        |       |
| 5   | Denmark     | 1      | 1    | Denmark   | 1       |             |       |        |       |
| 6   | Finland     | 1      | 1    | Finland   | 1       |             |       |        |       |
| 7   | France      | 1      | 1    | France    | 1       |             |       |        |       |
| 8   | Germany     | 0.9983 | 10   | Denmark   | 0.34    | France      | 0.66  |        |       |
| 9   | Greece      | 0.7685 | 19   | Denmark   | 0.12    | Lithuania   | 0.872 | UK     | 0.008 |
| 10  | Hungary     | 1      | 1    | Hungary   | 1       |             |       |        |       |
| 11  | Italy       | 0.8488 | 18   | Denmark   | 0.583   | Lithuania   | 0.128 | UK     | 0.289 |
| 12  | Lithuania   | 1      | 1    | Lithuania | 1       |             |       |        |       |
| 13  | Netherlands | 0.9336 | 16   | Belgium   | 0.863   | France      | 0.005 | UK     | 0.132 |
| 14  | Poland      | 0.978  | 13   | Denmark   | 0.712   | France      | 0.288 |        |       |
| 15  | Slovakia    | 0.9796 | 12   | Finland   | 0.631   | Hungary     | 0.279 | UK     | 0.09  |
| 16  | Spain       | 0.9678 | 14   | Belgium   | 0.544   | Denmark     | 0.454 | France | 0.002 |
| 17  | Sweden      | 0.9906 | 11   | Denmark   | 0.396   | Lithuania   | 0.537 | UK     | 0.067 |
| 18  | Turkey      | 0.8908 | 17   | France    | 0.449   | UK          | 0.551 |        |       |
| 19  | UK          | 1      | 1    | UK        | 1       |             |       |        |       |

 Table 30. Reference Data for Model 3.1

In Table 30 reference numbers is shown. For instance, as reference countries for Austria; Denmark 0.565, Lithunia 0.233 and UK 0.022 rates are specified. Since the activity number of the Belgian country is 1, it is also referred to as reference. Turkey's reference countries appear as France 0.449 and UK 0.551.

#### 5.7.3.2. Empirical Results for the 3/2 Model

In the analysis 3-2, factory-based comparisons of sugar factories in the EU and sugar factories in Turkey were made. In the table below, efficience scores and reference sets obtained by DEA models are shown. With the established model, "employees per factory" and "capacity per factory" data were entered as input and the "sugar produced per factory" data were taken as output.

| Mo | del = CCR. | Ŧ      |      |                           |                        |                          |          |                      |                       |                          |              |                       |            |              |
|----|------------|--------|------|---------------------------|------------------------|--------------------------|----------|----------------------|-----------------------|--------------------------|--------------|-----------------------|------------|--------------|
|    |            |        |      | Employeers<br>Per Factory | Projected<br>Employers |                          |          | Capacity<br>Per      | Projected<br>Capacity |                          |              | Sugar<br>Produced     |            |              |
|    |            |        |      | (piece)                   | per factory            |                          |          | Factory<br>(tone/day | per Factory           |                          |              | Per Factory<br>(tone) |            |              |
| No | DMU        | Score  | Rank | Data                      | Projection             | Improvement<br>Potential | Diff.(%) | Data                 | Projection            | Improvement<br>Potential | Diff.(%<br>) | Data                  | Projection | Diff.<br>(%) |
| 1  | Germany    | 0,5677 | 16   | 258                       | 110,13468              | 147,9                    | -57,312  | 12350                | 7011,3059             | 5338,7                   | -43,228      | 147114,05             | 147114,05  | 0            |
| 2  | Austria    | 0,7776 | 7    | 389                       | 150,84427              | 238,2                    | -61,223  | 12350                | 9602,9276             | 2747,1                   | -22,244      | 201492,5              | 201492,5   | 0            |
| 3  | Belgium    | 0,8432 | 4    | 219                       | 184,66541              | 34,3                     | -15,678  | 15346,6              | 11756,022             | 3590,6                   | -23,397      | 246669,6              | 246669,6   | 0            |
| 4  | Czechia    | 0,6175 | 15   | 196                       | 48,755042              | 147,2                    | -75,125  | 5026,57              | 3103,8046             | 1922,8                   | -38,252      | 65125,28              | 65125,28   | 0            |
| 5  | Denmark    | 0,6856 | 12   | 246                       | 116,41269              | 129,6                    | -52,678  | 10810                | 7410,9718             | 3399,0                   | -31,443      | 155500                | 155500     | 0            |
| 9  | Finland    | 0,8184 | 5    | 272                       | 89,991875              | 182,0                    | -66,915  | 7000                 | 5728,991              | 1271,0                   | -18,157      | 120208                | 120208     | 0            |
| 7  | France     | 0,69   | 11   | 258                       | 128,63828              | 129,4                    | -50,14   | 11869                | 8189,2678             | 3679,7                   | -31,003      | 171830,52             | 171830,52  | 0            |
| œ  | Netherlan  | 0,7936 | 6    | 372                       | 295,20125              | 76,8                     | -20,645  | 26850                | 18792,866             | 8057,1                   | -30,008      | 394319,5              | 394319,5   | 0            |
| 6  | UK         | 1      | 1    | 183                       | 183                    | 0,0                      | 0        | 11650                | 11650                 | 0,0                      | 0            | 24445                 | 24445      | 0            |
| 2  | Spain      | 0,7186 | 6    | 363                       | 82,68026               | 280,3                    | -77,223  | 7324,2               | 5263,5248             | 2060,7                   | -28,135      | 110441,4              | 110441,4   | 0            |
| 11 | Sweden     | 0,7378 | 80   | 416                       | 192,97107              | 223,0                    | -53,613  | 16650                | 12284,77              | 4365,3                   | -26,218      | 257764                | 257764     | 0            |
| 12 | Italy      | 0,714  | 10   | 333                       | 119,88081              | 213,1                    | -64      | 10688,33             | 7631,7568             | 3056,5                   | -28,597      | 160132,6              | 160132,6   | 0            |
| 13 | Lithnania  | 0,6832 | 13   | 133                       | 47,919356              | 85,1                     | -63,97   | 4465                 | 3050,6038             | 1414,4                   | -31,677      | 64009                 | 64009      | 0            |
| 14 | Hungary    | 0,8728 | 3    | 279                       | 96,449598              | 182,5                    | -65,43   | 7035                 | 6140,0974             | 894,9                    | -12,721      | 128834                | 128834     | 0            |
| 15 | Poland     | 0,5659 | 17   | 260                       | 60,738003              | 199,3                    | -76,639  | 6833,3               | 3866,6543             | 2966,7                   | -43,415      | 81131,7               | 81131,7    | 0            |
| 16 | Slovakia   | 0,8824 | 2    | 246                       | 74,934212              | 171,1                    | -69,539  | 5406                 | 4770,402              | 635,6                    | -11,757      | 100094,5              | 100094,5   | 0            |
| 17 | Turkey     | 0,6592 | 14   | 560                       | 55,986643              | 504,0                    | -90,002  | 5407                 | 3564,177              | 1842,8                   | -34,082      | 74785                 | 74785      | 0            |
| 18 | Greece     | 0,5341 | 18   | 289                       | 58,730015              | 230,3                    | -79,678  | 7000                 | 3738,8234             | 3261,2                   | -46,588      | 78449,5               | 78449,5    | 0            |
| 19 | Croatia    | 0,2714 | 19   | 201                       | 29,839829              | 171,2                    | -85,154  | 7000                 | 1899,6394             | 5100,3                   | -72,862      | 39859                 | 39859      | 0            |



Figure 37. Improment Potential of Processed Beets

When we evaluate on factory basis, the most efficient countries are UK and Slovakia. Inefficient countries are Croatia, Greece and Poland. Turkey ranks 14th in the efficiency rankings (Table 31).

As can be seen from the examination of the Figure 37, in Turkey, the number of workers is so high than it should be. In order to make the country efficient, the number of workers per factory should be decreased below 100 in Turkey. Belgium is the most efficient country in terms of number of employees.





In terms of improvement potential of capacity (Figure 38); UK is the most efficient country, but Netherland, Croatia and Germany are the inefficient countries.

| Mo       | del = BCC | Ţ      |      |             |            |          |                       |            |          |                       |            |       |
|----------|-----------|--------|------|-------------|------------|----------|-----------------------|------------|----------|-----------------------|------------|-------|
|          |           |        |      | Employeers  |            |          | Capacity              |            |          | Sugar                 |            |       |
|          |           |        |      | per Factory |            |          | per                   |            |          | Produced              |            |       |
|          |           |        |      | (Piece)     |            |          | Factory<br>(tone/day) |            |          | per Factory<br>(tone) |            |       |
| No       | DMU       | Score  | Rank | Data        | Projection | Diff.(%) | Data                  | Projection | Diff.(%) | Data                  | Projection | Diff. |
| <b>_</b> | Gernarry  | 0,6272 | 19   | 258         | 161,82604  | -37,277  | 12350                 | 7746,324   | -37,277  | 147114,05             | 147114,05  | 0     |
| 2        | Austria   | 0,7929 | 11   | 389         | 201,74319  | -48,138  | 12350                 | 9792,0434  | -20,712  | 201492,5              | 201492,5   | 0     |
| m        | Belgium   | 0,8484 | 6    | 219         | 185,80409  | -15,158  | 15346,6               | 11875,483  | -22,618  | 246669,6              | 246669,6   | 0     |
| 4        | Czechia   | 0,8941 | 7    | 196         | 136,49625  | -30,359  | 5026,57               | 4494,0812  | -10,593  | 65125,28              | 65125,28   | 0     |
| <b>~</b> | Dennark   | 0,7396 | 14   | 246         | 181,93162  | -26,044  | 10810                 | 7994,6376  | -26,044  | 155500                | 155500     | 0     |
| 9        | Finland   | 0,8966 | 6    | 272         | 237,21881  | -12,787  | 7000                  | 6276,0153  | -10,343  | 120208                | 120208     | 0     |
| 7        | France    | 0,7278 | 15   | 258         | 187,7789   | -27,217  | 11869                 | 8638,5572  | -27,217  | 171830,52             | 171830,52  | 0     |
| ~        | Netherlan | 1      | 1    | 372         | 371,99875  | 0        | 26850                 | 26849,869  | 0        | 394319,5              | 394319,5   | 0     |
| 6        | UK        | 1      | 1    | 183         | 183        | 0        | 11650                 | 11650      | 0        | 24445                 | 24445      | 0     |
| 10       | Spain     | 0,7992 | 10   | 363         | 241,48133  | -33,476  | 7324,2                | 5853,5529  | -20,079  | 110441,4              | 110441,4   | 0     |
| 11       | Sweden    | 0,7808 | 12   | 416         | 199,79474  | -51,972  | 16650                 | 13000,657  | -21,918  | 257764                | 257764     | 0     |
| 12       | Italy     | 0,7488 | 13   | 333         | 219,79421  | -33,996  | 10688,33              | 8002,9868  | -25,124  | 160132,6              | 160132,6   | 0     |
| 13       | Lithuania | 1      | 1    | 133         | 132,99936  | 0        | 4465                  | 4464,9784  | 0        | 64009                 | 64009      | 0     |
| 1        | Hungary   | 0,9452 | 5    | 279         | 233,4541   | -16,325  | 7035                  | 6649,14    | -5,485   | 128834                | 128834     | 0     |
| 15       | Poland    | 0,7188 | 16   | 260         | 186,61958  | -28,223  | 6833,3                | 4911,4799  | -28,124  | 81131,7               | 81131,7    | 0     |
| 16       | Slovakia  | 1      | 1    | 246         | 245,9971   | -0,001   | 5406                  | 5405,9892  | 0        | 100094,5              | 100094,5   | 0     |
| 17       | Turkey    | 0,8777 | 8    | 560         | 166,7452   | -70,224  | 5407                  | 4745,9773  | -12,225  | 74785                 | 74785      | 0     |
| 18       | Greece    | 0,6916 | 17   | 289         | 178,2204   | -38,332  | 7000                  | 4841,5363  | -30,835  | 78449,5               | 78449,5    | 0     |
| ଶ        | Croatia   | 0,6617 | 18   | 201         | 132,99867  | -33,832  | 7000                  | 4464,9554  | -36,215  | 39859                 | 64008,36   | 60,6  |

Table 32 shows the BCC (technical activity) rates. According to this analysis, countries that have taken the best technical efficiency, are Netherlands, UK, Lithuania and Slovakia. Turkey, technical efficiencies have taken place in the rankings 8th, Greece, Croatia and Germany are the countries located in the last ranks. Although this result means that Turkey

is in the middle of technical efficiency, it should be taken into consideration that four factories belonging to TSFI did not campaign in 2016 and therefore would not affect the results of the analysis as it did not produce sugar and therefore it was not included in the analysis.

| No. | DMU         | Score  | Rank |             | Refere | nce(Lambda) |       |          |       |
|-----|-------------|--------|------|-------------|--------|-------------|-------|----------|-------|
| 1   | Germany     | 0.6272 | 19   | UK          | 0.449  | Lithuania   | 0.494 | Slovakia | 0.056 |
| 2   | Austria     | 0.7929 | 11   | UK          | 0.702  | Slovakia    | 0.298 |          |       |
| 3   | Belgium     | 0.8484 | 9    | Netherlands | 0.015  | UK          | 0.985 |          |       |
| 4   | Czechia     | 0.8941 | 7    | Lithuania   | 0.969  | Slovakia    | 0.031 |          |       |
| 5   | Denmark     | 0.7396 | 14   | UK          | 0.461  | Lithuania   | 0.31  | Slovakia | 0.229 |
| 6   | Finland     | 0.8966 | 6    | UK          | 0.139  | Slovakia    | 0.861 |          |       |
| 7   | France      | 0.7278 | 15   | UK          | 0.549  | Lithuania   | 0.209 | Slovakia | 0.242 |
| 8   | Netherlands | 1      | 1    | Netherlands | 1      |             |       |          |       |
| 9   | UK          | 1      | 1    | UK          | 1      |             |       |          |       |
| 10  | Spain       | 0.7992 | 10   | UK          | 0.072  | Slovakia    | 0.928 |          |       |
| 11  | Sweden      | 0.7808 | 12   | Netherlands | 0.089  | UK          | 0.911 |          |       |
| 12  | Italy       | 0.7488 | 13   | UK          | 0.416  | Slovakia    | 0.584 |          |       |
| 13  | Lithuania   | 1      | 1    | Lithuania   | 1      |             |       |          |       |
| 14  | Hungary     | 0.9452 | 5    | UK          | 0.199  | Slovakia    | 0.801 |          |       |
| 15  | Poland      | 0.7188 | 16   | Lithuania   | 0.525  | Slovakia    | 0.475 |          |       |
| 16  | Slovakia    | 1      | 1    | Slovakia    | 1      |             |       |          |       |
| 17  | Turkey      | 0.8777 | 8    | Lithuania   | 0.701  | Slovakia    | 0.299 |          |       |
| 18  | Greece      | 0.6916 | 17   | Lithuania   | 0.6    | Slovakia    | 0.4   |          |       |
| 19  | Croatia     | 0.6617 | 18   | Lithuania   | 1      |             |       |          |       |

 Table 33. Reference Data for Model 3.1

#### 6. CONCLUSION AND EVALUATION

With the phenomenon of globalization, the intense competition in all areas of the economic system makes it essential for the efficient use of scarce resources in both public and private enterprises.

Before the accession of EU, it is very important to analyze the level of efficiencies of the goods which have big economic impact for the Turkey's economy in terms of production, income and employment. In EU, there is free flow of goods between countries and there is no custom tariff for the trade between the community countries. This requires competitiveness for the EU candidate countries. Sugar is such a good which its economic influence is relatively high for Turkey too. The purpose of the study is to determine whether Turkey has a capability to compete with the EU sugar industry and to show how can compete under the current competitive conditions.

In Turkey, the need for efficiency analysis in sugar factories started especially from the start of the quota application in terms of analyzing the effects of quotas. And also, privatization of the sugar factories made it an important tool for determining the values of state owned sugar factories especially whose privatization process ended in 2018.

Due to the data unavailability of 2017/2018 marketing year, this thesis's analysis is based on the data of 2016 therefore does not cover the privatization effects which were made in 2018 and the EU quota abolishion which was made in 2017.

In addition to EU-Turkey comparative analysis, by using input sets per factory, the activities of all sugar factories belonging to the state and private sector in Turkey are analyzed and are revealed the improvement potentials.

The research data sources are; abolished Turkey Sugar Authority, Department of Sugar of Ministry of Agriculture and Forest, Turkish Sugar Factories Inc. (Türkşeker) Annual Reports, International Sugar Organization Sugar Yearbooks, European Commission Reports, Annual Statistics, Association of Beet Cultivators Cooperatives (Pankobirlik), Amasya, Kütahya, Konya, Kayseri Sugar Factories Annual Reports, CEFs Statistics, FAOStat, EuroStat, IMF World Economic Outlook Database and Barten's Sugar Industry Europe. In this study, 3 models were set up. First model compares the sugar factories within the Turkish Sugar Factory's Co, second model compares to the public and private sugar factory and the last model compares the relative efficiency of sugar industries of Turkey with EU countries.

Subsequently, some suggestions were made by considering the analysis results of the established models.

Production efficiency of 18 countries which have sugar factories and which are member of in EU-28 have been analyzed based on the data of 2016, but Romania are not included in the analysis due to lack of the data. As a result of all these analyses, we came to conclusion about whether the sugar industry in Turkey can compete with the EU and what should be done for increasing competitiveness of Turkish Sugar Industry.

With the first model established in the study; the production performance of the stateowned sugar factories operating in Turkey is aimed to be measured. For this purpose, efficiency measurement was carried out by using DEA which is non-parametric method with 2016 data of 21 sugar factories operating in public sector. The aim of the second model established in the study is to measure the relative efficiency of state owned sugar factories and private sugar factories all together.

The purpose of the third model established in the study can be summarized as determining whether the sugar industry in Turkey is capable of competing with the sugar industry of the European Union and making recommendations on how to compete under the current competitive conditions.

#### 6.1. Evaluation of The Result of Analysis of The Established Models

In the models, 21 factories from 25 public sugar factories were included in the analysis. Four factories (Ağrı, Alpullu, Çarşamba and Susurluk sugar factories) were not included in the analysis on the grounds that they were not operated in 2016.

#### 6.1.1. Model 1 (civil servant-worker-temporary worker-fuel-electricity)

• In the first model established by taking the basic inputs that reflects cost of production 76% of the factories analyzed according to CCR method and 57% of the factories analyzed according to the BCC method were found ineffective by solving with DEA-SOLVER-LVS program.

• The inefficiency of decision units analyzed by DEA technique shows that waste was made in the use of input factors and therefore the potential output amount could not be reached.

• When the data of 21 public sugar factories analyzed in the model, it is examined the dimensions of waste made in ineffective decision units, from another perspective, the potential improvements are observed. For instance, Malatya Sugar Factory, which was ineffective under both CCR and BCC, produced 45 746 tons of sugar in the marketing year of 2016 with 346 employees, while Afyon Sugar Factory produced 137 310 tons of sugar with 316 employees. The comparative data shows that proportion of the wastage is high resulting from the incorrect personnel policies in state-owned sugar factories in Turkey. In addition, it is observed that the employment policies of the factories in the eastern Anatolia region are governed for social purposes rather than production efficiency.

• According to the results of the analysis, Malatya, Muş, Turhal and Bor sugar factories are in the last ranks and the most inefficient ones. In the analysis, the reason for the inefficiency of these factories is due to the inefficient employment policies, inefficient fuel and electricity consumption.

• As a result of the analysis, it is seen that the factories with high efficiency have high production capacities and the factories with low efficiency have low production capacities.

• Potential improvement analysis was carried out along with efficiency analysis of Turkish sugar factories. The analysis revealed how inefficient factories could be effective. In the analysis, it was calculated how much a sugar factory should reduce its input by using minimum inputs in order to obtain a constant output. It has been shown that inactive sugar factories should take effective sugar factories as good reference.

• Studies with DEA technique have strong features such as obtaining the important administrative information with the ease of implementation and interpretation, but also have some limitations arising from the structure of the technique. First of all, since DEA is a relative efficiency measurement technique, it cannot be claimed that the results obtained reflect the absolute effectiveness or inefficiency of the decision units. Different conclusions can be made by joining other decision-making units or subtracting one or more of the existing decision-making units. DEA, on the other hand, is a cross-sectional analysis whose

results are valid only for the period in which it is applied. When the effectiveness of the same decision units is examined in another period, different results can be obtained.

### 6.1.2. Model 2 (Capacity-Processed Beet-Worker)

• The model compares relative efficiency of public and private sugar factories in Turkey are compared in terms of production capacity with the 2016 data.

• In the second model the inputs representing the production capacity (number of employees, processed beet and daily beet processing capacity) were solved by using DEA-solver-LVS program and 86% of the factories were inefficient according to CCR method, 62% of the factories were inefficient according to BCC method.

• In the analysis of the second model according to BCC method; Adapazarı, Erciş, Erzincan, Çumra, Konya, Kayseri, Boğazlıyan, Keskinkılıç, Kars, Kütahya and Uşak Sugar Factories are found effective. The most referenced factories are the Kayseri Sugar Factory, which is a private factory, and Kars Sugar Factory, which belong to the State. In the efficiency analysis based on production factors, it is seen that some state and private factories do not have significant advantages over each other.

### 6.1.3. Model 3 Efficiency Comparison Between Turkey and EU Member Countries

In this comparison inputs are "beet processing capacity per factory", "the number of employee (actual average) per factory", "processed beet"; and output is "the amount of sugar produced per factory".

• In this analysis, CCR and BCC input-oriented efficiency analysis was performed and technical efficiency results were obtained. According to the CCR analysis, the countries with high efficiency are the Belgium, UK, Croatia and Denmark. Five countries whose efficiency are in the last place are Greece, Italy, Turkey, Hungary and Finland. France, Finland, Hungary and Lithuania's BCC are effective which means that they do not have problems in terms of technical effectiveness, but they are inefficient because of the wrong scale and therefore they are not fully efficient.

• Looking at the data of EU countries; France, Germany and Turkey is seen to take place the first three rank in sugar production. This can be interpreted as they are efficient countries in terms of producing sugar. However, within the scope of the third model analysis, which is made with DEA with the input sets of actual number of employees per factory, the capacity of beet processing per factory and processed beet per factory and output sets of the amount of sugar produced per factory; these countries are not fully efficient. As mentioned earlier, the results of the efficiency analysis should be evaluated within the framework of the identified constraints (inputs and outputs). Different results can be obtained by using different sets of inputs and outputs, or using different marketing year data.

• Taking the number of employees per factory (actual average), the capacity of daily beet processing per factory, processed beet per factory, as input; and the amount of sugar per factory as output; Turkey, which is a candidate country to the EU; is one of the last six countries with inefficient sugar production.

• When the data used in the analysis of the third model is examined; the number of workers per factory in Turkey is quite high, while the beet processing capacity per factory, amount of sugar produced per factory seems to be quite low. It is necessary reducing the number of inefficient sugar factories and the number of idle people working in the factories to have Turkey's competitive production structure within the EU market. Under the current circumstances, one way to ensure that the sugar industry can compete with the EU is to increase the beet processing capacities of the factories. When comparing Belgium which is an efficient country with Turkey, it is seen that Turkey's number of workers per factory in Belgium is greater than Turkey roughly 3 times, and also the amount of sugar produced per factory in Belgium is more 3.3 times than Turkey.

• For the sugar factories to be efficient in Turkey, it is required that closure of some inefficient sugar factory, increasing the capacity of existing efficient beet processing factory, reducing the number of workers in the factories and also increasing the sugar production per sugar factory is needed.

#### 6.2. General Evaluation

1- Glucose, known as table sugar, is obtained from cane and beet. World sugar exchange prices are determined by low-cost cane sugar, which is dominant in trade. There is no difference in quality between the sugars obtained from cane and beet. However, the production of sugar cane at a lower cost than sugar beets results in it being predominantly internationally tradable. Due to the geography, sugar are produced, in the countries such as European Union, Russia, Ukraine and Turkey from beet; countries such as USA, Japan and

China both from beet and cane; many countries, particularly Brazil, India, Mexico, Pakistan, Thailand and Australia from cane.

Although the main determinant in the formation of world sugar prices is the supply / demand situation; speculation, oil and commodity prices, energy policies, freight cost, exchange rate changes, interest rates, trade policies and preference agreements, inflation, political and financial turmoil, and economic conditions of countries play an increasing role in prices. The fact that the sugar produced is below the demand causes the stocks to decrease and therefore the prices to increase, and in the situation vice versa, the prices to decrease.

In 2018, world white sugar prices decreased by 21%. Like all other commodities, sugar prices are affected by sugar supply and demand worldwide. Demand can change prices, while prices can change supply, and increases in sugar prices result in producers wanting to take advantage of this, making production in more areas, which can lower prices by creating production surplus.

When there is a surplus in the amount of sugar, prices fall; in cases of shortage of supply caused by problems in sugar beet / cane production or harvest, sugar prices increase. Developments in the world, especially in the last 25-30 years, have caused the interaction of sugar with other agricultural products and fuel markets. On the one hand, the competitiveness of the starch-based sugar produced from corn with the sugar of beets and cane has increased, on the other hand, the use of ethanol as a fuel has affected the prices of oil and sugar.

2- If we look at the EU, EU Ministers of Agriculture have reached a political decision on a comprehensive reform of the Common Market Order for Sugar, based on a European Commission Reform Proposal prepared in June 2005. The aim of the reform is to increase the competitiveness and market focus of the EU Sugar sector in order to guarantee the sustainability of the sector in the long term and to strengthen the bargaining power in the current negotiations with the World Trade Organization. As a result of the reform implemented in the EU, quotas were abolished in 2017 and as a result, in 2018, the EU moved from a net importer position to a net exporter position in sugar.

3- In Turkey, the sugar sector, before the Sugar Law No. 4634 came into force, has followed an unstable production course with the position of importer and exporter changing periodically. Particularly in the 1990s, instability in the amount of production has left the

sector at times facing import risks and at times stock problems. Therefore, production planning and control of sugar is of strategic importance. Production planning is carried out on the basis of "annual domestic sugar need and security stock" due to the high sugar prices in our country which produces sugar from beets due to its geographical location and the inability to apply subsidies to sugar exports within the scope of our commitments to the World Trade Organization.

The privatization of TSFI entered agenda for the first time on June 22, 2000 with a letter of intent given to the IMF. Looking at the privatization process as of today, the sales and transfer operations of 10 factories belonging to TSFI (Afyon, Alpullu, Bor, Corum, Elbistan, Erzincan, Erzurum, Kırşehir, Muş, Turhal) were completed in 2018.

Total capacity is 4.7 million tons against the quota of 2 million 500 thousand tons determined according to sugar demand in our country. There is a capacity surplus of 40% in sugar beet and 70% in SBS. Pursuant to the provisions of the Sugar Law No. 4634, it is necessary to supply quota first for the establishment of a new factory or for additional capacity. For this reason, there is no need to establish a new factory to meet the domestic production in the sector or to increase the capacity in the existing factories. Under current conditions, only maintenance, renovation, modernization and environmental investments are made.

4-We can partition sugar factories in Turkey under three headings according to their ownership: TSFI, Sugar Beet Growers Cooperatives and private companies. TSFI is a stateowned enterprise which operates according to market conditions and whose capital is all owned by the Treasury. As of today, the number of factories belonging to TSFI are 15, the number of factories belonging to Sugar Beet Growers Cooperatives are six, and number of factories belonging to private companies are 12. According to the analysis results, in terms of working personnel, fuel and electricity used and daily beet processing capacities; Erciş, Erzincan, Uşak and Kars factories from TSFI, Boğazlıyan, Kayseri, Konya and Çumra Factories from Sugar Beet Growers Cooperatives, Keskinkılıç, Adapazarı and Kütahya Factories from private companies, because of having high capacity utilization rate, are efficient, the others are inefficient. In addition, it is seen that these factories are far from competing with the EU factories and are in need of improvement to a large extent.

5- In Turkey seven sugar factories (Kars, Erzincan, Erzurum, Elazığ, Erciş, Uşak and Yozgat Sugar Factories) which are small scale (1 750-3 000 tons/day beet processing capacity) must be shut down. Five of them are located in the Eastern Anatolia region. Especially the factories located in eastern Anatolia were established for socio-economic purposes, beets are inadequate, campaign times are short, production costs are high and they can not be run efficiently.

6- Turkey needs to follow the World Trade in sugar sector and maintain a cautious approach. It is an opportunity for Turkey to have countries that import large quantities of sugar around the country. Approximately half of Turkey's total beet production capacity have been being used. Due to the low-cost cane sugar that dominates the world stock exchanges, domestic sugar has no competitiveness with imported sugar. Protection rates in imports are of great importance in order to ensure domestic production preference. In the case of beet sugar being exported, the difference between world prices and domestic prices, which are lower than domestic prices, must be subsidized. On the other hand, the fact that world sugar exchange prices are quite low compared to the production costs of beet sugar produced in our country is the weakest aspect of the sector in international competition. In order to increase the efficiency of state-owned factories, there is a need to either restructure them in management, technology, legislation and agriculture areas by increasing their daily beet processing capacity, or by privatizing these factories to establish competition in the market.

7- Other sugar factories which are competitors of TSFI, are able to produce sugar at lower cost such reasons as their proximity to raw materials and the market, high beet yields, capacity sizes and optimal capacity utilization, modern technologies, having been industrial automation, lower labor costs and using the advantages of being private sector better (like tender, wages, management and marketing flexibility, etc.). One of the most important problems of TSFI is the stock problem. In order to sell the sugar produced within the market conditions; despite the use of all marketing methods taking into account the sales procedures and the legislation in force and the cost of production, the last marketing year (2017) was entered with significant quantities of sugar stock. In order to dissolve the stock remaining in the hands of TSFI, the State must support it.

8- The Çarşamba Sugar Factory is a factory established to import and process raw sugar and export it as sugar. However, in recent years, the Çarşamba Sugar Factory has not campaigned at all, increasing TSFI's costs and reducing its productivity in general due to its average of 200-300 employees and mandatory operating expenses. It is inevitable for this

factory to carry out the necessary work which are to import raw sugar from the international market and to produce sugar and to export it to our neighboring countries.

9- The abolition of sugar quota in Turkey as in the EU is impossible as of today. The most basic element that determines the market values of factories today is the amount of quota that the factory has. While the state-owned TSFI operates as a player in the market, if the quotas are abolished; the TSFI will have to sell the sugar produced by it below its cost, or the inventory will increase and face stock costs. In addition, the market value of the factories will decrease significantly and even the possibility of privatizing the factories will be eliminated. Because for the investors, the possibility of establishing a new factory in places with high technology, high beet polar value and close to raw material and market network will become more profitable and more efficient than buying one of TSFI's factories. Therefore, as a market regulator, the State is obliged to determine quotas and carry out market controls until ensuring competition in the market by completing privatizations or restructuring the sector. Once the market is fully open to competition, it is considered that it would be more appropriate to abolish quotas and thus liberalise the market.

#### REFERENCES

Abolished Sugar Authority, (2016a). "2016 Yılı Faaliyet Raporu", Retrieved from: https://www.tarimorman.gov.tr/SDB/Belgeler/faaliyet\_raporlari/2016\_Faaliyet\_Raporu.pdf April 19, 2019.

Abolished Sugar Authority (2016b). "Avrupa Birliği ve ABD Şeker Rejimi ve Dünya Şeker Piyasası Bilgi Notu", Retrieved from: Abolished Sugar Authority's database. December 16, 2016.

Abolished Sugar Authority (2017). "2017 Yılı Faaliyet Raporu", 6-24. Retrieved from: https://www.tarimorman.gov.tr/SDB/Belgeler/faaliyet\_raporlari/2017\_%C5%9EK\_faliyet %20Raporu\_SON\_13\_3\_2018\_WEB.pdf. April 14, 2017.

Mülga Devlet Planlama Teşkilatı (2008), "9. Kalkınma Planı Bölgesel Gelişme Özel İhtisas Komisyonu Raporu", Ankara, 16-17.

Ahn, T. (1987). Efficiency Related Issues in Higher Education: A Data Envelopment Analysis Approach, PhD Thesis, The University of Texas at Austin.

Akal, Z. (1996). İşletmelerde Performans Ölçüm ve Denetimi -Çok Yönlü Performans Göstergeleri. Ankara, MPM Yayınları.

Aktaş, H. (2001). İşletme Performansının Ölçülmesinde Veri Zarflama Analizi. C.B.Ü. İİBF Yönetim ve Ekonomi Dergisi, Sayı 7/1.

Babacan A., Özcan S. (2009). Alanya bölgesi otellerinin göreli etkinliğinin belirlenmesi: bir veri zarflama analizi tekniği uygulaması. *Mustafa Kemal Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, 6 (12), 176-189.

Bakırcı, F. (2006). *Üretimde Etkinlik Ölçümü ve Veri Zarflama Analizi Teori ve Uygulama*. Tokat, Atlas Yayınları.

Banker, R. D., Charnes A. and Cooper W., (1984), "Some Models foe Estimating Technical and Scale Efficiencies in DEA". Management Science, Vol. 30/9, 1078-1092.

Baysal A. (2007). Genel Beslenme. 12 ed. Ankara. Hatipoğlu Yayınları, 56-59.

Baysal M. E., Alçılar B., Çerçioğlu H. ve Toklu B., (2005). Türkiye'deki Devlet Üniversitelerinin 2004 Yılı Performanslarının, Veri Zarflama Analizi Yöntemiyle Belirlenip Buna Göre 2005 Yılı Bütçe Tahsislerinin Yapılması. Sakarya Üniversitesi Fen Bilimleri Enstitüsü Dergisi Yayını, Cilt. 9, Sayı 1.

Başkaya Z. and Avcı B., (2011). *Veri Zarflama Analizi*. 1. Baskı Bursa: Dora Yayınları, 89-90.

Bozdağ G. E. (2007). Şeker Sanayiinde İktisadi Etkinlik: Türkiye-Avrupa Birliği Karşılaştırması, Gazi Üniversitesi, Sosyal Bilimler Enstitüsü, Yayımlanmamış Yüksek Lisans Tezi. Ankara, 63-65.

Baysal, M. E, Uygur, M. ve Toklu B. (2004). Veri Zarflama Analizi ile TCDD Limanlarında Bir Etkinlik Ölçümü Çalışması. *Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi*, 19.

Boussofiane A., Dyson R. G., and Thanassoulis E., (1991). In: Applied data envelopment analysis. *European Journal of Operational Research*, Vol. 52, 1: 1-15.

Benesova I., Rezbova H., Smutka L., Tomsik K., and Laputkova A., (2015). European Sugar
Market – Impact Of Quota System. *Journal of Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis*, Vol. 63, Czech University of Life Sciences pub.,
Prague. 1825–1838. Retrieved from: https://acta.mendelu.cz/media/pdf/actaun 2015063061825.pdf. April 4, 2019.

Charnes A., Cooper W. W. and Rhodes E., (1978). In Measuring the efficiency of decision making units. *European Journal of Operational Research*, Vol. 2, 6: 429-444.

Cingi, S. ve Tarım, A.(2000). Türk Banka Sisteminde Performans Ölçümü: DEA-Malmquist TFP Endeksi Uygulaması. *Türkiye Bankalar Birliği Araştırma Tebliğleri Serisi*.

Cooper W. W., Seiford L. M. and Tone K., (2002). "Data Envelopment Analysis a comprehensive text with models applications references and DEA-Solver Software" New York, Boston, Dordrecht, London, Moscow, Kulver Academic Publishers Pub. 2.

Cooper W. W, Seiford L. M and Tone K. (2004) "Handbook on Data Envelopment Analysis" New York, Boston, Dordrecht, London, Moscow Pub. 2.

Coelli T. J., Rao D. S. P., O'Donnell C. J. and Battese G. E., (2005). *An Introduction to Efficiency and Productivity Analysis*, Second edition, New York, Springer Pub. 61-81.

Çekin İ. (1999). Veri Zarflama Yönteminin Uygulamaya Hazırlanması. MPM Verimlilik Ölçme ve İzleme Bölümü. Ankara, 29-30.

Çetin, T. (2010). İktisadi Etkinlik Üzerine Bir Deneme: X Etkinlik Yaklaşımı. Doğuş Üniversitesi Dergisi, Sayı, 11, 2, 186-188.

Çiftçi H. (2004). Türk sigorta sektörünün sorunları, dea analizi ile Türk sigorta şirketlerinin etkinlik düzeylerinin belirlenmesi. *Çukurova Üniversitesi Sosyal Bilimler Enstitüsü Dergisi*, Sayı, 13, 1, 121-149.

Damlıbağ F. (2017). In Establishment of Beet Sugar Industries in Turkey and Great Britain during the 1920's. Eds. Yilmaz R., Löschnigg G. Lang P., Main F., *Studies on Balkan and Near Eastern Social Sciences*, Peter Lang Pub., Frankfurt am Main, 167-168.

Damlıbağ F. (2018), "Sugar Production Investments In Turkey During Post 1929 Economic Crisis Period", *Journal of Modern Turkish History Studies*, Vol. XVII, Issue. 36, Dokuz Eylül University pub., İzmir, 147-152.

Debreu, G. (1951). In: The Coefficient of Resource Utilization. *Econometrica*. Vol. 19, No.3. The Econometric Society pub. New York, 273-292.

Deliktaş, E. (2002). Türkiye Özel Sektör İmalât Sanayiinde Etkinlik ve Toplam Faktör Verimliligi Analizi. *ODTÜ Gelişim Dergisi*, Cilt, 29, Sayı, 3-4.

European Commission (2011). "Evaluation of CAP Measures Applied to the Sugar Sector,FinalReport".98-100.Retrievedhttps://ec.europa.eu/agriculture/sites/agriculture/files/evaluation/market-and-income-reports/2011/sugar-2011/fulltext\_en.pdf. April 12, 2019.

Erdinç Z. (2017). Türkiye'de Şeker Sanayinin Gelişimi ve Şeker Sanayinde İzlenen Politikalar. *Anadolu Üniversitesi Sosyal Bilimler Dergisi*, 17: 9-26 Retrieved from: http://dergipark.org.tr/ausbd/issue/36658/417269. March 15, 2019.

European Comission, (2019). "*Common Agricultural Policy*". Retrieved from: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy. April 18, 2019.

European Comission, (2017). "Average Price for White Sugar within the Community". Retrieved from: https://ec.europa.eu/agriculture/sites/agriculture/files/marketobservatory/sugar/doc/price-producers\_en.pdf. May 18, 2019.

European Comission, (2003). "Common Organisation of the SugarMarket-Description, Brussel". Retrieved from: http://europa.eu.int/comm/agriculture/markets/sugar/reports/descri\_en.pdf. January 18, 2019.

European Comission, (2018). "EU Agricultural medium term Outlook 2018-2030". 27-30.Retrievedfrom:https://ec.europa.eu/info/sites/info/files/food-farming-fisheries/farming/documents/medium-term-outlook-2018-report\_en.pdf. May 28, 2019.

Economic Development Foundation. "*EU Enlargement*". Retrieved from: https://www.ikv.org.tr/ikv.asp?ust\_id=32&id=281. April 14, 2019.

FO Licht's, (2018a). "International Sugar and Sweetener Report". Vol. 149, No 23. Retrieved from https://www.agra-net.com/agra/international-sugar-and-sweetener-report/. August 16, 2017.

FO Licht's, (2018b). "International Sugar and Sweetener Report". Vol. 150, No 25. Retrieved from https://www.agra-net.com/agra/international-sugar-and-sweetener-report/. September 5, 2018).

Gültekin, F., Öner E., M., Savaş, H. and Doğan, B. (2017). Sweeteners, Glucose Intolerance and Microbiota. *Journal of Biotechnology and Strategic Health Research*, Vol. I, Special Issue, 34-38. Retrieved from http://dergipark.org.tr/bshr/issue/32641/362666. March 15, 2019.

Hannah A. C. and Spence D. (1996). "The International Sugar Trade." First ed. ISO and Woodhead Pub., 3-6; 110-111.

Hannah T. (2004) In: Early History. Ed. Kingsman J. *Sugar Trading Manual*. Third Edition. Cambridge, UK, Woodhead Pub., 1-2.

Horngren, T. C., Foster, G. and Datar, M.S., (2000). "Cost Accounting A Managerial Emphasis", Tenth Edition. London, Prentice Hall International Inc., 229.

ISO, (2013). "*Sugar Yearbook 2013*". Retrieved from: https://www.isosugar.org/publications/1/sugar-yearbook. February 13, 2019.

ISO-MECAS, (2014). "2014 (05)-EU Sugar Policy Reform". Retrieved from: https://www.isosugar.org/publications/6/iso-studies. May 13, 2019.

ISO-MECAS, (2017). "2017 (12)-FDI and M&A in the World Sugar Industry". Retrieved from: https://www.isosugar.org/publications/6/iso-studies. May 26, 2019.

İlkay M. S. ve Doğan N. Ö., (2009). Veri Zarflama Analizi ile Kapadokya Bölgesindeki Belediyelerin Etkinlik Ölçümü:2004 ve 2008 Yıllarına İlişkin Bir Karşılaştırma. *Erciyes Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi*, Kayseri, 32: 191-218.

JRC Scientific and Policy Reports, (2014). "Proceedings of a Workshop on "Nanotechnology for the Agricultural Sector: from Research to the Field"". Retrieved from: https://publications.europa.eu/en/publication-detail/-/publication/06fadb8b-6693-4650-8a88-48a3b04fcfb6/language-en. March 8, 2019.

Kaynar O. and Bircan H., (2007). OECD Ülkelerinin Telekomünikasyon Sektörlerinin Etkinliğinin Veri Zarflama Analizi ile Ölçülmesi – 2. *İktisadi ve İdari Bilimler Dergisi*, Sayı 21, 1: 361-382.

Keçek G., (2010). Veri Zarflama Analizi: Teori ve Uygulama Örneği, Siyasal Kitabevi, Ankara. 78-80.

Kılıçkaplan, S. and Karpat, G. (2004). Türkiye Hayat Sigortası Sektöründe Etkinliğin İncelenmesi. *Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi*, İzmir, 1: 2-3.

Koopmans, T.C. (1951), "An Analysis of Production as an Efficient Combination of Activities," in T.C. Koopmans, ed., Activity Analysis of Production and Allocation, *Cowles Commission for Research in Economics*, 13: 60

Kök, R. ve Deliktaş, E. (2003). Endüstri İktisadında Verimlilik Ölçme ve Strateji Geliştirme Teknikleri. *Dokuz Eylül Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi*, İzmir, 43-44.

Kubalı, D. (1998). Performans Denetimi-Kavram, İlkeler, Metodoloji ve Uygulamalar, Cumhuriyetin 75. Yıldönümü Dizisi, Ankara, Sayıştay Yayınları, Sayı, 11, 28: 36-37.

Keskin G. (2005). AB'de Şeker Politikasındaki değişiklikler, Bioethanol üretimin önemi ve Türkiye. *Ege Academic Review*, 5: 1-10. Retrieved from http://dergipark.org.tr/eab/issue/39836/472318. March 15, 2019.

LMC (2017a). Sugar & Sweetener 2nd Quarterly Report, Q2 2017.

LMC (2017b). Avrupa Birliği ve ABD Şeker rejimi Dünya Şeker Piyasa Bilgi Notu- Ocak 2018- LMC Şeker ve Tatlandırıcı 4. Çeyrek Raporu, Q4 2017.

Leblebici J. and Leblebici F. (2011), *Şeker ve Tatlandırıcılar El kitabı*, Ankara, Kitantik Yayınları, 6-7.

Milli Prodüktivite Merkezi, (2001) Sağlık Sektöründe Etkinlik Ölçümü Veri Zarflama Analizine Dayalı Bir Uygulama, Ankara, Milli Prodüctive Merkezi Yayınları.

Norman, M. and Stoker, B., (1991). *Data Envelopment Analysis: The Assessment of Performance*. John Wiley & Sons. 6-275.

Official Journal of the EU, (2006). "Council Regulation (EC) No 318/2006 of 20 February 2006 on the common organisation of the markets in the sugar sector". Retrieved from: https://eur-lex.europa.eu/legal

content/EN/TXT/PDF/?uri=OJ:L:2006:058:FULL&from=NL. February 1, 2019.

Özden, Ü. H. (2008). Veri Zarflama Analizi (VZA) ile Türkiye'deki Vakıf Üniversitelerinin Etkinliğinin Ölçülmesi. *İstanbul Üniversitesi İşletme Fakültesi Dergisi*, İstanbul, 37-38.

Pairault O. (2004). In: Statistical Analysis. Ed. Kingsman J. Sugar Trading Manual. Third Edition. Cambridge, UK, Woodhead Pub., 4-5.

Prokopenko, J. (2003). *Verimlilik Yönetimi, Uygulamalı El kitabı,* Interpretation: O. Baykal at all). Ankara, MPM Yayınları.

Ramanathan R., (2003). "An Introduction to Data Envelopment Analysis A Tool for Performance Measurement". New Delhi, Thousand Oaks, London, Sage Pub., 26-27

Ray S.C., (2004). "Data Envelopment Analysis Theory and Techniques for Economics and Operations Research". Cambridge University, 10 ed.

Republic of Turkey Ministry of Agriculture and Forestry, (2019a). "Nişasta Bazlı Şeker." https://www.tarimorman.gov.tr/SDB/Menu/92/Nisasta-Bazli-Seker. April 4, 2019.

Republic of Turkey Ministry of Agriculture and Forestry, (2019b). "Dünya Şeker Sektörü
Raporu-2019". 4. http://www.tarimorman.gov.tr/SDB/Menu/97/Dunya-Seker-Sektoru.
April 19, 2019.

RomaTreaty(1958)https://ec.europe.eu/economy\_finance/emu\_history/documents/treaties/romentreaty2pdf.December 27, 2018.

Suiçmez, H. (2008). Verimlilik Düşüncesinin Kısa Tarihi. *Mülkiyeliler Birliği Dergisi*, Cilt 23, Sayı 215.

Sucrose.com. "*How Sugar is Made – The History*". Retrieved from: http://www.sucrose.com/lhist.html. April 17, 2019.

Reponsible Conduct of Research.com. "Data Collection". Retrieved from: https://ori.hhs.gov/education/products/n\_illinois\_u/datamanagement/dctopic.html. November 5, 2019.

Sugar Law (2011) T.C. Resmi Gazete, Sayı: 24378. April 4, 2011.

Taymaz, E., Voyvoda E. and Yılmaz, K., (2008). "*Türkiye İmalat Sanayiinde Yapısal Dönüşüm, Üretkenlik ve Teknolojik Değişme Dinamikleri*", Economic Research Center Working Papers in Economics. 24-27. Retrieved from: https://erc.metu.edu.tr/en/system/files/menu/series08/0804.pdf).

Treaty of Amsterdam, (1997). "Article 33-Declaration on Article 188c(3) of the TreatyestablishingtheEuropeanCommunity".Retrievedfrom:http://www.europarl.europa.eu/topics/treaty/pdf/amst-en.pdf.March 18, 2019.

TSFI, (2010-2014). Faaliyet ve Sektör Raporları, Şeker Sanayii ve Maliyet Analiz Raporları (2010-2014). https://www.turkseker.gov.tr/FaaliyetRaporlari.aspx. April 15, 2019.

TSFI,(2017)."2017YılıFaaliyetRaporu".5-6.https://www.turkseker.gov.tr/FaaliyetRapor/FaaliyetRaporu2017.pdf.April 4, 2019.

TSFI, (2018). "2018 Yılı Sektör Raporu". 2-8, 33-34. https://www.turkseker.gov.tr/sector-report-2018.pdf. April 5, 2019.

T.C. Sayıştay Başkanlığı. (2014). *Türkiye Şeker Fabrikaları Anonim Şirketi 2013 Yılı Raporu*. T.C. Sayıştay Başkanlığı Veritabanı.

Tarım A. ve Cingi S., (2000). "Türk Banka Sisteminde Performans Ölçümü: DEA-Malmguist TFP Endeksi Uygulaması". Türkiye Bankalar Birliği Araştırma Serisi, Ankara.1: 7-8.

Tarım A., (2001). "Veri Zarflama Analizi Matematiksel Programlama Tabanlı Göreli Etkinlik Ölçüm Yaklaşımı". Sayıştay Yayınları Ankara, 36-37.

Veldet T. (1958) "30. Yılında Türkiye Şeker Sanayii, Türkiye Şeker Fabrikaları A.Ş." Ankara, Doğuş Yayınları 48, 407-408.

Yavuz İ. (2003). "Verimlilik ve Etkinlik Ölçümüne Yeni Yaklaşımlar ve İllere Göre İmalat Sanayiinde Etkinlik Karşılaştırmaları". Ankara, Milli Prodüktivite Merkezi Yayınları, 23-33.

Yavuz İ. (2001). "*Sağlık Sektöründe Etkinlik Ölçümü*". Ankara, Milli Prodüktivite Merkezi Yayınları, 51-54.

Yıldırım İ. E. (2009) "Veri Zarflama Sürecinde Temel Bileşenler Analizi'nin Ayırım Gücünü Arttırıcı Etkisi". İstanbul Üniversitesi İşletme Fakültesi Dergisi, İstanbul, 38: 66-83.

Yıldız E. (2006). *Kavramsal Düzeyde Etkinlik, Etkililik Ve Verimlilik Olgularına Bir Bakış*". Retrieved from: http://www.eko-finans.com/makale. October 18, 2018.

Yolalan R. (1993). "İşletmelerarası Göreli Etkinlik Ölçümü". Ankara: Milli Prodüktivite Merkezi Yayınları, 483-484.

Yücel Ö. (2015). "*Türk İmalat Sanayinin Bölgesel Düzeyde Etkinik, Verimlilik ve Enerji Verimliliğinin Analizi (2003-2012)*" Fen Bilimleri Enstitüsü, Doktora Tezi, Ankara: Gazi Üniversitesi .



# **APPENDIX-I**

| DMU       | (I) Civil<br>Servant | (I)<br>Permanent<br>Worker | (I)<br>Temporary<br>Worker | (I) Electricity<br>Consumption MWH | (I) Fuel<br>Consumption | (O)<br>Sugar |
|-----------|----------------------|----------------------------|----------------------------|------------------------------------|-------------------------|--------------|
| Afyon     | 61                   | 207                        | 48                         | 31.861                             | 49.129                  | 137.310      |
| Ankara    | 110                  | 483                        | 20                         | 15.203                             | 19.557                  | 63.110       |
| Bor       | 55                   | 229                        | 54                         | 16.280                             | 29.151                  | 68.145       |
| Burdur    | 56                   | 201                        | 56                         | 18.969                             | 22.655                  | 80.315       |
| Çorum     | 38                   | 219                        | 52                         | 19.465                             | 23.395                  | 103.018      |
| Elazığ    | 66                   | 156                        | 66                         | 2.912                              | 3.992                   | 11.480       |
| Elbistan  | 33                   | 180                        | 101                        | 14.896                             | 21.717                  | 48.050       |
| Erciş     | 26                   | 256                        | 107                        | 5.760                              | 6.167                   | 25.374       |
| Ereğli    | 42                   | 215                        | 83                         | 26.701                             | 43.007                  | 153.705      |
| Erzincan  | 67                   | 141                        | 41                         | 6.852                              | 9.663                   | 27.560       |
| Erzurum   | 48                   | 247                        | 53                         | 8.666                              | 10.309                  | 41.590       |
| Eskişehir | 87                   | 296                        | 67                         | 31.027                             | 42.042                  | 120.300      |
| Ilgın     | 48                   | 267                        | 74                         | 29.629                             | 49.446                  | 137.850      |
| Kars      | 27                   | 131                        | 35                         | 2.960                              | 3.479                   | 11.262       |
| Kastamonu | 46                   | 146                        | 48                         | 5.351                              | 7.679                   | 23.800       |
| Kırşehir  | 40                   | 212                        | 45                         | 13.275                             | 18.720                  | 77.960       |
| Malatya   | 77                   | 209                        | 60                         | 10.974                             | 14.116                  | 45.761       |
| Muş       | 41                   | 237                        | 96                         | 9.759                              | 11.639                  | 40.600       |
| Turhal    | 75                   | 287                        | 66                         | 21.193                             | 28.532                  | 104.240      |
| Uşak      | 39                   | 167                        | 37                         | 5.739                              | 9.149                   | 26.250       |
| Yozgat    | 29                   | 211                        | 46                         | 12.573                             | 16.496                  | 56.320       |

# **APPENDIX-II**

| DMU         | (I) Daily Capacity | (I) Processed Beet | (I) Employee | (O) Sugar<br>Produced |
|-------------|--------------------|--------------------|--------------|-----------------------|
| Afyon       | 7.500              | 1027000            | 652          | 137.310               |
| Ankara      | 3.800              | 503.000            | 783          | 63.110                |
| Bor         | 3.800              | 477.600            | 508          | 68.145                |
| Burdur      | 5.200              | 618000             | 546          | 80.315                |
| Çorum       | 7.500              | 735.000            | 645          | 103.018               |
| Elazığ      | 1.800              | 84000              | 369          | 11.480                |
| Elbistan    | 3.800              | 411000             | 484          | 48.050                |
| Erciş       | 2.000              | 170.500            | 478          | 25.374                |
| Ereğli      | 8.500              | 1.209.700          | 720          | 153.705               |
| Erzincan    | 1.850              | 203.500            | 332          | 27.560                |
| Erzurum     | 3.300              | 286000             | 496          | 41.590                |
| Eskişehir   | 7.500              | 1.008.000          | 786          | 120.300               |
| Ilgın       | 8.000              | 1.084.000          | 747          | 137.850               |
| Kars        | 1.750              | 73.600             | 271          | 11.262                |
| Kastamonu   | 3.800              | 181.000            | 410          | 23.800                |
| Kırşehir    | 4.000              | 542000             | 477          | 77.960                |
| Malatya     | 3.600              | 362.000            | 507          | 45.761                |
| Muş         | 3.800              | 310.000            | 544          | 40.600                |
| Turhal      | 7.500              | 741.000            | 764          | 104.240               |
| Uşak        | 1.800              | 200.100            | 324          | 26.250                |
| Yozgat      | 3.800              | 390.000            | 456          | 56.320                |
| Adapazarı   | 6.000              | 474.700            | 309          | 62.388                |
| Amasya      | 6.000              | 681.000            | 672          | 76.878                |
| Kayseri     | 6.000              | 1.155.150          | 829          | 177.907               |
| Boğazlıyan  | 14.400             | 1.411.850          | 1.015        | 217.441               |
| Keskinkılıç | 6.960              | 766414             | 478          | 110.229               |
| Konya       | 16.500             | 1.496.836          | 563          | 170.188               |
| Çumra       | 10.315             | 1.757.164          | 656          | 199.787               |
| Kütahya     | 3.000              | 355.500            | 283          | 49.080                |

# **APPENDIX-III**

| DMU         | (I) Employees | (I) Daily Capacity | (I) Processed Beets | (O) Sugar Produced |
|-------------|---------------|--------------------|---------------------|--------------------|
| Austria     | 777           | 24.700             | 2.557.011           | 402.985            |
| Belgium     | 657           | 46.040             | 4.441.830           | 740.009            |
| Croatia     | 603           | 21.000             | 706.296             | 119.576            |
| Czechia     | 1.372         | 35.186             | 2.707.108           | 455.877            |
| Denmark     | 491           | 21.620             | 1.836.975           | 311.000            |
| Finland     | 272           | 7.000              | 795.553             | 120.208            |
| France      | 6.450         | 296.725            | 25.753.975          | 4.295.763          |
| Germany     | 5.164         | 247.000            | 17.660.750          | 2.942.281          |
| Greece      | 578           | 14.000             | 1.238.350           | 156.899            |
| Hungary     | 279           | 7.035              | 913.069             | 128.834            |
| Italy       | 1.000         | 32.065             | 3.461.081           | 480.398            |
| Lithuania   | 265           | 8.930              | 781.551             | 128.018            |
| Netherlands | 744           | 53.700             | 5.104.460           | 788.639            |
| Poland      | 4.682         | 123.000            | 8.931.933           | 1.460.371          |
| Slovakia    | 492           | 10.812             | 1.336.375           | 200.189            |
| Spain       | 1.814         | 36.621             | 3.410.791           | 552.207            |
| Sweden      | 416           | 16.650             | 1.573.651           | 257.764            |
| Turkey      | 18.468        | 178.419            | 17.949.200          | 2.467.898          |
| UK          | 730           | 46.600             | 6.111.125           | 977.780            |

# **APPENDIX-IV**

| DMU         | (I) EMPLOYEERS | (I) CAPACITY PER   | (O) SUGAR PRODUCED PER |
|-------------|----------------|--------------------|------------------------|
|             | PER FACTORY    | FACTORY (tone/day) | FACTORY (tone)         |
|             | (PÍECE)        |                    |                        |
| Germany     | 258            | 12.350             | 147.114                |
| Austria     | 389            | 12.350             | 201.493                |
| Belgium     | 219            | 15.347             | 246.670                |
| Czechia     | 196            | 5.027              | 65.125                 |
| Denmark     | 246            | 10.810             | 155.500                |
| Finland     | 272            | 7.000              | 120.208                |
| France      | 258            | 11.869             | 171.831                |
| Netherlands | 372            | 26.850             | 394.320                |
| UK          | 183            | 11.650             | 244.445                |
| Spain       | 363            | 7.324              | 110.441                |
| Sweden      | 416            | 16.650             | 257.764                |
| Italy       | 333            | 10.688             | 160.133                |
| Lithuania   | 133            | 4.465              | 64.009                 |
| Hungary     | 279            | 7.035              | 128.834                |
| Poland      | 260            | 6.833              | 81.132                 |
| Slovakia    | 246            | 5.406              | 100.095                |
| Turkey      | 560            | 5.407              | 74.785                 |
| Greece      | 289            | 7.000              | 78.450                 |
| Croatia     | 201            | 7.000              | 39.859                 |

## **CURRICULUM VITAE**

| Name, Surname   | : Şeyma Nur MUTLU                                               |
|-----------------|-----------------------------------------------------------------|
| Birth Day       | : 28.09.1990                                                    |
| Place of birth  | : Çankaya                                                       |
| Maritial status | : Married                                                       |
| Nationality     | : TC                                                            |
| A dragg         | : Ankara Yıldırım Beyazıt University Social Sciences Institute, |
| Adress          | Department of Management and Organization, Ankara               |
| Phone           | : +90 (555) 721 40 74                                           |
| Fax             | 1                                                               |
| E-mail          | :seymatekin.90@gmail.com                                        |

# EDUCATION

| High School | : Nene Hatun High School of Science / 2007                |
|-------------|-----------------------------------------------------------|
| Linivancity | : Gazi University Faculty of Economics and Administrative |
| University  | Sciences - Business / 2011                                |

## **JOB EXPERIENCE**

Türk Telecommunication Administration Assistant Expert (2012, 3 ay), Presidensy Officer (2014-1,5 yıl), UNHCR Senior Project Manager (2015-6 ay), Presidensy Management Services Specialist (2016-halen) FOREIGN LANGUAGES: English AWARDS: -PUBLICATIONS: -

**MEMBER PROFESSIONAL ORGANIZATIONS: -**