

YILDIRIM BEYAZIT UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

AN EG-LDPC BASED 2-DIMENSIONAL ERROR CORRECTION

CODE FOR MITIGATING MULTIBIT UPSETS OF SRAM

MEMORIES

M.Sc. Thesis by

AHMET TURAN EROZAN

Department of Electronics and Communication Engineering

December, 2015

ANKARA

AN EG-LDPC BASED 2-DIMENSIONAL ERROR

CORRECTION CODE FOR MITIGATING MULTIBIT

UPSETS OF SRAM MEMORIES

A Thesis Submitted to

the Graduate School of Natural and Applied Sciences of Yıldırım Beyazıt

University

In Partial Fulfillment of the Requirements for the Degree of Master of Science

of Philosophy in Electronics and Communication Engineering, Department of

Electronics and Communication Engineering

by

 Ahmet Turan EROZAN

 December, 2015

ANKARA

ii

M.Sc THESIS EXAMINATION RESULT FORM

We have read the thesis entitled “AN EG-LDPC BASED 2-DIMENSIONAL ERROR

CORRECTION CODE FOR MITIGATING MULTIBIT UPSETS OF SRAM

MEMORIES” completed by Ahmet Turan EROZAN under supervision of Assist.

Prof. Dr. Enver ÇAVUŞ and we certify that in our opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Assist. Prof. Dr. Enver ÇAVUŞ

(Supervisor)

Assoc. Prof. Dr. Asaf Behzat ŞAHİN Assist. Prof. Dr. Osman Serdar GEDİK

 (Jury Member) (Jury Member)

Assist. Prof. Dr. Mehmet Efe ÖZBEK

(Jury Member)

 Prof. Dr. Fatih Vehbi ÇELEBİ

(Director)

Graduate School of Natural and Applied Sciences

iii

ETHICAL DECLARATION

I have prepared this dissertation study in accordance with the Rules of Writing Thesis

of Yıldırım Beyazıt University of Science and Technology Institute;

 Data I have presented in the thesis, information and documents that I obtained

in the framework of academic and ethical rules,

 All information, documentation, assessment and results that I presented in

accordance with scientific ethics and morals,

 I have gave references all the works that I were benefited in this dissertation

by appropriate reference,

 I would not make any changes in the data that I were used,

 The work presented in this dissertation I would agree that the original,

I state, in the contrary case I declare that I accept the all rights losses that may arise

against me.

iv

ACKNOWLEDGMENTS

I am sincerely grateful to my supervisor Assistant Professor Enver ÇAVUŞ for his

encouragement, ideas and support during my master’s degree and this thesis. He taught

me and guided me through my study.

I would like to specially thank to my parents and my wife for their unconditional

support.

2015, 21 December Ahmet Turan EROZAN

v

AN EG-LDPC BASED 2-DIMENSIONAL ERROR CORRECTION

CODE FOR MITIGATING MULTIBIT UPSETS OF SRAM

MEMORIES

ABSTRACT

As SRAM memory chips manufactured with small feature size, low noise margins and

low voltage level, MBUs (Multi Bit Upset) become the dominant contributor of the

overall soft error rate. Therefore, Single Event Correcting–Double Event Detecting

(SEC-DED) codes, such as Hamming codes, would be unable to mitigate the soft

errors alone. Other conventional memory protection methods such as bit-interleaving

in combination with SEC-DED codes and Triple Modular Redundancy (TMR) are not

feasible either, as scaling up these techniques to cover large-scale MBUs will incur

excessive increase in area, latency and power consumption of SRAM memories.

One promising solution to mitigate MBUs with large widths is to construct two

dimensional (2-D) ECC structures, which can provide scalable multi-bit error

protection against large clusters of soft errors. Compared to conventional schemes with

similar error coverage, they offer significantly smaller latency, resource usage and

power consumption figures.

Recently, Euclidean Geometry Low Density Parity Check (EG-LDPC) codes are

proposed to overcome effects of MBUs in memories. EG-LDPC codes have better

multiple error correcting capabilities than conventional codes and they have low

complexity and low delay decoders. Therefore, they are very suitable for fault tolerant

memory applications.

In this thesis, a 2-D error correction code architecture based on EG-LDPC and single

parity check (SPC) code is proposed as a solution to MBU problem of SRAM

memories. The proposed architecture uses (15, 7, 5) EG-LDPC as row encoding and

SPC code for column encoding. In order to minimize decoding complexity and taking

advantage of detection capability of 2D structure, a standard array decoder is utilized.

The investigated architecture is compared with previously proposed Matrix code

method. The proposed architecture is able provide over 95% error correction coverage

up to 4 errors and a significant 100% error detection up to 12 bit errors. In terms of

vi

MTTFs, the proposed approach achieves 63% improvement over Matrix codes at fault

rates of 10-4 and 10-5. Matrix codes and the proposed architecture are implemented

using Xilinx XC6SLX16 FPGA (Field Programmable Gate Array) and comparison

results in term of implementation complexity are provided.

Keywords : Multiple Bit Upsets (MBUs), EG-LDPC, two dimensional error

correction codes (ECCs), fault tolerant memories, soft errors.

vii

SRAM HAFIZALARDAKİ ÇOKLU HATALARIN GİDERİLMESİ

İÇİN EG-LDPC TABANLI BİR 2 BOYUTLU HATA DÜZELTME

KODU

ÖZET

SRAM hafıza entegrelerinin küçük boyutlarda, düşük gürültü töleransı ve düşük

gerilim seviyesinde üretilmesi sebebiyle çoklu bit hataları genel geçici hata oranına

yüksek katkıda bulunmaya başlamıştır. Bu nedenle, Hamming kodu gibi tek hata

düzelten, iki hata tespit eden kodlar tek başına geçici hataları düzeltememektedir.

Diğer bilinen hafıza koruma metodları da çoklu bit hataları için uygun değildir. Çünkü

bu metodların büyük boyutlu geçici hataları düzeltecek seviyede olması SRAM

hafızalarda kullanılan alanın artmasına, gecikmeye ve daha fazla güç tüketimine sebep

olmaktadır.

Geniş boyutlu çoklu hataları düzeltmenin gelecek vadeden çözümü 2 boyutlu hata

düzeltme kodlarının kullanılmasıdır. Bu kodlar geçici hatalara karşı büyük ölçekte

çoklu hatalara karşı koruma sağlar. Benzer hata korumasına sahip geleneksel kodlarla

karşılaştırıldıklarında, 2 boyutlu hata düzeltme kodları daha az gecikme, daha az alan

kullanımı ve daha az güç tüketimine sahiptir.

Son zamanlarda çoklu hataların üstesinden gelmek için EG-LDPC kodları

sunulmuştur. EG-LDPC kodları geleneksel kodlara göre çoklu hataları düzeltmede

daha iyidir ve daha az karmaşık ve daha düşük gecikmeye sahip çözücüye sahiptir. Bu

sebeplerden dolayı EG-LDPC kodları hatalara karşı dayanıklı hafıza uygulamaları için

çok uygundur.

Bu çalışmada, EG-LDPC ve SPC kodları ile 2 boyutlu hata düzeltme kodu yapısı

sunulmuştur. Bu yapı SRAM hafızalardaki çoklu bit hataları problemine çözüm olarak

sunulmuştur. Sunulan mimari satır kodlamada (15, 7, 5) EG-LDPC kodu, sütun

kodlamada SPC kodu kullanmaktadır. Kod çözücü karmaşıklığını azaltmak ve 2

boyutlu yapıların hata tespit etme kapasitelerini kullanmak için standart dizi

kullanılmıştır. Sunulan mimari son zamanlarda sunulan 2 boyutlu yapıya sahip Matrix

kodu ile karşılaştırılmıştır. Sunulan mimari 3 bit hataya kadar %100 düzeltme

yapmaktadır. 4 bit hataları %95 üzeri başarıyla düzeltmektedir. Ayrıca 12 bite kadar

viii

olan hataları %100 tespit etmektedir. Matrix koduyla MTTF açısından

karşılaştırıldığında, 10-4 ve 10-5 ‘de %63 daha iyi MTTF sunmaktadır. Matrix kod ve

sunulan mimari Xilinx XC6SLX16 FPGA’de gerçeklenmiştir ve bununla ilgili bilgiler

sunulmuştur.

Anahtar sözcükler : EG-LDPC, iki boyutlu hata düzeltme kodları, hataya dayanıklı

hafızalar, geçici hatalar.

ix

CONTENTS

M.Sc THESIS EXAMINATION RESULT FORM .. ii

ETHICAL DECLARATION .. iii

ACKNOWLEDGMENTS .. iv

ABSTRACT .. v

ÖZET ... vii

CONTENTS ... ix

ABBREVATIONS ... xi

LIST OF TABLES ... xii

LIST OF FIGURES .. xiii

LIST OF SYMBOLS ... xiiv

CHAPTER 1 – INTRODUCTION ... 1

CHAPTER 2 – BACKGROUND INFORMATION ... 5

 2.1 SEU and MBU in SRAM Based FPGAs .. 5

 2.2 Fault Tolerant SRAM Architecture ... 5

 2.3 Error Correction Codes ... 5

 2.3.1 Linear Block Codes ... 6

 2.4 EG-LDPC Codes ... 5

 2.5 Single Parity Check Codes .. 5

 2.6 Field Programmable Gate Array ... 5

 2.6.1 SRAM Based FPGAs .. 6

 2.6.2 Anti-fuse Based FPGAs .. 6

 2.6.3 Flash Based FPGAs .. 6

 2.7 Field of Applications of FPGAs .. 5

 2.7.1 FPGA Technologies in Space ... 6

 2.7.2 ASICs versus FPGAs .. 6

 2.8 Protection of Configuration Data of SRAM Based FPGAs 5

CHAPTER 3 – PREVIOUS WORKS .. 29

 3.1 Matrix Code .. 8

 3.2 2-D EG-LDPC Schemes ... 8

 3.2.1 2-D EG-LDPC (15, 7, 5) and Hamming Code (9, 5) 6

x

 3.2.2 2-D EG-LDPC (58, 32, 9) and Hamming Code (6, 3) 6

 3.2.3 2-D EG-LDPC (15, 7, 5) and EG-LDPC (13, 5, 5) 6

CHAPTER 4 – PROPOSED METHOD .. 34

CHAPTER 5 – EXPERIMENTAL RESULTS ... 47

CHAPTER 6 – CONCLUSION .. 51

REFERENCES ... 52

CURRICULUM VITAE .. 57

XI

ABBREVATIONS

ARQ Automatic Repeat Request

COTS Commercial off-the-shelf

EDAC Error Detection and Correction

EG-LDPC Euclidean Geometry Low Density Parity Check

FEC Forward Error Correction

FPGA Field Programmable Gate Array

FSD Fault Secure Detector

HDL Hardware Description Language

LUT Look Up Table

MBU Multi-Bit Upset

MED Multi-bit Error Detection

MTTF Mean Time to Failure

PAL Programmable Array Logic

PCB Printed Circuit Board

ROM Read Only memory

SBU Single-Bit Upset

SEC-DED Single Event Correcting–Double Event Detecting

SEU Single Event Upset

SPC Single Parity Check

TMR Triple Modular Redundancy

VPC Vertical Parity Codes

XII

LIST OF TABLES

Table 2.1 Definition of Error Terms [31]. ... 6

Table 2.2 Summary of State of the Art Technologies [37]. 24

Table 5.1 Overhead comparison. ... 47

Table 5.2 Correction comparison. ... 47

Table 5.3 Detection comparison. ... 47

Table 5.4 MTTF comparison. .. 49

Table 5.5 Resource usage and latency comparison. .. 50

XIII

LIST OF FIGURES

Figure 2.1 Single Event Effects [31]. .. 6

Figure 2.2 Distribution of Bit Error of Virtex-5 at [28]. ... 7

Figure 2.3 Fault tolerant memory architecture. ... 8

Figure 2.4 An example data storage/transmission system. 10

Figure 2.5 Classification of error correction codes. .. 11

Figure 2.6 Systematic codeword. .. 13

Figure 2.7 A Xilinx FPGA chip on a board [37]. .. 17

Figure 2.8 Logic structure of an FPGA chip [37]. .. 18

Figure 2.9 PAL structure [39]. .. 19

Figure 2.10 Programming bit in SRAM cell [37]. .. 20

Figure 2.11 LUT with SRAM cells [37]. .. 20

Figure 2.12 MUX with SRAM cells [37]. ... 21

Figure 2.13 Structure of configuration in SRAM-based FPGAs [37]....................... 22

Figure 2.14 SRAM based versus Anti-fuse based FPGAs [37]. 23

Figure 2.15 ProASIC3 flash-based FPGA. Switches use floating gates [42]. 24

Figure 2.16 Design steps in FPGAs and ASIC [37]. ... 26

Figure 3.1 Matrix code structure. .. 29

Figure 3.2 2-D EG-LDPC (15, 7, 5) and Hamming code (9, 5) structure. 31

Figure 3.3 A part of majority logic decoder. ... 32

Figure 3.4 2-D EG-LDPC (58, 32, 9) and Hamming code (6, 3) structure. 32

Figure 3.5 2-D EG-LDPC (15, 7, 5) and EG-LDPC (13, 5, 5) structure. 33

Figure 4.1 2-D data structure for the proposed method. ... 34

Figure 4.2 Generator matrix. ... 35

Figure 4.3 Systematic form of generator matrix. .. 35

Figure 4.4 Encoder structure of proposed method. ... 37

Figure 4.5 FSD and decoder of proposed method. .. 39

Figure 4.6 An example codeword. .. 39

Figure 4.7 One error injected to a row of codeword. .. 40

Figure 4.8 Two error injected to a row of codeword. ... 41

Figure 4.9 Two error injected to a row and one error injected to a row of codeword.

 .. 42

Figure 4.10 Four error injected to a row of codeword. ... 43

Figure 4.11 Two error injected to two row of codeword. ... 45

XIV

LIST OF SYMBOLS

K Message vector

C Codeword

G Generator matrix

H Parity check matrix

HT Transpose of parity-check matrix

s Syndrome vector

k Information bit-length

n Codeword bit-length

𝑅𝑐 Code Rate of a block code

1

CHAPTER 1

Introduction

As CMOS process technology scales deep into sub-40 nm regime and supply voltage

decreases, memory cells become geometrically smaller and hold less charge. As a

result, radiation induced soft errors become increasingly important factor in the

reliability of memories [1-8]. Soft errors occur when an energetic neutrons or alpha

particles released from chip material strike a memory cell. When a single strike of such

particles changes the content of the memory, this event is called Single Event Upset

(SEU). An SEU can flip one bit cell (SBU: Single-Bit Upset) or multiple bit cells

(MBU: Multi-Bit Upset). When memory elements are used in mission-critical

applications, SBUs or MBUs can have serious consequences such as functional failure

or system loss [9].

In general, two different radiation hardening approaches exist, namely physical and

logical, to protect memories from radiation effects in space applications [10]. The

physical radiation hardening methods use preventive design and manufacturing

methods such as shielding, or using insulating substrates to reduce the susceptibility

to radiation damage. The logical methods, on the other hand, utilize error correcting

techniques, or redundant elements for a radiation tolerant memory design. There is a

trade-off between the two approaches considering reliability, performance, cost and

availability [10].

SRAM memories and SRAM based FPGAs are the two important electronic systems

that need to be protected against radiation affects is the space. Space electronic systems

can either use radiation hardened memories and radiation tolerant non-volatile

memory based FPGAs or utilize Commercial off-the-shelf (COTS) SRAM memory

chips and SRAM Based FPGAs with error correcting techniques. Less complexity of

memory access and low latency are the main advantages of the COTS SRAM

memories. Similarly, COTS SRAM based FPGAs, such as Xilinx and Altera FPGAs,

achieve much faster design speeds than radiation hardened FPGAs, such as Microsemi

FPGAs [10]. In addition, COTS SRAM based FPGAs reduce the cost of space systems

2

and provide more reliable designs as they are cheaper and they have more reliable and

mature design tools. With these advantages, SRAM based FPGAs have been

frequently used in recent years [11].

However, as SRAM based FPGAs are vulnerable to radiation effects, failures or soft

errors are observed after SEU and MBU events. In general there are two types of soft

errors. The first type of soft error is observed while processing the data. Either the

data and/or the functions that process the data are changed with SEU and MBU events.

The second type of soft errors occurs due to break downs or alterations in the

connection network between blocks of digital circuits in FPGA. Due to these soft error

problems, SRAM based FPGAs in space applications are exposed to missing mission

or function decrements [12]and it is necessary to take precautions to decrease the effect

of radiation to FPGAs in space environment.

As SRAMs manufactured with small feature size, low noise margins and low voltage

level, MBUs become the dominant contributor of the overall soft error rate [6-8,10].

Therefore, Single Event Correcting–Double Event Detecting (SEC-DED) codes, such

as Hamming codes, would be unable to mitigate the soft errors alone [6]. Other

conventional memory protection methods such as bit-interleaving in combination with

SEC-DED codes [13] and Triple Modular Redundancy (TMR) are not feasible either,

as scaling up these techniques to cover large-scale MBUs will incur excessive increase

in area, latency and power consumption of SRAM memories [14-19].

One promising solution to mitigate MBUs with large widths is to construct two

dimensional (2-D) ECC structures [12,20-24], which can provide scalable multi-bit

error protection against large clusters of soft errors. Compared to conventional

schemes with similar error coverage, 2-D ECC architectures offer significantly smaller

latency, resource usage and power consumption figures. The first applications of two

dimensional ECC approaches for memories are presented in [22] and [23] in the form

of product code, and later an advanced bidirectional parity code is given in [24]. More

recent examples of 2-D schemes can be found in [12,20,21]. A new 2-D structure,

constructed by a combination of Hamming codes and Parity codes, referred as Matrix

code, is introduced in [21] and [12]. In [20], another 2-D error detection scheme, where

a multi-bit error detection (MED) code is used row-wise, and vertical parity codes

3

(VPC) are utilized as column code, is presented and compared with BCH, Hamming

and Matrix codes.

Recently, Euclidean Geometry Low Density Parity Check (EG-LDPC) codes are

proposed to overcome effects of MBUs in memories [25-27]. EG-LDPC codes have

better multiple error correcting capabilities than conventional codes and they have low

complexity and low delay decoders. Therefore, they are very suitable for fault tolerant

memory applications. The first application of EG-LDPC codes for fault tolerant

memory applications appeared in [25] and [26], where a one dimensional serially

implemented EG-LDPC code for nanoscale memories is presented. In a more recent

work [27], EG-LDPC codes are proposed as an efficient multiple bit error correction

method for memory systems and optimized schemes for (15, 7, 5), (63, 37, 9) and

(255, 175, 17) EG-LDPC codes are presented with 2-, 4- and 8-bit errors correction

capabilities, respectively. But there is a drawback for these codes. Increasing the

codeword, implementation of encoder and decoder is getting more complex in terms

of resource usage and latency.

In this thesis, we present a 2-D ECC architecture uses (15, 7, 5) EG-LDPC code in

row-wise and Single Parity Check (SPC) code in column-wise. In this approach,

instead of using a larger EG-LDPC code, a smaller EG-LDPC code with a simple

column SPC code is utilized to achieve a higher error correction capability with less

complexity. The proposed method is based on a standard array syndrome decoding

procedure, where a set of syndromes is pre-computed and saved with corresponding

correctable error patterns. The error correction bits are then set according to a Boolean

function mapping of syndrome patterns. The combination of EG-LDPC codes and SPC

codes improves error detection and correction capability and Mean Time to Failure

(MTTF) while utilizing more reliable ECC method causes more resource allocation

and long latency. Proposed method is slightly better error correction performance than

Matrix Codes which is a 2-D ECC. Error detection capability is also excellent

compared to Matrix Codes. Proposed method achieves 100% detection from one to

twelve bits errors. MTTF of our method is %63 better than Matrix codes at the fault

rate of 10-5. Matrix Codes and proposed method are implemented on Xilinx-

XC6SLX16 FPGA and both implementations are compared in terms of resource usage

4

and latency. It is seen that proposed method has higher correction, detection and

reliability compared to Matrix codes and these advantages comes with cost of slight

increase in resource usage and latency.

The rest of the thesis is organized as follows. In Chapter 2, a review of soft error

problem of SRAM memories, SRAM based FPGAs and error correction codes are

provided. Chapter 3 studies 2-D ECC methods such as Matrix Code and 2-D EG-

LDPC Codes. The proposed 2-D ECC method is explained in Chapter 4, where

encoding, error correction and detection process of proposed method are discussed in

detail. Then, the experimental results of studied method and its comparison to earlier

similar work are presented in Chapter 5. The implementations are compared in terms

of overhead, error correction and detection, MTTF, resource utilization and latency of

decoder. Finally, Chapter 6 concludes the thesis with emphasizing the advantages of

the method and the cost of these advantages.

5

CHAPTER 2

BACKGROUND INFORMATION

In this section, a review of radiation effects in electronics, fault tolerant SRAM

architecture and error correction codes are provided. Section 2.1 explains single event

upset and multiple bit upsets in electronics caused by radiation effects. A general

SRAM architecture that is used to prevent radiation induced errors is described in

Section 2.2. Then, Section 2.3 reviews different types of error correction codes and

lastly a review of EG_LDPC codes and SPC codes are given in Section 2.3 Then,

comprehensive information about FPGAs is given. Lastly, an example [10] of

protection of configuration data of SRAM based FPGAs are mentioned.

2.1 SEU and MBU in SRAM Based

SRAM based FPGAs realize circuits using programmable interconnects points and

look-up tables. These two units use SRAM memories to provide reprogrammable

feature. SRAM based FPGAs are attractive for space applications, because error effect

can be reduced in real time thanks to reprogrammable feature [28]. However, SRAM

cells which contain configuration data are sensitive SEUs that are result of radiation

effects. SEU is the change of the value of a memory cell by single strike. It can flip

logical value of one or more memory cells and this can change the contents of look-up

tables and interconnect points. Therefore, primarily, error sensitivities and

characteristics must be determined while developing precaution methods against

errors. As geometric size of transistors decrease, multiple memory cells could be

affected by single strike. If SEU flips multiple memory cells, it is named as MBU.

Table 2.1 and Figure 2.1 give detailed information about errors in SRAM memories.

Sensitivity of SRAM Based Virtex FPGAs to SEUs and MBUs and quality and

quantity of observed errors are studied in [1,27-30]. MBU impact and error

characteristics are presented in [28] for Virtex-5 FPGAs using 65 nm technology node.

It is possible to observe more than one error, which are MBU errors due to single

particle hits with decreasing technology process. In this work, mitigation of MBUs

6

due to single particle hits are explored and errors caused from more than one particle

hits are not considered.

Table 2.1 Definition of Error Terms [31].

Soft Error
Storage element (memory cell, latch, or register) state change. It is

correctable and it does not cause hardware damage.

SEU
Single Event Upset. Value change of storage element. It may affect a

single bit or multiple bits.

SBU
Single Bit Upset. A single memory cell location upset from a single

strike.

MCU
Multiple Cell Upset. Multiple memory cell locations upset from a

single strike.

MBU
Multiple Bit Upset. Multiple upsets in a logical word from a single

strike.

Figure 2.1 Single Event Effects [31].

Error characterization of FPGAs is obtained from measuring response against

radiation sources. This measurement gives cross sectional area that is sensitive to

radiation [32]. In [28], energetic particle effects on Xilinx Virtex-5 device are

7

investigated. Result of distribution of events at an linear energy transfer of 68.3 MeV-

cm2/mg with a rotation of (0,0) is given Figure 2.2.

Figure 2.2 Distribution of Bit Error of Virtex-5 at [28].

Decreasing SEU effects on one bit was the most important issue in the past. Reduction

in feature size of transistors, which is the building element of SRAM memories, causes

MBUs induced by energetic particles [6-8]. As functional failures, mission loss and

loss of mission data are occurred by MBUs, usage of components which are sensitive

to MBUs causes critical problems in space systems [12]. Today’s main concern is the

study on investigation new methods against effect of MBUs.

2.2 Fault Tolerant SRAM Architecture

SRAM memories are widely used for supplying dynamic storage medium needed by

applications running on microprocessors or FPGAs. SRAM memories are popular for

dynamic operations because write/read mechanisms are simpler compared to other

memory devices such as Flash memories. In this work, the assumed architecture

consists of an SRAM memory chip and an FPGA. The encoder and decoder circuitries

are implemented on FPGA. The FPGA has a lot more physical resources than the

implementation needs. Therefore, remaining resource can be used for implementing

other targeted applications or a smaller FPGA can be chosen if targeted applications

need to run on another environment (e.g., a microprocessor).

8

Figure 2.3 Fault tolerant memory architecture.

The fault tolerant SRAM memory architecture that consists of encoder, decoder,

detectors, memory controllers and memory unit is given in Figure 2.3. As the decoder

and encoder units are also susceptible to soft errors, detector units are needed to assure

fault tolerance at encoder and decoder. In general, fault tolerant schemes like logic

replication or concurrent parity prediction methods are used to build fault tolerant

encoder and detector circuits [33]. However, as EG-LDPC codes has fault secure

detector (FSD) feature [25], detector circuitry provides sufficient protection to encoder

and decoder circuits without any need of additional fault-tolerant circuitry. In the

following, the steps for accessing the fault tolerant SRAM memory architecture of

Figure 2.3 are given:

1. When a write operation is requested, memory controller asserts information

vector, address and control signals.

2. Information vector is encoded according to selected coding scheme, codewords

are constructed.

3. Output of encoder is checked against transient errors. If an error is observed,

encoding is repeated.

4. If no error is detected, codewords are written to SRAM memory.

9

5. When a read operation is requested, data is read to FPGA.

6. Temporarily stored codewords are decoded.

Output of decoder is checked by detector against possible transient errors. If no error

is observed, data is passed to microcontroller/FPGA on which application runs. If there

is a transient error, decoding is repeated.

2.3 Error Correction Codes

In this section, general properties of Error Correction Codes which is precaution

reducing the effect of errors are mentioned. Detailed information is given in [34].

As data’s stored and transmitted environment are sensitive to environmental factors,

interference and physical source, data is easily affected to random bit errors. Error

coding is a method that provides data transmission without corruption using error

detection and correction. Error coding is frequently used in fault tolerant computing,

optical and solid state data storage, and satellite and space communication.

Reliable and efficient data storage systems are stood out because of increasing error

ratio stemming from high capacity data storage and high speed data transfer in

commercial and military application.

Shannon explains that errors of data in noisy channel or storage environment can be

reduced to desired range if data ratio is less than channel capacity in [35]. To do that,

it is suggested to use error correction codes in noisy channels. Error coding for

controlling failures is used in designs as a fundamental component of modern

communication and digital data storage systems. Modern-days data

storage/transmission model is given in Figure 2.4.

10

Figure 2.4 An example data storage/transmission system.

Data storage and transmission have lots of common properties. Data is carried from

source to destination in each process. A typical data storage/transmission system is

illustrated in Figure 2.4. Digital source can be a human or a machine. Encoder

transforms data to codeword which is encoded data. Transmitter converts codeword

to appropriate waveform for transmitting or storing data. Waveform is transferred in

channel or storage environment and degraded due to noise. Typical transmission

channels are phone lines, mobile communication networks, fiber optic networks, HF

radios, telemetry and microwave and satellite links. Typical storage environments are

semiconductor memories, magnetic storage units, hard disks, compact disk, optic data

storage units. There are various noise types for each storage unit. Receiver gathers data

from channel or storage medium for time interval T and converts for use of data in

decoder. Decoder turn received data into estimated data. Decoding process is realized

according to encoder and noise in channel. In ideal circumstances, estimated data is

equal to source data. However, decoding errors can be occurred because of the noise.

Data coding theory focuses on properties that mentioned below [34]:

1) Storing/transferring data in noisy environment as possible as fast and

intensified.

11

2) Be able to recreate data reliably from decoder.

3) Reasonable cost for encoder and decoder design.

4) Minimizing encoding error probability

ECC methods which are frequently used in mentioned application areas are given in

Figure 2.5.

Figure 2.5 Classification of error correction codes.

2.3.1 Linear Block Codes

Usage area of block codes is the detection and correction of data errors caused by

transmission. Noise is added to data being sent while data goes through transmission

medium. This causes errors in received data. As error data can be requested for

retransmission in case of error, error detection may be sufficient in a two way

12

communication. Transmitter is notified for errors existence by receiver in presence of

error. This method is called automatic repeat request (ARQ). However, it is not

possible to request data for retransmission from transmitter in one way communication

systems. It is required that system recovers errors in data without retransmission. In

this communication type, receiver side needs error correction in addition to error

detection to improve communication reliability. This method is named as forward error

correction (FEC). If FEC capacity is equal or bigger than the error rate, all errors can

be corrected without retransmission.

A block code is represented by (n, k) where k is the number of information bits and n

is the number of codeword bits. Therefore, in (n, k) code, n-k parity bits are added into

k bits original data block to obtain n bits codeword. Data errors occurred in the

received data is corrected using these n-k parity bits. If addition of any valid two

codewords which are block code results in another valid codeword, the block code is

considered as linear block code. Ratio of the length of information block (k) to the

length of codeword (n) is named as code rate. Code rate is inversely proportional to

number of parity bits. Code rate is also inversely proportional to need of transmission

bandwidth. Code rate formula is given by the following equation:

𝑅𝑐 =

𝑘

𝑛

(2.1)

Code rate is 1 for uncoded systems. In other words, there is no redundant bits. As it

consumes transmission bandwidth and power, the redundant bits can be assumed as

overhead. Besides, code rate is inversely proportional to coding performance.

Encoder constructs codeword from information bits. Systematic code is the code that

codeword is constructed such that parity bits place after information bits. An

illustration of systematic codeword is given in Figure 2.6. In principle, computed

parity bits are placed to the end of information bits.

13

Information Parity

Codeword

Figure 2.6 Systematic codeword.

Encoding is the process where two matrixes, message matrix K and special matrix G

are multiplied. Message matrix K is a row vector containing information bits.

Codeword is constructed by following formula:

 C = K ∙ G (2.2)

where G corresponds generator matrix. G is in the structure of [𝐼𝑘|𝑃]. 𝐼𝑘 is identity

matrix with number of k rows and columns. P is the parity matrix with number of k

rows and n-k columns. An example of the generator matrix for (7, 4) code is given

below.

𝐺 = [

1 0 0 0 1 0 1
0 1 0 0 0 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 0

] (2.3)

Another matrix named as parity check matrix H is used for decoding codeword at the

decoder side. It can be constructed from generator matrix G using following formula

for systematic codes.

 𝐻 = [𝑃𝑇| 𝐼𝑛−𝑘] (2.4)

Therefore, corresponding H matrix for systematic code is obtained from generator

matrix and given below.

14

𝐻 = [

1 0 1 0 1 0 0
0 1 1 1 0 1 0
1 1 0 0 0 0 1

] (2.5)

The following equation in below must be satisfied by generator matrix G and parity

check matrix H.

𝐺 ∙ 𝐻𝑇 = 0 (2.6)

H matrix is a (n-k) x n matrix. It contains (n-k) columns. Each row corresponds to

parity check equation. An errorless codeword must satisfy:

 𝐶 ∙ 𝐻𝑇 = 0 (2.7)

H execute (n-k) separate parity check operations on a received codeword. For example,

parity check operations implied by H matrix given below.

 𝑐0⨁𝑐2⨁𝑐4 = 0 (2.8)

 𝑐1⨁𝑐2⨁𝑐3⨁𝑐5 = 0 (2.9)

 𝑐0⨁𝑐1⨁𝑐6 = 0 (2.10)

 The first parity equation checks bits 0, 2, and 4 according to parity check matrix

 The second parity equation checks bits 1, 2, 3, and 5 according to parity check

matrix

 The third and last parity equation checks bits 0, 1, and 6 according to parity

check matrix

15

2.4 EG-LDPC Codes

In this section, the construction of EG-LDPC codes, which are based on line and points

of corresponding finite geometries are explained and corresponding encoding and

decoding schemes are discussed [36].

Euclidean Geometry is finite geometry with following structural properties:

1. Every line consists of ρ points;

2. Any two points are connected by one and only one line;

3. Every point is intersected by γ lines;

4. Any two lines either intersect at only one point or they are parallel.

Let 𝐻 be a binary matrix. Rows of H correspond to lines, and columns represent points

of EG. Rows of H, called incidence vectors, display points in a line and has weight ρ.

Columns of H, called intersecting vector of points in EG, represent the lines that

intersect at a specific point. Columns have weight of γ. In H, ℎ𝑖𝑗 equals to 1 if jth point

lies on ith line. H can also be considered as an incidence matrix of the lines in EG over

the points in EG. Parity check matrix H defined in EG is shown to fit to the definition

of LDPC matrices. Therefore the code represented by H is an LDPC code. Throughout

this work, type-I EG-LDPC code [25] is used in implementations. Any ECC can be

characterized by code length(𝑛), information bit length (𝑘) and minimum distance

(𝑑) and represented by triple(𝑛, 𝑘, 𝑑). Parity check matrix of Type-I EG-LDPC codes

have following parameters as shown in [2] for any t>=2:

 information bits, 𝑘 = 22𝑡 − 3𝑡 ;

 length, 𝑛 = 22𝑡 − 1 ;

 minimum distance, 𝑑𝑚𝑖𝑛 = 2𝑡 + 1 ;

 dimensions of the parity-check matrix: 𝑛 𝑥 𝑛 ;

 row weight of the parity-check matrix, ρ = 2t ;

16

 column weight of the parity-check matrix, γ= 2t.

Parity check matrix H is constructed by taking an incidence vector in EG and (22t – 2)

shifts of the incidence vector as rows. As parity check matrix’s rows formed by shifting

a vector, EG-LDPC is a cyclic code. 𝐻’s rows are not necessarily linearly independent.

The rank of H is (𝑛 – 𝑘) therefore the code is a (𝑛, 𝑘, 𝑑𝑚𝑖𝑛) linear code [4]. Since

𝐻 matrix is (𝑛 𝑥 𝑛), there are n syndromes instead of (𝑛 – 𝑘). A syndrome bit is

generated for each bit at codeword, not only for information bits.

As parity check matrices of EG-LDPC codes are sparse (e.g. ρ << n, γ << n), EG-

LDPC codes have low complexity and low delay decoders. This feature of EG-LDPC

codes gives designers the opportunity of implementing encoders and decoders using

basic logical elements like AND, XOR gates and majority gate logic. Type-I EG-

LDPC codes are known to be one step majority logic correctable. One step majority

corrector is a fast and compact error correcting method, which can corrects up to γ/2

error bits in the received information vector.

Encoding process of EG_LDPC codes is performed by multiplying information vector

with generator matrix to get the codeword, e.g., 𝑐 = 𝑖. 𝐺. Generator matrix is obtained

from a generator polynomial vector, where (𝑘 − 1) shifts of polynomial vector forms

the rows of H. For decoding of EG-LDPC codes, one step majority logic decoding

(MLD) is used. In one step MLD, received n-tuple is loaded into the buffer register

and the parity check equations are computed and fed to the majority logic gate. If a

majority of parity checks have a value of one, the last bit is inverted. Then all bits are

cyclically shifted and same operations are performed again. This process is repeated n

times until the bits are in the same position in which they were loaded.

2.5 Single Parity Check Codes

Single parity Check (SPC) code is one of the linear block code which has one parity

bit and detects odd number bits errors [34]. General equation is given below, if p is the

parity bit and 𝑚 = (𝑚0, 𝑚1, . , 𝑚𝑘 − 1) are the message to be encoded.

 𝑝 = 𝑚0 + 𝑚1 + ⋯ + 𝑚𝑘−1 (2.11)

17

Syndrome of SPC code is described by

 𝑠 = 𝑝 + 𝑚0 + 𝑚1 + ⋯ + 𝑚𝑘−1 (2.12)

where s is the syndrome bit. SPC codes detect odd number errors and do not correct

any errors.

2.6 Field Programmable Gate Array

FPGA is an integrated circuit logic device that can be programmed. They can be

programmed to realize a logic function after they manufactured. FPGA users can

design the desired logic function writing hardware language codes like VHDL or

Verilog and program the FPGA using these codes. FPGAs can be programmed one

time or multiple times. SRAM based FPGAs can be programmed unlimited times. In

this section, story of the FPGAs and latest FPGAs are mentioned to give a background

about the work [37].

Figure 2.7 A Xilinx FPGA chip on a board [37].

FPGAs has reprogrammable logic gates, memory blocks and configurable

interconnects that connect logic elements. An example FPGA is illustrated Figure 2.7.

The latest FPGAs also contains embedded IP cores such as memory controller,

processors and DSP blocks to give better environment to design System on a Chip

(SOC) [37].

18

Figure 2.8 Logic structure of an FPGA chip [37].

The simplified architecture of a Xilinx FPGA chip is given in Figure 2.8. Input and

output blocks which are abbreviated as I/Os connect the FPGA to other devices on the

printed circuit board (PCB) are placed to surround the chip [37].

Small fuses were used in first programming technologies. Programming technologies

are getting more complex because the complexity of FPGA architectures are

increasing [37].

The history of FPGA dates back to the history of developing the integrated circuits in

the middle of 20th century. Field Programmable devices are the result of the need to

get designs quickly done. Programmable devices in history started with Read Only

memory (ROM). Then, PROM was developed which is one time programmable by

user [38]. EPROM is the erasable version of PROM. They are first products of need

to programmability [37].

After that, Programmable Array Logic (PAL) was evolved. It uses programmable OR

gate planes after AND gate planes [37]. It is illustrated in Figure 2.9.

19

Figure 2.9 PAL structure [39].

Static Memory based FPGAs were proposed to achieve area efficiency and flexibility.

Bit streams are used to program logics and interconnections of this architecture. Logic

cells are the fundamental component of FPGAs to implement logics and storage

elements. Inter-cell connections which are flexible and reconfigurable by the bit stream

are also available. Logic cells and inter-cell connections provide the implementation

of various complex circuits[37].

Nevertheless, there is a tradeoff between the flexibility and the area usage. Static

memory gives flexibility in programming while increases area usage [37]. This

tradeoff was the reason of delaying the commercial SRAM based FPGA devices

because the cost per transistor was higher until at the middle of 1980’s [40].

Modern era FPGAs were introduced firstly by the Xilinx FPGA Company [40]. Its

structure contains an array of Configurable Logic Blocks which is inspired from the

first FPGAs. These elements include 64 logic blocks and 58 inputs and outputs [40,41].

After all, FPGAs has evolved very quickly in terms of complexity. Modern FPGAs

has more than millions of logic blocks, enormous number of inputs and outputs and

large number of specific blocks. This evolution causes rapid changes in architecture of

FPGAs [37].

20

Programming technologies in FPGAs varies. Flash, static RAM and anti-fuse

technologies are used in modern programmable technologies [40].

2.6.1 SRAM Based FPGAs

Static memory cells or SRAM cells are used in SRAM programming technology for

programming. It has been widely used in Xilinx, Altera and Lattice FPGA companies

[37]. Static memory cells which are illustrated in Figure 2.10 give configurability for

FPGAs.

Figure 2.10 Programming bit in SRAM cell [37].

Interconnections and logic functions uses SRAM cells. Look up Tables (LUTs) are

used in SRAM based FPGAs to implement logic functions [37]. Figure 2.11 shows the

usage of SRAM cells with LUTs. Usage of SRAM cells with MUX is given in Figure

2.12.

Figure 2.11 LUT with SRAM cells [37].

21

Figure 2.12 MUX with SRAM cells [37].

As SRAM based FPGAs are reprogrammable, they are majorly used in various

applications. SRAM based cells use the standard CMOS processing technology unlike

other programming technologies. So, the latest CMOS technology can be used in

SRAM based FPGAs and this gives advantages which are higher speed, lower power

consumption, lower area usage and lower cost per chip. Logic implementation and

interconnect routing are controlled by the configuration memory. Configuration is

done defining logic function to logic resources and routing switches on FPGA [37].

Structure of configuration is shown in Figure 2.13.

22

Figure 2.13 Structure of configuration in SRAM-based FPGAs [37].

Despite this, SRAM based technologies has some characteristics that are challenge.

The most important disadvantage is that SRAM based FPGAs are volatile. When

power of SRAM based device is down, there is a need of external device to store the

configuration data permanently [37]. Recent trend is that configuration data is loaded

to SRAMs upon power up from flash memories. But this solution is inefficient because

of the need of flash memory [40].

2.6.2 Anti-fuse Based FPGAs

Anti-fuse based programmable technology is used in FPGAs. This technology enables

programming FPGA devices at a one time as mentioned earlier. A highly resistive

amorphous semi conductive layer is used in Anti-fuse based switches which is

irreversibly changeable to a low resistive state [37]. This can be seen in Figure 2.14

and can be compared with SRAM based cell.

23

Figure 2.14 SRAM based versus Anti-fuse based FPGAs [37].

Most important advantages of anti-fuse programming technology are that it does not

need large area and its configuration is non-volatile. It does not need additional

memory to store configuration data. However, all of the advantages of SRAM based

programming technology are mostly disadvantage of Anti-fuse based technology.

Anti-fuse based FPGAs cannot use latest available CMOS technology because they

need nonstandard CMOS processes. The other drawback is that using different

materials needs new IC fabrication processes which means new challenges and costs.

The most important disadvantage of Anti-fuse based FPGAs compared to SRAM

based FPGAs is their one time programmability limitation. This limitation makes them

inflexible to change designs many times [37].

2.6.3 Flash Based FPGAs

Floating gate programming technologies that inject charge onto a gate that floats above

the transistor are used for an alternative to SRAM based technology. This method is

used in flash or EEPROM memory cells. When they powered down, these devices do

not lose information as previously mentioned [37].

Flash memory cells are currently used as they improve area efficiency. Figure 2.15

shows Actel’s ProAsic which is a device that uses flash based programming

technology. In this device, small transistors are used to program the floating gates and

large transistors are used to program the switches [37].

24

Figure 2.15 ProASIC3 flash-based FPGA. Switches use floating gates [42].

Flash based technology has the non-volatility advantage. Additionally, this technology

does not need external memory to store configuration data like anti-fuse technology.

This enhances security [37].

Flash based FPGAs are reconfigurable. This is the most important advantage when

comparing anti-fuse based FPGAs because flash based and anti-fuse based FPGAs are

non-volatile and anti-fuse based FPGAs are one time programmable [37].

However, flash based devices are not able to be reprogrammed infinitely. For example,

current devices can be reprogrammed up to 500 times. Another drawback is that flash

based devices uses non-standard CMOS technology like anti-fuse based ones [37].

Table 2.2 Summary of State of the Art Technologies [37].

Technology Reprogrammable Volatile Product Technology

Anti-fuse based No No Non-standard CMOS technology

SRAM based Yes Yes CMOS technology

Flash based Yes but finite No Non-standard CMOS technology

Table 2.2 is the illustration of the comparison of the state of the art programmable

technology in terms of reprogrammability, volatility and production technology [37].

25

2.7 Field of Applications of FPGAs

FPGAs need more area, power and performance when compared with standard cell

ASICs. These disadvantages come from FPGA’s programmable routing fabric.

Despite this, there is a tradeoff between these disadvantages and flexibility. FPGAs

are flexible and they can ben be used in wide range of applications. For small and

middle volumes projects, FPGAs are great alternative which has low volume cost [37].

ASIC design has complex processes, in other words, it is costly and time consuming

compared to FPGA design. One of the most important usage area is the rapid

prototyping. The development of ASIC has processes from specification to chip

layout. FPGAs are used here to implement different versions of product and help face

problems and errors earlier [37].

Additionally, FPGAs are useful for complex designs like security systems in

developing a fast system. FPGAs can be reconfigured remotely. So, FPGAs are

reconfigured in the system even if they are placed into non-accessible or very difficult

access locations. These features make FPGAs efficient to use in space kind

applications [37].

2.7.1 FPGA Technologies in Space

In space applications, FPGAs have been used widely for more than ten years. Their

programmability, capacity and performance increase their usage for space

applications. The capacity of FPGAs has increased from tens to thousands to millions

logic gates. This makes them an alternative to ASICs as real time complex functions

can be implemented in FPGAs [37].

Run-time reconfigurability is still a new study field for space applications and this

feature of FPGAs helps to make space applications reliable against ionization failures

in semiconductor [37].

26

2.7.2 ASICs versus FPGAs

Customized integrated circuits, which are designed to realize a special function, are

named as ASICs. They can be designed using Standard Cells, Gate Arrays and Full

Custom. ASIC design and development is costly [43]. ASICs are produced in high

volumes to reduce cost per chip. Some applications like space do not use that much

products. On the other hand, they must be replaced if they damaged [37].

Figure 2.16 Design steps in FPGAs and ASIC [37].

FPGAs are more flexible to failures as they can be reprogrammed. In addition, they

have low cost as if they are needed in small volumes. These features make FPGAs

very useful in space applications. FPGA technologies are used continuously in NASA

flight projects because of their low cost and schedule effective features compared to

ASICs [44].

2.8 Protection of Configuration Data of SRAM Based FPGAs

In [10], an architecture for protection of configuration data of SRAM based FPGAs

are proposed. This section summarizes the proposed architecture.

The FPGA running application and memory which is saved configuration data is

sensitive to single event effect as either FPGA and memory is SRAM based. For this

reason, configuration data is encoded and parity check bits are saved to memory unit.

Periodically, Configuration data on FPGA and parity check bits on memory are

gathered and decoded to correct erroneous bits if any. Using codewords which are

27

corrected, data scrubbing is applied to both configuration data memory of FPGA and

external memory unit which saves parity bits.

Main constituents of the architecture are as follows:

- Application FPGA (SRAM Based FPGA which is configuration data

protected)

- Configuration manager FPGA

- Memory unit that saves configuration data

The Application FPGA is an FPGA that is running the applications. In [10], a Virtex-

5 series FPGA from Xilinx is used because its common usage area is computing works

in space applications.

Configuration manager FPGA is an antifuse FPGA because antifuse FPGAs are robust

to degradation of configuration data and configuration management does not need a

high computing performance [45]. The design on this FPGA has following sub-blocks:

- External interface: At booting the Application FPGA, configuration data is

received from this interface.

- SelectMap controller: Application FPGA’s interface connected to

SelectedMap configuration interface. Data communication between

Application FPGA and Configuration FPGA is provided by SelectMap

protocol at booting stage and reading configuration data periodically.

- Configuration controller: It provides data communication between external

memory interface, memory unit and Application FPGA. It starts and controls

data scrubbing cycle. State machines that controls reduction of error effects

process.

- Encoder/Decoder: In [10], configuration data is encoded using 2-D EG-LDPC

code. It is possible to spare configuration data and parity check bits without

any additional effort as the codeword is in systematic form. Configuration data

is saved on Application FPGA and the parity check bits are saved on external

SRAM memory unit.

28

- Memory unit: Encoded configuration data and parity check bits are kept on this

unit.

The process has these steps:

1- Configuration data is received from external interface at boot stage of

Application FPGA.

2- Configuration data is encoded. While Application FPGA are being configured

with information bits, parity check bits are written to memory unit.

3- Periodically, configuration data of Application FPGA is re-read.

4- The codeword which is obtained from gathering re-read configuration data and

parity check bits saved to SRAM memory unit is decoded to correct erroneous

bits.

5- Data scrubbing is applied to configuration data of Application FPGA using

information bits of the codeword and memory unit using parity check bits.

29

CHAPTER 3

RELATED WORKS

In this section, Matrix Code and previously proposed 2-D EG-LDPC Codes related to

our proposed method are given. These codes are developed to mitigate SRAM

Memory errors and they are based on two dimensional approach.

Matrix Code uses Hamming Code row-wise and SPC code column-wise. In Matrix

Code, SPC uses information from Hamming Code when decoding. Thus, Matrix Code

exploits the full advantage of 2-D ECC scheme.

Previously proposed 2-D EG-LDPC Codes has three different schemes. First one uses

EG-LDPC (15, 7, 5) row-wise and Hamming Code (9, 5) column-wise. Second scheme

uses EG-LDPC (58, 32, 9) row-wise and Hamming Code (6, 3) column-wise. Last one

uses EG-LDPC (15, 7, 5) both row-wise and column-wise. In these codes, there is no

information from either row-wise code or column-wise code to other.

3.1 Matrix Code

In [21], 2-D based Matrix code which is MBU tolerant method for SRAM memories

is proposed. This method uses Hamming SPC codes. Matrix Code is illustrated in

Figure 3.1.

X1 X2 X3 X4 C1 C2 C3

X5 X6 X7 X8 C4 C5 C6

X9 X10 X11 X12 C7 C8 C9

X13 X14 X15 X16 C10 C11 C12

P1 P2 P3 P4

Figure 3.1 Matrix code structure.

30

In this method, Hamming code is applied to each row. 3 check bits of Hamming are

added to end of 4 data bits. Check bits calculations are done by using following

equations.

𝐶1 = 𝑋2 ⨁ 𝑋3 ⨁ 𝑋4 (3.1)

𝐶2 = 𝑋1 ⨁ 𝑋3 ⨁ 𝑋4 (3.2)

𝐶3 = 𝑋1 ⨁ 𝑋2 ⨁ 𝑋4 (3.3)

Xi bits where i is from one to sixteen are data bits and Cj bits where j is from one to

twelve are Hamming check bits.

SPC parity bits are P1 through P4. SPC parity bits are calculated by following

equations.

𝑃1 = 𝑋1 ⨁ 𝑋5 ⨁ 𝑋9 ⊕ 𝑋13 (3.4)

𝑃2 = 𝑋2 ⨁ 𝑋6 ⨁ 𝑋10 ⊕ 𝑋14 (3.5)

𝑃3 = 𝑋3 ⨁ 𝑋7 ⨁ 𝑋11 ⊕ 𝑋15 (3.6)

𝑃4 = 𝑋4 ⨁ 𝑋8 ⨁ 𝑋12 ⊕ 𝑋16 (3.7)

In decoding process, to decode each row, a Hamming decoder is used. Two steps are

done in decoding process of Matrix Codes. Firstly, syndrome bits are calculated. It is

decided using syndrome bits whether there is no error or single error or double error.

If there is double error, it is corrected using parity bits. This decoding method can be

described in form of equation as follows.

31

𝑋𝑖𝑐𝑜𝑟𝑟𝑒𝑐𝑡

= (𝑋𝑖𝑒𝑟𝑟
 ⨁ 𝑂𝑖) ⨁ (𝐷𝐸𝐷𝑘 × 𝑆𝑃𝑗

) (3.8)

where 𝑋𝑖𝑒𝑟𝑟
 is the erroneous bit, 𝑂𝑖 is the output corresponding bit i of Hamming

decoder, 𝐷𝐸𝐷𝑘 is the double error detection signal of row k and 𝑆𝑃𝑗
 is the syndrome

parity of corresponding SPC parity bit.

This method is corrected one bit error for each row or two bit error for one row using

mentioned decoding process.

3.2 2-D EG-LDPC Schemes

In [10], three different 2-D methods are proposed. These methods are briefly

expressed.

3.2.1 2-D EG-LDPC (15, 7, 5) and Hamming Code (9, 5)

This method uses EG-LDPC (15, 7, 5) to encode rows and Hamming Code (9, 5) to

encode columns. Structure of this method is illustrated in Figure 3.2.

X1 X2 X3 X4 X5 X6 X7 C1 C2 C3 C4 C5 C6 C7 C8

X8 X9 X10 X11 X12 X13 X14 C9 C10 C11 C12 C13 C14 C15 C16

X15 X16 X17 X18 X19 X20 X21 C17 C18 C19 C20 C21 C22 C23 C24

X22 X23 X24 X25 X26 X27 X28 C25 C26 C27 C28 C29 C30 C31 C32

X29 X30 X31 X32 X33 X34 X35 C33 C34 C35 C36 C37 C38 C39 C40

P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 P13 P14

P15 P16 P17 P18 P19 P20 P21

P22 P23 P25 P25 P26 P27 P28

Figure 3.2 2-D EG-LDPC (15, 7, 5) and Hamming code (9, 5) structure.

Xi bits which i is from one to thirty five are data bits. EG-LDPC parity bits are Cj bits

which j goes through one to fourty. Pk bits which k is from one to twenty eight are

Hamming Code parity bits.

32

In decoding process, firstly, each column is decoded separately using Hamming

Decoder. Parity bits are recalculated and 4 bits syndrome is calculated using old and

new parity bits. Syndrome gives us the location of erroneous bit. Erroneous bit is

corrected by inverting it.

After column decoding, each row is decoded using one step majority logic decoder.

This decoder uses parity check matrix to correct erroneous bits. Majority logic decoder

uses parity check matrix H (15×15) which is formed from an impact vector and

fourteen vector its shifted form. Using H matrix, inputs of exor logic gates are decided.

An example circuit for decoding a message is illustrated in Figure 3.3.

Figure 3.3 A part of majority logic decoder.

3.2.2 2-D EG-LDPC (58, 32, 9) and Hamming Code (6, 3)

In this method, three 32-bit data are encoded using EG-LDPC (58, 32, 9) row-wise

and Hamming Code (6, 3) column-wise. Structure of this method is shown as below.

32-bit data 26-bit EG-LDPC parity check bits

32-bit data 26-bit EG-LDPC parity check bits

32-bit data 26-bit EG-LDPC parity check bits

3-bit Hamming parity check bits

Figure 3.4 2-D EG-LDPC (58, 32, 9) and Hamming code (6, 3) structure.

33

Decoding process of this method is similar to EG-LDPC (15, 7, 5) and Hamming Code

(9, 5) method. In this method, EG-LDPC (58, 32, 9) uses Majority Logic Decoder as

well. But the size of H matrix of this method is 58×58. Hamming Code of this method

is different than previous one in terms of length. It uses 3-bit syndrome vector to detect

and correct erroneous bits.

3.2.3 2-D EG-LDPC (15, 7, 5) and EG-LDPC (13, 5, 5)

This method uses EG-LDPC (15, 7, 5) row-wise and EG-LDPC (13, 5, 5) which is

derived from (15, 7, 5) column-wise. Structure of this method is shown as below.

X1 X2 X3 X4 X5 X6 X7 C1 C2 C3 C4 C5 C6 C7 C8

X8 X9 X10 X11 X12 X13 X14 C9 C10 C11 C12 C13 C14 C15 C16

X15 X16 X17 X18 X19 X20 X21 C17 C18 C19 C20 C21 C22 C23 C24

X22 X23 X24 X25 X26 X27 X28 C25 C26 C27 C28 C29 C30 C31 C32

X29 X30 X31 X32 X33 X34 X35 C33 C34 C35 C36 C37 C38 C39 C40

P1 P2 P3 P4 P5 P6 P7

P8 P9 P10 P11 P12 P13 P14

P15 P16 P17 P18 P19 P20 P21

P22 P23 P25 P25 P26 P27 P28

P29 P30 P31 P32 P33 P34 P35

P36 P37 P38 P39 P40 P41 P42

P43 P44 P45 P46 P47 P48 P49

P50 P51 P52 P53 P54 P55 P56

Figure 3.5 2-D EG-LDPC (15, 7, 5) and EG-LDPC (13, 5, 5) structure.

Columns and rows are decoded respectively using Majority Logic Decoder in this

method. EG-LDPC (13, 5, 5) uses the Majority Logic Decoder which is reduced form

of EG-LDPC (15, 7, 5).

34

CHAPTER 4

PROPOSED METHOD

In this section, a 2-D ECC architecture based on (15, 7, 5) EG-LDPC and SPC codes

are examined and given in detail for its capability to overcome SEU and MBU errors

in SRAMs.

As SRAMs have 32-bit data width in general, information bit vectors are taken as 32

bits. Prior to encoding, data is arranged to fit the 2-D structure. Number of columns

and rows are chosen to be compatible with (15, 7, 5) EG-LDPC code, SPC code and

32-bit information vector width. A 35-bit vector (32-bit information bit vector, plus

three ‘0’s padded at the end of information vector) is divided into a 5 x 7 matrix, as

illustrated in Figure 4.1. Mij corresponds information bits where i is from 0 to 4 and j

is from 0 to 6. Rkl corresponds row parity bits of EG-LDPC code where k is from 0 to

4 and l is from 0 to 7. Cmn corresponds column parity bits of SPC code where m is 0

and n is from 0 to 6.

For each row of the matrix, a separate EG-LDPC encoder and decoder is built and

implemented in fully parallel structure to minimize latency and maximize throughput.

Columns are also handled by their dedicated SPC encoder and decoder concurrently.

M00 M01 M02 M03 M04 M05 M06 R00 R01 R02 R03 R04 R05 R06 R07

M10 M11 M12 M13 M14 M15 M16 R10 R11 R12 R13 R14 R15 R16 R17

M20 M21 M22 M23 M24 M25 M26 R20 R21 R22 R23 R24 R25 R26 R27

M30 M31 M32 M33 M34 M35 M36 R30 R31 R32 R33 R34 R35 R36 R37

M40 M41 M42 M43 M44 M45 M46 R40 R41 R42 R43 R44 R45 R46 R47

C00 C01 C02 C03 C04 C05 C06

Figure 4.1 2-D data structure for the proposed method.

35

Encoding operation of EG-LDPC codes is performed by using a generator polynomial.

In Equation 4.1, Generator polynomial,𝑔(𝑥), for (15, 7, 5) EG-LDPC code is given

[34]:

𝑔(𝑥) = 1 + 𝑋4 + 𝑋6 + 𝑋7 + 𝑋9 (4.1)

The rows of Generator matrix 𝐺 is obtained from the polynomial vector 𝑣𝐺 =

[1 0 0 0 1 0 1 1 0 1 0 0 0 0 0], and 6 circular shifts of 𝑣𝐺 . Generator matrix G is

shown in below:

Figure 4.2 Generator matrix.

The 𝐺 matrix obtained from vector 𝑣𝐺 is not in a systematic form as shown above. By

pivoting and elementary column operations, systematic generator matrix G’ is

obtained. As G’ is systematic, codeword bits 𝑅0, 𝑅1, … , 𝑅6 are equal to information

bits 𝑖0, 𝑖1, … , 𝑖6.

Figure 4.3 Systematic form of generator matrix.

36

Parity bits 𝑅7, 𝑅8, … , 𝑅14 of (15, 7, 5) EG-LDPC code are estimated from equations

4.2-4.9 using exclusive or operations.

 𝑅7 = 𝑀0 ⊕ 𝑀1 ⊕ 𝑀3 (4.2)

 𝑅8 = 𝑀1 ⊕ 𝑀2 ⊕ 𝑀4 (4.3)

 𝑅9 = 𝑀2 ⊕ 𝑀3 ⊕ 𝑀5 (4.4)

 𝑅10 = 𝑀3 ⊕ 𝑀4 ⊕ 𝑀6 (4.5)

 𝑅11 = 𝑀0 ⊕ 𝑀1 ⊕ 𝑀3 ⊕ 𝑀4 ⊕ 𝑀5 (4.6)

 𝑅12 = 𝑀1 ⊕ 𝑀2 ⊕ 𝑀4 ⊕ 𝑀5 ⊕ 𝑀6 (4.7)

 𝑅13 = 𝑀0 ⊕ 𝑀1 ⊕ 𝑀2 ⊕ 𝑀5 ⊕ 𝑀6 (4.8)

 𝑅14 = 𝑀0 ⊕ 𝑀2 ⊕ 𝑀6 (4.9)

After row encoding is completed, column encoding is performed using SPC code,

where 1 parity bit is generated for each 5-bits of data, , as given in Equation 4.10.

𝐶0𝑦 = 𝑀0𝑦 ⊕ 𝑀1𝑦 ⊕ 𝑀2𝑦 ⊕ 𝑀3𝑦 ⊕ 𝑀4𝑦 (4.10)

37

Figure 4.4 Encoder structure of proposed method.

In decoding process, a comprehensive algorithm is developed to decode EG-LDPC

and SPC codes efficiently. In general concept, syndrome calculation is used for error

detection and one step majority logic decoder is used for error correction in EG-LDPC

codes. One step majority logic decoder corrects one and two erroneous bits. The

calculated syndrome vectors of error patterns which has one to four error bits has non-

zero elements. Some of the calculated syndrome vectors of error bits larger than four

has non-zero elements and some of them do not have non-zero elements. So, EG-

LDPC code detects up to four bits errors certainly also it may detect some of the error

bits larger than four. In this method, to integrate error detection and correction

processes of EG-LDPC code, standard arrays are used. This is the benefit of the

proposed 2-D architecture algorithm. Standard array contains syndromes that are

calculated from one bit error combinations and corresponding error combinations

because when one bit error is introduced in codeword, syndrome vector of this

codeword is matched and corresponding erroneous bit is corrected. When from two to

four bit errors are introduced in codeword, syndrome vector of this codeword has non-

zero elements and errors of corresponding codeword are detected. The detection

information is used in column decoding and this helps column decoder to correct

erroneous bits. It explicit advantage of 2D ECC structures.

Syndrome is calculated using codeword C and parity check matrix H in EG-LDPC.

38

𝑠 = 𝐶 ∗ 𝐻𝑇 (4.11)

If elements of syndrome vector are all zero, it indicates that there is no error in the

codeword. If any of the elements of syndrome vector are different from zero, codeword

has erroneous bit or bits.

To calculate syndrome of SPC code, all elements of the each columns are exored.

𝑠0𝑦 = 𝐶0𝑦 ⊕ 𝑀0𝑦 ⊕ 𝑀1𝑦 ⊕ 𝑀2𝑦 ⊕ 𝑀3𝑦 ⊕ 𝑀4𝑦 (4.12)

First seven columns of codeword is used to calculate SPC syndrome vector. If elements

of SPC syndrome vector are all zero, there is no error in the codeword. If any elements

of SPC syndrome vector are different from zero, codeword has erroneous bit or bits.

To summarize the syndrome calculation, there are two different types of syndrome

vectors. One is row wise EG-LDPC syndrome that is calculated in five row as five

different syndrome vectors. Other is column wise SPC syndrome that is calculated in

seven column as one syndrome vector which contains seven bits. These six different

syndrome vectors are used to detect and correct erroneous bits in codeword.

In decoder, firstly, syndrome is calculated for each row and column concurrently. If

all elements of the calculated syndrome of corresponding row is equal to zero, the

corresponding row is assumed that there is no erroneous bits. If any of the elements

the calculated syndrome of corresponding row is different from zero and the syndrome

is equal to one of the pre-saved syndromes, the error combination corresponding to the

syndrome is exored with that row for correcting the erroneous bit. If any of the

elements of the calculated syndrome of corresponding row is not equal to zero and the

syndrome is not equal to any of the pre-saved syndromes, the calculated column-wise

syndrome of parity code is exored with that row. General scheme of decoder is shown

in Figure 4.5.

39

Figure 4.5 FSD and decoder of proposed method.

To give a better understanding, examples are given in detail. Error patterns are inserted

to the codeword shown in Figure 4.6. Erroneous bits are corrected using proposed

method. Last error pattern is chosen to show how the proposed method cannot be

corrected.

0 0 1 0 1 0 0 0 0 1 1 1 0 1 1

1 0 0 0 0 1 0 1 0 1 0 1 1 0 1

0 1 0 1 0 0 0 0 1 1 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

0 1 0 0 0 1 0 1 1 1 0 0 0 0 0

1 0 1 1 1 0 1

Figure 4.6 An example codeword.

First error pattern is an insertion of one erroneous bit to a row. Erroneous bit is located

to third row’s fifth column. Error injected codeword is illustrated below.

40

0 0 1 0 1 0 0 0 0 1 1 1 0 1 1

1 0 0 0 0 1 0 1 0 1 0 1 1 0 1

0 1 0 1 1 0 0 0 1 1 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

0 1 0 0 0 1 0 1 1 1 0 0 0 0 0

1 0 1 1 1 0 1

Figure 4.7 One error injected to a row of codeword.

In this pattern, one bit in a row is inverted as it becomes erroneous bit. This type of

error patterns can be corrected using pre-saved error syndromes. All one erroneous bit

patterns that frustrate the satisfied codeword are pre-saved with their syndrome

vectors. Decoder calculates the syndrome of all rows and SPC syndrome of columns.

The syndromes of all rows but third one are all zero in this example. Third row’s

syndrome has element(s) different than zero. This syndrome is compared with pre-

saved syndromes and matched pre-saved syndrome’s corresponding error pattern

named E is shown below.

𝐸 = [0 0 0 0 1 0 0] (4.13)

As computed syndrome is matched with a pre-saved syndrome, there is no need for

column decoding. Information bits of third row are exored with E. This operation

corrects erroneous bit.

Second error pattern is an injection of two erroneous bits to a row. Erroneous bits are

located to second row’s fourth and fifth columns. Error injected codeword is illustrated

below.

41

0 0 1 0 1 0 0 0 0 1 1 1 0 1 1

1 0 0 1 1 1 0 1 0 1 0 1 1 0 1

0 1 0 1 0 0 0 0 1 1 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

0 1 0 0 0 1 0 1 1 1 0 0 0 0 0

1 0 1 1 1 0 1

Figure 4.8 Two error injected to a row of codeword.

In this pattern, two bits in a row are inverted as they become erroneous bits. This type

of error patterns cannot be corrected using pre-saved error syndromes. However, all

two erroneous bit patterns that frustrate the satisfied codeword can be detected as their

syndrome vectors have non-zero elements. Decoder calculates the syndrome of all

rows and SPC syndrome of columns. The syndromes of all rows but second one are

all zero in this example. Syndrome of second row has element(s) different than zero.

This syndrome is compared with pre-saved syndromes and it is not matched with any

pre-saved syndrome. Row decoding detects that there is erroneous bits larger than one

bit error. Syndrome of SPC code helps to locate the erroneous bits detected in second

row. In this example, syndrome of SPC code S is calculated as below.

𝑆 = [0 0 0 1 1 0 0] (4.14)

Computed syndrome of SPC named S is exored with information bits of second row.

This operation corrects erroneous bits.

Third error pattern is an injection of two erroneous bits to a row and one erroneous bit

to another row. Erroneous bits are located to first row’s second and third columns and

second row’s sixth column. Error injected codeword is illustrated below.

42

0 1 0 0 1 0 0 0 0 1 1 1 0 1 1

1 0 0 0 0 0 0 1 0 1 0 1 1 0 1

0 1 0 1 0 0 0 0 1 1 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

0 1 0 0 0 1 0 1 1 1 0 0 0 0 0

1 0 1 1 1 0 1

Figure 4.9 Two error injected to a row and one error injected to a row of codeword.

In this pattern, two bits in a row and one bit in another row are inverted as they become

erroneous bits. This type of error patterns cannot be corrected directly using pre-saved

error syndromes or SPC syndrome. However, using pre-saved error syndromes and

column syndrome together can correct the three erroneous bits that frustrate the

satisfied codeword. Decoder calculates the syndrome of all rows and SPC syndrome

of columns. The syndromes of all rows but first and second rows are all zero in this

example. Syndromes of first and second row have element(s) different than zero. These

syndromes are compared with pre-saved syndromes. First row’s syndrome is not

matched with any pre-saved syndrome. But second row’s syndrome is matched with a

pre-saved syndrome. Row decoding corrects erroneous bit in second row using

corresponding pre-saved error combination E and detects that first row has erroneous

bits larger than one bit error. E is given below.

𝐸 = [0 0 0 0 0 1 0] (4.15)

Syndrome of SPC code helps to locate the erroneous bits detected in second row. In

this example, syndrome of SPC code S is calculated as below.

𝑆 = [0 1 1 0 0 1 0] (4.16)

Computed syndrome of SPC named S includes dissatisfactions caused by erroneous

bits of first and second rows. To eliminate second row’s erroneous bit which are

43

corrected by row decoding process, error combination E is exored with SPC syndrome

S. This operation is given below.

𝐹 = 𝐸 ⊕ 𝑆 (4.17)

F is exored with first row which its erroneous bits are detected by row decoding to

correct erroneous bits. F is given below.

𝐹 = [0 1 1 0 0 0 0] (4.18)

These operations correct three erroneous bits together. It is noted that these operations

proceed in parallel and they do not have dependency which cannot be parallelized to

others.

Fourth error pattern is an injection of four erroneous bits to a row. Erroneous bits are

located to first, third, fourth and sixth columns of fifth row. Error injected codeword

is illustrated below.

0 0 1 0 1 0 0 0 0 1 1 1 0 1 1

1 0 0 0 0 1 0 1 0 1 0 1 1 0 1

0 1 0 1 0 0 0 0 1 1 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

1 1 1 1 0 0 0 1 1 1 0 0 0 0 0

1 0 1 1 1 0 1

Figure 4.10 Four error injected to a row of codeword.

In this pattern, four bits in a row are inverted as they become erroneous bits. This type

of error patterns cannot be corrected using pre-saved error syndromes. However, all

four erroneous bit patterns that frustrate the satisfied codeword can be detected as the

fifth row’s syndrome vector has non-zero elements. Decoder calculates the syndrome

of all rows and SPC syndrome of columns. The syndromes of all rows but fifth row

44

are all zero in this example. Syndrome of fifth row has element(s) different than zero.

This syndrome is compared with pre-saved syndromes and it is not matched with any

pre-saved syndrome. Row decoding detects that there is erroneous bits larger than one

bit error. Syndrome of SPC code is calculated to locate the erroneous bits detected in

fifth row. In this example, syndrome of SPC code S is calculated as below.

 𝑆 = [1 0 1 1 0 1 0] (4.19)

Computed syndrome of SPC named S is exored with information bits of second row.

This operation corrects four erroneous bits. As seen in second and fourth examples,

the proposed method corrects two and four erroneous bits. In these examples, row

decoding detects that one of the five rows has errors and column decoding uses SPC

syndrome to correct erroneous bits. Like these examples, the proposed method corrects

errors that row decoding can detect. It is mentioned early in the thesis that EG-LDPC

can detects from 1 to 4 error bits with 100% success. So, the proposed method corrects

from 2 to 4 erroneous bits using same process in second and fourth example.

Some of the errors greater than four bits in a one row can be detected in row decoding.

Thus, these errors can also be corrected by using proposed method. Correction of these

errors has not 100% success because all of the errors greater than four bit cannot be

detected. Success rate varies by error number.

Fifth error pattern is an injection of two erroneous bits to a row and two erroneous bits

to another row. Erroneous bits are located to second and fourth columns of second row

and fourth and seventh columns of third row. Error injected codeword is illustrated

below.

45

0 0 1 0 1 0 0 0 0 1 1 1 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 1 0 1

0 1 0 0 0 0 1 0 1 1 1 0 1 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 1 1

0 1 0 0 0 1 0 1 1 1 0 0 0 0 0

1 0 1 1 1 0 1

Figure 4.11 Two error injected to two row of codeword.

In this pattern, two bits in a row and two bits in another row are inverted as they

become erroneous bits. This type of error patterns cannot be corrected using pre-saved

error syndromes. However, all four erroneous bit patterns that frustrate the satisfied

codeword can be detected as the second and third row’s syndrome vector has non-zero

elements. Decoder calculates the syndrome of all rows and SPC syndrome of columns.

The syndromes of all rows but second and third row are all zero in this example.

Syndrome of second and third row has element(s) different than zero. This syndrome

is compared with pre-saved syndromes and it is not matched with any pre-saved

syndrome. Row decoding detects that there is erroneous bits larger than one bit error.

Syndrome of SPC code is calculated to locate the erroneous bits detected in second

and third row. In this example, syndrome of SPC code S is calculated as below.

 𝑆 = [0 1 0 1 0 0 1] (4.20)

In this example there are two rows which has erroneous bits detected by row decoding.

These types of error patterns which has errors in different rows and cannot be corrected

but detected cannot be corrected by the proposed method. As seen in computed

syndrome of SPC named S, if there are more than one erroneous bit in different rows,

exoring S with information bits of these rows cannot corrects erroneous bits.

Five example error patterns are stated to provide better understanding about the

proposed method how can detects and/or corrects erroneous bits and illustrate what is

46

the capability of the proposed method. These examples give insight to readers to

interpret the results given in the chapter of experimental results.

47

CHAPTER 5

EXPERIMENTAL RESULTS

The proposed architecture is implemented using Verilog HDL (Hardware Description

Language) and synthesized using Xilinx Spartan-6 XC6SLX16 FPGA. A reference

model is constructed in MATLAB environment to verify the functionality of circuitry

and ISIM is used for simulations and test the implementation. Experimental data is

exposed to errors by random error injection method.

Table 5.1 Overhead comparison.

 Matrix Code Proposed Method

Overhead 0.5 0.5732

Table 5.2 Correction comparison.

Correction

 Matrix Code Proposed Method

1 100 100

2 100 100

3 79,31 99,25

4 57,86 95,39

5 35,02 87,53

6 16,73 75,66

7 5,54 61,46

8 0,97 45,97

9 - 31,35

10 - 21,87

11 - 11,06

12 - 5,78

In order to estimate the error correction and detection capability of our method, one

million experimental faults are injected to encoded data. Overhead, error correction

48

and detection capability of the proposed method are compared with the Matrix code in

Table 5.1, Table 5.2 and Table 5.3 respectively.

Table 5.3 Detection comparison.

Detection

 Matrix Code Proposed Method

1 100 100,00

2 100 100,00

3 94,01 100,00

4 80,71 100,00

5 62,2 100,00

6 39,82 100,00

7 20,07 100,00

8 7,63 100,00

9 - 100,00

10 - 100,00

11 - 100,00

12 - 100,00

The correction percentage of proposed method is slightly better than the Matrix code.

The detection probability of the proposed method is 100% up to 12 bits errors and is

greatly better than Matrix Codes.

In order to compare the Matrix code and the proposed algorithm in terms of reliability,

MTTF (Mean Time to Failure) of them are calculated using the formulas in [21].

The reliability r(t) word can be given by:

 𝑟(𝑡) = 𝑃{𝑁𝐸} + ∑ 𝑃{𝑖𝐸}. 𝑃{𝑖𝐶𝐼} = 𝑃{𝑖𝐸} + ∑ 𝑃{𝑖𝐸}. 𝐷𝐶(𝑖)

𝑁𝑑

𝑖=1

𝑁𝑑

𝑖=1

 (5.1)

49

where NE indicates that there is no error, iE denotes that there are i errors, iCI means

that i errors are correctable internally and CC(i) is the correction coverage of the

protection mechanism for exactly having i faults. Based on these information, the

reliability of memory is dependent to the reliability of all its words and can be given

by

𝑅(𝑡) = 𝑟𝑀(𝑡) (5.2)

where M is word number in the memory. The integral of the reliability function is

equal to MTTF i.e.,

𝑀𝑇𝑇𝐹 = ∫ 𝑅(𝑡)𝑑𝑡
∞

0

 (5.3)

MTTF of the Matrix code and our method at three different fault rates are calculated

using MTTF formulas and given in Table 5.4. MTTF of the proposed method is 63%

better than the Matrix code at fault rate 10-5.

Table 5.4 MTTF comparison.

MTTF

Fault rate

(upset/bit per day)
Matrix Code Proposed Method

10-4 175.48 286.446

10-5 1754.76 2864.5

10-6 17317.54 25059

Decoders of the proposed method and the Matrix code are implemented in Xilinx

XC6SLX16 FPGA. Results of resource utilization and latency of the proposed method

and the Matrix code is given for comparison in Table 5.5. The proposed algorithm’s

decoder uses %14.5 more resource and has %19.4 more latency than the decoder of

the Matrix code.

50

Table 5.5 Resource usage and latency comparison.

Resource Utilization and Latency of Decoders

 Matrix Code Proposed Method

Slice LUTs 76 87

Latency 8.396 ns 10.025 ns

Results show that the proposed method has outstanding error detection performance,

slightly good error correction performance and great MTTF than the Matrix code.

These advantages come with a cost that includes worse overhead, slightly more

resource utilization and longer latency than the Matrix code. It can be seen that the

proposed method is suitable for systems that needs much more reliability. On the other

hand, the Matrix code can be used to minimize the system cost.

51

CHAPTER 6

CONCLUSION

As a result of the radiation of outer space, SRAM memories and SRAM-based devices

are subject to errors. In this work, we proposed and implemented an advanced error

correction and detection method to prevent SRAMs against data loss. The sensitivity

of the SRAM to the radiation increases due to the smaller feature size allowed by the

today’s CMOS process. This increases MBUs in SRAM. To increase the success of

data recovery with less complexity, 2-D ECC methods are proposed and investigated.

Then 2-D ECC architecture based on EG-LDPC and SPC codes are presented. The

presented algorithm uses (15, 7, 5) EG-LDPC and SPC codes.

Our method uses EG-LDPC in the row-wise and SPC in the column-wise manner. The

EG-LDPC corrects errors using pre-saved syndromes. If EG-LDPC cannot correct

errors, it detects the errors and they are corrected by the SPC code. The proposed

method was implemented in FPGA to find out its resource usage and latency. To

investigate the detection and correction capability of our method, it is coded in

MATLAB environment and one million random faults are injected to codeword.

The studied architecture is compared with the Matrix code recently available in the

literature in terms of overhead, error detection and correction capability, MTTF,

resource consumption and latency. Our results indicate that the studied scheme offers

improved error detection and correction capabilities, and MTTF with the cost of

overhead, resource usage and latency. To sum up, 2-D method based on EG-LDPC

and SPC codes can provide us with a robust and enhanced solution against MBU

problems of the current SRAM technology.

52

REFERENCES

[1] Seifert, N.; Gill, B.; Foley, K.; Relangi, P.; , "Multi-cell upset probabilities of 45nm

high-k + metal gate SRAM devices in terrestrial and space environments," Reliability

Physics Symposium, 2008. IRPS 2008. IEEE International , vol., no., pp.181-186,

April 27 2008-May 1 2008.

[2] Radaelli, D.; Puchner, H.; Skip Wong; Daniel, S.; , "Investigation of multi-bit

upsets in a 150 nm technology SRAM device," Nuclear Science, IEEE Transactions

on , vol.52, no.6, pp. 2433- 2437, December 2005.

[3] Song, Y.; Vu, K.N.; Cable, J.S.; Witteles, A.A.; Kolasinski, W.A.; Koga, R.; Elder,

J.H.; Osborn, J.V.; Martin, R.C.; Ghoniem, N.M.; , "Experimental and analytical

investigation of single event, multiple bit upsets in poly-silicon load, 64 K×1 NMOS

SRAMs," Nuclear Science, IEEE Transactions on , vol.35, no.6, pp.1673-1677,

December 1988.

[4] Naseer, R.; Draper, J.; , "Parallel double error correcting code design to mitigate

multi-bit upsets in SRAMs," Solid-State Circuits Conference, 2008. ESSCIRC 2008.

34th European , vol., no., pp.222-225, 15-19 September 2008.

[5] Musseau, O.; Gardic, F.; Roche, P.; Corbiere, T.; Reed, R.A.; Buchner, S.;

McDonald, P.; Melinger, J.; Tran, L.; Campbell, A.B.; , "Analysis of multiple bit

upsets (MBU) in CMOS SRAM," Nuclear Science, IEEE Transactions on , vol.43,

no.6, pp.2879-2888, December 1996.

[6] Buchner, S.; Campbell, A.B.; Meehan, T.; Clark, K.A.; McMorrow, D.; Dyer, C.;

Sanderson, C.; Comber, C.; Kuboyama, S.; , "Investigation of single-ion multiple-bit

upsets in memories on board a space experiment," Radiation and Its Effects on

Components and Systems, 1999. RADECS 99. 1999 Fifth European Conference on ,

vol., no., pp.558-564, 1999.

[7] Seifert, N.; Slankard, P.; Kirsch, M.; Narasimham, B.; Zia, V.; Brookreson, C.; Vo,

A.; Mitra, S.; Gill, B.; Maiz, J.; , "Radiation-induced soft error rates of advanced

CMOS bulk devices," Reliability Physics Symposium Proceedings, 2006. 44th

Annual., IEEE International , vol., no., pp.217-225, 26-30 March 2006.

53

[8] Maiz, J.; Hareland, S.; Zhang, K.; Armstrong, P.; , "Characterization of multi-bit

soft error events in advanced SRAMs," Electron Devices Meeting, 2003. IEDM '03

Technical Digest. IEEE International , vol., no., pp. 21.4.1- 21.4.4, 8-10 December

2003.

[9] B. Cooke, “Reed Muller error correcting codes,” MIT Undergraduate J. Math., vol.

1, pp. 21–26, 1999

[10] Demirci, M., “2-Dimensional EG-LDPC codes for achieving fault tolerance in

SRAM based devices,” Thesis (MSc), TOBB Economics and Technology University,

2013.

[11] Quinn, H., Morgan, K., Graham, P., Krone, J., Caffrey, M., “A review of Xilinx

FPGA architectural reliability concerns from Virtex to Virtex-5,” 9th European

Conference on Radiation and Its Effects on Components and Systems, 1-8, September

2007.

[12] Argyrides, C.; Pradhan, D.K.; Kocak, T.; , "Matrix codes for reliable and cost

efficient memory chips," Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on , vol.19, no.3, pp.420-428, March 2011

[13] S. Baeg, S.Wen, and R.Wong, “SRAM interleaving distance selectionwith a soft

error failure model,” IEEE Trans. Nucl. Sci., vol. 56, no. 4, pp. 2111–2118, August

2009.

[14] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, J.C. Hoe, “Multi-bit error tolerant

caches using two-dimensional error coding,” 40th Annual IEEE/ACM Int. Symposium

on microarchitecture 1–5, MICRO 2007, pp. 197–209, December 2007.

[15] Shyue-Win Wei; Che-Ho Wei; , "High-speed hardware decoder for double-error-

correcting binary BCH codes," Communications, Speech and Vision, IEE Proceedings

I , vol.136, no.3, pp. 227- 231, June 1989.

[16] El-Medany, W.M.; Harrison, C.G.; Garrell, P.G.; Hardy, C.J.; , "VHDL

implementation of a BCH minimum weight decoder for double error ," Radio Science

Conference, 2001. NRSC 2001. Proceedings of the Eighteenth National , vol.2, no.,

pp.361-368 vol.2, 2001.

54

[17] Bentoutou, Y.; Djaifri, M.; , "Observations of single-event upsets and multiple-

bit upsets in random access memories on-board the Algerian satellite," Nuclear

Science Symposium Conference Record, 2008. NSS '08. IEEE , vol., no., pp.2568-

2570, 19-25 October 2008

[18] Durna, M.; Atar, O.; Ceylan, M.; Cakmakci, Y.; Demirci, M.; Kozal, O.A.;

Oturak, M.; Ozdemir, A.; Turhan, O.; , "On board data handling subsystem featuring

BİLGE," Recent Advances in Space Technologies (RAST), 2011 5th International

Conference on , vol., no., pp.932-937, 9-11 June 2011

[19] Bentoutou, Y.; , "Efficient memory error coding for space computer applications,"

Information and Communication Technologies, 2006. ICTTA '06. 2nd , vol.2, no.,

pp.2347-2352,

[20] Zhu, M., Xiao, L., Li, S., & Zhang, Y. (2010). “Efficient two-dimensional error

codes for multiple bit upsets mitigation in memory,” 2010 IEEE 25th International

Symposium on Defect and Fault Tolerance in VLSI Systems, 129–135.

doi:10.1109/DFT.2010.22

[21] Argyrides, C.; Zarandi, H.R.; Pradhan, D.K.; , "Matrix Codes: Multiple bit upsets

tolerant method for SRAM memories," Defect and Fault-Tolerance in VLSI Systems,

2007. DFT '07. 22nd IEEE International Symposium on , vol., no., pp.340-348, 26-28

September 2007

[22] F. Barton, "A fault tolerant integrated circuit memory," Thesis (Ph.D), Dep.

Comput. Sci., Calif. Inst. Tech., April 1980

[23] Tanner, R.M.; , "Fault-Tolerant 256K Memory Designs," Computers, IEEE

Transactions on , vol.C-33, no.4, pp.314-322, April 1984

[24] Yamada, J.; Mano, T.; Inoue, J.; Nakajima, S.; Matsuda, T.; , "A submicron 1

Mbit dynamic RAM with a 4-bit-at-a-time built-in ECC circuit," Solid-State Circuits,

IEEE Journal of , vol.19, no.5, pp.627-633, October 1984

[25] Naeimi, H.; DeHon, A.; , "Fault secure encoder and decoder for NanoMemory

applications," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on ,

vol.17, no.4, pp.473-486, April 2009.

55

[26] H. Naeimi and A. DeHon, “Fault secure encoder and decoder for memory

applications,” in Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI Syst., September

2007, pp. 409–417.

[27] Reviriego, P.; Flanagan, M. F.; Liu, S.-F.; Maestro, J. A.; , "On the use of

Euclidean Geometry Codes for efficient multibit error correction on memory systems,"

Nuclear Science, IEEE Transactions on , vol.59, no.4, pp.824-828, August 2012.

[28] Quinn, H.; Morgan, K.; Graham, P.; Krone, J.; Caffrey, M.; , "Static Proton and

Heavy Ion Testing of the Xilinx Virtex-5 Device," Radiation Effects Data Workshop,

2007 IEEE , vol.0, no., pp.177-184, 23-27 July 2007

[29] Quinn, H., Graham, P., Krone, J., Caffrey, M., Rezgui, S.,Radiation-induced

multi-bit upsets in SRAM-based FPGAs, IEEE Transactions on Nuclear Science,

52(6), 2455- 2461, December 2005.

[30] Quinn, H., Graham, P., Morgan, K., Baker, Z., Caffrey, M., Smith, D., Bell, R.,

“On-Orbit Results for the Xilinx Virtex-4 FPGA,” IEEE Radiation Effects Data

Workshop, 1-8, July 2012.

[31] “Introduction to Single-Event Upsets” Website:

https://www.altera.com/en_US/pdfs/literature/wp/wp-01206-introduction-single-

event-upsets.pdf, September 2013

[32] “Xilinx Virtex FPGA Design Guide for Space” Website:

www.cosmiacpubs.org/pubs/design_guide_with_cover.pdf, 9 November 2012.

[33] M. Sipser and D. Spielman, “Expander codes,”IEEE Trans. Inf. Theory, vol. 42,

no. 6, pp. 1710–1722, November 1996.

[34] S. Lin and D. J. Costello, Error Control Coding, 2nd ed. Englewood Cliffs, NJ:

Prentice-Hall, 2004.

[35] Shannon C.E., A Mathematical Theory of Communication, The Bell System

Technical Journal, 27, 379–423, 623–656, October 1948.

[36] Calvel, P., Lamothe, P., Barillot, C., Ecoffet, R., Duzellier, S., Stassinopoulos,

E.G.,Space radiation evaluation of 16 Mbit DRAMs for mass memory applications,

IEEE Transactions on Nuclear Science, 41(6), 2267-2271, December 1994.

56

[37] Niknahad, M., “Using Fine Grain Approaches for highly reliable Design of

FPGA-based Systems in Space,” Thesis (PhD), Karlsruhe Institute of Technology,

2013.

[38] Navabi, Z.: Embedded Core Design with FPGAs. McGraw-Hill, August 2006.

[39] http://beta.ivc.no/blog/2011/03/30/logic-devices/. In FPGA, CPLD, and EPP

Solution from Xilinx.

[40] Kuon, I., R. Tessier and J. Rose: “FPGA Architecture: Survey and Challenges”.

[41] Kean, T.: Secure Configuration of Field Programmable Gate Arrays. In In

International Conference on Field-Programmable Logic and Applications 2001 (FPL

2001, pp. 142–151. Springer-Verlag, 2001.

[42] http://www.actel.com/documents/PA3DS.pdf. In ProASIC3 Flash Family

FPGAs.

[43] Kuon, I. and J. Rose: “Measuring the gap between FPGAs and ASICs,”

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on,

26(2):203 –215, February 2007.

[44] ROOSTA, R.: “A Comparison of Radiation-Hard and Radiation-Tolerant FPGAs

for Space Applications. NASA Electronic Parts and Packaging Program,” NASA and

Jet Propulsion Laboratory, December 2004.

[45] Katz, R., LaBel, K., Wang, J.J., Cronquist, B., Koga, R., Penzin, S., Swift, G.,

“Radiation effects on current field programmable technologies,” IEEE Transactions

on Nuclear Science, 44(9), 1945-1956, December 1997.

57

CURRICULUM VITAE

Name: Ahmet Turan

Surname: EROZAN

Place of birth: Sivas

Bachelor of Science: Istanbul Technical University – Electronics Engineering - 2013

E-mail: ahmeterozan[at]gmail.com

Work Experience:

TÜBİTAK SAGE (September 2013 – January 2015)

Aselsan Inc. (January 2015 - …)

Publications:

1. Erozan, A.T.; Cavus, E., "An EG-LDPC Based 2-Dimensional Error Correcting

Code for Mitigating MBUs of SRAM Memories," in FPGA World 2015, 8-10

September 2015

2. Bagbaba, A.C.; Ors, B.; Kayhan, O.S.; Erozan, A.T., "JPEG image Encryption via

TEA algorithm," in Signal Processing and Communications Applications Conference

(SIU), 2015 23th , vol., no., pp.2090-2093, 16-19 May 2015

3. Erozan, A.T.; Aydogdu, A.S.; Ors, B., "Application specific processor design for

DCT based applications," in Signal Processing and Communications Applications

Conference (SIU), 2015 23th , vol., no., pp.2157-2160, 16-19 May 2015

4. Bagbaba, Ahmet Cagri; Erozan, Ahmet Turan; Ors, Berna, "Image Fitering

Processor and Its Applications," Signal Processing and Communications Applications

Conference (SIU), 2014 22st , vol., no., pp.1,4, 23-25 April 2014

5. Erozan, Ahmet Turan; Baskir, Subutay Giray; Ors, Berna, "Hardware/Software

codesign for watermarking in DCT domain," Signal Processing and Communications

Applications Conference (SIU), 2013 21st , vol., no., pp.1,4, 24-26 April 2013

