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ANALYTICAL AND NUMERICAL ANALYSIS OF SWAGE 

AUTOFRETTAGE PROCESS APPLIED TO THICK WALLED CYLINDERS 

 
ABSTRACT 

 

 

     Autofrettage is the process of residual stress formation on the walls of the thick 

walled cylinders before their usage. These residual stresses help to increase the 

pressure bearing capacity of the thick walled cylinders by eliminating some stresses 

during the high pressure applications. In practice, there are two different  autofrettage 

methods as hydraulic and swage. Swage autofrettage is a more economical method to 

form beneficial residual stresses in the thick walled cylinders when it is compared 

with the hydraulic autofrettage method. 

 

In this study, it is investigated how the residual stresses, that occur as a result of 

the swage autofrettage during manufacturing of a heavy armour barrel, affect the 

stress distributions that occur at the operating conditions of the barrel. At first, the 

stress distributions are obtained analytically for both Tresca and Von Mises criteria. 

Then, the verification of the analytical model is performed by making use of a 

commercial software which uses the finite element method. 

 

In the calculations, the mandrel's outer radius is considered as constant but the 

bore value of the cylinder is changed and the results for different % interference 

ratios are compared.  The obtained results show that the maximum equivalent stress 

in an autofrettaged cylinder at operating pressure occurs in the elastic-plastic junction 

region.  

 

The equivalent stress distributions are obtained at 400 MPa operating pressure for 

different % interference values. The equivalent stress distributions are obtained by 

the analytical model for both Tresca and Von Mises criteria and the optimum 

interference value is found as 1% with respect to both two yielding criteria. 

However, in result of finite element model, the optimum interference value is found 

as 1% for Tresca criterion whereas it is found as 1,5% for Von Mises criterion.  
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Bauschinger effect is represented by the kinematic hardening model in both 

analytical model and finite element model. According to the results that are obtained 

by analytical model, Bauschinger effect does not cause a secondary plastic yielding. 

However, according to the results that are obtained by finite element model, it is seen 

that Bauschinger effect causes a secondary plastic yielding. 

 

 

Keywords: swage autofrettage, mandrel, elasto-plastic cylinders, residual stress, 

thick walled cylinders, pressure vessels, bilinear hardening model, elastic 

perfectly plastic model, elastic-plastic radius, secondary yielding, bauschinger 

effect, interference ratio 
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KALIN CİDARLI SİLİNDİRLERE UYGULANAN MEKANİK OTOFRETAJ 

İŞLEMİNİN ANALİTİK VE NÜMERİK ANALİZİ 

 
ÖZ 

 

 

 

     Otofretaj, kalın cidarlı silindirlerin cidarlarında, kullanım öncesi kalıcı gerilmeler 

oluşturma işlemidir. Bu kalıcı gerilmeler, yüksek basınçların kullanıldığı 

uygulamalarda ortaya çıkan gerilmelerin bir kısmının yok edilmesi suretiyle, kalın 

cidarlı silindirlerin basınç taşıma kapasitelerinin artırılmasına yardımcı olmaktadır. 

Pratikte hidrolik ve mekanik olmak üzere iki farklı otofretaj yöntemi vardır. Mekanik 

otofretaj tekniği, kalın cidarlı silindirlerde faydalı kalıcı gerilmeler oluşturmak için 

hidrolik otofretaj tekniğine göre daha ekonomik bir yöntemdir. 

 

     Bu çalışmada bir ağır silah namlusunun üretimi sırasında uygulanan mekanik 

otofretaj işlemi sonucu ortaya çıkan kalıcı gerilmelerin, namlunun çalışma şartlarında 

oluşan gerilme dağılımlarını ne şekilde etkilediği araştırılıyor. İlk başta gerilme 

dağılımları Tresca ve Von Mises akma kriterlerinin her ikisi için analitik yöntemle 

elde ediliyor. Daha sonra sonlu elemanlar metodunu kullanan ticari bir bilgisayar 

yazılımı yardımıyla analitik modelin doğrulaması yapılıyor. 

 

    Hesaplamalarda mandrel dış çapı sabit alınırken, silindir iç çap değerleri 

değiştirilerek farklı % arakesit değerleri için elde edilen sonuçlar karşılaştırılıyor. 

Elde edilen sonuçlar, otofretaj görmüş silindirde çalışma basıncında oluşan 

maksimum eşdeğer gerilmenin elastik-plastik yarı çap bölgesinde oluştuğunu 

göstermektedir.  

 

Farklı % arakesit değerleri için 400 MPa çalışma basıncında eşdeğer gerilme 

dağılımları elde ediliyor. Analitik model kullanılarak, Von Mises ve Tresca 

kriterlerinin her ikisi için ayrı ayrı eşdeğer gerilme dağılımları elde ediliyor ve her iki 

akma kriterine göre optimum arakesit değeri %1 olarak bulunuyor. Sonlu elemanlar 

yönteminde ise Tresca kriteri için optimum arakesit değeri %1 olarak bulunurken, 

Von Mises kriteri için %1.5 olarak bulunuyor.  
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Hem analitik modelde ve hem de sonlu elemanlar modelinde Bauschinger etkisi 

kinematik pekleşme modeli ile temsil ediliyor. Analitik model kullanılarak elde 

edilen sonuçlara göre Bauschinger etkisi ikincil bir plastik akmaya neden olmazken, 

sonlu elemanlar modeli ile elde edilen sonuçlara göre Bauschinger etkisinin ikincil 

plastik akmaya neden olduğu görülüyor. 

    

 

Anahtar Kelimeler : mekanik otofretaj, mandrel, elasto-plastik silindirler, 

kalıntı gerilme, kalın cidarlı silindirler, basınçlı kaplar, bilineer pekleşme 

modeli, elastik-mükemmel plastik model, elastik-plastik yarıçap, ikincil akma, 

bauschinger etkisi, arakesit oranı 
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CHAPTER 1 

1. INTRODUCTION 

Pressure vessels are sealed structures that are used to store, transfer and process 

the fluids under high pressure and high temperature conditions. In accordance with 

the industrial needs, there exist different pressure vessel designs and one of the most 

commonly used type is thick walled pressure vessels. Thick walled pressure vessels 

are widely used in nuclear power plants and chemistry, gas and defense industries 

(Partovi, 2012). 

 

The inner diameter surface has the highest hoop stress in the thick walled pressure 

vessels at service pressure. This region has the highest potential for the cracks as 

well. There are three fundamental methods to prevent those kind of defects in the 

thick walled pressure vessels and to increase their pressure holding capacity (Partovi, 

2012). 

 

 

Figure 1.1 Various pressure vessel samples (Partovi , 2012)
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1.1 Wire Winding Method 

 

Wire winding is a manufacturing method used in the production of open and close 

ended pressure vessels. Wire wound cylinders are commonly used especially in arms 

industry. The process includes winding of the wire on pressure vessel where the wire 

is stressed on a male mandrel. During the process, as the wire on the carriage moves 

on the horizontal axis and creates the desired pattern, the mandrel also rotates. The 

most commonly used wires are carbon and glass fiber ones and they are shielded by 

synthetic resin as they are wound. The mandrel is usually placed in an oven to harden 

the resin. As the resin hardens, mandrel is taken out and the process is finished. The 

winding angle of the wire has an important effect on the final product's specifications 

(Wikipedia, Filament Winding). 

 

1.2 Autofrettage Method 

 

In autofrettage method, the internal regions of the cylinder is subject to pressure, 

resulting some plastic deformation inside. Once the pressure is released, this region 

of the cylinder can not recover to its original geometry because of the plastic 

deformation. Therefore, residual compressive stress on the inner region and residual 

tensile stress on the outer region will be observed. As a result, when the cylinder is 

subjected to an internal pressure, the total stress on the inner surface will decrease 

down to certain amount due to superposition of the tensile stress due to this pressure 

and the residual compressive stress due to the autofrettage.  

 

1.2.1 Hydraulic Autofrettage 

 

Hydraulic autofrettage method involves hydrostatic pressure application to the 

inner surface of the cylinder hole. Therefore, the equivalent stress value exceeds the 

material's yielding point and the plastic deformation starts. With the increased 

pressure, the plastic region on the inside wall of the cylinder spreads to the outer 

diameter. To pressurize the tube, a non-corrosive oil which has a highly compression 

capability compared to gases is used. During the hydraulic autofrettage, a spacer is 

placed into the center of the tube. The spacer decreases the volume of the fluid that 

will be pumped into the tube. Before the process, both ends of the tube should be 
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sealed. The resistance of the sealing elements against the axial force during the 

process should also be considered (Gibson, 2008).  

 

1.2.2 Swage Autofrettage 

 

Swage autofrettage is a method that was developed to expand the autofrettage 

application limits to higher pressure applications and to eliminate the problems that 

occur in the high pressure intervals. In this method, the use of the mechanical 

advantage of the mandrel decreases the pressure need dramatically compared to the 

hydraulic autofrettage method. This technique is based on obtaining the expected 

hole expanding due to slipping a relatively big forging tool all through the cylinder 

bore. The necessary force to move the mandrel can be accomplished by a unit or a 

mechanical loading tool that provides direct hydraulic pressure. Although a lubricant 

is used to decrease the friction between the mandrel and the tube, the cylinder, which 

is fixed on one end, is subject to extremely big axial forces. The choice of constraint 

location, either the mandrel entry or exit end, determines whether the deformed 

length of tube is held is tension or the undeformed length is6compressed (Gibson, 

2008). 

 

1.3 Compound Cylinder Method 

 

In compound cylinder method, two or more cylinders are shrunk into each other to 

form a single cylinder. This process is accomplished by either interference fit method 

or having temperature difference between the cylinders. Under normal conditions, 

the outer diameter of the inner cylinder is a little bigger than the inner diameter of the 

outer cylinder. After the shrinkage, the residual stresses due to the interference cause 

a decrease in the total stress value on the compound cylinder's inner surface which is 

subject to service pressure (Yayla, 2014). 

 

1.4 Purpose of the Thesis 

 

The barrel is the most basic component of a firearm. Barrels are cylindrical 

vessels with one end open and other is closed. They are resistant to high pressure and 

enable the bullet to travel to the aimed target with the desired speed. To realize the 

design of an firearm barrel, stress distribution on the walls of the barrel at service 
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pressure and the parameters that affect these stress distribution should be analyzed in 

detail at first. 

When the stresses that occur in the thick walled cylindrical vessels subject to only 

internal pressure are examined, it is observed that maximum stress was on the inner 

walls and plastic yielding occurred on this region as well. To increase the maximum 

pressure that the barrel will hold in elasticity limits, the wall thickness should be 

increased. Since the increase of the wall thickness will result in an increase also in 

the barrel weight, there will be a negative effect on the portability of the firearm 

system. Since this situation will also lead to an increase in the cost of manufacturing, 

it will be an undesired result in the firearm systems. To increase the pressure bearing 

capacity of the barrel without an increase in the wall thickness, various methods were 

developed by the researchers. These are wire winding, autofrettage and compound 

cylinder methods that were explained previously in detail. The use of these methods 

provides an opportunity to decrease the wall thickness of the barrels. This result 

means a significant decrease in the barrel weight.  

 

In this thesis study, swage autofrettage implementation to a heavy armor barrel 

that belongs to 105 mm obus class will be examined. To gain the maximum benefit 

of the autofrettage process, the optimum interference ratio between the barrel and the 

mandrel will be tried to obtain. 

 

1.5 Methodology 

 

      The procedural steps that will be followed in accordance with the determined 

objective are listed below : 

 

1. First, the mathematical relations that provide stress distribution of a thick 

walled cylindrical tube will be achieved. The thick walled cylindrical tube is subject 

to only internal and only external pressure and has not been autofrettaged before.  

 

2. Thick walled cylindrical tube's stress components, that are partially plastic 

deformed during the autofrettage process, are expressed mathematically in 

accordance with the elastic perfectly plastic model. 
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3. The mathematical expression, that gives the approximate radius value of the 

plastic region of the cylindrical tube which is partially plastic deformed after the 

autofrettage process, is derived with the assumption that the material complies with 

the elastic perfectly plastic model.  

 

4. The equations, that give the residual stresses after the removal of the load in the 

autofrettage process, are obtained for elastic perfectly plastic model. 

 

5. After the removal of the load in the autofrettage process, the necessary 

conditions to let a secondary plastic yielding to begin are examined and in case of the 

secondary yielding, the mathematical expressions that give the residual stresses in 

the cylindrical tube are obtained. 

 

6.  The necessary conditions for Bauschinger effect to start a secondary plastic 

yielding are examined for the elastic perfectly plastic model and the residual stresses,  

that occur with the secondary yielding as a result of Bauschinger effect, are obtained. 

 

7. The stress equations, that were obtained for the elastic perfectly plastic material 

model, are obtained for the bilinear hardening model.  

 

8. The effect of internal or external surface turning after the autofrettage process 

on the residual stress distribution is examined. 

 

9. The formulation, that will be used to determine the stress distributions at the 

operating pressure after the autofrettage, is approached. 

 

10. Barrel material and barrel geometry are described and analytical solutions are 

obtained for each step of the autofrettage process with the use of MATLAB program.  

 

11. Stress distributions are obtained for each step of the autofrettage process with 

the use of ABAQUS finite element analysis program. 

 

12. The results that were obtained through Abaqus and Matlab are compared and 

the optimum dimensions of the barrel is determined to gain the maximum efficiency 

of autofrettage process. 
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1.6 Literature Research 

 

The problem of determination of the stresses and strains of a thick walled 

cylindrical elastic tube that is subject to internal and external pressure was first 

solved by the French scientists Lame and Clapeyron in 1833. 

 

In 1963, T.E. Davidson, D.P. Kendall and A.N. Reiner compared the theoretical 

results with the results of the experiments that they performed to see how the residual 

stresses that occur during the swage  autofrettage change with respect to over-strains 

and diameter ratio . The experimental determination of the residual stresses was 

based on the measurement of the changes of stresses on the exterior side of the swage 

autofrettaged cylindrical tube after some machining of the interior surface. D.P. 

Kendall and his friends applied hydrostatic pressure to the inner surface of the 

cylinder that was autofrettaged before as well and  they examined the reyielding 

characteristics of the swage autofrettaged cylinders.  

 

In the report, that was prepared by Graham Clark in 1982, analytical approaches 

in accordance with the elastic perfectly plastic model were presented to predict the 

residual stresses in the swage autofrettaged thick walled cylinders. In the report, by 

ignoring the elastic compression of the mandrel in the swage autofrettage, the 

mathematical relation between the interference value and elastic plastic junction was 

derived. Furthermore, Bauschinger effect that causes a reyielding on the inner 

diameter after the removal of the load in autofrettage process was discussed 

analytically. In the study, the residual stresses were experimentally obtained as well 

with the X-Ray measurement method. 

 

In the report that was prepared by G.S.Jost, in 1988, in the organization named 

“Department of Defense Science and Technology Organization Aeronautical 

Research Laboratory”, stresses and strains that occur during the hole expanding 

process were examined analytically in detail. While the equations were being 

derived, the material was considered as elastic-perfectly plastic and Von Mises 

yielding criterion was based. The relation between the interference value of the hole 

and the mandrel and elasto-plastic junction that occurs during the process was 
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expressed mathematically. In the report, deductions about the conditions under which 

there will be a new yielding after the removal of the load were made. Analytical 

results were compared with the results that were obtained by the numerical method 

and it was confirmed that they are consistent. 

 

In the report that Anthony P. Parker and John H. Underwood prepared in 1997, 

for the elastic perfectly plastic model, they included Bauschinger effect into the 

analytical method that was developed to predict the residual stresses due to 

autofrettage process and they mathematically expressed that this effect reduces the 

strength of the compressive yielding and thereby a secondary yielding is triggered 

around the inner diameter of the cylinder. Then, correlating the Bauschinger effect 

with the fatigue life, they determined the optimum over strain amount to maximize 

the fatigue life. 

 

In the article that was published by Hamid Jahed and Ghader Ghanbari in 2003, a 

simple forward-reverse torsion test was performed to determine the unloading 

behavior of NiCrMoV125 steel. As the result of the performed test, it was identified 

that the material exhibited the perfect plastic behavior during loading but it exhibited 

a nonlinear behavior during the unloading. The experimentally obtained real material 

behavior was used in the analysis to get the residual stress distribution that occurs 

after the autofrettage. The results of the analysis that were performed with the real 

material model and the results that were obtained by the use of the ideal models such 

as isotropic hardening were compared and it was determined that the ideal models 

deviated dramatically from the residual stress values that were calculated with 

respect to the real model. The change, that will occur in the residual stress 

distribution of the autofreggated cylinders after turning, was discussed in the article 

as the final topic.   

 

In the article that was published by X.P. Huang and W.C.Cui in 2006, the residual 

stress after the autofrettage is expressed mathematically for different material 

models. In the article, it was tried to establish the most proper analytic model in 

accordance with the real material behavior and Bauschinger effect was also included 

in the calculations. Additionally, the model  allows the residual stress calculations 
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with respect to different yielding criteria. The obtained stress distributions were 

established by both numerical and experimental methods. The results of the used 

three methods were compared and it was seen that the results matched each other. 

 

In the article that was published by Amran Ayob and M. Kabashi Elbasheer in 

2007, stress distribution of autofrettaged thick walled cylinders at operating pressure 

was examined and it was determined that the maximum equivalent stress at the 

operating pressure occurred on the elastic-plastic junction. Depending on the elastic-

plastic junction change, minimum point of the maximum equivalent stress 

distribution of autofrettaged cylinder at operating pressure was analytically 

determined and this point was accepted as the optimum autofrettage radius. The 

optimum autofrettage pressure was correlated with the optimum radius and 

formulated mathematically. Finally, the optimum radius that was found by the 

analytical method and the optimum pressure values were compared with the finite 

element analysis results.  

  

In the article that was published by Abu Rayhan Md. Ali, Nidul Ch. Ghosh, 

Tanvir-E-Alam in 2010, the factors such as ratio of outer radius to inner radius of the 

cylinder tube, operation pressure, material model and autofrettage level were dwelled 

on to see how they affect the benefit of the autofrettage process. As a result of the 

analysis that were performed by using finite element method, it was observed that the 

maximum Von Mises stress decreased up to a certain pressure value as the 

autofrettage pressure increased and after that value it started to increase. The 

increases in the outer radius to inner radius ratio, operating pressure and the slope of 

the plastic region in the material's hardening curve lead to an increase of the 

optimum autofrettage pressure.   

 

Deniz Öztörün, in his Master of Science study that he presented in 2013, 

established the interior ballistics curves of the barrel first to accomplish the design of 

a heavy armor barrel with different methods and then tried to determine the optimum 

barrel dimensions making use of a finite element software. Öztörün determined the 

maximum operating pressure that the barrel was subject to and examined how the 
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different autofrettage levels affect the stress distribution of the barrel during the 

bursting, as a result of the interior ballistics curves.  

 

In 2014, Zahong Hu and Chandra Penumarthy accomplished the swage 

autofrettage simulation, that would be applied to a heavy armour barrel, with the use 

of a finite element software. Nonlinear kinematic hardening model was used in the 

analysis.  The residual stresses that would occur during the swage autofrettage were 

calculated for different interference values. In the article, the force applied to the 

mandrel by the driver was determined for different interference values with respect 

to displacement change of the mandrel. After the accomplishment of the autofrettage 

simulation, the maximum pressure that can be applied to the cylinder in the elastic 

limits was determined and the cylinder's internal surface was re-pressurized by this 

pressure value.  The equivalent Von Mises stresses that occur at the operating 

pressure were determined for different interference values in the autofrettaged barrel. 

With the comparison of maximum Von Mises equivalent stresses for different 

interference values, The lowest value of Maximum Von Mises equivalent stresses 

was determined and this value was accepted as the optimum value.  
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CHAPTER 2 

 

2. INTRODUCTION TO PLASTICITY 

 

When an object is subject to external loads, it is deformed. If the deformation is 

independent of time and it can be recovered, i.e. the deformation disappears suddenly 

as the load is removed, the deformation is named as elastic. A reversible but time 

dependent deformation is known as viscoelastic. The deformation after the 

application of the load increases by time and it decreases slowly after the removal of 

the load in viscoelastic deformation. If the deformation is irreversible or permanent, 

it is called a plastic deformation (Khan, 1995). 

 

Plasticity theory studies the stress-strain and load-deflection relations of 

plastically deformed ductile material or the structures. The following two steps 

should be followed to build these relations: 1-Experimental Observation 2-

Mathematical Representation. The obtained stress situations are generally simple and 

uniform in any experiment. However, the final aim of any plasticity theory is to 

present the general mathematical formulation that provides the estimation for plastic 

deformation that will occur under the complex loading and boundary conditions 

(Khan, 1995). 

 
Figure 2.1 𝝈 − 𝜺  curve of a elasto-plastic material (Partovi, 2012) 
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As it is seen in Figure 2.1, the material behaves linearly up to the yielding point. 

At this stage, removal of the load will cause the material to follow the same line and 

go back to the starting point in the stress-strain diagram. However, a bigger loading 

value will carry the material to the plastic region. In the case of removal of the load 

at a random point like point A in the plastic region, material behavior is different 

from the elastic region. As it is shown in the figure, there is a recovery to as 

elastically in case of unloading at point A. The recovery line has the same slope with 

the loading case and therefore, the recovery will end at any point else which is not 

the same point where the loading started. This point is shown as Point B in Figure 

2.1. The deformation that occurs after the application of the load is partially reversed 

with the unloading. After all, permanent deformations occurs in the object. The total 

strain value at point A is equal to the sum of plastic strain and elastic strain. 

 

2.1 Yielding Criteria 

 

If an object is subject to a uniaxial tensile load, plastic yielding will start when the 

stress value reaches to the yielding point in the stress-strain diagram. However, in 

triaxial state of stress, one stress component is not enough to predict the yielding  

status. In a complex stress state, the relation established between the stress 

components to predict the yielding status of the material is called yielding criteria.  

There are two important yielding criteria used for the ductile materials. These are 

Von Mises and Tresca yielding criteria. 

 

2.1.1 Strain Energy 

 

When force is applied to an object, the object deforms. In the meantime, work is 

done on the object in proportion to the force and the deformation. The work done by 

the force is stored as potential energy on the object. The energy stored in the body of 

this object is named as strain energy. The strain energy stored on the object may not 

be distributed uniformly. Due to this reason, a term called strain energy density was 

proposed. The strain energy density is the strain energy per unit volume and 

represented with 𝑈0. The total strain energy of an object can be obtained by the 

following integration (Kim, 2015).  
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𝑈 =∭𝑈𝑂 (𝑥, 𝑦, 𝑧)𝑑𝑉                                                                                            (2.1) 

 

In the uniaxial stress case, strain energy density is equal to the area that is under 

the strain energy curve (Kim, 2015).  

 

𝑈0 =
1

2
𝜎𝜀                                                                                                                 (2.2) 

 

For general three dimensional case, the strain energy density is expressed as the 

following (Kim, 2015).  

 

𝑈0 =
1

2
 [𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜎𝑧𝜀𝑧 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑥𝑧𝛾𝑥𝑧]                                   (2.3) 

 

If the material is elastic, the strain energy will be totally regained when the load 

on the object is removed. If we think about a coordinate system that is parallel to the 

principal stress directions and there is no shear components in this coordinate system, 

Eq. (2.3) can be expressed in a simpler form as follows (Kim, 2015). 

 

𝑈0 =
1

2
[𝜎1𝜀1 + 𝜎2𝜀2 + 𝜎3𝜀3]                                                                                   (2.4) 

 

Figure 2.2 Stress-strain curve (Kim, 2015) 

 

The relations between stress and strains that is known as the Generalized Hook 

Law in the elastic region are expressed with Eq.(2.5) (Kim, 2015). 

 

{
 
 

 
 𝜀1 =

1

𝐸
(𝜎1 − 𝜗𝜎2 − 𝜗𝜎3)

𝜀2 =
1

𝐸
(𝜎2 − 𝜗𝜎1 − 𝜗𝜎3)

𝜀3 =
1

𝐸
(𝜎3 − 𝜗𝜎1 − 𝜗𝜎2)

                                                                                      (2.5) 
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If Eq.(2.5) is substituted in Eq.(2.4), we can write the strain energy density in 

terms of principal stresses as follows (Kim, 2015).                  

 

𝑈0 =
1

2𝐸
[𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 2𝜗(𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎1𝜎3)]                                            (2.6) 

                                                     

It can be thought that the strain energy density is composed of two components. 

These are dilatation strain energy density and distortion strain energy density. 

Dilatation strain energy density is related with the change in the volume. Distortion 

strain energy density is responsible for the change in the form. Many experiments 

showed that the ductile materials can be loaded hydrostatically beyond the ultimate 

stregth points without any failure observed in the material. This is achieved because 

the sample does not change its form but only its value decreases due to the 

hydrostatic stress (Kim, 2015).  

 

2.1.2 The Components of Strain Energy 

 

Strain energy density of a point on a solid can be decomposed into two: dilatation 

strain energy density 𝑈ℎ  which causes the volume changes and distortion strain 

energy density 𝑈𝑑 which is responsible for the change in the form. We can 

decompose the stress matrix similarly as dilatation stress matrix 𝜎ℎ and distortion 

stress matrix 𝜎𝑑 as well to calculate these components (Kim, 2015). 

 

[

𝜎1 0 0
0 𝜎2 0
0 0 𝜎3

] = [

𝜎ℎ 0 0
0 𝜎ℎ 0
0 0 𝜎ℎ

] + [

𝜎1𝑑 0 0
0 𝜎2𝑑 0
0 0 𝜎3𝑑

]                                            (2.7) 

 

Dilatation component 𝜎ℎ is defined as the following (Kim, 2015). 

 

𝜎ℎ =
𝜎1+𝜎2+𝜎3

3
                                                                                                          (2.8) 

 

    If the hydrostatic stress components are substituted in Eq.(2.6), dilatation energy 

density is obtained as in Eq.(2.9) (Kim, 2015). 

 

𝑈ℎ =  
1

2𝐸
[𝜎ℎ

2 + 𝜎ℎ
2 + 𝜎ℎ

2 − 2𝜗(𝜎ℎ𝜎ℎ + 𝜎ℎ𝜎ℎ + 𝜎ℎ𝜎ℎ)] 

=
3

2

(1−2𝜗)

𝐸
𝜎ℎ
2                                         (2.9) 
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By using the relation in Eq.(2.8), Eq.(2.9) can be written as follows (Kim, 2015). 

 

𝑈ℎ = 
3

2

(1 − 2𝜗)

𝐸
(
𝜎1+𝜎2+𝜎3

3
)
2

 

=
(1−2𝜗)

6𝐸
[𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 2(𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎1𝜎3)]                                         (2.10) 

 

2.1.2.1 Distortion Energy 

 

Distortion component of the strain energy is obtained by the subtraction of 

Eq.(2.10) from Eq.(2.6) (Kim, 2015). 

 

𝑈𝑑 = 𝑈0 − 𝑈ℎ                                                                                                       (2.11) 

𝑈𝑑 = 
(1+𝜗)

3𝐸
(𝜎1

2+𝜎2
2+𝜎3

2 − 𝜎1𝜎2 − 𝜎2𝜎3 − 𝜎1𝜎3)                                                (2.12) 

𝑈𝑑  =  
(1+𝜗)

3𝐸

[(𝜎1−𝜎2)
2+(𝜎2−𝜎3)

2+(𝜎3−𝜎1)
2]

2
=

(1+𝜗)

3𝐸
𝜎𝑉𝑀
2                                            (2.13) 

  

2.1.3 Distortion Energy Theory (von Mises) 

 

According to Von Mises' theory, yielding will start when the distortion energy 

density of a ductile solid reaches to a critical value for this material. Since this 

situation should be valid also for a uniaxial stress case, the critical value of the 

distortion energy can be obtained from a uniaxial tension test. In a uniaxial tension 

test, the stress will be as follows, as the yielding starts : 𝜎1=𝜎𝑦 , 𝜎2=0, 𝜎3=0 . The 

energy density at the moment of yielding is expressed with the following (Kim, 

2015). 

 

𝑈𝑑 =
(1+𝜗)

3𝐸
𝜎𝑦
2                                                                                                        (2.14) 

 

The energy density given in the above equation is the critical value of the 

distortion energy density for the material. According to Von Mises yielding criteria, 

the material starts yielding in the multi axial loading case as the distortion energy 

density reaches to the critical value (Kim, 2015). 

 
(1+𝜗)

3𝐸
𝜎𝑉𝑀
2 ≥

(1+𝜗)

3𝐸
𝜎𝑦
2                                                                                             (2.15) 

𝜎𝑉𝑀 ≥ 𝜎𝑦                                                                                                               (2.16) 
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Distortion Energy Theory foresees that the yielding will start when Von Mises 

stress value exceeds the yielding stress value that is obtained from a uniaxial tension 

test. Von Mises stress that is given with the Eq. (2.13) can be written with respect to 

all stress components as the following (Kim, 2015).        

 

𝜎𝑉𝑀  =  √
(𝜎𝑥𝑥−𝜎𝑦𝑦)

2
+(𝜎𝑦𝑦−𝜎𝑧𝑧)

2
+(𝜎𝑧𝑧−𝜎𝑥𝑥)

2+6(𝜏𝑥𝑦
2 +𝜏𝑦𝑧

2 +𝜏𝑧𝑥
2 )

2
                                    (2.17) 

 

For a two dimensional plane stress case, 𝜎3 = 0 , Von Mises stress can be defined 

as  following with respect to the principle stresses (Kim, 2015). 

 

𝜎𝑉𝑀  = √𝜎1
2−𝜎1𝜎2 + 𝜎2

2                                                                                       (2.18) 

 

For a two dimensional plane stress case, 𝜎3 = 0, Von Mises stress can be defined 

as following with respect to the general stress components (Kim, 2015). 

  

𝜎𝑉𝑀  = √𝜎𝑥𝑥
2 −𝜎𝑥𝑥𝜎𝑦𝑦 + 𝜎𝑦𝑦

2 + 3𝜏𝑥𝑦    
2                                                                  (2.19) 

 

Two dimensional distortion energy equation defines also an ellipse drawn on the 

σ1-σ2 plane (Figure 2.3). The inner region of the ellipse defines the combined biaxial  

stress region where the material is safe against yielding in case of static loading 

(Kim, 2015). 

 

If we handle the situation in which there is no normal stresses but only a shear 

stress, the principle stresses will be σ1 = -σ2 = τ   and σ3 = 0 . This pure shear on 

the σ1-σ2 plane is represented by a straight line passing through the origin at -45  as 

shown in Figure 2.3. This line intercepts von Mises ellipse at two points A and B as 

shown in Figure 2.3. The amplitudes of the 𝜎1  and 𝜎2 stresses at these points can be 

obtained from Eq.(2.18) (Kim, 2015). 

𝜎𝑦
2 = 𝜎1

2 − 𝜎1 𝜎1 + 𝜎1
2 = 3𝜎1

2 = 3𝜏𝑚𝑎𝑥
2                                                                (2.20) 

𝜏𝑚𝑎𝑥 = 𝜎1 =
𝜎𝑦

√3
= 0.577𝜎𝑦                                                                                  (2.21) 
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Figure 2.3 Geometrical representation of distortion energy theory 

 

2.1.4 Maximum Shear Stress Theory (Tresca) 

          

According to the Maximum Shear Stress Theory, yielding will start when the 

maximum shear stress of a material reaches to a critical value for this material. Since 

this situation should be valid also for a uniaxial stress case, the allowable maximum 

shear stress can be obtained from a uniaxial tension test. In a uniaxial tension test, the 

stress will be as : 𝜎1=𝜎𝑦 , 𝜎2=0, 𝜎3=0 as the yielding starts. The maximum shear 

stress is expressed by the following equation (Kim, 2015). 

 

𝜏𝑚𝑎𝑥 =
𝜎1−𝜎3

2
≥ 𝜏𝑦 =

𝜎𝑦

2
                                                                                       (2.22) 

 

Maximum shear stress value is also called the material's yielding shear stress and 

it is expressed by 𝜏𝑦  symbol. Tresca yielding criterion foresees that the material will 

start to yield when the maximum shear stress value exceeds the yielding shear 

strength of the material. According to the maximum shear stress theory, the two-

dimensional stress case is represented by the hexagon in Figure 2.4. The ellipse that 

corresponds to Von Mises theory is represented in the same way as well. The 

hexagon is drawn in the ellipse and all six corners of it contact the ellipse. Since the 

combinations of principle stresses 𝜎1  and 𝜎2  in the hexagon will not cause yielding, 

the shaded region in the hexagon is accepted as the safe region according to the 

maximum shear stress theory. According to the theory, yielding will start when the 

compound stress reaches to the borders of the hexagon. In the graphical 

representation in Figure 2.4, it is seen clearly that this theory is a more conservative 

failure theory than the maximum distortion energy theory. In case of pure shear 
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stress; the shear stress value at points A and B in Figure 2.3 is 0.577𝜎𝑦 with respect 

to distortion energy theory whereas the shear stress value at points C and D in Figure 

2.4 corresponds to 0,5𝜎𝑦 with respect to maximum shear stress theory (Kim, 2015).   

 
Figure 2.4 Geometrical representation of maximum shear stress theory (Kim, 2015) 

 

2.2 Bauschinger Effect 

 

If the compressive or tensile load on a material sample in the plastic region is 

removed and the sample is reloaded in the reverse direction until the yielding point, it 

will be observed that the yielding stress that was measured for the reloading will 

have a smaller value than the yielding stress value in the original direction has. This 

phenomenon is named as Bauschinger Effect. Figure 2.5 sets forth the Bauschinger 

effect very clearly. In the elastic region, the tensile yielding stress is equal to the 

compressive yielding stress (OA = OF or 𝑆𝑒𝑡 = 𝑆𝑒𝑐). If the material loaded up to the 

point B which is beyond the elastic limit and then the load is removed, the new 

tensile yielding strength of the material will be higher than what it had before it 

moved to the plastic region (BC). However, a decrease will be observed in the 

compressive yielding strength. As seen in Figure 2.5, the material's compressive 

yielding strength is at the value shown with Sec and decreases to the value  𝑆𝑒𝑐΄ 

(Abdelselam, 2012).  

 

2.3 Strain Hardening 

 

The experimental results show that if a solid object is loaded up to a point that is 

beyond the yielding strength and then it is totally unloaded and loaded in the same 

direction for reyielding, an increase in the strength of the solid object against 
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deformation will be observed. Namely, as a result of this process the object's yielding 

strength will increase. This occurrence which is very commonly met in metals is 

called strain hardening. As seen in Figure 2.5, if the sample is subject to some plastic 

stress up to the point B by using the tensile test and then it is subject to again a 

tensile stress, then the secondary yielding will occur at point B. The trajectory of the 

distance between point A and point B on the tensile stress axis is equal to the 

increase in the material's yielding strength due to the material's strain hardening 

(Abdelselam, 2012). 

 

Figure 2.5 Graphical representation of  Bauschinger effect (Abdelselam, 2012) 

 

2.4 Ideal Material Models 

 

The difficulties of mathematical modeling of the real stress-strain behavior of the 

materials caused the raise of some ideal material acceptances. Below are given the 

general information about some ideal material models that have the most common 

usage. 

 

2.4.1 Kinematic Hardening Model 

 

The existence of Bauschinger effect makes modelling of plastic deformation 

harder. Kinematic hardening model which is a simplified model of Bauschinger 

effect was proposed to unclutter this complication. According to this model, the 

decrease of  the yielding stress in the reverse direction is equal to increase of the 
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stress level of the sample that was loaded going beyond the yielding stress in the 

original direction and starting from the first yielding point (Jahed, 1997). 

 

Figure 2.6 Bilinear kinematic hardening model (Abdelselam, 2012) 

 

2.4.2 Elastic-Perfectly Plastic Model 

 

The simplest model to handle a material's behavior is elastic-perfectly plastic 

model. This model's behavior is shown in Figure 2.7. According to this model, the 

yielding point's value does not change with respect to plastic strain. Idealization of 

the plastic behavior of the materials, that do not exhibit much strain hardening, with 

this model will not cause major deviations in the results obtained. Stress-strain 

relation for the elastic-perfectly plastic model can be expressed as follows (Jahed, 

1997) 

 

𝜀 =
𝜎

𝐸
                                        (𝜎 < 𝜎0)                                                                   (2.23) 

𝜀 =
𝜎

𝐸
+ 𝜀𝑝                               (𝜎 > 𝜎0)                                                                   (2.24) 
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Figure 2.7 Elastic-perfectly plastic model (Jahed, 1997) 

 

2.4.3 Elastic-Linear Plastic Model 

 

Elastic-linear plastic model is a more real like stress-strain model when it is 

compared to elastic-perfectly plastic model. In this model, the stress-strain curve is 

represented by two lines. Although the transition from the elastic to the plastic region 

is generally soft in the real stress-strain curve, the transition in this model is sharp.  

The first linear region of the idealized diagram has the same slope with the material's 

elastic module. The second region which represents the idealized hardening behavior 

has a slope which is equal to the tangent module Et. The stress-strain relation for the 

elastic-linear plastic model can be expressed as follows (Jahed, 1997). 

 

𝜀 =
𝜎

𝐸
                                        (𝜎 < 𝜎0)                                                                   (2.25) 

𝜀 =  
𝜎

𝐸
+

1

𝐸𝑡
(𝜎 − 𝜎0)              (𝜎 > 𝜎0)                                                                   (2.26) 

 

Figure 2.8 Elastic-linear plastic model (Jahed, 1997)
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CHAPTER 3 

 

3. ANALYTICAL MODELLİNG 

 

3.1 Equilibrium Equations in Polar Coordinates 

 

A two dimensional state of stress in an infinitesimal element abcd is shown in 

Figure 3.1. The r and 𝜃 directed body forces are denoted by 𝐹𝑟 and 𝐹𝜃. Following 

equation are obtained by taking adventage of equilibrium of radial forces (Ugural, 

2012). 

 

(𝜎𝑟 +
𝜕𝜎𝑟

𝜕𝑟
𝑑𝑟) (𝑟 + 𝑑𝑟)𝑑𝜃 − 𝜎𝑟𝑟 𝑑𝜃 − (𝜎𝜃 +

𝜕𝜎𝜃

𝜕𝜃
𝑑𝜃)𝑑𝑟 𝑠𝑖𝑛

𝑑𝜃

2
− 𝜎𝜃𝑑𝑟 𝑠𝑖𝑛

𝑑𝜃

2
+

(𝜏𝑟𝜃 +
𝜕𝜏𝑟𝜃

𝜕𝜃
𝑑𝜃)𝑑𝑟 𝑐𝑜𝑠

𝑑𝜃

2
− 𝜏𝑟𝜃𝑑𝑟 𝑐𝑜𝑠

𝑑𝜃

2
+ 𝐹𝑟𝑟 𝑑𝑟 𝑑𝜃 = 0                                 (3.1) 

 

Because 𝑑𝜃 is small, sin(𝑑𝜃 2⁄ ) may be replaced by 𝑑𝜃 2⁄  and cos(𝑑𝜃 2⁄ ) by 1. 

Additional simplification is performed by dropping terms containing higher-order 

infinitesimals. A similar analysis may be performed for the tangential direction. 

When both equilibrium equations are divided by  𝑟𝑑𝑟𝑑𝜃, following equations are 

obtained (Ugural, 2012). 

 
𝜕𝜎𝑟

𝜕𝑟
+
1

𝑟

𝜕𝜏𝑟𝜃

𝜕𝜃
+ (

𝜎𝑟−𝜎𝜃

𝑟
) + 𝐹𝑟 = 0                                                                              (3.2) 

1

𝑟
 
𝜕𝜎𝜃

𝜕𝜃
+
𝜕𝜏𝑟𝜃

𝜕𝜃
+
2𝜏𝑟𝜃

𝑟
+ 𝐹𝜃 = 0                                                                                  (3.3) 

 

In the absence of the body forces and the shear stresses, the equilibrium equation 

can be written in the following way (Ugural, 2012): 

 
𝜕𝜎𝑟

𝜕𝑟
+
𝜎𝑟−𝜎𝜃

𝑟
= 0                                                                                                       (3.4) 

 

Figure 3.1  Stress element in polar coordinates
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3.2 Strain Displacement Relations in Polar Coordinates 

 

As shown in Figure 3.2, consider now the deformation of the infinitesimal 

element ABCD, denoting the r and 𝜃 displacements by u and v, respectively. In the 

analysis that follows, the small angle approximation sin𝜃 ≈ 𝜃 is employed, and arcs 

AB and CD are assumed straight lines. The radial strain 𝜀𝑟 , the deformation per unit 

length of side AC, is associated only with the u displacement (Sitharam, 2015): 

 

𝜀𝑟 =
𝜕𝑢

𝜕𝑟
                                                                                                                    (3.5) 

 

The tangential strain due to displacement u per unit length is stated as follows 

(Sitharam, 2015). 

 

(𝜀𝜃)𝑢 =
(𝑟+𝑢)𝑑𝜃−𝑟𝑑𝜃

𝑟𝑑𝜃
=

𝑢

𝑟
                                                                                         (3.6) 

 

Tangential strain due to displacement v is given by Eq.(3.7) (Sitharam, 2015).  

 

(𝜀𝜃)𝑣 =
(
𝜕𝑣

𝜕𝜃
)𝑑𝜃

𝑟𝑑𝜃
=

1

𝑟

𝜕𝑣

𝜕𝜃
                                                                                              (3.7) 

 

Hence, the resultant strain is stated as follows (Sitharam, 2015). 

 

𝜀𝜃 = (𝜀𝜃)𝑢 + (𝜀𝜃)𝑣                                                                                                 (3.8) 

𝜀𝜃 =
𝑢

𝑟
+
1

𝑟
(
𝜕𝑣

𝜕𝜃
)                                                                                                       (3.9) 

 

Similarly, the shearing strains can be calculated due to displacements u and v as 

below. Component of shearing strain due to u is given by Eq.(3.10) (Sitharam, 2015). 

 

(𝛾𝑟𝜃)𝑢 =
(
𝜕𝑢

𝜕𝜃
)𝑑𝜃

𝑟𝑑𝜃
=

1

𝑟
(
𝜕𝑢

𝜕𝜃
)                                                                                      (3.10) 

 

Component of shearing strain due to v is given by Eq.(3.11) (Sitharam, 2015). 

 

(𝛾𝑟𝜃)𝑣 =
𝜕𝑣

𝜕𝑟
− (

𝑣

𝑟
)                                                                                                 (3.11) 

 

Therefore, the total shear strain is stated as follows (Sitharam, 2015). 

 

𝛾𝑟𝜃 = (𝛾𝑟𝜃)𝑢 + (𝛾𝑟𝜃)𝑣                                                                                          (3.12) 

𝛾𝑟𝜃 =
1

𝑟
(
𝜕𝑢

𝜕𝜃
) +

𝜕𝑣

𝜕𝑟
− (

𝑣

𝑟
)                                                                                       (3.13) 
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Figure 3.2 Deformed element in two dimensions (Sitharam, 2015) 

 

3.3 Analytical Relations for Thick Walled Cylindrical Vessels 

 

According to Generalized Hook’s Law, Stresses can be written in the following 

form (Yayla, 2014). 

 

𝜎𝑟 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑟 + 𝑣(𝜀𝜃 + 𝜀𝑧)]                                                          (3.14) 

𝜎𝜃 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝜃 + 𝑣(𝜀𝑟 + 𝜀𝑧)]                                                          (3.15) 

𝜎𝑧 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)𝜀𝑧 + 𝑣(𝜀𝑟 + 𝜀𝜃)]                                                          (3.16) 

 

In the axial symmetry state, Eq.(3.5) and Eq.(3.6) will be used for  𝜀𝑟 and 𝜀𝜃. We 

can assume that 𝜀𝑧 = 0 (plane strain condition) and Shear stresses and shear strains 

don’t exist. If we substitute Eq.(3.5) and Eq.(3.6) into Eq.(3.14), Eq.(3.15), Eq.(3.16) 

then, 

 

𝜎𝑟 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)

𝜕𝑢

𝜕𝑟
+ 𝑣

𝑢

𝑟
]                                                                       (3.17) 

𝜎𝜃 =
𝐸

(1+𝑣)(1−2𝑣)
[(1 − 𝑣)

𝑢

𝑟
+ 𝑣

𝜕𝑢

𝜕𝑟
]                                                                      (3.18) 

𝜎𝑧 =
𝐸

(1+𝑣)(1−2𝑣)
[𝑣 (

𝑢

𝑟
+
𝜕𝑢

𝜕𝑟
)]                                                                                (3.19) 

 

Since r is the only independent variable, Eq.(3.4) can be written as the following . 

 
𝜕

𝜕𝑟
(𝑟𝜎𝑟) − 𝜎𝜃 = 0                                                                                                 (3.20) 

 

Substituting Eq.(3.14) and Eq.(3.15) into Eq.(3.20), we will get the following 

equation. 

 
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
= 0                                                                                               (3.21) 
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u can be found from Eq.(3.21) as 

 

𝑢 = 𝑐1𝑟 +
𝐶2

𝑟
                                                                                                         (3.22) 

 

Substituting  Eq.(3.22) into Eq.(3.17), Eq.(3.18), Eq.(3.19) 

 

𝜎𝑟 =
𝐸

(1+𝑣)(1−2𝑣)
[𝑐1 −

𝐶2

𝑟2
(1 − 2𝑣)]                                                                     (3.23) 

𝜎𝜃 =
𝐸

(1+𝑣)(1−2𝑣)
[𝑐1 +

𝐶2

𝑟2
(1 − 2𝑣)]                                                                     (3.24) 

𝜎𝑧 =
𝐸

(1+𝑣)(1−2𝑣)
(2𝑣𝑐1)                                                                                        (3.25) 

 

𝑐1 and 𝑐2 are integration constants and can be found out by applying boundary 

conditions.  

 

When 𝑟 = 𝑎,  𝜎𝑟 = −𝑃𝑖  

When 𝑟 = 𝑏,  𝜎𝑟 = −𝑃𝑒 

 

So, 

 
𝐸

(1+𝑣)(1−2𝑣)
[𝑐1 −

𝑐2

𝑟2
(1 − 2𝑣)] = −𝑃𝑖                                                                    (3.26) 

𝐸

(1+𝑣)(1−2𝑣)
[𝑐1 −

𝑐2

𝑟2
(1 − 2𝑣)] = −𝑃𝑒                                                                    (3.27) 

 

When Eq.(3.26) and Eq.(3.27) are solved, integration constants are obtained.  

 

𝑐1 =
(1+𝑣)(1−2𝑣)

𝐸
[(𝑃𝑖 − 𝑃𝑒) (

𝑏2

𝑏2−𝑎2
) − 𝑃𝑖]                                                             (3.28) 

𝑐2 =
(1+𝑣)

𝐸
(
𝑎2𝑏2

𝑏2−𝑎2
) (𝑃𝑖 − 𝑃𝑒)                                                                                  (3.29) 

 

Integration constants are substituted into Eq.(3.23) , Eq.(3.24) , and Eq.(3.25), we 

get following equations. 

 

𝜎𝑟 =
𝑃𝑖𝑎

2−𝑃𝑒𝑏
2

𝑏2−𝑎2
− 

𝑎2𝑏2

𝑟2
(
𝑃𝑖−𝑃𝑒

𝑏2−𝑎2
)                                                                             (3.30) 

𝜎𝜃 =
𝑃𝑖𝑎

2−𝑃𝑒𝑏
2

𝑏2−𝑎2
+ 

𝑎2𝑏2

𝑟2
(
𝑃𝑖−𝑃𝑒

𝑏2−𝑎2
)                                                                             (3.31) 

𝜎𝑧 = 2𝑣 (
𝑃𝑖𝑎

2−𝑃𝑒𝑏
2

𝑏2−𝑎2
)                                                                                              (3.32) 

 



 
 

25 
 

3.3.1 Cylinders Subjected to Internal Pressure only 

 

In this case 𝑃𝑒 = 0 and 𝑃𝑖 = 𝑃 

Hence, 

 

𝜎𝑟 = (
𝑃𝑎2

𝑏2−𝑎2
) (1 −

𝑏2

𝑟2
)                                                                                          (3.33) 

𝜎𝜃 = (
𝑃𝑎2

𝑏2−𝑎2
) (1 +

𝑏2

𝑟2
)                                                                                          (3.34) 

𝜎𝑧 = 2𝑣 (
𝑃𝑎2

𝑏2−𝑎2
)                                                                                                    (3.35) 

 

Since 𝑏2 𝑟2⁄ ≥ 1, 𝜎𝑟 is negative (compressive) for all  𝑟 except 𝑟 = 𝑏, in which 

case 𝜎𝑟 = 0. The maximum stress occurs at  𝑟 = 𝑎. This is illustrated in Figure 3.3 

(Sun, 2015).  

 
Figure 3.3 Stress distribution in internal pressure state (Sun, 2015) 

 

3.3.2 Cylinders Subjected to External Pressure only 

 

In this case 𝑃𝑒 = 𝑃 and 𝑃𝑖 = 0 

Hence, 

 

𝜎𝑟 = (
−𝑃𝑏2

𝑏2−𝑎2
) (1 −

𝑎2

𝑟2
)                                                                                          (3.36) 

𝜎𝜃 = (
−𝑃𝑏2

𝑏2−𝑎2
) (1 +

𝑎2

𝑟2
)                                                                                          (3.37) 

𝜎𝑧 = 2𝑣 (
−𝑃𝑏2

𝑏2−𝑎2
)                                                                                                    (3.38) 

 



 
 

26 
 

The maximum radial stress occurs at 𝑟 = 𝑏 and is compressive for all r. The 

maximum 𝜎𝜃 is found at 𝑟 = 𝑎, and is likewise compressive. And this is illustrated in 

the Figure 3.4 (Sun, 2015). 

 
Figure 3.4 Stress distribution in external pressure state (Sun, 2015) 

 

3.4 Analytical Relations For Swage Autofrettage Process 

 

Swage autofrettage is a spatial axisymetric elasto-plastic contact problem. To 

simplify the problem it’s made some assumptions. 

  

1. The sum of the plastic strain components is zero. 

 

(𝜀𝑟
𝑝 + 𝜀𝜃

𝑝 + 𝜀𝑧
𝑝 = 0)                                                                                          (3.39) 

 

2. During the process, the axial strain is being ignored and cylinder is being 

assumed in the plane strain condition (𝜀𝑧 = 0). The axial stress σz  is expressed by 

the following equation in the plane strain condition. This equation is being assumed 

to be valid both in the elastic and plastic regions.  

 

𝜎𝑧 = 𝑣(𝜎𝑟+𝜎𝜃)                                                                                                     (3.40) 

 

3. According to the Coulomb friction model, the friction force is proportional to 

the contact pressure that is applied to the cylinder by the mandrel. If the friction 

coefficient is shown as 𝜇, the shear stress that will occur due to the friction can be 

expressed as (𝜏𝑟𝑧 = 𝜇𝜎𝑟)𝑟=𝑎 . However, the shear stress value due to the friction can 

be ignored since it is very small compared to the other stress components. 
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4. By simplification of the swage autofrettage, the contact pressure that occurs 

when the mandrel passes through the cylinder is treated as the hydrostatic pressure 

and the equations that are used for the solution of the hydrostatic autofrettage were 

made use of. 

 

5. It is assumed that the mandrel behaves elastically during the process. 

 

6. When the pressure on the inner wall of the cylinder is released, the recovery 

behavior of the material in the stress-strain graphic is assumed to be linear. 

 

3.4.1 Elastic-Perfectly Plastic Model 

 

The contact pressure of the cylindrical tube reaches to the yielding point on the 

inner wall of the cylinder at first. In a cylinder that is subject to only internal 

pressure, the necessary yielding condition is defined by the following equation (Jost, 

1988).  

 

𝜎𝜃 − 𝜎𝑟 = 𝜎0                                                                                                         (3.41) 

 

When the radial and the tangential stresses given by Eq.(3.33) and Eq.(3.34) are 

substituted for (r = a) in Eq.(3.41), the pressure value that will start yielding is 

obtained (Jost, 1988). 

 

𝑃𝑎 =
𝜎0

2
(1 −

𝑎2

𝑏2
) = −𝜎𝑟                                                                                        (3.42) 

 

If the pressure on the inner wall of the cylinder is increased more, there will be a 

plastic region that spreads to the outer diameter of the cylinder. The thickness of the 

plastic region that occurs in the cylinder is related with the difference between outer 

radius of the mandrel that was used for the swage autofrettage and inner radius of the 

cylinder. This difference is named as interference. The interference of the cylinder 

and the mandrel is bigger, the higher the contact pressure on the inner wall of the 

cylinder is.  The higher contact pressure means a deeper plastic region (Jost, 1988). 

 

3.4.1.1 The Stresses in the Plastic Region in Loading Condition 

 

The yielding criterion expressed by Eq.(3.41) should be valid for the whole plastic 

region occurs in the cylinder. However, the equilibrium equation in Eq.(3.4), is valid 
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for both the elastic and the plastic region. If the Eq.(3.41) is substituted in Eq.(3.4) 

and integrated, the following equation is obtained (Jost, 1988). 

 
𝜕𝜎𝑟

𝜕𝑟
−
𝜎0

𝑟
= 0                                                                                                           (3.43) 

𝜎𝑟 = 𝜎0𝑙𝑛𝑟 + 𝑐1                                                                                                    (3.44) 

 

If radius 𝑎 is substituted by radius 𝑐 (elastic-plastic radius) in Eq.(3.42) which 

states the pressure that starts the plastic yielding in 𝑟 = 𝑎, the new equation will give 

−𝜎𝑟 value on the elastic-plastic junction. This boundry condition is used to 

determine the 𝑐1 integration constant (Jost, 1988). 

 

𝜎𝑟𝑐 =
𝜎0

2
(−1 +

𝑐2

𝑏2
)                                                                                                (3.45) 

 

When 𝑟 is substituted with 𝑐 in Eq.(3.44) and σr  is substituted with σrc in 

Eq.(3.45),  c1 constant is obtained (Jost, 1988).   

 

𝑐1 =
𝜎0

2
(−1 +

𝑐2

𝑏2
− 𝑙𝑛𝑐2)                                                                                     (3.46) 

 

If the c1 constant which is given in Eq.(3.46) is substituted in Eq.(3.44), 𝜎𝑟 

expression in the plastic region is obtained Eq.(3.47) (Jost, 1988). 

 

𝜎𝑟 =
𝜎0

2
(−1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
)                                                                                    (3.47) 

 

If Eq.(3.47) is substituted in Eq.(3.41), tangential stress expression for the plastic 

region is obtained (Jost, 1988). 

 

𝜎𝜃 =
𝜎0

2
(1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
)                                                                                       (3.48) 

 

When the radial and tangential stress expressions that are valid in the plastic 

region are substituted in  Eq.(3.40),  σz  expression for the plastic region is obtained. 

 

𝜎𝑧 = 𝜎0𝑣 (
𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
)                                                                                            (3.49) 

 

Eq.(3.47), Eq.(3.48) and Eq.(3.49) give the stress distribution of the plastic region 

between 𝑟 = 𝑎 and 𝑟 = 𝑐 of a thick walled cylindrical vessel which was pressured on 

the inner wall (Jost, 1988). 
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Pressure 𝑃∗, that is applied on 𝑟 = 𝑎 and causes plastic yielding up to 𝑟 = 𝑐, can 

be obtained from the expression in Eq.(3.47). In case of the application of pressure 

𝑃∗, if we express the radial stress by σr
*  at  r = a , 𝑃∗ = −𝜎𝑟

∗ will be obtained (Jost, 

1988). 

 

𝑃∗ =
𝜎0

2
(1 −

𝑐2

𝑏2
− 𝑙𝑛

𝑎2

𝑐2
)                                                                                       (3.50) 

 

3.4.1.2 The Stresses in the Elastic Region in Loading Condition 

 

To obtain the governing equations of the elastic region, we can ignore the plastic 

region and consider the cylinder as an elastic one bounded by 𝑟 = 𝑐 and 𝑟 = 𝑏. 

Then, −𝜎𝑟𝑐 will express the 𝑃𝑐 pressure that will start yielding at 𝑟 = 𝑐 in our 

imaginary cylinder whose inner radius is 𝑐 and outer radius is 𝑏 (Jost, 1988).  

 

𝑃𝑐 =
𝜎0

2
(1 −

𝑐2

𝑏2
)                                                                                                    (3.51) 

 

If 𝑃 is substituted by the expression in Eq.(3.51) and the 𝑎 radius substituted by 𝑏 

in Eq.(3.33), Eq.(3.34) and Eq.(3.35) which give the stress distribution in the elastic 

region of the cylinder which is subject to only internal pressure, the stresses in the 

elastic region of the cylindrical vessel is obtained in loading condition (Jost, 1988). 

 

𝜎𝑟 =
𝜎0

2
(−

𝑐2

𝑟2
+

𝑐2

𝑏2
)                                                                                               (3.52) 

𝜎𝜃 =
𝜎0

2
(
𝑐2

𝑟2
+

𝑐2

𝑏2
)                                                                                                   (3.53) 

𝜎𝑧 = 𝑣𝜎0
𝑐2

𝑏2
                                                                                                            (3.54) 

 

3.4.1.3 Determination of the Elastic-Plastic Junction 

 

In this section, the mathematical relation between interference and elastic-plastic 

junction will be established. The interference which is represented by the symbol 𝐼 is 

defined by the difference between the outer radius of the mandrel and the inner 

radius of the cylinder (Chakrabarty, 1996).  

 

𝐼 = 𝑟𝑚 − 𝑎                                                                                                             (3.55) 
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During the swage autofrettage process, as the mandrel passes through the 

cylinder, a radial expansion on the hole surface and a radial reduction on the mandrel 

surface occur. The difference between the positive radial displacement on the 

cylinder's inner wall and the negative radial displacement on the mandrel's outer wall 

is equal to the interference value (Chakrabarty, 1996).  

 

𝐼 = 𝑢𝑎 − 𝑢𝑚 = 𝑎(𝜀𝜃𝑡)𝑎
− 𝑎(𝜀𝜃𝑚)𝑎

                                                                     (3.56) 

 

According to the Generalized Hook’s Law, strains in the cylindrical coordinates 

are expressed as follows (Chakrabarty, 1996).  

 

𝜀𝑟 =
1

𝐸
[𝜎𝑟 − 𝑣(𝜎𝜃 + 𝜎𝑧)]                                                                                      (3.57) 

𝜀𝜃 =
1

𝐸
[𝜎𝜃 − 𝑣(𝜎𝑟 + 𝜎𝑧)]                                                                                      (3.58) 

𝜀𝑧 =
1

𝐸
[𝜎𝑧 − 𝑣(𝜎𝑟 + 𝜎𝜃)]                                                                                      (3.59) 

 

The following equation is obtained if the plane strain condition (εz = 0) is 

applied for Eq.(3.59) (Chakrabarty, 1996). 

 

𝜎𝑧 =  𝑣(𝜎𝑟 + 𝜎𝜃)                                                                                                   (3.60) 

 

If this equation is used in Eq.(3.57) and Eq.(3.58), strain components in the plane 

strain condition are obtained (Chakrabarty, 1996). 

 

𝜀𝑟 =
1+𝑣

𝐸
[(1 − 𝑣)𝜎𝑟 − 𝑣𝜎𝜃]                                                                                  (3.61) 

𝜀𝜃 =
1+𝑣

𝐸
[(1 − 𝑣)𝜎𝜃 − 𝑣𝜎𝑟]                                                                                  (3.62) 

 

Since the above equations are valid only in the elastic limits, we can obtain the 

strain expressions in the elastic region by substituting Eq.(3.52) and Eq.(3.53) in 

Eq.(3.61) and Eq.(3.62) (Chakrabarty, 1996). 

 

𝜀𝑟 = (1 + 𝑣)
𝜎0𝑐

2

2𝐸𝑏2
(1 − 2𝑣 −

𝑏2

𝑟2
)                                                                          (3.63) 

𝜀𝜃 = (1 + 𝑣)
𝜎0𝑐

2

2𝐸𝑏2
(1 − 2𝑣 +

𝑏2

𝑟2
)                                                                          (3.64) 
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Previously, it was mentioned that the volume does not change during the plastic 

deformation and as a result of this condition, the sum of the plastic strain components 

should be zero. The following strain conditions are valid in the plane strain condition 

for the plastic region (Chakrabarty, 1996).  

 

𝜀𝑟
𝑝 + 𝜀𝜃

𝑝 = 0                                                                                                       (3.65) 

𝜀𝑟+𝜀𝜃 = (𝜀𝑟
𝑒 + 𝜀𝜃

𝑒) + (𝜀𝑟
𝑝 + 𝜀𝜃

𝑝)                                                                    (3.66) 

𝜀𝑟+𝜀𝜃 =
𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
= 𝜀𝑟

𝑒 + 𝜀𝜃
𝑒 =

(1+𝑣)(1−2𝑣)

𝐸
(𝜎𝑟 + 𝜎𝜃)                                         (3.67) 

 

The equilibrium equation in Eq.(3.4) can be expressed as follows as well 

(Chakrabarty, 1996). 

 

(𝜎𝑟 + 𝜎𝜃) =
1

𝑟

𝜕

𝜕𝑟
(𝑟2𝜎𝑟)                                                                                        (3.68) 

 

If Eq.(3.68) is substituted in Eq.(3.67) and the equation is rewritten by using the 

following shear modulus and elasticity modulus relation, Eq.(3.70) is obtained 

(Chakrabarty, 1996). 

 

𝐺 =
𝐸

2(1+𝑣)
                                                                                                             (3.69) 

𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
=

1−2𝑣

2𝐺𝑟

𝜕

𝜕𝑟
(𝑟2𝜎𝑟)                                                                                        (3.70) 

 

The differential equation above is valid both in the elastic and plastic regions of 

the cylinder. The following equation is obtained when Eq.(3.70) is solved 

(Chakrabarty, 1996).  

 

𝜀𝜃 =
𝑢

𝑟
=

1−2𝑣

2𝐺
𝜎𝑟 +

𝐶1

𝑟2
                                                                                           (3.71) 

 

When we apply the boundary condition 𝜎𝑟 = 0  for  r = b , Eq.(3.72) is obtained 

(Chakrabarty, 1996). 

 

(𝜀𝜃)𝑏 =
𝐶1

𝑏2
                                                                                                             (3.72) 

 

Eq.(3.64) gives the tangential strain in the elastic region. Then, the tangential 

strain equation for 𝑟 = 𝑏 will be as the following (Chakrabarty, 1996). 
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(𝜀𝜃)𝑏 = (1 − 𝑣
2)

𝜎0𝑐
2

𝐸𝑏2
= (1 − 𝑣)

𝜎0𝑐
2

2𝐺𝑏2
                                                                  (3.73) 

 

When Eq.(3.72) and Eq.(3.73) are equalized, the integration constant 𝑐1 is 

obtained. 

 

𝑐1 = (1 − 𝑣)
𝜎0𝑐

2

2𝐺
                                                                                                   (3.74) 

 

When Eq.(3.74) is substituted in Eq.(3.71), the tangential strain equation of the 

cylinder is obtained (Chakrabarty, 1996).  

 

𝜀𝜃𝑡 =
𝑢

𝑟
= (1 − 𝑣)

𝜎0𝑐
2

2𝐺𝑟2
+ (1 − 2𝑣)

𝜎𝑟

2𝐺
                                                                  (3.75) 

 

Mandrel that is used at the swage autofrettage process is manufactured from a 

material having high elasticity modulus. Therefore, the cylindrical tube is subject to 

plastic deformation but only the elastic deformation is observed on the mandrel. 

Stress equations of the cylindrical tube which is subject to only external pressure will 

be made use of to obtain the strain equations of the mandrel. While the equations that 

were derived for the externally pressurized cylindrical tube are rewritten for the 

mandrel, the radius 𝑎 should be taken as zero in the equations Eq.(3.36)-(3.37)-

(3.38). So, the stress equations for the mandrel will be as follows (Jost, 1988). 

 

𝜎𝑟 = 𝜎𝜃 = −𝑃
∗                                                                                                     (3.76) 

𝜎𝑧 = −2𝑣𝑚𝑃
∗                                                                                                       (3.77) 

 

If Eq.(3.76) is used in Eq.(3.62), the tangential strain equation of the mandrel is 

obtained (Jost, 1988). 

 

𝜀𝜃𝑚 =
𝑃∗

𝐸𝑚
(2𝑣𝑚 − 1)(𝑣𝑚 + 1)                                                                              (3.78) 

 

When the expressions εθt and 𝜀𝜃𝑚 given by Eq.(3.75) and Eq.(3.78) are 

substituted for 𝑟 = 𝑎 in Eq.(3.56), the following equation is obtained (Chakrabarty, 

1996). 

 

𝐼 = 𝑟𝑚 − 𝑎 
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𝐼 = (1 − 𝑣)
𝜎0𝑐

2

2𝐺𝑎
− 𝑎(1 − 2𝑣)

𝑃∗

2𝐺
−

𝑃∗

𝐸𝑚
𝑎(2𝑣𝑚 − 1)(𝑣𝑚 + 1)                              (3.79) 

 

Elastic-plastic junction can be obtained with a simple iteration of the above 

equation.    

 

3.4.1.4 Residual Stresses 

 

With the release of the pressure on the inner wall of the cylinder, an elastic 

recovery to the pre-loading geometry of the cylinder starts. Since a complete 

recovery can not be accomplished due to the plastic region surrounding the inner 

wall, residual stresses on the cylinder occur.  During this recovery there are two 

cases. Since the compressive yielding stress at inner surface of the cylinder is not 

exceeded during the elastic recovery, a new plastic yielding does not occur in the 

first case but secondary plastic yielding occurs from the inner wall to the outer by 

exceeding the compressive yielding stress at the bore in the second case (Jost, 1988). 

 

3.4.1.5 Elastic Recovery without Re-yielding 

 

The internal pressure that causes yielding from the cylinder's inner wall to the 

elastic-plastic junction in loading condition is zeroized during unloading. Residual 

stresses are obtained with the subtraction of the elastic stresses, which are raised by 

the autofrettage pressure that causes the cylinder to yield up to 𝑟 = 𝑐 radius, from the 

loading condition stresses.       

 

3.4.1.5.1 Residual Stresses in the Plastic Region 

 

𝜎𝑟 =
𝜎0

2
(−1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − (

𝑃∗𝑎2

𝑏2−𝑎2
) (1 −

𝑏2

𝑟2
)                                                    (3.80) 

𝜎𝜃 =
𝜎0

2
(1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − (

𝑃∗𝑎2

𝑏2−𝑎2
) (1 +

𝑏2

𝑟2
)                                                       (3.81) 

𝜎𝑧 = 𝑣𝜎0 (
𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − 2𝑣 (

𝑃∗𝑎2

𝑏2−𝑎2
)                                                                     (3.82) 

 

3.4.1.5.2 Residual Stresses in the Elastic Region 

 

𝜎𝑟 =
𝜎0

2
(−

𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

𝑃∗𝑎2

𝑏2−𝑎2
) (1 −

𝑏2

𝑟2
)                                                               (3.83) 

𝜎𝜃 =
𝜎0

2
(
𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

𝑃∗𝑎2

𝑏2−𝑎2
) (1 +

𝑏2

𝑟2
)                                                                  (3.84) 
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𝜎𝑧 = 𝑣𝜎0
𝑐2

𝑏2
− 2𝑣 (

𝑃∗𝑎2

𝑏2−𝑎2
)                                                                                     (3.85) 

 

3.4.1.6 Elastic Recovery with Re-yielding 

 

The secondary plastic yielding which occurs during the elastic recovery starts 

from the inner wall and extends to the outer in a similar way with the first plastic 

yielding.  To start a secondary yielding, it is necessary that the equivalent stress on 

the inner wall of the cylinder reaches to compressive yielding stress (Parker, 1997).  

 

(𝜎𝜃 − 𝜎𝑟)𝑟=𝑎 ≤ −𝜎0                                                                                             (3.86) 

 

When the inequality given by the Eq.(3.86) is obtained, the secondary yielding in 

the cylinder occurs. When the expressions σr and 𝜎𝜃 given by Eq.(3.80) and 

Eq.(3.81) are substituted for 𝑟 = 𝑎 in Eq.(3.86), the following expressions is obtained 

(Parker, 1997). 

 
𝜎0

2
(1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑎2

𝑐2
) − (

𝑃∗𝑎2

𝑏2−𝑎2
) (1 +

𝑏2

𝑎2
) ≤ −𝜎0                                                    (3.87) 

 

If the necessary editing and simplification are performed on these equations, 

Eq.(3.88) is obtained (Jost, 1988). 

 

(
𝑏

𝑎
)
2
≤

(
𝑐

𝑎
)
2
−2

2 𝑙𝑛(
𝑐

𝑎
)−1

                                                                                                     (3.88) 

 

Eq.(3.88) defines the necessary condition to start a secondary yielding in the 

cylindrical tube after the autofrettage. According to the results obtained from the 

solution of the above inequality, if b a⁄  ratio is smaller than 2.22 or c a⁄  ratio is 

smaller than 1.65, the secondary yielding does not occur for certain (Jost, 1988). 

 

3.4.1.6.1 Stresses in (𝑎 ≤ 𝑟 ≤ 𝑑) Region 

 

In case of secondary yielding, when the load is released, a new plastic region is 

formed starting from the inner wall and extending to 𝑟 = 𝑑 point. The residual stress 

equations in this region are obtained in a similar way with the plastic yielding ones. 

However, this time, different boundary conditions are used. In the new condition, the 

yielding criterion is defined as follows (Parker, 1997). 
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𝜎𝜃 − 𝜎𝑟 = −𝜎0                                                                                                      (3.89) 

 

If Eq.(3.89) is substituted in  Eq.(3.4) and integrated, the following equation is 

obtained (Parker, 1997). 

 

𝜎𝑟 = −𝜎0𝑙𝑛𝑟 + 𝑐1                                                                                                 (3.90) 

 

In 𝑟 = 𝑎, the integration constant can be obtained by using  𝜎𝑟 = 0 boundary 

condition (Parker, 1997). 

 

𝑐1 = 𝜎0𝑙𝑛𝑎                                                                                                            (3.91) 

 

If the 𝑐1 constant that is given by Eq.(3.91) is substituted in Eq.(3.90),  σr 

expression of the secondary plastic region is obtained (Parker, 1997).   

 

𝜎𝑟 = −𝜎0 𝑙𝑛
𝑟

𝑎
                                                                                                        (3.92) 

 

If Eq.(3.92) is substituted in Eq.(3.89), the tangential stress expression for the 

plastic region is obtained (Parker, 1997). 

 

𝜎𝜃 = −𝜎0 (1 +  𝑙𝑛
𝑟

𝑎
)                                                                                            (3.93) 

 

When Eq.(3.92) and Eq.(3.93) are substituted in Eq.(3.40), 𝜎𝑧 expression for the 

secondary plastic region is obtained (Parker, 1997). 

 

𝜎𝑧 = −𝑣𝜎0 (2 𝑙𝑛
𝑟

𝑎
+ 1)                                                                                        (3.94) 

 

3.4.1.6.2  Stresses in (𝑑 ≤ 𝑟 ≤ 𝑐) Region 

 

When the pressure expression at the 𝑟 = 𝑑, radius of the secondary plastic region, 

is subtracted from the pressure expression at the radius 𝑑 at the autofrettage loading 

level,  the pressure change on the elastic-plastic junction from the start of the 

autofrettage process to the end of the secondary yielding is obtained. This pressure 

difference is a positive value and will be expressed by ∆𝑃. Elastic stresses that ∆𝑃 

pressure produced in 𝑑 ≤ 𝑟 ≤ 𝑏 region are obtained by substituting 𝑎 with 𝑑  and  P  

with ∆P  in the elastic stress equations expressed by Eq.(3.33)-(3.34)-(3.35) (Parker, 

1997). 
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∆𝑃 =
𝜎0

2
(1 −

𝑐2

𝑏2
− 𝑙𝑛

𝑑2

𝑐2
− 𝑙𝑛

𝑑2

𝑎2
)                                                                         (3.95) 

𝜎𝑟 = (
(∆𝑃)𝑑2

𝑏2−𝑑2
) (1 −

𝑏2

𝑟2
)                                                                                         (3.96) 

𝜎𝜃 = (
(∆𝑃)𝑑2

𝑏2−𝑑2
) (1 +

𝑏2

𝑟2
)                                                                                         (3.97) 

𝜎𝑧 = 2𝑣 (
(∆𝑃)𝑑2

𝑏2−𝑑2
)                                                                                                   (3.98) 

 

The following residual stresses are obtained with the subtraction of the elastic 

stresses expressed by Eq.(3.96)-(3.97)-(3.98) from the governing equations in the 

plastic region and expressed by Eq.(3.47)-(3.48)-(3.49) (Parker, 1997). 

 

𝜎𝑟 =
𝜎0

2
(−1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − (

(∆𝑃)𝑑2

𝑏2−𝑑2
) (1 −

𝑏2

𝑟2
)                                                   (3.99) 

𝜎𝜃 =
𝜎0

2
(1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − (

(∆𝑃)𝑑2

𝑏2−𝑑2
) (1 +

𝑏2

𝑟2
)                                                    (3.100) 

𝜎𝑧 = 𝑣𝜎0 (
𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − 2𝑣 (

(∆𝑃)𝑑2

𝑏2−𝑑2
)                                                                  (3.101) 

 

3.4.1.6.3  Stresses in (𝑐 ≤ 𝑟 ≤ 𝑏)  Region 

 

The following residual stresses are obtained with the subtraction of the elastic 

stresses expressed by Eq.(3.96)-(3.97)-(3.98) from the governing equations in the 

loaded plastic region and expressed by  Eq.(3.52)-(3.53)-(3.54) (Parker, 1997). 

 

𝜎𝑟 =
𝜎0

2
(−

𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

(∆𝑃)𝑑2

𝑏2−𝑑2
) (1 −

𝑏2

𝑟2
)                                                            (3.102) 

𝜎𝜃 =
𝜎0

2
(
𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

(∆𝑃)𝑑2

𝑏2−𝑑2
) (1 +

𝑏2

𝑟2
)                                                               (3.103) 

𝜎𝑧 = 𝑣𝜎0
𝑐2

𝑏2
− 2𝑣 (

(∆𝑃)𝑑2

𝑏2−𝑑2
)                                                                                  (3.104) 

 

3.4.1.7 Bauschinger Effect in Autofrettage Process 

 

A decrease takes place in the compressive yielding strength of the cylinder which 

is subject to plastic deformation in autofrettage process. This decrease in the 

compressive yielding strength is closely related with the plastic strain amount. The 

analytical approaches in the previous sections realized ignoring Bauschinger effect. 

However, in practice, Bauschinger effect is observed in many metals and it affects 

the stress distribution of the autofrettage cylinders considerably. In the previous 
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sections, it was introduced that the secondary yielding is related with the applied 

pressure and the geometry of the tube. Additionally, it was deduced that the 

secondary yielding will certainly not happen if the 𝑏 𝑎⁄  ratio is smaller than 2.22 or 

the 𝑐 𝑎⁄  ratio is smaller than 1.65. However,  this deduction loses its validity when 

Bauschinger effect is taken into consideration. Even if the 𝑏 𝑎⁄  ratio is smaller than 

2.22, the decrease in the compressive yielding strength due to Bauschinger effect can 

cause the secondary yielding to happen (Parker, 1997). 

 

3.4.1.7.1 Secondary Yielding Resulting from Bauschinger Effect 

 

It is necessary that the residual stresses on the cylinder's inner wall fulfill the 

yielding condition to happen the secondary yielding under the effect of Bauschinger 

(Parker, 1997).  

 

(𝜎𝜃 − 𝜎𝑟)𝑟=𝑎 ≤ −𝑓𝜎0                                                                                         (3.105) 

 

     The 𝑓 term, that is multiplied with the compressive yielding stress on the right 

side of the equation, is Bauschinger Effect Factor. Bauschinger Effect Factor is the 

ratio of compressive yielding strength to tensile yielding strength and it takes the 

values between 0-1 (Parker, 1997).  

 

When the inequality expressed by Eq.(3.105) is realized, the secondary yielding 

occurs. When the expressions 𝜎𝑟 and 𝜎𝜃 given by Eq.(3.80) and Eq.(3.81) are 

substituted for 𝑟 = 𝑎 in Eq.(3.105), the following expressions is obtained (Parker, 

1997). 

 
𝜎0

2
(1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑎2

𝑐2
) − (

𝑃∗𝑎2

𝑏2−𝑎2
) (1 +

𝑏2

𝑎2
) ≤ −𝑓𝜎0                                                (3.106) 

 

If the necessary editing and simplification are performed on these equations, 

Eq.(3.107) is obtained (Parker, 1997). 

 

(
𝑏

𝑎
)
2
≤

(
𝑐

𝑎
)
2
−(1+𝑓)

2 𝑙𝑛(
𝑐

𝑎
)−𝑓

                                                                                                (3.107) 
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3.4.1.7.2 Stresses in (𝑎 ≤ 𝑟 ≤ 𝑑) Region 

 

𝜎𝑟 = −𝑓𝜎0𝑙𝑛
𝑟

𝑎
                                                                                                     (3.108) 

𝜎𝜃 = −𝑓𝜎0 (1 +  𝑙𝑛
𝑟

𝑎
)                                                                                        (3.109) 

𝜎𝑧 = −𝑓𝑣𝜎0 (2 𝑙𝑛
𝑟

𝑎
+ 1)                                                                                    (3.110) 

 

3.4.1.7.3 Stresses in  (𝑑 ≤ 𝑟 ≤ 𝑐) Region 

 

∆𝑃∗ =
𝜎0

2
(1 −

𝑐2

𝑏2
− 𝑙𝑛

𝑑2

𝑐2
) −

𝑓𝜎0

2
(𝑙𝑛

𝑑2

𝑎2
)                                                            (3.111) 

𝜎𝑟 =
𝜎0

2
(−1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − (

(∆𝑃∗)𝑑2

𝑏2−𝑑2
) (1 −

𝑏2

𝑟2
)                                                (3.112) 

𝜎𝜃 =
𝜎0

2
(1 +

𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − (

(∆𝑃∗)𝑑2

𝑏2−𝑑2
) (1 +

𝑏2

𝑟2
)                                                   (3.113) 

𝜎𝑧 = 𝑣𝜎0 (
𝑐2

𝑏2
+ 𝑙𝑛

𝑟2

𝑐2
) − 2𝑣 (

(∆𝑃∗)𝑑2

𝑏2−𝑑2
)                                                                 (3.114) 

 

3.4.1.7.4 Stresses in  (𝑐 ≤ 𝑟 ≤ 𝑏)  Region 

 

𝜎𝑟 =
𝜎0

2
(−

𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

(∆𝑃∗)𝑑2

𝑏2−𝑑2
) (1 −

𝑏2

𝑟2
)                                                          (3.115) 

𝜎𝜃 =
𝜎0

2
(
𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

(∆𝑃∗)𝑑2

𝑏2−𝑑2
) (1 +

𝑏2

𝑟2
)                                                             (3.116) 

𝜎𝑧 = 𝑣𝜎0
𝑐2

𝑏2
− 2𝑣 (

(∆𝑃∗)𝑑2

𝑏2−𝑑2
)                                                                                (3.117) 

 

3.4.2 Bilinear Hardening Model 

 

Tresca yielding criterion for the materials that have strain hardening is expressed 

as the following (Chakrabarty, 1996). 

 

𝜎𝜃 − 𝜎𝑟 = 𝜎                                                                                                         (3.118) 

 

𝜎 in Eq.(3.118) is the yielding stress at any point of the plastic deformation. 

Yielding stress in the bilinear hardening model changes linearly with respect to 

plastic strain.  Eq.(3.118) is expressed for bilinear hardening model in uniaxial stress 

state as follows (Chakrabarty, 1996).  

 

𝜎 = 𝜎0 + 𝐸𝑡 𝜀
𝑝                                                                                                    (3.119) 
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The 𝐸𝑡 here is related with the slope of the plastic region and named as tangent 

modulus. 𝜀𝑝 defines the plastic strain. There is multi-axial stress in autofrettage 

process. Eq.(3.119) is defined as the following in terms of effective strain for multi-

axial stress state (Chakrabarty, 1996). 

 

𝜎 = 𝜎0 + 𝐸𝑡  𝜀 
𝑝                                                                                                  (3.120) 

 

It is considered that 𝜎 depends only on the total plastic work per any element's 

unit volume. The plastic work done per unit volume is expressed by the following 

equation in the cylindrical coordinates (Chakrabarty, 1996).  

 

𝑑𝑊𝑝 = 𝜎𝑟𝑑𝜀𝑟
𝑝 + 𝜎𝜃𝑑𝜀𝜃

𝑝
+𝜎𝑧𝑑𝜀𝑧

𝑝
                                                                       (3.121) 

 

If we equalize the plastic work done per unit volume in multi-axial stress to the 

plastic work done per unit volume in uniaxial stress, we obtain the following 

equation (Chakrabarty, 1996). 

 

𝜎𝑟𝑑𝜀𝑟
𝑝 + 𝜎𝜃𝑑𝜀𝜃

𝑝
+𝜎𝑧𝑑𝜀𝑧

𝑝
= 𝜎𝑑𝜀 𝑝                                                                     (3.122) 

 

The principle of constant volume during the plastic deformation is expressed as 

follows in terms of strains (Chakrabarty, 1996). 

 

(𝑑𝜀𝑟
𝑝 + 𝑑𝜀𝜃

𝑝
+ 𝑑𝜀𝑧

𝑝
) = 0                                                                                  (3.123) 

 

Since 𝑑𝜀𝑧
𝑝
= 0  in the above equation for the plane strain condition, Eq.(3.123) 

can be written as follows (Chakrabarty, 1996). 

 

𝑑𝜀𝑟
𝑝 = −𝑑𝜀𝜃

𝑝
                                                                                                      (3.124) 

 

When Eq.(3.124) is substituted in Eq.(3.122), the following equation is obtained 

(Chakrabarty, 1996). 

 

(𝜎𝜃 − 𝜎𝑟)𝑑𝜀𝜃
𝑝
= 𝜎𝑑𝜀 𝑝                                                                                       (3.125) 

 

Since (𝜎𝜃 − 𝜎𝑟) = 𝜎, the following result is obtained from the above equation 

(Chakrabarty, 1996).  

 

𝑑𝜀 𝑝 = 𝑑𝜀𝜃
𝑝
                                                                                                         (3.126) 
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Eq.(3.126) can be written as follows for the bilinear hardening model 

(Chakrabarty, 1996).  

 

𝜀 𝑝 = 𝜀𝜃
𝑝
                                                                                                              (3.127) 

 

Eq.(3.127) states that the effective plastic strain for the bilinear hardening model 

is equal to the tangential plastic strain. If Eq.(3.127) is substituted in Eq.(3.120), the 

stress-strain equation for the bilinear hardening model is obtained (Chakrabarty, 

1996). 

 

𝜎 = 𝜎0 + 𝐸𝑡𝜀𝜃
𝑝
                                                                                                    (3.128) 

 

3.4.2.1 Stresses in the Plastic Region 

 

The total tangential strain in a thick walled cylinder is given by Eq.(3.75). 

Eq.(3.62) gives the tangential strain in a thick walled cylinder as stated before. When 

Eq.(3.62) is subtracted from Eq.(3.75), the plastic tangential strain expression is 

obtained for the thick walled cylinder. 

 

𝜀𝜃
𝑝
= 𝜀𝜃 − 𝜀𝜃

𝑒 = (1 − 𝑣2) [
𝜎0𝑐

2

𝐸𝑟2
−
𝜎

𝐸
]                                                                   (3.129) 

 

When the plastic tangential strain expression given by Eq.(3.129) is substituted in 

Eq.(3.128), Eq.(3.130) is obtained. 

 

𝜎 = 𝜎𝜃 − 𝜎𝑟 =
𝜎0[1+(1−𝑣

2)
𝐸𝑡𝑐

2

𝐸𝑟2
]

[1+(1−𝑣2)
𝐸𝑡
𝐸
]

                                                                           (3.130) 

 

If the above expression is substituted by 𝜎𝜃 − 𝜎𝑟 in the equilibrium equation given 

by Eq.(3.4) and the obtained equation is integrated, Eq.(3.131) is obtained. 

 

𝜎𝑟 =
𝜎0𝑙𝑛𝑟−

𝜎0
2
(1−𝑣2)

𝐸𝑡𝑐
2

𝐸𝑟2

1+(1−𝑣2)
𝐸𝑡
𝐸

+
𝐶1

1+(1−𝑣2)
𝐸𝑡
𝐸

                                                                   (3.131) 

 

The radial stress 𝜎𝑟𝑐  that is generated by the autofrettage pressure on the inner 

wall was given by Eq.(3.45). Then, when 𝑟 is substituted by 𝑐 in Eq.(3.131) and 𝜎𝑟 is 

substituted by 𝜎𝑟𝑐 which is given in Eq.(3.45), integration constant is obtained. 
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𝜎0𝑙𝑛𝑐−
𝜎0
2
(1−𝑣2)

𝐸𝑡
𝐸

1+(1−𝑣2)
𝐸𝑡
𝐸

+
𝐶1

1+(1−𝑣2)
𝐸𝑡
𝐸

=
𝜎0

2
(−1 +

𝑐2

𝑏2
)                                                     (3.132) 

𝑐1 =
𝜎0

2
(−1 +

𝑐2

𝑏2
) (1 + (1 − 𝑣2)

𝐸𝑡

𝐸
) − (𝜎0𝑙𝑛𝑐 −

𝜎0

2
(1 − 𝑣2)

𝐸𝑡

𝐸
)                     (3.133) 

 

If Eq.(3.133) is substituted in Eq.(3.131), the radial stress expression for plastic 

region is obtained. 

 

𝜎𝑟 =
−
𝜎0
2
[1−

𝑐2

𝑏2
+𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑟2
−
𝑐2

𝑏2
)]

1+(1−𝑣2)
𝐸𝑡
𝐸

                                                                     (3.134) 

 

If the radial stress expression in Eq.(3.134) is substituted in Eq.(3.118), the 

tangential stress equation in the plastic region is obtained. 

 

𝜎𝜃 =

𝜎0
2
[1+

𝑐2

𝑏2
−𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑟2
+
𝑐2

𝑏2
)]

1+(1−𝑣2)
𝐸𝑡
𝐸

                                                                       (3.135) 

 

When the radial and tangential stress expressions that are valid in the plastic 

region are substituted in Eq.(3.40), 𝜎𝑧 expression for the plastic region is obtained. 

 

𝜎𝑧 =
𝑣𝜎0[

𝑐2

𝑏2
−𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸

𝑐2

𝑏2
]

1+(1−𝑣2)
𝐸𝑡
𝐸

                                                                                 (3.136) 

 

Eq.(3.134) is made use of  to obtain the autofrettage pressure 𝑃́. In case of the 

application of pressure 𝑃́, if we express the radial stress at 𝑟 = 𝑎 with 𝜎𝑟́, then we 

will have 𝑃́ = −𝜎𝑟́ . 

 

𝑃́ =

𝜎0
2
[1−

𝑐2

𝑏2
+𝑙𝑛

𝑐2

𝑎2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑎2
−
𝑐2

𝑏2
)]

1+(1−𝑣2)
𝐸𝑡
𝐸

                                                                        (3.137) 

 

3.4.2.2 Stresses in the Elastic Region 

 

The bilinear hardening model stress equations that are prevalent in the elastic 

region of the cylinder are same with the elastic perfectly plastic model's elastic 

region equations.  

 

𝜎𝑟 =
𝜎0

2
(−

𝑐2

𝑟2
+

𝑐2

𝑏2
)                                                                                             (3.138) 
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𝜎𝜃 =
𝜎0

2
(
𝑐2

𝑟2
+

𝑐2

𝑏2
)                                                                                                 (3.139) 

𝜎𝑧 = 𝑣𝜎0
𝑐2

𝑏2
                                                                                                          (3.140) 

 

3.4.2.3 Determination of Elastic-Plastic Junction 

 

The equation that describes the relation between the elastic-plastic junction and 

the interference in the bilinear hardening model is obtained in a similar way with the 

one in elastic perfectly plastic model. The autofrettage pressure 𝑃́ in the bilinear 

hardening model is calculated with the equation Eq.(3.137). 

 

𝐼 = 𝑟𝑚 − 𝑎 

= (1 − 𝑣)
𝜎0𝑐

2

2𝐺𝑎
− 𝑎(1 − 2𝑣)

𝑃́

2𝐺
−

𝑃́

𝐸
𝑎(2𝑣𝑚 − 1)(𝑣𝑚 + 1)                                 (3.141) 

 

Elastic-plastic junction can be obtained with a simple iteration in the above 

equation. 

 

3.4.2.4 Residual Stresses in the Plastic Region 

 

𝜎𝑟 =
−
𝜎0
2
[1−

𝑐2

𝑏2
+𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑟2
−
𝑐2

𝑏2
)]

1+(1−𝑣2)
𝐸𝑡
𝐸

− (
𝑃́𝑎2

𝑏2−𝑎2
) (1 −

𝑏2

𝑟2
)                                     (3.142) 

𝜎𝜃 =

𝜎0
2
[1+

𝑐2

𝑏2
−𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑟2
+
𝑐2

𝑏2
)]

1+(1−𝑣2)
𝐸𝑡
𝐸

− (
𝑃́𝑎2

𝑏2−𝑎2
) (1 +

𝑏2

𝑟2
)                                       (3.143) 

𝜎𝑧 =
𝑣𝜎0[

𝑐2

𝑏2
−𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸

𝑐2

𝑏2
]

1+(1−𝑣2)
𝐸𝑡
𝐸

− 2𝑣 (
𝑃́𝑎2

𝑏2−𝑎2
)                                                          (3.144) 

 

3.4.2.5 Residual Stresses in the Elastic Region 

 

𝜎𝑟 =
𝜎0

2
(−

𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

𝑃́𝑎2

𝑏2−𝑎2
) (1 −

𝑏2

𝑟2
)                                                             (3.145) 

𝜎𝜃 =
𝜎0

2
(
𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

𝑃́𝑎2

𝑏2−𝑎2
) (1 +

𝑏2

𝑟2
)                                                                (3.146) 

𝜎𝑧 = 𝑣𝜎0
𝑐2

𝑏2
− 2𝑣 (

𝑃́𝑎2

𝑏2−𝑎2
)                                                                                   (3.147) 
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3.4.2.6 Secondary Yielding Resulting from Bauschinger Effect 

 

3.4.2.6.1 Stresses in (𝑎 ≤ 𝑟 ≤ 𝑑) Region 

 

𝜎𝑟 =

𝑓𝜎0
2
[𝑙𝑛

𝑎2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑟2
−
𝑐2

𝑎2
)]

[1+(1−𝑣2)
𝐸𝑡
𝐸
]

                                                                              (3.148) 

𝜎𝜃 =

𝑓𝜎0
2
[𝑙𝑛

𝑎2

𝑟2
−(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑟2
+
𝑐2

𝑎2
)−2]

[1+(1−𝑣2)
𝐸𝑡
𝐸
]

                                                                          (3.149) 

𝜎𝑧 =
𝑓𝑣𝜎0[𝑙𝑛

𝑎2

𝑟2
−(1−𝑣2)

𝐸𝑡
𝐸

𝑐2

𝑎2
−1]

[1+(1−𝑣2)
𝐸𝑡
𝐸
]

                                                                                (3.150) 

 

3.4.2.6.2 Stresses in (𝑑 ≤ 𝑟 ≤ 𝑐) Region 

 

∆𝑃̂ =

𝜎0
2
[1−

𝑐2

𝑏2
+𝑙𝑛

𝑐2

𝑑2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑑2
−
𝑐2

𝑏2
)]

[1+(1−𝑣2)
𝐸𝑡
𝐸
]

+

𝑓𝜎0
2
[𝑙𝑛

𝑎2

𝑑2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑑2
−
𝑐2

𝑎2
)]

[1+(1−𝑣2)
𝐸𝑡
𝐸
]

                          (3.151) 

𝜎𝑟 =
−
𝜎0
2
[1−

𝑐2

𝑏2
+𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑟2
−
𝑐2

𝑏2
)]

1+(1−𝑣2)
𝐸𝑡
𝐸

− (
(∆𝑃̂)𝑑2

𝑏2−𝑑2
) (1 −

𝑏2

𝑟2
)                                   (3.152) 

𝜎𝜃 =

𝜎0
2
[1+

𝑐2

𝑏2
−𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸
(
𝑐2

𝑟2
+
𝑐2

𝑏2
)]

1+(1−𝑣2)
𝐸𝑡
𝐸

− (
(∆𝑃̂)𝑑2

𝑏2−𝑑2
) (1 +

𝑏2

𝑟2
)                                    (3.153) 

𝜎𝑧 =
𝑣𝜎0[

𝑐2

𝑏2
−𝑙𝑛

𝑐2

𝑟2
+(1−𝑣2)

𝐸𝑡
𝐸

𝑐2

𝑏2
]

1+(1−𝑣2)
𝐸𝑡
𝐸

− 2𝑣 (
(∆𝑃̂)𝑑2

𝑏2−𝑑2
)                                                        (3.154) 

 

3.4.2.6.3 Stresses in (𝑐 ≤ 𝑟 ≤ 𝑏) Region 

 

𝜎𝑟 =
𝜎0

2
(−

𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

(∆𝑃̂)𝑑2

𝑏2−𝑑2
) (1 −

𝑏2

𝑟2
)                                                           (3.155) 

𝜎𝜃 =
𝜎0

2
(
𝑐2

𝑟2
+

𝑐2

𝑏2
) − (

(∆𝑃̂)𝑑2

𝑏2−𝑑2
) (1 +

𝑏2

𝑟2
)                                                              (3.156) 

𝜎𝑧 = 𝑣𝜎0
𝑐2

𝑏2
− 2𝑣 (

(∆𝑃̂)𝑑2

𝑏2−𝑑2
)                                                                                 (3.157) 

 

3.4.2.7 Determination of Bauschinger Effect Factor for Bilinear Kinematic 

Hardening Model 

 

Bauschinger Effect Factor in the kinematic hardening model changes with respect 

to the plastic strain amount in the 𝜎 − 𝜀  graphic.  In the bilinear kinematic hardening 

model, if the increase in plastic stress starting from the initial plastic yielding is 
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expressed by 𝜎ℎ , the compressive yielding strength in case of reversal of loading is 

−𝜎0 + 𝜎ℎ . Then, Bauschinger Effect Factor for kinematics hardening model can be 

expressed as follows. 

 

𝑓 = 1 −
𝜎ℎ

𝜎0
                                                                                                           (3.158) 

𝜎ℎ = 𝐸
𝑡𝜀𝜃
𝑝
= 𝐸𝑡(1 − 𝑣2) [

𝜎0𝑐
2

𝐸𝑟2
−
𝜎

𝐸
]                                                                   (3.159) 

𝑓 = 1 −
𝐸𝑡(1−𝑣2)

𝜎0
[
𝜎0𝑐

2

𝐸𝑟2
−
𝜎

𝐸
]                                                                                 (3.160) 

 

3.4.3 Effect of Turning Process on the Residual Stresses 

 

After the autofrettage process, most of the time an amount of material is removed 

from the inner or outer surface of  the cylinder by external or internal turning. To 

implement the wire winding method, which is generally used for the production of 

heavy armor barrel, material on the external surface is removed; whereas there is  

material loss on the inner surface of the cylinder during rifling process. This process 

changes the residual stress distribution on the cylinder. In this section, the effect of 

material removal from either inner or outer surface of the cylinder will be discussed. 

 

3.4.3.1 The Stresses Due to Only Internal Turning 

 

If we consider the negative expression of the residual radial stress at 𝑟 = 𝑎́  as the 

hydrostatic pressure at 𝑟 = 𝑎́, we can express the pressure change on this surface 

after turning process as follows. 

 

∆𝑃⃛ = 𝑃𝑎́2 − 𝑃𝑎́1                                                                                                   (3.161) 

 

𝑃𝑎́1 is the pressure prior to turning and the negative expression of the residual 

radial stress at 𝑟 = 𝑎́ . 𝑃𝑎́2 is the pressure after turning at 𝑎́, which is new inner radius 

of the cylinder, and this value is equal to zero. The elastic stresses that the ∆𝑃⃛ 

pressure change produces can be expressed as follows. 

 

𝜎𝑟 = (
∆𝑃⃛𝑎́2

𝑏2−𝑎́2
) (1 −

𝑏2

𝑟2
)                                                                                        (3.162) 

𝜎𝜃 = (
∆𝑃⃛𝑎́2

𝑏2−𝑎́2
) (1 +

𝑏2

𝑟2
)                                                                                        (3.163) 
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𝜎𝑧 = 2𝑣 (
∆𝑃⃛𝑎́2

𝑏2−𝑎́2
)                                                                                                  (3.164) 

 

As the result of the superposition of the elastic stresses that are produced by the 

∆𝑃⃛     pressure and the residual stresses, the new stress distribution is obtained.  

 

3.4.3.2 The Stresses Due to Only External Turning 

 

If we consider the negative expression of the pre-turning residual radial stress at 

outer radius 𝑏́ as the hydrostatic pressure at 𝑟 = 𝑏́, we can express the pressure 

change on this surface after turning process as follows. 

                        

∆𝑃⃛ = 𝑃𝑏́2 − 𝑃𝑏́1                                                                                                  (3.165) 

 

𝑃𝑏́1 is the pressure prior to turning and the negative expression of the residual 

radial stress at 𝑟 = 𝑏́. 𝑃𝑏́2 is the pressure after turning at 𝑏́, which is new outer radius 

of the cylinder, and this value is equal to zero. The elastic stresses that the ∆𝑃⃛ 

pressure change produce can be expressed as follows. 

 

𝜎𝑟 = (
−∆𝑃⃛𝑏́2

𝑏́2−𝑎2
) (1 −

𝑎2

𝑟2
)                                                                                        (3.166) 

𝜎𝜃 = (
−∆𝑃⃛𝑏́2

𝑏́2−𝑎2
) (1 +

𝑎2

𝑟2
)                                                                                        (3.167) 

𝜎𝑧 = 2𝑣 (
−∆𝑃⃛𝑏́2

𝑏́2−𝑎2
)                                                                                                  (3.168) 

 

As the result of the superposition of the elastic stresses that are produced by the 

∆𝑃⃛ pressure and the residual stresses, the new stress distribution is obtained.  

  

3.4.4 Stresses Occurring at Service Pressure 

 

Autofrettaged thick walled cylinders are subject to different operating pressures 

with respect to their usage areas. In order that the cylindrical vessel works safely, the 

pressure applied on the inner wall of the cylinder should not cause plastic 

deformation. To design a proper pressure vessel, the stress distribution of the 

cylindrical container, that is subject to operating pressure after autofrettage, should 

be known.  
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The stresses in the thick walled cylindrical containers that are subject to operating 

pressure is obtained by the superposition of the elastic stresses that are produced by 

the service pressure and residual stresses that are produced by autofrettage process. 

  

𝜎𝑡𝑜𝑡𝑎𝑙 = 𝜎𝑠𝑒𝑟 + 𝜎𝑟𝑒𝑠                                                                                            (3.169) 

(𝜎𝑟)𝑠𝑒𝑟 = (
𝑃𝑠𝑒𝑟𝑎

2

𝑏2−𝑎2
) (1 −

𝑏2

𝑟2
)                                                                                (3.170) 

(𝜎𝜃)𝑠𝑒𝑟 = (
𝑃𝑠𝑒𝑟𝑎

2

𝑏2−𝑎2
) (1 +

𝑏2

𝑟2
)                                                                                (3.171) 

(𝜎𝑧)𝑠𝑒𝑟 = 0                                                                                                          (3.172) 

     

3.4.5 Derivation of the Equations in Accordance with Von Mises Criterion 

 

All the equations that are derived up to now are derived with respect to Tresca 

yielding criterion. Due to the complex structure of mathematical expression of Von 

Mises criterion, it is pretty difficult to derive the equations with respect to von Mises 

criterion. To make it convenient, Von Mises criterion can be expressed in the 

following form. 

 

𝜎𝜃 − 𝜎𝑟 =
2

√3
𝜎0                                                                                                   (3.173)
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CHAPTER 4 

 

4. RESULTS AND DISCUSSIONS 

 

4.1 Results of Analytical Model 

 

Matlab program will be made use of to solve the equations derived in the previous 

section and to obtain the regarding graphics. Matlab program is a developed program 

that provides the opportunity to realize the engineering applications, calculations and 

simulations.  

 

4.1.1 Autofrettage and Steel Barrel Draft 

 

A hole is drilled into the cylindrical steel rod that is prepared for the production of 

the barrel. It is brought to the autofrettage dimensions with machining (blue colored 

condition). After that, a mandrel is passed through this draft and autofrettage process 

is realized. After this process, steel barrel draft is built with rifling and setting the 

final dimensions of the outer part.  

 

 

Figure 4.1 Representation of autofrettage and steel barrel draft 

 

Table 4.1 Geometrical data of Autofrettage draft 

Length of Autofrettage Draft Outer Radius of Autofrettage Draft 

3150 mm 96 mm 

 

Barrel material is  35NiCrMoV12.5 quality steel. Its uniaxial tensile test graphic is 

given in the following figure. 
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Figure 4.2   35NiCrMoV12.5 Stress-strain diagram 

 

Yielding value of the barrel material is calculated as 𝜎0=1142.46 MPa from the 

curve in Fig. 4.2.  

 

Figure 4.3 Mandrel cross section picture 

 

The width of the flat section where the mandrel has the widest diameter is set to 

6.4 mm and this region's radius is 50.67 mm. The angle of the frontal conical part is 

extended to 1.5° and it is smaller than the bore of the barrel.  The back part is also set  

up to the same diameter conically with 3°. The material of the mandrel is WC. The 

material properties of mandrel and barrel are given in the following table. 
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Table 4.2 Material properties of cylinder and mandrel 

Property 35NiCrMoV12.5 WC 

E (GPa) 195.7 450 

v 0.28 0.285 

𝜎0 (MPa) 1142.46 ----- 

𝐸𝑡 (GPa) 2.8324 ----- 

 

4.1.2 Determination of the Elastic-Plastic Junctions at Different Interference 

Values  

 

Inner radius and elastic-plastic radius values with respect to the percent 

interference values of the cylinder and mandrel are given in Table-3. The values in 

the table are for the cylinder having the outer diameter as 96 mm. The radius of the 

hole that will be drilled into the cylinder with different % interference values is 

obtained with the help of the formula below. i in the formula represents the % 

interference value. 

 

𝑎 =
𝑏∗𝑖−100∗𝑟𝑚

𝑖−100
                                                                                                         (4.1)  

 

Bilinear hardening material model will be used in all the calculations since it 

represents the real stress-strain curve of the material better.         

                   
Table 4.3 Elastic-plastic radius values corresponding to various interference ratios 

% 

Interference 

Inner Radius 

(mm) 

Tresca 

Elastic-Plastic 

Radius (mm) 

Von Mises 

Elastic-Plastic 

Radius (mm) 

0.75 % 50.3275 60.1925 56.1795 

1 % 50.2121 68.9921 64.4771 

1.25 % 50.0962 76.6132 71.6272 

1.5 % 49.9797 83.4477 78.0227 

1.75 % 49.8626 89.7026 83.8676 

2 % 49.7449 95.5099 89.2869 

2.25 % 49.6266 ------ 94.3656 
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4.1.3 Investigation of Bauschinger Effect for Different Interference Values 

 

In this section, Bauschinger Effect Factors on the cylinder's inner wall will be 

determined regarding bilinear kinematic hardening model for different interference 

values. After Bauschinger Effect Factors are determined, it will be controlled if there 

will be a secondary plastic yielding on the inner wall of the cylinder. 

 
Table 4.4 Bauschinger effect factors corresponding to various interference ratios 

 

% 

Interference 

Inner Radius 

(mm) 

(Tresca) 

Bauschinger 

Effect Factor 

(Von Mises) 

Bauschinger 

Effect Factor 

0.75 % 50.3275 0.9766 0.9802 

1 % 50.2121 0.9677 0.9713 

1.25 % 50.0962 0.9600 0.9638 

1.5 % 49.9797 0.9531 0.9571 

1.75 % 49.8626 0.9465 0.9509 

2 % 49.7449 0.9403 0.9451 

2.25 % 49.6266 ------- 0.9396 

 

In order that Bauschinger effect can start the secondary plastic yielding, the 

following inequality should be satisfied in accordance with Tresca yielding criterion.    

 

(𝜎𝜃 − 𝜎𝑟)𝑟=𝑎 ≤ −𝑓𝜎0 

 

The residual stresses 𝜎𝜃 and 𝜎𝑟 in the above inequality are calculated in 

accordance with Tresca and Von Mises criteria and tabularized. 
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Table 4.5 The effect of BEF on secondary yielding in various interference ratios 

according to Tresca criteria 

% Interference 

(Tresca) 

Bauschinger 

Effect Factor 

(𝝈𝜽 − 𝝈𝒓)𝒓=𝒂 −𝒇𝝈𝟎 

0.75 % 0.9766 -372.6463 -1115.7 

1 % 0.9677 -609.2612 -1105.6 

1.25 % 0.9600 -751.5294 -1096.8 

1.5 % 0.9531 -836.2073 -1088.8 

1.75 % 0.9465 -881.7908 -1081.4 

2 % 0.9403 -899.0705 -1074.3 

 

Table 4.6 The effect of BEF on secondary yielding in various section values 

according to Von Mises criteria 

 

% Interference 

(Von Mises) 

Bauschinger 

Effect Factor 

(𝝈𝜽 − 𝝈𝒓)𝒓=𝒂 −𝒇𝝈𝟎 

0.75 % 0.9802 -272.9825 -1119.8 

1 % 0.9713 -576.9348 -1109.6 

1.25 % 0.9638 -768.9243 -1101.1 

1.5 % 0.9571 -893.4015 -1093.4 

1.75 % 0.9509 -972.3197 -1086.4 

2 % 0.9451 -1018.3 -1079.8 

2.25 % 0.9396 -1039.5 -1073.5 
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In the above tables, it is seen that Bauschinger effect is not at a level to start the 

secondary yielding with respect to both yielding criteria even at the biggest 

interference value. Therefore, in accordance with the calculations, Bauschinger effect 

does not have an effect on the stress distributions on the cylinder. 

 

4.1.4 Stress Distributions at Different Stages of Autofrettage 

 

4.1.4.1 Stresses in Loading Condition 

 

Radial stress distributions in loading condition are obtained separately for Von 

Mises and Tresca criteria by using the equations derived for bilinear model. Stress 

distributions obtained for different interference ratios. 

 

4.1.4.1.1 Radial Stresses 

 

When the curves in Fig. 4.4, Fig. 4.5, Fig. 4.6 are examined, it is seen that the 

compressive radial stresses increase with the increasing interference ratio. It was 

identified that the compressive radial stress calculation results with respect to Von 

Mises criteria was higher than the ones with respect to Tresca criteria. It is seen that 

this difference more significant in plastic region.  

 

 

Figure 4.4 Radial stresses for 1% interference ratio 
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Figure 4.5 Radial stresses for 1.5% interference ratio 

 

 

Figure 4.6 Radial stresses for 2% interference ratio 
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4.1.4.1.2 Hoop Stresses 

 

As it is seen in Fig. 4.7, Fig. 4.8, Fig. 4.9, the tangential stresses in loading 

condition are tensile throughout the wall. Tangential stresses have their largest value 

on the plastic junction. Tensions in the elastic region reach to the outer surface in a 

decreasing way. The calculations with respect to Von Mises criteria give higher 

values than the ones done with respect to Tresca criteria.  

 

 

Figure 4.7 Hoop stresses for 1% interference ratio 

 

 

 

Figure 4.8 Hoop stresses for 1.5% interference ratio 
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Figure 4.9 Hoop stresses for 2% interference ratio 

  

4.1.4.1.3 Axial Stresses 

 

As it is seen in Fig. 4.10, Fig. 4.11, Fig. 4.12, the axial stresses in loading 

condition have negative values in the vicinity of the inner wall namely, the stresses 

are compressive in this region. The compressive stresses decrease up to zero and then 

become tensile in this region. They increase up to the plastic junction and no change 

is met in the elastic region stresses. The results of Von Mises criteria are somewhat 

bigger than Tresca's. 

 

 

Figure 4.10 Axial stresses for 1% interference ratio 
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Figure 4.11 Axial stresses for 1.5% interference ratio 

 

 

Figure 4.12 Axial stresses for 2% interference ratio 
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4.1.4.2 Residual Stresses 

 

4.1.4.2.1 Radial Stresses 

 

When Fig. 4.13, Fig. 4.14, Fig. 4.15 are examined, it is seen that the compressive 

radial stresses increase as the interference ratio increase. It is seen that there are  

slight differences between the graphics obtained with Von Mises and Tresca criteria. 

However, it can not be estimated how these two yielding criteria affect the results 

related to residual radial stresses.  

 

 

Figure 4.13 Residual radial stresses for 1% interference ratio 

 

 

Figure 4.14 Residual radial stresses for 1.5% interference ratio 
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Figure 4.15 Residual radial stresses for 2% interference ratio 

 

4.1.4.2.2 Hoop Stresses 

 

When Fig. 4.16, Fig. 4.17, Fig. 4.18 are examined, it is seen that the residual 

tangential stresses close to the hole surface are compressive and the stresses close to 

the cylinder's outer surface are tensile. Tensile stresses reach to maximum value on 

the elastic-plastic junction and the stresses in the plastic region decreases slightly as 

it is moved to the outer surface. Elastic stresses in Tresca criterion are somewhat 

bigger than the ones in Von Mises criterion. 

 

 

Figure 4.16 Residual hoop stresses for 1% interference ratio 
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Figure 4.17 Residual hoop stresses for 1.5% interference ratio 

 

 

Figure 4.18 Residual hoop stresses for 2% interference ratio 
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Figure 4.19 Residual axial stresses for 1% interference ratio 

 

 

Figure 4.20 Residual axial stresses for 1.5% interference ratio 
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Figure 4.21 Residual axial stresses for 2% interference ratio 
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Figure 4.22 Tresca equivalent stresses in operating pressure 

 

 

Figure 4.23 Von Mises equivalent stresses in operating pressure 
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junction occur on the 1% interference value. According to results of analytical 

model, the optimum interference is 1%. 

 

4.1.4.4 Investigation of the Stress Distributions in Case of Secondary Yielding 

Due to Bauschinger Effect 

 

Previously, it was determined that autofrettage draft will not be subject to a 

secondary yielding due to Bauschinger effect. However, in this section, a 

hypothetical Bauschinger Effect Factor will be used to see the effect of the secondary 

yielding due to Bauschinger Effect on the stress behavior. 

 

Previously, Bauschinger Effect Factors were determined for different interference 

values. Table 4.5 shows Bauschinger Effect Factors corresponding to different 

interference values according to Tresca yielding criterion. In Table 4.5, it is seen that 

BEF value corresponding to 1.5% interference ratio is 0.9531 for 𝑟 = 𝑎. When the 

current BEF value changed to 0.5, it was seen that a secondary plastic yielding 

occurs in the autofrettage draft. It was assumed that the new BEF value does not 

depend on strain, i.e. it is constant. The stress distributions that are obtained for the 

new and previous BEF values are given below comparatively. 

 

 

Figure 4.24 Residual radial stresses in case of secondary yielding 

 

-120

-100

-80

-60

-40

-20

0

45 55 65 75 85 95

R
e

si
d

u
al

 R
ad

ia
l S

tr
e

ss
 (

M
P

a)
 

radius (mm) 

No reyielding

Secondary yielding



 
 

64 
 

 

Figure 4.25 Residual hoop stresses in case of secondary yielding 

 

 

Figure 4.26 Residual axial stresses in case of secondary yielding 
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Figure 4.27 Tresca equivalent stresses in service pressure in case of secondary yielding 
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before the autofrettage process that is applied with 1% interference ratio and the 

maximum pressure amount that the cylinder can hold after the autofrettage process 

are compared.  

  

Table 4.7 Maximum  pressure bearing capacity before and after autofrettage 

Before Autofrettage After Autofrettage 

(Tresca) 

After Autofrettage 

(Von Mises) 

Pmax=414.956 (MPa) Pmax=641.099 (MPa) Pmax=688.281 (MPa) 

 

In Table 4.7, the maximum service pressures that can be applied up to the plastic 

yielding limit, before and after the autofrettage process that is applied with 1% 

interference ratio, are described. According to Tresca criterion, a 54% increase in the 

cylinder's pressure holding capacity is observed after the autofrettage whereas this 

increase is about 65% according to Von Mises criterion. 
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pressure. Therefore, it seems possible that the barrel can be lightened up to a certain 

amount by external turning without breaking the safety conditions of the barrel.  In 

Table 4.8, the new outer radii that were obtained by external turning and the 

corresponding maximum pressure values are shown.   

  
Table 4.8 Tolerable maximum pressure values after removing material 

Thickness of 

material removed 

from the outer 

surface (mm) 

New outer radius  

(mm) 

Pmax (MPa) 

according to 

Tresca criterion 

Pmax (MPa) 

according to Von 

Mises criterion 

5 91 607.787 653.744 

7.5 88.5 588.974 634.235 

10 86 568.498 613 

12.5 83.5 546.154 589.834 

15 81 521.71 564.502 

17.5 78.5 494.894 536.734 

20 76 465.388 506.216 

22.5 73.5 432.82 472.59 

25 71 396.751 435.439 

27.5 68.5 356.662 394.279 

30 66 311.932 348.551 

  

When the maximum material to be removed from the outer surface is being 

determined, the operation conditions of the barrel should be taken into consideration. 

It was stated previously that the operating pressure of the barrel is 400 MPa.  

Therefore, the pressure value that will start the plastic yielding after thinning the 

outer surface should be greater than 400 MPa. In the table above, it is seen that 22,5 

mm thickness value provides higher values than the operating pressure for both two 

yielding criteria. Therefore, it is possible to reduce the outer radius from 96 mm to  
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73.5 mm. In the graphic below, the equivalent pre- and post-turning stress 

distributions of a cylinder that was autofrettaged with a 1% interference ratio are 

seen.  

 

 

Figure 4.28 Tresca equivalent stress distribution of 1% interference 

autofrettaged cylinder after 22.5 (mm) material is removed 

 

 

Figure 4.29 Von Mises equivalent stress distribution of 1% interference 

autofrettaged cylinder after 22.5 mm material is removed 
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4.2 Results of Finite Element Model 

 

In this section, a three dimensional 1/4 cross-section calculation model will be 

constituted in Abaqus finite element program. Bilinear kinematic hardening model is 

used as the material model. The elastic-plastic material data are given for this model 

in Table 4.2.  Autofrettage draft is fixed on one end to be subject to the tensile forces 

during the mandrel's movement. Mandrel was relocated and it was contacted to the 

draft all the way long. Friction coefficient is taken as 0.01.  

 

 

Figure 4.30 Movement of  mandrel and tube constraints during swage autofrettage 

 

 

Figure 4.31 Abaqus  ¼  cross-sectioned calculation model 

 

Both parts are modeled as transformable and the structure was formed by C3D8R 

(three dimensional 8 nodded reduced integration element). 
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Figure 4.32 Mesh model 

 

 

Figure 4.33 Representation of stresses during calculations 

 

4.2.1 Residual Stresses 

 

4.2.1.1 Radial Stresses 

 

Figure 4.34 shows residual radial stress distributions that happen with different 

interference ratios. When the graphics are examined, it is seen that the radial stresses 

take negative values through the cylinder wall. Negative values describe that the 

residual radial stresses are compressive. Since there is no pressure force on the inner 
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and the outer surface of the cylinder, the residual radial stresses are zero on these 

surfaces. With the increase in the interference ratio, the bigger compressive stresses 

occur. 

 

 

Figure 4.34 Residual radial stresses for 1%, 1.5%, and 2%  interference ratios 

 

4.2.1.2 Hoop Stresses 

 

Figure 4.35 shows residual tangential stress distributions that happen with 

different interference ratios. When the graphics are examined, it is seen that the 

residual tangential stresses take negative values on the cylinder's bore surface and in 

the region close to the inner surface. However, the tangential stresses are zeroized at 

a radius value close to the elastic region and have positive values after that point. 

Maximum tensile stresses are on the elastic plastic junction. In the graphic, there is a 

curvature in the region that is close to the inner hole surface. This curvature shows 

that a secondary plastic yielding happened in the cylinder. 
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Figure 4.35 Residual hoop stresses for 1%, 1.5%, and 2% interference ratios 

 

4.2.1.3 Axial Stresses 

 

As seen in Figure 4.36, the residual axial stresses exhibit a pretty wavy behavior. 

The residual axial stresses are compressive in two different region of the cylinder 

wall and tensile in two other different region. 

 

 

Figure 4.36  Residual axial stresses for 1%, 1.5%, and 2% interference ratios 
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In Figure 4.37, Tresca equivalent stresses that occur due to operating pressure 400 

MPa for different interference ratios are given. When the graphics are observed, it is 
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seen that the maximum stresses occur on the elastic plastic junction. The interference 

ratio at which the maximum stress has its minimum value is 1%. This interference 

ratio can be assumed to be the optimum interference ratio. 

 

 

Figure 4.37 Tresca equivalent stresses occuring in the service pressure 

 

In Figure 4.38, Von Mises equivalent stresses that occur due to operating pressure 

400 MPa for different interference ratios are given. When the graphics are observed, 

it is seen that Von Mises equivalent stresses have a slight difference in behavior 

compared to Tresca equivalent stresses. Optimum interference ratio is 1.5% with 

respect to Von Mises criterion.  

 

 

Figure 4.38 Von Mises equivalent stresses occuring in the service pressure 
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4.3 Comparison of Results of Analytical Model and Finite Element Model 

 

4.3.1 Residual Stresses 

 

4.3.1.1 Radial Stresses 

 

When Figures 4.39-4.40-4.41 are examined, it is seen that the residual radial 

stresses have higher values in results of finite element model than the ones in results 

of analytical model. Especially, it is seen that the difference between results of finite 

element model and analytical analytical model is more significant in the regions 

where exist the largest compressive stresses.  

 

 

Figure 4.39 Residual radial stresses for 1% interference ratio 

 

 

 

Figure 4.40 Residual radial stresses for 1.5% interference ratio 
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Figure 4.41 Residual radial stresses for 2% interference ratio 

 

4.3.1.2 Hoop Stresses 

 

When Figures 4.42-4.43-4.44 are examined, it is seen that results of finite element 

model and analytical model are in compliance with each other. Some curvatures arise 

at the end portions of the numerically obtained graphics. These curvatures are the 

indicators that a secondary yielding occurred. Secondary yielding could not be 

determined in the analytical method. 

 

 

Figure 4.42 Residual hoop stresses for 1% interference ratio 
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Figure 4.43 Residual hoop stresses for 1.5% interference ratio 

 

 

Figure 4.44 Residual hoop stresses for 2% interference ratio 

 

4.3.1.3 Axial Stresses 

 

When Figures 4.45-4.46-4.47 are examined, it is seen that results of finite element 

model and analytical model overlap in a small interval and there are dramatic 

differences in the other regions. 
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Figure 4.45 Residual axial stresses for 1% interference ratio 

 

 

Figure 4.46 Residual axial stresses for 1.5% interference ratio 
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Figure 4.47 Residual axial stresses for 2% interference ratio 

 

4.3.1.4 The Comparison of Elastic-Plastic Radius Values 

 
Table 4.9 Comparison of elastic-plastic radius values 

% Interference 

Tresca Elastic-

Plastic Radius 

(mm) 

Von Mises 

Elastic-Plastic 

Radius (mm) 

Elastic-Plastic 

Radius 

according to 

Finite Element 

Model 

1 % 68.9921 64.4771 68.8772 

1.5 % 83.4477 78.0227 77.3804 

2 % 95.5099 89.2869 88.7117 

2.5 % wholly plastic wholly plastic wholly plastic 

 

When Table 4.9 is examined, it is seen that Von Mises criterion has more 

compatible results with finite element model.  

 

4.4 Conclusions 

 

1. A significant strength increase is gained with the autofrettage of thick walled 

cylinders. As a result of the analytical calculations, it was determined that a 

minimum 54% increase in the pressure holding capacity was gained due to the 

autofrettage process at 1% interference ratio.  
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2. The failure risk on the plastic junction increases with the compression ratios on 

the optimum interference ratio, whereas a bigger strength increase is gained on the 

inner wall.   

 

3. In case of the secondary yielding, a certain amount of decrease in the strength 

gain on the inner wall is met depending on the size of the secondary region. 

However, no significant strength gain difference is observed except the secondary 

plastic region.  

 

4. Results of finite element model and analytical model are consistent with each 

other at a significant level. There is a remarkable inconsistency between results of 

finite element model and analytical model for residual axial stresses.  It is thought 

that the reason of this inconsistency is that the physical conditions can not be 

reflected to  the mathematical model exactly.    

 

4.5 Recommendations 

 

1. The plasticity theory which is used in the this thesis study for the analytical 

calculations is Henky's deformation theory. This theory is a simplified theory of 

plasticity. Incremental theory of plasticity can be used to obtain more precise results.   

 

2. One of the most important benefits of the autofrettage process is that this 

process prolongs the container's fatigue life. In this thesis study, the contribution of 

the autofrettage process to increase of the pressure bearing capacity of the thick 

walled cylindrical containers is investigated. However, its contribution to fatigue life 

is not discussed. Fatigue life should also be discussed to examine the autofrettage 

process in total.    

3. The autofrettage process that will be applied to the barrel was studied by 

analytical and numerical methods. The experiments that have the real physical 

conditions should be performed in order to obtain more realistic results.  
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