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PERFORMANCE IMPROVEMENT METHODS

FOR LAYERED DECODING OF LDPC CODES

ABSTRACT

Low-density parity-check (LDPC) codes are a special type of linear block codes.
Although they were originally invented by R. Gallager in 1960, they have captured
the attention of scientific community since its rediscovery in 1996. Due to their
excellent correction capability, they have been adopted in many communications and

storage systems for forward error correction.

Gallager defined an iterative two-phase decoding algorithm referred to as "Belief
Propagation" (BP). Much study has been conducted to improve the performance of
LDPC decoding. Later, another scheduling, "Turbo Decoding Message Passing"
(TDMP) is introduced as an alternative to his standard message passing algorithm.
TDMP, also called layered decoding, has the advantage of converging faster than the
standard BP because it uses more reliable information to update next set of values.
Using layered decoding, it is possible to reduce the number of iterations by 50%
without any performance degradation. In this thesis, we present several methods in
order to improve layered decoding performance of LDPC codes. Methods proposed
have been applied to several LDPC codes with different length and rate. According
to our results, the biggest performance improvements are achieved when they are
applied to small-length, high-rate codes. In addition to proposed methods, a
simulation acceleration platform using OpenMP is also described where parallel
decoding is implemented on a real multicore hardware platform, obtaining more than
6x speedup compared to single-core version.

Keywords: Low-density parity-check, error correction codes, belief propagation,
layered decoding, performance improvement, DSP, parallelization, OpenMP
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LDPC KODLARININ KATMANLI MiMARIDE COZUMUNDE
PERFORMANS ARTTIRICI YONTEMLER

OZET

Diisiik-yogunluklu eslik-denetim (LDPC) kodlar1 dogrusal blok kodlar
arasindadir. Ilk olarak 1960 yilinda R. Gallager tarafindan kesfedilmelerine ragmen
uzun yillar boyunca unutulmus, 1996 yilinda yapilan bir ¢alisma ile bilim diinyasinin
yeniden ilgisini ¢ekmislerdir. Yiiksek hata basarimina sahip olmalar1 nedeni ile
giiniimiizde modern iletisim ve depolama sistemlerinde hata diizeltici kodlar olarak

yaygin bir bicimde kullanilmaktadirlar.

LDPC kod c¢oziiciilerin ¢aligma prensibi Gallager tarafindan ortaya atilan kani
yayilimma (Belief Propagation) dayanmaktadir. LDPC kodlarmin ¢6ziimiinde
performans 1iyilestirme maksadiyla cesitli yontemler bulunmus ve pratikte de
uygulanmaktadir. Bu yontemlerden biri de kodlarin turbo ¢6ziimleme ile
¢oziilmesidir. Onerilen yontem ile kod ¢dziimlemede daha giivenilir mesajlarin
diigiimler aras1 gecirilmesi sayesinde hizli bir sekilde yakinsama saglanmaktadir.
Katmanli mimaride ¢oziimleme olarak da adlandirilan yontem ile normal modda
gereken yineleme sayisinin yarisinda ayni basarim seviyesine ulasmak miimkiindiir.
Tez calismamizda katmanli mimaride LDPC ¢oziimlemede performans arttirici yeni
yontemler sunulmustur. Yeni yontemler birgok degisik uzunlukta ve hizda LDPC
kodlar1 iizerinde denenmistir. Yapilan benzetim calismalari sonucunda, Onerilen
yontemler en iyi performans artirimini kisa ve hizli LDPC kodlar {izerinde sagladig
gozlenmistir. Onerilen yontemlerin secilen LDPC kodlar iizerinde denenmesine
ilaveten, OpenMP kullanarak LDPC c¢oziimleme islemi paralellestirilmis, 8-
cekirdekli gercek DSP donanimi {izerinde yapilan testlerde tek cekirdege gore 6
kattan fazla hizlanma elde edildigi raporlanmistir.

Anahtar sozciikler: Diisiik-yogunluklu eslik-denetim, hata diizeltici kodlar, kani

yayilimi, katmanli mimaride ¢oziimleme, performans artirimi, DSP, paralellestirme,
OpenMP

X1v



1 INTRODUCTION

Low-Density Parity-Check (LDPC) codes have received widespread attention
because of their excellent error correcting performance. They provide performance
very close to the Shannon limit, which is why they are also called capacity-
approaching codes. Invented by Gallager at MIT in 1960 [1], LDPC codes were
forgotten for more than 30 years due to their computational complexity. After
Berrou, et al published their research on Turbo codes in 1993 [2] researchers focused
on alternative iterative decoding schemes and in 1996, LDPC codes were
rediscovered by Mackay and Neal [3]. Today, LDPC codes are adopted in many
modern communications systems for forward error correction such as DVB-S2
(satellite transmission of digital television), IEEE 802.11n (wireless LAN), IEEE
802.16 (WiMAX, broadband wireless internet), IEEE 802.15.3c (wireless personal
area network), and IEEE 802.3an (10Gbit Ethernet).

As LDPC codes are adopted in many communication standards, improving
performance or convergence rate of LDPC decoder with minimal additional
complexity is a prime interest. One attractive performance improvement method is to
modify the updating order (schedule) of passing the messages between bit and check
nodes. In standard decoding algorithm, a flooding scheduling is employed, where all
check nodes and subsequently all bit nodes are simultaneously updated in every
iteration. Alternatively, non-simultaneous scheduling allows the updated messages to
be used earlier, and hence achieves the same Bit Error Rate (BER) performance as
flooding decoder with much less decoding iterations or improved performance for a
given number of decoding iteration. In this thesis, we study performance
improvement techniques for both simultaneous and non-simultaneous scheduling

algorithms.

The rest of this thesis is organized as follows: In this section, after presenting a
literature review for performance improvement methods of LDPC decoding
algorithms, objectives and contribution of this thesis are provided. Section 2 gives an
overview of linear block codes and provides basic knowledge on LDPC codes and

parity-check matrix structures. Examples of LDPC codes which found their way into



industry standards are also given in Section 2. LDPC decoding algorithms are
described in Section 3. Section 4 contains our proposed scheduling methods based on
layered decoding. The simulation results, performance comparisons of proposed
methods to existing ones will be presented in Section 5. Following the presentation
of WER performance results, a simulation acceleration platform using OpenMP is
described and obtained simulation speed gains are reported in Section 6. Lastly,

conclusions will be presented in the last section, Section 7.

1.1 Literature Review of Performance Improvement Methods

As LDPC codes have found their way into many recent industry standards, there
exists a high desire for low-complexity, and high throughput LDPC decoders. In
order to attain this aim, many methods have been explored. Some of these methods
try to simplify the decoding algorithm, while the others aim to achieve a high
throughput by speeding up the convergence rate of the decoder. Among the decoding
algorithms, Sum-product algorithm (SPA) performs the best but it has a very high
computational complexity. There are several approaches to lower computational
complexity of SPA while preserving the decoding performance as much as possible.
The most popular approximation is the min-sum algorithm (MSA). MSA offers
lower hardware complexity at the cost of performance degradation. There always
exists tradeoff between complexity and performance. To minimize performance
degradation of MSA, different methods are proposed. Normalized-MSA, Offset-
MSA are the most popular ones. These methods use a scaling or an offset factor to

minimize overestimation in common.

There are other methods proposed that use more than one scaling factor. [4]
proposed two-way normalization to improve MSA performance. Since 0.25 and 0.50
are chosen as scaling factors, they are simple to implement simply as shift registers
in hardware. Therefore, the technique can be applied to systems with minimal
hardware complexity. Simulation results show better performance is achieved when

applied to medium and short length codes.

[5] deploys two scaling factors to correct overestimation made by MSA. Proposed
method provides extended waterfall region and has better performance. It is

computationally-efficient algorithm which is well-suited for storage systems.



An Adaptive normalized MSA is proposed by [6] in which normalization factor is
adaptively determined at each decoding iteration. The proposed method achieves

better performance while keeping the complexity the complexity nearly the same.

[7] describes lazy scheduling approach in which only a subset of nodes get
updated in an iteration resulting in reduced iteration cost. Partial update of nodes
combined with serial scheduling reduces the decoding complexity significantly
compared to standard belief propogation scheme while maintaining the same

performance.

The standard message passing schedule is an iterative process which consists of
two phases. It is also attractive due to its inherently highly parallelizable structure.
However, one major drawback with decoding of LDPC codes using standard
message passing schedule is its slow convergence. It is therefore essential to increase
convergence speed of LDPC codes. A high-throughput memory-efficient decoder
architecture for LDPC codes based on a novel turbo decoding was introduced in [8].
The main idea is to better utilize reliability messages by updating it more than once
within an iteration. In [9] simulations show that as much as two times faster decoding
speed can be achieved by applying turbo-scheduling algorithm. In [10] three
optimized message passing, namely row message passing, column message passing
and row-column message passing scheduling algorithms are introduced. In row
message passing, bit-node and check-node probabilities are updated row by row. And
it is shown by simulations that row message passing converges about two times

faster than the standard message passing.

Another serial scheduling strategy based on variable node updating schedule is
introduced as shuffled BP in [11]. The proposed scheme has about the same
complexity as standard scheme but converge faster. When the maximum number of

iterations has to be small, the proposed method offers better performance.

Original layered decoding schemes cannot be directly applied to non-layered
codes whose column weights are greater than one within layers. [12] proposed
parallel-layered belief propagation (PLBP) algorithm that can be used in "non-

layered" codes. It achieves better error performance with 50% less iterations.



[13] proposes decoding based on turbo-decoding message-passing strategy.
Various computation kernels, Normalized-MSA, Offset-MSA and Self-corrected
MSA are compared in terms of implementation area, energy consumption and error-
correcting performance. Studied kernels are applied to codes from IEEE 802.11n.
Results show that Self-corrected MSA shows a better error correcting performance

and energy efficiency per iteration.

While sequential scheduling improve the convergence speed, finding the best
sequence of message updates is of prime interest. In [14] the informed dynamic
scheduling is presented to find the next message to be updated. It uses the concept of
residual belief propagation. Differences between the values of the messages before
and after an update, called residuals, are used to dynamically update the schedule.

Residuals are used as an ordering metric to update messages.

[15] combined the features of lazy schedule and node-wise residual belief
propagation together to obtain efficient dynamic schedule for layered BP decoding of
LDPC codes.

[16] proposes informed dynamic scheduling strategy which utilizes instability of
variable node the residual of the variable-to-check message to locate the message to
be updated first. Results show that it outperform other algorithms at the cost of

increased complexity.

1.2 Objectives

Performance of error correcting codes has significant importance on overall
performance of communications system. In order to improve the performance, there
have been much research in the scientific community. Most of the study focuses on
finding efficient ways to reduce complexity at the cost of small degradation in
performance or to obtain better bit error rate by introducing new methods requiring
more resources. There always exists some tradeoff between performance and
complexity. Decoding of LDPC codes is an iterative process and includes a message-
passing strategy, the most popular one being flooding schedule. Later several
different message-passing schemes were introduced. Layered decoding algorithms

have gained attention because of their faster convergence. In layered decoding,



finding the right ordering of message updates plays an important role in performance
of the decoder. Ordering has an effect on decoding performance. In this thesis, we
consider defining set of rules for ordering message updates in order to maximize
decoding performance. We propose new techniques to improve performance of
layered decoding of LDPC codes. We also present a  simulation acceleration
platform using OpenMP where parallel decoding is implemented on a real multicore

hardware platform.

1.3 Contributions

The main contribution of this work is to show that further performance
improvements can be achieved with minor changes in decoding algorithm. We have
recalled message-passing algorithms for decoding of LDPC codes and proposed new
methods based on turbo decoding message-passing algorithm. Because new methods
are based on layered decoding, they have faster convergence speed than standard
message-passing algorithms. Our layered decoding schemes can be implemented
with minimal changes which are negligible. Only modification lies in the process
order of layers. Therefore, they can be easily applied for layered decoding of LDPC
codes without any increase in computational complexity. We have applied proposed
methods to the codes in 802.11n, 802.15.3¢c and DVB-S2. According to our results,
we manage to obtain better performance results compared to standard message-

passing schemes.

One attractive solution to long simulation times of LDPC codes is to implement
inherently parallel decoding algorithms using multicore platforms. In this thesis, we
also present the first OpenMP parallel implementation of LDPC decoding algorithm
on a multicore DSP architecture and report its performance. Parallelized Normalized
Min-Sum decoding algorithm is implemented on 8-core Texas Instruments (TI) DSP
using OpenMP framework. Performance results are obtained by Unified
Instrumentation Architecture (UIA). Our results show that the parallelized decoding

on 8-core TI DSP achieves more than 6x speedup compared to single-core version.



2 LDPC CODES

Error-correction plays an important role in digital communications and storage
systems. As demand for data increases, higher data throughput is needed. More and
more data must be delivered reliably over unreliable channels. Nowadays, another
challenge in data communication is mobility. All of these reasons require more
powerful channel coding methods to be utilized by communications systems. In

Figure 2.1 a typical communication system is illustrated.

77777777777777777777777777777777777777777777777777

| ol o [
! ol ol Pl !
| _| Source L i | _| Channel 1 !
Source | ~ Encoder ; | Encrypt ; | Encoder : | Modulator :
| | I
| ] ] ' l
! I | D I
! ! N L i | Channel =——Noise
| N N N l
| Pl Pl Pl :
| | | |
. || Source L _1 1| Channel L !
Sink " Decoder | 1| Decrypt | Decoder [ 1! Demodulator o
e B e S B I

Figure 2.1 Typical communication channel

In this system, the source produces data to be transmitted. Information bits are
taken from a source, which could be an audio, video or other data. Before channel
encoding step, depending on the application, source encoding and encryption can be

applied to information bits.

Channel coding aims to protect data against noise that exists during transmission
or read/write to the storage media. People hardly realize errors that occur during
transmission thanks to error correction techniques applied underneath. Without a
suitable error control method, reliable data transmission would be impossible.
Therefore, the need for a high throughput error correction control is a must for many

applications areas.

Error correction is made possible by adding extra parity bits (redundancy) into
data, which consists of information bits. Later, these redundant bits are used to detect
or correct errors. Communication systems whether wireless or not deploy various
error-correction schemes such as convolutional codes and block codes.
Convolutional codes have memory and current data has dependency on the previous

data sent. Block codes encode and decode data on a block-by-block basis, and there



is no data dependency between data blocks. They have higher error correcting
performance and lower complexity. In this thesis, we will focus on Low-Density

Parity-Check (LDPC) codes, which is a type of linear block codes.

The rest of this section is organized as follows. After a brief overview of Linear
Block Codes is presented in Section 2.1, Section 2.2 gives an introduction on LDPC
codes. Construction methods of LDPC parity check matrices are discussed in Section
2.2.1. In this thesis, different LDPC codes from three different standards are studied.
LDPC codes defined in DVB-S2, IEEE 802.11n, and IEEE 802.15.3c standards are

discussed in Section 2.2.2, Section 2.2.3 and Section 2.2.4, respectively.

2.1 Linear Block Codes

Block codes are used to detect and correct data errors introduced during
transmission. While data passes through transmission medium, noise is introduced to
data being sent. This leads to error in data when it is received. A typical
communication channel is illustrated in Figure 2.2. An encoder adds redundancy to
the message being sent. At the receiver, a decoder corrects errors introduced during
transmission using redundancy in the received data. It is important to handle errors
present in data received for systems to work properly. Therefore, every practical
communication system incorporates error detection and correction mechanism. In a
two-way communication systems, error detection may be sufficient because in case
of error data can be requested for retransmission. In presence of error, receiver
notifies the transmitter of the existence of errors. This strategy is called automatic
repeat request (ARQ). But in one-way communication systems, there is no chance of
requesting data for retransmission. System is required to recover data in error without
retransmission. In this situation, error correction is needed at the receiver side in
addition to error detection in order to improve communication quality. This strategy
is known as forward error correction (FEC). All errors can be corrected without

retransmission if error rate is under FEC capacity.
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Figure 2.2 Communication channel model

A block code is represented by (n, k) where k corresponds to number of
information bits and n corresponds to number of codeword bits. So, (n, k) code adds
n-k parity bits into k-length original data block to obtain n-length codeword. These
parity bits are used to correct data errors present in the received data. A block code is
considered a linear block code if addition of any valid two codewords results in
another valid codeword. Code rate is defined as ratio of length of information block
(k) to codeword length (n). As we add more parity bits, code rate decreases. The
higher code rate, the less transmission bandwidth needed. Code rate is defined by the

following formula:

k @2.1)

For uncoded systems, code rate is 1, i.e., no redundancy is added. The redundancy
can be assumed as overhead because it consumes transmission resources like channel
bandwidth or transmission power. Coding performance is inversely proportional to

coding rate.

Construction of a codeword from information bits is done by encoder. If
codeword is constructed such that parity bits appear after information bits, that code
is called systematic code. An example of a systematic codeword is given in Figure
2.3. Basically, parity bits are computed then appended to the end of information

block.
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Figure 2.3 Systematic codeword

Encoding can be simply described as multiplication of two matrices, message
matrix K and special matrix G. So, given information block row-vector K, codeword

is constructed by
C=K-G 2.2)

where G is called generator matrix. For systematic codes, G is in the form of [I;|P].
I}, 1s identity matrix with k rows and columns. Below is one example of generator

matrix for (7,4) code.

2.3)
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At the decoder side, another matrix called the parity check matrix is used to
decode codeword. For systematic codes, it can be constructed from generator matrix

G using:
H= [PT|I,_,] (2.4)

So, corresponding A matrix for systematic code represented by generator matrix

in(2.3)1s

1 01 01 00
H=(0 1 11 0 1 0 2.5)
11 0 0 0 0 1
Generator matrix and parity check matrix satisfy the following equation:
G-H' =0 (2.6)



H matrix is a (n-k)xn matrix. It contains (n-k) constraints. Each row corresponds

to parity check equation. A valid codeword must satisfy:
C-H'=0 2.7)

H performs (n-k) separate parity check operations on a received codeword. For

example, parity check operations implied by A matrix given in (2.5) are:

co®cy ey, =0 (2.8)
1D, Dc3Des = 0 2.9
C0®C1®C6 =0 (2.10)

e The first parity equation checks bits 0, 2, and 4
e The second parity equation checks bits 1, 2, 3, and 5
e The third and last parity equation checks bits 0, 1, and 6

2.2 Overview of LDPC Codes

LDPC codes are a subclass of linear block codes, that have gained reputation as
the most powerful channel coding technique. They are also called capacity-
approaching codes because they can approach Shannon capacity limit which states
maximum transmission rates over noisy channels with power and bandwidth
constraints. In [17], an irregular LDPC code performs within 0.0045dB of the
Shannon limit, making it the best performing code known so far. That is why LDPC
codes have attracted much attention and have been employed by many recent
communication standards. In addition, unlike other iterative codes, LDPC codes have
a lower computational complexity with a suitable architecture for parallel decoding

[18].

LDPC codes are linear block codes defined by a sparse parity-check matrix.
Number of 1's in parity check matrix is low in density. Number of 1's in a row is

called the row weight w,. and number of 1's in a column is called the column weight

10



w,. In LDPC codes w, < n and w, < n — k. An LDPC code said to be regular if w,.

is constant for all rows and w,. is constant for all columns.

2.2.1 Construction of LDPC Codes

There are many methods for constructing LDPC codes. They can be classified
into two categories: algebraic constructions and random constructions [19]. A simple
algebraic code construction scheme is based on cyclically shifted identity matrices. A
shifted identity matrix is obtained from identity matrix by shifting each row by a

specific number. The parity-check matrix is in the form of

Hyy Hi; =+ Hip 2.11)
H= H21 HZZ HZn
Hn—k,l Hn—k,z Hn—k,n

where Hij (1<si<n—kand1<j<mn) is a submatrix with cyclically shifted

identity matrix. Below is an example of 1-time right-shifted 4x4 identity matrix:

(2.12)

~

[

I
_ o oo
S O O
(=N el
(=l e

In random construction, LDPC codes are randomly chosen from code ensembles
specified by left degree distribution, right degree distribution, and a block-length.
There are also several random code construction schemes based on random graph

lifts.

There also exist "structured codes" which are proposed to facilitate the hardware
design of the decoder. Their parity-check matrices are constructed according to
specific pattern in order to simplify implementation issues. Figure 2.4 shows parity-
check matrix for a structured code. It consists of many non-overlapping rows that
allow layered decoding. Each block or submatrix is either all-zero (null) or a
cyclically shifted identity matrix. Location of submatrices with specific shift values
are determined during code design. In Figure 2.4 there are n,horizontal layers, where

nyis defined in (2.13).

11
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Figure 2.4 Structured LDPC code parity-check matrix example

In the following sections we will closely look at some structured codes defined by

well-known industry standards.

2.2.2 DVB-S2 LDPC Codes

DVB-S2 is the first standard that adopts LDPC as FEC code. Two codeword
lengths (short frame consisting of 16200 bits, long frame consisting of 64800 bits)
are defined within DVB-S2 standard. Code properties of LDPC codes defined in
DVB-S2 standard are given in the Table 2.1.

Table 2.1 DVB-S2 LDPC codes

Code Codeword Information
Rate Length Length
1/5 16200 3240
1/3 16200 5400
2/5 16200 6480
4/9 16200 7200
3/5 16200 9720
2/3 16200 10800
11/15 16200 12150

12



7/9 16200 12960
37/45 16200 13320
8/9 16200 14400
1/4 64800 16200
1/3 64800 21600
2/5 64800 25920
1/2 64800 32400
3/5 64800 38880
2/3 64800 43200
3/4 64800 48600
4/5 64800 51840
5/6 64800 54000
8/9 64800 57600
9/10 64800 58320

Codes used in DVB-S2 are based on Irregular Repeat Accumulate (IRA) codes.
Periodicity within the parity-check matrix reduces storage requirements. Codes are
systematic codes, so parity bits are appended to the end of information bits. The
LDPC encoder needs to create n-k parity bits from & information bits to construct a
valid codeword of length n. Encoding procedure is defined within the standard of

DVB-S2.

2.2.3 802.11n LDPC Codes

IEEE 802.11n defines 12 different LDPC codes with different code lengths and

code rates. The supported code rates, codeword lengths, information length, and

13



submatrix sizes are given in Table 2.2. These codes are reused within 802.11ac

standard which aims to increase the throughput of the 802.11n standard further [20].

Table 2.2 802.11n LDPC codes

Code Codeword Information Submatrix
Rate Length Length Size
172 648 324 27
2/3 648 432 27
3/4 648 486 27
5/6 648 540 27
12 1296 648 54
2/3 1296 864 54
3/4 1296 972 54
5/6 1296 1080 54
12 1944 972 81
2/3 1944 1296 81
3/4 1944 1458 81
5/6 1944 1620 81

Parity-check matrices of 802.11n LDPC codes are constructed by expanding
submatrices from the base matrix. Figure 2.5 shows an example of such parity-check
base matrix with a rate of 5/6. In this case, the block size is Z=27. The parity-check
matrix is composed of all-zero submatrix or identity submatrix with different cyclic
shifts. The positive numbers stand for the right cyclic shift value of the identity

submatrix, and the “~1” denotes null submatrix.
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Figure 2.5 Base matrix for 802.11n, 648-bit, rate: 5/6

2.2.4 802.15.3¢c LDPC Codes

802.15.3¢ is a standard by IEEE for high-rate wireless personal area networks
(WPAN). The standard provides three physical layer modes for data rates exceeding
1Gb/s. It is the first standard in millimeter wave (mmWave) band since operating

frequency of 60GHz (57-64 GHz) corresponds to 5 mm in wavelength.

One of the two FEC schemes specified in 802.15.3c standard is LDPC codes.
There are five LDPC codes defined in the standard. Four of the LDPC codes have
block length of 672, and the longer one has a block length of 1440. The LDPC

encoder is systematic.

Similar to 802.11n codes, the parity-check matrices in 802.15.3c can be
partitioned to submatrices. These submatrices are either null (all-zero) submatrices or
cyclic-permutations of the identity matrix. Cyclic-permutation matrix is obtained by
cyclically shifting the columns to the left by a specific amount. Properties of the
codes defined in 802.15.3¢ can be found in Table 2.3.

Table 2.3 802.15.3¢c LDPC codes

Code Codeword Information Submatrix
Rate Length Length Size

12 672 336 21

3/4 672 504 21

5/8 672 420 21

7/8 672 588 21
14/15 1440 1344 96
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3 DECODING OF LDPC CODES

In this section, a review of decoding algorithms of LDPC codes are given. Section
3.1 introduces Sum-Product decoding algorithm. Min-Sum algorithm, which is
approximation to Sum-Product algorithm is given in Section 3.2. Afterwards, other
decoding algorithms to improve performance of Min-Sum follow. Namely,
Normalized Min-Sum algorithm, Dual-Scaling Min-Sum algorithm, Self-Corrected
Min-Sum algorithm are given in Section 3.3, Section 3.4, and Section 3.5,

respectively. Layered decoding of LDPC codes is discussed at the end of this section,
Section 3.6.

LDPC decoding uses a message passing algorithm between two types of nodes,
called check (parity) nodes and bit (variable) nodes. Every row in H matrix
corresponds to a check node; every column corresponds to a bit node. Considering H

matrix given in Figure 3.1, it has 7 bit nodes and 3 check nodes.

1 01 0 1 0 0]——— Cheek Node 0(CNo)
H=[0 1 1 1 0 1 O0f-------- Y Check Node 1 (CN1)

1 1 0 0 0 0 1l— - —=—> cCneckNode2(CN2)

s = & A T n @

o - o w o

Py ) ) ) P P P

2 $%% %3

s z Zz z z Zz 7z

Figure 3.1 Parity-check matrix showing nodes

A visual representation of the parity check matrix assists in the understanding of
decoding algorithms. Tanner graphs invented by R. Michael Tanner in 1981 [16],
provide a graphical representation of linear block codes. A Tanner Graph is a
bipartite graph with two types of nodes, check and bit nodes. The bit nodes are
usually drawn as circles, and check nodes are usually drawn as squares. Edge
between a bit node and check node indicates that corresponding bit node is involved
in the parity check constraint. So there are edges as many as number of 1s in parity-
check matrix. The parity check matrix illustrated in Figure 3.1 can be visualized

using a Tanner Graph in Figure 3.2.
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Figure 3.2 Tanner graph representation

Decoding of LDPC codes are done by iteratively passing messages between two
sets of nodes represented in the Tanner graph. There are mainly two ways to
accomplish decoding of LDPC codes. Hard-decision decoding uses bit-flip
algorithm, whereas soft-decoding algorithm uses sum-product algorithm, which
accepts soft values and uses these values to pass messages between nodes. Sum-
Product algorithm, belief-propagation algorithm, or message-passing algorithm are

the different names given to the same iterative decoding algorithm.

Difference between hard-decision and soft-decision lies in the values passed
between nodes. The former propagates messages 0 or 1 while the latter propagates

messages as soft values or probabilities of being 0 or 1.

There has been much research on decoding of LDPC codes to decrease
computational complexity, to reduce energy consumption of the decoder, to lower

number of iterations and obtain better error performance.

3.1 Sum-Product Algorithm

Sum-product algorithm (SPA) uses the concept of message passing between bit
nodes and check nodes in an iterative manner. Soft values are propagated between
nodes and as messages are passed successively, reliability information improves with
the iteration count. The exchange of the soft probabilities is called message passing
or belief propagation. Messages are passed along the edges between bit nodes and

check nodes in the Tanner graph.

The SPA operates with probabilities. However working with probabilities has

several drawbacks. SPA contains intensive numerical computation and involves

17



many multiplications. Multiplication is harder to implement compared to addition.
So instead of using probability, log likelihood ratio (LLR) values can be used. This
way, multiplication turns into sum operation, divisions simply become subtractions

and decoding complexity is reduced by this way.

Suppose that an (n,k) LDPC code is defined, and Binary Phase Shift Keying
(BPSK) modulation is used. BPSK maps a valid n-length codeword c =
{co, €1, ) Cnq} Into a sequence x = {xq, Xy, ..., X,_1} according to x; =1—2-¢;
where 0 <=1 <n. With BPSK, bit 0 is mapped to symbol +1 and bit 1 is mapped to
symbol -1. After modulation, x is transmitted over Additive White Gaussian Noise
(AWGN) channel. At the receiver, y= {yg, ¥1, ..., Yn—1} is observed. y; = x; + n;

where n; represents AWGN with zero mean and variance 2.

Iterative decoding refines log-likelihood ratio (LLR) of bits received which is
defined as in (3.1)

P(c; = OIJ’i)) (3.1

LLR; =lo (—
' 8 P(c; = 1ly;)

The sign of the LLR value indicates bit value being 0 or 1, and its magnitude is

linked to reliability of the belief.

Two-phase message-passing (TPMP) is the most common schedule for decoding
of LDPC codes. It is also called flooding schedule. In flooding schedule the
computations are executed in two phases. Messages from variable to check nodes in
one phase; message updates from check nodes to their corresponding variable nodes
happen in the second phase. Hard decision is made at the end of each iteration. SPA

is carried out as follows:

Initialization Step-1:

In the initialization step extrinsic information from check node j to bit node i is set

to 0, and LLR value for the bit node is set to channel's a priori value as in (3.3).
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R.:

=0 (32)

2V:
}.i=LLRi — % (3.3)

where Rj; is the extrinsic information from check node ; to bit node i and 4; is chanel

a priori information.

Bit (Variable) Node Process Step-2:

In this step, bit node i combines messages from corresponding check nodes
CN,,...CNj,...CN,,.; with w being column weight for bit node i. Bit node computes

the updated message to be sent to its neighbouring check nodes as follows as in (3.4)
Qij: LLRL o R]l (3.4)

where @Q;; is the extrinsic information passed from bit node 7 to check node j. This is

depicted in Figure 3.3.

CNp

Figure 3.3 Bit-to-check message updating

Check Node Process Step-3:

In this step, check node j (CN,) receives messages from neighbouring variable

nodes, and propagates back the updated messages R;; as:

R;; = < 1_[ sgn(Qi:,-)>(b< Z ¢(|Qi,l_|)> 3.5)

P'eEN()\i 'eEN()\i

where @ (x) is defined as
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e* + 1) (3.6)

d(x) = —log(tanh(x/2)) = log (e" —1

and N(j) is the set of neighbour bit nodes connected to check node ;. i’ € N(j)\i

means all bit nodes connected to check node j except bit node 7.

Figure 3.4 illustrates check-to-bit message updating.

N
-
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Figure 3.4 Check-to-bit message updating

Posterior reliability value, also referred to as soft output of the received bit is

updated as in (3.7).

ji
JEN(D

LLR; = 2, + Z R, 3.7

This process is illustrated in Figure 3.5.

CNo CN; CNys

LLR;

Figure 3.5 Reliability information update
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Hard Decision Step-4:

At the end of each iteration hard decoding decision is made according to (3.8) and

(3.9).

_ {1 if LLR; < 0 3.8)
¢ 0 otherwise

all parity — checks satisfied if 0 3.9
else not a valid codeword

c-HT = {
Iterative procedure continues until decoded codeword satisfies all check node
equations (¢ * HT = 0 condition) or predefined number of iteration count is

reached otherwise decoding goes back to step-2.

3.2 Min-Sum Algorithm

SPA is a computationally complex algorithm. There are several approximations to
SPA. Min-Sum algorithm (MSA) approximates SPA with less operations but at the

cost of error correcting performance.

Most of the complexity comes from check node processing. Nonlinear function
®(x) given in (3.6) can be approximated such that check-to-bit message updating
reduces to

Rji = ,min (1e,1) 1_[ sgn(Q,) (3.10)
YEN(\i

This way decoder complexity is reduced at the cost of error performance. There

are many correction methods proposed in the literature. In the following section we

will look at one of the most popular correction methods, which has been used in

performance tests performed in this work as well.

3.3 Normalized Min-Sum Algorithm

Several correction methods have been proposed to recover performance

degradation in MSA approximation. Normalized-MSA improves decoding
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performance by downscaling overestimated check-to-bit messages. NMSA

introduces normalization factor o to improve decoding performance.

R =a <,223h(:0u') I_I Syn(Q”)> @.11)

i'eN()\i

In (3.11) normalization constant « is usually chosen as 0.8. NMSA avoids biased

estimation of check-to-bit messages.
3.4 Dual-Scaling MSA (DS-MSA)

In [5] Chang proposed a new decoding algorithm, Dual-Scaling Min-Sum
Algorithm (DS-MSA) to compensate deficiencies of MSA approximation. There is a
slight difference between N-MSA and DS-MSA methods. While N-MSA uses single
scaling factor, DS-MSA uses two scaling factors. The difference can be summarized

as follows:
tmp _ .
RJl i,g/l(ll?\i(lQi'jl) 1_[ sgn(Q;) 3.12)
YEN()\i

First R;; is calculated the same as in the MSA method given in (3.12). Based on

value of @;; another comparison is made and Rj; is recalculated as given in (3.13)

tmp tmp
{(Xl R]l lf R]l < QU
ji

_ (3.13)
@ R if R > Q)

3.5 Self-Corrected Min-Sum Algorithm

In [21] Savin proposes a correction for overestimation of check-to-bit messages.
Unlike Normalized-MSA where normalization factor is used, it modifies the bit node
processing by erasing unreliable messages. Unreliable messages are detected
whenever any variable node changes its message sign between consecutive iterations.

Sign fluctuation leads to message cleaning.

In the Self-Corrected Min-Sum decoding, initialization, check node processing
steps are the same as in Min-Sum algorithm. But variable node processing is

modified as shown below:
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Q"= LLR; - Ry (3.14)

tmp . _ tmp

Qij — {Qi]' , lf Sgn(Qij) - Sgn(Qi]’ ) (3.15)
0, else

In (3.14) new extrinsic information is calculated for the current iteration. This

value is used for comparison with previous value that has been sent. If two messages

have the same sign, then temporary value calculated in (3.14) is used as variable

node message, otherwise variable node message is set to 0 as shown in (3.15).

3.6 Layered Decoding of LDPC Codes

The main decoding method for LDPC codes is the Belief Propagation (BP)
algorithm. Common message-passing schedule used in the BP is two-phase message-
passing (TPMP) schedule or flooding schedule. One problem with flooding schedule
is its slow convergence. It is not efficient in terms of convergence. In order to
achieve higher convergence speed, turbo decoding message-passing (TDMP)
schedule or "layered decoding" is proposed [9]. In layered decoding parity-check
matrix is divided into horizontal or vertical submatrices called layers. Reliability
information updating occurs after each layer. In each sub-iteration, reliability values
are updated and these intermediate updated messages are used for the next sub-
iteration. This allows soft outputs of bit nodes to converge faster than flooding

schedule.

There are two types of layered decoding schemes: Horizontal and vertical. In the
horizontal layered decoding, also called serial-C schedule, parity-check matrix is
divided into horizontal layers and check nodes in that layer are updated first, then
whole neighbouring bit nodes are updated. In vertical layered decoding, also called
serial-V schedule, parity-check matrix is divided into vertical layers and bit nodes in
that layer are updated first, followed by update of corresponding check nodes in the
layer. Both layered decoding schemes proceeds layer after layer. In this thesis,

horizontal layered decoding scheme is used.

The key advantage of layered decoding is faster convergence speed achieved by
reducing number of iterations by 50%. Another advantage of serial schedules is that

they can be implemented with lower memory requirements.
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Steps of layered decoding algorithm are summarized by the below pseudo code.
The MS algorithm can be independently applied to layered decoding. By this way
hardware implementation is greatly reduced. Initialization step is the same as
flooding schedule. In this stage, log-likelihood ratios of bit nodes set to their initial
values as shown in equations (3.16) and (3.17) where y; denotes corresponding
received value from the channel and o2 denotes channel's noise variance. Channel

noise is assumed to be AWGN throughout the work.

Initialization-Step:

2y;
0 =2 (3.17)

Process-Step:
for layer k=0 to n;, do

for j € check nodes of layer do

Qiji=Qi— Rj; (3.18)

R = a(i,gvz(ijr)z\i(|ai,,|) 1_[ sgn(Q,-r,-)) (3.19)

YEN(\i
Q:i=Q;i + Rj; (3.20)

Parity-check matrix is divided into n, layers. Then, for all i (bit node) in the k-
layer of the rows, (3.18)-(3.20) are repeated for one layer after another. Steps (3.18)-
(3.20) constitute a decoding sub-iteration. There are as many number of layers as
sub-iterations. In equation (3.18) bit node messages are updated where Q;; is the
message from variable node i to check node j, Q; is the a posteriori probability (APP)
message of variable node i. In equation (3.19) check node messages are updated
where Rj; is message from check node ; to variable node i. Scale factor a is used to
normalize overestimated check to bit messages. Lastly, APP values are updated as
given in equation (3.20). Extrinsic information updated by processing of earlier

layers are used as input for the processing of subsequent layers. Since updated
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messages are used within an iteration, refined estimates spread faster among nodes,

speeding up the convergence of the decoder.

Layered decoding method can be applied to decode any LDPC code. It accelerates
convergence rate of the decoder by a factor of two while maintaining performance
gain. In the following sections, we will propose new layered decoding schemes for
decoding of LDPC codes. All proposed methods use the same concept outlined in
this section for exchanging messages between check nodes and bit nodes. The
difference lies in the process order of layers. In the proposed schemes, process order

of layers is different but message updating rules remain the same.

3.7 Parallel Decoding of LDPC Codes

One important advantage of LDPC codes over Turbo codes is parallelism.
Decoding of LDPC codes can be done in parallel using multicore architectures. In
flooding schedule, all bit nodes and check nodes are processed together. Work is
shared between cores by dividing parity check matrix into the horizontal and vertical
non-overlapping strips for check to bit and bit to check processing, respectively. The
parity-check matrix is divided evenly into equal strips in order to distribute load into
cores equally. In multicore implementation of NMSA, each of selected number of
cores concurrently processes messages sent form bit node to check node or vice-
versa. We implement parallel decoding of LDPC codes on a real DSP hardware. The
target hardware is Texas Instrument's TMDSEVM6678LE Evaluation Module. It
contains 8 identical C6678 DSP cores. Parallelization of LDPC decoding is made
possible by using OpenMP platform. More information about target hardware,
OpenMP platform, implementation details and performance results are presented in

Section 6.
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4 PROPOSED IMPROVEMENT METHODS

Traditional layered decoding does not differentiate any layers to be processed first
or last, layers are processed without a specific order. However, processing order of
the layers has an impact on error performance of decoder. In this section, we propose
different layered decoding methods where layers are processed in the order defined
by our criterions. We define three methods to find the optimal process order of layers
based on syndrome-check. Section 4.1 and Section 4.2 discusses the proposed fixed
order and dynamic order scheduling of layered decoding of LDPC codes. A
satisfaction weight order method is also introduced for layered decoding of LDPC
codes. Since syndrome check is a part of the iterative decoding algorithm, our

methods put a little computation burden on the existing methods.

4.1 Fixed Order Layered Decoding of LDPC Codes (LOCK)

In fixed order layered decoding scheme, layers are ordered for one time, and the
order is kept the same throughout the iterative decoding process. The first iteration is
an exception to this rule. In the first iteration, no specific order is imposed. Layers
are processed sequentially from 0 to n,. In the second iteration, layers are ordered
according to the result of syndrome check made at the end of first iteration. For the
purposes of ordering, a list that specifies the order of layers is generated. Satisfied
check nodes are put at the top of the list, followed by unsatisfied nodes. This process

is exemplified in Figure 4.1.
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Figure 4.1 Fixed order layered decoding example

In Figure 4.1, an LDPC code with 5 layers is assumed. In fixed order layered
decoding scheme, layers are processed sequentially in the first iteration as illustrated
at the top of Figure 4.1. After the completion of syndrome check at the end of the
first iteration, check nodes 1 and 3 become unsatisfied. Now, the processing order of
layers is updated so that satisfied check nodes appear at the top of the list and
unsatisfied check nodes are moved to the end of the list. This processing order list is

preserved until the end of decoding. As seen in

Figure 4.1, check node 2 becomes unsatisfied at the end of second iteration but
order list is not modified. Processing is done at the fixed order specified in the

second iteration.

4.2 Dynamic Order Layered Decoding of LDPC Codes (ORD)

Like fixed order layered decoding scheme, dynamic order layered decoding
method uses syndrome values to decide the processing order of layers. Layers are
sequentially processed in the first iteration as in the previous method. But at the end
of each iteration, the order list is dynamically updated. Although, the dynamic
ordering requires more computation than its fixed ordering technique, our results
show that dynamic order method has better error performance. In Figure 4.2,

dynamic order method is exemplified using the same example given in Section 4.1.
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Figure 4.2 Dynamic order layered decoding example

As can be seen in Figure 4.2, the order list is updated at the end of each iteration
to ensure that satisfied checks are processed first. At the end of second iteration only
check node 2 is unsatisfied, and other check nodes are satisfied. Order list is updated
based on these syndrome values and therefore, check node 2 is relocated at the end of

the order list.

4.3 Satisfied Weight Order Layered Decoding of LDPC Codes (ORDE)

In the previous sections we have discussed new methods for layered decoding of
LDPC codes with two different ordering. Process order of layers is decided based on
syndrome values of check nodes. The processing ordering rule was simple: satisfied
check nodes are processed first, whereas unsatisfied check nodes are processed last.
Only distinction made among check nodes is check node being satisfied or
unsatisfied. In satisfied weight order decoding method, we further evaluate check
nodes based on their "total check node satisfaction". This concept can be explained

more clearly with the help of an example given in Figure 4.3.

28



CN;
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Figure 4.3 Example regular LDPC code

In Figure 4.3, a regular LDPC code with a constant row weight of 6 and constant
column weight of 3 is assumed. Check node, CN; that we will rate has connections to
6 bit nodes. Each bit node has connection to 3 check nodes including the check node
that we will evaluate. In satisfaction weight order method, we first calculate total
unsatisfied neighbouring check nodes of the check node CN;,. For example, assume

that check nodes in red of

Figure 4.4 are unsatisfied. So in this case, total unsatisfied neighbouring check
nodes for the check node CN; is 3. In satisfaction weight order method, every check
node is evaluated based on this criteria and, check node with the highest total
unsatisfied rating is processed last. As satisfaction weight order method is dynamic,
the process order of layers is re-evaluated at the end of every iteration based on the

their satisfaction weight values.
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Figure 4.4 "Total unsatisfied check node" calculation

In the next section we apply proposed methods to selected codes from well-known
standards and compare their performance results. In the results given in the next
section, LOCK, ORD and ORDE simply refer to fixed order, dynamic order and

weight order layered decoding methods defined in this section, respectively.
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5 PERFORMANCE RESULTS OF PROPOSED METHODS

In this section, we apply standard layered decoding method as well as the
proposed methods of Section 4 on different LDPC codes defined in WLAN, WPAN
and DVB-S2 standards and compare performance results of investigated methods.
Both short and long length codes with different rates have been selected for

performance evaluations.

It is assumed that encoded codewords are modulated with BPSK modulation and
transmitted over an AWGN channel. In the layered decoder, two different maximum
number of iterations, 50 and 100, are used. Aforementioned layered decoding
methods have been applied to some well-known LDPC codes. We have made
performance comparisons among many methods for layered decoding of LDPC
codes. In the simulations presented in this thesis, we have used sequential check-
node update scheme for layered decoding as presented in [10]. The simulation results
for Word Error Rate (WER) are summarized in this section. We use the following
shorthands to distinguish between different methods. NMSA, LOCK, ORD and
ORDE stand for the layered min-sum algorithm using the proposed scheduling
method with normalized MSA, fixed order, dynamic order and satisfaction weight

order methods, respectively.

5.1 Simulation of Proposed Methods on PC

In order to evaluate and compare performance of decoding algorithms, a
simulation application is developed with C# in Visual Studio. The followings are

key-features implemented and incorporated into the simulation software:

o Alist file parser to create parity-check matrix

e Sparse-matrix implementation for efficient use of memory

e Encoder for LDPC codes from 802.11n, 802.15.3¢, DVB-S2

e BPSK modulation

e AWAGN noise generation and channel simulation

e LDPC decoder implementation for flooding and layered schedules
e Parallel decoding of LDPC codes

e Generation of Matlab scripts to plot performance graphs
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As an example, consider the LDPC code defined by the following parity-check

matrix:

Hox12 =

1 0 0 0 1
010 0O
0 0110
0 01 0O
10 0 0 O
01 0 0O
0 0 010
0 0 0 01

0 0 0 0 O

PO O OO OOoORrROo

OO OOk OoOoOo
SO R ORFRrOOoOOoOo
ORrORrOOOoOOoOOo
SO R OO OORrROo
=N HeoloNeNeN ==
PO OO OO OoOOoOr

(5.1)

Alist file is a format for defining low density parity-check matrices. Alist file for

the H matrix given in (5.1) is given in Table 5.1.

Table 5.1 Alist file contents

Ncl;::le)er Content Description
1 129 NM

2 32 max_row max_col

3 333222333 Row weights

4 222222222222 Column weights

5 1512 Row positions (M=9 lines)
6 2610 "

7 3411 "

8 37 "

9 18 "

10 29 "

11 4810 "

12 5911 "

13 6712 "

14 15 Column positions (N=12 lines)
15 26 "

16 34 "

17 37 "

18 18 "

19 29 "

20 49 "

21 57 "

22 68 "

23 27 "

24 38 "

25 19 "
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Since H matrix is sparse, it is not effective to use two-dimensional arrays for use
in decoder implementation. Instead jagged arrays are utilized. A jagged array is an
array whose elements are arrays with different sizes. They can store efficiently many
rows of varying lengths. In the application, we create jagged arrays to represent
parity-check matrix in memory. N(j) is set of variable nodes for check node j. To
keep column positions of a check node we have the following jagged array. It has 9
arrays in total. Each array corresponds to the lines 5-13 in Table 5.1. Note that not all

arrays have the same size.

Table 5.2 Array to keep column positions of check nodes

Check Column Positions
Node

0 0 4 11
1 1 5 9
2 2 3 10
3 2 6

4 0 7

5 1 8

6 3 7 9
7 4 8 10
8 5 6 11

Similarly, M (i) represents set of check nodes for variable node i. The jagged
array structure in Table 5.3 keeps row positions of variable nodes. It looks like a two-

dimensional array because it is structured, i.e., all the arrays are of the same length.

Table 5.3 Array to keep row positions of variable nodes

Bit Row
Node Positions
0 0 4
1 1 5
2 2 3
3 2 6
4 0 7
5 1 8
6 3 8
7 4 6
8 5 7
9 1 6
10 2 7
11 0 8
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Extrinsic messages sent between nodes are stored in one-dimensional arrays. In
decoder implementation, we need to give a unique id to each node participating in
the parity-check matrix. In Table 5.4, this labeling process is exemplified. Each "1"

representing an edge in the parity-check matrix is assigned a unique id.

Table 5.4 Identification of edges

0 |1 (2 |3 |4 |5 6 7 8 9 10 |11
0 |0 8 22
1 2 10 18
2 4 16 20
3 5 12
4 |1 14
5 3 16
6 7 15 19
7 9 17 21
8 11 |13 23

In decoding algorithm, we need to access index of the node for variable node and
check node processing. In check node processing, in order to compute check-to-bit
messages we horizontally scan check nodes. Whereas in variable node processing we
vertically scan parity-check matrix to calculate check-to-variable messages. The

following index tables given in Table 5.5, Table 5.6 are used for these needs.

Table 5.5 Indexes for check nodes

Check Ir.1dexes of.
Node Neighbour Bit
Nodes

0 0 8 22
1 2 10 18
2 4 6 20
3 5 12

4 1 14

5 3 16

6 7 15 19
7 9 17 21
8 11 13 23
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Table 5.6 Indexes for variable nodes

Indexes of
Bit Neighbour
Node Check
Nodes
0 0 1
1 2 3
2 4 5
3 6 7
4 8 9
5 10 11
6 12 13
7 14 15
8 16 17
9 18 19
10 20 21
11 22 23

In simulations, we randomly generate information bits and encode it using an
encoder. Encoder base class named "LDPCEncoder" implements all-zero codeword
generation.  Other  classes  "DVBS2Encoder", @ "WPANEncoder"  and

"WLANEncoder" classes are derived from the encoder base class as shown in Figure

5.1.
LDPCEncoder =
Class

DVBS2Encoder ¥ WPANEncoder = WLANEncoder EJ
Class Class Class
—+ LDPCEncoder —+ LDPCEncoder -+ LDPCEncoder

Figure 5.1 Encoder class diagram

Several decoding algorithms are implemented within the application. Object-
oriented architecture is utilized to implement all decoders. One base class is
implemented. All other decoders derive from this base class. If a decoder differs
from base class in variable node processing or check node processing, it overrides
methods inherited from the base class. Class diagram of the decoders can be seen in

Figure 5.2.
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LDPCDecoder
Class

SelfCorrected ¥ NMSA
Class Class
—+ LDPCDecoder =+ LDPCDecoder

OrderEDecoder ¥ LockedOrderDe... = OrderedDecoder
Class Class Class
= NMSA = NMSA = NMSA

Figure 5.2 Decoder class diagram

In the application, parallelism where possible is added to speed up simulation. The
LDPC decoding algorithm is an iterative process containing a lot of computations
and constitutes the vast majority of the time spent in performance simulations.
Therefore, master thread spawns a team of threads as many as different decoders.
Each thread conducts a specific decoding algorithm in parallel. This is shown in
Figure 5.3 as "Parallel Region". In Figure 5.3, four different decoding algorithm run

in parallel to minimize the required simulation time.
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Figure 5.3 Decoding parallelism

Corresponding C# code excerpt for the above decoding loop is given below. The
code gives an example of task parallelism. Task parallelism is often the simplest
abstraction to use when a routine can be decomposed into independent separate tasks.
The goal is to maximize processor utilization. If the methods execute sequentially,
the total execution time would be the sum of the duration of each method. However,
when a group of independent tasks start executing in parallel, total time spent is the
elapsed time of the longest task. In the simulation software, codeword generated is
passed as an input to all decoders, and decoding occurs in parallel. After decoding
finishes, the results are collected and stored. Application makes extensive use of
"Language Integrated Queries". LINQ is a general purpose query language to operate
over collection of objects. Its parallel version "Parallel LINQ" (PINQ) is used to

execute operations in parallel.

while (true) {

GenerateCodeword();

// parallel decoding

Decoders.AsParallel().ForAll(x=>x.Decode(LLRInput, Codeword));

for (int i = @; i < Decoders.Count; i++){

for (int j = @; j < MaxIterationCounts.Length; j++){

WordErrors[point][i][j] += Decoders[i].WordError[j];
BitErrors[point][i][j] += Decoders[i].BitError[j];
Iterations[point][i][j] += Decoders[i].Iteration[j];
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}
if (WordErrors[point].All(x=>x.All(y => y>=ErrorCountLimits[point])))

break;
}
Blocks shown in the parallel region in Figure 5.3 are actually decoding blocks
which carry out LDPC decoding steps given in Section 3. Figure 5.4 gives the flow
diagram of LDPC decoding. As seen in Figure 5.4, LDPC decoding is an iterative

process.

Initialization

'

Hard Decision&
Syndrome Check

All Checks BitToCheck CheckTol3it } ard Decision&
Satisfied? Nob Process ! Process Syndrome Check
Yes ¢
All Checks
. N Yes.
@"d/su“ess Satisfied?

No

aximum
Iteration
“eunt Reached?

No.

Yes

Figure 5.4 Flow diagram of LDPC decoding process

5.1.1 Simulation Results for 802.11n LDPC Codes

Proposed ordering methods and standard scheduling layered decoding methods
which are discussed in Section 4 have been applied to the LDPC codes defined in
IEEE 802.11n standards. Codes with two different codelengths (short&long) and
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codes with two different rates (low&high) for each codeword length are chosen.

Table 5.7 presents the selected LDPC codes from 802.11n standard.

Table 5.7 Selected LDPC codes from 802.11n standard

Low-rate (1/2) High-rate (5/6)
Short-length (648, 324) (648, 540)
Long-length (1944, 972) (1944, 1620)

Studied layered decoding schemes are applied to selected LDPC codes of 802.11n
standards and the following WER performance results are obtained. WER results for
a rate 1/2 with 648 codeword-length is given in given in Figure 5.5 and Figure 5.6,
assuming 50 and 100 maximum iterations, respectively. As shown in Figure 5.5 and
Figure 5.6, ORD (dynamic ordering) and ORDE (satisfaction weight ordering)
methods display better performance for low SNR range, up to 1.9dB. After this point,

performance improvement is not observed anymore.
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Figure 5.5 Performance results for WLAN, short-length, low-rate code with 50 max iterations
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Figure 5.6 Performance results for WLAN, short-length, low-rate code with 100 max iterations

Performance results for a higher rate (5/6) with the same codeword length, 648,
are given in Figure 5.7 and Figure 5.8, assuming 50 and 100 maximum iterations,

respectively. Results show an improvement in performance in full SNR range.
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Comparing Figure 5.7 and Figure 5.8, it is clear that with higher maximum number

of iterations, the more performance gain is achieved.

WALAN B4R, S0 code

10"
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Figure 5.7 Performance results for WLAN, short-length, high-rate code with 50 max iterations
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Figure 5.8 Performance results for WLAN, short-length, high-rate code with 100 max iterations
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Table 5.8 presents maximum iteration values of NMSA and ORD (dynamic
ordering) algorithms with (648, 540) LDPC code of IEEE 802.11n standard. The
results clearly show that compared to NMSA, ORD algorithm achieves the same
WER with much less iteration counts. For a WER of 107, the ORD algorithm is able
to converge twice as fast with only 48 iterations while NMSA requires 97 iterations
to reach the same WER. As the WER gets lower, convergence speed improvement of
ORD algorithm diminishes, but it is still able to achieve a significant 28% reduction
in the iteration count at a WER of 10™. Consequently, it is clear that prioritizing the
satisfied check nodes in processing order over unsatisfied checks leads to

considerable convergence speed increase for decoding of LDPC codes.

Table 5.8 Iteration savings obtained by SBS algorithm with (648, 540) LDPC code

NMSA ORD
SNR (dB) WER %
Max. Iter. Max. Iter.
4.4 1.5x10-4 98 71 28%
4.2 7.2x10-4 97 69 29%
4.0 3.4x10-3 97 58 40%
3.8 1.2x10-2 99 57 42%
3.6 4.0x10-2 97 48 51%

Next, we apply the proposed ordering schemes for layered decoding to two other
LDPC codes with 1944 bit-length from IEEE 802.11n standard. WER performance
results of the code with rate 1/2 are given in Figure 5.9 and Figure 5.10, assuming
maximum iterations counts of 50 and 100, respectively. ORD and ORDE
(satisfaction weight ordering) methods perform slightly better for low SNR range. As
SNR gets higher, improvement diminishes for ORD and ORDE methods. LOCK
(fixed ordering) method gives nearly the same performance as NMSA. This

characteristics is similar to what we obtain with short-length, low-rate code.
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Figure 5.9 Performance results for WLAN, long-length, low-rate code with 50 max iterations
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Figure 5.10 Performance results for WLAN, long-length, low-rate code with 100 max iterations
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Figure 5.11 and Figure 5.12 presents the WER results for higher rate code with

the same codeword-length of 1944, with maximum iteration counts of 50 and 100,
respectively.

WLAK 1944, 1620) code
10" |
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DRDE
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Figure 5.11 Performance results for WLAN, long-length, high-rate code with 50 max iterations
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Figure 5.12 Performance results for WLAN, long-length, high-rate code with 100 max iterations

5.1.2 Results for 802.15.3¢c LDPC Codes

In this section, we apply proposed decoding methods to the LDPC codes defined
in IEEE 802.15.3c (WPAN) standard. As in Section 5.1.1, LDPC codes of different

lengths and rates are chosen for evaluation. The selected codes are given in Table

5.9.

Table 5.9 Selected LDPC codes from 802.15.3¢ standard

Low-rate (1/2)

High-rate (7/8)

High-rate (14/15)

Short-length

(672, 336)

(672, 588)

Long-length

(1440, 1344)

WER results for 672-bit, rate 1/2 LDPC code are given in Figure 5.13 and Figure

5.14.
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Figure 5.13 Performance results for WPAN, short-length, low-rate code with 50 max iterations
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Figure 5.14 Performance results for WPAN, short-length, low-rate code with 100 max iterations

Performance results for short-length and high-rate WPAN codes are given in

Figure 5.15 and Figure 5.16. Figures clearly show that ORD and ORDE methods
provide performance improvement over NMSA and LOCK methods. This is in

accordance with results obtained from short-length, high-rate codes from WLAN.
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Figure 5.15 Performance results for WPAN, short-length, high-rate code with 50 max iterations

WRAN[ET2, 500] code

il e
1= HMESA
o4 oRO
- o LCCE
DROE
107
i
B
1o b
oL 1
s 4 1.5
Eps/Ny [dB)

Figure 5.16 Performance results for WPAN, short-length, high-rate code with 100 max iterations
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802.15.3c standard defines only one LDPC code with longer length. This is 1440
bit codeword-length, high-rate code. Figure 5.17 and Figure 5.18 show performance
results of proposed methods against NMSA for maximum iteration counts of 50 and

100, respectively. Results are similar to the ones that are obtained from short-length,

high-rate code, i.e. (672, 588) code.
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Figure 5.17 Performance results for WPAN, long-length, high-rate code with 50 max iterations
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Figure 5.18 Performance results for WPAN, long-length, high-rate code with 100 max iterations

5.1.3 Results for DVB-S2 Codes

In this section, we have applied proposed ordering layered decoding methods to
the codes from DVB-S2 standard. In simulations, codes with 16200 frame size are
used. Figure 5.19 and Figure 5.20 present the WER results. As results show there is

not much performance improvement achieved using proposed methods.

In Section 6, a simulation acceleration platform using OpenMP is described,
parallel decoding is implemented on real hardware platform and obtained simulation

speed gains are reported.
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Figure 5.19 Performance results for DVB-S2, normal-frame, high-rate code with 50 max iterations
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Figure 5.20 Performance results for DVB-S2, normal-frame, high-rate code with 100 max iterations
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6 PARALLEL DECODING OF LDPC CODES ON REAL DSP
HARDWARE

Despite widespread usage of LDPC codes, the highly complicated iterative
decoding process leads to very long simulation times when verifying decoding
performance under different decoding parameters. One attractive solution to long
simulation times of LDPC codes is to implement inherently parallel decoding
algorithms using multicore platforms. In this section, we present the first OpenMP
parallel implementation of LDPC decoding algorithm on a multicore DSP
architecture and report its performance. Parallelized Normalized Min-Sum decoding
algorithm is implemented on 8-core Texas Instruments (TI) DSP using OpenMP
framework. Performance results are obtained by Unified Instrumentation

Architecture (UIA).

Multicore architectures considerably enhance data processing speeds, as multiple
cores can handle many operations simultaneously. An important aspect of multicore
approach is the proper migration of software development to the multicore
environment. Parallelizing code to run over multicore platform requires some thread
library and compiler support. Texas Instruments (TI) has recently introduced an
OpenMP support into their development environment, which enables easy porting of

single-core applications to multicore platform.

A brief information about OpenMP is presented in Section 6.1. Embedded
platform used and implementation details for parallel decoding of LDPC codes are
provided in Section 6.2, and Section 6.3, respectively. Finally, speedup achieved by

parallelization is reported in Section 6.4.

6.1 OpenMP Framework

With multicore trend, parallelizing existing code previously written for running on
a single core is one of the most challenging jobs for software developers. Several
parallel programming models have been proposed so far, such as Message-Passing
Interface (MPI), thread libraries (Pthreads), Open Computing Language (OpenCL)
and Open Multi-Processing (OpenMP) to address multicore software development

challenge. MPI is generally used for distributed memory architectures whereas
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OpenCL is an open standard to write parallel applications for heterogeneous
platforms. In contrast, OpenMP is a framework designed for shared memory
multiprocessing. As LDPC decoding algorithm extensively uses shared memory for
message passing between bit and check nodes, OpenMP framework is more suitable

to parallelize the decoding algorithm of LDPC codes.

OpenMP is not a new programming language. It introduces some notation that
provides straightforward port of existing sequential codes by simple use of compiler
directives. The directives tell the compiler which part of the code executes in parallel
and how to distribute them among the parallel threads. The compiler considers and
interprets directives when application is enabled to use OpenMP. The program starts
as a single thread of execution as any sequential program does. This thread is called
initial thread. A team of threads is forked at the start of parallel region and joined at
the end [23]. The start of parallel region is indicated by #pragma omp parallel
directive. This fork-join process of OpenMP is illustrated in Figure 6.1.

l Initial

Team of threads

l Initial

Figure 6.1 OpenMP Fork/Join model

Workload can be shared by all cores available using appropriate OpenMP work
sharing constructs. The most common work sharing approach is to distribute the
work in a for-loop among the threads in a team. However, not all loops can be
suitable for this type of work sharing. Data dependencies may prevent loop
parallelization. It is the user’s responsibility to decide loop parallelization is
applicable or not. OpenMP allows the programmer to control the number of threads
that execute a parallel region. If it takes T; to execute an application on a single core
and Tp to execute the same code on P cores then, parallel speedup can be defined as

the ratio:
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T 6.1
Speedup = T—l @1y
P

If speedup increases with an increasing number of cores, the system is said to be

scalable.

6.2 Embedded DSP Platform

In this work, performance improvement achieved by parallelization is evaluated
on TI’s Keystone based module, TMDSEVMG6678LE, shown in Figure 6.2. The
module features TMS320C6678 System-on-chip (SoC) which includes identical 8
TMS320C66x (C66x) DSP cores providing both fixed- and floating-point capability.
TI’s KeyStone family is a well-known low power DSP architecture, which consumes
only 10W at 1GHz clock frequency. The KeyStone architecture is designed with
tiered multicore memory architecture, allowing for full processing entitlement across
all cores while executing concurrently [24]. It contains two levels of memory:
separate 32kB local program and data memories exist at level 1 (L1P and L1D).
There exists 512kB L2 memory separate to each core. The L1 and L2 memories can
be configured to be used as cache, RAM or part RAM/part cache. The L1 local
memories are configured as RAM entirely. L2 memory is used as local memory to

store thread private variables.

Figure 6.2 TMDSEVM6678 Target module

The C6678 also integrates 4096kB internal memory (usually referred as MSMC
memory) shared among cores. The MSMC inside SoC allows the cores to
dynamically share the internal and external memories for both code and data. TI’s
OpenMP implementation configures MSMC in shared level 2 mode (SL2). In this
mode, SL2 RAM is cacheable only within the local L1P and L1D caches. However,

since cache coherency is not performed upon this state, shared variables concurrently
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accessed and modified by different threads running on different cores must be placed
into a non-cached shared memory segment. In order to allow this, OpenMP runtime
creates a non-cached alias for entire MSMC memory range [25]. Shared variables are
placed into non-cached portion of MSMC memory. Code and constants are put into
cached part of the memory. This approach makes parallelization even faster. It is
important not to overlap these two segments. The compiler translates OpenMP into
multi-threaded code with calls to a custom runtime library built on top of SYS/BIOS,
a lightweight native real-time operating system (RTOS), and inter-processor

communication (IPC) protocols [25].

Keystone architecture provides an external memory access to DDR memory and
many industry standard peripherals such as PCle, Serial Rapid I/O (SRIO), Enhanced
Direct Memory Access (EDMA). Multicore Navigator (MCN) allows data exchange
among cores and peripherals. Figure 6.3 shows the general functional block diagram

of the multicore processor used in this work.

64-bit | amsB
DDR3 MSMC - :]

| Debug | I
1
EDMA C L
ore
o 5T Lip [ 32k8 L1
512KB L2 Cache
8 cores @1 GHz Multicore
TeraNet | navigator

Figure 6.3 Reference DSP architecture

There is no operating system (OS) running at the processor level, instead each
core executes its own instance of Real-Time Operating System (RTOS), called
SYS/BIOS. It is a lightweight native RTOS provided by TI. A C/C++ compiler,
debugger is provided in the development environment. The compiler supports
OpenMP 3.0 to allow easy porting of existing single core code to multicore platform.
The compiler translates OpenMP into multi-threaded code with calls to a custom
runtime library built on top of SYS/BIOS and inter-processor communication (IPC)
protocols [25]. TI also provides Code Composer Studio (CCS); an Eclipse based
Integrated Development Environment (IDE) for code development. Figure 6.4

illustrates code development process for target system.
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Figure 6.4 Application development with CCS

The Figure 6.5 shows the TI's OpenMP solution stack. Currently, OpenMP is
supported on TI DSPs only for SYS/BIOS operating system. All OpenMP programs
must be linked with the OMP run-time library [26].

Customer Applications

Master Thread

==

OpenMP Programming Layer

Runtime layer
Open source libgomp

Operating System
Distributed SYS/BIOS+IPC

Figure 6.5 TI's OpenMP solution stack

6.3 Implementation Details for Parallel Decoding of LDPC Codes on DSP

In this work, a single core version of LDPC decoding algorithm is modified to run
on TI’s KeyStone multicore DSP platform, where an OpenMP-based multi-threading
scheme is used to parallelize code. In this section, the key aspects of the

implementation are described.

LDPC decoding is coded entirely in C using the Code Composer Studio™
Integrated Development Environment (IDE) v5.5, MCSDK v2.1.2.6 and SYS/BIOS
v6.35.4.50. UIA v1.3.1.08 is utilized to instrument code and to provide benchmark
statistics. OpenMP 3.0 is supported in evaluation platform. The project is built with
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the maximum compiler optimization level. To verify improvement by multicore

processing, we use 1 to 8 cores run the NMSA decoding algorithm simultaneously.

There are many options to improve the execution speed of code on DSP. With
proper use of compiler directives and better memory placement and alignment better
execution times can be achieved. Different data sections can be placed into specific
region in memory by using appropriate directives. RTSC project provides a
configuration file where necessary information is given to the linker on how to bind
memory sections to the memory segments defined by a platform file. Code segment
from configuration file shown below instructs the linker to map user defined section

“.L2vars” into memory segment “L2SRAM™:

// load const vars section into L2SRAM
Program.sectMap[".L2vars"] = new Program.SectionSpec();
Program.sectMap[".L2vars"].loadSegment = "L2SRAM";

Pragma directives tell the compiler how to treat a certain function or a section of

code. In our implementation, compiler is guided to allocate memory from desired

section. We allocate constant data on L2 memory for speed consideration:

#tpragma DATA SECTION (WeightRow, ".L2vars")
#tpragma DATA_ALIGN ( WeightRow, 64 );
const unsigned char WeightRow[M] = {...}

The first step in creating an OpenMP program is to identify the parallelism it
contains. Considering LDPC decoding, this is an easy task since LDPC decoding is
inherently parallel. The parallel implementation using the eight cores on the
TMS320C6678 DSP platform can be achieved by letting each core process a
different portion of the parity check matrix. Work is shared between cores by
dividing parity check matrix into the horizontal and vertical non-overlapping strips
for check to bit and bit to check processing, respectively. The parity-check matrix is
divided evenly into equal strips in order to distribute load into cores equally. In
multicore implementation of NMSA, each of selected number of cores concurrently
processes messages sent form bit node to check node or vice-versa. Bit to check
processing, check to bit processing and syndrome check code blocks are parallelized
using OpenMP directive #pragma omp parallel for specifying variable scope

information by means of private and shared annotations. OpenMP runtime allows
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different threads to run across different cores. OpenMP #pragma omp parallel for
language extension offers easy parallelization of sequential code. Figure 6.6 and
Figure 6.7 illustrate how the parity-check matrix is divided into horizontal and

vertical strips and allocated among 4 cores DSP cores, respectively.

1 0 1 0 0 1 0 0

» Core#0
0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 1

» Coret1
1 0 1 0 0 1 0 0
0 0 0 0 1 0 1 0

> Core#2
1 0 0 1 0 0 0 0
0 1 0 0 0 1 1 0

> Core#3
0 0 1 0 0 0 0 1

Figure 6.6 Check node processing using horizontal striping of H matrix
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0 0 0 0 1 0 1 0
1 0 0 1 0 0 0 0
0 1 0 0 0 1 1 0
0 0 1 0 0 0 0 1
Coret#0 Coret#l Coret#2 Coret#3

Figure 6.7 Bit node processing using vertical striping of H matrix

We chose to store extrinsic messages in the non-cached shared memory region
while constants are stored in the cached region to access them through L1D cache
memory. This way each core has access to up-to-date data to process and writes
updated messages back to their relevant places without any additional
synchronization mechanism. Below code segment shows example work sharing loop
construct for making hard decision given below. The work is shared between cores

through vertical striping.

static void MakeHardDecision()
{
int i;
// make hard decision here
#pragma omp parallel for
for (i = 0@; 1 < N; i++)
{
if (SumAll[i] > @)
CodewordHat[i]
else
CodewordHat[1i]

1}
(o]
e

Il
AR
-
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Decoding steps-2 and-3, given in Section 3.1 are repeated until maximum number
of iterations is reached. We instrument code with log events in order to measure time

spent in each step:

while(currentIter < MAX_ITER_COUNT)
{

currentIter++;
// start a new iteration
Log_write2(UIABenchmark_start, (xdc_IArg)"iteration time, using %d cores", NumberOfCores);

// start c2b

Log_write2(UIABenchmark_start, (xdc_IArg)"c2b time, using %d cores", NumberOfCores);
CheckToBitProcess();

Log_write2(UIABenchmark_stop, (xdc_IArg)"c2b time, using %d cores", NumberOfCores);

// start b2c

Log_write2(UIABenchmark_start, (xdc_IArg)"b2c time, using %d cores", NumberOfCores);
BitToCheckProcess();

Log_write2(UIABenchmark_stop, (xdc_IArg)"b2c time, using %d cores", NumberOfCores);

Log_write2(UIABenchmark_stop, (xdc_IArg)"iteration time, using %d cores", NumberOfCores);

6.4 Results for Parallel Decoding

After all considerations mentioned in the previous sections are taken into account
in porting sequential decoding algorithm into multicore platform, we performed
experimental analysis using TDMSEVM6678LE Evaluation Module (EVM),
C6678 processor running at 1GHz. XDS560V2 emulator was used to program and
debug code running on the EVM. Benchmark results are acquired while code is
running on the target through JTAG connection. In our experiments, we applied
NMSA to the codes from DVB-S2. Selected LDPC code has a codeword length of
16200 bits and rate of 8/9.

Figure 6.8 shows speedups achieved for each type of processes. Figure 6.8 also
reveals that check node processing has a better scalability compared to bit node

processing.
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Figure 6.8 Speedup using OpenMP

Because LDPC decoding is an iterative process, time spent at each iteration is an
important parameter. Table 6.1 shows the execution times of each iteration and
achieved speedup with number of cores. It can be seen that 8-core implementation
achieves a 6.4x speedup. The results also demonstrate scalability of LDPC decoding
algorithm successfully on multicore DSPs. However, the throughputs achieved are

far from those required for real-time execution.

Table 6.1 Execution times for an iteration and speedup versus number of cores

Number of cores

1 2 4 6 8

Execution time (us) | 0015 3081 | 1636| 1167| 947

Speedup 1.95| 3.68| 5.15|6.35

These results prove that inherently parallel decoding algorithm of LDPC codes
can be easily parallelized using OpenMP, which provides flexible programming
model to create parallel code for shared memory architectures, hiding internal

synchronization details from the programmer.
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7 CONCLUSIONS AND FUTURE WORK

In this thesis, three different ordering layered decoding schemes are presented to
improve decoding performance of LDPC codes and a simulation acceleration
platform using OpenMP is studied. The implementation of the proposed methods can
be realized with small modifications, therefore the computational overhead involved
is small. The proposed algorithms can achieve a good performance and a high
convergence rate. We have simulated complete communication system in software.
We assume BPSK transmission over AWGN channel. Our analysis results show that
the maximum performance gain is observed for short length and high rate LDPC
codes. ORD and ORDE methods when applied to (648, 540) code defined in 802.11n
and (672, 588) code in 802.15.3c achieve the best performance. LOCK method
perform very near to NMSA by changing process order of layers. For long length
codes, proposed methods provide better performance gain in low SNR region, when
the SNR is high performance gain is lost. Performance gain always improves as
maximum iteration number is incremented. At large number of iterations ordered
methods outperform traditional algorithms. So our results also confirm better
performance is obtained with large maximum iteration number of 100 when

compared to 50. No significant gain is obtained from DVB-S2 codes.

We have also presented parallel implementation of LDPC decoding using
OpenMP. It can be leveraged to take advantage of the multicore DSP by parallelizing
algorithms quickly. Our implementation has been tested on a multicore embedded
DSP platform, TI’s C6667 DSP. Multicore processing using OpenMP reduces
processing times considerably. Our performance evaluation shows scalable speedup
as more cores are included in multicore processing. When 8 cores are run
simultaneously, the speedup reaches 6.4. Further speedup can be achieved by taking
advantage of DSP architecture which itself provides several levels of parallelism like

compiler specific pragmas or intrinsic SIMD instructions.
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In future, proposed methods can be applied to other types of codes. Since
simulation takes significant amount of time, methods to shorten simulation time can
be searched. We have implemented parallel decoding of DVB-S2 code in flooding
schedule. Other structured LDPC codes can be decoded in both layered and parallel

manner so that parallelism can be exploited to accelerate simulation further.
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