

YILDIRIM BEYAZIT UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED

SCIENCES

PERFORMANCE IMPROVEMENT

METHODS FOR LAYERED DECODING OF

LDPC CODES

by

Murat SEVER

July, 2015

ANKARA

PERFORMANCE IMPROVEMENT

METHODS FOR LAYERED DECODING OF

LDPC CODES

A Thesis Submitted to the

Graduate School of Natural and Applied Sciences of Yıldırım Beyazıt

University

In Partial Fulfillment of the Requirements for the Master of Science in

Electrical and Electronics Engineering, Department of Electrical and

Electronics Engineering

by

Murat SEVER

July, 2015

ANKARA

ii

M.Sc THESIS EXAMINATION RESULT FORM

 We have read the thesis entitled “Performance Improvement Methods for

Layered Decoding of LDPC Codes” completed by Murat SEVER under

supervision of Asst. Prof. Dr. Enver ÇAVUŞ and we certify that in our opinion it is

fully adequate, in scope and in quality, as a thesis for the degree of Master of

Science.

 Asst. Prof. Dr. Enver ÇAVUŞ

 Supervisor

 Asst. Prof. Dr. Mehmet ÜNLÜ Asst. Prof. Dr. M. Efe ÖZBEK

 (Jury Member) (Jury Member)

 Prof. Dr. Fatih V. ÇELEBĐ

 Director

 Graduate School of Natural and Applied Sciences

iii

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor Dr. Enver Çavuş for
his guidance in my study. From the very first lecture I took on channel coding to my
last touches on this thesis, he was always helpful and accessible. He introduced me to
the subject of LDPC and academic research. I feel myself lucky to have him as my
advisor.

I also wish to thank to my family especially to my wife, my kids and to my
parents. And special thanks to all my friends who help and support me. They never
left me alone at this three-year journey.

Murat SEVER

July, 2015

iv

CONTENTS

THESIS EXAMINATION RESULT FORM....................... ii

ACKNOWLEDGEMENTS .. iii

CONTENTS .. iv

LIST OF ACRONYMS .. vi

LIST OF TABLES .. ix

LIST OF FIGURES ... x

LIST OF SYMBOLS ... xii

ABSTRACT .. xiii

ÖZET... xiv

1 INTRODUCTION .. 1

1.1 Literature Review of Performance Improvement Methods 2

1.2 Objectives ... 4

1.3 Contributions .. 5

2 LDPC CODES .. 6

2.1 Linear Block Codes .. 7

2.2 Overview of LDPC Codes ... 10

2.2.1 Construction of LDPC Codes ... 11

2.2.2 DVB-S2 LDPC Codes .. 12

2.2.3 802.11n LDPC Codes ... 13

2.2.4 802.15.3c LDPC Codes .. 15

3 DECODING OF LDPC CODES .. 16

3.1 Sum-Product Algorithm ... 17

3.2 Min-Sum Algorithm ... 21

3.3 Normalized Min-Sum Algorithm ... 21

3.4 Dual-Scaling MSA (DS-MSA) .. 22

3.5 Self-Corrected Min-Sum Algorithm .. 22

3.6 Layered Decoding of LDPC Codes.. 23

3.7 Parallel Decoding of LDPC Codes .. 25

4 PROPOSED IMPROVEMENT METHODS ... 26

4.1 Fixed Order Layered Decoding of LDPC Codes (LOCK)..................... 26

4.2 Dynamic Order Layered Decoding of LDPC Codes (ORD) 27

4.3 Satisfied Weight Order Layered Decoding of LDPC Codes (ORDE) ... 28

v

5 PERFORMANCE RESULTS OF PROPOSED METHODS 31

5.1 Simulation of Proposed Methods on PC .. 31

5.1.1 Simulation Results for 802.11n LDPC Codes 38

5.1.2 Results for 802.15.3c LDPC Codes .. 45

5.1.3 Results for DVB-S2 Codes ... 50

6 PARALLEL DECODING OF LDPC CODES ON REAL DSP HARDWARE 52

6.1 OpenMP Framework .. 52

6.2 Embedded DSP Platform ... 54

6.3 Implementation Details for Parallel Decoding of LDPC Codes on DSP56

6.4 Results for Parallel Decoding .. 60

7 CONCLUSIONS AND FUTURE WORK ... 62

8 RESOURCES ... 64

9 ÖZGEÇMĐŞ .. 66

vi

LIST OF ACRONYMS

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BER Bit Error Rate

BN Bit Node

BPSK Binary Phase Shift Keying

CCS Code Composer Studio

CN Check Node

dB Decibel

DSP Digital Signal Processor

DVB Digital Video Broadcasting

ECC Error Correction Codes

EDMA Enhanced Direct Memory Access

EVM Evaluation Module

FEC Forward Error Correction

GHz Giga Hertz

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IPC Inter Processor Communication

vii

IRA Irregular Repeat Accumulate

JTAG Joint Test Action Group

kB Kilo Bytes

LAN Local Area Network

LDPC Low-Density Parity-Check

LINQ Language Integrated Query

LLR Log-Likelihood Ratio

MCN Multicore Navigator

MCSDK Multicore Software Development Kit

MPI Message Passing Interface

MIT Massachusetts Institute of Technology

MSA Min-Sum Algorithm

MSMC Multicore Shared Memory Controller

OpenCL Open Computing Language

OpenMP Open Multi-Processing

OS Operating System

PLINQ Parallel Language Integrated Query

RAM Random Access Memory

RTOS Real Time Operating System

RTSC Real-Time Software Components

viii

SoC System on Chip

SNR Signal to Noise Ratio

SPA Sum-Product Algorithm

SRIO Serial Rapid Input Output

TDMP Turbo Decoding Message Passing

TI Texas Instruments

TPMP Two-Phase Message Passing

UIA Unified Instrumentation Architecture

WER Word Error Rate

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

ix

LIST OF TABLES

Table 2.1 DVB-S2 LDPC codes .. 12

Table 2.2 802.11n LDPC codes ... 14

Table 2.3 802.15.3c LDPC codes... 15

Table 5.1 Alist file contents ... 32

Table 5.2 Array to keep column positions of check nodes .. 33

Table 5.3 Array to keep row positions of variable nodes .. 33

Table 5.4 Identification of edges .. 34

Table 5.5 Indexes for check nodes ... 34

Table 5.6 Indexes for variable nodes ... 35

Table 5.7 Selected LDPC codes from 802.11n standard ... 39

Table 5.8 Iteration savings obtained by SBS algorithm with (648, 540) LDPC code 42

Table 5.9 Selected LDPC codes from 802.15.3c standard ... 45

Table 6.1 Execution times for an iteration and speedup versus number of cores 61

x

LIST OF FIGURES

Figure 2.1 Typical communication channel ... 6

Figure 2.2 Communication channel model .. 8

Figure 2.3 Systematic codeword .. 9

Figure 2.4 Structured LDPC code parity-check matrix example 12

Figure 2.5 Base matrix for 802.11n, 648-bit, rate: 5/6 ... 15

Figure 3.1 Parity-check matrix showing nodes .. 16

Figure 3.2 Tanner graph representation ... 17

Figure 3.3 Bit-to-check message updating ... 19

Figure 3.4 Check-to-bit message updating .. 20

Figure 3.5 Reliability information update .. 20

Figure 4.1 Fixed order layered decoding example ... 27

Figure 4.2 Dynamic order layered decoding example ... 28

Figure 4.3 Example regular LDPC code .. 29

Figure 4.4 "Total unsatisfied check node" calculation ... 30

Figure 5.1 Encoder class diagram .. 35

Figure 5.2 Decoder class diagram .. 36

Figure 5.3 Decoding parallelism .. 37

Figure 5.4 Flow diagram of LDPC decoding process .. 38

Figure 5.5 Performance results for WLAN, short-length, low-rate code with 50 max
iterations ... 40

Figure 5.6 Performance results for WLAN, short-length, low-rate code with 100 max
iterations ... 40

Figure 5.7 Performance results for WLAN, short-length, high-rate code with 50 max
iterations ... 41

Figure 5.8 Performance results for WLAN, short-length, high-rate code with 100
max iterations ... 41

Figure 5.9 Performance results for WLAN, long-length, low-rate code with 50 max
iterations ... 43

Figure 5.10 Performance results for WLAN, long-length, low-rate code with 100
max iterations ... 43

Figure 5.11 Performance results for WLAN, long-length, high-rate code with 50 max
iterations ... 44

Figure 5.12 Performance results for WLAN, long-length, high-rate code with 100
max iterations ... 45

Figure 5.13 Performance results for WPAN, short-length, low-rate code with 50 max
iterations ... 46

Figure 5.14 Performance results for WPAN, short-length, low-rate code with 100
max iterations ... 47

Figure 5.15 Performance results for WPAN, short-length, high-rate code with 50
max iterations ... 48

Figure 5.16 Performance results for WPAN, short-length, high-rate code with 100
max iterations ... 48

Figure 5.17 Performance results for WPAN, long-length, high-rate code with 50 max
iterations ... 49

xi

Figure 5.18 Performance results for WPAN, long-length, high-rate code with 100
max iterations ... 50

Figure 5.19 Performance results for DVB-S2, normal-frame, high-rate code with 50
max iterations ... 51

Figure 5.20 Performance results for DVB-S2, normal-frame, high-rate code with 100
max iterations ... 51

Figure 6.1 OpenMP Fork/Join model... 53

Figure 6.2 TMDSEVM6678 Target module .. 54

Figure 6.3 Reference DSP architecture .. 55
Figure 6.4 Application development with CCS ... 56

Figure 6.5 TI's OpenMP solution stack .. 56

Figure 6.6 Check node processing using horizontal striping of H matrix 58

Figure 6.7 Bit node processing using vertical striping of H matrix 59

Figure 6.8 Speedup using OpenMP ... 61

xii

LIST OF SYMBOLS

�� Channel a priori information

�� Noise variance

BN Bit node

C Codeword, consisting of n bits

CN Check node

G Generator matrix

H Parity-check matrix

��� Base-matrix

H
T
 Transpose of parity-check matrix

Ik kxk Identity matrix

k Information bit-length

n Codeword bit-length

nb Number of layers

��	 Extrinsic information passed from bit node i to check node j

� Code Rate of a block code

	� Extrinsic information from check node j to bit node i

�� Column weight

� Row weight

Z Submatrix block-size

xiii

PERFORMANCE IMPROVEMENT METHODS

FOR LAYERED DECODING OF LDPC CODES

ABSTRACT

Low-density parity-check (LDPC) codes are a special type of linear block codes.

Although they were originally invented by R. Gallager in 1960, they have captured

the attention of scientific community since its rediscovery in 1996. Due to their

excellent correction capability, they have been adopted in many communications and

storage systems for forward error correction.

Gallager defined an iterative two-phase decoding algorithm referred to as "Belief

Propagation" (BP). Much study has been conducted to improve the performance of

LDPC decoding. Later, another scheduling, "Turbo Decoding Message Passing"

(TDMP) is introduced as an alternative to his standard message passing algorithm.

TDMP, also called layered decoding, has the advantage of converging faster than the

standard BP because it uses more reliable information to update next set of values.

Using layered decoding, it is possible to reduce the number of iterations by 50%

without any performance degradation. In this thesis, we present several methods in

order to improve layered decoding performance of LDPC codes. Methods proposed

have been applied to several LDPC codes with different length and rate. According

to our results, the biggest performance improvements are achieved when they are

applied to small-length, high-rate codes. In addition to proposed methods, a

simulation acceleration platform using OpenMP is also described where parallel

decoding is implemented on a real multicore hardware platform, obtaining more than

6x speedup compared to single-core version.

Keywords: Low-density parity-check, error correction codes, belief propagation,

layered decoding, performance improvement, DSP, parallelization, OpenMP

xiv

LDPC KODLARININ KATMANLI MĐMARĐDE ÇÖZÜMÜNDE

PERFORMANS ARTTIRICI YÖNTEMLER

ÖZET

Düşük-yoğunluklu eşlik-denetim (LDPC) kodları doğrusal blok kodları

arasındadır. Đlk olarak 1960 yılında R. Gallager tarafından keşfedilmelerine rağmen

uzun yıllar boyunca unutulmuş, 1996 yılında yapılan bir çalışma ile bilim dünyasının

yeniden ilgisini çekmişlerdir. Yüksek hata başarımına sahip olmaları nedeni ile

günümüzde modern iletişim ve depolama sistemlerinde hata düzeltici kodlar olarak

yaygın bir biçimde kullanılmaktadırlar.

LDPC kod çözücülerin çalışma prensibi Gallager tarafından ortaya atılan kanı

yayılımına (Belief Propagation) dayanmaktadır. LDPC kodlarının çözümünde

performans iyileştirme maksadıyla çeşitli yöntemler bulunmuş ve pratikte de

uygulanmaktadır. Bu yöntemlerden biri de kodların turbo çözümleme ile

çözülmesidir. Önerilen yöntem ile kod çözümlemede daha güvenilir mesajların

düğümler arası geçirilmesi sayesinde hızlı bir şekilde yakınsama sağlanmaktadır.

Katmanlı mimaride çözümleme olarak da adlandırılan yöntem ile normal modda

gereken yineleme sayısının yarısında aynı başarım seviyesine ulaşmak mümkündür.

Tez çalışmamızda katmanlı mimaride LDPC çözümlemede performans arttırıcı yeni

yöntemler sunulmuştur. Yeni yöntemler birçok değişik uzunlukta ve hızda LDPC

kodları üzerinde denenmiştir. Yapılan benzetim çalışmaları sonucunda, önerilen

yöntemler en iyi performans artırımını kısa ve hızlı LDPC kodları üzerinde sağladığı

gözlenmiştir. Önerilen yöntemlerin seçilen LDPC kodları üzerinde denenmesine

ilaveten, OpenMP kullanarak LDPC çözümleme işlemi paralelleştirilmiş, 8-

çekirdekli gerçek DSP donanımı üzerinde yapılan testlerde tek çekirdeğe göre 6

kattan fazla hızlanma elde edildiği raporlanmıştır.

Anahtar sözcükler: Düşük-yoğunluklu eşlik-denetim, hata düzeltici kodlar, kanı

yayılımı, katmanlı mimaride çözümleme, performans artırımı, DSP, paralelleştirme,

OpenMP

1

1 INTRODUCTION

Low-Density Parity-Check (LDPC) codes have received widespread attention

because of their excellent error correcting performance. They provide performance

very close to the Shannon limit, which is why they are also called capacity-

approaching codes. Invented by Gallager at MIT in 1960 [1], LDPC codes were

forgotten for more than 30 years due to their computational complexity. After

Berrou, et al published their research on Turbo codes in 1993 [2] researchers focused

on alternative iterative decoding schemes and in 1996, LDPC codes were

rediscovered by Mackay and Neal [3]. Today, LDPC codes are adopted in many

modern communications systems for forward error correction such as DVB-S2

(satellite transmission of digital television), IEEE 802.11n (wireless LAN), IEEE

802.16 (WiMAX, broadband wireless internet), IEEE 802.15.3c (wireless personal

area network), and IEEE 802.3an (10Gbit Ethernet).

As LDPC codes are adopted in many communication standards, improving

performance or convergence rate of LDPC decoder with minimal additional

complexity is a prime interest. One attractive performance improvement method is to

modify the updating order (schedule) of passing the messages between bit and check

nodes. In standard decoding algorithm, a flooding scheduling is employed, where all

check nodes and subsequently all bit nodes are simultaneously updated in every

iteration. Alternatively, non-simultaneous scheduling allows the updated messages to

be used earlier, and hence achieves the same Bit Error Rate (BER) performance as

flooding decoder with much less decoding iterations or improved performance for a

given number of decoding iteration. In this thesis, we study performance

improvement techniques for both simultaneous and non-simultaneous scheduling

algorithms.

The rest of this thesis is organized as follows: In this section, after presenting a

literature review for performance improvement methods of LDPC decoding

algorithms, objectives and contribution of this thesis are provided. Section 2 gives an

overview of linear block codes and provides basic knowledge on LDPC codes and

parity-check matrix structures. Examples of LDPC codes which found their way into

2

industry standards are also given in Section 2. LDPC decoding algorithms are

described in Section 3. Section 4 contains our proposed scheduling methods based on

layered decoding. The simulation results, performance comparisons of proposed

methods to existing ones will be presented in Section 5. Following the presentation

of WER performance results, a simulation acceleration platform using OpenMP is

described and obtained simulation speed gains are reported in Section 6. Lastly,

conclusions will be presented in the last section, Section 7.

1.1 Literature Review of Performance Improvement Methods

As LDPC codes have found their way into many recent industry standards, there

exists a high desire for low-complexity, and high throughput LDPC decoders. In

order to attain this aim, many methods have been explored. Some of these methods

try to simplify the decoding algorithm, while the others aim to achieve a high

throughput by speeding up the convergence rate of the decoder. Among the decoding

algorithms, Sum-product algorithm (SPA) performs the best but it has a very high

computational complexity. There are several approaches to lower computational

complexity of SPA while preserving the decoding performance as much as possible.

The most popular approximation is the min-sum algorithm (MSA). MSA offers

lower hardware complexity at the cost of performance degradation. There always

exists tradeoff between complexity and performance. To minimize performance

degradation of MSA, different methods are proposed. Normalized-MSA, Offset-

MSA are the most popular ones. These methods use a scaling or an offset factor to

minimize overestimation in common.

There are other methods proposed that use more than one scaling factor. [4]

proposed two-way normalization to improve MSA performance. Since 0.25 and 0.50

are chosen as scaling factors, they are simple to implement simply as shift registers

in hardware. Therefore, the technique can be applied to systems with minimal

hardware complexity. Simulation results show better performance is achieved when

applied to medium and short length codes.

[5] deploys two scaling factors to correct overestimation made by MSA. Proposed

method provides extended waterfall region and has better performance. It is

computationally-efficient algorithm which is well-suited for storage systems.

3

An Adaptive normalized MSA is proposed by [6] in which normalization factor is

adaptively determined at each decoding iteration. The proposed method achieves

better performance while keeping the complexity the complexity nearly the same.

[7] describes lazy scheduling approach in which only a subset of nodes get

updated in an iteration resulting in reduced iteration cost. Partial update of nodes

combined with serial scheduling reduces the decoding complexity significantly

compared to standard belief propogation scheme while maintaining the same

performance.

The standard message passing schedule is an iterative process which consists of

two phases. It is also attractive due to its inherently highly parallelizable structure.

However, one major drawback with decoding of LDPC codes using standard

message passing schedule is its slow convergence. It is therefore essential to increase

convergence speed of LDPC codes. A high-throughput memory-efficient decoder

architecture for LDPC codes based on a novel turbo decoding was introduced in [8].

The main idea is to better utilize reliability messages by updating it more than once

within an iteration. In [9] simulations show that as much as two times faster decoding

speed can be achieved by applying turbo-scheduling algorithm. In [10] three

optimized message passing, namely row message passing, column message passing

and row-column message passing scheduling algorithms are introduced. In row

message passing, bit-node and check-node probabilities are updated row by row. And

it is shown by simulations that row message passing converges about two times

faster than the standard message passing.

Another serial scheduling strategy based on variable node updating schedule is

introduced as shuffled BP in [11]. The proposed scheme has about the same

complexity as standard scheme but converge faster. When the maximum number of

iterations has to be small, the proposed method offers better performance.

Original layered decoding schemes cannot be directly applied to non-layered

codes whose column weights are greater than one within layers. [12] proposed

parallel-layered belief propagation (PLBP) algorithm that can be used in "non-

layered" codes. It achieves better error performance with 50% less iterations.

4

[13] proposes decoding based on turbo-decoding message-passing strategy.

Various computation kernels, Normalized-MSA, Offset-MSA and Self-corrected

MSA are compared in terms of implementation area, energy consumption and error-

correcting performance. Studied kernels are applied to codes from IEEE 802.11n.

Results show that Self-corrected MSA shows a better error correcting performance

and energy efficiency per iteration.

While sequential scheduling improve the convergence speed, finding the best

sequence of message updates is of prime interest. In [14] the informed dynamic

scheduling is presented to find the next message to be updated. It uses the concept of

residual belief propagation. Differences between the values of the messages before

and after an update, called residuals, are used to dynamically update the schedule.

Residuals are used as an ordering metric to update messages.

[15] combined the features of lazy schedule and node-wise residual belief

propagation together to obtain efficient dynamic schedule for layered BP decoding of

LDPC codes.

[16] proposes informed dynamic scheduling strategy which utilizes instability of

variable node the residual of the variable-to-check message to locate the message to

be updated first. Results show that it outperform other algorithms at the cost of

increased complexity.

1.2 Objectives

Performance of error correcting codes has significant importance on overall

performance of communications system. In order to improve the performance, there

have been much research in the scientific community. Most of the study focuses on

finding efficient ways to reduce complexity at the cost of small degradation in

performance or to obtain better bit error rate by introducing new methods requiring

more resources. There always exists some tradeoff between performance and

complexity. Decoding of LDPC codes is an iterative process and includes a message-

passing strategy, the most popular one being flooding schedule. Later several

different message-passing schemes were introduced. Layered decoding algorithms

have gained attention because of their faster convergence. In layered decoding,

5

finding the right ordering of message updates plays an important role in performance

of the decoder. Ordering has an effect on decoding performance. In this thesis, we

consider defining set of rules for ordering message updates in order to maximize

decoding performance. We propose new techniques to improve performance of

layered decoding of LDPC codes. We also present a simulation acceleration

platform using OpenMP where parallel decoding is implemented on a real multicore

hardware platform.

1.3 Contributions

The main contribution of this work is to show that further performance

improvements can be achieved with minor changes in decoding algorithm. We have

recalled message-passing algorithms for decoding of LDPC codes and proposed new

methods based on turbo decoding message-passing algorithm. Because new methods

are based on layered decoding, they have faster convergence speed than standard

message-passing algorithms. Our layered decoding schemes can be implemented

with minimal changes which are negligible. Only modification lies in the process

order of layers. Therefore, they can be easily applied for layered decoding of LDPC

codes without any increase in computational complexity. We have applied proposed

methods to the codes in 802.11n, 802.15.3c and DVB-S2. According to our results,

we manage to obtain better performance results compared to standard message-

passing schemes.

One attractive solution to long simulation times of LDPC codes is to implement

inherently parallel decoding algorithms using multicore platforms. In this thesis, we

also present the first OpenMP parallel implementation of LDPC decoding algorithm

on a multicore DSP architecture and report its performance. Parallelized Normalized

Min-Sum decoding algorithm is implemented on 8-core Texas Instruments (TI) DSP

using OpenMP framework. Performance results are obtained by Unified

Instrumentation Architecture (UIA). Our results show that the parallelized decoding

on 8-core TI DSP achieves more than 6x speedup compared to single-core version.

6

2 LDPC CODES

Error-correction plays an important role in digital communications and storage

systems. As demand for data increases, higher data throughput is needed. More and

more data must be delivered reliably over unreliable channels. Nowadays, another

challenge in data communication is mobility. All of these reasons require more

powerful channel coding methods to be utilized by communications systems. In

Figure 2.1 a typical communication system is illustrated.

Figure 2.1 Typical communication channel

In this system, the source produces data to be transmitted. Information bits are

taken from a source, which could be an audio, video or other data. Before channel

encoding step, depending on the application, source encoding and encryption can be

applied to information bits.

Channel coding aims to protect data against noise that exists during transmission

or read/write to the storage media. People hardly realize errors that occur during

transmission thanks to error correction techniques applied underneath. Without a

suitable error control method, reliable data transmission would be impossible.

Therefore, the need for a high throughput error correction control is a must for many

applications areas.

Error correction is made possible by adding extra parity bits (redundancy) into

data, which consists of information bits. Later, these redundant bits are used to detect

or correct errors. Communication systems whether wireless or not deploy various

error-correction schemes such as convolutional codes and block codes.

Convolutional codes have memory and current data has dependency on the previous

data sent. Block codes encode and decode data on a block-by-block basis, and there

7

is no data dependency between data blocks. They have higher error correcting

performance and lower complexity. In this thesis, we will focus on Low-Density

Parity-Check (LDPC) codes, which is a type of linear block codes.

The rest of this section is organized as follows. After a brief overview of Linear

Block Codes is presented in Section 2.1, Section 2.2 gives an introduction on LDPC

codes. Construction methods of LDPC parity check matrices are discussed in Section

2.2.1. In this thesis, different LDPC codes from three different standards are studied.

LDPC codes defined in DVB-S2, IEEE 802.11n, and IEEE 802.15.3c standards are

discussed in Section 2.2.2, Section 2.2.3 and Section 2.2.4, respectively.

2.1 Linear Block Codes

Block codes are used to detect and correct data errors introduced during

transmission. While data passes through transmission medium, noise is introduced to

data being sent. This leads to error in data when it is received. A typical

communication channel is illustrated in Figure 2.2. An encoder adds redundancy to

the message being sent. At the receiver, a decoder corrects errors introduced during

transmission using redundancy in the received data. It is important to handle errors

present in data received for systems to work properly. Therefore, every practical

communication system incorporates error detection and correction mechanism. In a

two-way communication systems, error detection may be sufficient because in case

of error data can be requested for retransmission. In presence of error, receiver

notifies the transmitter of the existence of errors. This strategy is called automatic

repeat request (ARQ). But in one-way communication systems, there is no chance of

requesting data for retransmission. System is required to recover data in error without

retransmission. In this situation, error correction is needed at the receiver side in

addition to error detection in order to improve communication quality. This strategy

is known as forward error correction (FEC). All errors can be corrected without

retransmission if error rate is under FEC capacity.

8

Figure 2.2 Communication channel model

A block code is represented by (n, k) where k corresponds to number of

information bits and n corresponds to number of codeword bits. So, (n, k) code adds

n-k parity bits into k-length original data block to obtain n-length codeword. These

parity bits are used to correct data errors present in the received data. A block code is

considered a linear block code if addition of any valid two codewords results in

another valid codeword. Code rate is defined as ratio of length of information block

(k) to codeword length (n). As we add more parity bits, code rate decreases. The

higher code rate, the less transmission bandwidth needed. Code rate is defined by the

following formula:

� = ��
(2.1)

For uncoded systems, code rate is 1, i.e., no redundancy is added. The redundancy

can be assumed as overhead because it consumes transmission resources like channel

bandwidth or transmission power. Coding performance is inversely proportional to

coding rate.

Construction of a codeword from information bits is done by encoder. If

codeword is constructed such that parity bits appear after information bits, that code

is called systematic code. An example of a systematic codeword is given in Figure

2.3. Basically, parity bits are computed then appended to the end of information

block.

9

Figure 2.3 Systematic codeword

Encoding can be simply described as multiplication of two matrices, message

matrix K and special matrix G. So, given information block row-vector K, codeword

is constructed by

C	=	K	∙	G (2.2)

where G is called generator matrix. For systematic codes, G is in the form of ���|��. �� is identity matrix with k rows and columns. Below is one example of generator

matrix for (7, 4) code.

� = ! " " " ! " !" ! " " " ! !" " ! " ! ! "" " " ! " ! "# (2.3)

At the decoder side, another matrix called the parity check matrix is used to

decode codeword. For systematic codes, it can be constructed from generator matrix

G using:

$ =	 �%&|	'()*� (2.4)

So, corresponding H matrix for systematic code represented by generator matrix

in (2.3) is

$ = +! " ! " ! " "" ! ! ! " ! "! ! " " " " !, (2.5)

Generator matrix and parity check matrix satisfy the following equation:

-	 ∙ 	�. = 0 (2.6)

10

H matrix is a (n-k)xn matrix. It contains (n-k) constraints. Each row corresponds

to parity check equation. A valid codeword must satisfy:

0	 ∙ 	�. = 0 (2.7)

H performs (n-k) separate parity check operations on a received codeword. For

example, parity check operations implied by H matrix given in (2.5) are:

12⨁1�⨁14 = 0	 (2.8)

15⨁1�⨁16⨁17 = 0	 (2.9)

12⨁15⨁18 = 0	 (2.10)

• The first parity equation checks bits 0, 2, and 4

• The second parity equation checks bits 1, 2, 3, and 5

• The third and last parity equation checks bits 0, 1, and 6

2.2 Overview of LDPC Codes

LDPC codes are a subclass of linear block codes, that have gained reputation as

the most powerful channel coding technique. They are also called capacity-

approaching codes because they can approach Shannon capacity limit which states

maximum transmission rates over noisy channels with power and bandwidth

constraints. In [17], an irregular LDPC code performs within 0.0045dB of the

Shannon limit, making it the best performing code known so far. That is why LDPC

codes have attracted much attention and have been employed by many recent

communication standards. In addition, unlike other iterative codes, LDPC codes have

a lower computational complexity with a suitable architecture for parallel decoding

[18].

LDPC codes are linear block codes defined by a sparse parity-check matrix.

Number of 1's in parity check matrix is low in density. Number of 1's in a row is

called the row weight � and number of 1's in a column is called the column weight

11

��. In LDPC codes � ≪ � and �� ≪ � − �. An LDPC code said to be regular if �

is constant for all rows and �� is constant for all columns.

2.2.1 Construction of LDPC Codes

There are many methods for constructing LDPC codes. They can be classified

into two categories: algebraic constructions and random constructions [19]. A simple

algebraic code construction scheme is based on cyclically shifted identity matrices. A

shifted identity matrix is obtained from identity matrix by shifting each row by a

specific number. The parity-check matrix is in the form of

� = 	 �55 �5� ⋯ �5<��5 ��� ⋯ ��<⋮ ⋮ ⋱ ⋮�<)�,5 �<)�,� ⋯ �<)�,<
(2.11)

where ��	 (1 ≤ A ≤ � − �	B�C	1 ≤ D ≤ �) is a submatrix with cyclically shifted

identity matrix. Below is an example of 1-time right-shifted 4x4 identity matrix:

�5 = 0 1 0 00 0 1 00 0 0 11 0 0 0#
(2.12)

In random construction, LDPC codes are randomly chosen from code ensembles

specified by left degree distribution, right degree distribution, and a block-length.

There are also several random code construction schemes based on random graph

lifts.

There also exist "structured codes" which are proposed to facilitate the hardware

design of the decoder. Their parity-check matrices are constructed according to

specific pattern in order to simplify implementation issues. Figure 2.4 shows parity-

check matrix for a structured code. It consists of many non-overlapping rows that

allow layered decoding. Each block or submatrix is either all-zero (null) or a

cyclically shifted identity matrix. Location of submatrices with specific shift values

are determined during code design. In Figure 2.4 there are ��horizontal layers, where ��is defined in (2.13).

12

�� = (� − �)G
(2.13)

Figure 2.4 Structured LDPC code parity-check matrix example

In the following sections we will closely look at some structured codes defined by

well-known industry standards.

2.2.2 DVB-S2 LDPC Codes

DVB-S2 is the first standard that adopts LDPC as FEC code. Two codeword

lengths (short frame consisting of 16200 bits, long frame consisting of 64800 bits)

are defined within DVB-S2 standard. Code properties of LDPC codes defined in

DVB-S2 standard are given in the Table 2.1.

Table 2.1 DVB-S2 LDPC codes

Code

Rate

Codeword

Length

Information

Length

1/5 16200 3240

1/3 16200 5400

2/5 16200 6480

4/9 16200 7200

3/5 16200 9720

2/3 16200 10800

11/15 16200 12150

13

7/9 16200 12960

37/45 16200 13320

8/9 16200 14400

1/4 64800 16200

1/3 64800 21600

2/5 64800 25920

1/2 64800 32400

3/5 64800 38880

2/3 64800 43200

3/4 64800 48600

4/5 64800 51840

5/6 64800 54000

8/9 64800 57600

9/10 64800 58320

Codes used in DVB-S2 are based on Irregular Repeat Accumulate (IRA) codes.

Periodicity within the parity-check matrix reduces storage requirements. Codes are

systematic codes, so parity bits are appended to the end of information bits. The

LDPC encoder needs to create n-k parity bits from k information bits to construct a

valid codeword of length n. Encoding procedure is defined within the standard of

DVB-S2.

2.2.3 802.11n LDPC Codes

IEEE 802.11n defines 12 different LDPC codes with different code lengths and

code rates. The supported code rates, codeword lengths, information length, and

14

submatrix sizes are given in Table 2.2. These codes are reused within 802.11ac

standard which aims to increase the throughput of the 802.11n standard further [20].

Table 2.2 802.11n LDPC codes

Code

Rate

Codeword

Length

Information

Length

Submatrix

Size

1/2 648 324 27

2/3 648 432 27

3/4 648 486 27

5/6 648 540 27

1/2 1296 648 54

2/3 1296 864 54

3/4 1296 972 54

5/6 1296 1080 54

1/2 1944 972 81

2/3 1944 1296 81

3/4 1944 1458 81

5/6 1944 1620 81

Parity-check matrices of 802.11n LDPC codes are constructed by expanding

submatrices from the base matrix. Figure 2.5 shows an example of such parity-check

base matrix with a rate of 5/6. In this case, the block size is Z=27. The parity-check

matrix is composed of all-zero submatrix or identity submatrix with different cyclic

shifts. The positive numbers stand for the right cyclic shift value of the identity

submatrix, and the “–1” denotes null submatrix.

15

���
= 17 13 8 21 9 3 18 12 10 0 4 15 19 2 5 10 26 19 13 13 1 0 −1 −13 12 11 14 11 25 5 18 0 9 2 26 26 10 24 7 14 20 4 2 −1 0 0 −122 16 4 3 10 21 12 5 21 14 19 5 −1 8 5 18 11 5 5 15 0 −1 0 07 7 14 14 4 16 16 24 24 10 1 7 15 6 10 26 8 18 21 14 1 −1 −1 0 #

Figure 2.5 Base matrix for 802.11n, 648-bit, rate: 5/6

2.2.4 802.15.3c LDPC Codes

802.15.3c is a standard by IEEE for high-rate wireless personal area networks

(WPAN). The standard provides three physical layer modes for data rates exceeding

1Gb/s. It is the first standard in millimeter wave (mmWave) band since operating

frequency of 60GHz (57-64 GHz) corresponds to 5 mm in wavelength.

One of the two FEC schemes specified in 802.15.3c standard is LDPC codes.

There are five LDPC codes defined in the standard. Four of the LDPC codes have

block length of 672, and the longer one has a block length of 1440. The LDPC

encoder is systematic.

Similar to 802.11n codes, the parity-check matrices in 802.15.3c can be

partitioned to submatrices. These submatrices are either null (all-zero) submatrices or

cyclic-permutations of the identity matrix. Cyclic-permutation matrix is obtained by

cyclically shifting the columns to the left by a specific amount. Properties of the

codes defined in 802.15.3c can be found in Table 2.3.

Table 2.3 802.15.3c LDPC codes

Code

Rate

Codeword

Length

Information

Length

Submatrix

Size

1/2 672 336 21

3/4 672 504 21

5/8 672 420 21

7/8 672 588 21

14/15 1440 1344 96

16

3 DECODING OF LDPC CODES

In this section, a review of decoding algorithms of LDPC codes are given. Section

3.1 introduces Sum-Product decoding algorithm. Min-Sum algorithm, which is

approximation to Sum-Product algorithm is given in Section 3.2. Afterwards, other

decoding algorithms to improve performance of Min-Sum follow. Namely,

Normalized Min-Sum algorithm, Dual-Scaling Min-Sum algorithm, Self-Corrected

Min-Sum algorithm are given in Section 3.3, Section 3.4, and Section 3.5,

respectively. Layered decoding of LDPC codes is discussed at the end of this section,

Section 3.6.

LDPC decoding uses a message passing algorithm between two types of nodes,

called check (parity) nodes and bit (variable) nodes. Every row in H matrix

corresponds to a check node; every column corresponds to a bit node. Considering H

matrix given in Figure 3.1, it has 7 bit nodes and 3 check nodes.

� = +1 0 1 0 1 0 00 1 1 1 0 1 01 1 0 0 0 0 1,

Figure 3.1 Parity-check matrix showing nodes

A visual representation of the parity check matrix assists in the understanding of

decoding algorithms. Tanner graphs invented by R. Michael Tanner in 1981 [16],

provide a graphical representation of linear block codes. A Tanner Graph is a

bipartite graph with two types of nodes, check and bit nodes. The bit nodes are

usually drawn as circles, and check nodes are usually drawn as squares. Edge

between a bit node and check node indicates that corresponding bit node is involved

in the parity check constraint. So there are edges as many as number of 1s in parity-

check matrix. The parity check matrix illustrated in Figure 3.1 can be visualized

using a Tanner Graph in Figure 3.2.

17

Figure 3.2 Tanner graph representation

Decoding of LDPC codes are done by iteratively passing messages between two

sets of nodes represented in the Tanner graph. There are mainly two ways to

accomplish decoding of LDPC codes. Hard-decision decoding uses bit-flip

algorithm, whereas soft-decoding algorithm uses sum-product algorithm, which

accepts soft values and uses these values to pass messages between nodes. Sum-

Product algorithm, belief-propagation algorithm, or message-passing algorithm are

the different names given to the same iterative decoding algorithm.

Difference between hard-decision and soft-decision lies in the values passed

between nodes. The former propagates messages 0 or 1 while the latter propagates

messages as soft values or probabilities of being 0 or 1.

There has been much research on decoding of LDPC codes to decrease

computational complexity, to reduce energy consumption of the decoder, to lower

number of iterations and obtain better error performance.

3.1 Sum-Product Algorithm

Sum-product algorithm (SPA) uses the concept of message passing between bit

nodes and check nodes in an iterative manner. Soft values are propagated between

nodes and as messages are passed successively, reliability information improves with

the iteration count. The exchange of the soft probabilities is called message passing

or belief propagation. Messages are passed along the edges between bit nodes and

check nodes in the Tanner graph.

The SPA operates with probabilities. However working with probabilities has

several drawbacks. SPA contains intensive numerical computation and involves

18

many multiplications. Multiplication is harder to implement compared to addition.

So instead of using probability, log likelihood ratio (LLR) values can be used. This

way, multiplication turns into sum operation, divisions simply become subtractions

and decoding complexity is reduced by this way.

Suppose that an (n,k) LDPC code is defined, and Binary Phase Shift Keying

(BPSK) modulation is used. BPSK maps a valid n-length codeword 1 =N12, 15, … , 1<)5P into a sequence Q = NQ2, Q5, … , Q<)5P according to Q� = 1 − 2 ∙ 1�
where 0 <= i <n. With BPSK, bit 0 is mapped to symbol +1 and bit 1 is mapped to

symbol -1. After modulation, x is transmitted over Additive White Gaussian Noise

(AWGN) channel. At the receiver, y= NR2, R5, … , R<)5P is observed. R� = Q� + ��
where �� represents AWGN with zero mean and variance ��.

Iterative decoding refines log-likelihood ratio (LLR) of bits received which is

defined as in (3.1)

UU
� = log Y�(1� = 0|R�)�(1� = 1|R�)Z
(3.1)

The sign of the LLR value indicates bit value being 0 or 1, and its magnitude is

linked to reliability of the belief.

Two-phase message-passing (TPMP) is the most common schedule for decoding

of LDPC codes. It is also called flooding schedule. In flooding schedule the

computations are executed in two phases. Messages from variable to check nodes in

one phase; message updates from check nodes to their corresponding variable nodes

happen in the second phase. Hard decision is made at the end of each iteration. SPA

is carried out as follows:

Initialization Step-1:

In the initialization step extrinsic information from check node j to bit node i is set

to 0, and LLR value for the bit node is set to channel's a priori value as in (3.3).

19

[\] = " (3.2)

^] = __[] 	= 	`a]b`
(3.3)

where
	� is the extrinsic information from check node j to bit node i and �� is chanel

a priori information.

Bit (Variable) Node Process Step-2:

In this step, bit node i combines messages from corresponding check nodes

CN0,...CNj,...CNw-1 with w being column weight for bit node i. Bit node computes

the updated message to be sent to its neighbouring check nodes as follows as in (3.4)

c]\= __[] −	[\] (3.4)

where ��	 is the extrinsic information passed from bit node i to check node j. This is

depicted in Figure 3.3.

Figure 3.3 Bit-to-check message updating

Check Node Process Step-3:

In this step, check node j (CNj) receives messages from neighbouring variable

nodes, and propagates back the updated messages
	� as:

[\] = d e fg((c]′\)]′∈j(\)\]
lmd n mo|c]′\|p]′∈j(\)\]

l
(3.5)

where q(Q) is defined as

20

m(r) = − stg(uv(w(r `⁄)) = stg Yyr + !yr − !Z
(3.6)

and N(j) is the set of neighbour bit nodes connected to check node j. A′ ∈ z(D)\A
means all bit nodes connected to check node j except bit node i.

Figure 3.4 illustrates check-to-bit message updating.

Figure 3.4 Check-to-bit message updating

Posterior reliability value, also referred to as soft output of the received bit is

updated as in (3.7).

__[] = ^] + n [\]\∈j(]) (3.7)

This process is illustrated in Figure 3.5.

Figure 3.5 Reliability information update

21

Hard Decision Step-4:

At the end of each iteration hard decoding decision is made according to (3.8) and

(3.9).

1� = {1				A|	UU
� < 00					~�ℎ���A�� � (3.8)

1	 ∙ 	�. = {B��	�B�A�R − 1ℎ�1��	�B�A�|A�C	A|	0����	�~�	B	�B�AC	1~C��~�C � (3.9)

Iterative procedure continues until decoded codeword satisfies all check node

equations (1	 ∙ 	�. = 0	1~�CA�A~�) or predefined number of iteration count is

reached otherwise decoding goes back to step-2.

3.2 Min-Sum Algorithm

SPA is a computationally complex algorithm. There are several approximations to

SPA. Min-Sum algorithm (MSA) approximates SPA with less operations but at the

cost of error correcting performance.

Most of the complexity comes from check node processing. Nonlinear function q(Q)	given in (3.6) can be approximated such that check-to-bit message updating

reduces to

	� = �A�A′∈z(D)\A	o|�A′D|p e ���(�A′D)A′∈z(D)\A
 (3.10)

This way decoder complexity is reduced at the cost of error performance. There

are many correction methods proposed in the literature. In the following section we

will look at one of the most popular correction methods, which has been used in

performance tests performed in this work as well.

3.3 Normalized Min-Sum Algorithm

Several correction methods have been proposed to recover performance

degradation in MSA approximation. Normalized-MSA improves decoding

22

performance by downscaling overestimated check-to-bit messages. NMSA

introduces normalization factor α to improve decoding performance.

[\] = αd �](]′∈j(\)\]	o|c]′\|p e fg((c]′\)]′∈j(\)\]
l (3.11)

In (3.11) normalization constant α is usually chosen as 0.8. NMSA avoids biased

estimation of check-to-bit messages.

3.4 Dual-Scaling MSA (DS-MSA)

In [5] Chang proposed a new decoding algorithm, Dual-Scaling Min-Sum

Algorithm (DS-MSA) to compensate deficiencies of MSA approximation. There is a

slight difference between N-MSA and DS-MSA methods. While N-MSA uses single

scaling factor, DS-MSA uses two scaling factors. The difference can be summarized

as follows:

	����	 = �A�A′∈z(D)\A	o|�A′D|p e ���(�A′D)A′∈z(D)\A
 (3.12)

First
	� is calculated the same as in the MSA method given in (3.12). Based on

value of ��	 another comparison is made and
	� is recalculated as given in (3.13)

	� = ��5	
	����	A|	
	���� 	≤ 	��	��	
	����	A|	
	���� 	> 	��	 � (3.13)

3.5 Self-Corrected Min-Sum Algorithm

In [21] Savin proposes a correction for overestimation of check-to-bit messages.

Unlike Normalized-MSA where normalization factor is used, it modifies the bit node

processing by erasing unreliable messages. Unreliable messages are detected

whenever any variable node changes its message sign between consecutive iterations.

Sign fluctuation leads to message cleaning.

In the Self-Corrected Min-Sum decoding, initialization, check node processing

steps are the same as in Min-Sum algorithm. But variable node processing is

modified as shown below:

23

c]\u��
= __[] −	[\] (3.14)

c]\ = �c]\u��, A|	���oc]\p == fg((c]\u��)", ���� � (3.15)

In (3.14) new extrinsic information is calculated for the current iteration. This

value is used for comparison with previous value that has been sent. If two messages

have the same sign, then temporary value calculated in (3.14) is used as variable

node message, otherwise variable node message is set to 0 as shown in (3.15).

3.6 Layered Decoding of LDPC Codes

The main decoding method for LDPC codes is the Belief Propagation (BP)

algorithm. Common message-passing schedule used in the BP is two-phase message-

passing (TPMP) schedule or flooding schedule. One problem with flooding schedule

is its slow convergence. It is not efficient in terms of convergence. In order to

achieve higher convergence speed, turbo decoding message-passing (TDMP)

schedule or "layered decoding" is proposed [9]. In layered decoding parity-check

matrix is divided into horizontal or vertical submatrices called layers. Reliability

information updating occurs after each layer. In each sub-iteration, reliability values

are updated and these intermediate updated messages are used for the next sub-

iteration. This allows soft outputs of bit nodes to converge faster than flooding

schedule.

There are two types of layered decoding schemes: Horizontal and vertical. In the

horizontal layered decoding, also called serial-C schedule, parity-check matrix is

divided into horizontal layers and check nodes in that layer are updated first, then

whole neighbouring bit nodes are updated. In vertical layered decoding, also called

serial-V schedule, parity-check matrix is divided into vertical layers and bit nodes in

that layer are updated first, followed by update of corresponding check nodes in the

layer. Both layered decoding schemes proceeds layer after layer. In this thesis,

horizontal layered decoding scheme is used.

The key advantage of layered decoding is faster convergence speed achieved by

reducing number of iterations by 50%. Another advantage of serial schedules is that

they can be implemented with lower memory requirements.

24

Steps of layered decoding algorithm are summarized by the below pseudo code.

The MS algorithm can be independently applied to layered decoding. By this way

hardware implementation is greatly reduced. Initialization step is the same as

flooding schedule. In this stage, log-likelihood ratios of bit nodes set to their initial

values as shown in equations (3.16) and (3.17) where y� denotes corresponding

received value from the channel and �� denotes channel's noise variance. Channel

noise is assumed to be AWGN throughout the work.

Initialization-Step:

[\] = " (3.16)

c] 	= 	`a]b` (3.17)

Process-Step:

for layer k=0 to �� do

 for j ∈ check nodes of layer do

c]\= c] −	[\] (3.18)

[\] = α d �](]′∈j(\)\]	o|c]′\|p e fg((c]′\)]′∈j(\)\]
l (3.19)

c]= c]\ +	[\] (3.20)

Parity-check matrix is divided into �� layers. Then, for all i (bit node) in the kth-

layer of the rows, (3.18)-(3.20) are repeated for one layer after another. Steps (3.18)-

(3.20) constitute a decoding sub-iteration. There are as many number of layers as

sub-iterations. In equation (3.18) bit node messages are updated where ��	 is the

message from variable node i to check node j, �� is the a posteriori probability (APP)

message of variable node i. In equation (3.19) check node messages are updated

where
	� is message from check node j to variable node i. Scale factor α is used to

normalize overestimated check to bit messages. Lastly, APP values are updated as

given in equation (3.20). Extrinsic information updated by processing of earlier

layers are used as input for the processing of subsequent layers. Since updated

25

messages are used within an iteration, refined estimates spread faster among nodes,

speeding up the convergence of the decoder.

Layered decoding method can be applied to decode any LDPC code. It accelerates

convergence rate of the decoder by a factor of two while maintaining performance

gain. In the following sections, we will propose new layered decoding schemes for

decoding of LDPC codes. All proposed methods use the same concept outlined in

this section for exchanging messages between check nodes and bit nodes. The

difference lies in the process order of layers. In the proposed schemes, process order

of layers is different but message updating rules remain the same.

3.7 Parallel Decoding of LDPC Codes

One important advantage of LDPC codes over Turbo codes is parallelism.

Decoding of LDPC codes can be done in parallel using multicore architectures. In

flooding schedule, all bit nodes and check nodes are processed together. Work is

shared between cores by dividing parity check matrix into the horizontal and vertical

non-overlapping strips for check to bit and bit to check processing, respectively. The

parity-check matrix is divided evenly into equal strips in order to distribute load into

cores equally. In multicore implementation of NMSA, each of selected number of

cores concurrently processes messages sent form bit node to check node or vice-

versa. We implement parallel decoding of LDPC codes on a real DSP hardware. The

target hardware is Texas Instrument's TMDSEVM6678LE Evaluation Module. It

contains 8 identical C6678 DSP cores. Parallelization of LDPC decoding is made

possible by using OpenMP platform. More information about target hardware,

OpenMP platform, implementation details and performance results are presented in

Section 6.

26

4 PROPOSED IMPROVEMENT METHODS

Traditional layered decoding does not differentiate any layers to be processed first

or last, layers are processed without a specific order. However, processing order of

the layers has an impact on error performance of decoder. In this section, we propose

different layered decoding methods where layers are processed in the order defined

by our criterions. We define three methods to find the optimal process order of layers

based on syndrome-check. Section 4.1 and Section 4.2 discusses the proposed fixed

order and dynamic order scheduling of layered decoding of LDPC codes. A

satisfaction weight order method is also introduced for layered decoding of LDPC

codes. Since syndrome check is a part of the iterative decoding algorithm, our

methods put a little computation burden on the existing methods.

4.1 Fixed Order Layered Decoding of LDPC Codes (LOCK)

In fixed order layered decoding scheme, layers are ordered for one time, and the

order is kept the same throughout the iterative decoding process. The first iteration is

an exception to this rule. In the first iteration, no specific order is imposed. Layers

are processed sequentially from 0 to ��. In the second iteration, layers are ordered

according to the result of syndrome check made at the end of first iteration. For the

purposes of ordering, a list that specifies the order of layers is generated. Satisfied

check nodes are put at the top of the list, followed by unsatisfied nodes. This process

is exemplified in Figure 4.1.

27

.

Figure 4.1 Fixed order layered decoding example

In Figure 4.1, an LDPC code with 5 layers is assumed. In fixed order layered

decoding scheme, layers are processed sequentially in the first iteration as illustrated

at the top of Figure 4.1. After the completion of syndrome check at the end of the

first iteration, check nodes 1 and 3 become unsatisfied. Now, the processing order of

layers is updated so that satisfied check nodes appear at the top of the list and

unsatisfied check nodes are moved to the end of the list. This processing order list is

preserved until the end of decoding. As seen in

Figure 4.1, check node 2 becomes unsatisfied at the end of second iteration but

order list is not modified. Processing is done at the fixed order specified in the

second iteration.

4.2 Dynamic Order Layered Decoding of LDPC Codes (ORD)

Like fixed order layered decoding scheme, dynamic order layered decoding

method uses syndrome values to decide the processing order of layers. Layers are

sequentially processed in the first iteration as in the previous method. But at the end

of each iteration, the order list is dynamically updated. Although, the dynamic

ordering requires more computation than its fixed ordering technique, our results

show that dynamic order method has better error performance. In Figure 4.2,

dynamic order method is exemplified using the same example given in Section 4.1.

28

Figure 4.2 Dynamic order layered decoding example

As can be seen in Figure 4.2, the order list is updated at the end of each iteration

to ensure that satisfied checks are processed first. At the end of second iteration only

check node 2 is unsatisfied, and other check nodes are satisfied. Order list is updated

based on these syndrome values and therefore, check node 2 is relocated at the end of

the order list.

4.3 Satisfied Weight Order Layered Decoding of LDPC Codes (ORDE)

In the previous sections we have discussed new methods for layered decoding of

LDPC codes with two different ordering. Process order of layers is decided based on

syndrome values of check nodes. The processing ordering rule was simple: satisfied

check nodes are processed first, whereas unsatisfied check nodes are processed last.

Only distinction made among check nodes is check node being satisfied or

unsatisfied. In satisfied weight order decoding method, we further evaluate check

nodes based on their "total check node satisfaction". This concept can be explained

more clearly with the help of an example given in Figure 4.3.

29

Figure 4.3 Example regular LDPC code

In Figure 4.3, a regular LDPC code with a constant row weight of 6 and constant

column weight of 3 is assumed. Check node, CNj that we will rate has connections to

6 bit nodes. Each bit node has connection to 3 check nodes including the check node

that we will evaluate. In satisfaction weight order method, we first calculate total

unsatisfied neighbouring check nodes of the check node CNj. For example, assume

that check nodes in red of

Figure 4.4 are unsatisfied. So in this case, total unsatisfied neighbouring check

nodes for the check node CNj is 3. In satisfaction weight order method, every check

node is evaluated based on this criteria and, check node with the highest total

unsatisfied rating is processed last. As satisfaction weight order method is dynamic,

the process order of layers is re-evaluated at the end of every iteration based on the

their satisfaction weight values.

30

Figure 4.4 "Total unsatisfied check node" calculation

In the next section we apply proposed methods to selected codes from well-known

standards and compare their performance results. In the results given in the next

section, LOCK, ORD and ORDE simply refer to fixed order, dynamic order and

weight order layered decoding methods defined in this section, respectively.

31

5 PERFORMANCE RESULTS OF PROPOSED METHODS

In this section, we apply standard layered decoding method as well as the

proposed methods of Section 4 on different LDPC codes defined in WLAN, WPAN

and DVB-S2 standards and compare performance results of investigated methods.

Both short and long length codes with different rates have been selected for

performance evaluations.

It is assumed that encoded codewords are modulated with BPSK modulation and

transmitted over an AWGN channel. In the layered decoder, two different maximum

number of iterations, 50 and 100, are used. Aforementioned layered decoding

methods have been applied to some well-known LDPC codes. We have made

performance comparisons among many methods for layered decoding of LDPC

codes. In the simulations presented in this thesis, we have used sequential check-

node update scheme for layered decoding as presented in [10]. The simulation results

for Word Error Rate (WER) are summarized in this section. We use the following

shorthands to distinguish between different methods. NMSA, LOCK, ORD and

ORDE stand for the layered min-sum algorithm using the proposed scheduling

method with normalized MSA, fixed order, dynamic order and satisfaction weight

order methods, respectively.

5.1 Simulation of Proposed Methods on PC

In order to evaluate and compare performance of decoding algorithms, a

simulation application is developed with C# in Visual Studio. The followings are

key-features implemented and incorporated into the simulation software:

• Alist file parser to create parity-check matrix

• Sparse-matrix implementation for efficient use of memory

• Encoder for LDPC codes from 802.11n, 802.15.3c, DVB-S2

• BPSK modulation

• AWGN noise generation and channel simulation

• LDPC decoder implementation for flooding and layered schedules

• Parallel decoding of LDPC codes

• Generation of Matlab scripts to plot performance graphs

32

As an example, consider the LDPC code defined by the following parity-check

matrix:

���5� =
��
���
���
�1 0 0 0 1 0 0 0 0 0 0 10 1 0 0 0 1 0 0 0 1 0 00 0 1 1 0 0 0 0 0 0 1 00 0 1 0 0 0 1 0 0 0 0 01 0 0 0 0 0 0 1 0 0 0 00 1 0 0 0 0 0 0 1 0 0 00 0 0 1 0 0 0 1 0 1 0 00 0 0 0 1 0 0 0 1 0 1 00 0 0 0 0 1 1 0 0 0 0 1��

���
���
�

(5.1)

Alist file is a format for defining low density parity-check matrices. Alist file for

the H matrix given in (5.1) is given in Table 5.1.

Table 5.1 Alist file contents

Line

Number
Content Description

1 12 9 N M

2 3 2 max_row max_col

3 3 3 3 2 2 2 3 3 3 Row weights

4 2 2 2 2 2 2 2 2 2 2 2 2 Column weights

5 1 5 12 Row positions (M=9 lines)

6 2 6 10 "

7 3 4 11 "

8 3 7 "

9 1 8 "

10 2 9 "

11 4 8 10 "

12 5 9 11 "

13 6 7 12 "

14 1 5 Column positions (N=12 lines)

15 2 6 "

16 3 4 "

17 3 7 "

18 1 8 "

19 2 9 "

20 4 9 "

21 5 7 "

22 6 8 "

23 2 7 "

24 3 8 "

25 1 9 "

33

Since H matrix is sparse, it is not effective to use two-dimensional arrays for use

in decoder implementation. Instead jagged arrays are utilized. A jagged array is an

array whose elements are arrays with different sizes. They can store efficiently many

rows of varying lengths. In the application, we create jagged arrays to represent

parity-check matrix in memory. z(D) is set of variable nodes for check node j. To

keep column positions of a check node we have the following jagged array. It has 9

arrays in total. Each array corresponds to the lines 5-13 in Table 5.1. Note that not all

arrays have the same size.

Table 5.2 Array to keep column positions of check nodes

Check

Node
Column Positions

0 0 4 11

1 1 5 9

2 2 3 10

3 2 6

4 0 7

5 1 8

6 3 7 9

7 4 8 10

8 5 6 11

Similarly, �(A) represents set of check nodes for variable node i. The jagged

array structure in Table 5.3 keeps row positions of variable nodes. It looks like a two-

dimensional array because it is structured, i.e., all the arrays are of the same length.

Table 5.3 Array to keep row positions of variable nodes

Bit

Node

Row

Positions

0 0 4

1 1 5

2 2 3

3 2 6

4 0 7

5 1 8

6 3 8

7 4 6

8 5 7

9 1 6

10 2 7

11 0 8

34

Extrinsic messages sent between nodes are stored in one-dimensional arrays. In

decoder implementation, we need to give a unique id to each node participating in

the parity-check matrix. In Table 5.4, this labeling process is exemplified. Each "1"

representing an edge in the parity-check matrix is assigned a unique id.

Table 5.4 Identification of edges

 0 1 2 3 4 5 6 7 8 9 10 11

0 0 8 22

1 2 10 18

2 4 6 20

3 5 12

4 1 14

5 3 16

6 7 15 19

7 9 17 21

8 11 13 23

In decoding algorithm, we need to access index of the node for variable node and

check node processing. In check node processing, in order to compute check-to-bit

messages we horizontally scan check nodes. Whereas in variable node processing we

vertically scan parity-check matrix to calculate check-to-variable messages. The

following index tables given in Table 5.5, Table 5.6 are used for these needs.

Table 5.5 Indexes for check nodes

Check

Node

Indexes of

Neighbour Bit

Nodes

0 0 8 22

1 2 10 18

2 4 6 20

3 5 12

4 1 14

5 3 16

6 7 15 19

7 9 17 21

8 11 13 23

35

Table 5.6 Indexes for variable nodes

Bit

Node

Indexes of

Neighbour

Check

Nodes

0 0 1

1 2 3

2 4 5

3 6 7

4 8 9

5 10 11

6 12 13

7 14 15

8 16 17

9 18 19

10 20 21

11 22 23

In simulations, we randomly generate information bits and encode it using an

encoder. Encoder base class named "LDPCEncoder" implements all-zero codeword

generation. Other classes "DVBS2Encoder", "WPANEncoder" and

"WLANEncoder" classes are derived from the encoder base class as shown in Figure

5.1.

Figure 5.1 Encoder class diagram

Several decoding algorithms are implemented within the application. Object-

oriented architecture is utilized to implement all decoders. One base class is

implemented. All other decoders derive from this base class. If a decoder differs

from base class in variable node processing or check node processing, it overrides

methods inherited from the base class. Class diagram of the decoders can be seen in

Figure 5.2.

LDPCEncoder

Class

WLANEncoder

LDPCEncoder

Class

DVBS2Encoder

LDPCEncoder

Class

WPANEncoder

LDPCEncoder

Class

36

Figure 5.2 Decoder class diagram

In the application, parallelism where possible is added to speed up simulation. The

LDPC decoding algorithm is an iterative process containing a lot of computations

and constitutes the vast majority of the time spent in performance simulations.

Therefore, master thread spawns a team of threads as many as different decoders.

Each thread conducts a specific decoding algorithm in parallel. This is shown in

Figure 5.3 as "Parallel Region". In Figure 5.3, four different decoding algorithm run

in parallel to minimize the required simulation time.

LDPCDecoder

Class

LockedOrderDe…

NMSA

Class

NMSA

LDPCDecoder

Class

OrderedDecoder

NMSA

Class

OrderEDecoder

NMSA

Class

SelfCorrected

LDPCDecoder

Class

37

Generate Codeword

Decoder-4
ORDE

Decoder-2
ORD

Decoder-1
NMSA

Decoder-3
LOCK

threads

Parallel Region

Is Error
Count

Reached?
End

No

Yes

Figure 5.3 Decoding parallelism

Corresponding C# code excerpt for the above decoding loop is given below. The

code gives an example of task parallelism. Task parallelism is often the simplest

abstraction to use when a routine can be decomposed into independent separate tasks.

The goal is to maximize processor utilization. If the methods execute sequentially,

the total execution time would be the sum of the duration of each method. However,

when a group of independent tasks start executing in parallel, total time spent is the

elapsed time of the longest task. In the simulation software, codeword generated is

passed as an input to all decoders, and decoding occurs in parallel. After decoding

finishes, the results are collected and stored. Application makes extensive use of

"Language Integrated Queries". LINQ is a general purpose query language to operate

over collection of objects. Its parallel version "Parallel LINQ" (PINQ) is used to

execute operations in parallel.

while (true) {
 GenerateCodeword();

 // parallel decoding

 Decoders.AsParallel().ForAll(x=>x.Decode(LLRInput, Codeword));

 for (int i = 0; i < Decoders.Count; i++){
 for (int j = 0; j < MaxIterationCounts.Length; j++){

 WordErrors[point][i][j] += Decoders[i].WordError[j];

 BitErrors[point][i][j] += Decoders[i].BitError[j];
 Iterations[point][i][j] += Decoders[i].Iteration[j];

 }

38

 }

 if (WordErrors[point].All(x=>x.All(y => y>=ErrorCountLimits[point])))

 break;

 }

Blocks shown in the parallel region in Figure 5.3 are actually decoding blocks

which carry out LDPC decoding steps given in Section 3. Figure 5.4 gives the flow

diagram of LDPC decoding. As seen in Figure 5.4, LDPC decoding is an iterative

process.

Figure 5.4 Flow diagram of LDPC decoding process

5.1.1 Simulation Results for 802.11n LDPC Codes

Proposed ordering methods and standard scheduling layered decoding methods

which are discussed in Section 4 have been applied to the LDPC codes defined in

IEEE 802.11n standards. Codes with two different codelengths (short&long) and

39

codes with two different rates (low&high) for each codeword length are chosen.

Table 5.7 presents the selected LDPC codes from 802.11n standard.

Table 5.7 Selected LDPC codes from 802.11n standard

 Low-rate (1/2) High-rate (5/6)

Short-length (648, 324) (648, 540)

Long-length (1944, 972) (1944, 1620)

Studied layered decoding schemes are applied to selected LDPC codes of 802.11n

standards and the following WER performance results are obtained. WER results for

a rate 1/2 with 648 codeword-length is given in given in Figure 5.5 and Figure 5.6,

assuming 50 and 100 maximum iterations, respectively. As shown in Figure 5.5 and

Figure 5.6, ORD (dynamic ordering) and ORDE (satisfaction weight ordering)

methods display better performance for low SNR range, up to 1.9dB. After this point,

performance improvement is not observed anymore.

40

Figure 5.5 Performance results for WLAN, short-length, low-rate code with 50 max iterations

Figure 5.6 Performance results for WLAN, short-length, low-rate code with 100 max iterations

Performance results for a higher rate (5/6) with the same codeword length, 648,

are given in Figure 5.7 and Figure 5.8, assuming 50 and 100 maximum iterations,

respectively. Results show an improvement in performance in full SNR range.

41

Comparing Figure 5.7 and Figure 5.8, it is clear that with higher maximum number

of iterations, the more performance gain is achieved.

Figure 5.7 Performance results for WLAN, short-length, high-rate code with 50 max iterations

Figure 5.8 Performance results for WLAN, short-length, high-rate code with 100 max iterations

42

Table 5.8 presents maximum iteration values of NMSA and ORD (dynamic

ordering) algorithms with (648, 540) LDPC code of IEEE 802.11n standard. The

results clearly show that compared to NMSA, ORD algorithm achieves the same

WER with much less iteration counts. For a WER of 10-2, the ORD algorithm is able

to converge twice as fast with only 48 iterations while NMSA requires 97 iterations

to reach the same WER. As the WER gets lower, convergence speed improvement of

ORD algorithm diminishes, but it is still able to achieve a significant 28% reduction

in the iteration count at a WER of 10-4. Consequently, it is clear that prioritizing the

satisfied check nodes in processing order over unsatisfied checks leads to

considerable convergence speed increase for decoding of LDPC codes.

Table 5.8 Iteration savings obtained by SBS algorithm with (648, 540) LDPC code

SNR (dB) WER
NMSA

Max. Iter.

ORD

Max. Iter.
%

4.4 1.5x10-4 98 71 28%

4.2 7.2x10-4 97 69 29%

4.0 3.4x10-3 97 58 40%

3.8 1.2x10-2 99 57 42%

3.6 4.0x10-2 97 48 51%

Next, we apply the proposed ordering schemes for layered decoding to two other

LDPC codes with 1944 bit-length from IEEE 802.11n standard. WER performance

results of the code with rate 1/2 are given in Figure 5.9 and Figure 5.10, assuming

maximum iterations counts of 50 and 100, respectively. ORD and ORDE

(satisfaction weight ordering) methods perform slightly better for low SNR range. As

SNR gets higher, improvement diminishes for ORD and ORDE methods. LOCK

(fixed ordering) method gives nearly the same performance as NMSA. This

characteristics is similar to what we obtain with short-length, low-rate code.

43

Figure 5.9 Performance results for WLAN, long-length, low-rate code with 50 max iterations

Figure 5.10 Performance results for WLAN, long-length, low-rate code with 100 max iterations

44

Figure 5.11 and Figure 5.12 presents the WER results for higher rate code with

the same codeword-length of 1944, with maximum iteration counts of 50 and 100,

respectively.

Figure 5.11 Performance results for WLAN, long-length, high-rate code with 50 max iterations

45

Figure 5.12 Performance results for WLAN, long-length, high-rate code with 100 max iterations

5.1.2 Results for 802.15.3c LDPC Codes

In this section, we apply proposed decoding methods to the LDPC codes defined

in IEEE 802.15.3c (WPAN) standard. As in Section 5.1.1, LDPC codes of different

lengths and rates are chosen for evaluation. The selected codes are given in Table

5.9.

Table 5.9 Selected LDPC codes from 802.15.3c standard

 Low-rate (1/2) High-rate (7/8) High-rate (14/15)

Short-length (672, 336) (672, 588) -

Long-length - - (1440, 1344)

WER results for 672-bit, rate 1/2 LDPC code are given in Figure 5.13 and Figure
5.14.

46

Figure 5.13 Performance results for WPAN, short-length, low-rate code with 50 max iterations

47

Figure 5.14 Performance results for WPAN, short-length, low-rate code with 100 max iterations

Performance results for short-length and high-rate WPAN codes are given in

Figure 5.15 and Figure 5.16. Figures clearly show that ORD and ORDE methods

provide performance improvement over NMSA and LOCK methods. This is in

accordance with results obtained from short-length, high-rate codes from WLAN.

48

Figure 5.15 Performance results for WPAN, short-length, high-rate code with 50 max iterations

Figure 5.16 Performance results for WPAN, short-length, high-rate code with 100 max iterations

49

802.15.3c standard defines only one LDPC code with longer length. This is 1440

bit codeword-length, high-rate code. Figure 5.17 and Figure 5.18 show performance

results of proposed methods against NMSA for maximum iteration counts of 50 and

100, respectively. Results are similar to the ones that are obtained from short-length,

high-rate code, i.e. (672, 588) code.

Figure 5.17 Performance results for WPAN, long-length, high-rate code with 50 max iterations

50

Figure 5.18 Performance results for WPAN, long-length, high-rate code with 100 max iterations

5.1.3 Results for DVB-S2 Codes

In this section, we have applied proposed ordering layered decoding methods to

the codes from DVB-S2 standard. In simulations, codes with 16200 frame size are

used. Figure 5.19 and Figure 5.20 present the WER results. As results show there is

not much performance improvement achieved using proposed methods.

In Section 6, a simulation acceleration platform using OpenMP is described,

parallel decoding is implemented on real hardware platform and obtained simulation

speed gains are reported.

51

Figure 5.19 Performance results for DVB-S2, normal-frame, high-rate code with 50 max iterations

Figure 5.20 Performance results for DVB-S2, normal-frame, high-rate code with 100 max iterations

52

6 PARALLEL DECODING OF LDPC CODES ON REAL DSP

HARDWARE

Despite widespread usage of LDPC codes, the highly complicated iterative

decoding process leads to very long simulation times when verifying decoding

performance under different decoding parameters. One attractive solution to long

simulation times of LDPC codes is to implement inherently parallel decoding

algorithms using multicore platforms. In this section, we present the first OpenMP

parallel implementation of LDPC decoding algorithm on a multicore DSP

architecture and report its performance. Parallelized Normalized Min-Sum decoding

algorithm is implemented on 8-core Texas Instruments (TI) DSP using OpenMP

framework. Performance results are obtained by Unified Instrumentation

Architecture (UIA).

Multicore architectures considerably enhance data processing speeds, as multiple

cores can handle many operations simultaneously. An important aspect of multicore

approach is the proper migration of software development to the multicore

environment. Parallelizing code to run over multicore platform requires some thread

library and compiler support. Texas Instruments (TI) has recently introduced an

OpenMP support into their development environment, which enables easy porting of

single-core applications to multicore platform.

A brief information about OpenMP is presented in Section 6.1. Embedded

platform used and implementation details for parallel decoding of LDPC codes are

provided in Section 6.2, and Section 6.3, respectively. Finally, speedup achieved by

parallelization is reported in Section 6.4.

6.1 OpenMP Framework

With multicore trend, parallelizing existing code previously written for running on

a single core is one of the most challenging jobs for software developers. Several

parallel programming models have been proposed so far, such as Message-Passing

Interface (MPI), thread libraries (Pthreads), Open Computing Language (OpenCL)

and Open Multi-Processing (OpenMP) to address multicore software development

challenge. MPI is generally used for distributed memory architectures whereas

53

OpenCL is an open standard to write parallel applications for heterogeneous

platforms. In contrast, OpenMP is a framework designed for shared memory

multiprocessing. As LDPC decoding algorithm extensively uses shared memory for

message passing between bit and check nodes, OpenMP framework is more suitable

to parallelize the decoding algorithm of LDPC codes.

OpenMP is not a new programming language. It introduces some notation that

provides straightforward port of existing sequential codes by simple use of compiler

directives. The directives tell the compiler which part of the code executes in parallel

and how to distribute them among the parallel threads. The compiler considers and

interprets directives when application is enabled to use OpenMP. The program starts

as a single thread of execution as any sequential program does. This thread is called

initial thread. A team of threads is forked at the start of parallel region and joined at

the end [23]. The start of parallel region is indicated by #pragma omp parallel

directive. This fork-join process of OpenMP is illustrated in Figure 6.1.

Figure 6.1 OpenMP Fork/Join model

Workload can be shared by all cores available using appropriate OpenMP work

sharing constructs. The most common work sharing approach is to distribute the

work in a for-loop among the threads in a team. However, not all loops can be

suitable for this type of work sharing. Data dependencies may prevent loop

parallelization. It is the user’s responsibility to decide loop parallelization is

applicable or not. OpenMP allows the programmer to control the number of threads

that execute a parallel region. If it takes T1 to execute an application on a single core

and TP to execute the same code on P cores then, parallel speedup can be defined as

the ratio:

Fork

Join

Initial
thread

Team of threads

Initial
thread

54

����C�� = �5�
(6.1)

If speedup increases with an increasing number of cores, the system is said to be

scalable.

6.2 Embedded DSP Platform

In this work, performance improvement achieved by parallelization is evaluated

on TI’s Keystone based module, TMDSEVM6678LE, shown in Figure 6.2. The

module features TMS320C6678 System-on-chip (SoC) which includes identical 8

TMS320C66x (C66x) DSP cores providing both fixed- and floating-point capability.

TI’s KeyStone family is a well-known low power DSP architecture, which consumes

only 10W at 1GHz clock frequency. The KeyStone architecture is designed with

tiered multicore memory architecture, allowing for full processing entitlement across

all cores while executing concurrently [24]. It contains two levels of memory:

separate 32kB local program and data memories exist at level 1 (L1P and L1D).

There exists 512kB L2 memory separate to each core. The L1 and L2 memories can

be configured to be used as cache, RAM or part RAM/part cache. The L1 local

memories are configured as RAM entirely. L2 memory is used as local memory to

store thread private variables.

Figure 6.2 TMDSEVM6678 Target module

The C6678 also integrates 4096kB internal memory (usually referred as MSMC

memory) shared among cores. The MSMC inside SoC allows the cores to

dynamically share the internal and external memories for both code and data. TI’s

OpenMP implementation configures MSMC in shared level 2 mode (SL2). In this

mode, SL2 RAM is cacheable only within the local L1P and L1D caches. However,

since cache coherency is not performed upon this state, shared variables concurrently

55

accessed and modified by different threads running on different cores must be placed

into a non-cached shared memory segment. In order to allow this, OpenMP runtime

creates a non-cached alias for entire MSMC memory range [25]. Shared variables are

placed into non-cached portion of MSMC memory. Code and constants are put into

cached part of the memory. This approach makes parallelization even faster. It is

important not to overlap these two segments. The compiler translates OpenMP into

multi-threaded code with calls to a custom runtime library built on top of SYS/BIOS,

a lightweight native real-time operating system (RTOS), and inter-processor

communication (IPC) protocols [25].

Keystone architecture provides an external memory access to DDR memory and

many industry standard peripherals such as PCIe, Serial Rapid I/O (SRIO), Enhanced

Direct Memory Access (EDMA). Multicore Navigator (MCN) allows data exchange

among cores and peripherals. Figure 6.3 shows the general functional block diagram

of the multicore processor used in this work.

Figure 6.3 Reference DSP architecture

There is no operating system (OS) running at the processor level, instead each

core executes its own instance of Real-Time Operating System (RTOS), called

SYS/BIOS. It is a lightweight native RTOS provided by TI. A C/C++ compiler,

debugger is provided in the development environment. The compiler supports

OpenMP 3.0 to allow easy porting of existing single core code to multicore platform.

The compiler translates OpenMP into multi-threaded code with calls to a custom

runtime library built on top of SYS/BIOS and inter-processor communication (IPC)

protocols [25]. TI also provides Code Composer Studio (CCS); an Eclipse based

Integrated Development Environment (IDE) for code development. Figure 6.4

illustrates code development process for target system.

Debug System
(Code Composer Studio

The Figure 6.5 shows the TI's OpenMP solution stack. Currently, OpenMP is

supported on TI DSPs only for SYS/BIOS operating system. All OpenMP programs

must be linked with the OMP run

6.3 Implementation Details for

In this work, a single core version of LDPC decoding algorithm is modified to run

on TI’s KeyStone multicore DSP platform, where an OpenMP

scheme is used to parallelize code. In this section, the key aspects of the

implementation are described.

LDPC decoding is coded entirely in C using the Code Composer Studio™

Integrated Development Environment (IDE) v5.5, MCSDK v2.1.2.6 and SYS/BIOS

v6.35.4.50. UIA v1.3.1.08 is utilized to instrument code and to provide benchmark

statistics. OpenMP 3.0 is supported in evaluation platform. The project is built with

56

Debug System
Code Composer Studio)

JTAG Connection

Figure 6.4 Application development with CCS

shows the TI's OpenMP solution stack. Currently, OpenMP is

supported on TI DSPs only for SYS/BIOS operating system. All OpenMP programs

must be linked with the OMP run-time library [26].

Figure 6.5 TI's OpenMP solution stack

Implementation Details for Parallel Decoding of LDPC Codes

In this work, a single core version of LDPC decoding algorithm is modified to run

on TI’s KeyStone multicore DSP platform, where an OpenMP-based multi

scheme is used to parallelize code. In this section, the key aspects of the

described.

LDPC decoding is coded entirely in C using the Code Composer Studio™

Integrated Development Environment (IDE) v5.5, MCSDK v2.1.2.6 and SYS/BIOS

v6.35.4.50. UIA v1.3.1.08 is utilized to instrument code and to provide benchmark

P 3.0 is supported in evaluation platform. The project is built with

Target System

shows the TI's OpenMP solution stack. Currently, OpenMP is

supported on TI DSPs only for SYS/BIOS operating system. All OpenMP programs

Parallel Decoding of LDPC Codes on DSP

In this work, a single core version of LDPC decoding algorithm is modified to run

based multi-threading

scheme is used to parallelize code. In this section, the key aspects of the

LDPC decoding is coded entirely in C using the Code Composer Studio™

Integrated Development Environment (IDE) v5.5, MCSDK v2.1.2.6 and SYS/BIOS

v6.35.4.50. UIA v1.3.1.08 is utilized to instrument code and to provide benchmark

P 3.0 is supported in evaluation platform. The project is built with

57

the maximum compiler optimization level. To verify improvement by multicore

processing, we use 1 to 8 cores run the NMSA decoding algorithm simultaneously.

There are many options to improve the execution speed of code on DSP. With

proper use of compiler directives and better memory placement and alignment better

execution times can be achieved. Different data sections can be placed into specific

region in memory by using appropriate directives. RTSC project provides a

configuration file where necessary information is given to the linker on how to bind

memory sections to the memory segments defined by a platform file. Code segment

from configuration file shown below instructs the linker to map user defined section

“.L2vars” into memory segment “L2SRAM”:

// load const vars section into L2SRAM

Program.sectMap[".L2vars"] = new Program.SectionSpec();

Program.sectMap[".L2vars"].loadSegment = "L2SRAM";

Pragma directives tell the compiler how to treat a certain function or a section of

code. In our implementation, compiler is guided to allocate memory from desired

section. We allocate constant data on L2 memory for speed consideration:

#pragma DATA_SECTION (WeightRow, ".L2vars")

#pragma DATA_ALIGN (WeightRow, 64);

const unsigned char WeightRow[M] = {...}

The first step in creating an OpenMP program is to identify the parallelism it

contains. Considering LDPC decoding, this is an easy task since LDPC decoding is

inherently parallel. The parallel implementation using the eight cores on the

TMS320C6678 DSP platform can be achieved by letting each core process a

different portion of the parity check matrix. Work is shared between cores by

dividing parity check matrix into the horizontal and vertical non-overlapping strips

for check to bit and bit to check processing, respectively. The parity-check matrix is

divided evenly into equal strips in order to distribute load into cores equally. In

multicore implementation of NMSA, each of selected number of cores concurrently

processes messages sent form bit node to check node or vice-versa. Bit to check

processing, check to bit processing and syndrome check code blocks are parallelized

using OpenMP directive #pragma omp parallel for specifying variable scope

information by means of private and shared annotations. OpenMP runtime allows

58

different threads to run across different cores. OpenMP #pragma omp parallel for

language extension offers easy parallelization of sequential code. Figure 6.6 and

Figure 6.7 illustrate how the parity-check matrix is divided into horizontal and

vertical strips and allocated among 4 cores DSP cores, respectively.

Figure 6.6 Check node processing using horizontal striping of H matrix

1 0 1 0 0 1 0 0

Core#0
0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1

Core#1
1 0 1 0 0 1 0 0

0 0 0 0 1 0 1 0

Core#2
1 0 0 1 0 0 0 0

0 1 0 0 0 1 1 0

Core#3
0 0 1 0 0 0 0 1

59

Figure 6.7 Bit node processing using vertical striping of H matrix

We chose to store extrinsic messages in the non-cached shared memory region

while constants are stored in the cached region to access them through L1D cache

memory. This way each core has access to up-to-date data to process and writes

updated messages back to their relevant places without any additional

synchronization mechanism. Below code segment shows example work sharing loop

construct for making hard decision given below. The work is shared between cores

through vertical striping.

static void MakeHardDecision()

{

 int i;

 // make hard decision here

 #pragma omp parallel for

 for (i = 0; i < N; i++)

 {

 if (SumAll[i] > 0)

 CodewordHat[i] = 0;

 else

 CodewordHat[i] = 1;

 }

}

1 0 1 0 0 1 0 0

0 1 0 0 1 0 0 0

0 0 0 1 0 0 1 1

1 0 1 0 0 1 0 0

0 0 0 0 1 0 1 0

1 0 0 1 0 0 0 0

0 1 0 0 0 1 1 0

0 0 1 0 0 0 0 1

Core#0 Core#1 Core#2 Core#3

60

Decoding steps-2 and-3, given in Section 3.1 are repeated until maximum number

of iterations is reached. We instrument code with log events in order to measure time

spent in each step:

while(currentIter < MAX_ITER_COUNT)
{
 currentIter++;
 // start a new iteration
 Log_write2(UIABenchmark_start, (xdc_IArg)"iteration time, using %d cores", NumberOfCores);

 // start c2b
 Log_write2(UIABenchmark_start, (xdc_IArg)"c2b time, using %d cores", NumberOfCores);
 CheckToBitProcess();
 Log_write2(UIABenchmark_stop, (xdc_IArg)"c2b time, using %d cores", NumberOfCores);

 // start b2c
 Log_write2(UIABenchmark_start, (xdc_IArg)"b2c time, using %d cores", NumberOfCores);
 BitToCheckProcess();
 Log_write2(UIABenchmark_stop, (xdc_IArg)"b2c time, using %d cores", NumberOfCores);

 Log_write2(UIABenchmark_stop, (xdc_IArg)"iteration time, using %d cores", NumberOfCores);
}

6.4 Results for Parallel Decoding

After all considerations mentioned in the previous sections are taken into account

in porting sequential decoding algorithm into multicore platform, we performed

experimental analysis using TDMSEVM6678LE Evaluation Module (EVM),

C6678 processor running at 1GHz. XDS560V2 emulator was used to program and

debug code running on the EVM. Benchmark results are acquired while code is

running on the target through JTAG connection. In our experiments, we applied

NMSA to the codes from DVB-S2. Selected LDPC code has a codeword length of

16200 bits and rate of 8/9.

Figure 6.8 shows speedups achieved for each type of processes. Figure 6.8 also

reveals that check node processing has a better scalability compared to bit node

processing.

Because LDPC decoding is an iterative process, time spent at each iteration is an

important parameter.

achieved speedup with number of cores. It can be seen that 8

achieves a 6.4x speedup. The results

algorithm successfully on multicore DSPs. However, the throughputs achieved are

far from those required for real

Table 6.1 Execution times for an

Execution time (us)

These results prove that inherently parallel decoding algorithm of LDPC codes

can be easily parallelized using OpenMP, which provides flexible programming

model to create parallel code for shared memory architectures, hiding internal

synchronization detail

61

Figure 6.8 Speedup using OpenMP

Because LDPC decoding is an iterative process, time spent at each iteration is an

important parameter. Table 6.1 shows the execution times of each iteration and

achieved speedup with number of cores. It can be seen that 8-core implementation

achieves a 6.4x speedup. The results also demonstrate scalability of LDPC decoding

algorithm successfully on multicore DSPs. However, the throughputs achieved are

far from those required for real-time execution.

Execution times for an iteration and speedup versus number of cores

Number of cores

1 2 4 6 8

Execution time (us) 6015 3081 1636 1167 947

Speedup 1.95 3.68 5.15 6.35

These results prove that inherently parallel decoding algorithm of LDPC codes

can be easily parallelized using OpenMP, which provides flexible programming

model to create parallel code for shared memory architectures, hiding internal

synchronization details from the programmer.

Because LDPC decoding is an iterative process, time spent at each iteration is an

shows the execution times of each iteration and

core implementation

also demonstrate scalability of LDPC decoding

algorithm successfully on multicore DSPs. However, the throughputs achieved are

iteration and speedup versus number of cores

947

6.35

These results prove that inherently parallel decoding algorithm of LDPC codes

can be easily parallelized using OpenMP, which provides flexible programming

model to create parallel code for shared memory architectures, hiding internal

62

7 CONCLUSIONS AND FUTURE WORK

In this thesis, three different ordering layered decoding schemes are presented to

improve decoding performance of LDPC codes and a simulation acceleration

platform using OpenMP is studied. The implementation of the proposed methods can

be realized with small modifications, therefore the computational overhead involved

is small. The proposed algorithms can achieve a good performance and a high

convergence rate. We have simulated complete communication system in software.

We assume BPSK transmission over AWGN channel. Our analysis results show that

the maximum performance gain is observed for short length and high rate LDPC

codes. ORD and ORDE methods when applied to (648, 540) code defined in 802.11n

and (672, 588) code in 802.15.3c achieve the best performance. LOCK method

perform very near to NMSA by changing process order of layers. For long length

codes, proposed methods provide better performance gain in low SNR region, when

the SNR is high performance gain is lost. Performance gain always improves as

maximum iteration number is incremented. At large number of iterations ordered

methods outperform traditional algorithms. So our results also confirm better

performance is obtained with large maximum iteration number of 100 when

compared to 50. No significant gain is obtained from DVB-S2 codes.

We have also presented parallel implementation of LDPC decoding using

OpenMP. It can be leveraged to take advantage of the multicore DSP by parallelizing

algorithms quickly. Our implementation has been tested on a multicore embedded

DSP platform, TI’s C6667 DSP. Multicore processing using OpenMP reduces

processing times considerably. Our performance evaluation shows scalable speedup

as more cores are included in multicore processing. When 8 cores are run

simultaneously, the speedup reaches 6.4. Further speedup can be achieved by taking

advantage of DSP architecture which itself provides several levels of parallelism like

compiler specific pragmas or intrinsic SIMD instructions.

63

In future, proposed methods can be applied to other types of codes. Since

simulation takes significant amount of time, methods to shorten simulation time can

be searched. We have implemented parallel decoding of DVB-S2 code in flooding

schedule. Other structured LDPC codes can be decoded in both layered and parallel

manner so that parallelism can be exploited to accelerate simulation further.

64

8 RESOURCES

[1] R. G. Gallager, Low-density parity-check codes, IRE Trans. Inf. Theory, Vols.
vol. IT-8, pp. 21-28, Jan 1962.

[2] A. G. a. P. T. C. Berrou, Near Shannon limit error-correcting coding and

decoding: Turbo codes, 1993.

[3] D. MacKay & R. Neal, Near shannon limit performance of low density parity

check codes, Electron. Lett., vol. 32, no. 18, p. 1645, Aug 1996.

[4] W. Ullah, Two-way normalization of min-sum decoding algorithm for medium

and short length LDPC codes, in Networking and Mobile Computing
(WiCOM), 2011.

[5] B.-Y. Chang, M. Ivkovic & L. Dolecek, Computationally-Efficient Iterative

Decoding for Storage System Design: Min-Sum Refined, 2011.

[6] L. Fan, Adaptive Normalized Min-Sum Algorithm for LDPC, in IEEE, 2013.

[7] D. Levin, E. Sharon & S. Litsyn, Lazy scheduling for LDPC decoding,
Communications Letters, pp. 70-72, 2007.

[8] M. Mansour & N. Shanbhag, High-throughput LDPC decoders, IEEE Tran.
Very Large Scale Integration Systems, vol. 11, pp. 976-996, 2003.

[9] D. E. Hocevar, A reduced complexity decoder architecture via layered decoding

of LDPC codes, in IEEE Workshop on Signal Processing Systems (SIPS), 2004.

[10] P. Radosavljevic, A. de Baynast & J. Cavallaro, Optimized Message Passing

Schedules for LDPC Decoding, in Asilomar Conference on Signals, Systems
and Computers, Pacific Grove, CA, 2005.

[11] J. Z. a. M. P. C. Fossorier, Shuffled Iterative Decoding, Transaction Letters, vol.
53, no. 2, pp. 209-213, 2005.

[12] K. Guo, A Parallel-Layered Belief-Propagation Decoder for Non-layered LDPC

Codes, Journal of Communications, 2010.

[13] E. Amador, Very Large Scale Integration (VLSI-SoC), in Energy Efficiency of
SISO Algorithms for Turbo-Decoding Message-Passing LDPC Decoders, 2009.

[14] A. Vila Casado, M. Griot & R. Wesel, Informed Dynamic Scheduling for Belief-

Propagation Decoding of LDPC Codes, in IEEE International Conference on
Communications, 2007.

[15] G. Han and X. Liu, An efficient dynamic schedule for layered belief-propagation

decoding of LDPC codes, Communications Letters, pp. 950-952, 2009.

[16] X. L. Yi Gong, Effective Informed Dynamic Scheduling for Belief Propagation

Decoding of LDPC Codes, Transactions Papers, vol. 59, no. 10, October 2011.

[17] S.-Y. Chung, G. D. Formey, T. J. Richardson & R. Urbanke, On the design of

low-density parity-check codes within 0.0045 dB of the Shannon limits, IEEE
Comm. Let., vol. 5, no. 2, pp. 58-60, 2001.

[18] Y. Jiang, A Practical Guide to Error-control Coding Using Matlab, Boston:
Artech House, 2010.

[19] X. Ma, in Selected Topics in Information and Coding Theory, 2010, pp. 471-
505.

[20] Creonic IP Cores& System Solutions, [Online]. Available: http://www.ldpc-

65

decoder.com. [Accessed 3 February 2015].

[21] R. M. Tanner, A recursive approach to low complexity codes, IEEE Trans.
Information Theory, 1981.

[22] V. Savin, Self-Corrected Min-Sum decoding of LDPC codes, in IEEE
International Symposium on Information Theory, 2008.

[23] C. Chapman, G. Jost and R. Van Der Pas, Using OpenMP, The MIT Press,
2008.

[24] C. Hu and D. Bell, KeyStone Memory Architecture, Texas Instruments, 2010.

[25] OMP (OpenMP Runtime for SYS/BIOS) Users Guide, Texas Instruments.

[26] BIOS MCSDK 2.0 User Guide, [Online]. Available:
http://processors.wiki.ti.com/index.php/BIOS_MCSDK_2.0_User_Guide.

66

9 ÖZGEÇMĐŞ

Adı Soyadı : Murat SEVER

Doğum Yeri : Kilis

Doğum Tarihi: 27.11.1976

Lisans : ODTÜ, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü
(1998)

E-posta : murat-sever@live.com

