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NOVEL MERGING BASED HEIGHT-BALANCED HISTOGRAM
COMPUTATION FOR BIG DATA

ABSTRACT

The amount of data generated and stored in cloud systems has been increasing

exponentially. The examples of data include user generated data, machine gen-

erated data as well as data crawled from the Internet. There have been several

frameworks with proven efficiency to store and process the petabyte scale data

such as Apache Hadoop ecosystem tools, and several NoSQL frameworks. These

systems have been widely used in industry and thus are subject to several re-

search. The proposed data processing techniques should be compatible with the

above frameworks in order to be practical.

One of the key data operations is deriving height-balanced histograms as they

are crucial in understanding the statistical properties of the underlying data with

many applications including query optimization.In this thesis, we focus on ap-

proximate height-balanced histogram construction for big data and propose a

novel merge based histogram construction method with a histogram processing

framework which constructs an height-balanced histogram for a given time inter-

val. The proposed method constructs approximate height-balanced histograms

by merging exact height-balanced histograms of partitioned data by guaranteeing

a maximum error bound on the number of items in a bucket (bucket size) as well

as any range on the histogram. We also test Apache Pig User Define Functions

of this proposed method in this thesis.

Keywords : approximate histogram, merging histograms, big data, log files
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NOVEL MERGING BASED HEIGHT-BALANCED HISTOGRAM
COMPUTATION FOR BIG DATA

ÖZ

Üretilen ve bulut sistemlerde kaydedilen data miktarı her geçen gün katlana-

rak artmaktadır. Buna örnek olarak, kullanıcı tarafından üretilen veriler, makine

tarafından üretilen veriler ve İnternet’ten crawl edilen veriler gösterilebilir. Pe-

tabyte boyutunda dataları depolamak ve işlemek için; Apache Hadoop ekosistem

araçları ve bazı NoSQL frameworkleri gibi verimliliği kanıtlanmış frameworkler

vardır. Bu araçlar endüstride geniş çaplı kullanılmaktadır ve bu sebepten çeşitli

araştırmalara konu olmaktadır. Önerilen veri işleme teknikleri yukarıda saydığı-

mız frameworklere pratik olması için uyumlu olmalıdır.

Önermli veri operasyonlarından bir tanesi de, height-balanced(yada equi-depth)

histogram oluşturmaktır. Çünkü equi-depth histogramlar, sorgu optimizasyonu

da gerektiren birçok uygulamada, datanın istatistiksel özelliğini anlamak için ha-

yati öneme sahiptir. Bu tezde, büyük veriler için approximate equi-depth his-

togramının oluşturulması üzerine çalışılmıştır ve verilen zaman aralığının equi-

depth histogramını oluşturan histogram birleştirme tabanlı yeni bir metod ve bu

metodu kullanan bir framework geliştirilmiştir. Bu framework, parçalar halinde

bulunan tam olarak hesaplanmış equi-depth histogramları birleştirmek kaydıyla

yaklaşık bir equi-depth histogram oluşturmaktadır. Oluşturulan bu histogramın

bir bucketında bulunan öğe sayısınında oluşabilecek maksimum hata sınırı ga-

ranti edilmektedir. Histogramın herhangi bir aralığında da maksimum hata sınırı

garanti edilmektedir. Biz bu tezde önerdiğimiz metodun Apache Pig ve web uy-

gulamalarını da sunmaktayız.

Keywords : approximate histogram, merging histograms, big data, log files
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CHAPTER 1

INTRODUCTION

The data generated and stored by enterprises are in the orders of terabytes or even

petabytes [1–3]. We can classify the source of the data in the following groups :

machine generated data (a.k.a logs), social media data, transactional data and

data generated by medical and wearable devices. Processing the produced data

and deriving results are critical in decision making and thus the most important

competitive power for the data owner. Therefore, handling such big datasets in

an efficient way is a clear need for many institutions. Hadoop MapReduce [4,

5] is a big data processing framework that has rapidly become the standard

method to deal with data bombarding in both industry and academia [3, 6–10].

The main reasons of such strong adoption are the ease-of-use, scalability, failover

and open-source properties of Hadoop framework. After the wide distribution,

many research works (from industry and academia) have focused on improving

the performance of Hadoop MapReduce jobs in many aspects such as different

data layouts [8, 11, 12], join algorithms [13–15], high-level query languages [3, 7,

10], failover algorithms [16], query optimization techniques [17–20], and indexing

techniques [6, 21, 22].

In today’s fast-paced business environment, obtaining results quickly represents a

key desideratum for Big Data Analytics [8]. For most applications on large data-

sets, performing careful sampling and computing early results from such samples

provide a fast and effective way to obtain approximate results within the predefi-

ned level of accuracy. The need for approximation techniques grow with the size

of the data sets and most of the time they shed a light to make fast decisions

for the businesses. General methods and techniques for handling complex tasks

have room to improve in both MapReduce systems and parallel databases. For

example, consider a web site, such as a search engine, consists of several web ser-

ver hosts ; user queries (requests) are collectively handled by these servers (using

some scheduling protocol) ; and the overall performance of the web site is cha-

racterized by the latency (delay) encountered by the users. The distribution of
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the latency values is typically very skewed, and a common practice is to track

some particular quantiles. The Yahoo website, for instance, handles more than 43

million hits per day [23], which translates to 40000 requests per second. The Wi-

kipedia website handles 30000 requests per second at peak, with 350 web servers.

While all three questions relate to computing of statistics over data, they have

different technical nuances, and often require different algorithmic approaches as

accuracy can be traded for performance.

One way to obtain statistical information from data is histogram construction.

Histograms summarize the whole data and give information about distribution of

the data. Moreover, the importance of histogram increases when the size of the

data is huge. Since, histograms are very useful and are efficient ways to get quick

information about data distribution, they are highly used in database systems for

query optimization, query result estimation, approximate query answering, data

mining, distribution fitting, and parallel data partitioning [24]. One of the most

used histogram types in database systems is the equi-depth histogram. The equi-

depth histogram is constructed by finding boundaries that split the data into a

predefined number of buckets containing equal number of tuples. More formally,

β-bucket equi-depth histogram construction problem can be defined as follows :

given a data set with N tuples, find the boundary set B = b1, b2, . . . , bβ−1 that

splits the sorted tuples into β buckets, each of which has approximately N/β

tuples.

In this thesis, we propose a framework to compute equi-depth histograms on-

demand (dynamic) from the precomputed histograms of the partitioned data. In

order to do so, we propose a histogram merging algorithm giving a user specified

error bound on the bucket size. In particular, we merge T -bucket histograms to

build a β-bucket histogram for the underling data of size N and give a mathema-

tical proof showing 2β/T error rate on the bucket size and as well as any range

on the histogram. In our framework, users specify T and β, we compute T -bucket

histograms for each partition, and a query asking for a histogram of any subset

of the partitions. Then, the framework computes the β histogram on-demand

from the offline computed histograms of the partitions. In real life systems, the

pre-computation is done incrementally (i.e., daily, hourly or monthly) such as
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logs and database transactions. We began all of this work inspired by patent of

Emekci et al. [25].

Our contribution can be summarized as follows :

• We proposed a novel algorithm to build an approximate equi-depth histo-

gram for a union of partitions from the sub-histograms of the partitions.

• We theoretically and experimentally showed that the error percentage of a

bucket size is bounded by a predefined error set by the user (i.e., εmax).

• We theoretically and experimentally showed that the error percentage of a

range size is bounded by a predefined error set by the user (i.e., the same

above εmax).

• We implemented our algorithm on Hadoop and demonstrated how to apply

it to practical real life problems.

The rest of the thesis is organized as follows : In Section 2, related works are

summarized. In Section 3, we introduce the histogram construction problem for

big data. We have exemplified related histogram types, and we give some back-

ground information about cloud computing environments in Section 4. In Section

5, in-depth explanation of the proposed method takes place. The details of im-

plementation on Hadoop MapReduce framework is given in Section 6. Evaluation

methodology and experimental results are discussed in Section 7. We present

implementation of our method to Apache Pig, a demo application and experi-

mentations of demonstrations in Section 8, and finally we conclude the thesis

with Section 9.
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CHAPTER 2

RELATED WORKS

Basically, histograms are used to get quick distribution of information from the

given data. This quick information is used especially in database systems in com-

puter science e.g. selectivity estimation to optimize queries, load balancing of join

queries, and much more [24]. There are different types of histograms and each

type of histogram has different properties [26]. Exact histogram construction is

not feasible when the data is too big or the data is frequently updated. In such

cases, histograms are constructed from sampled data and/or maintained accor-

ding to the updated data [27]. This type of histograms are called approximate

histograms rather than exact histograms. Approximate histogram construction

from sampled data can be divided into two categories by sampling method [28]

which are tuple-level sampling and block-level sampling. Tuple-level sampling me-

thod uses uniform-random-sampling to sample the data at tuple level to construct

an approximate histogram at the desired error bound [29, 30]. Gibbons et al. [29]

proposed a sampling-based incremental maintenance approach of approximate

histograms. The proposed approach, backing sample, keeps the sampled tuples

up-to-date in a relation. A bound of the amount of the sampling size for a given

error bound studied by Chaudhuri et al. [30] in addition to proposing an adaptive

page sampling algorithm. The second method, block-level sampling, exemplifies

the data according to an iterative cross-validation based approach [31, 32]. Chaud-

huri et al. [32] proposed a method for approximate histogram construction using

an initial set of data and iteratively updated the constructed histogram until the

histogram error is under the predetermined level. All of the proposed approaches

above, however, are for single-node databases.

When the data is too big to handle in a single-node database, the data is distri-

buted to multi-nodes. One of the well-known distributed data storage frameworks

is Hadoop Distributed File System (HDFS) [33] and the data processing frame-

work of the stored data in the HDFS is Hadoop MapReduce [5]. The histogram

construction of such distributed data is not well-studied and there is less work
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on histogram creation of distributed data than the ones on undistributed data.

One of the adapted methods for contructing approximate histogram is tuple-

level sampling. Okcan et al. [15] proposed a tuple-level sampling based algorithm

to construct approximate equi-depth histograms for distributed data to improve

processing theta-joins using MapReduce. The algorithm works as follows. In the

map section of a MapReduce Job, a predefined number of tuples are selected ran-

domly by scanning the whole data and outputted. The tuples are sorted and sent

to the reducer. The reducer of the job determines and outputs the boundaries

of equi-depth histograms. In [34], a method for approximate wavelet histogram

construction for big data using MapReduce is proposed and an improved sam-

pling method -ignoring low frequent sampled keys in splits- is given. The drawback

of such histogram construction algorithms of distributed data using tuple-level

sampling is that scanning the whole data is a time consuming process. Another

approximate histogram construction method is proposed in [28]. This method also

uses a sampling method named two-phase sampling which samples the whole data

at block-level and constructs the approximate histogram and calculates the error.

If the error is not in the desired error boundary, the additional sampling size

needed is calculated and histogram construction process is repeated. The insuf-

ficiency of this method is that histogram is rebuilt for every new data and it

requires a customized MapReduce framework. In this paper, we propose a no-

vel approximate equi-depth histogram construction method with a log histogram

monitoring framework that users can query the daily stored log files for their

equi-depth histogram. In the proposed method, a MapReduce Job is scheduled

to summarize the daily stored log files which means that the exact equi-depth

histogram of each log file is constructed and stored in corresponding summary

files and another MapReduce Job merges the summaries of intended log files for

approximate equi-depth histogram construction.
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CHAPTER 3

PROBLEM DEFINITION

In this section, we motivate the problem with a practical example and then for-

mally define it. Machine generated data, also known as logs, is automatically

created by machines. Logs contain list of activities of machines. In general, logs

are stored daily in W3C format [35]. When we consider a web server, requests

from web applications and responses from the server are written to log files. There

are several actors deriving intelligence from these logs. For example ; operations

engineers derive operational intelligence (response times, errors, exceptions etc.)

and business analyst derives business intelligence (top requested pages, top users,

click through rates etc.). In the context of web applications, the need to analyze

clickstreams has increased rapidly, and in order to answer the demand, businesses

build log management and analytical tools. A typical internet business may have

thousands of web servers logging every activity on the site. In addition, they have

ETL processes incrementally collecting, cleaning and storing the logs in a big

data storage (i.e., This is usually Hadoop and its storage HDFS). This work-flow

is demonstrated in Figure 3.1. The amount of data to ETL and to run analytics

on is huge and has been increasing rapidly. Most of the time, customers would be

happy to trade accuracy for performance as they need a quick intelligence to make

fast decisions. One quick and reliable way to understand the statistics about the

underlying data is using equi-depth histograms. As the paper [36] we have written

on this subject shows, we outline a framework computing on-demand histograms

of the data for any time interval for the above scenario. In web servers, daily logs

are kept instantly. At the end of the day, all the log files belonging to that day

are concatenated in a single log file and it is pushed to HDFS. As soon as the

new log file is available in the HDFS, an exact equi-depth histogram is built and

stored in the HDFS in a new summary file by the Summarizer Job. This means

that the equi-depth histogram of each daily log is stored. Then, if a histogram

for any time interval is requested (for example histogram for the last month), the

Merger Job fetches an equi-depth histogram of each histogram and merges them

3.2 using the proposed merging algorithm explained in the following sections. We
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Figure 3.1 Flowchart of the proposed method

also provide an error rate on the histogram in order to increase the confidence.

Although we motivate our framework with logs, it can be applied without loss of

generality to any structured data where we need a histogram such as database

transactions, etc...

Figure 3.2 Histogram building by merging exact histograms of data partitions

After motivating and showing the need, we can formulate the problem we are

solving as follows :
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Problem Definition : Given k partitions, P1, P2, ..., Pk, and their respective

T -bucket equi-depth histograms, H1, H2, ..., Hk, build a β-bucket equi-depth his-

togram H∗ where β ≤ T over P1, P2, ..., Pk where |P1| + |P2| + ... + |Pk| is equal
to N and B1, B2, ..., Bβ are the buckets of H∗ such that :

• The size of any bucket Bi is (N/β)± εmax where εmax < 2β/T × (N/β).

• The size of any range spanningm buckets Bi through Bj ism×(N/β)±εmax
where εmax < 2β/T × (N/β).
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CHAPTER 4

BACKGROUND

In this section, some background information is given about cloud computing

environments such as Distributed File System (DFS) [37], MapReduce (MR) [38],

Pig [39], and Hive [40].

Distributed File System (DFS) : DFS is a generalized name of distribu-

ted, scalable, and fault-tolerant file systems such as Google FS [37] and Hadoop

DFS [33]. In particular, we address the HDFS in this paper [36] and thesis. In

HDFS, large files are divided into small chunks and these small chunks are repli-

cated and stored in multiple machines named DataNodes. The replication pro-

cess ensures that HDFS is fault-tolerant. The metadata of the stored files such

as name, replication count, file chunk locations, etc. are indexed in NameNode

which is another machine. Clients read and write files to HDFS by interacting

with the NameNode and the DataNodes.

The overall system architecture of HDFS is seen in Figure 4.1. In the figure,

the NameNode takes place at the top and the DataNodes at the bottom. The

replicas of the file chunks are labeled with the same numbers. The NameNode

can interact with the DataNodes to maintain the file system by controlling the

health and balancing the loads of the DataNodes. If there is a problem in a

Figure 4.1 General architecture of Hadoop Distributed File System
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Figure 4.2 Overview of Hadoop MapReduce Framework

DataNode, the NameNode detects the problematic DataNode and replicates the

file chunks in that DataNode to other DataNodes. Clients can also interact with

the whole HDFS to read existing files and write new files to HDFS.

MapReduce (MR) : MapReduce is a programming model for processing huge

datasets which is especially resided in distributed file systems. Besides, MapRe-

duce framework is the combination of the components which executes submit-

ted MapReduce tasks by managing all resources and communications among the

cluster while providing for fault tolerance and redundancy. In this paper [36] and

thesis, we specifically handle the Hadoop MapReduce framework.

A MapReduce task consist of Mappers and Reducers. The Mapper has a me-

thod called Map which gets 〈key, value〉 pairs as input and emits 〈key, value〉
pairs as intermediate output. The intermediate output is shuffled and sorted by

a component of the MapReduce framework at the Sort and Shuffle phase and all

〈key, value〉 pairs are grouped and sorted by keys at this phase. The output of

the Sort and Shuffle phase is 〈key, [value1, value2, ...]〉 pairs and this is the input

of the Reduce method which is in the Reducer. After the Reduce method finishes

it’s job, it also emits 〈key, value〉 pairs as final output of the MapReduce task. In

some cases, a Combiner is also included in MapReduce tasks which is often the



11

Figure 4.3 Architecture of Apache Pig

same with the Reducer. The Combiner has a Combine method which combines

the output of the Map method to decrease network traffic.

The summary picture of the MapRecude framework is given in Figure 4.2. In the

figure, input to a Mapper is read from HDFS. The output of the Mappers goes

through the Sort and Shuffle phase and Reducers get the sorted and shuffled data

and process it and write the output to HDFS, again.

Apache Pig : Pig is a platform for processing big data with query programs

written in a procedural language called Pig Latin. Query programs are translated

into MapRecude tasks and the tasks are run over MapReduce framework. The

queries can be written by using both existing and user defined functions. Thus,

Pig is an extensible platform and users can create their own functions. The Apache

Pig architecture which is taken from edureka is demonstrated in Figure 4.3

Apache Hive : Hive is another platform for storing and processing large data-

sets like Pig. Hive has its own SQL-like declarative querying language named as

HiveQL. HiveQL also supports custom user defined Map/Reduce tasks in que-

ries. The Apache Hive architecture which is taken from edureka is demonstrated
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Figure 4.4 Architecture of Apache Hive

Table 4.1 An example data distribution

Number of Employees Salary(thousand Turkish Lira)

5 1.0

3 2.0

7 2.5

10 5.0

2 6.5

1 9.0

in Figure 4.4.

4.1 Histogram Types

Histogram construction is one way to obtain statistical information from data.

Because histogram give information about data distribution and it is a summary

all of the data. Moreover, histogram provide quick query optimization, approxi-

mate result, distribution fitting and parallel data partitioning [24]. Therefore,

error guarantees, time and accuracy performance are expected. In this section,

we explain histogram types with a peace of examples with table 4.1 which contains

salary informations and its frequency.

Trivial Histogram : The simple histogram type is based on uniform distribu-

tion. It consists of a buckets. In Figure 4.5, we collect all values displayed in
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Figure 4.6 Equi-Width Histogram

Table 4.1 in single bucket. This histogram approach has maximum error rate.

Because, according to Figure 4.5, when we runs SQL command showed in Listing

4.1, we gets 28 values at the worst case. But we know we have 3 value greater

than 6000.

Listing 4.1: Query 1

select count() from Employee where salary 6 0 0 0

Equi-Width Histogram : This histogram type divide value axis to equal ranges.

The example histogram is available in Figure 4.6. Each bucket shows frequency

of its range. In our example query which is in Listing 4.1, we have 3 values. But,

according to Figure 4.6, there are 11 values. Disadvantages of this histogram,

there are high variance and error rate estimation is difficult.
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Figure 4.7 Equi-Depth Histogram

Equi-Depth Histogram : Equi-depth histogram is called as equi-heigh and

heigh-balanced histograms. In Figure 4.7, Equi-depth histogram of given data

distribution is constructed. According to this histogram, we can predict 7 values

is greater then 6000 at the worst case. Equi-depth histogram preserves order of

values, but it has a disadvantage which is sometimes variance in a bucket may be

high.

V-optimal histograms : Another histogram type is V-optimal histograms. V-

optimal histograms optimize variance. It is also called as variance-optimal histo-

gram. The aim of this histogram is minimize the variance of each bucket. In this

section, we didn’t give an example for this histogram type.
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CHAPTER 5

EQUI-DEPTH HISTOGRAM BUILDING

In this section, we explain our approximate equi-depth histogram construction

method in detail. In the first part of the method, exact-equi depth histograms

of data partitions are constructed. This part is done offline with a well-know

straight-forward histgoram construction algorithm. In the second and the im-

portant part of the method, equi-depth histograms are merged to construct an

approximate equi-depth histogram over the partitions. One important feature is

that the constructed histogram comes with maximum error bound on both size

each bucket and size of any bucket range.

In the following part of the section, merging part of the method is explained with

an example and then the algorithm of the merging is given and the section is

concluded with maximum error bound theorems and their proofs.

A T -bucket equi-depth histogram H for a set of values P (may be called a parti-

tion) can be described as an increasing sequence of numbers, which represents the

boundaries. Each pair of consecutive boundaries defines a bucket, and the size

of this bucket is the number of values between its boundaries, where inclusive

at the front and exclusive at the end (except the last bucket). Last bucket size

also includes the last boundary. For an exact equi-depth histogram, size of each

bucket is the same and equals and exactly total number of values divided by total

number of buckets. On the other hand, bucket sizes of an approximate equi-depth

histograms may not be equal.

We express a T -bucket equi-depth histogram asH = {(b1, s1), (b2, s2), . . . , (bi, si),
. . . , (bT−1, sT−1), (bT , 0)}, where bi indicates the ith boundary and the si indi-

cates the ith bucket size for exact histograms (the approximate size of the ith

bucket for approximate histograms), for the rest of the paper. Let us have two

example value sets, P1 and P2, which are {2, 4, 5, 6, 7, 10, 13, 16, 18, 20, 21, 25} and
{3, 9, 11, 12, 14, 15, 17, 19, 22, 23, 24, 26, 27, 29, 30}. According to the value sets, |P1|
and |P2| which represent number of values in each set, equal to 12 and 15, res-
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pectively. 3-bucket histogram of P1 is H1 = {(2, 4), (7, 4), (18, 4), (25, 0)} and P2

is H2 = {(3, 5), (15, 5), (24, 5), (30, 0)} and graphical representation of them are

given in Figures 5.1 and 5.2. First bucket of H1 contains the first four values,

{2, 4, 5, 6}, the second bucket contains four values, {7, 10, 13, 16}, and the third

(also the last) bucket contains the last four values {18, 20, 21, 25}. For H2, first

bucket has five values, {3, 9, 11, 12, 14}, the second bucket contains five values,

{15, 17, 19, 22, 23}, and the last bucket has five values, {24, 26, 27, 29, 30}. Let us
define a s(i,H) function which denotes the size of ith bucket of the equi-depth

histogram H, and a S(i,H) function which denotes the cumulative size of all

buckets from the first to ith bucket of H, that is,

S(i,H) = s(1, H) + s(2, H) + · · ·+ s(i,H) (5.1)

Then, the convention assures that S(i,H) = i×|P |/T , for all i ≤ T , where |P | is
the number of values and T is the number of buckets. Considering H1, s(1, H1) =

s(2, H1) = s(3, H1) = 4. For cumulative sizes, S(1, H1) = 4, S(2, H1) = 8, and

S(3, H1) = 12. Bucket sizes of H2 is s(1, H2) = s(2, H2) = s(3, H2) = 5 and

cumulative sizes are S(1, H2) = 5, S(2, H2) = 5, and S(3, H2) = 5.

Let us define two more functions, a(i,H) and A(i,H), which are the ith approxi-

mate bucket size and the ith cumulative bucket size for approximate equi-depth

histograms, respectively. By writing an approximate version of Equation 5.1, we

get the following equation :

A(i,H) = a(1, H) + a(2, H) + · · ·+ a(i,H) (5.2)

Lastly, let us define a range function R(i, j,H) that gives the sum of sizes of

buckets which starts from the ith bucket up to the jth bucket, both inclusive. The

formal definitions are given in the following formulas for both exact bucket sizes

and approximate bucket sizes.

Rs(i, j,H) = s(i,H) + s(i+ 1, H) + · · ·+ s(j,H) (5.3)

Ra(i, j,H) = a(i,H) + a(i+ 1, H) + · · ·+ a(j,H) (5.4)

The definitions given belove are summarized in Table 5.1.
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Figure 5.1 A sample equi-depth histogram H1 with 3 buckets, based on data
{2, 4, 5, 6, 7, 10, 13, 16, 18, 20, 21, 25}.
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Figure 5.2 Another sample equi-depth histogram H2 with 3 buckets, which re-
presents data {3, 9, 11, 12, 14, 15, 17, 19, 22, 23, 24, 26, 27, 29, 30}.

2 3 7 15 18 2425 30
0

4
5

Figure 5.3 Example equi-depth histograms given in Figures 5.1 (orange-
dashed) and 5.2 (cyan-solid) are coupled together, with boundary sequence
{2, 3, 7, 15, 18, 24, 25, 30}.

Since we completed the definitions for convention, we start to explain the mer-

ging process in detail. We have exact 3-bucket equi-depth histograms H1 and H2

given in Figures 5.1 and 5.2 for the example value sets P1 and P2 where P1 =

{2, 4, 5, 6, 7, 10, 13, 16, 18, 20, 21, 25} and P2 = {3, 9, 11, 12, 14, 15, 17, 19, 22, 23, 24,
26, 27, 29, 30}. The total number of values N is equal to |P1|+ |P2| = 12+15 = 27

and let bucket count of final histogram, β, be 3. As seen in the histograms H1 and

H2, H1 has a boundary sequence of 2, 7, 18, 25 and each H1 bucket has 12/3 = 4

values, H2 has 3, 15, 24, 30 and bucket size of 15/3 = 5. In Figure 5.3, we show H1

and H2 on the same plot, so therein, we clearly see the overall sequence of boun-

dary values, which is 2, 3, 7, 15, 18, 24, 25, 30. Although the desired final number

of buckets β may be chosen to be any number less than or equal to 3, we drive

the example merging for β = 3.
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Table 5.1 Symbol Table Used in Section

Symbol Definition

H0
Pre-histogram after first assembling of k exact

equi-depth histograms, H1, H2, . . ., and Hk

H∗ Final approximate equi-depth histogram after

bucket merging operations of H0

He
Exact equi-depth histogram for the union of k

value sets, P1, P2, . . ., and Pk

s(i,H) The ith bucket size of the equi-depth histogram H

a(i,H)
The ith approximate bucket size of the approximate

equi-depth histogram H

S(i,H)
The ith cumulative size of the equi-depth

histogram H

A(i,H)
The ith approximate cumulative size of the

equi-depth histogram H

R(i, j,H)

Sum of bucket sizes starting from the ith bucket

up to the jth bucket (both inclusive) of the

equi-depth histogram H

Let us name the calculated pre-histogram (after first assembling of H1 and H2)

as H0, final merged approximate equi-depth histogram resulted from our method

as H∗, and exact equi-depth histogram for the union of value sets P1 and P2 as

He. Briefly, we start with assembling H1 and H2 in an initial pre-histogram H0

and we merge consecutive buckets of H0 while the merged bucket size is greater

than or equal to the exact bucket size N/β till the remaining number of buckets is

equal to the desired number β. For β = 3, exact bucket sizes N/β should be equal

to 27/3 = 9 and it can be presented as s(1, He) = s(2, He) = s(3, He) = 9. The

cumulative bucket sizes for He are S(1, He) = 9, S(2, He) = 18, and S(3, He) =

27. Now, we shall examine the creation of the pre-histogram H0. The boundaries

of H0 are 2, 3, 7, 15, 18, 24, 25, 30 which are shortly the sorted boundaries of H1

and H2. Since H0 has (T + 1)× 2 = (3 + 1)× 2 = 8 boundaries, it has 8− 1 = 7

buckets. The important part of the creation is approximation of bucket sizes of
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Figure 5.4 The initial pre-histogram H0 constructed just after the first assem-
bling of H1 and H2.

H0. Before the approximation of bucket sizes, we should determine approximate

cumulative bucket sizes of H0 and then we are able to calculate the approximate

bucket sizes from the definition of the cumulative bucket size function A(i,H).

The approximate cumulative bucket sizes are calculated by presuming that all

values in each bucket are at the beginning boundary of the bucket. For example,

let us consider the first bucket of H1. In this bucket, we have values 2, 4, 5,

and 6 and we suppose that all these values are at the point 2. By using this

supposition, any cumulative bucket size is easily determined by summing the

bucket size of the histogram which holds the next boundary and the previous

cumulative bucket size starting with 0. Thus, since the first boundary of H0 is 2

and this boundary is the first boundary of H1, the first cumulative approximate

bucket size A(1, H0) is equal to s(1, H1) = 4. The second cumulative approximate

bucket size A(2, H0) is equal to s(1, H2) + A(1, H0) = 5 + 4 = 9 because the

next coming H0 boundary is 3 and it is the first boundary of H2. After the

boundary 3, the next H0 boundary is 7 and it is the second boundary of H1.

Therefore, the third cumulative approximate bucket size A(3, H0) is equal to

s(2, H1) + A(2, H0) = 4 + 9 = 13. The remaining approximate bucket sizes are

calculated in the same way and A(4, H0), A(5, H0), A(6, H0), and A(7, H0) are

18, 22, 27, and 27, respectively. Now, we are able to calculate approximate bucket

sizes. Approximate size of the first bucket a(1, H0) relying between boundary 2

and 3 is directly equal to A(1, H0) and it is 4. The second approximate bucket

size a(2, H0) is the difference between the first and the second cumulative bucket

size. Thus, a(2, H0) is equal to A(2, H0) − A(1, H0) = 9 − 4 = 5. Similarly,

a(3, H0) = A(3, H0) − A(2, H0) = 13 − 9 = 4, a(4, H0) = 5, a(5, H0) = 4,

a(6, H0) = 5, and a(7, H0) = 0. Graphical representation of created H0 is given

in Figure 5.4.
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Next, we merge the buckets of H0 until the remaining bucket count is equal to β.

We use approximate cumulative bucket size instead of approximate bucket size

to decrease the division error while merging. The merging process starts with

the first bucket of H0. First of all we compare the first cumulative bucket size

of H0, A(1, H0), with the first cumulative bucket size of exact (ideal) histogram,

S(1, He), and we see that A(1, H0) is less than S(1, He). We continue comparing

the next cumulative bucket size of H0, A(2, H0), with again the first cumulative

bucket size of exact (ideal) histogram, S(1, He), and we now see that A(2, H0) is

equal to S(1, He). Again, we continue comparing. This time, we see that A(3, H0)

is greater than S(1, He).Therefore, the buckets starting from the first bucket to

the third bucket except the third one (because the result of the previous com-

parison is equality) would be merged and this merged bucket would be the first

bucket of the final merged approximate histogram, H∗. The resulting new bucket

size would be A(2, H0) because the new merged bucket is the first bucket of H∗.

Then, we are going to create the second bucket of H∗. For this creation, we conti-

nue comparing cumulative bucket sizes starting from the first not merged bucket

number with the second cumulative bucket size of He. We see that A(3, H0) is less

than S(2, He). Next comparison is between the next cumulative of H0 and again

the second cumulative of He. This time equality is seen. We continue comparing

the next cumulative of H0, A(5, H0) with S(2, He). At this point, A(5, H0) is

greater than S(2, He). Thus, we merge the buckets starting from the third one

to the fifth one again except the fifth one and the created new bucket would be

the second bucket of H∗. This merging process would end when the remaining

bucket count is equal to β and we get H∗ = {(2, 9), (7, 9), (18, 9), (30, 0)} as seen
in Figure 5.5a. For comparison, He is given in Figure 5.5b.

The generalization of this method for merging more than 2 histograms is now

easy after the one given above. Let us have k value sets (P1, P2, ..., Pk) and their

summaries (T-bucket equi-depth histograms, H1, H2, ..., Hk) to be merged. The

merging process for the general case starts with the creation of an initial pre-

histogram, H0. This can be done with sorting all boundary values coming from

summaries and determining approximate bucket sizes in the same way with the

one described above. The calculated histogram H0 has k × (T + 1) boundaries
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(a) The final approximate histogram H∗ constructed by merging H1 and H2.
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(b) The exact histogram for union of P1 and P2.

Figure 5.5 The final approximate and exact histograms of the example value sets
P1 and P2.

and thus k × (T + 1) − 1 buckets. The rest of the merging method is exactly

the same with the case when we have only two histograms. That is, we combine

consecutive buckets of H0 by comparing the cumulative bucket sizes of H0 with

cumulative sizes of exact histogram, He, until β buckets remain.

Algorithm 1 shows the pseudocode of the explained method above. The algorithm

takes T -bucket equi-depth histograms of k value sets, total number of values, N ,

which is the sum of all sizes of value sets, and desired bucket count of final

histogram, β as inputs and constructs and returns final approximate β-bucket

equi-depth histogram, H∗. Lines 1 through 3 of the algorithm is performed for

the creation of the initial pre-histogram,H0. First, boundaries of input histograms

are sorted at Line 1 and then bucket sizes are calculated according to the above

example at Line 2. The subroutine CreateHistogram called at Line 3 simply
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Algorithm 1: Equi-depth Histogram Merging
Input: H1, H2, . . . , Hk : k equi-depth histograms each with T buckets, N :

total number of values, β : desired bucket count of final histogram

Output: H∗ : an approximate equi-depth histogram with β buckets.

1 b← {sorted boundaries of H1, H2, . . . , Hk}

2 s← {bucket sizes calculated as described}

3 H0 ← CreateHistogram(b, s)

4 H∗ ← H0

5 last← 1 ; next← 1 ; current← 1

6 remaining← k(T + 1)− 1

7 while remaining > β do

8 while A(next,H0) ≤ current×N/β do

9 next← next+ 1

10 MergeBuckets(last, next− 1, H∗)

11 last← next ; current← current+ 1

12 remaining← remaining − (next− 1− last)

13 return H∗

creates a histogram from given boundary and bucket size sets and at that line

H0 is created from b and s. The created H0 has k × (T + 1) boundaries and

k × (T + 1) − 1 buckets. After creation of H0, it would be copied to H∗ at

Line 4. Once H0 is created and copied to H∗, required buckets are combined on

H∗ considering ideal bucket size, N/β. The main While loop iterates until the

remaining number of buckets is equal to β. The inner While loop given in Lines 8

and 9 seeks for the next feasible point of buckets to combine at each iteration of

the main loop. When such a point is found, we apply MergeBuckets subroutine

which combines buckets from last to next − 1, both inclusive, on H∗ as shown

in Line 10. Notice that MergeBuckets merges buckets according to the first

state of bucket indexes.

For the asymptotic performance of the algorithm, sorting boundaries is likewise

merging k sorted lists and it can be done in O(Tk log k). Bucket sizes and Crea-

teHistogram subroutine can both run in O(Tk) at Lines 2 and 3. For the inner
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loop, the increment at Line 9 can be performed at most β times. The number

of iterations for the main loop changes with the decrease in remaining bucket

counts. Observe that the decrease is equal to the inner loop iteration number

and MergeBuckets subroutine takes the same time with the inner loop for

each main loop iteration. Considering this observation, total time required for

the main loop is O(Tk). Consequently, the initial sorting dominates the rest of

the algorithm, and the algorithm runs in O(Tk log k)-time.

Let us debug the algorithm line by line for the two example 3-bucket equi-depth

histograms H1 and H2 given in Figures 5.1 and 5.2. Recall that H1 and H2 are

histograms of value sets P1 and P2. Therefore N is equal to |P1|+ |P2| = 12+15 =

27. Let β is equal to 3. We know H0 = {(2, 4), (3, 5), (7, 4), (15, 5), (18, 4), (24, 5)
, (25, 0), (30, 0)} from the given detailed explanation above. In addition, the start

state of H∗ is the same as H0. The variables last, next, and current is equal

to 1 and remaining is calculated as k(T + 1) − 1 = 2(3 + 1) − 1 = 7. Because

the remaining is greater than β at current state, we enter the main loop. For

the inner loop, A(1, H0) and A(2, H0) is less or equal to current×N/β which is

1 × 27/3 = 9 but A(3, H0) is greater than 9. Hereby, inner While loop 2 times

and next would be 3. Then, MergeBuckets subroutine merges the buckets 1

and 2 of H∗. The illustration of H∗ is shown in Figure 5.6 after merging. The

variables last and current are updated after the execution of MergeBuckets

is finished and last would be 3 and current would be 2. The remaining variable,

keeping the remaining bucket number of H∗, would be 6 after the calculation is

done at Line 12. The main loop finishes after H∗ has β buckets and execution of

the algorithm ends with returning the created H∗.

We also show another example including all steps of algorithm in figures from

Figure 5.7 to Figure 5.14.

Now, we discuss the error bounds of the output histogram H∗. The following two

theorems and their proofs verify the error bounds on bucket sizes and the sum of

any range of bucket sizes of H∗.

Theorem 1. Let H1, H2, . . . , Hk be T -bucket equi-depth histograms of value

sets P1, P2, . . . , Pk, and H∗ be the approximate β-bucket equi-depth histogram
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Figure 5.6 The state of H∗ after the first iteration of main loop of Algorithm 1.
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Figure 5.7 A sample equi-depth histogram H with 3 buckets, based on data
{2,4,5,6,7,10,13,16,18,20,21}. When considered sorted sequence of the under-
lying data, first bucket contains first three ({2,4,5}), second bucket contains four
({6,7,10,13}), and third (also the last) bucket contains last four ({16,18,20,21}).
Then, s(1, H) = 3 and s(2, H) = s(3, H) = 4. For the cumulative sizes,
S(1, H) = 3, S(2, H) = 7, and S(3, H) = 11.

where β ≤ T constructed by the algorithm. Then, the size of any bucket a(i,H∗)

is (N/β)± εmax where εmax < 2β/T × (N/β).

Démonstration. Recall that the calculations of bucket sizes of H0 depends on

supposition that all values in each bucket are at the beginning boundary of the

bucket and H∗ is some-buckets-merged version of H0. Now consider an ith bucket

between the ith and the i+ 1th boundaries (boundaries may be any of the two

consecutive boundaries of H0) of H∗ illustrated in Figure 5.15. As seen in the

figure, all of the values in the buckets divided by the ith boundary may stay at

the right hand side of the boundary in contrast to our assumption and all values

in the buckets divided by the i+ 1th boundary may stay at the left hand side of
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Figure 5.8 Another sample equi-depth histogram H with 3 buckets, which repre-
sents data {3,9,11,12,14,15,17,19,22,23,24,26,27} of size 13. First bucket has five
({3,9,11,12}), second bucket contains five ({14,15,17,19}), and last bucket has
seven ({22,23,24,26,27}) of them. Then, s(1, H) = s(2, H) = 4, and s(3, H) = 5.
For the cumulatives, S(1, H) = 4, S(2, H) = 8, and S(3, H) = 13.
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Figure 5.9 Sample equi-depth histograms given in Figures 5.7 (orange) and 5.8
(cyan) are coupled together, with boundary sequence 2, 3, 6, 14, 16, 21, 22, 27.
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Figure 5.10 The initial histogram H0 (black solid line) representing data {2, 3,
4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 27} with
T 0 = 7 buckets. Approximate bucket sizes (blue dashed line) with respect to H0.
The ideal size of a bucket (red straight line at 8) for an equi-depth histogram.
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Figure 5.11 The histogram H1 (black solid line), which is obtained by merging
first two buckets of H0, thus containing T 1 = 6 buckets. Approximate bucket sizes
(blue dashed line) with respect to H1. The ideal size of a bucket (red straight line
at 8) for an equi-depth histogram.
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Figure 5.12 The histogram H2 (black solid line), which is obtained by merging
second and third buckets of H1, thus containing T 2 = 5 buckets. Approximate
bucket sizes (blue dashed line) with respect to H2. The ideal size of a bucket (red
straight line at 8) for an equi-depth histogram.
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Figure 5.13 The histogram H3 (black solid line), which is obtained by merging
third and fourth buckets of H2, thus containing T 3 = 4 buckets. Approximate
bucket sizes (blue dashed line) with respect to H3. The ideal size of a bucket (red
straight line at 8) for an equi-depth histogram.
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Figure 5.14 The histogram H4 (black solid line), which is obtained by merging
third and fourth buckets ofH3, thus containing T 4 = 3 = B buckets. Approximate
bucket sizes (blue dashed line) with respect to H4. The ideal size of a bucket (red
straight line at 8) for an equi-depth histogram.

the boundary. In this case, a(i,H∗) gets the maximum value. Vice versa, a(i,H∗)

gets the minimum value in the case that all possible values in the divided buckets

stay out of the ith bucket in contrast to the case seen in Figure 5.15. The following

calculation shows the maximum value of a(i,H∗).

a(i,H∗)max = C + |P1|/T + |P3|/T

+ · · ·+ |Pk|/T

+ |P1|/T + |P2|/T

+ · · ·+ |Pk−1|/T (5.5)

where C is constant which is the sum of the sizes of the buckets relying completely

in the ith bucket and |P1|, |P2|, . . . , |Pk| is the size of sets. Adding and subtracting
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|P2|/T and |Pk|/T to the equation, we get the following equation.

a(i,H∗)max = C + (|P1|+ |P2|+ · · ·+ |Pk|)/T

+ (|P1|+ |P2|+ · · ·+ |Pk|)/T

− |P2|/T − |Pk|/T

= C + 2N/T − |P2|/T − |Pk|/T

< C + 2N/T (5.6)

And a(i,H∗)min is equal to C because no additional values are located in the ith

bucket except the constant ones. Once a(i,H∗)max and a(i,H∗)min are determi-

ned, εmax would be the difference between them.

εmax = a(i,H∗)max − a(i,H
∗)min

< C + 2N/T − C

< 2N/T (5.7)

The following equation shows another expression of εmax in terms of exact (ideal)

bucket size N/β.

εmax = 2N/T

< 2Nβ/Tβ

< 2β/T × (N/β) (5.8)

�

Theorem 2. Let H1, H2, . . . , Hk be T -bucket equi-depth histograms of value sets

P1, P2, . . . , Pk, and H∗ be the approximate β-bucket equi-depth histogram where

β ≤ T constructed by the algorithm. Then, the size of any range spanning m

buckets, Ra(i, i+m,H∗), is m× (N/β)± εmax where εmax < 2β/T × (N/β).
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Figure 5.15 Illustration of maximum bucket size.

Démonstration. Let us start with proving the error bound of range size of two

consecutive buckets. Figure 5.16 shows this case. There are two consecutive bu-

ckets and three boundaries (bi, bi+1, and bi+2), the middle one (bi+1) splits the

two buckets. Notice that the intersected buckets by bi+1 completely rely in the

range of the two buckets and this means that the sizes of these buckets are added

as a constant to the range size Ra(i, i+ 1, H∗). As a result, this proof turns into

the proof of error bound of bucket size given in Proof 13 and Equation 5.7 and

Equation 5.7 also proves Theorem 2. The general case -spanning ranges includes

more than two buckets- can also transform into a single bucket problem in the

same way with the case with two buckets. �

According to Theorems 1 and 2, users can bound the maximum bucket size error

of final β-bucket approximate equi-depth histogram H∗ by selecting appropriate

bucket numbers β and T . For example, let us calculate T , number of buckets of

equi-depth histograms of data partitions kept in the summary files, in terms of

β for getting final merged histograms, the maximum bucket size errors of which

do not exceed 5% of the ideal bucket size (N/β). If we use Equation 5.8, we can

find the minimum number of buckets T needed to satisfy the 5% error condition
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Figure 5.16 Illustration of maximum size of a range of buckets.

as follows.

εmax < 2β/T × (N/β) ≤ 0.05(N/β)

40β ≤ T

Consequently, the required bucket size T should be at least 40 times β which is

the desired number of buckets of constructed histograms using our method.
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CHAPTER 6

IMPLEMENTATION WITH HADOOP

MAP-REDUCE

In this section, we explain the implementation details of our histogram processing

framework on Hadoop MapReduce. The framework consists of two main MapRe-

duce jobs. One of them is named as Summarizer which runs offline and is schedu-

led for summarizing the new coming data to HDFS. The Summarizer constructs

a T -bucket equi-depth histogram of the data. After summarizing, the resulting

equi-depth histograms are stored in HDFS. The architecture of Summarizer is

displayed in Figure 6.1. The second job, Merger, is run on-demand according to

users’ requests. Its duty is to merge the related summaries from HDFS by consi-

dering user requests and to construct the final β-bucket approximate equi-depth

histogram. Its architecture is showed in Figure 6.2.

The overview picture of the histogram processing framework is given in Figure 6.3.

In the left of the figure, HDFS holds whole data including the new data, summary

files, and created histograms according to user requests. The framework is in the

right of the picture and Summarizer and Merger jobs take place in the framework.

Every time, new data is pushed to HDFS, the Summarizer constructs its sum-

mary (T -bucket equi-depth histogram) and saves it to HDFS, again. When a user

requests an equi-depth histogram of desired partitions (it can be any set of data

partitions), the Merger processes the request by merging the related summaries

of desired partitions and saves the merged final histogram to HDFS. These jobs

can also be implemented in the Hive and Pig as user functions.
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Figure 6.1 Architecture of Summarizer.The right of the figure, Histogram Crea-
tion Phase is demonstrated with dashed lines.
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Figure 6.2 Architecture of Merger. Histogram Merging Phase showed in the right
of the figure gets sorted values of summaries and merges.
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Figure 6.3 Overview of Proposed Framework.
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CHAPTER 7

EXPERIMENTAL RESULTS

In this section, we will describe how we tested the proposed method. The me-

thod was implemented on Hadoop MapReduce framework and was tested on

two different datasets. One of them is synthetic data with 155 million of tuples

created by using Gumbel distribution for skewness to represent the response of

the method for skewed data. The other one is 295 GB uncompressed real data

which is taken from hourly page view statistics of Wikipedia. The data consists

of approximately 5 billion tuples which belong to January 2015 and each tuple

has 4 columns which are language, pagename, pageviews and pagesize. We used

pagesize for histogram construction. The proposed method (merge) is compa-

red with corrected tuple level random sampling (tuple). By definition, bare tuple

level random sampling collects tuples randomly and constructs histogram with

collected tuples but doing so does not work well when the data is sparse at the

edges. Therefore, we fix this problem by including the edge values to the collected

tuples by default. As mentioned in Section 3, histogram construction of the data

coming from daily logs is an important issue and tuple level random sampling

method is also unfavorable for constructing a histogram of a given time interval.

Hereby, sampling stage of tuple level is run offline to compare time spendings.

All equi-depth histograms are build with bucket size of 254 as used by Oracle as

default bucket size for histogram enhancement. We fundamentally run two types

of tests to represent the effectiveness of the proposed method in terms of boundary

and bucket size error and run time. The first test represents the results according

to T changes which is daily exact histogram bucket size for the proposed method

and sample size for tuple level sampling. The second test represents the run time

efficiency of histogram construction for the changes in a given time interval.

Approximate histograms may have two types of error. One of them is that ap-

proximate histograms may not have the same bucket boundaries with the exact

ones and the other is that bucket sizes of the approximate histograms may de-

viate from the exact ones. The former error is named as boundary error (µb) and
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defined as follows :

µb =
B

vmax − vmin

√√√√ 1

B + 1

B+1∑
i=1

[b(i,H∗)− b(i,H)]2. (7.1)

where B is the bucket size, vmax and vmin are maximum and minimum values

in relation R respectively, and the function b(i,H) is the ith value of a given

histogram H. µb is the standard deviation of boundary errors normalized with

respect to the mean boundary length (vmax− vmin)/B. The latter error is named

as size error (µs) and formulated as follows :

µs =
B

N

√√√√ 1

B

B∑
i=1

[s(i,H∗)− s(i,H)]2. (7.2)

where N is the total number of elements in relation R and function s(i,H) is

the size of the ith bucket of a given histogram H. s(i,H) is equal to the mean

bucket size N/B for all i values in the range of 1 to B if the given histogram

H is an equi-depth histogram. µs is the standard deviation of bucket size errors

normalized with respect to the mean bucket size N/B.

7.1 Effect of T

Changing T value effects the accuracy of the constructed approximate equi-depth

histogram. The first experiment is run to show the effects of T changes on both

the proposed method and tuple level sampling. Figures 7.1 and 7.2 show the error

graphs of the approximate equi-depth histograms constructed using the proposed

method and tuple level sampling method. According to the graph in Figure 7.1a,

the constructed histogram by using merge method for real data is at least 2 times

more accurate in terms of boundary error µb than the one constructed using tuple

method. Moreover, the µb error for tuple method is not consistent because of the

randomness and the construction process must be repeated for consistency and

this is not convenient because of the run time. For example, let us consider the

graph of µb against T given in Figure 7.1a. Notice that the µb error for tuple

method is not consistent. The expected result is that µb should decrease while T

increases. On the other hand, it is clearly seen from the graphs of merge method

in Figures 7.1a, 7.1b, 7.2a, and 7.2b that µb is a non-decreasing function of T .

The reason of this consistency is the maximum error bound of merge method
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(a) Graph of µb against T for real data

(b) Graph of µs against T for real data

Figure 7.1 Lin-log graphs of error metrics against T (B × 254 × 2n) which is
summary size in merge method and sampling size in tuple for real data

described in previous sections in detail. The mean running times for all methods

are given in Table 7.1. Run times for merging daily summaries and samplings are

nearly the same. But required time for the summarization stage of merge method

is more than the time for offline sampling stage of tuplemethod. The reason of this

time difference is that summarization is exact histogram construction and exact

histogram construction for each data partition requires a complete MapReduce

Job with a mapper and a reducer and the data comes from each mapper subjected
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(a) Graph of µb against T for skewed data

(b) Graph of µs against T for skewed data

Figure 7.2 Lin-log graphs of error metrics against T (B × 254 × 2n) which is
summary size in merge method and sampling size in tuple for skewed data

to shuffle and sort phase. On the other hand, tuple level random sampling does not

require a reducer because the randomly selected tuples would be stored directly

without sorting. Because of this difference, summarization of each day for real

data takes approximately 12 minutes while sampling takes 4 minutes. Although

this time efficiency of tuple method, all the daily summarizations and samplings

are done offline, it makes merge method convenient for real life applications.
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(a) Graph of µb against merged # of days for real data

(b) Graph of µs against merged # of days for real data

Figure 7.3 Graphs of error metrics against merged # of days for real data

7.2 Effect of given time interval

Histogram constructions according to the given time interval effect deviation of

approximate histograms from the exact ones and running times. We compared

merge method with tuple method with an experiment for 5 different time in-

tervals (1 day, 1 week, 2 weeks, 3 weeks, and 1 month). T value is taken to be

B×254×212 for real data and to be B×254×27 for skewed data. All daily exact

histogram and samplings are computed offline. In Figures 7.3 and 7.4, graphs of
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(a) Graph of µb against merged # of days for skewed data

(b) Graph of µs against merged # of days for skewed data

Figure 7.4 Graphs of error metrics against merged # of days for skewed data

error metrics against time intervals are given and it is clearly seen from the graphs

that the proposed method produces more sensible histograms than the ones pro-

duced using tuple level random sampling. In particular, a real data histogram

constructed using merge method has at least 10 times less boundary error than

the one constructed using tuple method in Figure 7.3a. Besides, again the consis-

tency is an issue for tuple method as seen in Figures 7.3a and 7.4a. The graphs

of running time against number of days are given in Figure 7.5. More specifically,

the compared methods (merge and tuple) run in nearly the same time duration
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(a) Running time against merged # of days for real data

(b) Running time against merged # of days for skewed data

Figure 7.5 Graphs of running time against merged # of days

except offline parts.
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Table 7.1 Mean Running Times of Monthly Equi-depth Histogram Construction

Method Real Data Skewed Data

Exact Hist. Construction 24358 582

Tuple with Online Sampling 6169 68

Summarizing for Each Day 725 18

Merging of Daily Summaries 117 73

Sampling for Each Day 223 18

Merging of Daily Samplings 113 71
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CHAPTER 8

DEMONSTRATIONS

8.1 Overview of Demonstration

In this section, we will explain our demonstration with implementation details.

We have two demonstrations. One of them consists of two Pig Latin scripts which

are called SummarizerPig and MergerPig, respectively. SummarizerPig runs of-

fline and is used to construct exact equi-depth histogram of new comming data

to HDFS with pre-specified number of buckets by user. Output of the Summari-

zerPig which can be called summary is also stored in HDFS. The other script,

HistogramMerger runs online with desired query request by user. It merges Sum-

marizerPig’s desired outputs considering specified query and builds final approxi-

mate equi-depth histogram. The second demonstration is used for same goals as

HistogramMerger, but there are minor differences. We call this demo as Mer-

gerWeb because a Map-Reduce job works background of JSF web page. In the

MergerWeb, user prepare a query and send to the Map-Reduce job. The job gets

inputs which are summaries from HDFS according to query and builds approxi-

mate equi-depth histogram as MergerPig.

In Figure 8.1, an Overview of demonstrations processing is given. The online and

offline parts can be seen in the right side of the figure. Raw data, summary files

and final approximate histograms constructed according to user demands stored

in HDFS is displayed in the left of the figure. When new data pushed to HDFS,

SummarizerPig works, constructs its summary and stores in HDFS, again. It

is remembered that constructed T -buckets equi-depth histogram is exact histo-

gram. When a user requests an equi-depth histogram of desired data partitions,

MergerPig gets summaries of related data partitions, computes approximates β-

buckets equi-depth histogram and saves output which is final merged histogram

to HDFS. In this research, we have two Hadoop Map-Reduce jobs alternatives

of SummarizerPig and MergerPig. The first job can be used instead of Summa-

rizerPig works offline. The second job which is alternative of MergerPig works
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Listing 8.1: Script of SummarizerPig

register HistogramSummarize.jar;

define Hist HistogramSummarize ( 2 5 4 ) ;

A = load pagestat /20160101 using PigStorage ( ) as (lang:chararray ,

url:chararray ,req:long ,byte:long);

B = foreach A generate byte as (byte:long);

C = group B all;

D = foreach C

sorted = order B by byte;

generate Hist(sorted);

;

store D into Summaries /20160101 ;

on-demands. Our demo is a web application gets query from user and runs Map-

Reduce jobs with this query. As a result, it merges exact histograms and builds

approximate equi-depth histogram.

8.2 Demonstrations Examples

We now present our so simple applications in this section. We have described jobs

of demonstrations in previous section. In Listing 8.1 and Listing 8.2, you can

see our first demo scripts. We write ’HistogramSummarizer’ user define function

and register it in line 1 of Listing 8.1 to create exact equi-depth histogram. The

number of buckets T is defined in line 2 of Listing 8.1. In the other part of script

data is loaded, histogram is generated and daily histogram stored in HDFS under

’Summaries’ directory.

The MergerPig 8.2 merges desired daily exact-equi-depth histograms. To use this

method in Apache Pig, we write another user define function registered in 1 of

Listing 8.2. As you can see in this script, the number of buckets of approximate

histogram is defined in line 2 of Listing 8.2. The merged histogram data of desired

time interval(time interval is a week in following example) is loaded in line 3 of

following listing. In the rest of script, approximate equi-depth histogram is built

and stored in HDFS.

We implement two Hadoop Map-Reduce jobs for our second demonstration.
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Figure 8.1 Overview of Demonstrations
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Listing 8.2: Script of MergerPig

register HistogramEstimate.jar;

define Hist HistogramEstimate ( 2 5 4 ) ;

A = load Summaries / 2 0 1 6 0 1 0 [ 1 7 ] / as (B: bag T: tuple(bound:long ,

numberOfTuple:long) ) ;

B = foreach A generate flatten(B);

C = group B all;

D = foreach C

sorted = order B by bound;

generate Hist(sorted);

;

store D into output;

The first job constructs exact equi-depth histogram as ’SummarizerPig’, but we

doesn’t present it in Figure 8.1. Because ’SummarizerPig’ is enough to present

working logic in it. The second job works as ’MergerPig’. Essential command to

run this job is displayed in following listing.

Listing 8.3: Essential Command to Run MergerJob

hadoop jar HistogramEstimate.jar edu.tou.HistogramEstimate

numberOfBuckets( b e t a ) startdate enddate Summaries output

Actually, we only use this job in MergerWeb which is written in JSF and Maven

frameworks. The user interface is available in Figure 8.2. In order to use this

demo, input fields, which are number of buckets(β), start date, end date, input

files path and output file path must be filled and clicked button. As soon as job

is finished, the constructed approximate equi-depth histogram of time interval is

demonstrated as Figure 8.3. If you look carefully to Figure 8.3, you will notice

visual disturbances and unnecessary last bucket. The visual disturbance stems

from Primefaces chart component we have used. If a suitable visual component

to equi-depth histogram, the histogram obtains perfectly.
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Figure 8.2 MergerWeb Form

Figure 8.3 Equi-Depth Histogram Constructed by MergerWeb

8.3 Performance Comparison of Demonstrations

We will share and describe demonstrations of proposed method in this section. If

we remember from previous sections, The proposed method consists of offline and

online parts. For offline parts, we run HistoramSummarizer which is Map-Reduce

job and SummarizerPig 8.1 and compare them in terms of time. In the crucial

part of proposed method, in the online part, MergerWeb 8.2 and MergerPig 8.2

runs. We also compare its results in terms of time. The demonstrations tested

on real datasets taken from hourly page view statistics of Wikipedia which are

3 GB uncompressed and consist of 35 million tuples which belongs to first hour

of first week days of July 2016. The characteristic of data is widely described in

Experimental Results section. All histograms are created with 254 buckets size as

previous tests and oracle does. When doing these tests, a hadoop cluster consists

of two node is used. The master node is Toshiba Satellite PC which has Intel(R)

Core(TM) i3-2310M CPU @ 2.10GHz and 4 GB RAM and the slave node is

Raspberry Pi 3.

HistogramSummarizer job creates daily equi-depth histogram faster than Sum-

marizerPig as shown in Figure 8.4. The sum of avarage map and shuffle times

of SummarizerPig and HistogramSummarizer is nearly same. It is demonstra-

ted comparison results in Figure 8.5. However, the spent time in reduce phase

of SummarizerPig is more. Therefore, implemented pig script to construct daily
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equi-depth histogram runs slower than Map-Reduce job(see Figure 8.6).

We also compared MergerWeb and MergerPig in terms of total running time

and phases times as map time, shuffle time and and reduce time. We created

approximate equi-depth histograms for first 2,3,5 and 7 days, respectively and

compared its results. According to Figure 8.7, when MergerWeb runs, as input

data grows, namely as number of summaries to be merged increase, histogram

merging time increases. MergerPig optimize maps(see Figure 8.8) and runs nearly

same times with minimal increases. The time spent for shuffle phase may change

because of order of the data. In Figure 8.9, the time spent for shuffle phase is

displayed. However, the reduce phase of MergerWeb runs faster than MergerPig

as showed in Figure 8.10.

8.4 Conclusion of Demonstrations

We experience Map-Reduce jobs run faster than Apache Pig scripts. This situa-

tion did not surprise us because Hadoop Map-Reduce give full control to deve-

lopers. But Apache Pig transforms query to Map-Reduce job series. Therefore,

because of transformations and more Map-Reduce jobs, the good performance

of Hadoop Map-Reduce jobs is normal. However, developers spend more time to

code and to change on codes. Sometimes the developers may even need to extra

jobs. They are disadvantages of Hadoop Map-Reduce. The disadvantages of Ha-

doop Map-Reduce are not in Apache Pig and Apache Hive. Development time is

less in Apache Pig when compared Hadoop Map-Reduce.

In this section, rather than comparison, we wanted to show how to contribute

new methods to Apache Pig and how to make a framework from a method.
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Figure 8.4 Running time against daily constructed histograms

Figure 8.5 Avarage map and shuffle time against daily constructed histograms
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Figure 8.6 Avarage reduce time against daily constructed histograms

Figure 8.7 Running time against merged # of day(s)
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Figure 8.8 Avarage map time against merged # of day(s)

Figure 8.9 Avarage shuffle time against merged # of day(s)
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Figure 8.10 Avarage reduce time against merged # of day(s)



52

CHAPTER 9

CONCLUSION

In this thesis, we proposed a novel approximate equi-depth histogram construction

method by merging precomputed exact equi-depth histograms of data partitions.

The method is implemented on Hadoop to demonstrate how it is applied to real

life problems. The theoretical calculations and the experimental results showed

that both the bucket size errors and total size error of any bucket range are boun-

ded by a predefined error set by a user in terms of T and β. In particular, the

experimental results run on both real and synthetic data show that the construc-

ted histograms using the proposed method (merge) are more accurate than the

tuple level random sampling (tuple) with a cost of offline run time. In addition

to the proposed merged based histogram construction method, we also proposed

a novel histogram processing framework for the daily stored log files. Besides, we

contributed this methods to Apache Pig and created two demonstrations. This

framework is crucial for fast histogram construction over a subset of a list of par-

titions on demand. The time complexity and the incrementally updated nature

of the proposed method makes it practical to be applied over real life problems.
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