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ABSTRACT

Quantum Cascade (QC) lasers are semiconductor lasers that contain guantum
wells. Quantum wells provide distinct quality for QC lasers. Changing width of
quantum wells cause to obtain different wavelengths for QC lasers. QC lasers have
critical characteristic quantities such as optical gain, linewidth enhancement factor
and refractive index change. These parameters differ according to conditions. In this
study; relating to injection current and wavelength the changes of optical gain,
linewidth enhancement factor (Alpha parameter) and refractive index change which
are characteristic parameters of QC lasers are modelled three dimensionally
considering experimental values. Surface fitting techniques: regression analysis
(lowest, polynomial) and method of least squares are applied to provide the optimal
surface. Both the training and test results are used to obtain surface curves of
characteristic quantities with minimum error. Except method of least squares,
MATLAB program is used to find the surfaces and the errors of techniques. In this
study, we present the best fitting technique to find the ideal parameters for each
different QCLs’ variables.

Keywords: Quantum Cascade Laser, Regression Analysis, Surface Fitting, Least
Square Method
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OZET

Kuantum kaskat (QC) lazerler, kuantum kuyulari igeren yari iletken lazerlerdir.
Kuantum kuyulari, QC lazerlere farkli bir nitelik saglar. Kuantum kuyularmin
derinliginin degistirilmesi, QC lazerlerin farkli dalga boylarina ulasmasina neden
olur. QC lazerlerin optik kazang, ¢izgi genigleme faktorii ve kirmim indis degisimi
gibi ayirt edici ozellikleri vardir. Bu parametreler, i¢inde bulunulan kosullara gére
farklilik gosterir. Bu calismada, akim ve dalga boylarina gore degisiklik gdsteren
optik kazang, ¢izgi genisleme faktorii (alfa parametre) ve kirinim indis degisimi QC
lazerler i¢in deney verileri kullanilarak ii¢ boyutlu modellenmistir. En uygun yiizeyi
bulabilmek i¢in regresyon analiziyle birlikte ylizey uydurma yontemi uygulanmistir.
Test ve deney sonuclari, minimum hataya sahip ozellikler iceren yiizey egrisi elde
etmek i¢in kullanmilmistir. En kiigclik kareler yontemi disindaki metotlar icin
MATLAB programi kullanilmistir. Caligma sonunda, kullanilan metotlar iginde QC
lazerlerin ozelliklerine uygun ideal verileri bulan en iyi yiizey uydurma teknigi

saptanmistir.

Anahtar Kelimeler: Kuantum Kaskat Lazer, Regresyon Analizi, Yizey

Uydurma, En Kiigiik Kareler Yontemi



1. INTRODUCTION

Laser is an optical resource which depends on behaviors of electrons surrounded
in active region [1]. Laser as a name is presented by using the first letters of the
words in “Light Amplification by Stimulated Emission of Radiation”. Forming of
laser is related in difference between energy levels. Electrons that are found in atoms
or molecules in the active region determine their movements according to energy
levels. During transition of electrons; absorption or emission can occur related to
energy levels. The transitions of electrons between energy levels occur naturally or
stimulated, as absorption and emission. Emission is the process of the transition of an
electron from high energy level to low energy level by releasing a photon. Emission
occurs in two ways; naturally or stimulated. If an electron in high energy level
release a photon to move low energy level not naturally by the effects of photons in
the same region, this transition is called stimulated transition. For stimulated
emission, the energy of photon which performs stimulation released must consist as
much as the difference of energy between the current energy and the energy level of
the atom will move. Absorption occurs when an electron in the lower level absorps a
photon to move high energy level [2]. To form a laser, three compoents are needed:
gain or laser medium (solid, liquid, gas or semi conductor medium), optical resonator
that produces optical gain and manage transitions of photons and an energy source

(pump source that provides atoms to be stimulated) [3].

Highly Partially
reflective reflective
mirror Pump Source mirror

(! |
Laser
cutput
Laser Medium
\— Optical resonator Q

Figure 1 Diagram of a laser

Lasers are grouped according to active laser medium used. There are various
types of lasers as solid, liquid, gas, semi conductor. The semiconductor laser is the
most widely used of all lasers. As the name of semi conductor suggests, semi
conductor medium is used to provide optical gain. Semi conductor lasers have
practical importance in usage so it is manufactured in the largest quantities [4].
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Quantum cascade lasers (unipolar lasers) are the semi conductor lasers that
contain quantum wells and demonstrated in 1994 by Federico Capasso and Jerome
Faist. Quantum wells are so narrow that cause electrons in it to reveal different
behaviors. The electrons in quantum wells move between different energy levels.
Thus photons spread out. The wideness of well affect the energy of photons. When
the wideness of well decreases, the energy of photon increases [5]. Electron transition
in semi conductor lasers occurs between conductional and valence band. Differently,
in quantum cascade lasers, these bands comprise subbands. The medium between
quantum wells that electron transits is called active region. Electrons traverse
through active regions using subbands. The transition from valence band to a lower
band, a photon is emitted. In transition through structure, a photon is emitted each
passing next active region. QCLs contain many quantum wells which means multiple

photons can be generated by a single electron [6].

Quantum well

. Light emutted

.
1 Upper energy leve

Lower energy level -

Light is emitted as
electrons “cascade”
through multiple quantum wells

Figure 2 Transition of an electron in Quantum Cascade Laser

One of the distinct properties of QCLs is that short pump pulses of energy sources
can be used to gain watt-level peak powers even at room temperature. Narrow
linewidth, wavelength tunability and running in the room temperature of QCLs make

them preferable in applications in several different fields [8].

QCL is used in a huge variety in real world applications. QCL based systems are

used in medical, industrial, security, space and environmental fields. It is used as
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sensitive medical diagnosis detector. Various types of cancers can be early detected.
QCL is a very important laser type for military applications, too. Since explosive
materials were used in terror attacks first, explosive detection technology has
standed out by countries that face terrorism. QCL is used in standoff explosives
detection equipment. In homes QCL based systems are also used for personal
security. It is also used in aviation, cruise is controlled automotically and radar is
improved for avoiding collisions in the air. Another field in which QCL is used is
mid-infrared imaging. Gas sensors that analyze content of gas and detect the amount
of chemical compunds (CH4, CO, N20, NH3, SO2, HCL etc. ) in the atmosphere.
For example these sensors detect nitric oxide in air, which causes acid rain [9, 10,

11]. QCL is also used as spectrometer to find applications in exploration of space.

Quantum wells which are the constituents of quantum cascade lasers, are
composed of different materials joining in layers. Because of this, they are called as
heterostructures. Heterostructures contain different semiconductors that have divers
energy levels. This diversity causes an ambiguity as how the different bands in the
two materials will line up in energy with one another. The term “band offset ratio is *
steps in at that time. The band offset ratio is the ratio of difference in conduction
band energies to the difference in valence band energies. Conduction band is the
structure which contains high energy electrons and valence band is the band which is
separated by a band gap from conduction band and contains low energy electrons. If
both electrons and holes see higher energies after calculating band offset ratio, this
type is called type 1 system. In type 2 system, electrons and holes in heterostructures
have their lowest energies [12].

The types of transition between bands in a quantum well can vary. It can be
between states of a single subband (without passing through a band gap), subbands

of same band or subbands of different bands.



interband transition intersubband transition

electron electron
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Figure 3 Transitions of an electron in type | and type 11 QCls

Type 1 Quantum Wells: In type 1 quantum wells, energy transition occurs

between the bands of single subband [14].

In conduction band of quantum wells, photons can be created by intersubband
transitions between subbands. So wavelength of laser is not restricted by the material
used in band gap. The wavelength of type | QCls can vary in a big range. Layers

thicknesses play an important role in this variation of wavelength [15].

Type Il Quantum Wells: In type II lasers, electrons and holes aren’t confined in

the same layer . There is a photon transition between different subbands [16].

In type 2 QCLs, it is seen that conduction band of one semiconductor ovelapping
on the valence band of another closest semiconductor. A photon is emitted by
tunneling of electron between these bands. After this emission, transition goes on the
other connected region. Type 2 QCLs have higher efficiency, the number of photon
created is very high. It is also a big advantage that being formed at nearly room
temperature. They are used in a various applications such as hot electron transistors,
resonant tunneling diodes and detectors [17].

Differences between type | and type Il lasers: In type 1 systems, absorption of an
electron is stronger than the absorption of electron in system of type Il because of
transition in same band [14]. In type Il systems, transition occurs between different
subbands. For the same side, type Il systems release lower energy for electrons and
holes[17]. In type Il laser system, combination of electrons and holes provides

photon generation. So the band gap of semiconductor material affects laser



wavelength directly. In type 1 laser system, transition occurs intersubband not in the
holes so the wavelength of laser is not affected by the material of band gap [13].

Why these calculations are done in the experiments of these laser types : (For type
1 calculations) It is defined that there are important parameters that affect QCLs
directly. One of them is linewidth enhancement factor. The LEF is a parameter which
affects determination of spectral linewidth of semiconductor lasers considerably so
the measurements of LEF under different conditions take an important role for lasers
efficiency [18]. A large LEF is not desirable in the high power operations because of
causing large chirp in filamentation of operations. There has been many reports about
verification of LEF in type 1 QCLs but there has been no report about LEF near zero
at the gain peak. There are many factors that affect LEF. Some of them are device
self heating and refractive index change. Device self heating provide type 1 QCL
more effective because the threshold current of a QCL is higher than others. There
are also transitions other than lasing. These transitions affect refractive index change.
In these transition states, there can be various electron populations that are not close
to lasing wavelength. These populations can also affect refractive index change at the
lasing wavelength. The experiments are also done to determine effects of transitions
other than lasing one against refractive index change [18]. In the study of type Il
laser; on the amplified spontaneous emission spectra, LEFs of type Il laser on

different refractive index change and gain are determined.

In which conditions are the calculations done: For type 1 lasers, a liquid nitrogen
cryostat is used for the QCL sample to be set under a given current source. QCL
emits light and the light is collimated and directed to the spectrometer. This light
which is emitted from QCL is anaylsed. Current is lined as 2 mA increment from the
begining measure. Device self heating is also used in the experiment. Similarly, a
liquid nitrogen cryostat is used for QCL sample to be operated. In the end the
radiation of laser is collimated and referred to the Fourier transform infrared
spectrometer as declared in the type 1 QCL measurements. The gain is calculated by
Hakki-Paoli method.

Why do we need three dimensional surfaces: Modelling is applied to this

experiment data because measurement of linewidth enhancement factor is not very
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easy according to different environments. For optimal environment, many different
conditions are needed according to types of laser. By modelling these surfaces,
linewidth enhancement factor can be attained without preparing required currents
other than given and applied current points. For this purpose, different surface fitting

algorithms were used on the given data points.
1.1. Characteristic Quantities Of Quantum Cascade Lasers

Quantum cascade lasers possess many advantages compared as standard
semiconductor laser. Consisting quantum wells and barrier materials provide
convenience in wavelength, bias voltage, output power. Direct electronic transition
for light generation is another advantage of QCLs [11]. Wavelength can be modified
by changing the width of QCL well and QCLs can run in the room temperature. As a
result, QCLs provide high brightness, they are tunable and contain narrow band [19].
Quantum cascade lasers have threee important characteristic parameters as linewidth

enhancement factor, optical gain and refractive index.
1.1.1. Linewidth Enhancement factor (LEF)

Linewidth enhancement factor (a- factor) is an effective parameter which
determines spectral linewidth of semi conductor lasers [20]. o- factor has an
important role in the changes of filamentation in devices, linewidth, laser dynamics
etc... [21].

1.1.2. Optical Gain

Optical gain is the increase in the ratio of number of photons to the extent of unit
radiation. It can also be defined as the degree that provides to increase optical power
of semi conductor lasers [23]. Optical gain changes according to quantities of
photons proportionally. Changes in optical gain obtains to attain information about

capabilities of tools as shown by the formula below:

Efficiency = Optical power / Electrical power

Optical gain can be defined as:



(E — ﬂEF]

£=8 exp kT

E= Energy Level

go= Naturally Radiaton Ratio
AEF= Quasi-Fermi Level

K= Boltzmann Constant

T= Temperature (Kelvin) [21]

1.1.3. Refractive Index:

Refraction is the act of wave when it enters through a different medium. The wave
bends according to its speed in the new medium. Bending of wave depends on the
refractive indices of two media [23]. Refractive index is the ratio of speed of light in

vacuuum to speed of light to which it passes.
Refractive index is calculated as

he
Vi

C = The speed of light in the vacuum (299792458 m/s) (constant)

V= The speed of light in the medium passed

ni=Refractive index [24].

Refractive index is affected by the variables like temperature, pressure and
wavelength. It changes by temperature because temperature impacts density of
medium. When the density of medium changes, its velocity changes. The refractive
index changes certainly depending on velocity. Velocity of light depends on
frequency so refractive index changes by the increase and decrease of medium
frequency. When the wavelength of conductive medium increases, refractive index
of light decreases. The variety in the refractive index by the effects of frequency and
wavelenght is called dispersion. Dispersion can be observed normally or abnormally.
In case of close absorbtion bands, rapid changings occur in the refractive index
which is called abnormal dispersion. The others which do not cause rapid changing

of refractive index are called normal dispersion [25].



1.2. Regression Analysis

Regression analysis is a method which determines relationship between two or
more variables and provides to predict new values by the help of defining a mean of
dependence of random values [26]. Relationships between annual rainfall and
drought, fertilizer amount used on land and yield taken of products, malnutrition and
being ill frequently are the examples of regression analysis. In the example above, it
Is given that there is a relationship between malnutrition and being ill frequently. In
this example malnutrition is reason and being ill frequently is result. According to
regression analysis, being ill frequently is dependent and malnutrition is independent
variable. Regression analysis analyzes not only relationship between two variables,
number of independent variables can be increased. Regression analysis can be
grouped according to function type used or number of independent variables of
equation. In a regression analysis one dependent and one or multiple independent
variables can take place. One independent variable means simple regression and
multiple independent variables mean multiple regression. Linear and nonlinear

regression analysis are types of regression as to function used in the equation.

For finding result ranges linear and non linear regression, in linear regression
there is no need any conversion but in non linear regression different conversion
methods are used to conclude. At the beginning, required functions (logarithma,
square root...) are used to turn the equation into linear form and then the equation in
linear form is resolved by using linear methods. Finally converted equation is
returned to the non linear phase at the beginning. Non linear prediction methods are
used when the coefficient can not be converted to linear phase. These non linear

prediction methods are Gauss Newton, gradient and etc.
1.2.1. Simple Linear Regression Analysis

Simple linear regression is a type of regression which reveals the relation between
one dependent and one independent variables. For a relation as (X,y), it can be said
that x and y are related to each other partially. Variable x informs about variable y.



Therefore y is called as result, dependent; x is called as independent, explanatory,
exogenous variable [27].

Yy =PBo+P1X+ €

Simple Linear Regression Equation

In the equation above, B0 is called as constant or intercept, 1 is called as
coefficient or slope, informs about steepness of the regression line, € is the error

term.
1.2.2. Multivariate Linear Regression Analysis:

It is a type of regression model composed of multiple independent variables and
one variable that depends on these independent variables. By using this type of
regression, effects of independent variables on the dependent variable and the
magnitude of these effects can be examined [28].

For n observations, the equation for multiple linear regression is

yi = B0+ Bxi1 + Poxiz + . !Bpxip + &

p is the number of explanatory variables.
1.3. Surface Fitting Techniques

Surface fitting is an analysis that is used to find out the best fitting model for a
relationship between dependent and more than one independent variables of

computer graphics or desings [29].

The closeness between the real surface and the surface created by fitting
technique is the base of surface fitting. The aim of surface fitting is to obtain the
nearest surfaces by minimizing distance between them. For this purpose different

surface fitting techniques are used and comapred to reach the ideal result [30].

Surface fitting has a widely used areas as in medicine, mathematics, engineering,

earth sciences etc. [31].



In this study we used polynomial interpolation, custom equation, Locally
Weighted Smoothing (Lowess) methods.

Least Square Method: Least square method is a type of regression which provides
the best line or surface for given data points [33]. The aim is to minimize the sum of

squares of errors for results of each single equation.

For surface fitting the steps and logic are same with 2D linear fitting. A set of
samples are given. Dependent and independent variables are shown by letters as x, y
and z. “z" is declared as the dependent variable, x and y are as independent
variables. The equation “z = Ax + By + C” is the surface which the samples best fit.
The main part is that error function between the given points and effectual surface
equation is minimized. The error function is equalized to zero. So the equation can

easily be solved. The result shows the best surface by applying least squares [32].

-
s

m
E(A,B,C) =Z|{Ax[ + By, + C)—z
=1

is defined. The hyperparaboloid graph derived when the gradient occurs

VE = (0, 0, 0).
(0,0,0)=VE = EZ[(.-UE + By; + C) — z)(zi. . 1)
i=1

Lowess (Locally Weighted Scatterplot Smoothing): It is a type of regression
method which is used to present a surface by using a function of the independent
variables locally among multiple smoothing methods. It is also called as LOESS
(locally weighted smoothing). By using lowess method much wider regression
surfaces can be obtained as per polynomial methods [34]. Lowess method is not
interested in the global relationship determined using the whole dataset , instead it is
interested in the local relationship between a response variable and a predictor

variable over their ranges [36].

Lowess method implements a non parametric method and generally used when
the user does not have a suitable parametric form of surface. Lowess procedure is a

good choice for fitting if data includes outliers.
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There are two types of lowess applied method: linear and quadratic.

In lowess, a regression surface is fitted to data points by choosing a neighborhood
and a local approximation is obtained by this way. At the center of neighborhoods,
linear or quadratic functions are fitted to apply weighted least square. After fitting
process, the percentage of data points is acquired by choosing the radius of each
neighborhood. Smoothing parameter is another variable that defines the fraction of
data. This parameter controls the smoothness in the surfaces of each neighborhood.
A smooth decreasing function of data points’ distances from the center of the

neighborhood is used to weight data points in the local neighborhood [37].

Polynomial Regression: It is a linear regression method which obtains to predict a
single y variable by separating x variable into a nth order polynomial. A polynomial
function which approximates a set of data points, is created by polynomial

regression. It is also included in multiple linear regression.
Y=a + Bix + X + B +.... + BuX"

The degrees in polynomial regression can be increased according to difference

between R squares in related power equations [38].
1.4. Performance Metrics

R Square: R squared is a measure that defines closeness between data and fitted
regression line. It is also called as square of the multiple correlation coefficient or
coefficient of determination.

SR, _SSE

55T 35T
SSR = the sum of squared regression, (It is defined as the sum of the squared
differences between the prediction for each observation and the population mean.)
SSR =Sum of (Ypredicted-Ymean)’

SSE = the sum of squared error, (calculates the sum of the squared errors of the
prediction function. For the beter approximation function, SSE should be smaller.)
SSE=Sum of (Yobserved-Ypredicted) [38, 39]

SST = the sum of squared total

SST= SSR+SSE= Sum 0f(Yobserved-Ypredicted)2

11



The value of R squared range between 0 and 1.

Adjusted R square: Adjusted R square is a value that measures the proportion of
variation. The difference fronm R square is that it is interested in variation explained
by only independent variables that really affect the dependent variable.

(n—-1)
(n—2)

Adjustedr?=1—-(1—r%)=

Root Mean Square Error: Root mean square error is the square root of the average
of squared differences between the real and predicted values of a given model. By
using RMSE, closeness between observed data and predicted data can be indicated.
Higher values of RMSE indicate worse fit so lower values of RMSE express that the

accuration of predicted response has a higher value [40].

O

n

Standard Error: The standard error is a parametric that show how much the
predicted points can be smaller or larger than the actual values. Standard deviation
is a value that shows how far away each given number from their mean. Standard
error is calculated as dividing standard deviation by the square root of the sample
size. Calculation of Standard deviation has some basic steps. Firstly, the squares of
the differences between data points and mean are taken. Each squared value is added
and the sum is divided by the amount of numbers minus one. Then the square root of

result of division is taken and standard error is calculated [41, 42,43].

| =2
s = |M
‘~.| n—1
SD= Standard deviation

X=each value

X=mean value of the sample
n=number of values [45]
12



SE=Standard error
If the sample size increases, standard error decreases.

Multiple R: It is the correlation coefficient used in multiple regression analysis. It
determines the proportion of the variance of the dependent variable that is related
with independent variables. The value of multiple R varies between 0 and 1. The
value O for multiple R means no relationship and the value 1 means considerable

relationship for the equation [44].

Significance F: It is a variable that determines the probability of output in the

regression could have been obtained by chance.

P Values: P value is a value that determines statistical significance in a
hypothesis. When the p value is smaller than 0.005, null hypothesis( It is a
hypothesis that proposes there is no meaningful statistical significance in the given
observations) is rejected and a relationship between the variables comes out. A

smaller p value means stronger relationship between variables.
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2. METHODS

According to measurements of linewidth enhancement factor spectra calculated
from the measured differential refractive index change and the differential gain with
a current increment of 2 mA in type | QCL (Figure 4) [19] ;Gain and Linewidth
Enhancement Factor of Type-l1 Quantum-Cascade Lasers and calculated linewidth
enhancement factor values via measured differential index change and the
differential gain with a current interval of 0.2 mA at various currents in type Il QCLs
(Figure -5)18 Linewidth enhancement factor of a type-11 quantum-cascade laser) are

modelled by using surface fitting techniques.

o
(=]

; .
== |=150-148 maA
—p—1=152-150 mA,
0.2F ——I=i54-152 mA T
—ip— |=156-154 ma

e

Linewidth enhancement factor (c,)

0 : : -
8.16 8.18 8.20 8.22 8.24
Wavelength (pum)

Figure 4 Linewidth enhancement factor spectra calculated from the measured differential

refractive index change and the differential gain with a current increment of 2 mA.

© T ' 1
- . a

8.8-8.6 mA
2.0-88mA | 1
92.90mA | 7|
9.4-92mA | |
—+—9.6-9.4 mA
2L . - Lo .
3.125 3.130 3.135
Wavelengih (1tm)

® e 0o

Lasing wavelength

Figure 5 The linewidth enhancement factor is calculated from the measured differential index

change and the differential gam with a current interval of 0.2 mA at various currents
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The necessary points which will be used in surface fitting are extracted from the
given graphics for type | and type Il QCLs. The program which is used for this
purpose is Ungraph version 5.

Ungraph is a digitizing program that is used to extract data from graph, picture or
maps. Processing an image by ungraph involves necessary steps. Initially image is
loaded on the program and the coordinate system is defined by selecting basic points.
This process is done to scale the image. After that process, a favorable digitizing
method is selected and applied to the image. Digitizing methods of ungraph program
are divided into 3 groups: functional, non- functional and scatter digitization. In
functional digitization, line on the image is followed from left to right without
turning back to x direction. In non-functional digitization image is followed left to
right also and turning back to x direction is possible. In scatter digitization , data on
the line is determined by user mouse clicks on the line. The number of user selected

points means the number of data determined. Finally the points are saved as a list.
2.1. Determining coordinates of points for type I

According to Ungraph 5 program, before extracting data from graphics, a real
world coordinate system is defined. 1st, 2nd and skew points are determined (Figure
6).

“~x 00 r r +

= —d— |=150-148 mA
o —y—|=152-150 mA,
WW g i PR T IV
w —a— |=156-154 mA

0.4 —

2 A

g

& 06 =l
[=

T

-£

:ﬁ 0.8

g

= 1.0 5 L L

B.16 8.18 8.20 8.22 B.24
Wavelength (um)

Figure 6 Points of coordinate system for type | QCLs properties

The 1st point (8.24,-0.4), the skew point (0,-0.4) and the 2nd point (0,-0.4) are
figured out. After determining coordinate system, scatter digitizing method used to
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list dataset of selected points for each given current intervals. 51 (X,y) coordinates are

set for each intervals. Data between given currents are shown as the figures below.

Eile Edit Miew Digitize Data Help

F5 o[+ #-10 @
— 00 . . E?ta Sets
2 —h— |=150-148 mA. i
o} —¥—I=152-150 mA
E 02 —— 154152 mA. ]
= —t—=156-154 mA.
E 0.4 _A'—“"-q_‘_‘
g
& 06
£ Data
T
£ 08 ES [
% /V 22400 =577
£ 1ol 8.2360 -5314
5 -1
8.16 8.18 8.20 822 8.24 |gzo94 - 4457
Wavelength (um) 8.2220 -5086
82147 6229
£.2081 - 4457
| [ | 82011 -5029
Guide 21941 -.5542
Scatter Digitizing 81861 -B114
Click on the image to collect the coordinates at that point 2,1798 -E742
Sort the points by < o' value 81721 6857
Save the points to a file or to the clipboard. 81655 ARl
81596 -.9600
13 points.

Figure 7 Points at current between 150-148 mA

File Edit View Digitize Data Help
=7 | » + > & H- A&
— 0.0 . . . [I)Iala Sets
2 —h— |=150-148 mA Tl
I} ——1=152-150 mA
T 02} ——=154-152 mA ]
g —— |=156-154 mi
8
c
L]
= D ata
]
= # i
?E 5.2394 -7500
£ 10 . A . 8.2372 -.7058
= 816 8.18 8.20 8.22 824 |[g2299 - 7285
Wavelength (um) B.2222 -6235
8.2153 - 5962
8.2088 - 6188
8.2015 - 5416
T | B '
- 8.1869 - 4426
Scatter Digitizing 8.1807 - 4852
Click on the image to collect the coordinates at that point. 81739 =513
Sort the points by = or Y value. 8.1659 - 941
Save the points to a file or to the clipboard. 8.1608 EEES
¥ 82520  Y: - 2658 12 points.

Figure 8 Points at current between 152 150 mA
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File Edit View Digitize Data Help

R S R K R IE
— 00 i i ' ?ala Sets
2 —A— 1=150-148 mA '
5 —y—1=152-150 mA
T -02 ——I1=154-152mA ]
& —4—1=156-154 mA
g 04 —
:
06}
- Data
)
£ 08 ks bE
§ 81601 - BE67
£ 40 5 i 81663 -6996
= 816 8.18 8.20 8.22 824 1732 - 6991
Wavelength (um) 21804 - 5542
81873 -5537
81942 -5088
82011 -5027
< i | EE :
-l 8.2088 -,4800
Scatter Digitizing 8.2180 -5233
Click on the image to collect the coordinates at that point. 8,2226 -5790
Sort the points by X or Y value. 8,2299 -6229
Save the points to a file or to the clipboard. 8.2368 - 6669
8.2394 -.7389
X 82423 Y- -8276 13 points.

Figure 9 Points at current between 154-152mA

Eile Edt Yeew Dwtizce Dpta Help

TIEEE > CIRACEL E -
~ 00 v DataSots
150 148 A ¢
— [ 52 50 A
02 —— 154152 A

— 50 A A

5834
5re0
=00

4901

- 4517

13
50
A0

Scattes Dighizing 8169 ASK

Ok on B mage 10 collect the cocrdinales of that port Ry -5153

S50 e ports By X e Y value 81728 5102

S ths rrards \n a e 00 Vi Vs sl b

Figure 10 Points at current between 156-154 mA

All the points are distributed and saved to x-values2.txt, y-values2.txt and z-
values2.txt files as to their names. The files are loaded to the program.

2.2. Modelling parameters of type | QCLs by using surface fitting techniques:

Several surface fitting techniques can be applied to given parameters to obtain
best fit. In this study, different fitting techniques are applied to the characteristic
parameters of QCLs. Matlab R2013a version is used for modelling. Curve fitting tool
is the main application to fit surfaces. Least squared method of planar fitting is one

of the methods carried out. The other methods are custom equation, lowess linear,
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lowess quadratic, polynomial degrees2 and polynomial degrees 3. By applying the
methods; R squared, sum of squared errors, adjusted R squared and root mean
squared error of equations are compared to obtain best fit. For least squared method

of planar fitting, in excel data regression analysis is used in additon to matlab.

2.3. Planar Fitting of 3D Points of Form by Least Squared Method to Type |
QCLs:

It is known that z value is dependent to independent values as x and y in a
multivariate equation. When we assume that the plane z = Ax + By + C, by using

given x , y and z values A, B and C are determined .

-
.

™
E(A,B,C) :Z|{Ax[ + By, + C)—z
i=1

is defined. The hyperparaboloid graph derived when the gradient occurs

VE = (0, 0, 0).

(0,0,0) =VE =23 [(Az; + Byi + €) — zi)(xi. . 1)
i=1

According to the formula the equation below is obtained.

m > i ™
|-T TP 2am ¥ 3o T

ai=l

.| .| - .:,_‘rrl Tz -|
P =)
Pim1 Tl e VP i .i'.n':"

= | E;';lu.:f}

=1

NPT TR PR S

mo

Lag=]1 -1

P —

r=Ar+ By +C.

The values of A, B and C are found thereby the equation is resolved. All data are
loaded to values X, y, z. x=importdata(‘’x-values2.txt"); y=importdata('y-values2.txt’);

z=importdata('z-values2.txt"); As per formula adapted to matlab,
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¥=importdata ('x-valuss2.txt');
y=importdata ('y-valuesZ.txt');
z=importdata ('z-valuesZ.txt');
N=size (x);
sum_x=0; sum y=0; sum z=0; suml=0; sum xkare=0; sum ykare=0;
multiply xy=0; multiply xz=0; multiply yz=0;
for i=1:M
sum_ x=sum x+x(i);
sum_y=sum y+y (1) ;
sum_ z=sum z+z (i) ;
suml=suml+1;
sum_xkare=sum_xkare+x(i)”2;
sum_vykare=sum_vkare+y (i) "2;

multiply xy=multiply xy+x(i)*y(i)-

multiply xz=multiply xz+x(i)*z (i)’

multiply yz=multiply yz+y(i)*=z(1i);
end

D=[sum xkare, multiply xy, sum x;
multiply xy, sum ykare, sum y;
sum_x, sum Yy, suml];

F=[multiply zz;multiply yz;sum z];

Dinv=pinv (D) ;

E=Dinv*F;

fprintf ('The equation is:\n');
fprintf('z=%.1l6f*x+%.1l6f*y+%.16f\n"',E(1,1),E(2,1),E(3,1));
fprintf({'Please enter a x and y value to find =z\n');
¥xl=input ('==");

yl=input ('y=");

z1=(E(1)*=x1)+(E(2)*y1)+E(3);

fprintf('z=%.8f\n"',z1);

Figure 11 Matlab code for least square method

When the written formula is executed in matlab, the equation is found as

z=0.5952750876776918*x+0.0164522379263978*y+-7.9628150236458168
A=0.5952750876776918 B=0.0164522379263978 C=-7.9628150236458168

In addition to matlab solution data are examined also in excel file.In the excel file

data-data analysis is clicked.
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Data Review View Developer [ 9 (=T =
== = %_‘E =4~ & Group - ¥
FEL] 5 ¥ Ungroup = ==

‘(“ Textto Remove e
¥ advanced | Columns Duplicates &2~ | B2 Subtotal

H Data Tools Qutline x Analysis

_!'g Data Analysis

Figure 12 View of data analysis in excel

In the opened window, regression is selected

Data Analysis (-2
Analysis Tools
Histogram - *

Moving Average Cancel
Random Mumber Generation -
Rank and Percentile

Sampling

t-Test: Paired Two Sample for Means =

t-Test: Two-Sample Assuming Equal Variances

t-Test: Two-Sample Assuming Unegual Variances —

z-Test: Two Sample for Means &

Figure 13 Data analysis tools in excel

The input ranges of x, y z are determined. After regression applied, the results are

found as:

Table 2.1 Regression statistics of type |

Regression Statistics

Multiple R 0,357654933
R Square 0,127917051
Adjusted R Square 0,091580262
Standard error 0,108340708
Observations 51

Table 2.2 Regression results of type |

Significance
Df SS MS F F
3,52031
Regression 2 0,082640934 0,04132 8 0,037444418
0,01173
Residual 48 0,563410029 8
Total 50 0,646050963
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SS= Sum of Squares
MS= Mean Squared Error
F= Overall F test for the null hypothesis

Table 2.3 Regression results of type | -part 2

Lower  UpperS5,0
Coefficients  Std Emar tStat  P-yalugs Duosik %95 %85 %
487556506 0,10896 17,765795 1,84016
Intercent -7.962815 1 -1,63321 2 4 5 -17,7658

0,5952750 058178123 102319 031134 05744744 176502

5 o 1 4 5 & 5 -0,57447
00164522 000673228 24437E 0,0029160 0025998
¥ 4 1 4 0,01826 & & 0,002916

Lower %95 = The lower boundary for the confidence interval

Upper %95 = The upper boundary for the confidence interval

2.3.1. Applying Custom Equation (Type I)

In custom equation method, there is a given equation to use, the user can
prefer this equation or can create a different one. In our study, given equation
is used to find the surface. Custom equation is selected on the curve fitting

tool. The graphic and results are:
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Fit name: | Custom Equation- Tip| Custom Equation = Auto fit

Xdata:  x - 2 =% oy

) Fit
Yoo [ - [y Sop
7 data: z -

Results

General model:

Fx,y) =& + bsin(m i) + cexp(-(1]
Coefficients (with 35% confidence bounds):

¢ ZVS. XY

a= 0.5799
b= -0.01136
c= 0127 = N
m= 09134
w= 06324

Goodness of fit:
SSE: 0,643 =
Resquare: 0.004705 A =

Adjusted R-square: -0.08184 154 P . e 8.24
AMSE: 0.1182 - 152 T s ————" 82 :
[} — v v T Taae 818
Table of Fits @
Fitname ~ Data Fit type SSE R-square  DFE AdjR-sq  RMSE 2Coeff  Validatio.. Validati... Validati...
@ Custom .. [zvs.x y |a+ brsin(m*pitcy) + Cepl-(wy)*2) 06430 [00047 |46 |-o0s18  Joiis2 s | |

Figure 14 Surface of type | QCLs characteristics after custom equation

General model of the equation:
f(x,y) = a + b*sin(m*pi*x*y) + c*exp(-(w*y)"2)
Coefficients (with 95% confidence bounds):
a= -05799 b= -0.01136 c= 0.127
m= 09134 w= 0.6324
Goodness of fit:
SSE: 0.643 R-square: 0.004706 Adjusted R-square: -0,08184
RMSE: 0.1182

2.3.2. Applying Locally Weighted Smoothing (Lowess) Linear (Type I):

Lowess Linear is selected on the curve fitting tool. The graphic and results

are:
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Fit name: |Lowess linear Tip ] | Lowess x| [V] Auto fit

Kdata:  |x %) Polynomial: iLineav i) Fit
Ydata: |y > Span: 25 % Stop
Z data: :z X Robust: off v
Weights: | (none) | [V] Center and scale

Results

Locally weighted smoothing linear regressit_:
f(x,y) = lowess (linear) smoothing reg
where x is normalized by mean 8.201 ‘
and where y is normalized by mean 15|

Coefficients:

p = coeffident structure N

n

Goodness of fit:
SSE: 0.0691
R-square: 0.893
Adjusted R-square: 0.8701

RMSE: 0.04098
Z) . | »
Table of Fits
Fitname « Data Fit type SSE R-square DFE AdjR-sq RMSE # Coeff idati Validati
[J untitled ... [zvs. x y ‘Iowess ‘0.0691 0.8930 411538 08701 0.0410 9.8462 |

Figure 15 Surface of type | QCLs characteristics after lowess linear

f(x,y) = lowess (linear) smoothing regression computed from p where X is
normalized by mean 8.201 and std 0.02634 and where y is normalized by mean 152

and std 2.276 Coefficients:  p = coefficient structure

Goodness of fit:SSE: 0.0691 R-square: 0.893 Adjusted R-square: 0.8701
RMSE: 0.04098

2.3.3. Applying Locally Weighted Smoothing Quadratic(Type I ) :

Lowess Quadratic is selected on the curve fitting tool. The graphic and results are:
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Fit name:  Lowess-Quadratic Tip‘

X data: X
Y data: :y
Zdata: |z

Weights: | (none)

:Lowas v ‘ [¥] Auto fit
Polynomial: :Quadraﬁ( - Fit
Span: 2 % Stop
Robust: Off X

Center and scale

Results

Locally weighted smoothing quadratic regre:, =
f(x,y) = loess (quadratic) smoothing rei
where x is normalized by mean 8.201 a1
and where y is normalized by mean 152

Coefficients:

p = coefficient structure

i

Goodness of fit:
SSE: 0.03291
R-square: 0.9491
Adjusted R-square: 0.9381
RMSE: 0.02828

<[ i »

Table of Fits ®
Fitname ~ Data Fit type SSE DFE AdjR-sq RMSE # Coeff ion ...
H untitled ... [zvs.x y  [loess |0.0329 411538 09381 |0.0283 |o.8462 | |

Figure 16 Surface of type | QCLs characteristics after lowess quadratic

f(x,y) = loess (quadratic) smoothing regression computed from p where X is
normalized by mean 8.201 and std 0.02634 and where y is normalized by mean 152

and

Coefficients: p = coefficient structure

Goodness of fit:
SSE: 0.03291
RMSE: 0.02828

R-square: 0.9491

std 2.276

Adjusted R-square: 0.9381

2.3.4. Applying Polynomial Degrees 2 Type (1)

Polynomial degrees 2 for x and y

graphic and results are:

is selected on the curve fitting tool. The
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Fit name: | Polynomial degrees 2 Tip1 'Polynumial = [¥] Auto fit

Xdata:  [x - Degree=-x |3 =y 2 - Fit
Ydata: |y v Robust | Off g Stop
Zdata: |z ) [7] Center and scale

Weights: | (none)

Results

Linear model Poly22: h
f(x,y) = p00 +p10=x +p01%y +p20™x{|
Coefficients (with 95% confidence bounds):|
p00 =  -8856 (-1.138e+04, -6335) ‘
p10 = 2111 (1504, 2718)
p0i=  2.583 (-0.7103, 5.876)
p20= -123.9 (-160.9, 87) 3
pil=  -0.51 (-0.8644, -0.1556) |~
p02= 0.005314 (0.0001277, 0.010%|

Goodness of fit:
SSE: 0.2433
R-square: 0.6234
Adjusted R-square: 0.5816
RMSE: 0.07353

Table of Fits ®
Fitname ~ Data Fit type SSE R-square DFE Adj R-sq RMSE # Coeff
@ Polyno... [zvs.xy |poly22 0.2433 |0.6234 a5 |0.5816 |0.0735 6 | |

Figure 17 Surface of type | QCLs characteristics after polynomial degrees 2

Linear model :
f(x,y) = p00 + p10*x + pOl*y + p20*x"2 + p11*x*y + p02*y"2
Coefficients (with 95% confidence bounds):

p00=  -8856 (-1.138e+04, -6335)

pl0 = 2111 (1504, 2718)

p0l=  2.583 (-0.7103, 5.876)

p20=  -123.9 (-160.9, -87)

pll=  -0.51 (-0.8644, -0.1556)

p02 = 0.005314 (0.0001277, 0.0105)

Goodness of fit:
SSE: 0.2433 R-square: 0.6234  Adjusted R-square: 0.5816 RMSE:
0.07353

2.3.5. Applying Polynomial Degrees 3 Type (I):

Polynomial degrees 3 for x and y is selected on the curve fitting tool. The graphic

and results are:
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Fit name: |untitled
X data: :x
Y data: iy
Z data: :z

Weights: :(nope)

fitl :Pnlynomial v [¥] Auto fit
Degrees: x: v3 =z Y :3 ': Fit
Robust: [ ': Stop

|4 4 4 4

Results

Linear model Poly33:

Coefficients (with 95

pl2=0.0548

p03 = 0.0278
<«[m |

f{x,y) =p00 +p10*x +p01%y +p20*x|
+p12*%%*Fy 2 +p03*y~3
where x is normalized by mean 8.201 al
and where y is nori
% confidence bounds):! -
p00 = -0.5216 (-0.5557, -0.4875)
p10 = -0.04981 (-0.101, 0.001347)
p01= -0.01164 (-0.07657, 0.05329)
p20 = -0.08548 (-0.1064, -0.06457)|
plli= -0.02918 (-0.04642, -0.0119¢
p02= 0.02773 (0.00597, 0.04948)
p30 = 0.004857 (-0.02156, 0.03128
p21= 0.004274 (-0.01655, 0.0251)

‘malized by mean 152| _

2 (0.03286, 0.07679)
5 (-0.009377, 0.0650¢ ~
»

Table of Fits ®
Fitname « Data Fit type SSE R-square DFE Adj R-sq RMSE # Coeff
untitled ... [zvs.xy  [poly33 0.1446 0.7762 a1 [0.7271 |0.0504 [0

Figure 18 Surface of type | QCLs characteristics after polynomial degrees 3

Linear model :

f(x,y) = p00 + p10*x + p0l*y + p20*x"2 + pll*x*y + p02*y"2 + p30*x"3 +

p21*x"2*y

+ pl2*x*y"2 + p03*y"3 where x is normalized by mean 8.201 and

std 0.02634 and where y is normalized by mean 152 and std 2.276

Coefficients
p00 =
pl0 =
p0l1 =
p20 =
pll =
p02 =
p30 =
p21 =

pl2 =

(with 95% confidence bounds):
-0.5216 (-0.5557, -0.4875)
-0.04981 (-0.101, 0.001347)
-0.01164 (-0.07657, 0.05329)
-0.08548 (-0.1064, -0.06457)
-0.02918 (-0.04642, -0.01194)
0.02773 (0.00597, 0.04948)
0.004857 (-0.02156, 0.03128)
0.004274 (-0.01655, 0.0251)

0.05482 (0.03286, 0.07679)
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p03 = 0.02785 (-0.009377, 0.06508)

Goodness of fit:

SSE: 0.1446 R-square: 0.7762  Adjusted R-square: 0.7271
RMSE: 0.05938

2.4. Determining coordinates of points for type 11:

According to Ungraph 5 program; 1st, 2nd and skew points are determined for
real world coordinate system initially. (Figure)

I G S ]

2 RERH mA 1
0 OBEE mA
e
A
Lasing wavelengih s G ey J
=069 4 mA ] ¢
E v ¥ o ——— ]
lEs 3.130 3135
T Wavelengih (pum)

Figure 19 Points of coordinate system for type 11 QCLs properties

The 1st point (3.135,0), the skew point (3.125,3) and the 2nd point (3.125,-1) are
figured out. Dataset that contains selected points coordinates is created by using
scatter digitizing method.

Data between given currents are shown as the figures below.
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File Edit View Digitize Data Help
BS |0 [ #DQ (4> 0 [HUAE- D@
5 Data Sets
© ' &
2 )
oo
ad ° a Ll
1l e & o ] R :/‘4
*“S\Y’ m —
ol » ] Data
i o X |y
© 888.6mA
af g N
Lasing wavelength > 9.29. 3 A
ST A 31297 4340
"; 12s 3 IAJOV 3135 a0t gl
’ Wawl'mgh (um) i 31269 .2
31256 1,0723
Guide
Scatter Digitizing
Click on the image to collect the coordinates at that point.
Sort the points by X or Y value.
Save the points to a file or to the clipboard.

Figure 20 Points at current between 8.8-8.6 mA

Eile fdt View Digitze Oata Help
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|
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th 2 “ . 4
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< sssem] !
. = saxsel |
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i < sasrm| !
4 | —-9694m| |
B N —
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Wavelength (im)
s

SN IR

Data Sets

-

2]

Figure 21 Points at current between 9,0-8,8 mA
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File

Edit View Digitize Data

Help

@0 [$4D3Q (0> n [HYEH-E| S
e s = e Data Sets
T S S s &
f o
2
< o ¢
L2 g Be 8 »"\\:,/—1
SN 7 s
ol ° ] Data
LI | X 2
o g886mal |
e
Lasing wavelength 7 929, A 5
i yArm 31297 13133
-g o 3 ;10 15 31283 1,3855
4 Wavelength (um) : 31269 6627
31256 8795
Guide
Scatter Digitizing
Click on the image to collect the coordinates at that point.
Sort the points by X or Y value.
Save the points to a file or to the clipboard.

Figure 22 Points at current between 9,2-9,0 mA

File Edit View Digitize Data Help
=4 =)

o |4D30|arn |[HYAH- B &
- R L Data Sets
© B &
2l
o
$ 1
T . !
0 ° Data
o i "X Y
© 8.88.6mA
, T [3133 1,0000
1 Latngwaviengh | o 9290ma| ] 131324 5422
] 131297 7108
2 y 1 3125 313
s 313 135 I
Wavelength (xm)
Guide

Scatter Digitizing

Click on the image to collect the coordinates at that point.
Sort the points by X or Y value.

Save the points to a file or to the clipboard.

Figure 23 Points at current between 9,4-9,2 mA
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File Edit View Digitize Data Help
B |0 [ #D8 HUEE-a e
Data Sets
L I S S
f© ] s
2f l
s ® 1
S P R, NS
- s
ol 1 Data
LI | X i
© $886mAl |
. o 9 08 B A 31350 8554
[ Lasing wavelength 7 9.290mA 31337 7590
Biclprotond b 31323 9518
-g 125 * 3 ;M 3. :J‘ 31310 2108
) Wavelength (um) s 31297 7530
31283 8554
31269 5181
Guide 31250 8795

Scatter Digitizing

Click on the image to collect the coordinates at that point.
Sort the points by X or Y value.

Save the points to a file or to the clipboard.

Figure 24 Points at current between 9,6-9,4 mA
2.5. Modelling parameters of type 11 QCLs by using surface fitting techniques

2.5.1. Planar Fitting of 3D Points of Form by Least Squared Method to
Type Il QCLs

E(A. B.C)= Y™ [(Az; + By; +C) — 2]

“is defined.
When the gradient occurs V E = (0, 0, 0), the hyperparaboloid graph derived.

(0,0,0) =VE =2) [(Az; + By + €) — z]{zi. 1. 1)

i=1

According to the formula the equation below is obtained.

m i T : . m - T e
|- iz T =1 Tl Y im T -| |- A .| i=1 Ti%i ]

m . ™m 2 ™ ) = m -
i=1 Tilli i=1 Wi i=1 Hi B _ i—1 MiZi
™ m m T m -
i=1Ti i=1 i i=1 1 C i=1 i

r=Ar+ By +C.
The equation is similar with the method applied in deriving type | QCLs. Only x , y
and z values imported from data coordinates obtained from parameters dispersion

related to given current intervals.
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The equation is found as:

2=50.9625353071023710*x+-0.3605423368522338*y+-155.2717637140303900
C=155.2717637140303900

A=50.9625353071023710 B=-0.3605423368522338

The results of examined data in excel data analysiswith regression are:

Table 2.4 Regression statistics of type Il

Regression Statistics

Multiple R 0,41308727
R Square 0,170641092
Adjusted R Square 0,106844253
Standard error 0,394225069
Observations 29

Table 2.5 Regression results of type Il

Significanc
Df SS F eF
Regressi 0,83138643 0,4156 2,6747 0,0878319
on 2 8 93 57 8
4,04074854 0,1554
Residual 26 9 13
4,87213498
Total 28 7
Table 2 6 Regression statistics of type I1- part 2
Lower
Coefficients Std Error t Stat P-values %95 Upper %95
Intercept 155,2744923 80,56314569 -1,92736382 0,06492709 320,87441 10,32542369
X 50,9634012 25,82662057 1,973289578 0,05918073 2,1239772 104,0507796
Y 0,366540467 0,247268034 -1,45809574 0,15678882 0,862_38072 0,147726251
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2.5.2. Applying Custom Equation (Type I1)

Custom equation is selected on the curve fitting tool. The graphic and results are:

Fit name: | Custom Equation-Tip 2 | Custom Equation - Auto fit
Xdata |x N z =f(x .y ] Fit

) - = [T 2+ besinimpiony
Vdata: |y = i Stop
Zdata |z -

Weights: | (none) -

Results

General model:

f(,y) =a +bsin(m™pi*x™y) +cexp(-
Coeffidents (with 95% confidence bounds):

a= 098#

b= 0172

c= 017 =
m= 03

w= 06324

Goodness of fit:
SSE: 4.442
R-square: 0.08827
Adjusted R-square: -0.06369 R Ra—
RMSE: 0.4302 - 9

< e ] v Y 3.125 o
Table of Fits ]
Fitname  Data Fit type SSE = R-square  DFE AdjR-sq RMSE  #Coeff Validati.. Valid.. Valid..
W Custom .. |zvs.x, v |a + brsin(m=pits™y) + crexp(-(w™y)*2)  [4.4421 0.0883 |24 |l-00637  Joazo2 |5 | | |

Figure 25 Surface of type | QCLs characteristics after custom equation

General model:

f(x,y) = a + b*sin(m*pi*x*y) + c*exp(-(w*y)"2)

Coefficients (with 95% confidence bounds):

a= 09844 b= -0172 c= 0127 m= 09 w= 0.6324

Goodness of fit:

SSE: 4.442 R-square: 0.08827Adjusted R-square: -0.06369RMSE: 0.4302
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2.5.3. Applying Locally Weighted Smoothing (Lowess) Linear (Type I1)

Lowess Linear is selected on the curve fitting tool. The graphic and results are:

Lowess Quadratic x| )

Fit name: |Lowess Linear Lowess

. [¥] Auto fit

Xdata:  |x = Polynomial: | Linear =
Ydata: |y ¥, Span: 25 %
Zdata: |z ~ Robust: Off &
Weights: | (none) b

[¥] Center and scale

Results

Locally weighted smoothing linear regressior
£(x,y) = lowess (inear) smoothing regre
where x is normalized by mean 3. 13 an|
and where y is normalized by mean 9.1

Coeffidents:

p = coefficient structure

Goodness of fit:

SSE: 0.9883
R-square: 0.7972
Adjusted R-square: 0.7124

RMSE: 0.2237 e
B 3.135
9 e 313
< i » Y 3125 :
Table of Fits ®
Fit name Data Fittype SSE R-square DFE AdjR-sq RMSE # Coeff Validation ... Validation ... Validation ...
M Lowess.. zvs.xy  |lowess [0.9883 [0.7972 [19.7500 07124 [0.2237 9.2500 | | |

Figure 26 Surface of type Il QCLs characteristics after lowess linear

f(x,y) = lowess (linear) smoothing regression computed from p where X is

normalized by mean 3.13 and std 0.002911 and where y is normalized by mean 9.121
and std 0.304

Coefficients:
p=coefficient structure
Goodness of fit:

SSE: 0.9883 R-square: 0.7972 Adjusted R-square: 0.7124 RMSE: 0.2237
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2.5.4. Applying Locally Weighted Smoothing (Lowess) Quadratic (Type I1)

Lowess Quadratic is selected on the curve fitting tool. The graphic and results are:

Fit name: | Lowess Quadratid

X data: x
Y data: iy
Z data: :z

Weights: :(none)

[Lowess - 7] Auto fit
Polynomial: :Quadratic = Fit
Span: 25 B Sop
Robust | Off -

Center and scale

Results

Locally weighted smoothing quadratic regre:, =
f(x,y) = loess (quadratic) smoothing rei
where x is normalized by mean 3.13 ani
and where y is normalized by mean 9.1

Coeffidents:

p = coefficient structure

Goodness of fit:
SSE: 0.1721
R-square: 0.9647
Adjusted R-square: 0.949%
RMSE: 0.09335

<[ m »
Table of Fits ®
Fit name Data Fittype SSE « DFE AdjR-sq RMSE # Coeff
M LowessL..[zvs.xy  |loess  [01721 [19.7500 09499 |0.0934 |o.2500 | | |

Figure 27 Surface of type Il QCLs characteristics after lowess quadratic

f(x,y) = loess (quadratic) smoothing regression computed from p where X is

normalized by mean 3.13 and std 0.002911 and where y is normalized by mean 9.121

and
Coefficients:

p =
Goodness

SSE: 0.1721 R-square: 0.9647

std 0.304
coefficient structure
of fit;

Adjusted R-square: 0.9499 RMSE: 0.09335
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2.5.5. Applying Polynomial Degrees 2 Type(ll)

Polynomial degrees 2 for x and y is selected on the curve fitting tool. The

graphic and results are:

Fit name: |Polynomial Degrees 2 Polynomial i [¥] Auto fit
Xdata: | x ': Degrees: x: |2 Y (2 Y. Fit
Ydata: |y X Robust: Off Z Stop

Z data: z - ["] Center and scale

Weights: | (none) =

Results

Linear model Poly22:
f(x,y) = P00 +p10=x +p01%y +p20*x|
Coefficients (with 95% confidence bounds);|
p00 = 1.423e+05 (-3.607e+04, 3.20
p10 = -9.284e+04 (-2.069e+05, 2.1Z
p0l=  642.9 (149.5, 1136) E
p20 = 1.513e+04 (-3118, 3.338e+0¢|
pil= -198.7 (-356.9, -40.49)
p02= -1.179 (-3.12,0.7619)

Goodness of fit:
SSE: 2.756

R-square: 0.4344 g —~—
Adjusted R-square: 0.3114 - e o
‘ i ‘ ) Y AT

Table of Fits ®

Fit name Data Fit type SSE R-square DFE AdjR-sq RMSE # Coeff Validation ... Validation ... Validation ...
Lowess.. [zvs.xy  |poly22 [2.7559 0.4344 |23 03114 03462 s | |

Figure 28 Surface of type Il QCLs characteristics after polynomial degrees 2

f(x,y) = p00 + p10*x + p01l*y + p20*x"2 + pl1*x*y + p02*y"2
Coefficients (with 95% confidence bounds):

p00 = 1.423e+05 (-3.607e+04, 3.206e+05)

pl0 = -9.284e+04 (-2.069e+05, 2.125¢+04)

p0l = 642.9 (149.5, 1136)

p20 = 1.513e+04 (-3118, 3.338e+04)

pll = -198.7 (-356.9, -40.49)

p02 = -1.179 (-3.12, 0.7619)
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Goodness of fit:

SSE: 2.756  R-square: 0.4344 Adjusted R-square: 0.3114 RMSE: 0.3462

2.5.6. Applying Polynomial Degrees 3 Type(ll)

Polynomial degrees 3 for x and y is selected on the curve fitting tool. The graphic
and results are:

Fit name: |Polynomial Degrees 3 Polynomial

v [V] Auto fit
Xdata:  |x b Degrees: x: |3 Xy 3 )
Ydata: |y =) Robust: Off > Stog
Zdata: |z he [V] Center and scale
Weights: | (none) Y Fit Options...

Results

p01=-0.2469 (-0.6965,0.2027) =&
p20 = 0.1999 (0.05268, 0.3472)
pill= -0.1819 (-0.3163, -0.04742)
p02 = -0.06514 (-0.2345, 0.1042)

p30 = 0.04175 (-0.1302, 0.2137)
p21=-0.1944 (-0.3315, -0.05732)
p12= 0.07966 (-0.08894, 0.2483)
p03 = 0.1804 (-0.0981, 0.4588)

m

Goodness of fit:
SSE: 1.754
R-square: 0.64
Adjusted R-square: 0.4695 3135

RMSE: 0.3038
»
Table of Fits ®
Fit name Data Fittype SSE R-square DFE Adj R-sq RMSE # Coeff
M Polyno... [zvs.xy  |poly33 [1.7538 0.6400 19 |0.4605 |03038 |10

Figure 29 Surface of type Il QCLs characteristics after polynomial degrees 3

f(x,y) = p00 + pl0*x + p0l*y + p20*x"2 + pll*x*y + p02*y"2 + p30*x"3 +
p21*x"2*y
+ pl2*x*y"2 + p03*y"3
where X is normalized by mean 3.13 and std 0.002911 and where y is normalized

by mean 9.121 and std 0.304
Coefficients (with 95% confidence bounds):

p00=  0.8793 (0.6414, 1.117)
pl0= 0.04685 (-0.2746, 0.3683)
p0l= -0.2469 (-0.6965, 0.2027)
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p20=  0.1999 (0.05268, 0.3472)
pll= -0.1819 (-0.3163,-0.04742)
p02= -0.06514 (-0.2345, 0.1042)
p30=  0.04175 (-0.1302, 0.2137)
p21= -0.1944 (-0.3315,-0.05732)
pl2= 0.07966 (-0.08894, 0.2483)
p03=  0.1804 (-0.0981, 0.4588)

Goodness of fit:
SSE: 1.754 R-square: 0.64 RMSE: 0.3038
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3. RESULTS

In this study, we present the relationship between characteristic parameters of type
I and type 11 QCLs on their own and in terms of data given in this presentation, the
best surface fitting method is found by comparing different approved methods.The
main characteristics of QCLs as linewidth enhancement factor, refractive index and
current which are related to each other and other external factors are modelled

dimensionally.

Before modelling surface of parameters for each type of QCLs, data was
determined by using Ungraph 5 program. Data is collected by scatter digitizing
method. All points were selected by user preference. 51 data points were chosen and
processed. Least square method was applied to extracted data of QCLs as planar
fitting of 3D modelling formula and the results were calculated with Excel data
analysis program. The other methods were applied by using surface fitting
techniques of Matlab R2013a version. These are custom equation, locally weighted
scatterplot smoothing linear, locally weighted scatterplot smoothing quadratic,

polynomial degrees 2 and polynomial degrees 3 methods.

Firstly we look at the results of modelling of type | QCLs. In the results least
square method, R square is 0,127917051 which means data and regression line are
not close to each other. Also it means that %12 of the variation can be explained by
the independent variables. Adjusted R square which is the term gives more accurate
information about analysis because of not being affected each added independent
variables similarly is 0,09158. It is less than R square, that tells this modelling
method is not very suitable. Significance of F is 0,037 which is a good value.lt
means there is only %3 probability that regression output could have been by chance.
P values of intercept, x and y are not very high. P value for x variable is the highest
of them that means there is %3 probability for the result to have been by chance. x
variable has the lowest P value means the probability of the result to have been by

chance is very low so it is meaningful for the result of regression.

In the results of applied custom equation method, sum of squares error has a

higher values as 0,643 which affects R square negatively. R square is 0,0047 that
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defines %0,47 closeness between regression line and data. Adjusted R square is -
0,081 and not meaningful for the regression model. The root mean square error is
0,1182; according to this result it can be said that the measure of the regression error

rate is not high.

Lowess regression method consists two different polynomial choice in matlab
program. One of them is linear and the other is quadratic form. In the linear form, it
is realised that lowess quadratic analysis results are more significant than lowess
linear analysis results. In the lowess linear method; R square is 0,893, meaning % 89
closeness between data and regression line, this ratio in lowess quadratic is % 94
(0,9491) . SSE is 0,0691 in lowess linear but it is 0,03291 in lowess quadratic.
Adjusted R square is also higher in lowess quadratic (0,9381) than lowess linear
regression (0,8701). In lowess quadratic method RMSE (0,02828) is closer to zero
more than in lowess linear (0,04098).

In matlab polynomial regression analysis, the degrees of variables can be decided
by user till finding optimal solution. In this study degrees 2 and degrees 3 were used
in the analysis. R square in polynomial degrees 3 is 0,7762 and in degrees 2 this
value decreases 1 percent and becomes 0,6234. Adjusted R square decreases 2
percent in polynomial degrees two and becomes 0,5816 while it is 0,7271 in
polynomial degrees 3. RMSE and SSE whose littleness are more valuable are less in

degrees 3 than degrees 2.

Table 3.1 Results of all methods applied on type |

Least Custom Lowess Lowess Polynomial-2 Polynomial-3
Square Equation Linear Quadratic degrees degrees

0,1279

R-square 17 0,004706 0,893 0,9491 0,6234 0,7762
0,5634

SSE: 10 0,643 0,0691 0,03291 0,2433 0,1446

Adjusted R- 0,0915

square 80262 -0,08184 0,8701 0,9381 0,5816 0,7271

0,1051

RMSE 06 0,1182 0,04098 0,02828 0,07353 0,05938
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As shown above , we can say that custom equation has the worst results and

lowess quadratic method has the optimal results for the analysis of given data.

LA A

Figure 30 Custom Equation Model for Type |

Figure 31 Lowess Quadratic Model for Type |

For type Il QCLs, 29 data points were chosen and processed by Ungraph 5
program. According to applied least square method on these points, the results were
calculated by Excel data analysis program, too. R square is calculated as 0,17064 by
least square method. By this result it can be interpreted as independent variables can
explain %17 of variation. Adjusted R square is less than R square as 0,106.

Significance F is 0,08783 corresponding % 8,7 probability for regression to have
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been by chance. The number of observations affects the quantity of significance F. P
values of intercept, x and y variables are given as 0.065, 0.059, 0.1567 sequentially.
The highest p value belongs to variable y. The variable y has %15 probability on the
result to have been by chance. The variable x has the least p value, corresponding

more significance for the result.

After least square method, custom equation was applied and the results were
calculated. The sum of square error has a value as 4.442 that causes R square to be
less. R square is 0,08827 that defines %0.088 closeness between regression line and
data. Adjusted R square is -0.06369. The results don’t hold optimal and meaningful
values. The root mean square error is 0.4302, regression error rate is very low and

not close to zero.

The analysis and comparision of results of custom equation and least square
method are similar as told in the comparision results of least square and custom
equation methods in type | QCLs. Least square method has beter results than custom

equation for the given data points.

In the linear and quadratic forms, analysis results are more significant than least
square and custom equation analysis results. In the linear quadratic regression, % 96
closeness between data and regression line according to R square and this closeness
decreases little in adjusted R square as the value % 95. Sum of square error of
quadratic type is less than linear type’s SSE which affects directly R square of
analysis. RMSE in quadratic method is also less than RMSE of linear form

considerably.

In polynomial regression analysis, degrees 2 and 3 are used in Type Il QCL, too.
Polynomial degrees 3 results make regression line and data closer than polynomial
degrees 2. When the results are compared, it is realised that polynomial degrees 3 is
more meaningful for user to acces right solution. The scores are not very
approximate. While being % 43 access in polynomial degrees 2, it is % 64 in
polynomial degrees 3. The difference between R squares seems like the difference
between adjusted R squares. SSE of the polynomial degrees 2 is greater than the SSE
of polynomial degrees 3 cauisng R square to decrease. RMSEs of analysis are closer

as it is 0,3462 in polynomial degrees 2 and 0.3038 in polynomial degrees 3.
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Table 3.2 Results of all methods applied on type Il

R-square

SSE:

Adjusted
R-square

RMSE

Least
Square

0.170641

4,040748

0.106844

0,373277

Custom

Equation

0.08827

4.442

-0.06369

0.4302

Lowess Lowess
Linear Quadratic
0.7972 0.9647
0.9883 0.1721
0.7124 0.9499
0.2237 0.09335

Polynomial-2
degrees

0.4344

2.756

0.3114

0.3462

Polynomial-3
degrees

0.64

1.754

0.4695

0.3038

Figure 32 Custom Equation Model for Type Il

Figure 33 Lowess Quadratic Model for Type Il
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4. CONCLUSION

When we compare the results of least squares and custom equation method, we
come to a conclusion as least square method is better than custom equation method
in the analysis of given data. We can see that least square method has higher R
square and adjusted R square, lower RMSE and SSE that cause higher performance.
The results of type Il are similar with the type | regression methods results. When
analysed, it is seen that lowess quadratic regression method gives much more
significant results than the others and custom equation is the worst method for the
given data and it should not be chosen for modelling of the given type Il data points.

There also studies about laser modelling. These studies are generally effect of
temperature on the laser creation. One of them is “Modelling of temperature effects
on the characteristics of mid-infrared quantum cascade lasers”. This study is used to
improve increased output to design more effective devices. The temperature
dependence of gain, current density and output power is analysed. Another study
about laser modelling is “Complete rate equation modelling of quantum cascade
lasers for the analysis of temperature effects”. On the Dynamics of GaAs-based
quantum cascade laser (QCL), effect of temperature is analysed. The aim is to get
better condition of threshold current density by the experiment at higher
temperatures. (Chen, 1993)
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