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CLUSTERING FUNCTIONAL MRI DATA USING A ROBUST 

UNSUPERVISED LEARNING ALGORITHM 

ABSTRACT 

Functional Magnetic Resonance Imaging (fMRI) has provided neuroscientists with a 

powerful tool to examine brain activity by calculating the levels of oxygen in the 

blood and generates a sequence of 3-D images. Clustering approach is a model-free 

analysis; it has the ability of defining the active zones in the brain without the need of 

prior knowledge about activation patterns or experiment as the classical and 

statistical General Linear Model (GLM) method.  

The goal of this proposal is to find a solution for choosing an appropriate clustering 

approach to obtain the best performance for whole brain functional connectivity by 

means of data analysis. In this work, a novel and robust unsupervised learning 

approach is proposed; it relies on using a Robust Growing Neural Gas (RGNG) 

algorithm into a real auditory fMRI dataset. The main contribution of this work is 

running the RGNG algorithm into fMRI dataset with a comparison to NG and GNG 

algorithms, which is not used for the purpose yet or any other applications also. 

Another comparison has been done with the model-based data analysis approach 

using a Statistical Parametric Mapping (SPM) package which is based on GLM. The 

output results demonstrate that the presented RGNG approach is clearly superior to 

other approaches as revealed by their performance measured by Minimum 

Description Length (MDL) and Receiver Operating Characteristic (ROC) analysis. 

A MATLAB-based graphical user interface (GUI) tool is designed and implemented 

as a software package for fMRI data analysis. A new model for neuroscience data 

analysis is developed in this work which is easily accessible by researchers. The 

proposed work could help the neurologist and psychologist for better interpretation of 

fMRI dataset.  

Keywords: Clustering techniques, Data mining, Graphical User Interface (GUI), 

Growing Neural Gas (GNG), Neural Gas (NG), Robust Growing Neural Gas 

(RGNG)  
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FONKSİYONEL MRI VERİLERİNİN GÜRBÜZ DENETİMSİZ 

ALGORİTMASI İLE KÜMELENDİRİLMESİ 

ÖZ 

Fonksiyonel Manyetik Rezonans Görüntüleme (fMRI), kandaki oksijen seviyelerini 

hesaplayarak ve bir dizi 3 – boyutlu görüntü oluşturarak beyin aktivitesini 

incelemede sinir bilimciler için güçlü bir araç olmuştur. Kümeleme yaklaşımı model 

içermeyen bir analizdir; bu yaklaşım, klasik ve istatistiksel Genel Doğrusal Model 

(GLM) olarak, aktivasyon desenleri veya deney hakkında önceden bilgi sahibi 

olmaksızın beyindeki aktif bölgeleri tanımlama özelliğine sahiptir.  

Bu araştırmanın amacı, tüm beyinin işlevsel bağlantı veri analizinde en iyi 

performansı elde etmeye yönelik uygun bir kümeleme yöntemi seçmek için çözüm 

bulmaktır. Bu çalışmada, gerçek bir işitsel fMRI veri setine ve Güçlü Artan Sinirsel 

Gaz (RGNG) algoritması kullanımına dayanan yeni ve güçlü bir denetimsiz öğrenme 

yöntemi önerilmiştir. Bu çalışmanın başlıca katkısı, NG ve GNG algoritmalarıyla 

mukayese ederek, daha önce bu amaç için veya başka herhangi bir uygulamada 

kullanılmayan RGNG algoritmasının fMRI veri setleri ile iç içe kullanılmasıdır. 

GLM’ne dayalı İstatistiksel Parametrik Eşleme (SPM) paketi kullanarak model 

tabanlı veri analizi yöntemi ile diğer bir karşılaştırma daha yapılmıştır. Çıktı 

sonuçları, önerilen RGNG yönteminin, Minimum Tanımlama Uzunluğu (MDL) ve 

Alıcı İşletimsel Özellikler (ROC) analizi ile ölçülen performanslarıyla ortaya 

konduğu üzere, diğer yöntemlerden açık ara daha üstün olduğunu göstermektedir. 

fMRI veri analizi için MATLAB tabanlı bir Grafiksel Kullanıcı Arayüzü (GUI) 

yazılım paketi olarak tasarlanmış ve uygulanmıştır. Bu çalışmada, sinirbilimi 

araştırmacılarının verilerini analiz edebilecekleri ve kolayca erişebilecekleri yeni bir 

model geliştirilmiştir. Önerilen bu model, fMRI veri setinin daha iyi yorumlanması 

için nörolog ve psikologlara yardımcı olabilecektir. 

Anahtar Kelimeler: Kümeleme teknikleri, Veri madenciliği, Grafiksel Kullanıcı 

Arayüzü (GUI), Artan Sinir Gazı (GNG), Sinirsel Gaz (NG), Güçlü Artan Sinirsel 

Gaz (RGNG) 
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CHAPTER 1 

INTRODUCTION 

Brain is the most complex, fascinating and mysterious organ in the human body; it is 

responsible for controlling of many voluntary and involuntary activities of the body 

as sensory perception, memory, seeing, consciousness, attention, thinking, language, 

movement, emotions and etc. For the last few years, many mysteries are becoming 

clear with the development of cognitive neuroscience and the advancement of 

functional brain imaging techniques. Table 1.1 shows the major functional brain 

measurement techniques which was developed and used for understanding the brain 

functions and brain mappings such as Electroencephalogram (EEG), Magneto 

Encephalogram (MEG), Positron Emission Tomography (PET), Single Photon 

Emission Computed Tomography (SPECT) and functional Magnetic Resonance 

Imaging (fMRI). 

EEG system records the electrical activity of the brain over a period of time, using 

multiple electrodes placed on the scalp. MEG scan, records small magnetic fields 

produced by electrical currents occurring naturally in the brain, using very sensitive 

magnetometers called super conducting detectors and amplifiers (SQUIDs). 

Moreover, PET and SPECT are nuclear medicine tomographic imaging technique 

using gamma rays. PET scan uses a radioactive substance called a tracer, which is 

introduced into the body to search for disease in the body. SPECT scan by using 

radiopharmaceuticals administered intravenously or by inhalation to evaluate 

function in the human brain. While, fMRI measure the brain activity by detecting 

changes associated with blood flow. 

EEG and MEG define the neuronal functions in real time for 10-100 msec, but 

provide poor spatial resolution (mm-cm). So fMRI has better spatial resolution 

(provide spatial information about the activation regions of the human brain) rather 

than EEG with visualized functional images, and better temporal resolution rather 

than PET or SPECT. Moreover, it is non-invasive; it can be adapted to many types of 
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experimental paradigms, has high sensitivity and gives non-ionizing radiation unlike 

X-Ray or Computer Tomography (CT) scan. So fMRI is a powerful tool to provide 

important information about the brain. 

Table 1.1 The Major Functional Brain Measurement Techniques. 

Techniques Technique Types Invasiveness  Brain 

Property Used 

Temporal 

Resolution 

Spatial 

Resolution 

EEG Electrophysiological  Non-Invasive Electrical  Millisecond Poor 

MEG Electrophysiological Non-Invasive Magnetic Millisecond Potentially 

Good 

PET, 

SPECT 

Neuroimaging Invasive Hemodynamic Minutes  Millimeters 

fMRI Neuroimaging Non-Invasive Hemodynamic Seconds  Millimeters 

After this short introduction about the major functional brain measurement 

techniques and especially fMRI, the organization of the rest of this chapter is as 

follows: an introduction to Magnetic Resonance Imaging (MRI) against fMRI 

technique is presented in Section 1.1, and Section 1.2 presents basic MRI concepts. 

Then in Section 1.3, the information about the fMRI image formation is introduced. 

Finally a brief overview about all the chapters is given in Section 1.4. 

1.1 Magnetic Resonance Imaging (MRI) against fMRI Technique 

MRI consists of three main parts (Figure 1.1): Huge Magnet, Gradient Coils and 

Radio Frequency (RF) coils to produce three types of magnetic fields that are 

required in MRI scanners. So it uses a powerful magnetic field (1.5 - 7.0 Tesla), RF 

pulses and a computer for evaluating various parts of the body [1]. MRI image 

depends on the structure of water molecules in hydrogen nuclei and their 
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measurements in the body. The hydrogen atoms absorb the RF pulses generated by 

the transmitter RF coil and re-emit it as MR which is distinguished as a small voltage 

in a receive RF coil. Hydrogen nuclei return back to a relaxed state by T1 and T2 

relaxation mechanisms. Different body tissues have different relaxation times that 

depend on the hydrogen molecule size and binding to other molecules [2]. 

 

Figure 1.1 MRI system block diagram 

The same as MRI hardware is fMRI, while fMRI uses MRI to calculate the levels of 

oxygen in the blood or Blood Oxygenation Level Dependent (BOLD) that measures 

the ratio of oxygenated to deoxygenated hemoglobin in the blood and is closely 

related to the neural activity. MRI produces the anatomical of organs, soft tissues, 

bone and all other internal body structures which allow physicians to evaluate them 

and detect the presence of certain diseases, while the fMRI views the metabolic 

function for measuring brain activity because it measures the hemodynamic response 

Patient 
Table 

RF Amplifier 

Digitizer  

 

Pulse and 

Waveform 

Generator 

 

 
RFCoils 

Gradient Coils 

 

RFDetector 

X Gradient Amplifier 

Y Gradient Amplifier 

Z Gradient Amplifier 
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function (HRF) or metabolic demands (oxygen consumption) of functional or active 

neurons in the brain or spinal cord and doesn’t measure neuronal activity directly. 

So MRI views anatomical or structural image with high resolution and produces the 

differences between tissue types with respect to space, while fMRI views the 

functional image with low resolution and produces the differences between tissue 

types with respect to time (Figure 1.2). 

 

MRI (High Resolution)                       fMRI(Low Resolution) 

Figure 1.2 MRI against fMRI Image. 
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(a) Longitudinal relaxation (along 𝐵0) transverse relaxation (along 𝐵1). 

 
(b) 𝐵0, the applied magnetic field; B1, RF pulse. 

 
(c): protons aligned with or against 𝐵0 inside magnetic field; 𝑀 = net magnetization. 

Figure 1.3 MR Field directions (a) longitudinal and transverse relaxation; (b) 𝐵0 and 𝐵1direction; (c) 

protons alignment inside magnetic field. 

M 



6 

 

 

 

The net magnetization vector 𝑀 has two components (Figure 1.3):  

𝑀𝑍 — is the longitudinal component aligned with the applied magnetic field 𝐵0, and  

𝑀𝑥𝑦 — is the transverse component in the plane orthogonal to 𝐵0 .  

Before applying the RF pulse 𝐵1, M is in the equilibrium state where 𝑀𝑍 is maximum 

and 𝑀𝑥𝑦 is zero.  

After applying RF pulse 𝐵1, 𝑀𝑍 becomes small and 𝑀𝑥𝑦 becomes large. When 𝐵1 is 

switched off, 𝑀 will return to the equilibrium state. The recovery of 𝑀𝑍 to the initial 

magnetization 𝑀0 after the RF pulse (longitudinal relaxation) is characterized by the 

relaxation time constant 𝑇1. The decay of 𝑀𝑥𝑦 after the RF pulse (transverse 

relaxation) is characterized by the relaxation time constant 𝑇2. 

1.2 Basic MRI Concepts 

There are some basic concepts, glossary related to MRI and fMRI; so it is important 

to understand their meanings: 

• Repetition Time (TR) of the RF pulse: represents the length of time between 

consecutive points on a repeating series of pulses and echoes, smaller TR is faster 

imaging (Figure 1.4).  

• Echo Time (TE): represents the time from the center of the RF pulse to the 

center of the echo (Figure 1.4). 

• GRE:  Gradient echo sequences. 

• Slices: 3 dimensional (or 4 dimensional) images are usually formed by 

collecting thin slices together; so 30 slices with 3 mm thickness are needed to 

cover the whole brain which takes about 50-100 ms to collect the data for one 

slice image only. 

• Voxel: represents the smallest 3 dimensional unit in the image. 

• T1 relaxation: represents the rate at which the object goes from a non-

magnetized state to a magnetized state measuring the longitudinal relaxation 

along B0and typically used to form anatomical images. 

• T2 relaxation: represents the rate of decay of the MR signal after the RF pulse 

is excited measuring the transverse relaxation along 𝐵1. 
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• T2*: represents the overall decay forming the functional image in fMRI. 

 

 
Figure 1.4 TR and TE representation. 

 

 

Figure 1.5 MR Image formation steps. 

1.3 FMRI Image Formation 

The fMRI image formation consists of three steps (Figure 1.5): 

1. Slice selection 

2. Spatial encoding 

3. Image reconstruction 

Slice Selection 

2-D  

FFT 

IFT 

Transverse Magnetization 

2D MR Image 

 

FMRI raw data in K-space 

 

Longitudinal Magnetization 
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Slice selection step occurs when the particular slice is excited by the spins that 

generates a T1weighted image (Anatomical image) at which the object goes from a 

non-magnetized state to a magnetized state measuring longitudinal relaxation, a T2 

weighted image is the rate of decay of the MR signal after the RF pulse is excited 

measuring the transverse relaxation and overall decay is T2* producing a functional 

image. Then the spatial distribution related to the spins is coded by the two-

dimensional gradient impulse that gives the MR signal in k-space which holds raw 

data in the spatial frequency domain. 2D MR images are finally reconstructed from 

the raw data in the k-space by use of a Fourier Transform (FT). 

T2* images triggered by the change of MR signal in the neuronal activity which is 

known as the Hemodynamic Response (HDR). HDR obtained by the reduction in the 

amount of deoxygenated blood and represents temporal properties of the brain. HDR 

shape consists of three phases as shown in Figure 1.6, which varies according to the 

rate and duration of the neural activity. 

From this figure it can be recognized that the amplitude increases when the rate of 

neural activity increases and the width also increases when the duration of the 

neuronal activity increases [1]. The HDR has three phases shown in the previous 

figure can be summarized as follows [3]: 

• Initial dip: occurs due to the transient increase in deoxyhemoglobin during the 

oxygen consumption after beginning of neural activity, which causes MR signal 

decreases below baseline. 

• Overcompensation: occurs when MR signal increases above baseline due to 

increase of neuronal activity. Increase of neuronal activity causes oxygenated 

blood supplied more increased than the oxygenated blood extracted as well as 

decreasing in deoxygenated hemoglobin. 

• Undershoot: occurs due to neuronal activity end, which causes the MR signal 

amplitude gradually decreases below the baseline level and then returns back to 

the baseline level due to a combination. 
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Figure 1.6 Schematic representation of HDR. 

1.4 Outline of Thesis 

The following chapters present the theoretical and practical research done through the 

development of this dissertation. The research presents robust and efficient 

algorithms for detecting the active areas in the brain. This thesis is structured in seven 

chapters that are briefly explained here: 

Chapter two: is a presentation of the brain medical background and fMRI clinical 

uses. Thereafter complexity and noises of fMRI signal as well as paradigm design 

will be presented. This chapter introduces short review about the aim and the 

contribution of the thesis. 

Chapter three: is a presentation of fMRI brain clustering and parcellation technique 

principle, followed by the packages and techniques used in fMRI data analysis. 

Thereafter literature review will be introduced about fMRI researches starting from 

the first of using BOLD signals until to using parcellation and clustering approaches. 

Chapter four: information about the fMRI dataset type is introduced in this chapter, 

followed by preprocessing steps using free Statistical Parametric Mapping (SPM) 
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software package. Thereafter the conventional General Linear Model (GLM) method 

that used by SPM will be presented with its applications. 

Chapter five: this chapter aims to introduce the proposed model which has different 

and important features in comparison with others clustering approaches using a novel 

Robust Growing Neural Gas (RGNG) approach, and apply this algorithm into fMRI 

dataset to detect the active areas in the brain with a comparison to the GNG algorithm 

which is not used for that purpose yet. A complete explanation of the three 

algorithms Neural Gas (NG), Growing Neural Gas (GNG) and RGNG is presented in 

this chapter. Also flowcharts will be designed for each of the three algorithms and 

presented; as well as a comparison among the three artificial neural network 

approaches that based on unsupervised clustering for fMRI Analysis is proposed and 

will be presented in a table.  

Chapter six: shows the output results were obtained by feeding the proposed learning 

algorithms to synthetic and real fMRI dataset. These results were formulated on a 

visual software package using Graphical User Interface (GUI). The validity of the 

obtained results was proofed using statistical analysis. 

Finally, the conclusions and future work are presented in chapter 7. 
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CHAPTER 2 

MEDICAL BACKGROUND 

FMRI provides spatial information about the activation regions of brain that is 

activated due to various cognitive and/or motor functions repeatedly, and generates a 

sequence of three dimensional (3D) images. There are a large number of artifacts can 

effects on fMRI dataset. These artifacts can roughly be divided into the scanner-

induced and physiological artifacts. So, there are some software packages available 

for analyzing fMRI data. All this information as well as some introduction about the 

brain and fMRI medical using will be explained in details in the next sections. 

2.1 Brain Medical Background  
Brain is the center of the nervous system; Figure 2.1 shows the major parts of the 

brain which consists of the cerebrum, cerebellum and brain stem. This figure also 

shows the three main types of brain “matter” which are Gray matter, white matter and 

Cerebro Spinal Fluid (CSF). The top part of the head is the cerebrum, which is the 

biggest parts and most people think of as the brain. The smaller is the cerebellum, 

while the part that connects the brain to the spinal cord is the brain stem. 

 

Figure 2.1 Major parts of the brain. 

http://en.wikipedia.org/wiki/Nervous_system
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Mainly the brain is divided into two left and right hemispheres where the functional 

areas are differentiated according to the cerebrum lobes that split into four “lobes” or 

areas as shown in Figure 2.2: 

• Frontal lobe is responsible for personality, working memory, decision making, 

controlling inhibition, movement, etc. 

• Parietal lobe is responsible for sensation, maths, music, humor, spatial tasks, 

etc. 

• Temporal lobe is responsible for hearing, memory, language, emotions, object 

recognition, etc. 

• Occipital lobe is responsible for vision only. 

 

 

Figure 2.2 Major cerebrum lobes. 

2.2 FMRI Clinical Uses 

FMRI is used to understand neuronal mechanisms behind the disorders, such as 

Bipolar Disorder, Parkinson Disease, Autism Spectrum Disorders, Schizophrenia, 

and Alzheimer Disease. 

• Bipolar Disorder (BD): is a brain disorder with four basic types. Bipolar 

disorder causes clear changes in mood, energy, and activity levels [4]. 

• Parkinson's Disease (PD): is a gradual disorder of the nervous system which 

develops progressively and affecting the human movement, it started with a 

simple tremor in one hand only then may cause the movement slow or hard [5]. 

http://serendip.brynmawr.edu/exchange/files/authors/faculty/295/lobes2.jpg
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• Autism Spectrum Disorder (ASD): is characterized by weakness in social 

reactions and inability to communicate with the environment, it occurs in more 

than 1% of children and the parents can recognize the autism signs in the first two 

years of the child's life [6]. 

• Schizophrenia (SCZ): are characterized by progressive impairment in cognitive 

and social functioning, but the severe phases of the two disorders are various [7]. 

• Alzheimer's disease (AD): is progressive slowly over time, which causes 

trouble with memory, thinking and behavior as a type of dementia that lead to the 

inability to communicate with daily tasks [8]. 

Figure 2.3 shows fMRI scans for schizophrenia and autism patients compared to 

healthy controls. 

  
                      Healthy Control Schizophrenia 

  
Healthy Control Autism 

Figure 2.3 FMRI scans showing schizophrenia and autism patients compared to healthy controls. 

2.3 FMRI Complexity and Noises 

The complexity of fMRI data analysis is related to the huge dimensions of the data as 

well as having a lot of artifacts or noises which caused mainly due to various reasons 

such that related to hardware system (MRI scanner itself), individuals themselves 

(e.g. head motion) or physiological effects. Noises related to hardware system as 𝐵0 

Inhomogeneity and signal noise. Signal noise occurs due to bad RF shielding, 
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operation of the RF coil as well as the presence of metal in the patient that can led 

also for 𝐵0 inhomogeneity and B0 field distortion [9]. Nevertheless, the artifact due to 

the thermal motion of free electrons in the fMRI hardware system (eddy currents or 

scanner heating) that causes heterogeneity of the magnetic field, there is another type 

of noise originated from the fMRI hardware when the image has "dropout" or dark in 

the brain regions adjacent to the air-tissue interfaces [10]. The air-tissue interfaces 

regions like nasal sinuses and ear canals that have dropout in the medial frontal lobe 

(orbitofrontal cortex) and dropout in lateral temporal lobes respectively as shown in 

Figure 2.4. 

 

(a)                      (b) 

Figure 2.4 (a) Orbitofrontal region, which has dropout bordered by the blue box; (b) Dropout near 

nasal sinuses and ear canals. 

Another part of the fMRI artifact sources are originated from the subjects themselves 

because of the fact that the patient is never completely motionless during 

experiments. Thermal noises of examining tissues, voluntary or involuntary 

movements of the patient as head movements (Figure 2.5) and eye movements are 

examples of subjects’ movement [11]. While the subject’s heartbeat, respiration and 

internal movement related to the blood flow pulsation are examples of the 

physiological effects. 
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Figure 2.5 The effect of head motion (motion is seen as activation along one side of the brain). 

There are also different types of noises related to signal processing which causes a 

variety of artifacts due to partial volume, Gibbs phenomenon and chemical shift. 

Partial volume occurs due to the presence of large voxel size. If there are two tissues 

with different resonance frequencies under an external magnetic field, chemical shift 

occurs due to the mis-registration between the positions of these tissues. While at 

high spatial frequencies, Gibbs phenomenon appears when images with bright or 

dark lines adjacent to sharp boundaries [12]. 

2.4 FMRI Paradigm Design 

Task-based BOLD/fMRI studies which employ a certain (cognitive) paradigm can be 

divided into three main types of the paradigm designs:  

1. block designs  

2. event-related designs 

3. mixed designs 

Before analyzing the fMRI dataset, there are some important factors must be defined 

using the paradigm design during an fMRI experiment, as the temporal structure, 

construction and behavioral predictions of paradigm tasks executed by the subject 

[13]. During the experiments, the subject lying in the MRI scanner, BOLD response 

is defined during the cognitive task which defines a set of brain functions. The neural 
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responses or stimuli may be a receptive nature during the visual or auditory tasks, or 

reactive nature as memorize images during a certain period of time or respond to a 

stimulus (tap of a finger as an example). 

Block designs are the oldest functional imaging paradigms; it is widely used in PET 

studies and dominated the first years of fMRI experimentation. Task periods 

or epochs are alternated with periods of rest that represent different cognitive 

states. In the simplest form, the experiment is composed of two states defined by 

different conditions as finger taping stimulation and resting stimulation. Another 

example is the auditory dataset which used in this work; this experiment is composed 

of two states as auditory stimulation using bi-syllabic words (e.g. “mother”, “house”, 

“weather”, “movie” etc.) and rest stimulation. The main advantage of block designs 

is the highest signal-to-noise ratio (SNR), statistical power and maximal time 

efficiency. The main disadvantage of the block designs is their limited use, because 

in some cases it could be difficult to preserve a cognitive task for long periods of 

time, so information about the HDR and fMRI signal timing are difficult to 

measure. In other hand, the block design is not suitable as the presentation of an 

unpredictable stimulus.  

In these cases event-related designs can be applied using single or multiple tasks and 

stimuli to take place at short and variable time intervals. This type of experimental 

design emerged in the mid of 90th providing the high degree of flexibility required for 

sophisticated neuropsychological experiments. This experiment can be used with the 

faster image acquisition of fMRI which enabled the detection of small changes in the 

HDR. Disadvantages of event-related designs include lower SNR and statistical 

power, with longer acquisition times and more trials per subject required. Analysis of 

the data is significantly more complex and dependent on accurate modeling of the 

HRF.  

Mixed paradigms designs combine the features of blocked and event-related designs. 

An example of the mixed paradigms is semi randomized conditions with rest periods 

in between which takes place during the task blocks. The main advantage of mixed 
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designs is related to maintaining the preferable SNR characteristics of block designs 

with the flexibility of even-related ones. 

2.5 Aim and Contribution 

The aim of this research is to analyze fMRI dataset by running new and robust 

prototype-based unsupervised clustering algorithm. This approach and in comparison 

with other approaches is tested with the fMRI real auditory dataset. Figure 2.6 shows 

the data flow of the proposed data mining system architecture oriented toward brain 

function exploration which should be able cope with the problem of model-based 

method. 

The process in the block is composed of five stages:  

1. preprocessing of the raw data  

2. clustering voxels together based on the similarity of their intensity profile in 

Time Course (TC) of fMRI image  

3. overlay with the structural image  

4. visual fMRI image  

5. validation 

Each part of the introduced block diagram will be explained in details in the next 

chapters. 

2.6 Summary 

FMRI quite used between imaging methods for studying brain functions in humans. 

In this chapter, information about brain medical background, types of artifact effect 

on fMRI as well as paradigm design is introduced. 

The framework of the proposed work is introduced in the form of a block diagram. 

This block diagram shows the process of fMRI data analysis which is performed in 

the thesis; which includes: fMRI preprocessing steps, clustering voxels using the 

proposed algorithm, overlaying these clusters with the brain anatomical image, 

visualization and validation. The details of each part of those who introduced in the 

block will be expanded in the next chapters. 
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Figure 2.6 The proposed data mining system architecture. 
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CHAPTER 3 

BRAIN CLUSTERING AND PARCELLATION 

The fMRI technique scans whole or part of the brain repeatedly and generates a 

sequence of 3-D images. The voxels of the brain that represent the real activity is 

very difficult to be detected because of a weak SNR, the presence of artifacts and 

nonlinear properties. Due to these difficulties, using of data mining is an important. 

Data mining is used as a complement or replacement of the classical methods when it 

is difficult to predict what will occur during the acquisition of detection. FMRI 

dataset mining using a data–driven unsupervised clustering approach is proposed in 

this thesis. 

An explanation of fMRI data analysis techniques as well as the presence of packages 

used in the same purpose is presented in this chapter. Thereafter, a literature review 

about fMRI researches is presented; starting from the first of using BOLD signals 

until to using parcellation and clustering approaches. 

3.1 FMRI Brain Parcellation 

To obtain the best performance for whole brain functional connectivity data analysis, 

the brain must be divided into many region of interest (ROI) to be used as network 

nodes. The structures of ROI’s are normally at the level of many voxels constituting 

which is a possibly small brain region, and rarely at the level of a specific voxel. 

Several methods were proposed for defining ROIs and study function beyond the 

voxel description, which include using three strategies: (1) Randomly splitting the 

brain into anatomical or functional ROI’s, (2) Anatomical brain atlas, (3) Brain 

parcellations using data-driven or clustering functional data.  

For randomly splitting the brain into ROI’s, the selection of these regions is 

depended on background and long experiments because of the cancellation problem. 

So, any signal lies outside the ROI will be ignored as a consequence and the final 
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results will not fit perfectly the new data. Therefore, this is regarded as a limitation 

by using the first strategy for defining ROI’s [14]. 

The anatomical brain atlas provides a set of ROI’s that cover all the brain volume 

[15- 17] or structures (anatomically, functionally or based on connectivity). There are 

two limitations of using the brain atlases: (1) All brain atlases are inconsistent 

between them [18], (2) Each atlas may not perfectly fit the data. 

Brain parcellations are either anatomical or functional parcellations. The parcels in 

anatomical parcellations must be performed with the most appropriate atlas. The 

functional parcellations can be derived either from resting-state functional Magnetic 

Resonance Images (rs-fMRIs), activation data or other analyses. Functional 

parcellations use data-driven or clustering functional data. 

Parcellation approaches use brain activity and clustering approaches to divide the 

brain into many parcels or regions with some degree of homogeneous characteristics. 

So, the brain is divided into regions with some degree of signal homogeneity. 

Parcellation approaches help for analysis and interpretation of neuroimaging data as 

well as mining these data because of the amount of fMRI data are huge.  

3.2 FMRI Data Analysis Packages 

The size of fMRI data is huge and the detection of voxels in the raw data that 

represent the real activity is very complex because of a weak SNR and of the 

existence of artifacts. So, powerful techniques from signal, image processing and 

statistics are fundamental to get a successful interpretation of fMRI experiments in 

order to go from the raw data to the finished image production. For processing and 

analysis of fMRI data, several software packages are now available some of them are 

freely available as: SPM, FMRIB software library (FSL), analysis of functional 

neuroimages (AFNI) and etc.; while others not as BrainVoyager. Table 3.1 

introduces examples of these packages, Figures 3.1 and 3.2 show the most of famous 

two packages SPM [19] and FSL [20]. In this thesis SPM was used with fMRI 

dataset, by applying preprocessing steps which including: realignment, coregistration, 

normalization, segmentation and smoothing before starting with fMRI data analysis.  
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These software packages focused on testing a brain behavior by the statistical 

methods and detected the more functional voxels in the brain area under comparable 

conditions. So using these packages are limited to the prefixed model and cannot be 

able to give the output results without the expecting about what will have. 

In this thesis, a novel approach relies on the RGNG algorithm to detect the active 

areas in the brain is presented which is not used for that purpose yet. Before starting 

with feeding our learning algorithm to the dataset, a number of preprocessing 

operations steps are required by using SPM as explained in the following chapters. 

Table 3.1 An overview of major fMRI software packages. 

Package  Developer Platforms Licensing Properties 

SPM                     University 

College 

London 

MATLAB Open source 
 

• Very active development 
community 

• Emphasis on fast processing 
• Command-line and GUI 

FSL Oxford 

University 

UNIX Open source 
• Emphasis on time series 

modeling and cool new 
techniques 

• Command-line and GUI 

AFNI  NIMH UNIX Open source 
 

• Part command-line, part GUI 

BrainVoyager Brain 

Innovation 

Windows, 

Mac, Linux 

Commercial 

(closed source) 

• GUI interface  
• Good surface inflation 

visualization  
• Fairly large set of tools, but 

smaller community 

3D Slicer BSD-style Windows, 

Mac, Linux 

Open source 
 

• Tools for visualization, 
segmentation and quantification 

FreeSurfer FreeSurfer 

Software  

Mac, Linux Open source 
 

• Automated tools for 
reconstruction of the brain’s 
cortical surface 
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Figure 3.1 An example page of SPM package’s windows. 

 

Figure 3.2 An example page of FSL package’s windows. 
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3.3 FMRI Data Analysis Techniques 

FMRI data analysis methods could be divided mainly into two categories: model-

driven or model-based (hypothesis) and data-driven or model-free (exploratory) 

approaches. The methods based on model-driven deal with a definite activation 

pattern, response functions or experiment. So firstly they need a prior knowledge 

about them, and then test the analyzed data statistically about the presence or absence 

of the response. The methods related to this category differ from, either by the 

statistical method or the signal estimation procedure for performing the activation. 

The commonly used GLM method belongs to this category and is the most 

fundamental and basic approach used for fMRI data analysis, but it needs a prior 

knowledge about the activation patterns or experiment. 

The methods based on data-driven count all the voxels simultaneously. Model-free 

approach has the ability to define the active zones and find structures in the brain and 

fMRI data competently without need of prior knowledge about activation patterns or 

experiment paradigm. The methods related to data-driven approach can be divided 

mainly into two groups: blind source separation (BSS) and clustering approach.  

BSS tries to find unobserved signals or ‘sources’ from several observed mixtures, and 

generate a model of the data. There are different methods for blind signal separation: 

principal component analysis (PCA) [21, 22], independent component analysis (ICA) 

[23- 26] and canonical correlation analysis (CCA) [27]. These methods are used to 

separate the mixtures to obtain the source signals. FSL package used melodic ICA, 

which is 

 a model-free approach, but it is insufficient for most fMRI datasets because ICA has 

some limitations. ICA is attempting to find maximally independent maps and split the 

wide activation areas into a number of maps which have a strong correlation between 

TCs of different components. Also the independent components (ICs) from ICA 

decomposition are not ordered i.e., it is associated with the model order selection for 

linear model-based region extraction is still an open problem. So, it is difficult to 

identify any ICs are non-linear activation correlated or not.  
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Clustering [28, 29] analysis is based on group voxels according to their TCs signals 

into a similar HDR over time. As well as all the advantages presented previously for 

our proposed clustering algorithm RGNG and that will be explained carefully next; it 

is mainly a data-driven or model free (exploratory) approach. 

Clustering techniques are considerable model-free or exploratory data analysis 

approaches and have the ability to define the active zones and find structures in the 

brain and fMRI data competently without need of prior knowledge about activation 

patterns or experiment paradigm. Table 3.2 compared statistical, transformation and 

clustering methods. 

Table 3.2 Comparison among statistical, transformation and clustering based approaches. 

Based 

Approach 

FMRI Analysis Methods Approach Properties 

 

Statistical  

Model-Driven/ Model-Based/ 

Hypothesis 

Used with SPM package and 

based on GLM 

The most fundamental, basic and 

commonly used approach for fMRI data 

analysis, but it needs previous knowledge 

about activation patterns or experiments. 

 

Transformation  

Data-Driven/ Model Free/ 

Exploratory 

Used with FSL package and 

based on melodic IC analysis 

It is based on linear mixing and is 

unordered. Thus, it must deal with 

independent data. 

 

Clustering  

Data-Driven/ Model-Free/ 

Exploratory 

RGNG is an example which 

were used in this thesis 

It can define active zones and identify 

structures in the brain and fMRI data 

competently without the need for previous 

knowledge about activation patterns or 

experiments. 

3.4 Literature Review 

In this section a brief of literature review is introduced about several researchers who 

worked in fMRI researches starting from the first of using BOLD signals until to 
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using parcellation and clustering approaches. The following literature review can be 

summarized in a simple flowchart as shown in Figure 3.3. 

 

Figure 3.3 FMRI data analysis in literature. 

3.4.1 Model-Driven Methods 

FMRI has provided neuroscientists with a powerful tool to examine brain activity by 

measuring the levels of oxygen in the blood or BOLD signals which are regarded as 

an indirect approach for neural activity measurement. There are three groups 

published the first BOLD fMRI studies in 1992. Kwong et al. (1992) introduced 

study related to the activity in the human primary visual (V1) and motor (M1) cortex 

using 1.5 T MRI. Brain activation was obtained by visual stimulation and hand 

squeezing; the results showed that with both areas changes with MR signal agree 

with the corresponding stimulation [30]. Ogawa et al. (1992) introduced a similar 

experiment to evaluate changes in gradient- echo planar emaging (EPI) resulting 

from longer visual stimuli using 4T MRI [31]. The results founded the BOLD signal 

production by T2* effects through using different image-acquisition TE. Bandettini et 
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al. (1992) introduced study related to a motor task by asking the subjects to touch 

each finger to thumb repetitively; the results showed that the local signal increase of 

4.3±0.3% in the human primary motor cortex [32]. 

Due to the complication in fMRI acquisition and a low SNR associated with the 

BOLD signals, then a preprocessing step is needed for fMRI data analysis. Several 

projects can be initiated relating to fMRI data analysis. Friston K. j. et al. (1994) 

introduced one of the most popular model-driven methods for time-series fMRI data 

analysis using GLM method [33]. This method used for detecting correlations 

between sensory input and the brain's physiological response measured with fMRI. 

Aguirre et al., (1998) [34] and Handwerker et al. (2004) [35] proved that the BOLD 

responses of the human brain can vary across subjects, different regions in the brain, 

trials, days, and even their effects on statistical analyses. Cao and Worsley (1999) 

proposed two new types of random field using the cross correlation field [36]. The 

cross correlation field is the usual sample correlation coefficient for a set of pairs of 

Gaussian random fields. The output results are derived from the geometry of the 

deflection set which are used to detect the regions of high correlation human brain 

activity. 

Due to the variability of BOLD signal, several methods have been proposed to 

overcome these influence in model-driven study. Woolrich et al. (2004) proposed 

different constrained linear basis sets for the HRF modeling. The HRF basis set has 

been defined and modeled the BOLD signals from different subjects with different 

HRFs from the predefined basis set [37].  

3.4.2 Data-Driven Methods 

There are other fMRI data analyses methods do not depend on the shapes of BOLD 

signal. Data-driven analysis is widely used for fMRI data processing in which the 

detection of brain activation is obtained from the information of the fMRI signal 

only. 
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3.4.2.1 Decomposition Exploratory Approaches  

Backfrieder et al. (1996) used the decomposition PCA with visual and motor 

stimulation experiments for fMRI data analysis; they showed that their method yields 

accurate absolute quantification of in vivo brain activity [38]. Goutte et al. (1999) 

[39] and Gao and Yee (2003) [40] used Temporal Clustering Analysis (TCA) in 

fMRI time series and successfully extracted the main components of the responses 

and brain activation maps when the timing and location of the activation are 

completely unknown. McIntosh et al. (2004) proposed an effective multivariate 

analytic tool Partial Least Squares (PLS) for the brain activity detection [41]. The 

results showed that this method provided a robust statistical assessment by using 

event-related fMRI data without making assumptions about the shape of the HRFs. 

Beckmann and Smith (2004) [42], Yi-Ou et al. (2007) [43] and Wang and Peterson 

(2008) [44] used the decomposition ICA technique for fMRI time series and they 

successfully extracted the main components of the responses.  

Parcellation method is another approach that used for fMRI data analysis; it is used to 

overcome the mis-registration problem and dealing with the limitation of spatial 

normalization. As it is explained previously that there are either anatomical or 

functional parcellation, the most important area of neuroscience is the functionally 

parcellation of the human cerebral cortex. Parcellation of the human brain has been 

done by Brodmann in early 20th century (Figure 4.6). 

Flandin et al. (2002) used a brain parcellation technique to overcome the 

shortcomings of spatial normalization for model-driven fMRI data analysis [45]. By 

using the GLM parameters and group analysis with anatomical T1 MR Slice, they 

parcellate the brain of each subject into about 1000 homogenous parcels functionally. 

Thirion et al. (2006) used a multi-subject whole brain parcellation technique to 

overcome the shortcomings of spatial normalization of fMRI data set [46]. Using the 

GLM parameter analysis, they parcellate the whole brain into a certain number of 
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parcels. They collected voxels from all subjects together, and then derived parcel 

prototypes by using C-means clustering algorithm on GLM parameters.  

Data-driven analysis is widely used for fMRI data processing to overcome the 

limitation associated with the shape of the HRF and task-related signal changes that 

must be introduced. As well as the assumption about the shapes of BOLD model, 

there is another limitation related to the subject behavior during the task. So data-

driven analysis is used with parcellation technique for fMRI data processing, in 

which the detection of brain activation is obtained from the information of the fMRI 

signal only.  

Yongnan Ji et al. (2009) introduced a parcellation approach for fMRI dataset based 

on ICA and PLS instead of the GLM, and they used a spectral clustering of the PLS 

latent variables to parcellate all subjects data [47]. Thomas et al. (2013) proposed a 

novel computational strategy to divide the cerebral cortex into disjoint, spatially 

neighboring and functionally homogeneous parcels using hierarchical clustering 

parcellation of the brain with rs-fMRI [48]. Thirion B. et al. (2014) studied the 

criteria accuracy of fit and reproducibility of the parcellation across boot strap 

samples on both simulated and two tasks-based fMRI dataset for the Ward, spectral 

and k-means clustering techniques [49]. They addressed the question of which 

clustering technique is appropriate and how to optimize the corresponding model. 

The experimental results showed that Ward’s clustering performance was the best 

among the alternative clustering methods. ICA and PCA techniques regarded as fine 

methods to separate the fMRI signals into a group of the defined components, but 

each faced difficulty to predict what occurs during acquisition and must deal with the 

limitations of their independence and orthogonality respectively [50].  

3.4.2.2 Clustering Exploratory Approaches  

In fMRI researches, clustering techniques are considerable as a model-free or 

exploratory data analysis approaches and have the ability to define the active zones 

and find structures in the brain and fMRI data competently without need of prior 
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knowledge about activation patterns or experiment. But till now the problem of 

choosing appropriate clustering techniques is still existent.  

Evgenia et al. (2003) compared NG method to its corresponding winner-takes-all 

method (Hard Competitive Learning (hardcl)) and winner-takes-all batch method (k-

means); k-means was used widely in fMRI clustering techniques where the update of 

only the winning center is done before any adaptations [51]. The obtained results 

showed that the NG performance was the best in comparison to its competitor. 

Meyer-Baese et al. (2004) compared two exploratory methods that widely used for 

fMRI data analysis: the ICA techniques versus unsupervised clustering [52]. A 

comparative quantitative evaluation between three methods of unsupervised 

clustering (SOM, NG network and fuzzy clustering) versus three methods of ICA 

techniques (FastICA, Infomax and topographic ICA). The experimental results 

showed that the unsupervised clustering techniques have the ability to extract features 

for a small number of ICs fully but are restricted to the linear mixture assumption. 

Also, they performed better than ICA but require more time for processing rather 

than the ICA methods. Wismuller et al. (2004) compared NG method with 

Kohonen’s self-organizing map (SOM) and a fuzzy clustering scheme based on 

deterministic annealing when applied to fMRI studies [53]. The experimental results 

showed that both NG network and fuzzy clustering technique based on deterministic 

are better than SOM in terms of identifying signal components with high correlation 

to the fMRI stimulus (found component TC, quantization error and activation maps). 

Also the results showed the NG network performance is the best among the two other 

clustering techniques about the quantization error and the identification of signal 

components with high correlation to the stimulus function. Dimitriadou et al. (2004) 

compared the efficiency and power of several cluster analysis techniques as crisp 

(NG, SOM, k-means, hardcl, maximum distance and CLARA), hierarchical and 

fuzzy (c-means, fuzzy competitive learning) techniques for fully artificial 

(mathematical) and synthesized (hybrid) fMRI data set [54]. They compared these 

methods using two performance measures, correlation coefficient and the weighted 

Jaccard Coefficient (wJC). The experimental results showed that NG and the k-

means technique performance was the best among all other methods. Ana et al. 
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(2006) found experimentally that One-Pass realizations of SOM and NG provided 

good results with respect to distortion or even improved over the slower realizations 

[55]. According to the experimental results, they proposed that the appropriate setting 

for the convergence analysis of SOM, NG and similar competitive clustering 

algorithms is the field of Graduated Nonconvexity algorithms and they can be set in 

this framework easily. 

Lachiche et al. (2005) introduced a new interactive data mining approach to fMRI 

images which was not been used for that purpose at that time and showed that the 

GNG has successfully recognized the active areas in brain fMRI images [56]. The 

idea of defining a distance between voxels of fMRI images was argued and suggested 

that this distance should be based on the signal only. Korczak (2007) introduced a 

new interactive data mining technique to fMRI images for cerebral activity 

observation which based on data-driven approach [57]. Different unsupervised 

clustering techniques were presented, developed and tested on sequences of fMRI 

images. Five clustering techniques applied to synthetic and real data are GNG, 

Kohonen’s SOM, Linde-Buzo-Gray (LBG), K-means and Clustering Using 

Representatives (CURE). The experimental results showed that the GNG technique 

performance was the best among all other clustering methods with acceptable 

robustness. Heydar et al. (2009) developed the technique of the GNG network, which 

can run the optimal number of clusters automatically [58]. The experimental results 

used artificial and real fMRI dataset with the proposed algorithm which is an 

improved version of the GNG algorithm. They compared the Jaccard coefficient of 

the proposed technique with some well-known clustering techniques such as K-

means, NG, GNG and Fuzzy C-Means (FCM); the results showed that the 

performance of the proposed technique is better than others.  

From all the presented different techniques previously, it is evaluated the GNG 

technique as the best clustering performance and give an acceptable robustness [50], 

but also has some limitations associated with the sensitivity for initialization, the 

order of input vectors and existence of many outliers [59]. Different from the works 
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above, this thesis focuses on using the RGNG algorithm into fMRI data to detect the 

active areas in the brain.  

This work related to using RGNG with fMRI dataset will be the first time in the 

literature, so there is no such study has been done according to the researcher 

knowledge. The proposed technique will be tested on real and free auditory fMRI 

dataset which is available for education and evaluation purposes. The real auditory 

fMRI activation data was taken from the London research institute “Welcome Trust 

Centre for Neuroimaging at University College of London (UCL)”. These data were 

used by some works as Lachiche et al. (2005), Korczak (2007) and Heydar et al. 

(2009) as show in the literatures previously. 

This proposal differentiates itself from the literature on the following major fronts. 

While the GNG is originating from the NG algorithm by Fritzke (1995, 1997), the 

RGNG algorithm was introduced by Qin and Suganthan (2004) within the GNG 

structure. RGNG network possesses better robustness properties than GNG, by 

succession the properties of the original GNG algorithm that overcoming the 

robustness issues associated with it and incorporating it with several robust strategies, 

such as outlier resistant scheme, adaptive modulation of learning rates and cluster 

repulsion method. 

3.5 Summary 

In summary, this chapter introduced fMRI data analysis and inference, and the most 

important packages used in fMRI data analysis. The human brain parcellation 

technique principle was presented as well as literature review about fMRI researches 

starting from the first of using BOLD signals until to using parcellation and 

clustering approaches.  

The research was started with investigating the available articles concerns on fMRI 

data mining and analysis, which were published in scientific journals. This section is 

important to give a background and review of the previous work related to fMRI, 

who analyzed the algorithms for clustering and processing different types of data as 

well as different packages used for fMRI preprocessing steps. 
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CHAPTER 4 

FMRI DATA ANALYSIS AND PREPROCESSING 

Before starting with fMRI data analysis using the proposed methods in this work, 

fMRI dataset must preprocessed using one of the open source packages. These steps 

are important for removing unwanted data or noises from the dataset, improving the 

fMRI mapping and preparing it for the analysis. 

In this chapter, the preprocessing steps are presented using free SPM software 

package. The output results from each of the preprocessing steps are introduced by 

using real auditory fMRI dataset. Thereafter, an introduction of the conventional 

GLM method that used by SPM is presented. 

4.1 FMRI Dataset Types 

MRI data are usually stored in a binary data file as either 8- or 16-bit integers. The 

size of the data file on disk is the product of the data size and the dimensions of the 

image. For example, a standard MRI image (with dimensions of 64×64×32 voxels) 

requires 256 kilobytes of disk space when stored as a 16-bit integer, but 1,024 

kilobytes (one megabyte) when stored as a 64-bit floating point value. 

Two-dimensional structural MR images after the reconstruction from the raw data are 

stored and manipulated as a slice. Each slice represents a grid or matrix of points, and 

these matrices represent the pixels with M rows and N columns. Several slices are 

required to produce a 3D volume image for creating a three-dimensional matrix with 

size M x N x K. 

FMRI generates four dimensional (4D) image datasets which are sequences of 3D 

volumetric images obtained over a period of time. 4D medical images represent 

changes of 3D medical images over the fourth dimension (time) as shown in Figure 

4.1. 
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Figure 4.1 Original fMRI 4D data and MR image sequences with 5.5 mm spacing between slice. [10] 

K 
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Generally MRI images are stored as 3D data files, but fMRI data are collected as a 

series of images, so they can be stored either as a set of 3D files or as a single 4D file 

where the fourth dimension is the time. By using four-dimensional file, the total files 

number is minimized, so it is preferred to store data as four-dimensional if possible. 

The problem in using 4D files is the impossibility of analyzing easily, and not all 

analysis packages can handle with 4D files.  

In neuroimaging, there is a different large number of medical image formats and the 

most important three of them are described in Table 4.1. The most typical output data 

format for MRI scanners is the digital imaging and communications in medicine 

(DICOM)-files format where every pixel corresponds to a voxel and their 

information is codified in the digital image format. DICOM is considered as a 

standard of medical images and it is a useful format that stores MR image as well as 

the information related to the position and orientation of patient and MR scan image. 

Another output MRI format is ANALYZE format, which consists of two types of 

files with extensions image data file (.img) and header information file (.hdr). An 

image file contains either a set of cross sectional images or uncompressed pixel data, 

while the header file contains a history and dimensions of the data as well as 

information about the subject, type of image, imaging parameters, image dimensions 

and so on. Neuroimaging Informatics Technology Initiative (NIFTI) consists of one 

or two types of files with extensions single file (.nii) or dual file (.img and .hdr). 

The typical fMRI dataset can be saved in different file formats (e.g., DICOM, 

ANALYZE, NIFTI) according to the scanner type and the software package used for 

data analysis. Each of the file format used for storing MRI data and the data can be 

converted from one format to another using different conversion techniques which 

are available in most analysis software. 
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Table 4.1 Overview of some medical image data formats. 

Format Name  File Extension  Origin 

DICOM None ACR/NEMA consortium 

Analyze .img and .hdr Analyze software, Mayo Clinic 

NIfTI .nii or .img and .hdr NIH Neuroimaging Informatics Tools Initiative 

 

4.2 Image Spatial Preprocessing 

With different experimental conditions, the acquired fMRI data are formed as a 

combination of the BOLD signal changes and noises or artifact. These artifacts are 

caused mainly due to some reasons such that related to hardware system (MRI 

scanner itself), individuals themselves (e.g. head motion) or physiological effects. So 

and in order to prepare fMRI raw data for analysis, a number of preprocessing 

operations steps are required before extracting the data of interest from it. The aim of 

these preprocessing operations steps is to detect and repair artifacts as well as 

preparing data for the later statistical functions assumptions. 

As it was explained previously, there are several software packages (SPM, FSL, 

AFNI, Brain Voyager) used for processing and analysis of fMRI data. Some freely 

available are SPM and FSL, while others are not. SPM is one of a free and open 

source package that runs within the MATLAB environment. It was developed at the 

functional imaging laboratory (FIL) at University College London, by Karl Friston 

who is a team leader [19].  

The presented work use SPM for analyzing a free auditory fMRI data [60] as an 

example for introducing the spatial pre-processing stages. Auditory fMRI data set 

that used in this work is comprises whole brain BOLD/EPI images acquired on a 

modified 2T Siemens MAGNETOM Vision system [61]. Each acquisition consisted 

http://www.fil.ion.ucl.ac.uk/spm/
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of 64 contiguous slices (64X64X64 3X3X3mm voxels). Acquisition took 6.05s, with 

the scan to scan TR set arbitrarily to 7s. 96 acquisitions were made (TR=7s) from a 

single subject, in blocks of 6 scans (acquired during the same condition as a 

stimulation or rest), giving 16 blocks and each block for 42s. The condition for 

successive blocks is alternated between rest and auditory stimulation, starting with 

rest. The functional data starts at acquisition 4, functional image (fM4). Auditory 

stimulation was bi-syllabic words (e.g. “mother”, “house”, “weather”, “movie” etc.) 

presented binaurally at a rate of 60 per minute. Due to T1 effects it is advisable to 

discard the first few scans (there were no “dummy” lead in scans). 

FMRI dataset is preprocessed by applying the following steps: 

• Realignment  

• Coregistration 

• Segmentation  

• Normalise  

• Smoothing 

The most important tools used with the preprocessing steps are shown in the SPM 

menu window in Figure 4.2 which described most of its stages in the following 

sections. Results output from the preprocessing steps are described in each section 

below. 
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Figure 4.2 The SPM menu window. 

 

4.2.1 Realignment 

In the previous chapter, an example of a head motion was given. The problem of 

head movement during scan time can be reduced by minimizing the misalignment 

between images in an fMRI time series using a rigid body transformation [11] and 

realigning the images to a single reference image. The realignment procedure 

includes basically motion estimation (trial and error) and correction through the 

translations or moving the image in X, Y, or Z direction and rotations over the X, Y, 

and Z axis. Realignment Result for the auditory raw data with 96 functional images 

(fM) is shown in Figure 4.3. Top panels plot translation between timepoints and the 

bottom panels plot rotation after motion correction. These plots reflect the parameters 

of the rigid body transformation that are estimated for each timepoint in comparison 

to the reference image. The zero parameters refer to the matching of the reference 

image to itself exactly. 

Spatial Pre-processing 
functions 

Visualization 
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Figure 4.3 Realignment Result for 96 fM free auditory data. 

4.2.2 Coregistration 

Coregistration is used to align functional images (T2* weighted) with the anatomical 

(structural) MRI images (T1 or T2 weighted) of the same subject. This process is 

based on using different cost function which is called Mutual Information [61]. SPM 
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implements the coregistration by maximizing the mutual information. Figure 4.4 

shows the coregistration between the reference functional mean image created from 

the realignment running and the structural image. 

 

Figure 4.4 Mutual information coregistration output result (mean fM4 and sM). 
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Figure 4.5 Segmentation results, (a) original image (sM); (b) segmented grey matter (c1); (c) white 

matter (c2); (d) CSF (c3). 

(c) 

(a) 

(b) 

(d) 
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4.2.3 Segmentation  

Segmentation process is performed to view grey matter, white matter, or CSF 

separately for each scan. From the original image, segmenting scan results produce 

three types of used and useful images for doctors and researchers. Figure 4.5 shows 

the segmentation results of the structural image. This figure shows the original sM in 

part (a), while part (b) shows the segmented grey matter (c1) result, part (c) shows 

the segmented white matter (c2) result and part (d) shows the CSF (c3) segmentation 

result. 

4.2.4 Normalization  

Normalization is a procedure used to put functional data into a coordinate system or 

standardized Montreal Neurological Institute (MNI) space. MNI templates 

are standard brains by using a large series of MRI scans on normal controls; which 

are developed at the Montreal Neurological Institute. MNI-152 is defined from the 

average of 152 subjects as an alternative method of a single brain Talairach atlas 

which is still common to use in functional brain imaging studies. Talairach brain atlas 

is a 3-dimensional coordinate system of the brain anatomy. The atlas has Brodmann's 

areas classification in a rather approximate way of the brain. Parcellation of the 

human brain has been done by Brodmann in early 20th century, based on the brain 

cytoarchitecture and divided it into 52 different fields as shown in Figure 4.6. 

 

Figure 4.6 The Brodmann areas 3D. 
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Figure 4.7 shows MNI versus Talairach brain atlas. This picture shows the top of the 

brain is higher in MNI, and the temporal lobes are so lower and larger than for the 

Talairach brain.  

 

Figure 4.7 MNI versus Talairach brain atlas 

SPM uses MNI template images, which are the most common templates used for 

fMRI spatial normalization. Normalize function can be used to put any scan 

registered with the anatomical that was segmented into template images which 

averaged scans of multiple subjects. Figure 4.8 shows the normalization output result 

for the functional slice image number 20 as an example (fM20). 
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(a) 

 

(b) 

Figure 4.8 Normalization result (fM20), (a) after normalization; (b) before normalization. 
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4.2.5 Smoothing 

The fMRI images are used smooth function as a final step in spatial pre-processing to 

correct the results of brain mapping and to increase the SNR by improving the few 

remaining of functional/ anatomical differences between subjects. Smoothing is 

achieved by averaging every voxel with a weighted sum of its neighbors (across 

adjacent voxels) to blur the functional images. The weighting is defined by a 

Gaussian kernel (Figure 4.9) with full width at half maximum (FWHM) size.  

 

Figure 4.9 Gaussian kernel. 

The FWHM is the size of the Gaussian that is given by its full width at half 

maximum. The larger the FWHM, the more smoothing get and vice versa. Figure 

4.10 shows the output smoothing result using a Gaussian smoothing kernel of 6 for 

the functional slice image number 20 as an example (fM20). The above image in this 

figure shows the final step in the preprocessing steps with respect to the functional 

image without preprocessing shown down. 

Another example showing the importance of the preprocessing steps is seen in Figure 

4.11. This figure shows the whole brain fMRI images with clusters with and without 

preprocessing. So, these steps will effect on finding the true active zones with the 

same paradigm in the specified area of the brain. The result of fMRI image without 

preprocessing leads to the presence of a lot of unreal active areas in the shape of the 

image. These areas looked activated, but in fact are just an artifact and they are 

scattered all around the image and even outside the image. 

 

 

FWHM 
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(a) 

 

(b) 

Figure 4.10 Smoothing result (fM20), (a) after smoothing; (b): before smoothing. 
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(a) 

 

(b) 

Figure 4.11 Whole brain fMRI image (a) image with preprocessing; (b) image without preprocessing. 
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In sum, the functional images were reoriented to MNI space, which is standard brain 

formed by using a large series of MRI scans on normal controls developed at the 

Montreal Neurological Institute. Then the functional raw data were realigned to 

correct for the head movements. The high-resolution anatomical T1 images were 

coregistered with the realigned functional images to strong the functional activation 

detection. Segmentation process is not mandatory. SPM12 uses MNI template image, 

which are the most common templates used for fMRI spatial normalization. In this 

step, the anatomical and functional images were spatially normalized into MNI space. 

Finally, the functional raw data were spatially smoothed with a Gaussian smoothing 

kernel of 6.  

4.3 General Linear Model (GLM) 

The GLM is one of the most important, fundamental, basic and common model-

driven methods in fMRI data analysis by performing the statistical tests on each 

voxel. The general name in the GLM model means that this model can be used for 

many different statistical analysis types, as correlations, one-sample t-tests, two-

sample t-tests, F-tests, Analysis of Variance (ANOVA), and Analysis of Covariance 

(ANCOVA) [11]. GLM can remove the effects that may confound with the analysis 

using a suitable model as a comparison to the common t-test and correlation analysis. 

GLM is a regression method, so firstly constitute a statistical model to describe the 

BOLD signals corresponding to the stimulation, and then apply the model to fMRI 

data. GLM statistical analysis is implemented on each voxel providing a statistical 

measure of the brain structure corresponding to that voxel is activated during the 

stimulation. While GLM statistical analysis using null hypothesis is performed when 

the model does not match the TC of that voxel. The term "null hypothesis" usually 

refers to a general statement or default position that there is no relationship between 

two measured phenomena, or no difference among groups [62]. 

In GLM-based analysis, the BOLD responses’ shapes are assumed to be the same for 

all subjects and voxels and any contrast of the BOLD responses is neglected. GLM 

analysis in terms of an fMRI experiment can be expressed as: 
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𝑌 =  𝑋𝛽 +  𝜀                    𝜀 ~ 𝑁(0,𝑉)  (4.1) 

where: 

𝑌: measured response in one voxel of the fMRI data set, i.e. TC of the voxel we    

want to analyze (voxel time series) 

𝑋: design matrix (expected BOLD response) 

𝛽: vector parameters (unknown) 

𝜀: residual errors 

 

Figure 4.12 GLM analyses in terms of an fMRI experiment. 

𝒀𝒀                 𝑿𝑿                𝜷𝜷             𝜺𝜺  
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Figure 4.12 shows the above equation in more details. The design matrix 𝑋 of the 

BOLD response contains the predictor variables that represent the experimental 

conditions under which the observations were made. Each column of the design 

matrix represents the effect of the experience or an effect that may confound the 

results, while each row of the design matrix represents a different fMRI scan. 

There are different models for the BOLD response for obtaining the explanatory 

variables or predictors using: Boxcar model, Convolutive model, Balloon model and 

Subspace model. A boxcar model is used for the GLM analysis in SPM package. 

Box-car model is the simplest BOLD response model by using a square-wave 

function only, to represent the observed BOLD response to be an applicable for the 

block design, and ignores how the system (brain and MR-scanner) modulates the 

applied experimental paradigm. Box car function shown in Figure 4.13 as an example 

of box-car model of the neural activation that could be expected from a task-

responsive voxel in a block design experiment with 250sec stimulation blocks and 

250sec rest blocks. 

 

Figure 4.13 A boxcar function. 
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Figure 4.14 The HRF 

 

Figure 4.15 Box car model function convolved with HRF. 
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Figure 4.14 shows an example of the BOLD HRF or gamma function; x-axis defines 

in 1/10th sec for smooth plot. The box car model function is convolved with HRF to 

create a convolved regressor as shown in Figure 4.15; number of time points in the 

fMRI TC (nTRs) is 480sec. These regressors represent and match the rise and fall in 

BOLD signal (greyscale). 

Figure 4.16 shows the generated design matrix with three columns. First column 

represents the on/off stimulus result of convolution the HRF and boxcar. Second 

column represents the baseline condition (constant or rest term); While third column 

represents linear drift (typical scan artifact). 

 

Figure 4.16 The design matrix. 

A hypothesis BOLD data can be generated by adding baseline activation, linear 

scanner drift and noise to the output results obtained in Figure 4.15 which represents 

the convolution of a boxcar function with HRF, as shown in Figure 4.17. Finally the 

predicted BOLD signal by the GLM is plotted in Figure 4.18 as a near square with 
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this work, Figure 4.19 shows the experimental paradigm for 96 acquisitions were 

made (TR=7s) in blocks of 6, giving 16 * 42s block. 

 

Figure 4.17 A hypothesis BOLD data. 

 

Figure 4.18 Predicted BOLD response TC. 
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Figure 4.19 Experimental paradigm "silence" and "talk". 

In clustering algorithms, they try to classify the TC signals of the voxels into 

different groups according to the similarity among them. The temporal information is 

ordered in clusters and is independent of their spatial neighborhood. These clusters 

are described by an average TC or a cluster center obtained by averaging all the TCs 

of the cluster. The fMRI data are transformed into a TC of voxel intensity variations 

proportional to its average as follows: 

𝐼𝑎𝑣𝑎 = 1
𝑛
∑ 𝐼𝑖𝑎 (4.2) 

𝑋𝑎 = {𝑤1,𝑤2, … ,𝑤𝑛} (4.3) 

𝑤𝑖 = 𝐼𝑎𝑣𝑎 − 𝐼𝑖𝑎  (4.4) 

where: 

𝐼𝑎𝑣𝑎 : average intensity of voxel s of a series of n images; 
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𝑋𝑎: fMRI signal 

The distances between two fMRI signals 𝑋𝑎 and 𝑋𝑏 may be computed as 

Euclidian distance: 

𝑑𝐸 = �(𝑋𝑎𝑖 − 𝑋𝑏𝑖)2 (4.5) 

4.4 Discussion  

SPM is one of a free and open source package used for processing and analysis of 

fMRI data. SPM is a software package that runs within the MATLAB environment 

which is based on the GLM and is one of the commonly used approaches for fMRI 

data analysis. GLM is a hypothesis or model-based approach not model free or 

exploratory analysis like clustering techniques. 

This chapter introduced the preprocessing steps, which included: Realignment, 

Coregistration, Segmentation, Normalization and Smoothing within SPM. FMRI data 

preprocessing is an important step before starting with an fMRI data analysis as well 

as removing the unwanted data or noises from the dataset to make data satisfy the 

later processing assumptions.  

The real auditory fMRI data used in this work was preprocessed with above steps, 

and the output results were shown using SPM. Then the conventional GLM method 

that used by SPM was introduced and presented the output results related to the 

model used and paradigm. 
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CHAPTER 5  

PROPOSED ALGORITHMS WITH FMRI DATA 

ANALYSIS 

In this chapter the proposed learning algorithm to be used with fMRI dataset is 

explained in details using a novel RGNG approach. Moreover, complete explanation 

of NG and GNG algorithms is presented for the next comparison with the RGNG. 

Flowcharts are designed for each of the three algorithms and presented as well as a 

comparison among the three artificial neural network approaches are presented in a 

table. These algorithms are prototype–based unsupervised clustering used for fMRI 

data Analysis in this work, which are data-driven approaches. 

5.1 FMRI Data-Driven Techniques 

There are a number of techniques applied to fMRI for data analysis. These techniques 

or algorithms can be divided mainly according to the based approaches into three 

groups: transformation based techniques, SPM and clustering based techniques. 

PCA and ICA are two main transformations based methods applied to fMRI data 

analysis. Both methods based on transforming the original data as a matrix into a 

high-dimensional vector space in order to separate complex patterns of correlation (as 

different functional responses and types of noise) between the element vectors of the 

original data. 

ICA regarded as the reference method to extract underlying networks and identify 

spatial nodes from rest fMRI that are independent and sparse [42, 63]; also it has the 

ability to divide data spatially into non-overlapping and specific sets, but this 

technique has some limitations. First, it is based on a linear mixing approach that 

involves other probabilistic models and changes the nature of the problem [49], so 

this approach attempt to find maximally independent maps and split the wide 

activation areas into a number of maps which have a strong correlation between TCs 

of different components. Also the ICs from ICA decomposition are not ordered i.e., it 
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is associated with the model order selection for linear model-based region extraction 

is still an open problem. So, it is difficult to identify any ICs are non-linear activation 

correlated or not.  

In contrast, PCA decomposes the correlated variable data into sets of linearly 

uncorrelated variables with orthogonal directions space through the identification of 

principal components in the original data. One weakness of this approach is related to 

some task of experiences in fMRI data analysis when it is difficult to inform small 

changes with fMRI signal variance. For clarification, some important signals may 

lose when the signals of interest and the distorted signals from hardware scanner or 

physiological artifact are non-orthogonal. In sum, ICA and PCA algorithms are able 

to separate the fMRI signals into a group of the defined components, but each must 

deal with the limitations of their independence and orthogonality respectively [50]. 

SPM is based on the conventional GLM which is one of the commonly used 

approaches for fMRI data analysis. This approach is well done with the fMRI data 

analysis, but it is hypothesis or model-based approach not model free or exploratory 

analysis like clustering techniques. So, it needs a precise estimate of the fMRI signals 

corresponding to the performance of the paradigm. But in many cases it is difficult to 

provide accurate models for different reasons. For example the volunteers may have 

been doing the task incorrectly in the experiment. Even if the subjects perform 

perfectly during the scan, different volunteers may still give different BOLD signals 

with same paradigm. The same subject may also give different response signals at 

different time. 

There are many clustering based algorithms that have already been applied to fMRI 

for data mining instead the previous classical methods that face difficulty to predict 

what occurs during acquisition such as: K-means, fuzzy classification, hierarchical 

classifications, LBG, CURE, the neural models SOM, NG and Fritzke’s GNG 

algorithms. But one of the main problems in fMRI clustering algorithms is to decide 

the clusters’ number as an input [53, 54]. Also good results in a higher level of 

interpretation were obtained using the clustering approaches, but here another 

problem associated with the cost for computing time and memory space. 
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From these different algorithms we evaluated the GNG algorithm as the best 

clustering performance and give an acceptable robustness, but also have some 

limitations associated with the sensitivity for initialization, the order of input vectors 

and existence of many outliers. Therefore, in this work a novel approach is proposed 

that relies on using the RGNG algorithm into fMRI data to detect the active areas in 

the brain with a comparison to the GNG algorithm which have not been used for that 

purpose yet. GNG was applied with fMRI previously [56- 58], but for the better 

robustness properties associated with RGNG network, it is suggested to be used in 

this work which was proposed by Qin and Suganthan (2004) within the GNG 

structure. In this thesis, this algorithm proofed its ability of finding activated regions 

in the brain and has different and important features in comparison with others 

clustering approaches. These features are insensitive to initialization, input sequence 

ordering, the presence of outliers and determining the optimal number of underlying 

clusters during different growth stages as well as it is able to deal well with 

multimodal datasets as the fMRI and detect the active zones in the specified area of 

the brain.  

The suggested model in this thesis produced a robust unsupervised learning system 

(RGNG with fMRI) for detecting the active zones in the brain as well as its ability to 

work on the optimal number of underlying clusters in synthetic and real data. The 

following sections include the details of the three prototypes-based unsupervised 

clustering algorithms introduced in this work, NG, GNG and RGNG algorithms. 

5.2 Clustering Approaches with fMRI 

Cluster analysis [64] is a robust tool for exploring the underlining structures in data 

and grouping them with similar objects that is called clusters. It attempt to group 

voxels according to their TC signals into a similar HDR over time.  

Cluster analysis found applications in different fields ranging from a main task of 

data mining applications [65] such as: scientific data exploration, spatial database 

applications, Web analysis, marketing, medical diagnostics, computational biology, 

and etc., and a common technique for statistical data analysis that used in many fields 

http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_analysis
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including machine learning, pattern recognition [66], image analysis [67], 

information retrieval [68], and Bioinformatics [69]. 

In fMRI, clustering algorithms depending not only on a 3D distance between voxels, 

but based on the activity of the voxels without any influence on their localization. So, 

clustering is different from segmentation techniques, but it groups data in a few 

similar segments. In fMRI images, the active area is identified according to a 

comparison between voxels and their neighbours. 

There are many clustering algorithms were applied to fMRI data such as: PCA [70, 

71], ICA [42, 72, 73], and K-means [39, 49, 74]; fuzzy classification [75, 76], 

Hierarchical classifications [39, 77, 78], LBG [50, 57], CURE [79], neural models 

SOM [50, 57, 80, 81], NG [53, 82] and GNG [50, 57, 83].  

As illustrated previously, ICA has some limitations as its dependency on a linear 

mixing approach that involves other probabilistic models and changes the nature of 

the problem, it is not ordered and difficult to inform any ICs are activation correlated 

or not. However, ICA and PCA algorithms have to deal with limitations of their 

independence and orthogonality. As for many of clustering algorithms, that have 

already been applied to fMRI for data mining instead the previous classical methods 

that face the difficulty to predict what occurs during acquisition, have a main 

problem in choosing the true number of clusters as an input; as well as the cost for 

computing time and memory space. 

From these different algorithms GNG algorithm is evaluated as the best clustering 

performance and give an acceptable robustness, but also has some limitations 

associated with the sensitivity for initialization, the order of input vectors and 

existence of many outliers. For that in this thesis a novel application of the RGNG 

algorithm into fMRI data is proposed to detect the active areas in the brain with a 

comparison to the GNG algorithm. The GNG is originating from the NG algorithm 

[83, 84]. Before starting with introducing the proposed RGNG algorithm for feeding 

with fMRI data, a review of the NG and GNG algorithms are presented. Because of 

the length and complexity of the NG, GNG and RGNG algorithms, flowcharts are 

http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Image_analysis
http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Bioinformatics
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designed for the three algorithms in this work as well as the mathematical model in 

order to be understandable and make easier in writing the related codes. 

5.3 Neural Gas (NG) Algorithm 

The NG network algorithm is a simple artificial neural network algorithm for finding 

optimal data representations based on reference vectors (prototype vectors), it was 

first introduced in 1991 [82] and based on Kohonen’s SOM [85]. Because of the 

dynamics of the reference vectors during the adaptation process, this algorithm was 

coined "neural gas” that spread themselves as a gas during the data space. NG is 

unlike other methods that consider distance as a rank like Euclidean distance, but it 

proposes a new way of calculating the influence. Nearer prototypes in NG algorithm 

are more affected, but it does not depend directly on the influence of the distance. 
NG has been successfully applied to clustering [86], speech recognition [87], image 

processing [88], vector quantization, pattern recognition and topology representation, 

etc. [89, 90] especially where there is a problem getting along to vector quantization 

or data compression. An interested result was obtained by applying this algorithm to 

fMRI data [51- 55]. 

It adapts the reference vectors (prototype vectors) ‘𝑤𝑖’ without any fixed topological 

arrangement within the network. NG is not just adapts the winner vector for a 

specific input vector as a single-layered soft competitive learning neural network, but 

also updates the residual reference vectors according to the input vector nearness 

using a soft-max updating rule [91]. The main advantages of NG network [92] are: 

(1) lower distortion error resulting than other clustering algorithms (k-means, 

maximum-entropy and SOM, (2) faster assemblage to low distortion errors, (3) 

submission a stochastic gradient descent on a specific energy surface. 

The NG algorithm is represented by the dependence of updating strengths for 𝑐 

reference vectors 𝑤𝑐𝑖(𝑖0, 𝑖1, … , 𝑖𝑁−1) on their positions in the ‘neighborhood ranking’ 

list. When an input vector is presented by 𝑥, the determination of the neighborhood 

ranking (𝑤𝑖0,𝑤𝑖1, … ,𝑤𝑖𝑘) of the reference vectors 𝑤𝑐𝑖 as follows: 

𝑤𝑖0, being the closest to 𝑥  

http://en.wikipedia.org/wiki/Artificial_neural_network
http://en.wikipedia.org/wiki/Speech_recognition
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Image_processing
http://en.wikipedia.org/wiki/Vector_quantization
http://en.wikipedia.org/wiki/Data_compression
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𝑤𝑖1, being second closest to 𝑥  

𝑤𝑖𝑘 (for 𝑘 = 1,2, . . . ,𝑁 − 1), being the reference vector for which there is a 𝑘 vectors 

𝑤𝑗 with �𝑥 − 𝑤𝑗� < ‖𝑥 − 𝑤𝑖𝑘‖  

𝑘𝑖(𝑥,𝑤): is the ranking index associated with each weight 𝑤𝑖.  

The updating step of adjusting 𝑤𝑖 according to a Hebb-like learning rule is given by: 

∆𝑤𝑖 = 𝜀(𝑡).ℎ𝜆�𝑘𝑖(𝑥,𝑤)�. (𝑥 − 𝑤𝑖),    𝑖 = 1, 2, … , 𝑐 (5.1) 

where:  

ℎ(. , . ) : deterministic function with some regularity condition imposed 

on it.  

𝜀(𝑡) ∈ [0, 1] : the learning rate (step size) that describes the total extent of the 

modification. This extent usually takes an exponential 

decreasing form {𝜀(𝑡) = 𝜀𝑖. (𝜀𝑓/𝜀𝑖)𝑡/(𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)}, so 𝑡 and 

𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 denote the iteration step 𝑡 and the maximum 

number of iterations. 

ℎ𝜆(𝑘𝑖(𝑣,𝑤) ∈ [0, 1]: accounts for the topological arrangement of the 𝑤𝑖 within the 

input space.  

for: ℎ𝜆(𝑘) ∈ [0, 1], the exponential form 𝑒𝑥𝑝 (−𝑘/𝜆) was proposed [92] to obtain the 

best extensive result with comparison to other options like the Gaussian function.  

𝜆: finds the number of reference vectors that significantly changing their positions in 

the updating steps and usually individually decreases with the iteration step 𝑡 as: 

𝜆(𝑡) = 𝜆𝑖. (𝜆𝑓/𝜆𝑖)𝑡/(𝑀𝑎𝑥_𝑖𝑡𝑒𝑟). 

NG Algorithm is widely related to the structure of fuzzy clustering methods [93]. So 

NG used the uncertainty of relationship value (ℎ𝜆(𝑘𝑖(𝑥,𝑤)))/(𝐶 (𝜆)) to set each 

input vector ‘𝑥’ to all the reference vectors 𝑤𝑖 (𝑖 = 1,2, . . . , 𝑐) instead of using 

𝑢𝑖𝑗  (2 ≤ 𝑖 ≤ 𝑐, 1 ≤ 𝑗 ≤ 𝑁) in FCM algorithm. This algorithm is based on solving a 
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cost function using iterative methods plus the familiarity with linear optimization 

methods essentially the gradient descent method and Newton’s method. Therefore, 

the NG cost function to optimize [92] is: 

𝐸𝑛𝑔 = 1
2𝐶(𝜆)

∑ ∫𝑃(𝑥)ℎ𝜆(𝑘𝑖(𝑥,𝑤))‖𝑥 − 𝑤𝑖‖2𝑐
𝑖=1  (5.2) 

with 

𝐶(𝜆) = ∑ ℎ𝜆(𝑘𝑖) = ∑ ℎ𝜆(𝑘)𝑐−1
𝑘=0

𝑐
𝑖=1  (5.3) 

Martinetz et al. (1993) introduced this cost function and proved that the updating in 

the Hebb-like learning rule can be derived by the stochastic gradient descent on this 

function. By starting with a large value of 𝜆 and reduces it slowly, a good results 

reference vector will be obtained.   

Due to the sequential learning scheme in NG algorithm and use of neighborhood 

dealing rule, NG became less sensitive to various initializations due to the sequential 

learning scheme and use of neighborhood cooperation rule with comparison to other 

clustering algorithms like k-means and FCM.  

Before feeding the NG algorithm, there are some parameters have to be defined: 

𝑁     : maximal number of neurons 

𝜀𝑖, 𝜀𝑓: step size 

𝜆𝑖, 𝜆𝑓: decay constant  

𝑇𝑖,𝑇𝑓: life-time 

𝑡𝑚𝑎𝑥 = 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 (maximal number of iterations) 

The complete NG algorithm [84] is illustrated as follows:    

1. Initialize the set ‘𝑤’ to contain 𝑁 units 𝑐𝑖       

𝑤 =  {𝑐1, 𝑐2, … , 𝑐𝑁} (5.4) 

with reference vectors (𝑤𝑐𝑖 ∈ 𝑅𝑛) chosen randomly according to 𝑃(𝑥). Initialize the 

time parameter 𝑡, with 𝑡 = 0. Initialize the connection 𝐶: 
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𝐶 = 0 (5.5) 

2. Generate at random an input signal ‘𝑥’ according to 𝑃(𝑥).  

 

3. Order all elements of 𝑤 according to their distance to ‘𝑥’, i.e., find the sequence 

of indices (𝑖0, 𝑖1, … , 𝑖𝑁−1) such that 𝑤𝑖0 is the reference vector closest to ‘𝑥’, ‘𝑤𝑖1’ is 

the reference vector second-closest to 𝑥 and 𝑤𝑖𝑘 (for 𝑘 = 1,2, . . . ,𝑁 − 1) is the 

reference vector such that 𝑘 vectors 𝑤𝑗 exist with �𝑥 − 𝑤𝑗� < ‖𝑥 − 𝑤𝑖𝑘‖. Following 

Martinetz et al. (1993) we denote with  𝑘𝑖(𝑥,𝑤) the number 𝑘 associated with each 

weight 𝑤i. 

4. Adapt the reference vectors according to: 

∆𝑤𝑖 = 𝜀(𝑡).ℎ𝜆�𝑘𝑖(𝑥,𝑤)�. (𝑥 − 𝑤𝑖),    𝑖 = 1, 2, … , 𝑐.  (5.6) 

with the following time-dependencies:  

𝜆(𝑡) = 𝜆𝑖. (𝜆𝑓/𝜆𝑖)𝑡/𝑡𝑚𝑎𝑥  (5.7) 

𝜀(𝑡) = 𝜀𝑖. (𝜀𝑓/𝜀𝑖)𝑡/𝑡𝑚𝑎𝑥  (5.8) 

ℎ𝜆(𝑘) = exp (−𝑘/𝜆(𝑡)) (5.9) 

5. Create a new connection between two neurons if there is no connection: 

𝐶𝑖0𝑖1 = 1 (5.10) 

set the age of the connection between two neurons to zero (reset the age): 

age𝑖0𝑖1 = 0 (5.11) 

6. Increase the age for each edge emanating from the winner neuron by one, and 

remove edges larger than maximum 𝑇(𝑡): 

𝑇(𝑡) = 𝑇𝑖. (𝑇𝑓/𝑇𝑖)𝑡/𝑡𝑚𝑎𝑥  (5.12) 

increase the time parameter 𝑡:  

𝑡 = 𝑡 + 1  (5.13) 

http://www.demogng.de/JavaPaper/node28.html#Martinetz93a
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7. If 𝑡 < 𝑡𝑚𝑎𝑥 return with step 2.  

 

 

Figure 5.1 The flowchart of NG Algorithm. 

Figure 5.1 introduces the flowchart of the NG Algorithm. As well as the advantages 

of NG model that has introduced, but it also has some limitations like it depends on 

decaying parameters which change over time and it is incapable to find a network 

size and structure automatically and continue learning. So, and originating from the 

NG algorithm, the GNG algorithm  introduced by Fritzke (1995, 1997) which has an 

advantage against NG algorithm through its ability to modify the network topology 
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by removing edges with its age variable and during the growth process associated 

with the neighborhood updating rule leads to the no need for the neighborhood 

sorting step [83, 84]. It has the ability to find a network size and structure 

automatically, continue learning, adding units and connections until a performance 

criterion fulfilled. 

5.4  Growing Neural Gas (GNG) Algorithm 
Originating from the NG algorithm, GNG algorithm introduced by Fritzke (1995, 

1997), he proposed changing the unit numbers (mostly increased) during SOM 

network with a variable topological structure [83, 84]. This growth mechanism is 

combined with topology formation rules by the Competitive Hebbian Learning 

(CHL) [94] with the earlier proposed growing mechanism inherited from the 

Growing Cell Structures [95] to a new model. Interesting results were obtained by 

applying the algorithm to fMRI data with Lachiche et al., (2005) and Korczak, 

(2007). 

The GNG algorithm needs only constant parameters, but deciding the amount of 

prototypes is not required. The main idea of the GNG starts with minimal network 

size and inserting few numbers of new neurons and connections respectively in a 

growing structure by using a vector quantization until the desired quality of the 

model is fulfilled (e.g., net size, time limit, predefined numbers of neurons inserted, 

quality or some performance measure). To determine where to insert new units, local 

error measures are gathered during the adaptation process. Each new unit is inserted 

near the unit that has accumulated the highest error, and a connection between the 

winner and the second nearest neuron is formed using the competitive Hebbian 

learning algorithm.  

Before feeding the GNG algorithm, there are some parameters have to be defined: 

𝑁        : maximal number of neurons 

𝜀𝑏 , 𝜀𝑛 : constant learning rate for the winner and its topological neighbors, 

respectively 

λ          : iteration number 
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𝛼         : reduction of error counter by inserting a new neuron 

𝛽         : it will reduce the overall value of the error counter every iteration step 

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟: maximal number of iterations 

For each reference vector 𝑤𝑖, 𝑖 = 1, 2, … , 𝑐, a set of edges emanating from it. It is 

defined to connect with its direct topological neighbors; the GNG algorithm starts in 

step 1 with initializing a few prototype vectors (usually 2) 𝑊 =  {𝑤1,𝑤2} with 

reference vectors that are chosen randomly and new prototype vectors are 

successively inserted. The learning rates 𝜀𝑏 , 𝜀𝑛 used in the training procedure and a 

connection 𝐶, 𝐶 ⊂ 𝑤 × 𝑤, to the empty set: 𝐶 = ∅. 

Set the pre-specified maximum number of prototypes or neurons to grow as 

𝑝𝑟𝑒_𝑛𝑢𝑚𝑛𝑜𝑑𝑒 and the maximum predefined training epoch 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 during each 

growth stage with the largest local accumulated error measure, the data set used for 

training is 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑁}. Then set the initial training epoch number: 𝑚 = 0 

and the iteration step in training epoch 𝑚: 𝑡 = 0. 

The complete implementation of the GNG algorithm [84] is as follows:   

1. Start with two nodes selected from input data set ‘𝑤’ to contain two neural units 

𝑤1 and 𝑤2: 

𝑊 =  {𝑤1,𝑤2, … ,𝑤𝑁} (5.14) 

with reference vectors chosen randomly according to P(x). Initialize the connection 

set 𝐶, 𝐶 ⊂ 𝑤 × 𝑤, to the empty set: 

𝐶 = ∅ (5.15) 

2. Generate at random an input signal ‘𝑥’ according to 𝑃(𝑥); and for 𝑚 =

0 𝑡𝑜 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 − 1 

• Set 𝑡 = 1, thus 𝑖𝑡𝑒𝑟 = 𝑚.𝑁 + 𝑡. 

• Set trainingset = 𝑋, i.e. include all input vectors into trainingset. 

• Draw randomly an input vector 𝑥𝑡𝑚; at the iteration step 𝑡 in training epoch 𝑚, 

from the trainingset. 
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3. Determine first two closest neurons (winner neurons) 𝑠1 and the second-nearest 

unit 𝑠2, (𝑠1,  𝑠2 ∈ 𝑤), to the new data sample (i.e. calculate Euclidean distances to 

the input neurons)  by:  

𝑠1 = arg𝑚𝑖𝑛𝑖∈𝑤 �𝑥𝑡𝑚 − 𝑤𝑖
𝑖𝑡𝑒𝑟� (5.16) 

𝑠2 = arg𝑚𝑖𝑛𝑖∈𝑤\{𝑠1} �𝑥𝑡𝑚 − 𝑤𝑖
𝑖𝑡𝑒𝑟� (5.17) 

4. Compare the Distance: 

i. Modify Age of Edges: Increase the age of all edges emanating from 𝑠1:  

age(𝑠1,𝑖) =     age(𝑠1,𝑖) + 1         �∀𝑖∈ 𝑁𝑠1� (5.18) 

ii. Update the Local Error of Winner Neuron: Add the squared distance between 

the input signal vector and the winner neuron to a local counter error variable for 

𝑠1: 

∆𝐸𝑠1 = �𝑥𝑡𝑚 − 𝑤𝑠1�
2
 (5.19) 

iii. Modify Weights: The updating rule of GNG algorithm is expressed by 

moving the reference vectors of the winner neuron 𝑠1 and its direct topological 

neighbors (neurons connected to 𝑠1) towards 𝑥 by fractions (learning step) 𝜀𝑏 and 

𝜀𝑛 respectively. The total distance to the input signal:  

∆𝑤𝑠1 = 𝜀𝑏�𝑥 − 𝑤𝑠𝑖�,∆𝑤𝑖 = 𝜀𝑛(𝑥 − 𝑤𝑖)            �∀𝑖∈ 𝑁𝑠1� (5.20) 

where 

𝑁𝑠1: is the set of direct topological neighbors of  𝑠1 that are connected by an edge 

with 𝑤𝑠1. 

The prototype’s updating is only operated on the winning prototype 𝑤𝑠1 and its direct 

topological neighbors 𝑤𝑖, ∀𝑖∈ 𝑁𝑠1 at the presence of an input vector 𝑥. The updating 

strengths stay constant over time but are irregular for the winning prototype and its 

topological neighbors. 



67 

 

 

 

iv. Create Edges: If 𝑠1 and 𝑠2 are connected by an edge, then set the age of this 

edge connection between 𝑠1 and 𝑠2 to zero (“refresh” the edge): 

age(𝑠1,𝑠2) = 0 (5.21) 

If the edge connection between 𝑠1 and 𝑠2 does not exist already, create it  

𝐶 = 𝐶 ∪ {(𝑠1, 𝑠2)} (5.22) 

5. Dead Node Removal Procedure: 

• Deleting all connections with age > αmax 

• If the results in units have no more emanating connections, remove them as 

well.  

• Increment the age of all emanating connection of 𝑠1 by 1 and remove the used 

vector 𝑥𝑡𝑚 from the set trainingset. 
 

6. If the current number of prototypes ≤ 𝑝𝑟𝑒_𝑛𝑢𝑚𝑛𝑜𝑑𝑒 (the number of input 

signals generated so far is an integer multiple of a parameter 𝜆) and some predefined 

performance measure, then return to (2). 
 

7. Node Insertion Procedure (Keeping Topology by inserting new neurons), if the 

number of input signals generated so far is an integer multiple of a parameter 𝜆, 

insert a new unit as follows:  

• Determine the prototype neuron q with the maximum accumulated error: 

𝑞 = arg𝑚𝑎𝑥𝑖∈𝑤 𝐸𝑖 (5.23) 

• Determine among the topological neighbors of 𝑞, the prototype unit 𝑓 with the 

maximum accumulated error: 

𝑓 = arg𝑚𝑎𝑥𝑖∈𝑞 𝐸𝑖 (5.24) 

• create a new prototype neuron 𝑟 to the network and interpolate its reference 

vector between 𝑞 and 𝑓: 

𝑤 = 𝑤 ∪ {𝑤𝑟},        𝑤𝑟 = (𝑤𝑞 + 𝑤𝑓)/2 (5.25) 
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• create edges connecting the new prototype unit 𝑟 with units 𝑞 and 𝑓, and 

remove the original edge between 𝑞 and 𝑓:  

𝐶 = 𝐶 ∪ {(𝑟, 𝑞), (𝑟,𝑓)},        𝐶 = 𝐶\{(𝑞,𝑓)} (5.26) 

8. Modify Error Counters  

• Decrease the error variables of 𝑞 and 𝑓 by a fraction 𝛼 

∆𝐸𝑞 = −𝛼𝐸𝑞 , ∆𝐸𝑓 = −𝛼𝐸𝑓 (5.27) 

• Initialize the error variable counter of the new neuron 𝑟 with the values of 𝑞 and 

𝑓 

𝐸𝑟 = (𝐸𝑞+𝐸𝑓)/2 (5.28) 

9. Decrease the error variables of all prototypes neurons by multiplication with a 

fraction 𝛽  

∆𝐸𝑖 = −𝛽𝐸𝑖                    (∀𝑖 ∈ 𝑤) (5.29) 

10. If a stopping criterion (e.g., net size or some performance measure) is not yet 

fulfilled; i.e. number of epoch 𝑚 ≤ 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟; continue with step 2., else End.  
  

Figure 5.2 presents the flowchart of the GNG algorithm. This figure shows that the 

nonfunctional prototypes do not win during a long time interval may be detected by 

tracing the changes of an age variable associated with each edge. So, the GNG 

algorithm has an advantage against NG algorithm through its ability to modify the 

network topology by removing: edges with its age variable (not being refreshed for a 

time interval 𝛼𝑚𝑎𝑥) and the resultant nonfunctional prototypes. At GNG the growth 

process associated with the neighborhood updating rule used is somewhat amounting 

to the neighborhood, decreasing procedure in NG, therefore and unlike the NG 

algorithm, there is no need for the neighborhood sorting step. 
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Figure 5.2 The flowchart of GNG Algorithm. 
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5.5 Robust Growing Neural Gas (RGNG) Algorithm 
In the proposed work, RGNG technique applied for the first time to fMRI for 

detecting active zones in the brain. This application is novel and no such study is 

done according to the researcher’s knowledge, so it will be the first time in the 

literature. RGNG has the ability to detect the active zones in the brain, analyze brain 

function as well as its ability to work on the optimal number of underlying clusters 

with respect to the MDL value in fMRI dataset and define the active zones in a 

specified region of the brain. 

Before the introduction of a RGNG technique algorithm in detail, here a brief 

illustration is introduced about why robustness is used. Robustness is a significant 

characteristic of related clustering algorithms. Any robust algorithm should have 

these features [96]: 

(1) it should achieve a good precision at the given model 

(2) The performance of the given model may have little deviations from its 

assumptions, but these deviations should not weaken the performance with a 

small degree only. 

(3) The presence of large deviations from the model assumption should not cause 

disaster. 

According to classical clustering methods as a prototype based clustering algorithms, 

the major robustness problems are the sensitivity for initialization, the order of input 

vectors and existence of many outliers, but each well executed regarding condition 1. 

Due to the growth scheme associated with the GNG algorithm; the ‘dead nodes’ 

problem appears with the GNG algorithm. Dead nodes problems occur due to 

inappropriate initializations that led to some prototypes may never win through the 

training process. Even with the initialization insensitive clustering methods, good 

clustering results may not be obtained if the order of the input sequence is not chosen 

properly.  

Even with the initialization insensitive clustering methods, good clustering results 

may not be obtained if the order of the input sequence is not chosen properly. As well 

as the introduced problem gets along with the sensitivity for initialization and the 
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order of input vectors, there also another problem attributable to the existence of 

many outliers. This implies the GNG network may fail to differentiate the outliers 

from the inliers through the original prototype updating rule when many of outliers 

exist in a data set. These outliers can be regarded as input vectors that different from 

data points belonging to the ordinary clusters (inliers).  

For these limitations of GNG algorithm, a novel robust clustering algorithm was 

proposed [59] within the GNG structure, named Robust Growing Neural Gas 

(RGNG) network.  RGNG possesses better robustness properties by succession the 

properties of the original GNG algorithm that is overcoming the robustness issues 

associated with it and incorporating it with several robust strategies, such as outlier 

resistant scheme, adaptive modulation of learning rates and cluster repulsion method. 

Therefore, with comparison to GNG network, the RGNG network is insensitive to 

initialization, input sequence ordering, the presence of outliers and determining the 

optimal number of clusters. The Minimum Description Length (MDL) value was 

used with RGNG as one of the famous clustering validity index [97, 98]. MDL value 

is used to find the optimal number of clusters and their center positions 

corresponding to the smallest MDL. Hence, they determined automatically the 

optimal number of clusters by searching the extreme value of the MDL measure 

through the network growing process.  

In this thesis a novel application for the RGNG algorithm with fMRI dataset is 

proposed to detect the active areas; GNG was applied with fMRI previously [56- 58] 

but for the better robustness properties associated with RGNG network, RGNG is 

suggested to detect the active zones in the brain. 

Before feeding the RGNG algorithm, there are some parameters have to be defined: 

𝑁                      : maximal number of neurons 

𝜀𝑏𝑙                      : learning rate of the winner  

𝜀𝑛𝑙                      : learning rate of its topological neighbors 

𝜀𝑏𝑓𝑙 , 𝜀𝑏𝑖𝑙 , 𝜀𝑛𝑓𝑙 , 𝜀𝑛𝑖𝑙 : initial and final values of 𝜀𝑏𝑙  and 𝜀𝑛𝑙  
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𝛼𝑚𝑎𝑥                 : maximal age of a connection. 

𝛽                       : mobility of the winners neighborhood towards the input vector. 

𝑘, 𝜂                   : used to determine the MDL value. 

𝑀𝑎𝑥_𝑖𝑡𝑒𝑟         : maximal number of iterations 

Set the maximum number of prototypes to grow as 𝑝𝑟𝑒_𝑛𝑢𝑚𝑛𝑜𝑑𝑒 and the maximum 

predefined training epoch 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 during each growth stage with a certain 

prototype number. Also, set the initial or current training epoch number: 𝑚 = 0 and 

the iteration step in training epoch 𝑚: 𝑡 = 0. Hence, the total iteration step 𝑖𝑡𝑒𝑟 

during each growth stage is: 𝑖𝑡𝑒𝑟 = 𝑚.𝑁 + 𝑡, where 𝑁 is the actual number of 

neuron. The data set used for training is 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑁}. 

Figure 5.3 presents the flowchart of the RGNG algorithm. The complete RGNG 

algorithm is as follows:  

1. Start with a few of prototype vectors (usually 2) 𝑊 =  {𝑤1,𝑤2} randomly with 

reference vectors chosen randomly according to 𝑃(𝑥). Initialize the connection set 𝐶, 

𝐶 ⊂ 𝑤 × 𝑤, to the empty set:  

𝐶 = ∅  (5.30) 

2. Generate at random an input signal ‘𝑥’ according to 𝑃(𝑥), and for: 

𝑚 = 0 𝑡𝑜 𝑀𝑎𝑥_𝑖𝑡𝑒𝑟 − 1 

• Calculate the harmonic average distance value 𝑑𝑚𝑖 (0) for each prototype 

𝑤𝑖,∀𝑖∈ 𝑤, w.r.t. its current position by:  

𝑑𝑘𝑚(0) = �1
𝑁
∑ 1

�𝑥𝑗−𝑤𝑘
𝑚𝑁�

𝑁
𝑗−1 �

−1
 (5.31) 

• Calculate the learning rates for the current prototype 𝑙, when it serves as a 

winner or its topological neighbors, respectively, by: 

𝜀𝑏𝑙 = 𝜀𝑏𝑖𝑙 �
𝜀𝑏𝑓
𝑙

𝜀𝑏𝑖
𝑙 �

𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑙

𝑝𝑟𝑒𝑛𝑢𝑚𝑛𝑜𝑑𝑒 (5.32) 

𝜀𝑛𝑙 = 𝜀𝑛𝑖𝑙 (𝜀𝑛𝑓𝑙 /𝜀𝑛𝑖𝑙 )𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑙/𝑝𝑟𝑒_𝑛𝑢𝑚𝑛𝑜𝑑𝑒 (5.33) 
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where: 

𝑙 =  1, … ,𝐶  

𝑐                        : current number of neurons 

𝑝𝑟𝑒_𝑛𝑢𝑚𝑛𝑜𝑑𝑒𝑙: ranking index 

𝑝𝑟𝑒_𝑛𝑢𝑚𝑛𝑜𝑑𝑒𝑙  is zero for the new inserted neurons and one if a newer neuron is 

inserted.  

The learning rates remain same in the following training for the prototype 𝑙, before 

the new prototype is inserted. Afterwards: 

• Increase the control variable 𝑡 = 1 and 𝑖𝑡𝑒𝑟 = 𝑚.𝑁 + 𝑡. 

• Set trainingset = 𝑋, i.e. include all input vectors into trainingset. 

• Draw randomly an input vector 𝑥𝑡𝑚; at the iteration step 𝑡 in training epoch 𝑚, 

from the trainingset. 

3. Determine first two closest neurons (winner neurons) 𝑠1 and the second-nearest 

unit 𝑠2, (𝑠1,  𝑠2 ∈ 𝑤), to the new data sample (i.e. calculate distances to the neurons)  

by:  

𝑠1 = arg𝑚𝑖𝑛𝑖∈𝑤 �𝑥𝑡𝑚 − 𝑤𝑖
𝑖𝑡𝑒𝑟� (5.34) 

𝑠2 = arg𝑚𝑖𝑛𝑖∈𝑤\{𝑠1} �𝑥𝑡𝑚 − 𝑤𝑖
𝑖𝑡𝑒𝑟� (5.35) 

4. Compare the Distance: 

i. Modify Age of Edges: Increase the age of all edges connections emanating 

from 𝑠1:  

age(𝑠1,𝑖) =     age(𝑠1,𝑖) + 1         �∀𝑖∈ 𝑁𝑠1� (5.36) 

ii. Modify Weights: Adapt the new reference weight vector for the winner neuron 

with:  

∆𝑤𝑠1 = 𝜀𝑏𝑠1𝜎𝑠1(𝑖𝑡𝑒𝑟) (𝑥−𝑤𝑠1)
‖𝑥−𝑤𝑠1‖

 (5.37) 
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and for its topological neighbors: 

∆𝑤𝑖 = 𝜀𝑛𝑖 𝜎𝑖(𝑖𝑡𝑒𝑟) (𝑥−𝑤𝑖)
‖𝑥−𝑤𝑖‖

+ 𝑒𝑥𝑝 �− 𝑑𝑠1𝑖
𝜁
� × 𝛽 ∑ 𝑑𝑠1𝑖𝑖

|𝑁𝑠1|
(𝑤𝑖−𝑤𝑠1)
‖𝑤𝑖−𝑤𝑠1‖

,     ∀𝑖∈ 𝑁𝑠1 (5.38) 

where: 

𝜎𝑘(𝑖𝑡𝑒𝑟) = 𝜎𝑘𝑚(𝑡) = �
𝑑𝑘𝑚(𝑡)              , if   �𝑥𝑡𝑚 − 𝑤𝑘

𝑖𝑡𝑒𝑟� ≥ 𝑑𝑘𝑚(𝑡 − 1)
�𝑥𝑡𝑚 − 𝑤𝑘

𝑖𝑡𝑒𝑟� , if   �𝑥𝑡𝑚 − 𝑤𝑘
𝑖𝑡𝑒𝑟� < 𝑑𝑘𝑚(𝑡 − 1)

 (5.39) 

𝑑𝑘𝑚(𝑡) = �
�1
2
� 1
𝑑𝑘
𝑚(𝑡−1)

+ 1
�𝑥𝑡

𝑚−𝑤𝑘
𝑖𝑡𝑒𝑟�

��
−1

, if �𝑥𝑡𝑚 − 𝑤𝑘
𝑖𝑡𝑒𝑟� ≥ 𝑑𝑘𝑚(𝑡 − 1)

1
2

[𝑑𝑘𝑚(𝑡 − 1) + �𝑥𝑡𝑚 − 𝑤𝑘
𝑖𝑡𝑒𝑟� , if �𝑥𝑡𝑚 − 𝑤𝑘

𝑖𝑡𝑒𝑟� < 𝑑𝑘𝑚(𝑡 − 1)
 (5.40) 

𝑑𝑘𝑚(0) = �1
𝑁
∑ 1

�𝑥𝑗−𝑤𝑘
𝑚𝑁�

𝑁
𝑗−1 �

−1
;  𝑖 = 1, 2, … ,𝑁 (5.41) 

𝜁      : controls the weakening effect in terms of the distance between winner 𝑠1 and 

its neighbors 

𝑑𝑘𝑚(𝑡): restricting the distance for prototype  𝑤𝑘 

iii. Create Edges: If 𝑠1 and 𝑠2 are connected by an edge, then set the age of this 

edge connection between 𝑠1 and 𝑠2 to zero (“refresh” the edge): 

age(𝑠1,𝑠2) = 0 (5.42) 

Otherwise, i.e. if the edge connection between 𝑠1 and 𝑠2 does not exist already, create 

it: 

𝐶 = 𝐶 ∪ {(𝑠1, 𝑠2)} (5.43) 

5. Dead Node Removal Procedure 

• Removing all edges or connections with age > α𝑚𝑎𝑥. 

• If the results in units having no more emanating edges, remove those units as 

well.  

• Increment the age of all emanating connection of 𝑠1 by 1 and remove the used 

vector 𝑥𝑡𝑚 from the set trainingset. 
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6. If the current number of prototypes ≤ 𝑝𝑟𝑒_𝑛𝑢𝑚𝑛𝑜𝑑𝑒 and some predefined 

performance measure, then return to (2). 
 

7. As training proceeds, the MDL value is calculated by the following equation at 

the completion of each growth stage until the predefined maximum number of 

prototypes is reached: 

MDL(V, W) = 𝑐𝐾 + 𝑁log2𝐶 + 𝑘 ∑ ∑ ∑ 𝑚𝑎𝑥 �log2 �
‖𝑥𝑘−𝑤𝑖𝑘‖

𝜂
� , 1�𝑑

𝑘=1𝑥∈𝑆𝑖
𝑐
𝑖=1 +

|O|𝐾 (5.44) 

i.e., the MDL value can be calculated according to the current prototypes’ positions 

by the two equations (one above and below):  

∆𝐿 = �𝐿�(𝐼 − {𝑥})(𝑊)� + 𝐾� − �𝐿�𝐼(𝑊)� + 𝐿(𝑥 − 𝑤𝑖)� − 𝜑𝑆𝑖𝐾 =

{(𝑁 − 1)log2(𝑐 − 𝜑𝑆𝑖) + 𝐾} − �𝑁log2𝑐 + ∑ 𝑚𝑎𝑥 �log2 �
‖𝑥𝑘−𝑤𝑖𝑘‖

𝜂
� , 1�𝑑

𝑘=1 � −

 𝜑𝑆𝑖𝐾 (5.45) 

where: 

𝑐 : current number of prototypes 

𝑑 : dimension of input vectors 

𝜂 : resolution of the data source 

𝑆𝑖 : receptive field of neuron 𝑤𝑖  

𝐼   : inlier set 

𝑂  : outlier set 

𝜑𝑆𝑖: equals 1 if 𝑥 is the only vector in 𝑆𝑖 before movement, otherwise it equals 0 

𝐾  : number of bits needed for encoding a single data vector 
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The MDL value is calculated by the above equations at the completion of each 

growth stage until the predefined maximum number of prototypes is reached. 

8. If the calculated MDL value is smaller than the previous one, then save the 

current positions of all prototypes. 

The cluster center positions that correspond to the optimal cluster number can be 

located according to the smallest MDL value, because it is a better network 

representation of the given problem. Therefore, if the calculated MDL value is 

smaller than the previous one, the current positions of all prototypes will be saved. 

9. Determine the neuron with greatest local accumulated error: 

∑ 𝑒𝑥𝑝 �− ‖𝑥−𝑤𝑖‖
ℎ𝑎𝑟𝑚𝑑𝑖𝑠𝑡𝑖

� ‖𝑥 − 𝑤𝑖‖𝑥∈𝑆𝑖  (5.46) 

where: 

ℎ𝑎𝑟𝑚𝑑𝑖𝑠𝑡𝑖 = � 1
|𝑆𝑖|
�
−1
∑ 1

‖𝑥−𝑤𝑖‖𝑥∈𝑆𝑖   

𝑆𝑖              : is the receptive field of prototype 𝑤𝑖  

harmdist𝑖: is defined as the harmonic average distance from all data points in 𝑆𝑖 to 

the prototype vector 𝑤𝑖. 

10.  Node Insertion Procedure:  

If the number of input signals generated so far is an integer multiple of parameter 𝜆 

iteration, insert a new unit near the existing prototype with the largest local 

accumulated error as follows:  

• Determine the prototype neuron q with the maximum accumulated error: 

𝑞 = arg𝑚𝑎𝑥𝑖∈𝑤 𝐸𝑖 (5.47) 

• Determine among the topological neighbors of 𝑞, the prototype unit 𝑓 with the 

maximum accumulated error: 

𝑓 = arg𝑚𝑎𝑥𝑖∈𝑁𝑔 𝐸𝑖 (5.48) 
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• Create a new prototype neuron 𝑟, add it to the network and interpolate its 

reference vector between 𝑞 and 𝑓: 

𝑤 = 𝑤 ∪ {𝑤𝑟},        𝑤𝑟 = 2.𝑤𝑞 + 𝑤𝑓

3
 (5.49) 

• Create edges connecting the new prototype unit 𝑟 with units 𝑞 and 𝑓, and 

remove the original edge between 𝑞 and 𝑓:  

𝐶 = 𝐶 ∪ {(𝑟, 𝑞), (𝑟,𝑓)},        𝐶 = 𝐶\{(𝑞,𝑓)} (5.50) 

11. Set the ranking counter 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑟 of the newly inserted prototype 𝑟 for 0 and for 

other existing prototypes, increment their corresponding counter variables by 1, i.e. 

𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑟 = 0,                 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑙 = 𝑝𝑟𝑒𝑛𝑜𝑑𝑒𝑙 + 1,                           ∀𝑙 ∈ 𝑊{𝑟} 

12. If a stopping criterion (e.g., net size or some performance measure) is not yet 

fulfilled, continue with step 2, else End. 
  

5.6 Comparison among Three Clustering Approaches 
There are three prototype-based unsupervised clustering algorithms where presented 

in the previous sections. NG approach has a little sensitivity to different 

initializations and lower distortion error than other clustering algorithms as k-means 

or SOM. In this approach, the number of prototypes must be fixed in advance and it 

depends on decaying parameters which change over time. In contrary, the number of 

related prototypes is not needed to be predefined in GNG method. The number of 

prototypes and the network topology can be increased or decreased dynamically 

during the classification which gives the ability to cluster a large volume of data. 

GNG model has the property of aging connections and cancelling when they reach 

the maximum defined age; the neurons can be eliminated if they not connected 

anymore. Inserting a new prototype near the prototype with the maximum 

accumulated error, gives the ability to create new neurons at regular time intervals. 

The local error of a prototype is estimated by using the sum of the distances from the 

prototype to the voxels that started with this prototype as a winner. Thus the network 

is fixed near the prototypes that measure the longest distances. 
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Figure 5.3 The flowchart of RGNG Algorithm. 
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Table 5.1 Comparison among Three Artificial Neural Network Approaches Based on Unsupervised 

Clustering for fMRI Analysis. 

Methods NG GNG RGNG 

Who First 
Introduced 

Martinetz and Schulten (1991) Fritzke (1995) Qin and 
Suganthan 
(2004) 

 

Used with 
fMRI 

• Evgenia et al. (2003) 
• Meyer-Baese et al. (2004) 
• Wismuller et al. (2004) 
• Dimitriadou et al. (2004) 
• Ana et al. (2006) 

 
 
• Lachiche et al., (2005) 
• Korczak J., (2007) 
• Heydar et al., (2009) 

 

No One till 
now 

 

 

Advantages 

• Little sensitive to different 
initializations due to the 
sequential learning scheme 
and use of neighborhood 
cooperation rule. 
• Lower distortion error 
resulting than other clustering 
algorithms (k-means, 
maximum-entropy and SOM 
• Faster assemblage to low 
distortion errors 
• Submission a stochastic 
gradient descent on a specific 
energy surface. 

• Its ability to modify the 
network topology by 
removing edges with its age 
variable 

• There is no need for the 
neighborhood sorting step 

• It has the ability to find a 
network size and structure 
automatically and continue 
learning. 

• The number of classes is 
not fixed in advance as in 
most clustering algorithms 

• Insensitive to 
initialization, 
input sequence 
ordering and 
the presence of 
outliers during 
different 
growth stages. 

• Can 
automatically 
determine the 
optimal 
number of 
clusters 

• Deal well with 
multimodal 
data sets 

 

Limitations 

• NG model depends on 
decaying parameters which 
change over time 
• It is incapable to find a 
network size and structure 
automatically. 
• Require to predefine the 
number of related prototypes 
• Existence of many outliers 

 

Its sensitivity for: 

• Initialization 
• The order of input vectors 
• Existence of many outliers 
 

 

Not detected 
limitations yet 
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Despite GNG is still sensitive for initialization, the order of input vectors and 

existence of many outliers. In contrast, RGNG face the sensitivity problem during 

different growth stages and it can automatically determine the optimal number of 

clusters by detecting the minimum MDL value. 

Comparison among three artificial neural network approaches that are based on 

unsupervised clustering for fMRI Analysis proposed in Table 5.1. Table 5.1, shows 

who introduced each technique firstly, who used them with fMRI research, 

advantages and limitations of each one. 

5.7 Summary  

In summary, this chapter has presented a general introduction to the clustering 

approaches that was used to fMRI, review of the NG algorithm, the complete GNG 

algorithm and the proposed model which has different and important features in 

comparison with other clustering approaches by using a novel RGNG approach. The 

algorithm is applied into fMRI dataset to detect the active areas in the brain with a 

comparison to the NG and GNG algorithm, which have not been used for such 

purpose yet. Flowcharts are designed for each algorithm and presented, also a 

comparison among the three artificial neural network approaches that are based on 

unsupervised clustering for fMRI Analysis are proposed and presented in a table.  

All the results related to the proposed algorithm and others will be introduced in 

details in the next chapter, when applying for synthetic and real fMRI dataset. The 

output results are introduced and implemented as a toolbox software package based 

on brain fMRI clustering by using new model design for neuroscience data analysis.  
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CHAPTER 6 

ALGORITHMS IMPLEMENTATION AND RESULTS 

Clustering techniques are used to group data depending on a distance. In fMRI, a 3D 

distance between voxels has to be defined according to their activities. So, the 

clustering techniques used to identify active areas in fMRI data relay on a 

comparison of neighboring voxels. In this chapter, the performance of the proposed 

RGNG algorithm on the synthetic and real auditory fMRI data is calculated. The 

cases of study are carried out to compare the performance of the proposed approach 

to the NG and the GNG methods as well as the hypothesis-driven GLM analysis. In 

this thesis, two interactive tools are proposed, designed and implemented 

successfully. One interacts with the prototype-based unsupervised clustering 

techniques (Prototype-Based Clustering software package), while the other interacts 

with visualization of the fMRI dataset and highlights the active zones using the 

introduced techniques (FMRI Clustering and Analysis software package). 

In the following section, the validity of using the proposed clustering technique with 

fMRI dataset according to some distinguished parameters is pointed out. The 

performance of the proposed method is compared to NG and GNG methods in terms 

of both robustness and sensitivity to initializations as well as the presence of outliers. 

Section 6.2 devotes to the output of the experimental results on the synthetic data in 

terms of tables and figures. These results are introduced in a simple software package 

in Section 6.3. Section 6.4 introduces the experimental output results on the real 

auditory fMRI dataset running NG, GNG and RGNG. Moreover, the proposed 

model-free clustering technique is examined over fMRI analysis and compared to the 

statistical model-based GLM analysis using SPM12, in Section 6.5. The fMRI dataset 

is visualized in the designed package in Section 6.6. Finally, in Section 6.7, the 

results of these analyses are discussed and some concluding remarks are given. 
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6.1 Case of Studies 

The robust performance of the proposed RGNG algorithm is tested on synthetic and 

real auditory fMRI datasets with a comparison to the NG and GNG algorithms. There 

are four parameters where are used in this work to evaluate the performance of the 

proposed clustering technique. These performance measures are: Classification Rate 

(CR), Average Partition Quality (PQ), Minimum Cluster Number (MCN) and Mean 

Square Error (MSE). The robust clustering technique should be less sensitive to the 

parameter configurations and give better performance under the same parameter 

settings in all experiments.  

In the following experiments, the parameters are fixed for each technique with typical 

values suggested in literatures. RGNG technique was set as the typical values in [59]: 

𝜀𝑏𝑖 = 0.1, 𝜀𝑏𝑓 = 0.01, 𝜀𝑛𝑖 = 0.005, 𝜀𝑛𝑓 = 0.0005, 𝛼𝑚𝑎𝑥 = 100, 𝑘 = 1.3, 𝜂 = 1 ×

10−4. GNG and NG techniques were set as the typical values in [84]: 𝜀𝑏 = 0.05, 

𝜀𝑛 = 0.006, 𝛼𝑚𝑎𝑥 = 100, 𝛽 = 0.0005, λ = 300 for GNG; while 𝜀𝑖 = 0.5, 

𝜀𝑓 = 0.005, 𝜆𝑖 = 10, 𝜆𝑓 = 0.01,  𝑡𝑚𝑎𝑥 = 40000 for NG network. 

The performance of the RGNG technique on fMRI data shows superior performance 

with respect to the other two methods as well as the model-based GLM approach. 

Each index of the performance measures is explained in the following sections. 

6.1.1 Classification Rate  

This index refers to the Classification Rate (CR) for the whole dataset so each data 

point is classified regarding to its nearest prototype. CR is based on using a majority 

voting classifier [99], by labeling all prototypes by using a simple voting mechanism. 

According to the proposed technique, numbers of prototypes are small, so the 

resulting CR will not be high. 

6.1.2 Partition Quality 

This index refers to average Partition Quality (PQ) measurement, which is averaged 

over all the independent runs in the experiments. PQ was defined by [100], as: 
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𝑃𝑄 =
∑ ∑ 𝑝(𝑖,𝑗)2𝑛𝑐𝑡

𝑗=1
𝑛𝑐𝑠
𝑖=1

∑ 𝑝(𝑖)2𝑛𝑐𝑠
𝑖=1

 (6.1) 

where: 

𝑛𝑐𝑠    : True number of classes 

𝑚𝑐𝑡    : Minimum number of clusters founded by the technique 

𝑝(𝑖, 𝑗): Probability of a point vector in cluster 𝑗 belonging to the class 𝑖 

𝑝(𝑖)   : class probability 

Number of classes 𝑛𝑐𝑠 should equal the actual number of clusters if each natural 

cluster assumed to stand for an individual class. The minimum cluster number 𝑚𝑐𝑡 

can be obtained by running the techniques. 

The 𝑝(𝑖, 𝑗) term represents the frequency based on probability that a data point is 

labeled by clusters 𝑖 and 𝑗. The 𝑝(𝑖, 𝑗) quality is normalized by the sum of true 

probabilities then squared. This statistic is related to the rand statistic for comparing 

partitions [101]. PQ index is maximized when the number of clusters 𝑚𝑐𝑡 is correctly 

detected and induces the same partition of 𝑛𝑐𝑠, i.e. 𝑚𝑐𝑡 = 𝑛𝑐𝑠, so all points in each 

cluster are the same as those in one of the natural clusters. 

6.1.3 Minimum Cluster Number 

Minimum Cluster Number (MCN) is the average number of the detected clusters by 

the techniques. MCN index the ability of the techniques to find the underlying natural 

clusters. During the training of the techniques and according to the MCN value, only 

the proposed RGNG approach can find the actual number of clusters successfully.   

During the growing process, this value is defined as the number of natural clusters in 

which the algorithm placed at least one prototype when the number of prototypes in 

the network reaches the actual number of clusters. Cluster numbers are detected by 

NG and GNG during the growing process deviate from the actual value of the 

clusters when the number of prototypes is the same as the actual number of clusters.  



84 

 

 

 

6.1.4 Mean Square Error 

Mean Square Error (MSE) is another criterion used for evaluating the performance of 

the proposed clustering technique. The MSE value represents the mean distance 

between the current nearest prototypes’ positions resulting from the application of the 

techniques and the actual cluster centers. 

The average MSE value in this experiment is higher for NG and GNG techniques 

with respect to RGNG. This indicates that the RGNG approach achieves the best 

accuracy with the strongest stability among the other two approaches. 

6.2 Experimental Results with Synthetic Data 

There are six different types of 2D synthetic dataset [59, 102] which are used in this 

work they are: snail, screw, ring, set3, set5 and set25 dataset. Figures 6.1-3 show the 

plots of NG, GNG and RGNG clustering with three types of 2D synthetic dataset 

(screw, set5 and snail) as an example. The number of neurons are selected randomly, 

N=7, 10 and 12. 

 

  
(a) (b) 
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(c)  

Figure 6.1 Clustering with screw synthetic dataset for N=7, by running NG, GNG and RGNG 

techniques. 

  
(a) (b) 

 
(c) 

Figure 6.2 Clustering with set5 synthetic dataset for N=10, by running NG, GNG and RGNG 

techniques. 
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(a) (b) 

 
(c) 

Figure 6.3 Clustering with snail synthetic dataset for N=12, by running NG, GNG and RGNG 

techniques. 

These figures cannot give clearly the differences between each method. So, there are 

four parameters used in this work to evaluate the performance of the proposed 

clustering technique; CR, PQ, MCN and MSE introduced in the previous section. For 

the best comparison with RGNG, MDL criterion is added to NG and GNG 

techniques. The training results of these techniques with the synthetic data are shown 

in Table 6.1, while the number of neurons chosen randomly as N= 7, 10 and 12. 

Regarding to the literatures [59, 103], the clustering output results introduced in the 

Table 6.1 clarified that RGNG approach is insensitive to different initializations and 
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the presence of outliers. In these techniques, the number of neurons used is small, so 

the CR values registered in the table are not high. All the three clustering techniques 

are applied as the number of neurons equal to the actual cluster number, so RGNG 

can effectively locate the actual number of clusters with respect to other two 

methods, NG and GNG, which fails with higher cluster numbers in the synthetic 

case.  

  Table 6.1 Clustering results of the synthetic data. 

Parameters Number of Neurons NG GNG RGNG 

 
CR 

N=7 0.8718 0.9686 0.9929 

N=10 0.8514 0.9786 0.9843 

N=12 0.8010 0.9647 0.9759 

 

MCN 

N=7 9 8 7 

N=10 12 11 10 

N=12 15 14 12 

 

PQ 

N=7 0.8990 0.9465 0.9869 

N=10 0.8531 0.9288 0.9841 

N=12 08279 0.9043 0.9807 

 

MSE 

N=7 2.8032e+004 2.7608e+004 2.6493e+004 

N=10 2.7913e+004 2.7378e+004 2.6351e+004 

N=12 2.7703e+004 2.6940e+004 2.6188e+004 

 

The registered values of the MCN show that the number of the detected prototypes or 

clusters in RGNG technique is less than the others; which means that its ability to 

group data in actual number of clusters. For example, when N set to 10, the MCN 
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value for RGNG is 10 which is less than that for NG and GNG values. The MCN 

value of running RGNG is equal to the number of neurons 10 and has the same rate 

when compared with other N values; while MCN value of running NG and GNG 

deviated from the actual cluster number.  

Regarding to PQ value, it is noticed that RGNG approach possesses higher PQ values 

than the NG and GNG. For example, when N set to 12, the PQ value for RGNG is 

0.9807 which is higher than that of NG and GNG values. These high values of PQ 

indicate that the RGNG technique has a better partitioning quality with respect to 

others, and finds more representative clusters.  

Moreover, RGNG method can find all the natural clusters during the growing stage 

with the correct number of prototypes. So, MSE values are lower which indicates 

obtaining better robustness of the RGNG technique. For example, when N set to 7, 

the MSE value for RGNG is 2.6493e+004 which are lower than that for NG and 

GNG values. NG and GNG may not detect all the actual clusters, so they yield 

higher MSE value. 

In RGNG technique, MDL value is one of the famous information theory evaluation 

measures which was used as the clustering validity index [104]. MDL criterion gives 

the ability of finding the optimal number of clusters and their center positions, 

corresponding to the smallest MDL value. 

The average MDL values during the growth stages are plotted versus the number of 

clusters or prototypes. Figure 6.4 shows the curves for NG and GNG combined with 

MDL criterion, as well as RGNG approaches on the synthetic dataset for different 

number of neurons which are selected randomly as N= 7, 10 and 12. Each detected is 

the cluster number corresponding to the MDL value.  

In RGNG the smallest MDL value was recorded on average with respect to NG and 

GNG combined with MDL principle. For example, in Figure 6.4 (b) the smallest 

MDL value is 2.65 that are obtained from running RGNG when N is equal to 4. 

While in the same N=4, higher MDL value is recorded as 2.77 from running NG and 

GNG. From the presented figures, it is concluded that the proposed RGNG approach 
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is insensitive to different initializations and the presence of outliers and can 

successfully find the actual number of clusters. 

 

(a)  

 

(b)  
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  (c) 

Figure 6.4 MDL values versus the number of clusters running NG, GNG and RGNG techniques on 

synthetic data, for: (a) N=7; (b) N=10; (c) N=12. 

6.3 Prototype-Based Clustering Package 

The techniques introduced in this work are designed and implemented in a simple 

software package tool which allows users to interact with the clustering techniques 

and output data easily [105]. Figure 6.5 shows the main window with the most 

important features of the designed Prototype-Based Clustering software package. 

1. Selection Data: The user can select one type of data from the different synthetic 

2D datasets inside the Pop-up Menu. Ring data is a 2D synthetic data selected as an 

example in Figure 6.5. 

2. Load Data: The selected data are loaded and all information related to the 

selected data (‘Dimension’, ‘Name’ and ‘Type of Data’) are appeared in the ‘info’ 

window. The dimension of the selected ‘Ring’ data is 400x2 double. The selected 

data is plotted on the sketch1 inside the main clustering window of Figure 6.5.  
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Figure 6.5 Main window of the Prototype-Based Clustering software package. 

Figure 6.6 shows some of selected 2D synthetic dataset from the different dataset that 

used in this work. Beside each plot, the information related to it is shown in the ‘info’ 

window, in the left side of each plot.  
 

3. Selection Technique: The user can select one of the clustering techniques NG, 

GNG or RGNG. RGNG technique is selected as an example for the training in Figure 

6.5 in the Ring data with N=18, which is selected roughly. 

 

1 2 

3 

4 

Sketch1 

Sketch2 

Ring data  
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(a)  

 

 (b)  

 

(c)  

 

(d)  

Figure 6.6 Different datasets with their information, (a) Snail data; (b) Screw data; (c) Ring data; (d) 

Set5 data. 

Before clicking on “Apply NG”, “Apply GNG” or “Apply RGNG” button, the 

training parameters related to each technique must be defined. As it is explained in 

Section 6.1, the training parameters must be set carefully within the limited range. 

Number of neurons (N) must be defined also as the other parameters related to the 

selected technique. Another example of using RGNG technique with Set3 dataset is 

shown in Figure 6.7. RGNG training parameters are set as the typical values in the 

literature to: 𝜀𝑏𝑖 = 0.1, 𝜀𝑏𝑓 = 0.01, 𝜀𝑛𝑖 = 0.005, 𝜀𝑛𝑓 = 0.0005, 𝛼𝑚𝑎𝑥 = 100, 

𝑘 = 1.3, 𝜂 = 1 × 10−4; the number of neurons (N) is chosen randomly to 14. When 

the algorithm’s training is started, the program sketches the output running of the 

implemented technique on the Sketch1. In Sketch1, a Set3 data is shown with firm 

red circles which represent the actual cluster centers. 

S il d t   S  

Ri  d t   S t5 d t   
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Figure 6.7 RGNG clustering with Set3 data (N=14).  

4. MDL Plot: This panel related to plotting MDL values versus the number of 

neurons (N) running the RGNG, GNG and NG combined with MDL criterion. This 

panel includes three main buttons include “No. of neurons (N)”, “Technique selection 

for MDL value” and “Apply MDL versus N” buttons, as shown in Figure 6.8.  

After defining the number of neurons (N); one, two or three of the training techniques 

have to be selected for comparing the MDL results. Inside the “Technique selection 

for MDL value” Pop-up Menu, there are seven selections; either show the result of 

each technique alone, two of them or three of them for the comparison easily. After 

clicking on the “Apply MDL versus N” button, the output results of MDL values are 

plotted with respect to the number of neurons (N) in Sketch2. 
 

Figure 6.8 shows an example of the MDL plot, defining N=16 and choose “RGNG & 

GNG & NG” for comparison the results of the three techniques in Sketch2. For easy 
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and best comparison between the MDL values of the three techniques, the output 

results sketch in the same figure.  

 

 

Figure 6.8 Comparison of MDL values for N=16. 

6.4 Experimental Results with the Real FMRI Data 

The principles behind the prototype-based clustering techniques are designed and 

introduced. So in this section, the validity of RGNG performance with fMRI 

experiments is proved. Since fMRI analyzing involves known areas and functions of 

the brain, the well-known expected results have to be used in the experiments.  

One of the known areas is the auditory cortex. So, a real auditory fMRI dataset has 

selected to be used in this work. It is freely available for education and evaluation 

purposes. These dataset comprises whole brain BOLD/EPI images acquired on a 

modified 2T Siemens MAGNETOM Vision system. The auditory fMRI dataset was 

conducted by Geraint Rees under the direction of Karl Friston and the FIL methods 

group [60]. It is the first ever collected and analyzed in the FIL and is known locally 

as the mother of all experiments (MoAE). The data were used by some works as 

Lachiche et al., (2005), Korczak J., (2007) and Heydar et al., (2009); as shown in the 

literatures previously. Lachiche et al. demonstrated a new interactive data mining 

approach on a typical auditory fMRI dataset, and showed that the GNG has 

successfully recognized the active areas in brain fMRI images. Korczak introduced a 



95 

 

 

 

new interactive data mining technique to fMRI images by applying five clustering 

data-driven techniques to synthetic and real auditory fMRI data. The experimental 

results showed that the GNG technique performance was the best among the 

presented clustering technique. Heydar et al. developed the algorithm of the GNG 

network, which can run the optimal number of clusters automatically. The 

experimental results used artificial and real auditory fMRI dataset with the proposed 

technique. 

One of the decisive fMRI advantages is that fMRI studies do not require the analysis 

of a group of volunteers, but can produce valuable results at the level of single 

individuals. The analysis of single volunteers is crucial for studying small structures 

which show strong inter-individual variation [106, 107], as it is true for the auditory 

cortex shown in Figure 6.9.  

 

Figure 6.9 Active areas in the brain auditory cortex area using SPM package.  
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(a) NG clustering (b) GNG clustering (c) RGNG clustering 

Figure 6.10 Results of the clustering techniques for a transparent brain image.  

A block-design experiment was performed by using auditory stimulus. Figure 6.10 

and Figure 6.11 show the active areas in the auditory cortex of whole brain running 

NG, GNG and RGNG techniques. Figure 6.10 shows the clusters in a transparent or 

glass brain image while Figure 6.11 shows the alignment of the obtained clusters into 

a structural space of the brain running NG, GNG and RGNG in Figure 6.11 a, b and c 

respectively. 

Regarding to the output results obtained by running the three unsupervised clustering 

techniques; spatial information is visualized fine clusters in the auditory cortex area. 

In comparison to the previous literatures, NG did not have any application with the 

auditory data in the literatures; while auditory data had used with a GNG technique 
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previously [56- 58]. ROI has been obtained within the auditory cortex running the 

GNG technique as shown in Figure 6.11 (b) is similar to those delivered by the same 

approach in those literatures. In general, cluster is corresponds to a group of voxels 

with a similar Hemodynamic Response (HDR) over a Time Course (TC). 

 

   
(a) NG clustering (b) GNG clustering (c) RGNG clustering 

Figure 6.11 Clusters overlaid into the anatomical image.  

The block-design experiment was performed by running the proposed RGNG 

approach using auditory data. The activation shown in Figure 6.11 (c) is located in 

the temporal lobe. The spatial information shows the areas of activation obtained are 

similar to those which expected from the auditory cortex experiments. The areas of 

activation are detected as variations of voxels intensity over time. In this case, the 

separating of the data delivered by the RGNG approach is used according to the TC 

signals of voxel intensity variations relative to its average. As all clustering 

techniques, RGNG attempted to portion homogeneous areas of activation in the 

brain.  The homogeneous areas are comparable to those located in other approaches 

and that are found in the recognized cortexes related to the experiment. These areas 

or clusters are described by an average TC or a cluster center was obtained by 

averaging all the TCs of the cluster.  
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The novel application of RGNG output clustering results can be recognized as the 

best with respect to NG and GNG, due to clusters results which is defined in the 

specific auditory cortex area. Moreover the cluster’s definition in the specific area, 

RGNG output clustering results as same as the results obtained from SPM using the 

same dataset with the same paradigm as shown in the next section.  

6.5 Comparison of RGNG and SPM using Auditory Data  

The paradigm of the block-design experiment alternates two conditions: without 

stimulus and auditory stimuli which is consisting of repetitions of two-syllable words 

as: “mother”, “house”, “weather”, “movie” and etc. Figure 6.12 (a) shows the ability 

of RGNG clustering technique to identify winner nodes. RGNG technique works on 

the optimal number of underlying clusters, and output a TC for activation detection in 

auditory dataset. Figure 6.12 (b) shows the stimulation brain activation of SPM with 

𝑓-contrast test results with family-wise error (FWE) threshold, with no masking, the 

FWE-corrected 𝑝 value = 0.05. 

  
(a) (b) 

Figure 6.12 Activation zones of whole brain running: (a) RGNG; (b) SPM package. 

The results of SPM based on GLM using the paradigm as a reference signal 

introduced bias in this experiment. In contrast, RGNG approach did not use the 

paradigm as the reference signal since it works as a model-free method. A model-
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based method using GLM as the statistical analysis of fMRI image and hypothesis 

tests would be formed and consider the timing variation in the HDR. In sum, RGNG 

results were within the expectations and have similar results to those found by the 

hypothesis method in detecting active areas within the expected auditory cortexes. 

The Receiver Operating Characteristic (ROC) analysis is another revealed index of 

the performance of RGNG in comparison with the SPM [108]. ROC is very popular 

in medical imaging and machine learning applications; ROC space consists of False 

Positive Ratio (FPR) on the x-axis and True Positive Ratio (TPR) on the y-axis [109]. 

Figure 6.13 shows the ROC space with good and bad classifiers in (a) and (b) 

respectively. The good classifier space is shown in a high TPR and low FPR; while 

the bad classifier space is shown in a low TPR and high FPR. 

  
(a) (b) 

Figure 6.13 ROC analyses, (a) Good classifier; (b) Bad classifier. 

In fMRI, the FPR is calculated by dividing the number of misclassified inactivated 

voxels by the total number of voxels considered, while the TPR is calculated by 

dividing the number of correct classifications of activated voxels by the total number 

of voxels considered [110]. In the same situation, the ROC curves for RGNG and 

SPM methods are compared in Figure 6.14.  
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Figure 6.14 ROC curves of the auditory fMRI dataset. 

These curves generally indicated the two methods work as a good classifier, with a 

high TPR and low FPR. RGNG method could detect more real activations under the 

same FPR ratio. 

6.6 Visual fMRI Data Mining Package 
The RGNG with a comparison to other unsupervised artificial neural network 

clustering (NG and GNG) techniques could be aligned in a certain software package 

to be able to detect the active zones in the brain fMRI images as well as viewing the 

fMRI images as a whole brain or slices. Figure 6.15 shows the main window with the 

most important features of the designed fMRI Clustering and Analysis package. 

1. Load fMRI Data: The raw fMRI data are loaded with .nii or .img and .hdr format 

2. FMRI preprocessing: By calling the SPM tool within the designed package. The 

spatial preprocessing functions are: 

• Realignment of the fMRI images 

• Coregistration between structural and functional data 

• Anatomical segmentation for CSF, grey and white matter (optional)  
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• Normalization of the data onto a standard anatomical MNI template 

• Smoothing of the data using a Gaussian kernel of 8 
 

 

Figure 6.15 FMRI Clustering and Analysis software package. 

Figure 6.16 and Figure 6.17 show the loaded fMRI data before and after 

preprocessing respectively. There is a pretty difference between fMRI images before 

and after preprocessing. In the analysis stage, the results that are used fMRI dataset 

without preprocessing will lead to the presence of a lot of unreal active areas in the 

shape of the image. These areas are looked as an activated, but in fact they are just an 

artifact and scattered all around the image and even outside the image. 
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Figure 6.16 FMRI dataset for whole brain before the preprocessing 

 

Figure 6.17 FMRI dataset for whole brain after the preprocessing. 
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Figure 6.16 shows the fMRI images for whole brain as it is obtained from the 

scanner, i.e. before preprocessing the raw data. In this figure, the auditory data is 

loaded with its dimension of 64X64X64 with 96 number of slices (192 slice in total 

included .img and .hdr for each slice). Figure 6.17 shows the fMRI images for whole 

brain after the preprocessing the raw fMRI data, i.e. after the smoothing process 

which is the final stage of the preprocessing steps. By clicking on the ‘fMRI 

processing’ button, the SPM tool is called within the designed package. In Figure 

6.17, the same auditory data are loaded (before the preprocessing) with the same 

number of slices 96, but the dimension of data is changed to 53X63X46. 

3. View fMRI data: View the raw fMRI data loaded by button 1 as an image.  

Figure 6.16 and Figure 6.17 show the fMRI images when raw fMRI dataset is loaded 

using ‘Load fMRI data’ button and then view it using ‘View fMRI data’ button. 

When the raw data are loaded, ‘info’ window will be appeared, including the details 

of fMRI data as:  

• Dimension of Data: represents the dimensionality of the data in X, Y and Z 

dimension as well as the total number of fMRI slices which selected as the whole 

brain 

• Total number of voxels: the total number of voxels of the selected fMRI 

dataset  

• Applied threshold: the defined threshold value  

• Analyzed voxels: represent the number of analyzing voxels after applying the 

threshold value. For example, if the threshold value is zero, then the analyzed 

voxels value is the same as the total number of voxels. This value is considered in 

the clustering or training process. 

4. Apply Threshold: After the definition of an appropriate threshold value for the 

best active area detection, press this button. FMRI data is huge, so the dimensionality 

reduction must be done before feeding the learning technique. A threshold definition 

is important in the data mining and decrease the size of dataset in order to exclude the 

voxels outside of the brain structure before analysis. In Figure 6.15, the threshold 
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number is chosen to 400, which is the best in this case to show the image clear 

without distortion. 

5. FMRI Slices: The loaded fMRI data can be viewed as a demo of image slices. 

Figure 6.18 shows the fMRI images as brain slices before detecting active areas, 

slices 20 and 46 is taken as an example from the auditory fMRI dataset. 
 

 
(a) 

 

(b) 

Figure 6.18 FMRI brain slices (a) slice no: 20; (b) slice no: 46. 
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6. Slice Number: The number of slices is choosing before passing to the next step 

and feed the clustering technique. In Figure 6.15, slice number 20 was chosen as an 

example which can show the responses or the areas of activation clearly. 
 

7. Clustering Types: This panel can give a facility in appearing the clusters in the 

image. The clusters can be shown as: a transparent image, clusters in the transparent 

image or overlaid with the structural image. Other choices are viewing two or three 

of them together. Figure 6.19 shows the RGNG clusters on a transparent or clear 

image as an example.   
 

 

Figure 6.19 RGNG clusters on a transparent image. 
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Figure 6.20 NG clusters overlaid in the anatomical image. 

 

Figure 6.21 GNG clusters overlaid in the anatomical image. 
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Figure 6.22 RGNG clusters overlaid in the anatomical image. 

8. Techniques Selection: After defining the type of clusters to be shown as an image 

in the main window, one of the three unsupervised techniques NG, GNG or RGNG is 

chosen. The output results of running NG, GNG and RGNG as clusters overlaid onto 

the anatomical brain image as shown in Figure 6.20, Figure 6.21 and Figure 6.22 

respectively. 

9. Color Map: By selecting one of the color map defined in this Pob-Menu; the 

image color can be changed. The image color in Figure 6.15 is ‘gray’, Figure 6.16 

and Figure 6.17 are ‘hot’, Figure 6.19 is ‘jet’, while Figure 6.20, Figure 6.21 and 

Figure 6.22 are ‘bone’. Brightness and contrast adjustments are used in this GUI for 

easy and better viewing of fMRI image. 
 

In this system, a number of clustering methods are implemented within a user-

friendly data mining software package based on GUI using MATLAB [111, 112]. 

This tool gives the facility of selecting which number of slices can show the active 

zones in the specified area. With the help of designing, the physician and 
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neuroscience can process any fMRI raw data directly within this package as well as 

dealing with the introduced techniques easily.  
 

6.7 Discussion  

The proposed research is highly interdisciplinary and combines different aspects 

together, including artificial neural network technique, software package design, data 

mining and dealing with fMRI dataset. A novel and extensive simulation studies on 

real fMRI datasets are carried out using the RGNG unsupervised clustering technique 

in this work. Results show that this method could complement the model based 

method to cope with the difficulties and challenges in fMRI data analysis. This may 

participate in better recognition of the nature of the fMRI data and the underlying 

mechanisms. The software package are designed and implemented in this work 

which can provide:  

• an easy way to import the raw fMRI dataset;  

• view the imported data as image;  

• select desired processing and analysis methods as NG, GNG or RGNG;  

• save all the output results by clicking a few buttons.  
 

The main contribution of this research is running a new and robust data-driven 

RGNG technique on fMRI data mining, which is not used previously in any medical 

applications. This technique has different features in comparison to other techniques 

used with fMRI as its insensitivity to different initializations and the presence of 

outliers, as well as its ability to determine the actual number of clusters successfully. 

For example, the statistical GLM model is the most popular method which is used 

with analyzing of fMRI dataset. A potential problem associated with GLM model is 

the requirement of an accurate estimate of the fMRI paradigm design. In different 

cases, it is difficult to provide precise model designs; either the problem from the 

subjects who doing the task incorrectly (also the same subject may give a different 

response for same paradigm at different time) or different subjects may still give 

different BOLD signals during the same paradigm.  
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RGNG clustering results were the best according to different proofs using: 

• MDL: RGNG recorded the smallest MDL value (as an indication of finding the 

optimal number of clusters and their center positions) with respect to NG and 

GNG combined with MDL principle.  

• ROC: RGNG detects more real activations under the same FPR ratio, in spite 

of RGNG and SPM work as a good classifier.  

• Clustering brain images: RGNG was defined in the specific area with no 

unknown areas of activation clusters in comparing to NG and GNG. So, RGNG 

results were within the expectations and as same as SPM output.  
 

The findings from this research work can deal with various difficulties that the 

neurologist and psychologist facing while analyzing the measured fMRI data. Also, 

the different software packages introduced in this work can help healthcare 

specialists and researchers deal with this subject easily. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions 
The research work presented in this work provides an illustrative overview of the 

fMRI technique, including: the physical principles, fMRI brain clustering and 

parcellation technique principle, preprocessing techniques and data analysis 

approaches. The source of fMRI dataset acquires from the scanner machine in a form 

of raw data as sequences of 3D images due to the variations of voxels intensity over 

time. There are different noises factors interfere with the fMRI signals of interest and 

typically the subject is never completely motionless. So the pre-processing steps must 

be adapted to each identified artifact before the clustering phase. 

The major objective of this work is the detection and classification of the activated 

areas of the brain using a robust and efficient RGNG technique. There is no such 

study has been done according to the researcher knowledge, and this thesis related to 

using RGNG with fMRI dataset would be the first time in the literature.  

RGNG has the ability to detect the active zones in the brain, analyze brain function as 

well as its ability to work on the optimal number of underlying clusters with respect 

to the MDL value in fMRI dataset. This technique can define the positions of the 

output cluster’s center corresponding to the minimal MDL value. 

The validity of the performance of RGNG technique is tested by a real auditory fMRI 

data which is based on the stimulation of the auditory cortex. As performed in this 

thesis, the process of the brain function data analysis is composed of five stages:  

• preprocessing of the raw data  

• clustering voxels together based on the similarity of their intensity profile in 

TCs of the image  

• overlay with the structural image  

• visual fMRI image  
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• validation 

There are some difficulties addressed by using the conventional clustering 

techniques, such as the number of clusters must be defined earlier and the cluster 

detection problem with different dimensions within the same data set. RGNG merges 

the GNG structure with robust properties as well as using MDL for defining the 

problems of optimal network representation and further parameter. These features 

made RGNG insensitive to the initializations, input sequence ordering, and the 

presence of outliers; and more robust towards noisy input data. During the network 

growing process, RGNG can find effectively the optimal number of clusters and its 

corresponding positions which are closer to the actual cluster centers (with the 

smallest MDL value) with little influence by the outliers.  

Experimental output results showed the superior performance of RGNG over model-

based and several existing prototypes-based clustering techniques on both 2D and 

real fMRI datasets in static data clustering tasks as revealed by their performance 

measured by MDL and ROC analysis. This research work proposed a novel and 

powerful methods for fMRI data analysis which integrates the advantages of both 

hypothesis and exploratory analysis methods. The findings from this work could help 

and cope with various difficulties that the neurologist and psychologist are facing 

while analyzing for better interpreting of the fMRI data. 

In the presented work there are two packages which are implemented and designed to 

demonstrate the output results. First one included the dealing with the prototype-

based unsupervised clustering approaches proposed in the thesis (NG, GNG and 

RGNG), while the second was used as a visual tool for fMRI data mining. First 

package deals with the synthetic dataset, while the second with the real fMRI dataset 

to define the active zones. The interactive tools are integrating the researcher into the 

process of the analysis of the used clustering techniques as well as the detection of 

functional areas in the brain and their system.  

The proposed fMRI package is designed for the Brain fMRI Parcellation using new 

model design for neuroscience data analysis, and the proposed RGNG, GNG and NG 

techniques are performed in the same package using a MATLAB-based GUI tool. 
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There are several tools for fMRI processing and analyses exist, but they are usually 

sophisticated, need a significant amount of time to learn, and there is still the need for 

programming to use those tools. So, this visual tool, with a comparison to the model-

based approaches, is easy to learn and can be used by most of doctors, physicians and 

healthcare specialists who do not have a good programming background as the 

engineers and programmers. 

7.2 Future Directions 
Two types of fMRI analysis methods were presented in the thesis as a comparison: 

GLM and data-driven analyses using machine learning classifiers. GLM is the most 

common method for fMRI data analysis, but it is based heavily on priori BOLD 

model design. In some cases, GLM couldn’t be used for brain activation detection 

when the previous information about the data is unavailable. For example, the subject 

with mental cases or during daydreaming and mind-wandering researching (default 

mode of brain function). Also, the same action could not be performed in similar with 

different subject during the same paradigm, and the same subject could not repeat the 

same stimuli in different times. 

In this work, an effective alternative approach using data-driven analysis was 

introduced for detecting brain activity based on the data structure itself. The proposed 

application of the RGNG on real fMRI dataset is reviewed on a single subject 

auditory fMRI data. It would be good to see the extension of this method to multi-

subject data driven analysis (multiple subject data) of fMRI dataset as well. Paradigm 

design of auditory dataset is block type data design, the output results from this work 

allows to extend this work towards event-related design data experiments where the 

signal to-noise ratio is weak and noisy data mask the relevant information. 

Since RGNG can deal well with fMRI which is multimodal data sets, so it is 

suggested to be applied to other real multimodal data sets such as MRI image 

segmentation not only the brain but other regions of the body. So, the clusters of 

different organs shapes of the body can be detected using other distance metric 

measures since the Euclidean distance metric used with RGNG is able to detect the 

https://en.wikipedia.org/wiki/Mind-wandering
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clusters of the brain, which is an approximately spherical or ellipsoidal region in 

shape with small differences in the variance in each dimension. 

As a future work, the researcher can suggest other cluster validity measures rather 

than the common MDL criterion used with RGNG in this work. For example, 

Minimum Message Length (MML), Bayesian Information Criterion (BIC) and 

Akaike’s Information Criterion (AIC) could be proposed to tackle this issue as. 

The fMRI package implemented in this work using MATLAB GUI can be advanced 

in the future to be used with many fMRI data analysis approaches as well as other 

medical imaging modalities. Furthermore, there is an ability of applying this work on 

ASP .NET in the future; so the packages could be shared to website for telemedicine 

experiences between centers and researchers using just a Web browser. With the 

presented appropriate application, the proposed work could provide a good chance 

for more advanced neuroscience studies. 
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