

T.C

YAŞAR UNIVERSITY

INSTITUTE OF NATURAL AND APPLIED SCIENCES

MATHEMATICS

MASTER THESIS

THE ROLE OF GRAPH THEORY IN LOGISTICS

Sertaç CERRAHOĞLU

Supervisor

Asst. Prof. Dr. Gökşen BACAK TURAN

İzmir, 2011

ACKNOWLEDGEMENTS

 I would like to express my deepest gratitude to my advisor, Asst. Prof. Dr. Gökşen

BACAK TURAN, for her excellent guidance, patience, and always smiling face. From

finding an appropriate subject in the begining to the process of writing thesis, she offers

her unserved help and guidance and lead me to finish my thesis step by step. Also, I

would like to thank her for scientific advice and knowledge suggestions.

 I would like to thank my master’s thesis committee for their support and helpful

reviews: Asst. Prof. Dr. Gökşen BACAK TURAN, Prof. Dr. Alpay KIRLANGIÇ and

Asst. Prof. Dr. Shahlar MAHARRAMOV.

Finally, I thank my parents for supporting me throughout all my studies at university.

ii

YEMİN METNİ

Yüksek Lisans Tezi olarak sunduğum “THE ROLE OF GRAPH THEORY IN

LOGISTICS” adlı çalışmanın, tarafımdan bilimsel ahlak ve geleneklere aykırı düşecek

bir yardıma başvurmaksızın yazıldığını ve yararlandığım eserlerin bibliyografyada

gösterilenlerden oluştuğunu, bunlara atıf yapılarak yararlanılmış olduğunu belirtir ve

bunu onurumla doğrularım.

 /..../.......

 Sertaç CERRAHOĞLU

iii

ABSTRACT

Master Thesis

THE ROLE OF GRAPH THEORY IN LOGISTICS

Sertaç CERRAHOĞLU

Yaşar University

Institute of Natural and Applied Sciences

Master of Mathematics

This thesis consists of six chapters. In the first chapter, an introductory approach is

given. In the second chapter, the basic notions of graph theory contained in this thesis

are introduced. In chapter three, the concept of network is defined and some network

flow problems are mentioned. In the fourth chapter some information about logistics and

transportation are given. The definition and history of logistics are mentioned and the

role of transportation in logistics is explained. In chapter five some applications of graph

theory are applied to logistics problems. Finally, the conclusion is given.

Keywords: Network Flows, Shortest Path Problem, Maximum Flow Problem,

Transportation Problem.

iv

TABLE OF CONTENTS

YEMĠN METNĠ ii

ABSTRACT iii

LIST OF FIGURES vi

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: PRELIMINARIES 2

2.1 Graphs 2

2.2 Connectedness 4

2.3 Eulerian and Hamiltonian Graphs 7

2.4 Digraphs 9

CHAPTER 3: FLOWS IN NETWORKS 16

3.1 Networks 16

3.2 Network Flow Problems 17

3.2.1 The Shortest Path Problem and Dijkstra’s algorithm 18

3.2.2 Maximum Flow Problem and Ford –Fulkerson algorithm 28

3.2.3 Transportation Problem and North-West Corner rule 39

CHAPTER 4: LOGISTICS AND TRANSPORTATION 44

4.1 Logistics 44

4.2 History of Logistics 44

4.3 Logistics and Industry 46

4.4 Transportation Planning in Logistics 47

v

CHAPTER 5: APPLICATIONS OF GRAPH THEORY IN LOGISTICS 50

Example 5.1 The Shortest Path Problem 51

Example 5.2 Maximum Flow Problem 56

Example 5.3 Transportation Problem 58

CHAPTER 6: CONCLUSION 61

GLOSSARY 62

REFERENCES 69

vi

LIST OF FIGURES

Figure Page

Figure .1 Graphical representation of a 7,8 graph, G1. 2

Figure 2.2: (a) a graph, (b) a spanning subgraph, (c) an induced subgraph. 4

Figure 2.3: (a) a graph, (b) a spanning tree. 5

Figure 2.4: (a) A bipartite graph. (b) A complete bipartite graph K3,4 . 6

Figure 2.5: Matrix representation of a graph. 6

Figure .6 a Königsberg in 1736, b Euler’s graphical representation. 7

Figure 2.7: Hamiltonian graph. 9

Figure 2.8: A digraph D. 10

Figure 2.9: An undirected graph D. 10

Figure 2.10: A digraph H and a directed pseudograph H'. 11

Figure 2.11:Weighted and vertex-weighted directed pseudographs. 13

Figure 2.12: A directed graph H . 14

Figure 2.13 A directed graph modeling the Königsberg bridge problem. 14

Figure 2.14: A Hamiltonian cycle in D. 15

Figure 3.1: A directed graph. 17

Figure 3.2: The shortest path problem (a). 22

Figure 3.3: The shortest path problem (b). 23

Figure 3.4: The shortest path problem (c). 24

Figure 3.5: The shortest path problem (d). 25

Figure 3.6: The shortest path problem (e). 26

Figure 3.7: The shortest path problem (f). 27

Figure 3.8: The shortest path problem (g). 27

vii

Figure Page

Figure 3.9: An example of a network with n = 4 vertices and m = 6 edges. 29

Figure 3.10: An example network showing an (s, t)-flow f of value | f | = 10. 31

Figure 3.11: An illustration of an s-t cut. 31

Figure 3.12 : An example of a cut in a network. 32

Figure 3.13 : An example of a residual network. 34

Figure 3.14: Network Gf is disconnected. 36

Figure 3.15 : A simple network flow graph. 37

Figure 3.16 : We have pushed 3 flow along the path s → b → a → t. 38

Figure 3.17 : (a) The bolded edge indicate which pipe has their flow adjusted.

(b) The dashed edges are the edges we added in the the residual graph. 38

Figure 3.18: Transportation Problem. 40

Figure 3.19: The North – West Corner Rule (a). 42

Figure 3.20: The North – West Corner Rule (b). 42

Figure 4.1 : The role of transportation in logistics. 48

Figure 5.1 : Economics and service characteristics. 50

Figure 5. Map of Ġzmir. 51

Figure 5.3 Distances of districts in Ġzmir. 53

Figure 5.4 A map of Ġzmir is converted into a graph. 53

Figure 5.5: Application of the shortest path problem. 54

Figure 5.6: Shortest Routes. 56

Figure 5.7: Application of Maximum Flow Problem (a). 56

Figure 5.8: Application of Maximum Flow Problem (b) 57

viii

Figure Page

Figure 5.9: Application of Maximum Flow Problem (c). 57

Figure 5.10: Application of Maximum Flow Problem (d). 58

Figure 5.11: Application of Transportation Problem (a). 58

Figure 5.12: Application of Transportation Problem (b). 59

Figure 5.13: Application of Transportation Problem (c). 59

Figure 5.14: Application of Transportation Problem (d). 60

Figure 5.15: Application of Transportation Problem (e). 60

1

CHAPTER 1

INTRODUCTION

Graph theory is the branch of mathematics that concerns with graphs, which are the

constructs consisting of vertices and edges. The paper written by Leonhard Euler on

the Seven Bridges of Königsberg and published in 1736 is regarded as the first paper

in the history of graph theory. Graph theory has proven to be particularly useful to a

large number of rather diverse fields, such as computer science, biology, physics,

sociology, logistics, etc. The exiciting and rapidly groving area of graph theory is

rich in the theoritical results as well as applications to real-world problems.

Many real-life situations can be described by means of a diagram of a set of points

with lines joining certain pairs of points. A graph structure can be extended by

assigning a weight to each edge of the graph. Graph with weights, or weighted

graphs, are used to represent structures in which pairwise connections have some

numerical values. For example if a graph represents a road network, the weights

could represent the length of each road. Graphs model many situations like the

connections of wires/leads, logistics/transportation problems, pipelines between

points with known capacities, family trees, organizational charts, etc. The weights of

the edges can be express the distance between two locations, the journey time, traffic

expenses and so on.

This thesis aims to review the literature how graph theory can be applied to

logistics. Firstly basic notaions of graph theory are given, then networks and flows in

networks are taken into consideration. Shortest path problems, transportation

problems, and maximum flow problems are discussed and examined. An

introductory information about logistics and transportation are given. As applications

of graph theory Dijkstra‟s algorithm, Ford-Fulkerson algorithm and North-West

Corner method are applied to some logistics problems.

2

CHAPTER 2

PRELIMINARIES

Graph Theory is now a major tool in mathematical research, electrical engineering,

computer programming and networking, business administration, sociology,

economics, marketing, and communications; the list can go on and on. In particular,

many problems can be modelled with paths formed by traveling along the edges of a

certain graph. For instance, problems of efficiently planning routes for mail delivery,

garbage pickup, snow removal, diagnostics in computer networks, and others, can be

solved using models that involve paths in graphs.

2.1 Graphs

A graph G = (V,E) is a finite, nonempty set V(G), together with a (possibly empty)

set E(G) of 2-elements subsets of V(G). The elements of V are called vertices, while

those of E are called edges. The number of vertices in a graph G is called the order

of G, denoted by p = |V(G)|, while the number of edges in G is called the size of G,

denoted by q = |E(G)|. A graph of order p and size q is often referred to as a (p,q) -

graph. If the unordered pair e = {u,v} is an edge of the graph G, informally written as

e = uv, it is said that the vertices u and v are adjacent in G and that the edge e joins u

and v. The edge e is said to be incident with the vertices u and v. A graphical

representation of an order 7 graph G1 of size 8 is shown in Figure 2.1. The vertex set

is V(G1) = {v1, ,v2, ,v3, v4, v5, v6, v7} and edge set is E(G1) = {v1v6, v1v7, v2v4, v3v5, v3v6,

v3v7, v4v5 , v5v6}. The vertices v1 and v6 are adjacent in G1, while v1 and v2 are not (West,

D.B, 2001).

 Figure 2.1: Graphical representation of a 7,8 graph, G1.

v3

v2 v1

v4
 v5

 v6

v7

3

The open neighbourhood of a vertex v in a graph G is defined as the set

 NG(v) = {u ∈ V(G) : uv ∈ E(G)} ,

while the closed neighbourhood of v in G is defined as

 NG[v] = NG(v) ∪ {v} .

The open neighbourhood of a set S is defined as N(S) = {N(v) : v ∈ S}, while the

closed neighbourhood of a set S is defined as N[S] = {N[v] : v ∈ S}. For any vertex v

in a graph G, the number of vertices adjacent to v, i.e. │NG(v)│, is called the degree

of v in G, denoted by degGv. Note that if the reference to a graph G is clear from the

context, the subscript is often omitted, hence written as deg v only.

A vertex is odd if its degree is odd and even if its degree is even. If the degree of a

vertex is 0, it is called an isolated vertex, while if the degree is 1, it is called an

end-vertex. The minimum degree of vertices in G is denoted by δ(G) , while the

maximum degree of the vertices is denoted by Δ(G). Referring to the graph G1 in

Figure 2.1, the open neighbourhood of the vertex v5 is NG1(v5) = {v3, v4, v6 }, while its

closed neighbourhood is NG1 [v5] = {v3, v4, v5, v6}. The graph has no isolated vertices,

but v2 is, in fact, an end-vertex. The minimum degree of G1 is therefore δ(G1) = 1,

while the maximum degree is Δ(G1) = 3.

The Fundamental Theorem of Graph Theory, is probably one of the most well -

known results in the discipline and relates the sum total of the degrees and the size of

any graph.

Theorem 2.1 (Chartrand, G. and Lesniak, L. 2000). Let G be a (p, q) - graph, with

V(G) ={v1,v2,…,vp}.

1

deg 2
p

G i

i

v q

Proof: When the degrees of all the vertices are summed, each edge is counted twice,

once for each of the vertices that it joins. ■

4

When G = (V, E) and H = (W, F) are graphs, we say H is a subgraph of G when

W⊆V and F⊆E.We say H is an induced subgraph when W⊆V and

F = {xy ∈ E: x, y ∈ W}. In Figure 2.2, we show a graph, a subgraph and an induced

subgraph.

 Figure 2.2 : (a) a graph, (b) a spanning subgraph, (c) an induced subgraph.

2.2 Connectedness

A graph G = (V, E) is called a complete graph when xy is an edge in G for every

distinct pair x, y ∈ V. Conversely, G is an independent graph if xy ∉ E, for every

distinct pair x, y ∈ V. It is customary to denote a complete graph on n vertices by Kn

and an independent graph on n vertices by In (Gross, L.J and Yellen, J., 2006).

A walk is an alternating sequence of vertices and edges, beginning and ending with

a vertex, where each vertex is incident to both the edge that precedes it and the edge

that follows it in the sequence, and where the vertices that precede and follow an

edge are the end vertices of that edge. A walk is closed if its first and last vertices are

the same, and open if they are different.

The length l of a walk is the number of edges that it uses. For an open walk,

l = n–1, where n is the number of vertices visited (a vertex is counted each time it is

visited). For a closed walk, l = n (the start/end vertex is listed twice, but is not

counted twice).

 A trail is a walk in which all the edges are distinct. A closed trail has been called a

tour or circuit, but these are not universal, and the latter is often reserved for a

regular subgraph of degree two.

 (b) (a) (c)

5

A graph G = (V, E) on n ≥1 vertices is called a path when the elements of the vertex

set can be labelled as {x1, x2, ... , xn} so that E = {xixi+1 : 1 ≤ i < n}.Similarly, if n ≥ 3,

G is called a cycle when E = { xixi+1 : 1 ≤ i < n} ∪ {xnx1}.It is customary to denote a

path on n vertices by Pn, while Cn denotes a cycle on n vertices. The length of a path

or a cycle is the number of edges it contains. Therefore, the length of Pn is n − 1 and

the length of Cn is n (Chartrand, G. and Lesniak, L. 2000).

A graph G is connected when there is a path from x to y in G, for every x, y ∈ V ;

else G is disconnected. The induced subgraph on such an equuivalence class is

called a connected component or just component of the graph. A graph is

connected if there is just one equivalence class, that is, if every pair of vertices is

connected.

A graph is acyclic when it does not contain any cycle on three or more vertices.

Acyclic graphs are also called forests. A connected acyclic graph is called a tree.

When G = (V, E) is a connected graph, a subgraph H = (W, F) of G is called a

spanning tree when W = V and H is a tree. In Figure 2.3, we show a graph and its

spanning tree.

 Figure 2.3 : (a) a graph, (b) a spanning tree.

A graph is called bipartite, if the corresponding node set can be split into two sets

N1 and N2 in such a way that each member of S joins a node of N1 to a node of N2. A

complete bipartite graph is a bipartite graph in which each node N1 is joined to each

node of N2 by exactly one member. If the number of nodes in N1 and N2 are denoted

(a) (b)

v1

v3

v5

v4

v2

v1 v4

v2 v3

v5

6

by r and s, respectively, then a complete bipartite graph is denoted by Kr,s. Examples

of bipartite and complete bipartite graphs are shown in Figure 2.4 (Chartrand, G. and

Lesniak, L. 2000).

(a) A bipartite graph (b) A complete bipartite graph K3,4

Figure 2.4: Two bipartite graphs. (a) A bipartite graph. (b) A complete bipartite

graph K3,4

A graph can be represented in various forms. Some of these representations are of

theoretical importance, others are useful from the programming point of view when

applied to realistic problems. One of them is matris representation. Every graph has

associated with it an adjacency matrix, which is a binary nn matrix A in which

aij = 1 and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0 otherwise.

The adjacency matrix is a matrix of size V x V such that

 Mij = 1, if there is an edge between i and j

 0, otherwise

The figure 2.3 (a) graphical representation of an adjacency matrix is a table, such as

shown in Figure 2.5

 v1 v2 v3 v4 v5

v1 0 1 0 1 0

v2 1 0 1 0 0

v3 0 1 0 1 1

v4 1 0 1 0 1

v5 0 0 1 1 0

Figure 2.5: Matrix representation of a graph

7

2.3 Eulerian and Hamiltonian Graphs

Graph theory began with Euler‟s study of a particular problem: the SevenBridges

of Königsberg. During the eighteenth century the city of Königsberg in East Prussia

was divided into four sections (including the island of Kneiphof) by the Pregel river.

Seven bridges connected these regions and it was said that residents spent their

Sunday walks trying to find a starting point so that they could walk about the city,

cross each bridge exactly once, and return to their starting point.

Eulerian Graphs

The following problem, often referred to as the bridges of Königsberg problem,

was first solved by Euler in the eighteenth century. The problem was rather simple -

the town of Königsberg consists of two islands and seven bridges. Is it possible, by

beginning anywhere and ending to the same point, to walk through the town by

crossing all seven bridges but not crossing any bridge twice?

(a) (b)

 Figure 2.6 : a is Königsberg in 1736, b is Euler‟s graphical representation

This problem was solved in 1736 by the Swiss mathematician Euler, in the earliest

known paper on graph theory, who studied the famous problem of “the bridges of

Königsberg”. Euler proved it is impossible to take a walk crossing all seven bridges

of the river Pregel exactly once (West, D.B., 2001).

Eulerian trail: An Eulerian trail is a trail that visits every edge of the graph once and

only once. It can end on a vertex different from the one on which it began. A graph

of this kind is said to be traversable.

8

Eulerian Cycle: An Euler cycle is a cycle that traverses every edge of a graph

exactly once. If there is an open path that traverse each edge only once, it is called an

Euler path.

Eulerian Graph: A graph is called Eulerian when it contains an Eulerian circuit.

An Eulerian trail exists in a connected graph if and only if there are either no odd

vertices or two odd vertices. For the case of no odd vertices, the path can begin at

any vertex and will end there; for the case of two odd vertices, the path must begin at

one odd vertex and end at the other. Any finite connected graph with two odd

vertices is traversable. A traversable trail may begin at either odd vertex and will end

at the other odd vertex (Gallier, J., 2005).

Hamiltonian Graphs

In 1859, the Irish mathematician Sir William Rowan Hamilton developed a game

that he sold to a Dublin toy manufacturer. The game consisted of a wood regular

dodecahedron with the twenty corner points (vertex) labelled with the names of

prominent cities. The object of the game was to find a circuit along the edges of the

solid so that each city on the cycle exactly once.

Hamiltonian Cycle: A Hamiltonian cycle in a graph is a closed path that visits every

vertex in the graph exactly once. A Hamiltonian cycle ends up at the vertex from

where it started (West, D.B., 2001).

Hamiltonian graphs are named after the nineteenth-century Irish mathematician Sir

William Rowan Hamilton(1805-1865). This type of problem is often referred to as

the traveling salesman or postman problem.

Hamiltonian Graph: If a graph has a Hamiltonian cycle, then the graph is called a

Hamiltonian graph. We represent the solid by a graph: the vertices of the graph

correspond to the vertices of the solid and the edges similarly correspond:

9

 Figure 2.7 : Hamiltonian graph

2.4 Digraphs

A directed graph (or just digraph) D consists of a non-empty finite set V(D) of

elements called vertices and a finite set E(D) of ordered pairs of distinct vertices

called arcs. We call V (D) the vertex set and E(D) the arc set of D. We will often

write D = (V, E) which means that V and E are the vertex set and arc set of D,

respectively. The order (size) of D is the number of vertices (arcs) in D; the order of

D will be sometimes denoted by |D| . For example, the digraph D in Figure 2.6 is of

order and size 6; V(D) = {u, v ,w, x, y, z }, E(D) = {(u, v) , (u,w), (w, u), (z, u), (x, z),

(y, z)}. Often the order (size) of the digraph under consideration is denoted by n (or

m).

For an arc (u, v) the first vertex u is its tail and the second vertex v is its head. We

also say that the arc (u, v) leaves u and enters v. The head and tail of an arc are its

end-vertices; we say that the end-vertices are adjacent, u is adjacent to v and v is

adjacent to u. If (u, v) is an arc, we also say that u dominates v (or v is dominated by

u) and denote it by u→v. We say that a vertex u is incident to an arc e if u is the

head or tail of a: We will often denote an arc (u, v) by uv (Chartrand, G. and

Lesniak, L., 2000).

10

 Figure 2.8 : A digraph D

 For a pair X, Y of vertex sets of a digraph D, we define

 (X, Y)D = {xy ∈ E(D) : x ∈ X, y ∈ Y },

i.e. (X, Y)D is the set of arcs with tail in X and head in Y . For example, for the

digraph H in Figure 2.6, ({u,v}, {w,z})H = {uw}, ({w,z}, {u,v})H = {wv}, and

({u,v},{u,v})H = {uv,vu}.

An undirected graph (or a graph) G = (V,E) consists of a non-empty finite set

V = V (G) of elements called vertices and a finite set E = E(G) of unordered pairs of

distinct vertices called edges.

In other words, if each edge of the graph G has no direction then the graph is called

undirected graph.

 Figure 2.9 : An undirected graph D

x

y

z u

u

 u

w

v

x

y

z u

u

 u

w

v

11

 Figure 2.10 : A digraph H and a directed pseudograph H'

The above definition of a digraph implies that we allow a digraph to have arcs with

the same end-vertices (for example, uv and vu in the digraph H in Figure 2.10), but

we do not allow it to contain parallel (also called multiple) arcs, that is, pairs of arcs

with the same tail and the same head, or loops (i.e. arcs whose head and tail

coincide). When parallel arcs and loops are admissible we speak of directed

pseudographs; directed pseudographs without loops are directed multigraphs. In

Figure 2.8 the directed pseudograph H’ is obtained from H by appending a loop zz

and two parallel arcs from u to w. Clearly, for a directed pseudograph D, E(D) and

(X, Y)D (for every pair X, Y of vertex sets of D) are multisets (parallel arcs provide

repeated elements). We use the symbol μD(x, y) to denote the number of arcs from a

vertex x to a vertex y in a directed pseudograph D. In particular, μD(x, y) = 0 means

that there is no arc from x to y (Bang-Jensen, J and Gutin, G., 2007).

We will sometimes give terminology and notation for digraphs only, but we will

provide necessary remarks on their extension to directed pseudographs, unless this is

trivial.

The indegree of a vertex ((v)) in a directed graph is the number of edges

directed into it; its outdegree ((v)) is the number of edges directed away from it;

its degree is the sum of its indegree and outdegree. The sum of the in degree and out

degree of a vertex is called the total degree of the vertex. A vertex with zero in

 u

v

w

z

u w

v z

H
H'

12

degree is called a source and a vertex with zero out degree is called a target. Since

each edge has an initial vertex and terminal vertex.

Proposition 2.1. (Gross, L.J and Yellen, J., 2006) For any digraph D,

-

() ()

() () ()
v V D v V D

d v d v E D

 ■

 A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D), E(H) ⊆ E(D) and

every arc in E(H) has both end-vertices in V (H). If V (H) = V (D), we say that H is a

spanning subdigraph (or a factor) of D. The digraph L with vertex set {u, v, w, z}

and arc set {uv, uw, wz} is a spanning subdigraph of H. If every arc of E(D) with

both end-vertices in V (H) is in E(H), we say that H is induced by X =V(H) and call

H an induced subdigraph of D.

 A weighted directed pseudograph is a directed pseudograph D along with a

mapping c: E(D) → R. Thus, a weighted directed pseudograph is a triple

D = (V(D), E(D), c).We will also consider vertex-weighted directed pseudographs,

i.e. directed pseudographs D along with a mapping c: V(D) → R. (See Figure 2.11)

If a is an element (a vertex or an arc) of a weighted directed pseudograph

D = (V (D), E(D), c), then c(a) is called the weight or the cost of a . An (unweighted)

directed pseudograph can be viewed as a (vertex-)weighted directed pseudograph

whose elements are all of weight one. For a set B of arcs of a weighted directed

pseudograph D = (V, E, c), we define the weight of B as follows: c (B) = ∈ .

Similarly, one can define the weight of a set of vertices in a vertex-weighted directed

pseudograph. The weight of a subdigraph H of a weighted (vertex-weighted)

directed pseudograph D is the sum of the weights of the arcs in H (vertices in H). For

example, in the weighted directed pseudograph D in Figure 2.9 the set of arcs {xy, yz,

zx } has weight 9.5 (here we have assumed that we used the arc zx of weight 1). In

the directed pseudograph H in Figure 2.9 the subdigraph U = ({u,x,z},{xz,zu}) has

weight 5 (Bang-Jensen, J and Gutin, G., 2007).

13

 Figure 2.11:Weighted and vertex-weighted directed pseudographs (the vertex

weights are given in brackets).

Walk, Trail, Path and Cycle

In the following, D is always a directed pseudograph, unless otherwise specified. A

walk in D is an alternating sequence W = x1a1x2a2x3 . . . xk-1ak-1xk of vertices xi and

arcs aj from D such that the tail of ai is xi and the head of ai is xi+1 for every

i = 1, 2 ,. . . ,k - 1. A walk W is closed if x1 = xk, and open otherwise. The set of

vertices {x1, x2, . . . , xk} is denoted by V (W); the set of arcs {a1, a2, . . . , ak-1} is

denoted by E(W). We say that W is a walk from x1 to xk or an (x1, xk)-walk. If W is

open, then we say that the vertex x1 is the initial vertex of W, the vertex xk is the

terminal vertex of W, and x1 and xk are end-vertices of W. The length of a walk is

the number of its arcs. Hence the walk W above has length k-1. A walk is even (odd)

if its length is even (odd). When the arcs of W are defined from the context or simply

unimportant, we will denote W by x1x2 . . . xk (West, D.B., 2001).

A trail is a walk in which all arcs are distinct. Sometimes, we identify a trail W

with the directed pseudograph (V (W) , E(W)), which is a subdigraph of D. If the

vertices of W are distinct, W is a) path. If the vertices x1, x2, . . ., xk-1 are distinct,

k ≥3 and x1 = xk, W is a cycle (Harju, T.,2007).

x

y

z

2

5

1

0.3

3.5

x(2)

y(2.5)

z(0) u(3)

14

 Figure 2.12 : A directed graph H .

The path x1x2x3x4x6 is an (x1, x6) -path and x2x3x4x6x3 is an (x2, x3) -trail. The cycle

x1x2x3x4x5x1 is a 5-cycle in D.

Eulerian Cycles

The following graph is a directed graph version of the Königsberg bridge problem,

solved by Euler in 1736. The vertices A,B,C,D correspond to four areas of land in

Königsberg and the edges to the seven bridges joining these areas of land. The

problem is to find a closed path that crosses every bridge exactly once and returns to

the starting point.

In fact, the problem is unsolvable, as shown by Euler, because some vertices do not

have the same number of incoming and outgoing edges (In the undirected version of

the problem, some vertices do not have an even degree.)

 Figure 2.13: A directed graph modeling the Königsberg bridge problem

v1

 v2

v3

v4

x1

x5 x4
x7

x3

 x2 x6

15

Hamiltonian Cycles

A Hamiltonian cycle, also called a Hamiltonian circuit, Hamilton cycle, or

Hamilton circuit, is a graph cycle (closed loop) through a graph that visits each node

exactly once (Skiena 1990, p. 196). By convention, the trivial graph on a single node

is considered to posses a Hamiltonian cycle, but the connected graph on two nodes is

not. A graph possessing a Hamiltonian cycle is said to be a Hamiltonian graph. The

Hamiltonian cycle is named after Sir William Rowan Hamilton, who devised a

puzzle in which such a path along the polyhedron edges of an dodecahedron was

sought (the Icosian game)

 Figure 2.14 : A Hamiltonian cycle in D

Although graph theory is one of the younger branches of mathematics, it is

fundamental to a number of applied fields, including operations research, computer

science, and social network analysis. In this chapter we discussed the basic concepts

of graph theory from the point of view of network analysis.

http://mathworld.wolfram.com/GraphCycle.html
http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/HamiltonianGraph.html
http://mathworld.wolfram.com/PolyhedronEdge.html
http://mathworld.wolfram.com/Dodecahedron.html
http://mathworld.wolfram.com/IcosianGame.html

16

CHAPTER 3

FLOWS IN NETWORKS

In this chapter we consider an important algorithmic problem called the Network

Flow Problem. Network flow is important because it can be used to express a wide

variety of different kinds of problems. So, by developing good algorithms for solving

network flow, we immediately will get algorithms for solving many other problems

as well. A wide variety of engineering and management problems involve

optimization of network flows – that is, how objects move through a network.

Examples include coordination of trucks in a transportation system, routing of

packets in a communication network, and sequencing of legs for air travel. Such

problems often involve few indivisible objects, and this leads to a finite set of

feasible solutions. Surprisingly, as we will see in this chapter, network flows

problems can often be solved by algorithms.

Graph theory provides a framework for discussing systems in which it is possible

to travel between discrete vertices. If we extend a directed graph to a network flow

by assigning a capacity and a flow value to every edge, then this flow can be used to

model any number of systems in which a resource travels from one point to another,

e.g. the spread of data in a network, traffic along roads, water in pipes, and so on.

3.1 Networks

In graph theory, a flow network is a directed graph where each edge has a capacity

and each edge receives a flow. The amount of flow on an edge cannot exceed the

capacity of the edge. Often in Operations Research, a directed graph is called a

network, the vertices are called nodes and the edges are called arcs. A network can

be used to model traffic in a road system, fluids in pipes, currents in an electrical

circuit, or anything similar in which something travels through a network of nodes.

Figure 3.1 offers a visual representation of a directed graph with nodes labelled 1

through 8. We will denote an edge pointing from a node i to a node j by (i, j). In this

notation, the graph of Figure 3.1 can be characterized in terms of a set of nodes

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_(mathematics)#Directed_graph

17

V = {s, u, v, w, x, y, z, t} and a set of edges E = {(s, u), (s, y), (s, z), (u, v), (y, x),

(x, z), (v, t), (z, v), (z, w), (w, t)}.

Graphs can be used to model many real networked systems. For example, in

modelling air travel, each node might represent an airport, and each edge a route

taken by some flight. Note that, to solve a specific problem, one often requires more

information than the topology captured by a graph. For example, to minimize cost of

air travel, one would need to know costs of tickets for various routes (West, D.B.,

2001).

 Figure 3.1: A directed graph

3.2 Network Flow Problems

Applications of graph theory, together with concepts from optimization theory, to

practical problems is the domain of network flow problems. For example, the

network flow problem related with Euler tours is the Chinese Postman Problem (after

the Chinese mathematician, Kwan Mei-Ko, who discovered it in early 1960's). The

problem is the following. Suppose the distances of the bridges are known and we

have to cross each bridge at least once. We would like to find a route that comes

back to the starting point which minimizes the total distance traveled on the bridges.

Clearly, Euler tour, if it exists, is the optimal solution to the Chinese Postman

s u

v

z
t y

x w

18

Problem. But if the network we have on hand does not satisfy the Euler's conditions,

Chinese Postman Problem attempts to find a tour with minimal repetition of the

edges. The Chinese Postman Problem is only one among many network flow

problems.The traveling salesman problem is a well-known problem in the area of

network and combinatorial optimization. This problem is easy to state: Starting from

his home base, node 1, a salesman wishes to visit each of several cities represented

by nodes 2,…,n, exactly once and return home, doing so at the lowest travel cost.The

simplicity of this problem and its complexity to solve have attracted the attention of

many researchers over a long period of time. The first mathematical model related to

the traveling salesman problem was studied in the 1800s. Researchers have paid

attention to this problem because it is a generic core model that captures the

combinatorial essence of most routing problems (Ahuja, R.K., Magnanti, T.L., and

Orlin, J.B, 1993).

Networks for the transmission of information, the transportation of people, and the

distribution of goods and energy are part of our everyday life. Think about how all

the utilities and the telephone, Internet, and cable-TV services made available in our

homes and offices, how our mobility is made possible by the highway, rail, and

airline networks. Without effective distribution and logistics networks, we could not

have all the goods and services that are available now at affordable prices. The

general problem types, namely, the minimum cost flow problems, the shortest path

problems, the maximum flow problems, transportation problems and assignment

problems.

We focus on the shortesth path, maximum flow and transportation problems in

logistics.

3.2.1 The Shortest Path Problem

 This network flow problem is one that we all use in our daily lives: what is the

fastest route to take between two locations in the city during the rush hour, what is

the "most" scenic route to drive, or the cheapest route to fly, between two cities in

our vacation. The street intersections or the cities are the nodes, and the street or

highway segments in between the intersections, or non-stop flights between the cities

are the arcs. There are numbers associated with the arcs. These numbers can be the

19

estimates of how long will it take to drive through a street segment during the rush

hour, or a measure of "scenic pleasure" one expects to obtain traveling on a certain

highway segment, or the cost of flying between two cities. The objective is to find a

series of arcs connected with correct directions such that one can start at the origin

and arrive at the destination traversing the arcs and that the sum of the numbers on

the arcs are either minimum (in the case of the fastest or the cheapest route).

Given a weighted, directed graph G, a start node s and a destination node t, the s-t

shortest path problem is to output the shortest path from s to t. The single-source

shortest path problem is to find shortest paths from s to every node in G. The

(algorithmically equivalent) single-sink shortest path problem is to find shortest

paths from every node in G to t.

The shortest-path problem is a particular network model that has received a great

deal of attention for both practical and theoretical reasons. The essence of the

problem can be stated as follows: Given a network with distance cij (or travel time, or

cost, etc.) associated with each arc, find a path through the network from a particular

origin (source) to a particular destination (target) that has the shortest total distance.

The simplicity of the statement of the problem is somewhat misleading, because a

number of important applications can be formulated as shortest- (or longest-) path

problems where this formulation is not obvious at the outset. These include problems

of equipment replacement, capital investment, project scheduling, and inventory

planning. The theoretical interest in the problem is due to the fact that it has a special

structure, in addition to being a network, that results in very efficient solution

procedures. The problem is also sometimes called the single-pair shortest path

problem, to distinguish it from the following generalizations:

 The single-source shortest path problem, in which we have to find shortest

paths from a source vertex v to all other vertices in the graph.

 The single-destination shortest path problem, in which we have to find

shortest paths from all vertices in the graph to a single destination vertex v.

This can be reduced to the single-source shortest path problem by reversing

the edges in the graph.

 The all-pairs shortest path problem, in which we have to find shortest paths

between every pair of vertices vi, vj in the graph.

20

In general, the (linear programming) formulation of the shortest-path problem is as

follows:

 minimize ,ij ij

i j

c x

 subject to: 1 if i = s (source),

 ij ki

j k

x x 0 otherwise,

 -1 if i = t (target)

 xij for all i-j in the network.

We can interpret the shortest-path problem as a network-flow problem very easily.

There exist many techniques for solving the shortest path problem, some of the

better known algorithms are Dijkstra‟s Algorithm (Dijkstra, E.W, 1959) and

Bellman-Ford Algorithm (Bellman, R.,1957).

Dijkstra's Algorithm

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in

1956 and published in 1959, (Dijkstra, E.W., 1959) is a graph search algorithm that

solves the single-source shortest path problem for a graph with nonnegative edge

path costs, producing a shortest path tree. This algorithm is often used in routing and

as a subroutine in other graph algorithms.

For a given source vertex (node) in the graph, the algorithm finds the path with

lowest cost (the shortest path) between that vertex and every other vertex. It can also

be used for finding costs of shortest paths from a single vertex to a single destination

vertex by stopping the algorithm once the shortest path to the destination vertex has

been determined. For example, if the vertices of the graph represent cities and edge

path costs represent driving distances between pairs of cities connected by a direct

road, Dijkstra's algorithm can be used to find the shortest route between one city and

all other cities . Dijkstra's algorithm finds the length of an optimal path between two

vertices in a graph. (Optimal can mean shortest or cheapest or fastest or optimal in

some other sense: it depends on how you choose to label the edges of the graph.) The

http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Vertex_(graph_theory)

21

algorithm characterizes each vertex (node) by its state. The state of a node consists of

two features: distance value and status label. Distance value of a node is a scalar

representing an estimate of the its distance from node s. Status label is an attribute

specifying whether the distance value of a node is equal to the shortest distance to

node s or not.

 The status label of a node is Permanent if its distance value is equal to the

shortest distance from node s

 Otherwise, the status label of a node is Temporary

The algorithm maintains and step-by-step updates the states of the nodes. At each

step one node is designated as current

 dl denotes the distance value of a node l.

 p or t denotes the status label of a node, where p stand for permanent and t

stands for temporary

 cij is the cost of traversing link (i, j) as given by the problem.

The state of a node l is the ordered pair of its distance value dl and its status label.

Algorithm Steps

Step 1. (Initialization)

 Assign the zero distance value to node s, and label it as Permanent.

(The state of node s is (0, p))

 Assign to every node a distance value of ∞ and label them as Temporary.

(The state of every other node is (∞,t))

 Designate the node s as the current node.

Step 2. (Distance Value Update and Current Node Designation Update)

Let i be the index of the current node.

 Find the set J of nodes with temporary labels that can be reached from the

current node i by a link (i, j). Update the distance values of these nodes. For

each j ∈ J, the distance value dj of node j is updated as follows.

 new dj = min { dj, di + cij}

where cij is the cost of link (i, j), as given in the network problem.

22

 Determine a node j that has the smallest distance value dj among all nodes

j ∈ J, find j* such that

 *min j j
j J

d d

 Change the label of node j
*
 to permanent and designate this node as the

current node.

Step 3. (Termination Criterion)

 If all nodes that can be reached from node s have been permanently labeled,

then stop - we are done.

 If we cannot reach any temporary labeled node from the current node, then all

the temporary labels become permanent - we are done.

 Otherwise, go to Step 2.

For example, below is a network with the arcs labelled with their lengths. The

example will step though Dijkstra‟s Algorithm to find the shortest route from the

source s to the target t.

 Figure 3.2: The shortest path problem (a)

Step 1.

 Node s is designated as the current node.

 The state of node s is (0,p).

 Every other node has state (∞,t).

a

b
d s

c
e

t

f

2 2

4

4

3

12

1

3

7

5

5

7

4

1

23

 Figure 3.3: The shortest path problem (b)

Step 2.

 Nodes a, b, and c can be reached from the current node s.

 Update distance values for these nodes

da = min{∞, 0 + 2} = 2

db = min{∞, 0 + 5} = 5

dc = min{∞, 0 + 4} = 4

 Now, among the nodes a, b, and c ; node a has the smallest distance value.

 The status label of node a changes the permanent, so its state is (2, p), while

the status of b and c remain temporary.

 Node a becomes the current node.

a

b
d s

c
e

t

f

2 2

4

4

3

12

1

3

7

5

5

7

4

1

(0,p)

(∞,t)

(∞,t)

(∞,t)

(∞,t)

(∞,t)

(∞,t)

(∞,t)

24

 Figure 3.4: The shortest path problem (c)

Step 3.

 Graph at the end of step 2.

 We are not done, not all nodes have been reached from s, so we perform

another iteration (back to step 2).

Another Implementation of Step 2.

 Nodes b, d, and f can be reached from the current node a.

 Update distance values for these nodes

db = min{5, 2 + 2} = 4

dd = min{∞, 2 + 7} = 9

df = min{∞, 2 + 12} = 14

 Now, among the nodes b, d, and f node b has the smallest distance value.

 The status label of node b changes the permanent, while the status of d and f

remain temporary.

 Node b becomes the current node. We are not done (step 3 fails), so we

perform another step 2.

a

b
d s

c
e

t

f

2 2

4

4

3

12

1

3

7

5

5

7

4

1

(0,p)

(2,t)

(∞,t)

(4,t)

(∞,t)

(∞,t)

(∞,t)

(5,t)

(2,p)

25

 Figure 3.5:The shortest path problem (d)

Another Step 2.

 Node d and e can be reached from the current node b.

 Update distance values for them

dd = min{9, 4 + 4} = 8

de = min{∞, 4 + 3} = 7

 Now, between the nodes d and e node e has the smallest distance value. The

status label of node e changes to permanent, while the status of d remains

temporary.

 Node e becomes the current node. We are not done (step 3 fails), so we

perform another step 2.

a

b
d s

c
e

t

f

2
2

4

4

3

12

1

3

7

5

5

7

4

1

(0,p)

(14,t)

(4,t)

(9,t)

(∞,t)

(∞,t)

(4,t)

(2,p)

(4,p)

26

Figure 3.6 : The shortest path problem (e)

Another Step 2.

 Nodes d and t can be reached from the current node e.

 Update distance values for them

dd = min{8, 7 + 1} = 8

de = min{∞, 7 + 7} = 14

 Now, between the nodes d and t, node d has the smallest distance value. The

status label of node d changes to permanent, while the status of t remains

temporary.

 Node d becomes the current node. We are not done (step 3 fails), so we

perform another step 2).

a

b
d s

c
e

t

f

2
2

4

4

3

12

1

3

7

5

5

7

4

1

(0,p)

(14,t)

(4,t)

(8,t)

(∞,t)

(7,t)

(2,p)

(4,p)

(7,p)

27

Figure 3.7: The shortest path problem (f)

Another Step 2.

 Node t can be reached from the current node d.

 Update distance value for node t

dt = min{14, 8 + 5} = 13

its status changes to permanent.

Figure 3.8: The shortest path problem (g)

a

b
d s

c
e

t

f

2
2

4

4

3

12

1

3

7

5

5

7

4

1

(0,p)

(14,t)

(4,t)

(13,t)

(2,p)

(4,p)

(7,p)

(8,p)

(13,p)

a

b
d s

c
e

t

f

2
2

4

4

3

12

1

3

7

5

5

7

4

1

(0,p)

(14,t)

(4,t)

(8,t)

(14,t)

(2,p)

(4,p)

(7,p)

(8,p)

28

Now, node t is the destination node, therefore we are done. The shortest route

(s-a-b-e-d-t) from s to t has a distance of 13. The another shortest route is (s-a-b-d-t).

3.2.3 Maximum Flow Problem

Maximum flow originally developed as a means for studying rail transportation

networks:

“Consider a rail network connecting two cities by way of a number of intermediate

cities, where each link of the network has a number assigned to it representing its

capacity. Assuming a steady state condition, find a maximal flow from one given city

to the other” (Harris, 1955).

The Soviet rail system was studied in a classified report by Harris and Ross from

1955 entitled “Fundamentals of a Method for Evaluating Rail Net Capacities”. Rail

network not modeled exactly due to its size and (probably) due to inexact

information. Modeled with nodes as small regions that are connected to neighboring

regions. Connections between neighboring regions assigned a capacity which is the

tonnage (in 1000 tons) that can be transported between the nodes on a daily basis.

The maximum flow problem has a long history. Although other documents (A.W.

Boldyreff,1955) define similar problems in the same time period, G. B. Dantzig is

credited with the creation of the general maximum flow problem in 1951 (G.B.

Dantzig, 1951). Ford and Fulkerson (L.R Ford, Jr. and D.R. Fulkerson, 1956 & 1962)

created the first known algorithm in 1955. Since 1955, new algorithms were created

using more elegant methods to find the maximum flow. With the elegant methods

came more complex sub-steps within these algorithms. Although more complex sub-

steps, these new design techniques led to a decrease in running time for maximum

flow. Different graph characteristics also play a significant role in the running time

of each algorithm.

In the maximum flow problem, we are given a directed or undirected graph, most

commonly directed in real world applications, where one vertex is considered a

source and another is the destination or commonly referred to as the target. Some

29

object then flows along the edges of the graph from the source to the target. Each

edge along the path is given a maximum capacity that can be transported along that

route. The maximum capacity can vary from edge to edge in which case the

remainder must either flow along another edge towards the target or remain at the

current vertex for the edge to clear or be reduced. The goal of the maximum flow

problem is to determine the maximum amount of throughput in the graph from the

source to target. In real world applications determining the maximum throughput

allows the source to know exactly how much of something to produce and send

along the path without creating waste.

A network is a directed graph G = (V,E) with a source vertex s ∈ V and a target

vertex t ∈ V. Each edge e = (v,w) from v to w has a defined capacity, denoted by c(e)

or c(v,w). (Each edge e in G has an associated non-negative capacity c(e), where for

all non-edges it is implicitly assumed that the capacity is 0). For example, consider

the graph in Figure 3.9 below.

Figure 3.9: An example of a network with n = 4 vertices and m = 6 edges. The

capacities of the edges are shown.

In a network flow problem, we assign a flow to each edge. There are two ways of

defining a flow: raw (or gross) flow and net flow.

s

 a

t

b

2 2

1 1

1 1

30

Raw flow is a function r (v,w) that satisfies the following properties:

 Capacity constraint: The flow along any edge must be positive and less than

the capacity of that edge. 0 ≤ r (v,w ≤ c (v,w) .

 Flow conservation: For any vertex v ∉ {s, t}, flow in equals flow out:

 (,) (,) 0
w V w V

r w v r v w

 , for all v ∈ V \ {s,t}.

 incoming flow outgoing flow

 (,) (,)
w V w V

r w v r v w

 .

With a raw flow, we can have flows going both from v to w and flow going from w

to v. In a net flow formulation however, we only keep track of the difference between

these two flows.

Net flow is a function that satisfies the following conditions:

• Skew symmetry: f (v,w) = − f (w, v).

• Conservation: ∈ = 0, for all v ∈ V \ {s, t}.

• Capacity constraint: f (v,w ≤ c (v,w) for all v,w ∈ V .

A raw flow r (v,w) can be converted into a net flow via the Formula;

 f (v,w) = r (v,w) – r (w, v).

For example, if we have 7 units of flow from v to w and 4 units of flow from w to v,

then the net flow from v to w is f (v,w) = 3. Skew symmetry follows directly from this

formula relating raw flows and net flows. Although skew symmetry relates f (v,w)

and f (w,v), it is important to note that the capacity in one direction c(v,w) is

independent of the capacity in the reverse direction, c(w, v).

 The value of a flow is the sum of the flow on all edges leaving the source s. We

later show that this is equivalent to the sum of all the flow going into the sink t. The

value of a flow represents how much we can transport from the source to the sink.

The value of a flow f is defined as

 (,).
v V

f f s v

31

Figure 3.10: An example network showing an (s, t)-flow f of value | f | = 10. In each

edge label, the numerator is the flow on the edge and the denominator is the capacity.

Dashed edges are avoided by f.

 Cuts

In a network flow problem, it is useful to work with a cut of the graph, particularly

an s-t cut. An s-t cut of network G is a partition of the vertices V into 2 groups: S and

 = V \ S such that s ∈ S and t ∈ .

Figure 3.11 : An illustration of an s-t cut. There might be both edges from S to and

from to S.

We will usually represent a cut as the pair (S,), or just S. We generalize the concept

of the net flow and the capacity of an edge to define the net flow and capacity of a

cut.

The net flow along cut (S,)) is defined as f (S) = ∈ ∈ .

The value (or capacity) of a cut is defined as c(S) = ∈ ∈ .

s

t

 10/20

10/10

0/10

 0/5

0/15

 10/10

5/10

5/15

5/20

32

In summary, the value (or capacity) of a cut is the sum of all values (capacities) of

edges that go from S to S .

Figure 3.12 : An example of a cut in a network. The s-t cut is represented by a

dashed line. The value (capacity) of the cut is equal to 3. This is one of the minimum

s-t cuts.

Lemma 3.1 (Brossard, E.,2010) Given a flow f, for any cut S, f (S) = | f |. In other

words, all s-t cuts carry the same flow: the value of the flow f.

Proof: We can prove the lemma by induction on the size of the sets S. For S = s, the

claim is true. Now, suppose we move one vertex v from to S. The value f (S)

changes in the following way:

 • f (S) increases by f (v,).

 • f (S) decreases by f (S, v) = − f (v, S).

In conclusion, the total change in the value of f (S) after moving the vertex v from S

to is equal to f (v,) + f (v, S) = f (v, V) = 0 (by conservation of flow).

 f (S) = f(S,V) – f(S,S)

 = f (S,V)

 = f (s,V) + f(S-s,V)

 = f (s,V)

 = | f |. ■

s

 a

t

b

2 2

1

1

1

33

Lemma 3.2 (E.Demaine, D., Karger, 2003) If f is a flow, then | f | ≤ c(S) for any cut

S.

Proof: For all edges e, f (e ≤ c(e), so f (S ≤ c(S) (the flow across any cut S is not

more than the capacity of the cut). By Lemma 2, | f | = f (S), so | f | ≤ c(S) for any cut

S. ■

Let f be a feasible flow on a network G. The corresponding residual network,

denoted Gf , is a network that has the same vertices as the network G, but has edges

with capacities cf (v,w) = c(v,w) – f (v,w). Only edges with non-zero capacity,

cf (v,w) > 0, are included in Gf .

Note that the feasibility conditions imply that cf (v,w ≥ 0 and

 cf (v,w ≤ c(v,w) + c(w, v) .

This means all capacities in the residual network will be non-negative.

Lemma 3.3 (E.Demaine, D. Karger, 2003) Let G = (V,E) be a flow network with

source s, target t, and flow function f. Let Gf be the residual network of G induced by

f, and let f ′ be a flow function of Gf . Then the flow sum f + f ′ is a flow in G with

value | f + f ′| = | f |+| f ′|.

Proof: Need to show that the three flow properties are fulfilled.

Capacity constraint: For all u, v ∈ V : (f ′ + f)(u, v) ≤ c(u, v)

Skew symmetry: For all u, v ∈ V : (f + f ′)(u, v) = − (f + f ′)(v, u)

Flow conservation: For all u ∈ V \ {s, t} : ∈ = 0

Value of flow: | f + f ′| = ∈

 = ∈

 = ∈ ∈

 = | f | + | f ′| . ■

An augmenting path is a directed path from the node s to node t in the residual

network Gf .

34

Figure 3.13 : An example of a residual network. This residual network corresponds

to the network depicted in Figure 3.9 and the flow in Figure 3.10. The dashed line

corresponds to a possible augmenting path.

The edges in a residual network either indicate flow that is still under an original

edge‟s capacity, or flow that has already been used. The existence of an augmenting

path indicates that more flow can be achieved without violating capacity limitations

by increasing traffic pushed along edges with capacity remaining and/or decreasing

traffic along a currently used edge. The idea of the Ford-Fulkerson scheme is to keep

finding augmenting paths, using each to its capacity, recalculating the residual

network, and repeating until no more augmenting paths exist.

Note that if we have an augmenting path in Gf , then this means we can push more

flow along such a path in the original network G. To be more precise, if we have an

augmenting path (s, v1, v2, . . . vk , t), the maximum flow we can push along that path

is min{cf (s, v1), cf (v1, v2), cf (v2, v3), . . . cf (vk−1, vk), cf (vk, t)}. Therefore, for a given

network G and flow f, if there exists an augmenting path in Gf , then the flow f is not

a maximum flow.

More generally, if f ′ is a feasible flow in Gf , then f +f ′ is a feasible flow in G. The

flow f +f ′ stil satisfies conservation because flow conservation is linear. The flow

f + f ′ is feasible because we can rearrange the inequality f ′(e ≤ cf (e) = c(e) – f (e) to

get f ′(e) + f (e ≤ c(e). Conversely, if f ′ is a feasible flow in G, then the flow f – f ′ is

a feasible in Gf .

s

 a

t

b

1

2

1 1

2

1

35

Straightforward to formulate the maximum flow problem as a linear programming

problem:

 maximize (,)
v V

f s v

 subject to: f (u, v) ≤ c(u, v), u, v ∈ V

 f (u, v) = − f (v, u), u, v ∈ V

 (,) 0
v V

f s v

 , u ∈ V \ {s, t}

Note that this formulation is not in standard form: There exist equality constraints in

the formulation, and there are no nonnegativity constraints.

Theorem 3.1: Max-flow min-cut theorem (E.Demaine, D. Karger, 2003) In a flow

network G, the following conditions are equivalent:

1. A flow f is a maximum flow.

2. The residual network Gf has no augmenting paths.

3. | f | = c(S) for some cut S.

These conditions imply that the value of the maximum flow is equal to the value of

the minimum s-t cut: maxf | f | = minS c(S), where f is a flow and S is a s-t cut .

Proof: We show that each condition implies the other two.

 1 ⇒ 2: If there is an augmenting path in Gf , then we previously argued that we

can push additional flow along that path, so f was not a maximum flow. 1 ⇒ 2 is the

contrapositive of this statement.

 2 ⇒ 3: If the residual network Gf has no augmenting paths, s and t must be

disconnected. Let S = {vertices reachable from s in Gf }. Since t is not reachable, the

set S describes a s-t cut.

36

Figure 3.14: Network Gf is disconnected. The set S contains all the nodes that are

reachable from s.

By construction, all edges (v,w) crossing the cut have residual capacity 0. This means

in the original network G, these edges have f(v,w) = c(v,w). Therefore,

| f | = f (S) = c(S).

 3 ⇒ 1: If for some cut S, | f | = c(S), we know f must be a maximum flow.

Otherwise, we would have a flow g with | g | > c(S), contradicting Lemma 3.3.

From (1) and (3), we know that the maximum flow cannot be less than the value of

the minimum cut, because for some S, | f | = c(S) and c(S) is at least as big as the

minimum cut value. Lemma 3.3 tells us that the maximum flow can not be greater

than the minimum cut value. Therefore, the maximum flow value and the minimum

cut value are the same. ■

Ford-Fulkerson Algorithm

The Ford-Fulkerson algorithm solves the problem of finding a maximum flow for a

given network. The description of the algorithm is as follows:

1. Start with f (v,w) = 0.

2. Find an augmenting path from s to t in Gf (using, for example, a depth first search

or similar algorithms).

3. Use the augmenting path found in the previous step to increase the flow.

4. Repeat until there are no more augmenting paths in Gf .

If the capacities are all integers, then the running time is O(m|f |). This is true because

finding an augmenting path and updating the flow takes O(m) time, and every

augmenting path we find must increase the flow by an integer that is at least 1. In

general, if we have integral capacities, then our solution satisfies an integrality

property: there exists an integral maximal flow. This happens because every

augmenting path increases flows by an integer amount.

37

For example, There are a bunch of junctions (nodes in the graph) and a bunch of

pipes (edges in the graph) connecting the junction. The pipe will only allow water to

flow one way (the graph is directed). Each pipe has also has a capacity (the weight of

the edge), representing the maximum amount of water that can flow through the pipe.

Finally, we pour an infinite amount of water into the source vertex. The problem is to

find the maximum flow of the graph - the maximum amount of water that will flow

to the target. Below is an example of a network flow graph:

Figure 3.15 : A simple network flow graph. There are currently no water flowing.

It is fairly easy to see that the maximum flow in the above figure is 6.

We can flow 2 units of water from s → a → t, 2 units of water from s → b → a → t,

and 2 units of water from s → b → t. This gives a flow of 6 and since all incoming

edge to the sink are saturated, this is indeed the maximum flow. Note that in the

example, not all pipe are saturated with water.

For Ford Fulkerson Method, it was easy to see the solution in the above example,

but how do we find the solution in general? One idea is to keep finding path from s

to t along pipes which still has some capacities remaining and push as much flow

from s to t as possible. We will then terminate once we can‟t find any more path.

This idea seem to work since it is exactly how we found the maximum flow in the

example. However, there is one problem - we cannot guarantee which path we‟ll find

first. In fact, if we picked the wrong path, the whole algorithm will go wrong. For

example, what happens if the first path we found was s → b → a → t. If we push as

much flow as possible, then we end up with the following:

38

 Figure 3.16 : We have pushed 3 flow along the path s → b → a → t.

Now we have run into a problem: our only options left are to push 1 unit of water

along the path s → a → t and 1 unit of water along s → b → t. After that, we won‟t

be able to find any more path from s to t. Yet, we have only found 5 flow, which is

not the maximum flow. Thus, the idea is not optimal since it depends on how we

picked our path. While we can try to find a ”good” path-picking algorithm, it would

be nice if the algorithm is not dependent on the paths we chose.

A crucial observation is that there is actually another path from s to t other than the

two that we mentioned above! Suppose we redirect 2 units of water from b → a → t

to b → t, this will decrease the amount of water running through the pipe (a, t) to 0.

Now we have a path from s → a → t in which we can flow 2 units of water. The

graph now looks as follows:

(a) (b)

Figure 3.17 : (a) The bolded edge indicate which pipe has their flow adjusted.(b) The

dashed edges are the edges we added in the the residual graph. The capacity of the

dashed edge is the same as the amount of water carried by the solid edge in the

opposite direction.

39

It is now easy to see that we can push 1 unit of water along s → b → a → t to obtain

the maximum flow of 6. If we carefully study the above figure, what we have

essentially done is to flow 2 unit of water along s → a, and then push back 2 unit of

water from a → b, and finally redirect the pushed back flow along b → t to the

target. So the key to completing the algorithm is the idea of pushing back flow if we

have x units of water flowing in the pipe (u,v), then we can pretend there is a pipe

(v,u) with capacity x when we are trying to find a path from s to t.

This is the concept of residual graph. The residual graph of a network flow is

essentially the network graph except that for every edge (u, v) that currently carries x

unit of water, there is an edge (v, u) with capacity x in the residual graph. The

following figure shows the residual graph after finding our first path in Figure 3.11

(b).

3.2.4 Transportation Problem

One of the most important and successful applications of quantitative analysis to

solving business problems has been in the physical distribution of products,

commonly referred to as transportation problems. Basically, the purpose is to

minimize the cost of shipping goods from one location to another so that needs of

each arrival area met and every shipping location operates within its capacity. (Reeb,

J. and Leavengood, S., 2002). The problem was formalized by the French

mathematician Gaspard Monge in 1781. In the 1920s A.N. Tolstoi was one of the

first to study the transportation problem mathematically. In 1930, in the collection

Transportation Planning Volume I for the National Commissariat of Transportation

of the Soviet Union, he published a paper "Methods of Finding the Minimal

Kilometrage in Cargo-transportation in space" (Schrijver, A., 2003).

Transportation problems deal with the determination of a minimum-cost plan for

transporting a commodity from a number of sources to a number of destinations. To

be more specific, let there be m sources (or origins) that produce the commodity and

n destinations (or targets) that demand the commodity. At the i-th source,

i = 1, 2, … ,m, there are si units of the commodity available. The demand at the j-th

destination, j = 1, 2, … , n, is denoted by dj. The cost of transporting one unit of the

http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Gaspard_Monge
http://en.wikipedia.org/wiki/1781

40

commodity from the i-th source to the j-th destination is cij . Let xij, 1 ≤ i ≤ m;

1 ≤ j ≤ n, be the numbers of the commodity that are being transported from the i-th

source to the j-th destination. Problem is to determine those xij that will minimize the

overall transportation cost (Hiller, F.S. and Lieberman, G.J.,1995).

Figure 3.18: Transportation Problem

We note that at the i-th source, we have the i-th source equation

1

n

ij i

j

x s

 , 1 ≤ i ≤ m,

while at the j-th destination, we have the j-th destination equation

1

m

ij j

i

x d

 , 1 ≤ j ≤ n.

Notice that if the total demand equals the total supply, then we have the following

balanced transportation equation:

1 1 1 1 1 1

m m n n m n

i ij ij j

i i j j i j

s x x d

 .

and the model is said to be balanced.

In the case of an unbalanced model, i.e. the total demand is not equal to the total

supply, we can always add dummy source or dummy destination to complement the

41

difference. In the following, we only consider balanced transportation models. They

can be written as the following linear programming problem:

minimize
1 1

m n

ij ij

i j

c x

1

n

ij i

j

x s

 1 ≤ i ≤ m,

subject to
1

m

ij j

i

x d

 1 ≤ j ≤ n ,

 xij ≥ 0 1 ≤ i ≤ m 1 ≤ j ≤ n ,

where
1 1

m n

i j

i j

s d

 .

Notice that there are mn variables but only m+n equations.

The transportation table:

The North – West Corner Rule

The North-West corner rule is a method for computing a basic feasible solution of a

transportation problem where the basic variables are selected from the North West

corner. Steps involved in this method are as follows (Reeb, J. and Leavengood, S.,

2002):

c11 c12 … … c1n

 c21 c22 … … c2n

 … … … … …

 cm1 cm2 … … cmn

s1

s2

…

sm

supply D1 D2 Dn …

 S1

 S2

 …

 Sm

d1 d2 dn … requirement

42

Step 1: The first assignment is made in the cell occupying the upper left-hand (North

West) corner of the transportation table. The maximum feasible amount is allocated

there, i.e; x11 = min(s1, d1) .

Step 2: If d1 > s1, the capacity of origin (source) S1 is exhausted but the requirement

at D1 is not satisfied. So move downs to the second row, and make the second

allocation:

x21 = min (s2 , d1 – x11) in the cell (2,1).

If s1 > d1, allocate x12 = min (s1 – x11, d2) in the cell (1,2) .

Continue this until all the requirements and supplies are satisfied.

For example, the North – West Corner method solution is as follows.

 Figure 3.19: The North – West Corner Rule (a)

 Figure 3.20: The North – West Corner Rule (b)

 D1 D2 D3 Supply

S1
7 5 4 20

S2
6 2 6 10

Demand 8 8 14

 D1 D2 D3 supply

S1

7

 8

5

 8

4

 4
 20 12 4 0

S2

6 2 6

 10
 10 0

Demand 8 0 8 0 14 10 0

43

Now all requirements have been satisfied and hence an initial basic feasible solution

to the transportation problem has been obtained by North –West Corner rule. Since

the allocated cells do not form a loop, the feasible solution is non-degenerate. Total

transportation cost with this allocation is:

7 8 5 8 4 4 10 6 172z .

44

CHAPTER 4

LOGISTICS and TRANSPORTATION

 The operation of transportation determines the efficiency of moving products. The

progress in techniques and management principles improves the moving load,

delivery speed, service quality, operation costs, the usage of facilities and energy

saving. Transportation takes a crucial part in the manipulation of logistic. Reviewing

the current condition, a strong system needs a clear frame of logistics and a proper

transport implements and techniques to link the producing procedures. The objective

of this chapter is to define logistics and the role of transportation in logistics.

4.1 Logistics

Logistics is the science of planning, organizing and managing activities that

provide goods or services (MDC, LogLink / Logistics World, 1997). It is the

management of the flow of goods and services between the point of origin and the

point of consumption in order to meet the requirements of customers. Logistics is

now an important part of the supply chain for many businesses and seems a modern

concept. Logistics involves the integration of information, transportation, inventory,

warehousing, material handling, and packaging, and often security.

The Council of Supply Chain Management Professionals (CSCMP) has defined

logistics as “…that part of Supply Chain Management that plans, implements, and

controls the efficient, effective forward and reverse flow and storage of goods,

services and related information between the point of origin and the point of

consumption in order to meet customers' requirements.” (Tseng, Y.,Yue, W.L. and

Taylor, M., 2005).

4.2 History of Logistics

Logistics was initially a military activity concerned with getting soldiers and

munitions to the battlefront in time for flight, but it is now seen as an integral part of

the modern production process. The main background of its development is that the

recession of America in the 1950s caused the industrial to place importance on goods

circulations. The term, logistics, was initially developed in the context of military

http://en.wikipedia.org/wiki/Good_(economics)
http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Inventory
http://en.wikipedia.org/wiki/Warehousing
http://en.wikipedia.org/wiki/Packaging
http://en.wikipedia.org/wiki/Security

45

activities in the late 18th and early 19th centuries and it launched from the military

logistics of World War II. The probable origin of the term is the Greek logistikos,

meaning „skilled in calculating‟ (BTRE, 2001). Military definitions typically

incorporate the supply, movement and quartering of troops in a set. And now, a

number of researches were taken and made logistics applications from military

activities to business activities. Business logistics was not an academic subject until

the 1960s. A key element of logistics, the trade-off between transport and inventory

costs, was formally recognized in economics at least as early as the mid-1880s

(BTRE, 2001).

The further tendency of logistics in the early 21st century is logistics alliance,

Third Party Logistics (3PL) and globalised logistics. Third-party logistics (3PL)

involves using external organizations to execute logistics activities that have

traditionally been performed within an organization itself (Baziotopoulos, 2008).

According to this definition, third-party logistics includes any form of outsourcing of

logistics activities previously performed in-house. If, for example, a company with

its own warehousing facilities decides to employ external transportation, this would

be an example of third-party logistics. Logistics is an emerging business area in

many countries. Logistics circulation is an essential of business activities and

sustaining competitiveness, however, to conduct and manage a large company is cost

consuming and not economic. Therefore, alliance of international industries could

save working costs and cooperation with 3PL could specialize in logistics area

(Proceedings of the Eastern Asia Society for Transportation Studies, 2005).

 Military Logistics

 In military science, maintaining one's supply lines while disrupting those of the

enemy is a crucial some would say the most crucial element of military strategy,

since an armed force without resources and transportation is defenseless. The defeat

of the British in the American War of Independence and the defeat of the Axis in the

African theatre of World War II are attributed to logistical failure. The historical

leaders Hannibal Barca, Alexander the Great, and the Duke of Wellington are

considered to have been logistical geniuses. Militaries have a significant need for

logistics solutions, and so have developed advanced implementations. Integrated

http://en.wikipedia.org/wiki/Military_strategy
http://en.wikipedia.org/wiki/American_War_of_Independence
http://en.wikipedia.org/wiki/World_War_II
http://en.wikipedia.org/wiki/Hannibal_Barca
http://en.wikipedia.org/wiki/Alexander_the_Great
http://en.wikipedia.org/wiki/Arthur_Wellesley,_1st_Duke_of_Wellington
http://en.wikipedia.org/wiki/Integrated_Logistics_Support

46

Logistics Support (ILS) is a discipline used in military industries to ensure an easily

supportable system with a robust customer service (logistic) concept at the lowest

cost and in line with (often high) reliability, availability, maintainability and other

requirements as defined for the project. In military logistics, logistics officers

manage how and when to move resources to the places they are needed (Chang,

Y.H.,1998).

Business Logistics

Logistics as a business concept evolved in the 1950s due to the increasing

complexity of supplying businesses with materials and shipping out products in an

increasingly globalized supply chain, leading to a call for experts called supply chain

logisticians. Business logistics can be defined as "having the right item in the right

quantity at the right time at the right place for the right price in the right condition to

the right customer", and is the science of process and incorporates all industry

sectors. In business, logistics may have either internal focus, or external focus

covering the flow and storage of materials from point of origin to point of

consumption. The main functions of a qualified logistician include inventory

management, purchasing, transportation, warehousing, consultation and the

organizing and planning of these activities. Logisticians combine a professional

knowledge of each of these functions to coordinate resources in an organization.

There are two fundamentally different forms of logistics: one optimizes a steady flow

of material through a network of transport links and storage nodes; the other

coordinates a sequence of resources to carry out some project.

4.3 Logistics and Industry

Logisticians work in virtually every industry in the business world, including:

Aerospace, Airlines, Auto Industry, Clothing & Apparel, Courier & Messaging,

Engineering, Food & Grocery, Forestry, Freight Forwarding, Government, Hotel

and Hospitality, International Trade, Military and National Defence, Natural Gas,

Public Transportation, Oil, Railways, Shipping, etc.

http://en.wikipedia.org/wiki/Military_logistics
http://en.wikipedia.org/wiki/Logistics_Officer
http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/Inventory_management
http://en.wikipedia.org/wiki/Inventory_management
http://en.wikipedia.org/wiki/Purchasing
http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Warehousing
http://en.wikipedia.org/wiki/Planning
http://en.wikipedia.org/wiki/Transport
http://en.wikipedia.org/wiki/Sequence

47

4.4 Transportation Planning in Logistics

Transport or transportation is the movement of people and goods from one location

to another. Transport is performed by various modes, such as air, rail, road, water,

cable, pipeline and space. The field can be divided into infrastructure, vehicles, and

operations. Transport is important since it enables trade between peoples, which in

turn establishes civilizations. Transport infrastructure consists of the fixed

installations necessary for transport, and may be roads, railways, airways, waterways,

canals and pipelines, and terminals such as airports, railway stations, bus stations,

warehouses, trucking terminals, refueling depots (including fueling docks and fuel

stations), and seaports. Terminals may be used both for interchange of passengers

and cargo and for maintenance. Vehicles traveling on these networks may include

automobiles, bicycles, buses, trains, trucks, people, helicopters, and aircraft.(from

Wikipedia, “Transport,” http://en.wikipedia.org/wiki/Transportation).

Logistics is concerned with the efficient flow of raw materials, of work in process

inventory, and of finished goods from supplier to customer. In addition to

transportation, logistics entails inventory control, warehousing, materials handling,

order processing, and related information activities involved in the flow of products.

The globalization of business has increased the need for global supply chains that

arelonger, more complex, and inherently costlier. Businesses will seek logistics

service suppliers who can meet their global logistics needs. This development will

spur the growth of global third-party logistics (3PL) providers who provide a full

portfolio of logistics services, including transportation. It also will encourage the

development of modern and efficient transport infrastructures to minimize the cost of

transport operations on major trade routes. These infrastructures include right of way,

intermodal facilities, and communications links for all modes. Pull processes require

fast, frequent, and reliable transportation systems with shipment visibility. This

requirement has fueled the growth of time-sensitive transport alternatives such as air

freight and priority ground transport. Transport suppliers must be able to provide

shipment visibility by adopting mobile communication, e-commerce, vehicle status,

and other Technologies (Fair, M.L. and Williams, E.W, 1981).

http://en.wikipedia.org/wiki/Road
http://en.wikipedia.org/wiki/Railway
http://en.wikipedia.org/wiki/Airway_(aviation)
http://en.wikipedia.org/wiki/Waterway
http://en.wikipedia.org/wiki/Canal
http://en.wikipedia.org/wiki/Pipeline_transport
http://en.wikipedia.org/wiki/Airport
http://en.wikipedia.org/wiki/Train_station
http://en.wikipedia.org/wiki/Bus_station
http://en.wikipedia.org/wiki/Warehouse
http://en.wikipedia.org/wiki/Fuel_station
http://en.wikipedia.org/wiki/Fuel_station
http://en.wikipedia.org/wiki/Seaport
http://en.wikipedia.org/wiki/Automobile
http://en.wikipedia.org/wiki/Bicycles
http://en.wikipedia.org/wiki/Buses
http://en.wikipedia.org/wiki/Train
http://en.wikipedia.org/wiki/Truck
http://en.wikipedia.org/wiki/Pedestrian
http://en.wikipedia.org/wiki/Helicopter
http://en.wikipedia.org/wiki/Fixed-wing_aircraft

48

Maritime Logistics

Maritime industry plays an important role in international freight. It can provide a

cheap and high carrying capacity conveyance for consumers. Therefore, it has a vital

position in the transportation of particular goods, such as crude oil and grains. Its

disadvantage is that it needs longer transport time and its schedule is strongly

affected by the weather factors. To save costs and enhance competitiveness, current

maritime logistics firms tend to use largescaled ships and cooperative operation

techniques. The operation of maritime transport industry can be divided into three

main types. Liner shipping, the business is based on the same ships, routes, price, and

regular voyages. Tramp shipping, the characters of this kind of shipping are irregular

transport price, unsteady transport routes, and schedule. Industry shipping, the main

purpose of industry shipping is to ensure the supply of raw materials.

 Figure 4.1 : The role of transportation in logistics

Air Freight Logistics

Air freight logistics is necessary for many industries and services to complete their

supply chain and functions. It provides the delivery with speed, lower risk of

damage, security, flexibility, accessibility and good frequency for regular

destinations. Reynolds-Feighan (2001) said air freight logistics is selected „when the

49

value per unit weight of shipments is relatively high and the speed of delivery is an

important factor‟. The characteristics of air freight logistics are that: (1) airplanes and

airports are separated. Therefore, the industries only need to prepare planes for

operation; (2) it allows to speed delivery at far destinations; (3) air freight transport is

not affected by landforms (Reynolds-Feighan, 2001).

Land Logistics

Land logistics is a very important link in logistics activities. It extends the delivery

services for air and maritime transport from airports and seaports. The most positive

characteristic of land logistics is the high accessibility level in land areas. The main

transport modes of land logistics are railway transport, road freight transport and

pipeline transport. Railway transport has advantages like high carrying capacity,

lower influence by weather conditions, and lower energy consumption while

disadvantages as high cost of essential facilities, difficult and expensive

maintenance, lack of elasticity of urgent demands, and time consumption in

organizing railway carriages. Road freight transport has advantages as cheaper

investment funds, high accessibility, mobility and availability. Its disadvantages are

low capacity, lower safety, and slow speed. The advantages of pipeline transport are

high capacity, less effect by weather conditions, cheaper operation fee, and

continuous conveyance; the disadvantages are expensive infrastructures, harder

supervision, goods specialization, and regular maintenance needs (Tilanus, B., 1997).

Transportation systems are commonly represented using networks as an analogy

for their structure and flows. Transport networks belong to the wider category of

spatial networks. Transport networks are better understood by the usage level (e.g.

number of passengers, tons, vehicles, capacity) than by their sole topology based on

a binary state (i.e. presence or absence of links). Inequalities between locations can

often be measured by the quantity of links between nodes and the related revenues

generated by traffic flows.

The efficiency of a network can be measured through graph theory and network

analysis. These methods rest on the principle that the efficiency of a network

depends partially on the lay-out of nodes and links. Obviously some network

structures have a higher degree of accessibility than others, but careful consideration

must be given to the basic relationship between the revenue and costs of specific

transport networks.

http://people.hofstra.edu/geotrans/eng/ch1en/conc1en/costrevenuenetwork.html

50

CHAPTER 5

APPLICATIONS OF GRAPH THEORY IN LOGISTICS

Transportation is a critical part of any global logistics effort because of the long

distances that can separate a firm from its customers. A transportation system can be

inbound and outbound. A transportation system must fit within other logistics

activities. Historically, national governments have exercised tight economics control

over transport organizations, either through direct company ownership or through

laws intended to regulate the way those businesses were run. This governmental

involvement in the business of transportation is gradually waning as nations move to

privatize state-owned businesses and deregulate privately held firms. For the logistics

manager, the competitive nature of goods movement today means greater

opportunities for obtaining better service and / or lower costs for transport providers.

The five primary modes of transportation are rail, road, pipeline, water and air. Each

has different economic and service characteristics that are summarized in the

following table (see figure 5.1).

 Rail Road Water Air Pipeline

Price Low High Very low Very high Very low

Speed Slow Fast Very slow Very fast Slow

Door Sometimes Yes Sometimes No Sometimes

Reliability Medium Medium Low Very high Very high

Packing needs High Medium High Low Nil

Risk of loss and

damage
High Medium Medium Low Very low

Flexibility Low High Low Very low Very low

Environmental

impact
Low High Low Medium Low

 Figure 5.1 : Economics and service characteristics

The transportation industry facilitates the movement of goods for the purposes of

trade, production and consumption. Good transportation systems are often described

as satisfying several quality factors, such as cost, time and length. The relationships

among the elements are often associated with linear transport routes or networks.

51

The usual representation is that network junctions are represented as nodes and

routes between them are represented by arcs (links) as used in planar graphs.

Example 5.1: (The Shortest Path Problem) A gold company should carry some

gold stocks from Bergama to stores in İzmir. One of its current job is to move gold

stocks by using shortest routes.

 Figure 5.2: Map of İzmir

52

Node Node City City Distance(km)

v1 v2 Bergama Dikili 29

v1 v3 Bergama Kınık 19

v1 v4 Bergama Aliağa 47

v4 v5 Aliağa Foça 34

v4 v6 Aliağa Menemen 26

v5 v6 Foça Menemen 36

v6 v7 Menemen Çiğli 17

v6 v8 Menemen Karşıyaka 36

v7 v8 Çiğli Karşıyaka 24

v8 v9 Karşıyaka Bayraklı 9

v8 v10 Karşıyaka Bornova 13

v9 v10 Bayraklı Bornova 6

v9 v11 Bayraklı Konak 9

v10 v11 Bornova Konak 13

v10 v15 Bornova Buca 14

v10 v16 Bornova Kemalpaşa 29

v11 v12 Konak Balçova 9

v11 v14 Konak Gaziemir 14

v11 v15 Konak Buca 3

v11 v18 Konak Karabağlar 23

v12 v13 Balçova Narlıdere 14

v12 v18 Balçova Karabağlar 10

v13 v17 Narlıdere Güzelbahçe 18

v13 v18 Narlıdere Karabağlar 20

v14 v15 Gaziemir Buca 14

v14 v18 Gaziemir Karabağlar 16

v14 v23 Gaziemir Menderes 12

v15 v16 Buca Kemalpaşa 30

v15 v23 Buca Menderes 26

v15 v24 Buca Torbalı 52

v16 v24 Kemalpaşa Torbalı 33

v16 v25 Kemalpaşa Bayındır 54

v17 v18 Güzelbahçe Karabağlar 35

v17 v19 Güzelbahçe Urla 16

v17 v22 Güzelbahçe Seferihisar 22

v17 v23 Güzelbahçe Menderes 45

v18 v23 Karabağlar Menderes 26

v19 v20 Urla Karaburun 66

v19 v21 Urla Çeşme 56

v19 v22 Urla Seferihisar 19

v22 v23 Seferihisar Menderes 39

v23 v24 Menderes Torbalı 25

v23 v30 Menderes Selçuk 60

v24 v25 Torbalı Bayındır 43

v24 v29 Torbalı Tire 42

v24 v30 Torbalı Selçuk 41

53

Node Node City City Distance(km)

v25 v26 Bayındır Ödemiş 38

v25 v29 Bayındır Tire 23

v26 v27 Ödemiş Kiraz 29

v26 v28 Ödemiş Beydağ 30

v26 v29 Ödemiş Tire 37

v27 v28 Kiraz Beydağ 17

v29 v30 Tire Selçuk 41

Figure 5.3: Distances of districts in İzmir

 Figure 5.4: A map of İzmir is converted into a graph

 v1

 v2

v3

v4

v5

 v6

v7

v12

v8

v9 v10

v11

v13

v17

v19

v20

v21

v16

v15

v14
v18

v22

v23

v24

v30

v29

v25

v26

v27

v28

54

Dijkstra‟s algorithm is used on this map for finding the shortest routes. The solution

is:

 Figure 5.5: Application of the shortest path problem

 v1

 v2

v3

v4

v5

 v6

v7

v12

v8

v9 v10

v11

v13

v17

v19

v20

v21

v16

v15

v14
v18

v22

v23

v24

v30

v29

v25

v26

v27

v28

 0

 47

 81

 73

 90

 19

 29

 141

 109

 118 122

 151

 136 127

 150

 168 250

 130

 243

 205
 146

 153
 240

 273

 178

 184

 272

 190

 213

 220

55

From Bergama Path Distance(km)

to Dikili Bergama-Dikili 29

to Kınık Bergama-Kınık 19

to Aliağa Bergama-Aliağa 47

to Foça Bergama-Aliağa-Foça 81

to Menemen Bergama-Aliağa-Menemen 73

to Çiğli Bergama-Aliağa-Menemen-Çiğli 90

to Karşıyaka Bergama-Aliağa-Menemen-Çiğli-Karşıyaka 109

to Bayraklı Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı

118

to Bornova Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova

122

to Konak Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak

127

to Balçova Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova

136

to Narlıdere Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere

150

to Gaziemir Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir

141

to Buca Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Buca

130

to Kemalpaşa Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa

151

to Güzelbahçe Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe

168

to Karabağlar Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Karabağlar

146

to Urla Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe-

Urla

184

to Karaburun Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe-

Urla-Karaburun

250

to Çeşme Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe-

Urla-Çeşme

240

to Seferihisar Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe-

Seferihisar

190

to Menderes Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir-Menderes

153

to Torbalı Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir-Menderes-Torbalı

178

to Bayındır Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa-Bayındır

205

to Ödemiş Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa-Bayındır-Ödemiş

243

56

From Bergama Path Distance (km)

to Kiraz Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa-Bayındır-Ödemiş-Kiraz

272

to Beydağ Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa-Bayındır-Ödemiş-Beydağ

273

to Tire Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir-Menderes-Torbalı-

Tire

220

to Selçuk Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir-Menderes-Selçuk

213

Figure 5.6: Shortest Routes

Example 5.2:(Maximum Flow Problem) The BMZ Company is a European

manufacturer of luxury automobiles. Its exports to the United States are particularly

important. BMZ cars are becoming especially popular in California, so it is

particularly important to keep the Los Angeles center well supplied with replacement

parts for repairing these cars. BMZ needs to execute a plan quickly for shipping as

much as possible from the main factory in Stuttgart, Germany to the distribution

center in Los Angeles over the next month. The limiting factor on how much can be

shipped is the limited capacity of the company‟s distribution network.How many

units should be sent through each shipping lane to maximize the total units flowing

from Stuttgart to Los Angeles?

Figure 5.7: Application of Maximum Flow Problem (a)

ST

LI

BO

RO

NO

NY

LA

New York

Rotterdam

Stuttgart

Lisbon
New Orleans

{40 units max.]

Bordeaux

[70 units max.]

Los Angeles

[80 units max.]

[60 units max.]

[50 units max.]

[30 units max.]

[50 units max.]

[40 units max.]

[70 units max]

57

 Figure 5.8: Application of Maximum Flow Problem (b)

The problem is solved by using Ford Fulkerson algorithm. First agumenting path is

ST-RO-NY-LA, second is ST-BO-NY-LA, third is ST-BO-NO-LA, and final

agumenting path is ST-LI-NO-LA. The solution is represented:

Figure 5.9: Application of Maximum Flow Problem (c)

NY

LA

NO

BO

LI

ST

RO
 50/60

 50/50

 70/70

 30/40

 30/40

 80/80

 70/70

 30/30

 40/50 Source
Target

NY

LA

NO

BO

LI

ST

RO
 60

 50

 70

 40

 40

 80

 70

 30

 50

58

From To Flow Capacity Node Net Flow

Stuttgart Rotterdam 50 50 Stuttgart 150

Stuttgart Bordeaux 70 70 Rotterdam 0

Stuttgart Lisbon 30 40 Bordeaux 0

Rotterdam New York 50 60 Lisbon 0

Bordeaux New York 30 40 New York 0

Bordeaux New Orleans 40 50 New Orleans 0

Lisbon New Orleans 30 30 Los Angeles -150

New York Los Angeles 80 80

New Orleans Los Angeles 70 70

 Maximum

Flow

150

 Figure 5.10: Application of Maximum Flow Problem (d)

Example 5.3: (Transportation Problem) A Medical Supply company produces

catheters in packs at three production facilities. The company ships the packs from

the production facilities to four warehouses. The packs are distributed directly to

hospitals from the warehouses. The table is shown the costs per pack to truck to the

four warehouses.

Figure 5.11: Application of Transportation Problem (a)

Capacity Demand

Ankara 100 Adana 150

İzmir 300 Kayseri 100

İstanbul 200 Konya 200

 Trabzon 150

59

The problem is solved by using North-West Corner method. The solution is

represented:

Figure 5.12: Application of Transportation Problem (b)

Figure 5.13: Application of Transportation Problem (c)

The previous table show the process of satisfying all constraints and allows us to

begin with a starting feasible solution. Multiply the quantity in each cell by the cost.

60

 Figure 5.14: Application of Transportation Problem (d)

The solution is represented by a graph like this:

Figure 5.15: Application of Transportation Problem (e)

Ankara (100)

İzmir (300)

İstanbul (200)

Adana (150)

Kayseri (100)

Konya (200)

Trabzon (150)

19

100

24
28

14

50

100

150

18

50

22

150

61

CHAPTER 6

CONCLUSION

In this thesis, we have solved three related problems in logistics. First, given a

network where the speed of the connection between every two components is known,

we can find the fastest (shortest) possible connection from one component to another

by applying Dijkstra‟s algorithm to corresponding graph. Second, given a network

where there is a limit to how much traffic can pass over each connection between

components, we can use the Ford- Fulkerson algorithm to determine a flow function

that gives us the maximum possible traffic between one component and another.

Third one is transportation problem. This type of problem is known as distribution or

transportation problem in which the key idea is to minimize the cost or the time of

transportation by using North-West Corner method. Finally, transportation in

logistics is modeled and examined by applying network problems and their

algorithms.

62

GLOSSARY

adjacent

Two vertices of a graph G are said to be adjacent if there exists an edge of G

joining the two vertices.

arcs
The lines connecting the nodes in a network.

bipartite

A graph is bipartite if its vertices can be partitioned into two disjoint subsets

U and V such that each edge connects a vertex from U to one from V. A

bipartite graph is a complete bipartite graph if every vertex in U is

connected to every vertex in V. If U has n elements and V has m, then we

denote the resulting complete bipartite graph by Kn,m.

cardinality

The number of elements in a set is called its cardinality.

complete graph

A complete graph with n vertices (denoted Kn) is a graph with n vertices in

which each vertex is connected to each of the others (with one edge between

each pair of vertices). Here are the first five complete graphs:

complete bipartite

A complete bipartite graph is a bipartite graph in which each vertex in V1 is

joined to each vertex in V2 by a unique edge. If V1 has r vertices

and V2 has s vertices then the corresponding complete bipartite graph is

denoted Kr,s.

component

A subgraph H of a graph G is called a component of G if H is a maximally

connected subgraph of G.

63

connected

For vertices u and v of a graph G, u is said to be connected to v if G contains

a u - v path. The graph G is called a connected graph if the vertices u and v

are connected for any pair u ,v ∈ V (G).

cycle
 A cycle is a walk of length n ≥ 3 in which the begin and end-vertices, are the

same, but in which no other vertices repeat. A graph consisting of a single

cycle of length n is so called and denoted Cn.

degree

The degree (or valence) of a vertex is the number of edge ends at that vertex.

For example, in this graph all of the vertices have degree three.

In a digraph (directed graph) the degree is usually divided into the in-degree

and the out-degree (whose sum is the degree of the vertex in the underlying

undirected graph).

digraph

A digraph (or a directed graph) is a graph in which the edges are directed.

(Formally: a digraph is a (usually finite) set of vertices V and set of ordered

pairs (a,b) (where a, b are in V) called edges. The vertex a is the initial

vertex of the edge and b the terminal vertex.

disconnected

 A graph that is not connected is said to be disconnected.

edge

An edge is a 2 - element subset of the vertex set of a graph. Edges are

indicated by inter-connecting lines between vertices in graphical

representations of a graph.

edge set

The set E(G), comprised of all the edges of a graph G, is called the edge set

of the graph.

http://www.utm.edu/departments/math/graph/glossary.html#digraph
http://www.utm.edu/departments/math/graph/glossary.html#in-degree
http://www.utm.edu/departments/math/graph/glossary.html#out-degree
http://www.utm.edu/departments/math/graph/glossary.html#graph

64

end- vertex

 If the degree of a vertex is 1, then it is called an end-vertex.

Eulerian graph

A connected graph is Eulerian if it contains a closed trail that includes every

edge; such a trail is an Eulerian trail.

flow capacity

The maximum flow for an arc of the network. The flow capacity in one

direction may not equal the flow capacity in the reserve direction.

graph

Informally, a graph is a finite set of dots called vertices (or nodes) connected

by links called edges (or arcs). More formally: a simple graph is a (usually

finite) set of vertices V and set of unordered pairs of distinct elements of V

called edges.

Not all graphs are simple. Sometimes a pair of vertices are connected by

multiple edge yielding a multigraph. At times vertices are even connected to

themselves by a edge called a loop. Finally, edges can also be given a

direction yielding a directed graph (or digraph).

Hamiltonian graph

A connected graph is Hamiltonian if it contains a cycle that includes every

vertex; such a cycle is a Hamiltonian cycle.

incident

A vertex v and edge e of a graph G is said to be incident, if e joins v to

another vertex in G.

in-degree

The in-degree of a vertex v is the number of edges with v as their terminal

vertex.

http://www.utm.edu/departments/math/graph/glossary.html#multigraph
http://www.utm.edu/departments/math/graph/glossary.html#loop
http://www.utm.edu/departments/math/graph/glossary.html#digraph

65

induced subgraph

A subgraph H of a graph G is said to be induced if, for any pair of vertices x

and y of H, xy is an edge of H if and only if xy is an edge of G. In other

words, H is an induced subgraph of G if it has the most edges that appear in

G over the same vertex set. If H is chosen based on a vertex subset S of V(G),

then H can be written as G[S] and is said to be induced by S

isolated

A vertex of degree zero (with no edges connected) is isolated.

isomorphic

Two graphs G and H are said to be isomorphic, denoted by G ~ H, if there is

a one-to-one correspondence, called an isomorphism, between the vertices of

the graph such that two vertices are adjacent in G if and only if their

corresponding vertices are adjacent in H.

length

For the length of a path see path.

loop

A loop is an edge that connects a vertex to itself.

maximal flow

The maximum amount of flow that can enter and exist a network system

during a given period of time.

multiple

A set of arcs are multiple, or parallel, if they share the same head and the

same tail. A pair of arcs are anti-parallel if one's head/tail is the other's

tail/head.

http://www.utm.edu/departments/math/graph/glossary.html#degree
http://www.utm.edu/departments/math/graph/glossary.html#path

66

multiple edge

An edge such that there is another edge with the same endvertices; antonyms:

simple edge. The multiplicity of an edge is the number of multiple edges

sharing the same endvertices; the multiplicity of a graph, the maximum

multiplicity of its edges.

multigraph

 A multigraph is a graph with multiple edges between the same vertices .

network

A weighted graph, possibly directed or undirected, possibly containing

special vertices (nodes), such as source or sink.

node

 A synonym for vertex.

oriented graph

A graph that contains only arcs. When stated without any qualification, a

graph is almost always assumed to be undirected. Also, a digraph is usually

assumed to contain no undirected edges.

out-degree

The out-degree of a vertex v is the number of edges with v as their initial

vertex.

path
A walk in which no vertex is repeated is called a path. A graph solely

consisting of a path of order n is so called and denoted Pn.

planar
A graph is planar if it can be drawn on a plane so that the edges intersect only

at the vertices.

67

pseudograph

Informally, a pseudograph is a graph with multiple edges (or loops) between

the same vertices (or the same vertex). Formally: a pseudograph is a set V of

vertices along, a set E of edges, and a function f from E to {{u,v}|u,v in V}.

(The function f shows which vertices are connected by which edge.) An edge

is a loop if f(e) = {u} for some vertex u in V.

shortest route

Shortest path between two nodes in a network.

size

The cardinality of the edge set of a graph G is called the size of G.

source

A vertex of a network with in-degree of zero; see also target.

spanning tree

A spanning subgraph that is a tree. Every graph has a spanning forest. But

only a connected graph has a spanning tree.

subgraph

A graph H is a subgraph of a graph G if V(H) V(G) and every edge

of H is an edge of H. We write H G to mean H is a subgraph of G.

target

A vertex of a network with out-degree of zero; see also source.

trail

A trail is a walk in which all the edges are distinct.

transportation problem

A network flow problem that often involves minimizig the cost of shipping

goods from a set of orgins to a set of destinations; it can be formulated and

solved as a linear program by including a variable for each arc and a

constraint for each node.

http://en.wiktionary.org/w/index.php?title=spanning_tree&action=edit&redlink=1

68

tree
 A connected graph with no cycles.

undirected

A graph in which each edge symbolizes an unordered, transitive relationship

between two nodes. Such edges are rendered as plain lines or arcs.

vertex

 A vertex is a combinatorial element in terms of which a graph is defined.

Vertices are indicated by nodes in the graphical representation of a graph.

vertex set

 The set comprised of all vertices of a graph G, is called the vertex set of G.

walk

A walk in a graph G is an alternating sequence of incident vertices and edges.

The number of edges in the walk defines its length, while the number of

vertices defines its order.

weighted

Weighted edges symbolize relationships between nodes which are considered

to have some value, for instance, distance or lag time. Such edges are usually

annotated by a number or letter placed beside the edge. Weighted nodes also

have some value; this must be distinguished from identification.

weighted graph

A graph that associates a label (weight) with every edge in the graph.

Weights are usually real numbers. They may be restricted to rational numbers

or integers. Certain algorithms require further restrictions on weights; for

instance, the Dijkstra algorithm works properly only for positive weights.

http://en.wiktionary.org/wiki/real_number

69

REFERENCES

Ahuja, R.K., Magnanti, T.L., Orlin, J.B. (1993). “Network Flows: Theory,

Algorithms and Applications.” Prentice Hall.

Bang-Jensen, J and Gutin, G.(2007). Digraphs Theory, Algorithms and Applications.

Bollobas, B. (1998). Modern Graph Theory. New York: Springer-Verlag.

Brossard, E.(2010). Paper of Graph Theory: Network Flow, Washington.

Carroll, J. (2004) The magical reserve tracing system-RFID. Taiwan CNET,

http://taiwan.cnet.com/enterprise/technology/0,2000062852,2008707 1,00.htm.

Chang, Y.H. (1998) Logistical Management. Hwa-Tai Bookstore Ltd., Taiwan.

Chartrand, G. and Lesniak, L. (2000). Graphs & Digraphs, (Chapman & Hall / CRC).

Ciupala, L. (2010). Bulletin of the Transilvania University of Bra¸sov • Vol 3(52)

Series III: Mathematics, Informatics, Physics, 177-182.

Cooper, M.C., Lambert, D.M. and Pagh, J.D. (1997) Supply chain management:

more than a new name for logistics, International Journal of Logistics Management,

Vol. 8, No. 1, 1-13.

Cormen, T .H, Leiserson, C. E., Rivest, R.L., and Stein, C. (2001) [1990]. "26".

Introduction to Algorithms (2nd edition ed.). MIT Press and McGraw-Hill. pp. 696–

697.

Council of Logistics Management (1991) Definition of Logistics.

http://www.cscmp.org/.

Delaney, R. (1999). A Look Back in Anger at Logistics Productivity. 10th Annual

“State of Logistics Report,” Cass Information Systems and ProLogis, Saint Louis,

Mo.

Demaine, E. And Karger, D. (2003) Advanced Algorithms in Graph Theory.

Fair, M.L. and Williams, E.W.(1981). Transportation and Logistics. Business

Publication Inc., USA.

Gibbons, A. (1985). Algorithmic Graph Theory. Cambridge: Cambridge University

Press.

http://en.wiktionary.org/w/index.php?title=B%C3%A9la_Bollob%C3%A1s&action=edit&redlink=1
http://taiwan.cnet.com/enterprise/technology/0,2000062852,2008707%201,00.htm
http://en.wikipedia.org/wiki/Thomas_H._Cormen
http://en.wikipedia.org/wiki/Charles_E._Leiserson
http://en.wikipedia.org/wiki/Ronald_L._Rivest
http://en.wikipedia.org/wiki/Clifford_Stein
http://en.wikipedia.org/wiki/Introduction_to_Algorithms

70

Goldberg, A.V, Tardos, E. And Tarjan E. (1990). Algorithms and Combinatorics

Vol.9, Berlin.

Gross, L.J and Yellen, J. (2006). Graph theory and its applications.

Harju, T. (2007). Lecture Notes on Graph Theory, Finland.

Hiller, F.S. and Lieberman, G.J. (1995) Introduction to Operations Research, 6th ed.

New York : McGraw-Hill, Inc. 998 pp.

Krumwiede, D.W. and Sheu, C.(2002) A model for reverse logistics entry by third-

party providers, Science Direct, Vol. 30, 325-333.

Marcus, D.A. (2008). A Problem Oriented Approach Graph Theory, printed in the

United States of America.

Proceedings of the Eastern Asia Society for Transportation Studies,(2005). Vol. 5,

pp. 1657 – 1672.

Reeb, J. and Leavengood, S. (2002). Transportation Problem: A Special Case for

Linear Programming Problems

Reynolds-Feighan, A.J. (2001). Air freight logistics. In A.M. Brewer, K.J. Button

and D.A. Hensher (eds.), Handbook of Logistics and Supply-Chain Management.

Elsevier Science Ltd., UK, 431-439.

Sokkalingam, P. T. , Ahuja, R.K. and Orlin, J.B. New Polynomial-Time Cycle-

Canceling Algorithms for Minimum Cost Flows, India.

Tilanus, B. (1997) Information Systems in Logistics and Transportation. Elsevier

Science Ltd., UK.

Tseng, Y., Yue, W.L. and Taylor, M. (2005). The Role of Transportation in Logistics

Chain.

West, D.B.(2001). Introduction to Graph Theory (2ed). Upper Saddle River: Prentice

Hall.

Weisstein, E.W,. "Graph." From MathWorld-AWolfram Web Resource.,

http://mathworld.wolfram.com/Graph.html.

Zaslavsky, T. Glossary of signed and gain graphs and allied areas. Electronic Journal

of Combinatorics, Dynamic Surveys in Combinatorics.

