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ABSTRACT 

 

Master Thesis 

 

THE ROLE OF GRAPH THEORY IN LOGISTICS 

 

Sertaç CERRAHOĞLU 

 

Yaşar University 

Institute of Natural and Applied Sciences  

Master of Mathematics 

 

 

 

This thesis consists of six chapters. In the first chapter, an introductory approach is 

given. In the second chapter, the basic notions of graph theory contained in this thesis 

are introduced. In chapter three, the concept of network is defined and some network 

flow problems are mentioned. In the fourth chapter some information about logistics and 

transportation are given. The definition and history of logistics are mentioned and the 

role of transportation in logistics is explained. In chapter five some applications of graph 

theory are applied to logistics problems. Finally, the conclusion is given. 

 

Keywords: Network Flows, Shortest Path Problem, Maximum Flow Problem, 

Transportation Problem. 
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CHAPTER 1 
 

INTRODUCTION 
 

Graph theory is the branch of mathematics that concerns with graphs, which are the 

constructs consisting of vertices and edges. The paper written by Leonhard Euler on 

the Seven Bridges of Königsberg and published in 1736 is regarded as the first paper 

in the history of graph theory. Graph theory has proven to be particularly useful to a 

large number of rather diverse fields, such as computer science, biology, physics, 

sociology, logistics, etc. The exiciting and rapidly groving area of graph theory is 

rich in the theoritical results as well as applications to real-world problems. 

 

Many real-life situations can be described by means of a diagram of a set of points 

with lines joining certain pairs of points. A graph structure can be extended by 

assigning a weight to each edge of the graph. Graph with weights, or weighted 

graphs, are used to represent structures in which pairwise connections have some 

numerical values. For example if a graph represents a road network, the weights 

could represent the length of each road. Graphs model many situations like the 

connections of wires/leads, logistics/transportation problems, pipelines between 

points with known capacities, family trees, organizational charts, etc. The weights of 

the edges can be express the distance between two locations, the journey time, traffic 

expenses and so on. 

 

This thesis aims to review the literature how graph theory can be applied to 

logistics. Firstly basic notaions of graph theory are given, then networks and flows in 

networks are taken into consideration. Shortest path problems, transportation 

problems, and maximum flow problems are discussed and examined. An 

introductory information about logistics and transportation are given. As applications 

of graph theory Dijkstra‟s algorithm, Ford-Fulkerson algorithm and North-West 

Corner method are applied to some logistics problems. 
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CHAPTER 2 

PRELIMINARIES 

Graph Theory is now a major tool in mathematical research, electrical engineering, 

computer programming and networking, business administration, sociology, 

economics, marketing, and communications; the list can go on and on. In particular, 

many problems can be modelled with paths formed by traveling along the edges of a 

certain graph. For instance, problems of efficiently planning routes for mail delivery, 

garbage pickup, snow removal, diagnostics in computer networks, and others, can be 

solved using models that involve paths in graphs. 

 

2.1 Graphs 

A graph G = (V,E)  is a finite, nonempty set V(G), together with a (possibly empty) 

set E(G) of 2-elements subsets of V(G). The elements of V are called vertices, while 

those of E are called edges. The number of vertices in a graph G is called the order 

of G, denoted by p = |V(G)|, while the number of edges in G is called the size of G, 

denoted by q = |E(G)|. A graph of order p and size q is often referred to as a (p,q) -

graph. If the unordered pair e = {u,v} is an edge of the graph G, informally written as 

e = uv, it is said that the vertices u and v are adjacent in G and that the edge e joins u 

and v. The edge e is said to be incident with the vertices u and v. A graphical 

representation of an order 7 graph G1 of size 8 is shown in Figure 2.1.  The vertex set 

is V(G1) = {v1, ,v2, ,v3,  v4,  v5, v6,  v7} and edge set is  E(G1) =  {v1v6, v1v7, v2v4, v3v5, v3v6, 

v3v7, v4v5 , v5v6}. The vertices v1 and v6 are adjacent in G1, while v1 and v2 are not (West, 

D.B, 2001). 

                                                

                 Figure 2.1: Graphical representation of a  7,8      graph, G1. 

v3 

v2 v1 

v4 
     v5 

      v6 

v7 



3 
 

The open neighbourhood of a vertex v in a graph G is defined as the set 

                                  NG(v) = {u ∈ V(G) : uv ∈ E(G)} , 

 

while the closed neighbourhood of v in G is defined as 

 

                                            NG[v] = NG(v) ∪ {v} . 

 

The open neighbourhood of a set S is defined as N(S) = {N(v) : v ∈ S},  while the 

closed neighbourhood of a set S is defined as N[S] = {N[v] : v ∈ S}. For any vertex v 

in a graph G, the number of vertices adjacent to v, i.e. │NG(v)│,  is called the degree 

of v in G, denoted by degGv. Note that if the reference to a graph G is clear from the 

context, the subscript is often omitted, hence written as deg v only.  

 

A vertex is odd if its degree is odd and even if its degree is even. If the degree of a 

vertex is 0, it is called an isolated vertex, while if the degree is 1, it is called an    

end-vertex. The minimum degree of vertices in G is denoted by δ(G) , while the 

maximum degree of the vertices is denoted by Δ(G). Referring to the graph G1 in 

Figure 2.1, the open neighbourhood of the vertex v5 is NG1(v5) = {v3, v4, v6 }, while its 

closed neighbourhood is NG1 [v5] = {v3, v4, v5, v6}. The graph has no isolated vertices, 

but v2 is, in fact, an end-vertex. The minimum degree of G1 is therefore δ(G1) = 1, 

while the maximum degree is Δ(G1) = 3. 

 

The Fundamental Theorem of Graph Theory, is probably one of the most well -

known results in the discipline and relates the sum total of the degrees and the size of 

any graph. 

 

Theorem 2.1 (Chartrand, G. and Lesniak, L. 2000). Let G  be  a  (p, q) - graph, with  

V(G) ={v1,v2,…,vp}.       

                                               
1

deg 2
p

G i

i

v q


  

 

Proof: When the degrees of all the vertices are summed, each edge is counted twice, 

once for each of the vertices that it joins.                                                                     ■                                                                   
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When G = (V, E) and H = (W, F) are graphs, we say H is a subgraph of G  when        

W⊆V and F⊆E.We say H is an induced subgraph when W⊆V and                            

F = {xy ∈ E: x, y ∈ W}. In Figure 2.2, we show a graph, a subgraph and an induced 

subgraph. 

 

           Figure 2.2 : (a) a graph, (b) a spanning subgraph, (c) an induced subgraph.  

 

2.2 Connectedness 

A graph G = (V, E) is called a complete graph when xy is an edge in G  for every 

distinct pair x, y ∈ V. Conversely, G is an independent graph if   xy ∉ E, for every 

distinct pair x, y ∈ V. It is customary to denote a complete graph on n vertices by   Kn 

and an independent graph on n vertices by In (Gross, L.J and Yellen, J., 2006). 

A walk is an alternating sequence of vertices and edges, beginning and ending with 

a vertex, where each vertex is incident to both the edge that precedes it and the edge 

that follows it in the sequence, and where the vertices that precede and follow an 

edge are the end vertices of that edge. A walk is closed if its first and last vertices are 

the same, and open if they are different. 

The length l of a walk is the number of edges that it uses. For an open walk,                   

l = n–1, where n is the number of vertices visited (a vertex is counted each time it is 

visited). For a closed walk, l = n (the start/end vertex is listed twice, but is not 

counted twice).  

 A trail is a walk in which all the edges are distinct. A closed trail has been called a 

tour or circuit, but these are not universal, and the latter is often reserved for a 

regular subgraph of degree two.                                                                                                          

  

  (b) (a)    (c) 
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A graph G = (V, E) on n ≥1 vertices is called a path when the elements of the vertex 

set can be labelled as {x1, x2, ... , xn} so that E = {xixi+1 : 1 ≤  i < n}.Similarly, if n ≥ 3, 

G is called a cycle when E = { xixi+1  : 1 ≤ i < n} ∪ {xnx1}.It is customary to  denote a 

path on n vertices by Pn, while Cn denotes a cycle on n vertices. The length of a path 

or a cycle is the number of edges it contains. Therefore, the length of Pn is  n − 1 and 

the length of Cn is n (Chartrand, G. and Lesniak, L. 2000). 

 

 

A graph G is connected when there is a path from x to y in G, for every x, y ∈ V ; 

else G is disconnected. The induced subgraph on such an equuivalence class is 

called a connected component or just component of the graph. A graph is 

connected if there is just one equivalence class, that is, if every pair of vertices is 

connected. 

 

 

A graph is acyclic when it does not contain any cycle on three or more vertices. 

Acyclic graphs are also called forests. A connected acyclic graph is called a tree. 

When G = (V, E) is a connected graph, a subgraph H = (W, F) of G is called a 

spanning tree when W = V and H is a tree. In Figure 2.3,  we show a graph and its 

spanning tree. 

 

 

                          Figure 2.3 : (a) a graph, (b) a spanning tree. 

 

A graph is called bipartite, if the corresponding node set can be split into two sets 

N1 and N2 in such a way that each member of S joins a node of N1 to a node of N2. A 

complete bipartite graph is a bipartite graph in which each node N1 is joined to each 

node of N2 by exactly one member. If the number of nodes in N1 and N2 are denoted 

 

(a) (b) 

v1 

v3 

v5 

v4 

v2 

v1 v4 

v2 v3 

v5 
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by r and s, respectively, then a complete bipartite graph is denoted by Kr,s. Examples 

of bipartite and complete bipartite graphs are shown in Figure 2.4 (Chartrand, G. and 

Lesniak, L. 2000). 

 

                     

(a) A bipartite graph                             (b) A complete bipartite graph K3,4 

Figure 2.4: Two bipartite graphs. (a) A bipartite graph. (b) A complete bipartite 

graph K3,4 

 

A graph can be represented in various forms. Some of these representations are of 

theoretical importance, others are useful from the programming point of view when 

applied to realistic problems. One of them is matris representation. Every graph has 

associated with it an adjacency matrix, which is a binary nn matrix A in which       

aij = 1 and aji = 1 if vertex vi is adjacent to vertex vj, and aij = 0 and aji = 0 otherwise. 

The adjacency matrix is a matrix of size V x V such that 

 

 

                                    Mij =   1, if there is an edge between i and j 

                                                0, otherwise 

 

The figure 2.3 (a) graphical representation of an adjacency matrix is a table, such as 

shown in Figure 2.5 

 v1 v2 v3 v4 v5 

v1 0 1 0 1 0 

v2 1 0 1 0 0 

v3 0 1 0 1 1 

v4 1 0 1 0 1 

v5 0 0 1 1 0 

                                   

Figure 2.5: Matrix representation of a graph 
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2.3 Eulerian and Hamiltonian Graphs 

 
Graph theory began with Euler‟s study of a particular problem: the SevenBridges 

of Königsberg. During the eighteenth century the city of Königsberg  in East Prussia  

was divided into four sections (including the island of Kneiphof) by the Pregel river. 

Seven bridges connected these regions and it was said that residents spent their 

Sunday walks trying to find a starting point so that they could walk about the city, 

cross each bridge exactly once, and return to their starting point. 

 

Eulerian Graphs 

 

The following problem, often referred to as the bridges of Königsberg problem, 

was first solved by Euler in the eighteenth century. The problem was rather simple - 

the town of Königsberg consists of two islands and seven bridges. Is it possible, by 

beginning anywhere and ending to the same point, to walk through the town by 

crossing all seven bridges but not crossing any bridge twice? 

 

 

                      

(a)                                                                         (b)               

  

 

       Figure 2.6 :  a  is Königsberg in 1736,  b  is Euler‟s graphical representation 

 

This problem was solved in 1736 by the Swiss mathematician Euler, in the earliest 

known paper on graph theory, who studied the famous problem of “the bridges of 

Königsberg”. Euler proved it is impossible to take a walk crossing all seven bridges 

of the river Pregel exactly once (West, D.B., 2001). 

 

Eulerian trail: An Eulerian trail is a trail that visits every edge of the graph once and 

only once. It can end on a vertex different from the one on which it began. A graph 

of this kind is said to be traversable. 
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Eulerian Cycle: An Euler cycle is a cycle that traverses every edge of a graph 

exactly once. If there is an open path that traverse each edge only once, it is called an 

Euler path. 

 

Eulerian Graph: A graph is called Eulerian when it contains an Eulerian circuit. 

An Eulerian trail exists in a connected graph if and only if there are either no odd 

vertices or two odd vertices. For the case of no odd vertices, the path can begin at 

any vertex and will end there; for the case of two odd vertices, the path must begin at 

one odd vertex and end at the other. Any finite connected graph with two odd 

vertices is traversable. A traversable trail may begin at either odd vertex and will end 

at the other odd vertex (Gallier, J., 2005). 

 

Hamiltonian Graphs 

 

In 1859, the Irish mathematician Sir William Rowan Hamilton developed a game 

that he sold to a Dublin toy manufacturer. The game consisted of a wood regular 

dodecahedron with the twenty corner points (vertex) labelled with the names of 

prominent cities. The object of the game was to find a circuit along the edges of the 

solid so that each city on the cycle exactly once. 

 

Hamiltonian Cycle: A Hamiltonian cycle in a graph is a closed path that visits every 

vertex in the graph exactly once. A Hamiltonian cycle ends up at the vertex from 

where it started (West, D.B., 2001). 

 

Hamiltonian graphs are named after the nineteenth-century Irish mathematician Sir 

William Rowan Hamilton(1805-1865). This type of problem is often referred to as 

the traveling salesman or postman problem. 

 

Hamiltonian Graph: If a graph has a Hamiltonian cycle, then the graph is called a 

Hamiltonian graph. We represent the solid by a graph: the vertices of the graph 

correspond to the vertices of the solid and the edges similarly correspond: 
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                                      Figure 2.7 : Hamiltonian graph 

 

 

2.4 Digraphs 

 

A directed graph (or just digraph) D consists of a non-empty finite set V(D) of 

elements called vertices and a finite set E(D) of ordered pairs of distinct vertices 

called arcs. We call V (D) the vertex set and E(D) the arc set of D. We will often 

write D = (V, E) which means that V and E are the vertex set and arc set of D, 

respectively. The order (size) of D is the number of vertices (arcs) in D; the order of 

D will be sometimes denoted by |D| . For example, the digraph D in Figure 2.6  is of 

order and size 6; V(D) = {u, v ,w, x, y, z }, E(D) = {(u, v) , (u,w), (w, u), (z, u), (x, z), 

(y, z)}. Often the order (size) of the digraph under consideration is denoted by n (or 

m). 

 

For an arc (u, v) the first vertex u is its tail and the second vertex v is its head. We 

also say that the arc (u, v) leaves u and enters v.  The head and tail of an arc are its 

end-vertices; we say that the end-vertices are adjacent,  u is adjacent to v and v is 

adjacent to u. If (u, v) is an arc, we also say that u dominates v (or v is dominated by 

u) and denote it by  u→v. We say that a vertex u is incident to an arc e if u is the 

head or tail of a: We will often denote an arc (u, v)  by uv (Chartrand, G. and 

Lesniak, L., 2000). 
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                                                  Figure 2.8 : A digraph D 

 

 

 

                For a pair X, Y of vertex sets of a digraph D, we define 

 

                                   (X, Y )D = {xy ∈  E(D) : x ∈ X,  y ∈ Y }, 

 

i.e. (X, Y )D is the set of arcs with tail in X and head in Y . For example, for the 

digraph H in Figure 2.6, ({u,v}, {w,z})H = {uw}, ({w,z}, {u,v})H = {wv}, and                    

({u,v},{u,v})H = {uv,vu}. 

          

An undirected graph (or a graph) G = (V,E) consists of a non-empty finite set              

V = V (G) of elements called vertices and a finite set E = E(G) of unordered pairs of 

distinct vertices called edges.  

In other words, if each edge of the graph G has no direction then the graph is called 

undirected graph. 

 

                      

                                   Figure 2.9 : An undirected graph D 
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                 Figure 2.10 : A digraph H and  a directed pseudograph H' 

 

 

The above definition of a digraph implies that we allow a digraph to have arcs with 

the same end-vertices (for example, uv and vu in the digraph H in Figure 2.10), but 

we do not allow it to contain parallel (also called multiple) arcs, that is, pairs of arcs 

with the same tail and the same head, or loops (i.e. arcs whose head and tail 

coincide). When parallel arcs and loops are admissible we speak of directed 

pseudographs; directed pseudographs without loops are directed multigraphs. In 

Figure 2.8 the directed pseudograph H’  is obtained from H by appending a loop zz 

and two parallel arcs from u to w. Clearly, for a directed pseudograph D, E(D) and 

(X, Y )D (for every pair X, Y of vertex sets of D) are multisets (parallel arcs provide 

repeated elements). We use the symbol μD(x, y) to denote the number of arcs from a 

vertex x to a vertex y in a directed pseudograph D. In particular, μD(x, y) = 0 means 

that there is no arc from x to y (Bang-Jensen, J and  Gutin, G., 2007). 

     

We will sometimes give terminology and notation for digraphs only, but we will 

provide necessary remarks on their extension to directed pseudographs, unless this is 

trivial. 

 

 

The indegree of a vertex (  (v)) in a directed graph is the number of edges 

directed into it; its outdegree (  (v)) is the number of edges directed away from it; 

its degree is the sum of its indegree and outdegree. The sum of the in degree and out 

degree of a vertex is called the total degree of the vertex. A vertex with zero in 

   u 

v 

w 

 
z 

u w 

v z 

H 
H' 
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degree is called a source and a vertex with zero out degree is called a target. Since 

each edge has an initial vertex and terminal vertex. 

 

Proposition 2.1. (Gross, L.J and Yellen, J., 2006) For any digraph  D, 

    

                      
-

( ) ( )

( ) ( ) ( )
v V D v V D

d v d v E D

 

    

                                                                                                                                      ■       

 

 

 

      A digraph H is a subdigraph of a digraph D if V (H) ⊆ V (D), E(H) ⊆ E(D) and 

every arc in E(H) has both end-vertices in V (H). If  V (H) = V (D), we say that H is a 

spanning subdigraph (or a factor) of D. The digraph L with vertex set  {u, v, w, z} 

and arc set {uv, uw, wz} is a spanning subdigraph of H. If every arc of E(D) with 

both end-vertices in V (H) is in E(H), we say that H is induced by X =V(H)  and call 

H an induced subdigraph of D. 

 

  A weighted directed pseudograph is a directed pseudograph D along with a 

mapping c: E(D) → R.  Thus, a weighted directed  pseudograph is a  triple                  

D = (V(D), E(D), c).We will also consider vertex-weighted directed pseudographs, 

i.e. directed pseudographs D along with a mapping  c: V(D) → R. (See Figure 2.11) 

If a is an element (a vertex or an arc) of a weighted  directed  pseudograph                            

D = (V (D), E(D), c), then c(a) is called the weight or the cost of a . An (unweighted) 

directed pseudograph can be viewed as a (vertex-)weighted directed pseudograph 

whose elements are all of weight one. For a set B of arcs of a weighted directed 

pseudograph D = (V, E, c), we define the weight of B as follows: c (B) =       ∈ . 

Similarly, one can define the weight of a set of vertices in a vertex-weighted directed 

pseudograph. The weight of a subdigraph H of a weighted  (vertex-weighted) 

directed pseudograph D is the sum of the weights of the arcs in H (vertices in H). For 

example, in the weighted directed pseudograph D in Figure 2.9 the set of arcs {xy, yz, 

zx } has weight 9.5 (here we have assumed that we used the arc zx of weight 1). In 

the directed pseudograph H  in Figure 2.9 the subdigraph U = ({u,x,z},{xz,zu}) has 

weight 5 (Bang-Jensen, J and  Gutin, G., 2007). 
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 Figure 2.11:Weighted and vertex-weighted directed pseudographs (the vertex               

weights are given in brackets). 

 

 

 

Walk, Trail, Path and Cycle  

 

In the following, D is always a directed pseudograph, unless otherwise specified. A 

walk in D is an alternating sequence W = x1a1x2a2x3 . . .  xk-1ak-1xk  of vertices xi and 

arcs aj  from D such that the tail of ai is xi and the head of ai  is xi+1 for every                               

i = 1, 2 ,. . .  ,k - 1. A walk W is closed if x1 = xk, and open otherwise. The set of 

vertices {x1, x2, . . . , xk} is denoted by V (W); the set of arcs {a1, a2, . . . , ak-1}  is 

denoted by E(W). We say that W is a walk from x1 to xk or an (x1, xk)-walk. If W is 

open, then we say that the vertex x1 is the initial vertex of W, the vertex xk is the 

terminal vertex of W, and x1 and xk are end-vertices of W. The length of a walk is 

the number of its arcs. Hence the walk W above has length k-1. A walk is even (odd) 

if its length is even (odd). When the arcs of W are defined from the context or simply 

unimportant, we will denote W  by x1x2 . . . xk (West, D.B., 2001). 

 

A trail is a walk in which all arcs are distinct. Sometimes, we identify a trail W 

with the directed pseudograph (V (W) , E(W)), which is a subdigraph of D. If the 

vertices of W are distinct, W is a) path. If the vertices x1, x2, . . ., xk-1 are distinct,       

k ≥3  and  x1 = xk, W is a cycle (Harju, T.,2007). 
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                                               Figure 2.12 : A directed graph H . 

 

The path x1x2x3x4x6 is an (x1, x6) -path and x2x3x4x6x3 is an (x2, x3) -trail. The cycle 

x1x2x3x4x5x1 is a 5-cycle in D.  

 

Eulerian Cycles  

 

The following graph is a directed graph version of the Königsberg bridge problem, 

solved by Euler in 1736. The vertices A,B,C,D correspond to four areas of land in 

Königsberg and the edges to the seven bridges joining these areas of land. The 

problem is to find a closed path that crosses every bridge exactly once and returns to 

the starting point. 

In fact, the problem is unsolvable, as shown by Euler, because some vertices do not 

have the same number of incoming and outgoing edges (In the undirected version of 

the problem, some vertices do not have an even degree.) 

                  
 

          Figure 2.13: A directed graph modeling the Königsberg bridge problem 
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Hamiltonian Cycles 

 

A Hamiltonian cycle, also called a Hamiltonian circuit, Hamilton cycle, or 

Hamilton circuit, is a graph cycle (closed loop) through a graph that visits each node 

exactly once (Skiena 1990, p. 196). By convention, the trivial graph on a single node 

is considered to posses a Hamiltonian cycle, but the connected graph on two nodes is 

not. A graph possessing a Hamiltonian cycle is said to be a Hamiltonian graph. The 

Hamiltonian cycle is named after Sir William Rowan Hamilton, who devised a 

puzzle in which such a path along the polyhedron edges of an dodecahedron was 

sought (the Icosian game) 

                               

                            Figure 2.14 : A Hamiltonian cycle in D 

 

Although graph theory is one of the younger branches of mathematics, it is 

fundamental to a number of applied fields, including operations research, computer 

science, and social network analysis. In this chapter we discussed the basic concepts 

of graph theory from the point of view of network analysis.                                       

 

 

 

 

http://mathworld.wolfram.com/GraphCycle.html
http://mathworld.wolfram.com/Graph.html
http://mathworld.wolfram.com/HamiltonianGraph.html
http://mathworld.wolfram.com/PolyhedronEdge.html
http://mathworld.wolfram.com/Dodecahedron.html
http://mathworld.wolfram.com/IcosianGame.html
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CHAPTER 3 

FLOWS IN NETWORKS 

 

In this chapter we consider an important algorithmic problem called the Network 

Flow Problem. Network flow is important because it can be used to express a wide 

variety of different kinds of problems. So, by developing good algorithms for solving 

network flow, we immediately will get algorithms for solving many other problems 

as well. A wide variety of engineering and management problems involve 

optimization of network flows – that is, how objects move through a network. 

Examples include coordination of trucks in a transportation system, routing of 

packets in a communication network, and sequencing of legs for air travel. Such 

problems often involve few indivisible objects, and this leads to a finite set of 

feasible solutions. Surprisingly, as we will see in this chapter, network flows 

problems can often be solved by algorithms. 

 

Graph theory provides a framework for discussing systems in which it is possible 

to travel between discrete vertices. If we extend a directed graph to a network flow 

by assigning a capacity and a flow value to every edge, then this flow can be used to 

model any number of systems in which a resource travels from one point to another, 

e.g. the spread of data in a network, traffic along roads, water in pipes, and so on. 

 

3.1 Networks 

In graph theory, a flow network is a directed graph where each edge has a capacity 

and each edge receives a flow. The amount of flow on an edge cannot exceed the 

capacity of the edge. Often in Operations Research, a directed graph is called a 

network, the vertices are called nodes and the edges are called arcs. A network can 

be used to model traffic in a road system, fluids in pipes, currents in an electrical 

circuit, or anything similar in which something travels through a network of nodes. 

Figure 3.1 offers a visual representation of a directed graph with nodes labelled 1 

through 8. We will denote an edge pointing from a node i to a node j by (i, j). In this 

notation, the graph of Figure 3.1 can be characterized in terms of a set of nodes        

http://en.wikipedia.org/wiki/Graph_theory
http://en.wikipedia.org/wiki/Graph_(mathematics)#Directed_graph
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V = {s, u, v, w, x, y, z, t} and a set of edges  E = {(s, u), (s, y), (s, z), (u, v), (y, x),      

(x, z), (v, t), (z, v), (z, w), (w, t)}. 

 

Graphs can be used to model many real networked systems. For example, in 

modelling air travel, each node might represent an airport, and each edge a route 

taken by some flight. Note that, to solve a specific problem, one often requires more 

information than the topology captured by a graph. For example, to minimize cost of 

air travel, one would need to know costs of tickets for various routes (West, D.B., 

2001). 

 

               

 

   

                 

 

                                

 

 

 

 

 

 

                                      Figure 3.1: A directed graph 

 

 

 

3.2 Network Flow Problems 

Applications of graph theory, together with concepts from optimization theory, to 

practical problems is the domain of network flow problems. For example, the 

network flow problem related with Euler tours is the Chinese Postman Problem (after 

the Chinese mathematician, Kwan Mei-Ko, who discovered it in early 1960's). The 

problem is the following. Suppose the distances of the bridges are known and we 

have to cross each bridge at least once. We would like to find a route that comes 

back to the starting point which minimizes the total distance traveled on the bridges. 

Clearly, Euler tour, if it exists, is the optimal solution to the Chinese Postman 

s u 

v 

z 
t y 

x w 
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Problem. But if the network we have on hand does not satisfy the Euler's conditions, 

Chinese Postman Problem attempts to find a tour with minimal repetition of the 

edges. The Chinese Postman Problem is only one among many network flow 

problems.The traveling salesman problem is a well-known problem in the area of 

network and combinatorial optimization. This problem is easy to state: Starting from 

his home base, node 1, a salesman wishes to visit each of several cities represented 

by nodes 2,…,n, exactly once and return home, doing so at the lowest travel cost.The 

simplicity of this problem and its complexity to solve have attracted the attention of 

many researchers over a long period of time. The first mathematical model related to 

the traveling salesman problem was studied in the 1800s. Researchers have paid 

attention to this problem because it is a generic core model that captures the 

combinatorial essence of most routing problems (Ahuja, R.K., Magnanti, T.L., and 

Orlin, J.B, 1993). 

Networks for the transmission of information, the transportation of people, and the 

distribution of goods and energy are part of our everyday life. Think about how all 

the utilities and the telephone, Internet, and cable-TV services made available in our 

homes and offices, how our mobility is made possible by the highway, rail, and 

airline networks. Without effective distribution and logistics networks, we could not 

have all the goods and services that are available now at affordable prices. The 

general problem types, namely, the minimum cost flow problems, the shortest path 

problems, the maximum flow problems, transportation problems and assignment 

problems. 

We focus on the shortesth path, maximum flow and transportation problems in 

logistics. 

3.2.1 The Shortest Path Problem 

    This network flow problem is one that we all use in our daily lives: what is the 

fastest route to take between two locations in the city during the rush hour, what is 

the "most" scenic route to drive, or the cheapest route to fly, between two cities in 

our vacation. The street intersections or the cities are the nodes, and the street or 

highway segments in between the intersections, or non-stop flights between the cities 

are the arcs. There are numbers associated with the arcs. These numbers can be the 



19 
 

estimates of how long will it take to drive through a street segment during the rush 

hour, or a measure of "scenic pleasure" one expects to obtain traveling on a certain 

highway segment, or the cost of flying between two cities. The objective is to find a 

series of arcs connected with correct directions such that one can start at the origin 

and arrive at the destination traversing the arcs and that the sum of the numbers on 

the arcs are either minimum (in the case of the fastest or the cheapest route). 

Given a weighted, directed graph G, a start node s and a destination node t, the s-t 

shortest path problem is to output the shortest path from s to t. The single-source 

shortest path problem is to find shortest paths from s to every node in G. The 

(algorithmically equivalent) single-sink shortest path problem is to find shortest 

paths from every node in G to t. 

The shortest-path problem is a particular network model that has received a great 

deal of attention for both practical and theoretical reasons. The essence of the 

problem can be stated as follows: Given a network with distance cij (or travel time, or 

cost, etc.) associated with each arc, find a path through the network from a particular 

origin (source) to a particular destination (target) that has the shortest total distance. 

The simplicity of the statement of the problem is somewhat misleading, because a 

number of important applications can be formulated as shortest- (or longest-) path 

problems where this formulation is not obvious at the outset. These include problems 

of equipment replacement, capital investment, project scheduling, and inventory 

planning. The theoretical interest in the problem is due to the fact that it has a special 

structure, in addition to being a network, that results in very efficient solution 

procedures. The problem is also sometimes called the single-pair shortest path 

problem, to distinguish it from the following generalizations: 

 The single-source shortest path problem, in which we have to find shortest 

paths from a source vertex v to all other vertices in the graph. 

 The single-destination shortest path problem, in which we have to find 

shortest paths from all vertices in the graph to a single destination vertex v. 

This can be reduced to the single-source shortest path problem by reversing 

the edges in the graph. 

 The all-pairs shortest path problem, in which we have to find shortest paths 

between every pair of vertices vi, vj in the graph. 
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In general, the (linear programming) formulation of the shortest-path problem is as 

follows: 

 

       minimize ,ij ij

i j

c x  

        subject to:                                           1   if  i = s (source), 

                              ij ki

j k

x x           0   otherwise, 

                                                                  -1  if i = t (target) 

                                                

                                               xij     for all i-j in the network.                  

We can interpret the shortest-path problem as a network-flow problem very easily. 

 

There exist many techniques for solving the shortest path problem, some of the 

better known algorithms are Dijkstra‟s Algorithm (Dijkstra, E.W, 1959) and 

Bellman-Ford Algorithm (Bellman, R.,1957). 

 

Dijkstra's Algorithm 

Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 

1956 and published in 1959, (Dijkstra, E.W., 1959) is a graph search algorithm that 

solves the single-source shortest path problem for a graph with nonnegative edge 

path costs, producing a shortest path tree. This algorithm is often used in routing and 

as a subroutine in other graph algorithms. 

For a given source vertex (node) in the graph, the algorithm finds the path with 

lowest cost (the shortest path) between that vertex and every other vertex. It can also 

be used for finding costs of shortest paths from a single vertex to a single destination 

vertex by stopping the algorithm once the shortest path to the destination vertex has 

been determined. For example, if the vertices of the graph represent cities and edge 

path costs represent driving distances between pairs of cities connected by a direct 

road, Dijkstra's algorithm can be used to find the shortest route between one city and 

all other cities . Dijkstra's algorithm finds the length of an optimal path between two 

vertices in a graph. (Optimal can mean shortest or cheapest or fastest or optimal in 

some other sense: it depends on how you choose to label the edges of the graph.) The 

http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Edsger_W._Dijkstra
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
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algorithm characterizes each vertex (node) by its state. The state of a node consists of 

two features: distance value and status label. Distance value of a node is a scalar 

representing an estimate of the its distance from node s. Status label is an attribute 

specifying whether the distance value of a node is equal to the shortest distance to 

node s or not. 

 The status label of a node is Permanent if its distance value is equal to the 

shortest distance from node s 

 Otherwise, the status label of a node is Temporary 

The algorithm maintains and step-by-step updates the states of the nodes. At each 

step one node is designated as current 

 dl denotes the distance value of a node l. 

 p or t denotes the status label of a node, where p stand for permanent and t 

stands for temporary 

 cij is the cost of traversing link (i, j) as given by the problem. 

The state of a node l is the ordered pair of its distance value dl and its status label. 

 

Algorithm Steps 

 

Step 1. (Initialization) 

 Assign the zero distance value to node s, and label it as Permanent. 

(The state of node s is (0, p)) 

 Assign to every node a distance value of  ∞ and label them as Temporary.  

(The state of every other node is (∞,t)) 

 Designate the node s as the current node. 

 

Step 2. (Distance Value Update and Current Node Designation Update) 

  

Let i be the index of the current node. 

 Find the set J of nodes with temporary labels that can be reached from the 

current node i by a link (i, j). Update the distance values of these nodes. For 

each j ∈ J, the distance value dj of node j is updated as follows. 

                           new  dj = min { dj, di + cij} 

where cij is the cost of link (i, j), as given in the network problem. 
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 Determine a node j that has the smallest distance value dj among all nodes       

j ∈ J, find j* such that     

                                       *min j j
j J

d d


  

 Change the label of node j
*
 to permanent and designate this node as the 

current node. 

 

Step 3. (Termination Criterion) 

 If all nodes that can be reached from node s have been permanently labeled, 

then stop - we are done. 

 If we cannot reach any temporary labeled node from the current node, then all 

the temporary labels become permanent - we are done. 

 Otherwise, go to Step 2. 

For example, below is a network with the arcs labelled with their lengths. The 

example will step though Dijkstra‟s Algorithm to find the shortest route from the 

source s to the target t. 

           
                                 Figure 3.2: The shortest path problem (a) 

 

Step 1. 

 Node s is designated as the current node. 

 The state of node s is (0,p). 

 Every other node has state (∞,t). 
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                                 Figure 3.3: The shortest path problem (b) 

 

 

 

Step 2. 

 

 Nodes a, b, and c can be reached from the current node s. 

 Update distance values for these nodes 

 

da = min{∞, 0 + 2} = 2 

db = min{∞, 0 + 5} = 5 

dc = min{∞, 0 + 4} = 4 

 

 Now, among the nodes a, b, and c ; node a has the smallest distance value. 

 The status label of node a changes the permanent, so its state is (2, p), while 

the status of b and c remain temporary. 

 Node a becomes the current node. 
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                                    Figure 3.4: The shortest path problem (c) 

 

 

Step 3. 

 Graph at the end of step 2. 

 We are not done, not all nodes have been reached from s, so we perform 

another iteration (back to step 2). 

 

Another Implementation of Step 2. 

 Nodes b, d, and f can be reached from the current node a. 

 Update distance values for these nodes 

db = min{5, 2 + 2} = 4 

dd = min{∞, 2 + 7} = 9 

df  = min{∞, 2 + 12} = 14 

 

 Now, among the nodes b, d, and f  node b has the smallest distance value. 

 The status label of node b changes the permanent, while the status of d and f  

remain temporary. 

 Node b becomes the current node. We are not done (step 3 fails), so we 

perform another step 2. 
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                                   Figure 3.5:The shortest path problem (d) 

 

 

Another Step 2. 

 Node d and e can be reached from the current node b. 

 Update distance values for them 

dd  = min{9, 4 + 4} = 8 

de = min{∞, 4 + 3} = 7 

 

 Now, between the nodes d and e node e has the smallest distance value. The 

status label of node e changes to permanent, while the status of d remains 

temporary. 

 Node e becomes the current node. We are not done (step 3 fails), so we 

perform another step 2. 

a 

b 
d s 

c 
e 

t 

f 

2 
2 

4 

4 

3 

12 

1 

3 

7 

5 

5 

7 

4 

1 

(0,p) 

(14,t) 

(4,t) 

(9,t) 

(∞,t) 

(∞,t) 

(4,t) 

(2,p) 

(4,p) 



26 
 

                             

Figure 3.6 : The shortest path problem (e) 

 

 

Another Step 2. 

 

 Nodes d and t can be reached from the current node e. 

 Update distance values for them 

 

dd  = min{8, 7 + 1} = 8 

de = min{∞, 7 + 7} = 14 

 

 Now,  between the nodes d and t, node d has the smallest distance value. The 

status label of node d changes to permanent, while the status of t remains 

temporary.  

 Node d becomes the current node. We are not done (step 3 fails), so we 

perform another step 2). 
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Figure 3.7: The shortest path problem (f) 

 

Another Step 2. 

 Node t can be reached from the current node d. 

 Update distance value for node t 

dt  = min{14, 8 + 5} = 13 

its status changes to permanent. 

 

 

Figure 3.8: The shortest path problem (g) 

 

a 

b 
d s 

c 
e 

t 

f 

2 
2 

4 

4 

3 

12 

1 

3 

7 

5 

5 

7 

4 

1 

(0,p) 

(14,t) 

(4,t) 

(13,t) 

(2,p) 

(4,p) 

(7,p) 

(8,p) 

(13,p) 

a 

b 
d s 

c 
e 

t 

f 

2 
2 

4 

4 

3 

12 

1 

3 

7 

5 

5 

7 

4 

1 

(0,p) 

(14,t) 

(4,t) 

(8,t) 

(14,t) 

(2,p) 

(4,p) 

(7,p) 

(8,p) 



28 
 

Now, node t is the destination node, therefore we are done. The shortest route         

(s-a-b-e-d-t) from s to t has a distance of 13. The another shortest route is (s-a-b-d-t).  

 

3.2.3 Maximum Flow Problem 

Maximum flow originally developed as a means for studying rail transportation 

networks: 

“Consider a rail network connecting two cities by way of a number of intermediate 

cities, where each link of the network has a number assigned to it representing its 

capacity. Assuming a steady state condition, find a maximal flow from one given city 

to the other” (Harris, 1955). 

 

The Soviet rail system was studied in a classified report by Harris and Ross from 

1955 entitled “Fundamentals of a Method for Evaluating Rail Net Capacities”. Rail 

network not modeled exactly due to its size and (probably) due to inexact 

information. Modeled with nodes as small regions that are connected to neighboring 

regions. Connections between neighboring regions assigned a capacity which is the 

tonnage (in 1000 tons) that can be transported between the nodes on a daily basis. 

 

The maximum flow problem has a long history. Although other documents (A.W. 

Boldyreff,1955)  define similar problems in the same time period, G. B. Dantzig is 

credited with the creation of the general maximum flow problem in 1951 (G.B. 

Dantzig, 1951). Ford and Fulkerson (L.R Ford, Jr. and D.R. Fulkerson, 1956 & 1962) 

created the first known algorithm in 1955. Since 1955, new algorithms were created 

using more elegant methods to find the maximum flow. With the elegant methods 

came more complex sub-steps within these algorithms. Although more complex sub-

steps, these new design techniques led to a decrease in running time for maximum 

flow. Different graph characteristics also play a significant role in the running time 

of each algorithm. 

 

In the maximum flow problem, we are given a directed or undirected graph, most 

commonly directed in real world applications, where one vertex is considered a 

source and another is the destination or commonly referred to as the target. Some 
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object then flows along the edges of the graph from the source to the target. Each 

edge along the path is given a maximum capacity that can be transported along that 

route. The maximum capacity can vary from edge to edge in which case the 

remainder must either flow along another edge towards the target or remain at the 

current vertex for the edge to clear or be reduced. The goal of the maximum flow 

problem is to determine the maximum amount of throughput in the graph from the 

source to target. In real world applications determining the maximum throughput 

allows the source to know exactly how much of something to produce and send 

along the path without creating waste. 

 

A network is a directed graph G = (V,E) with a source vertex s ∈ V and a target 

vertex t ∈ V. Each edge e = (v,w) from v to w has a defined capacity, denoted by c(e) 

or c(v,w). ( Each edge e in G has an associated non-negative capacity c(e), where for 

all non-edges it is implicitly assumed that the capacity is 0). For example, consider 

the graph in Figure 3.9 below. 

 

 

                 
 

Figure 3.9: An example of a network with n = 4 vertices and m = 6 edges. The 

capacities of the edges are shown. 

 

 

 

In a network flow problem, we assign a flow to each edge. There are two ways of 

defining a flow: raw (or gross) flow and net flow. 
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Raw flow is a function r (v,w) that satisfies the following properties: 

 

 Capacity constraint: The flow along any edge must be positive and less than 

the capacity of that edge. 0 ≤ r (v,w  ≤ c (v,w) . 

 

 Flow conservation: For any vertex v ∉ {s, t}, flow in equals flow out:                             

                                           

                                  ( , ) ( , ) 0
w V w V

r w v r v w
 

     , for all v ∈ V \ {s,t}. 

                                incoming flow      outgoing flow              

                                      

                               ( , ) ( , )
w V w V

r w v r v w
 

  . 

 

With a raw flow, we can have flows going both from v to w and flow going from w 

to v. In a net flow formulation however, we only keep track of the difference between 

these two flows. 

Net flow is a function that satisfies the following conditions: 

 

• Skew symmetry: f (v,w) = − f (w, v). 

• Conservation:         ∈  = 0, for all v ∈ V \ {s, t}. 

• Capacity constraint: f (v,w  ≤ c (v,w) for all v,w ∈ V . 

 

A raw flow r (v,w) can be converted into a net flow via the Formula; 

                                     

                                          f (v,w) = r (v,w) – r (w, v).  

 

For example, if we have 7 units of flow from v to w and 4 units of flow from w to v, 

then the net flow from v to w is f (v,w) = 3. Skew symmetry follows directly from this 

formula relating raw flows and net flows. Although skew symmetry relates f (v,w) 

and f (w,v), it is important to note that the capacity in one direction c(v,w) is 

independent of the capacity in the reverse direction, c(w, v). 

   The value of a flow is the sum of the flow on all edges leaving the source s. We 

later show that this is equivalent to the sum of all the flow going into the sink t. The 

value of a flow represents how much we can transport from the source to the sink. 

The value of a flow f is defined as  

 

                                          ( , ).
v V

f f s v
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Figure 3.10: An example network showing an (s, t)-flow f of value | f | = 10. In each 

edge label, the numerator is the flow on the edge and the denominator is the capacity. 

Dashed edges are avoided by f. 

 

 Cuts 

 

In a network flow problem, it is useful to work with a cut of the graph, particularly 

an s-t cut. An s-t cut of network G is a partition of the vertices V into 2 groups: S and  

   = V \ S such that s ∈ S and t ∈    . 

                               

Figure 3.11 : An illustration of an s-t cut. There might be both edges from S to    and 

from    to S. 

We will usually represent a cut as the pair (S,   ), or just S. We generalize the concept 

of the net flow and the capacity of an edge to define the net flow and capacity of a  

cut. 

 

The net flow along cut (S,   )) is defined as  f ( S) =          ∈   ∈  . 
 

The value (or capacity) of a cut is defined as c(S) =          ∈   ∈  . 
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In summary, the value (or capacity) of a cut is the sum of all values (capacities) of 

edges that go from S to S .  

                      

                                 

 

Figure 3.12 : An example of a cut in a network. The s-t cut is represented by a 

dashed line. The value (capacity) of the cut is equal to 3. This is one of the minimum 

s-t cuts. 

Lemma 3.1 (Brossard, E.,2010) Given a flow f, for any cut S, f (S) = | f |. In other 

words, all s-t cuts carry the same flow: the value of the flow f. 

 

Proof: We can prove the lemma by induction on the size of the sets S. For  S = s, the 

claim is true. Now, suppose we move one vertex v from      to S. The value f (S) 

changes in the following way: 

                                                                   

   • f (S) increases by f (v,    ). 

   • f (S) decreases by f (S, v) = − f (v, S). 

 

In conclusion, the total change in the value of f (S) after moving the vertex v from S 

to     is equal to f (v,   ) + f (v, S) = f (v, V ) = 0 (by conservation of flow).       

           f (S) = f(S,V) – f(S,S) 

                  =  f (S,V) 

                  = f (s,V) + f(S-s,V) 

                  = f (s,V) 

                  = | f |.                                                                                                      ■ 

 

s 

 a 

t 

b 

2 2 

1 

1 

1 
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Lemma 3.2 (E.Demaine, D., Karger, 2003) If f  is a flow, then | f | ≤ c(S) for any cut 

S. 

 

Proof: For all edges e, f (e  ≤ c(e), so f (S  ≤ c(S) (the flow across any cut S is not 

more than the capacity of the cut). By Lemma 2, | f | = f (S), so | f | ≤ c(S) for any cut 

S.                                                                                                                                   ■ 

 

Let f  be a feasible flow on a network G. The corresponding residual network, 

denoted Gf , is a network that has the same vertices as the network G, but has edges 

with capacities cf (v,w) = c(v,w) – f (v,w). Only edges with non-zero capacity,                       

cf (v,w) > 0, are included in Gf . 

Note that the feasibility conditions imply that cf (v,w  ≥ 0 and                                                                          

 

 

                                       cf (v,w  ≤ c(v,w) + c(w, v) .                                                                                                        

 

 

This means all capacities in the residual network will be non-negative. 

 

Lemma 3.3 (E.Demaine, D. Karger, 2003) Let G = (V,E) be a flow network with 

source s, target t, and flow function f. Let Gf  be the residual network of G induced by 

f, and let  f ′ be a flow function of Gf . Then the flow sum f + f ′ is a flow in G with  

value | f  + f ′| = | f |+| f ′|. 

 

Proof: Need to show that the three flow properties are fulfilled. 

 

Capacity constraint:       For all u, v ∈ V : (f ′ + f )(u, v) ≤ c(u, v) 

 

Skew symmetry:              For all u, v ∈ V : (f  + f ′)(u, v) = − (f  + f ′)(v, u) 

 

Flow conservation:         For all u ∈ V \ {s, t} :                 ∈ = 0 

 

Value of flow:  | f  + f ′| =                 ∈  

                                           

                                       =                      ∈   
 

                                       =          ∈             ∈  
 

                                        = | f | + | f ′| .                                                                           ■ 

 

An augmenting path is a directed path from the node s to node t in the residual 

network Gf . 
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Figure 3.13 : An example of a residual network. This residual network corresponds 

to the network depicted in Figure 3.9 and the flow in Figure 3.10.  The dashed line 

corresponds to a possible augmenting path. 

 

The edges in a residual network either indicate flow that is still under an original 

edge‟s capacity, or flow that has already been used. The existence of an augmenting 

path indicates that more flow can be achieved without violating capacity limitations 

by increasing traffic pushed along edges with capacity remaining and/or decreasing 

traffic along a currently used edge. The idea of the Ford-Fulkerson scheme is to keep 

finding augmenting paths, using each to its capacity, recalculating the residual 

network, and repeating until no more augmenting paths exist. 

 

Note that if we have an augmenting path in Gf , then this means we can push more 

flow along such a path in the original network G. To be more precise, if we have an 

augmenting path (s, v1, v2, . . . vk , t), the maximum flow we can push along that path 

is min{cf (s, v1), cf (v1, v2), cf (v2, v3), . . . cf (vk−1, vk), cf (vk, t)}. Therefore, for a given 

network G and flow f, if there exists an augmenting path in Gf , then the flow f  is not 

a maximum flow. 

 

More generally, if f ′ is a feasible flow in Gf , then f +f ′ is a feasible flow in G. The 

flow f +f ′ stil satisfies conservation because flow conservation is linear. The flow      

f + f ′ is feasible because we can rearrange the inequality f ′(e  ≤ cf (e) = c(e) – f (e) to 

get f ′(e) + f (e  ≤ c(e). Conversely, if f ′ is a feasible flow in G, then the flow f – f ′ is 

a feasible in Gf . 

s 

 a 

t 

b 

1 

2 

1 1 

2 

1 



35 
 

 

Straightforward to formulate the maximum flow problem as a linear programming 

problem: 

        maximize        ( , )
v V

f s v


  

         subject to:       f (u, v) ≤ c(u, v),      u, v ∈ V 

                                f (u, v) = − f (v, u),   u, v ∈ V 

                              ( , ) 0
v V

f s v


   ,        u ∈ V \ {s, t} 

 

 

Note that this formulation is not in standard form: There exist equality constraints in 

the formulation, and there are no nonnegativity constraints. 

 

 

Theorem 3.1: Max-flow min-cut theorem (E.Demaine, D. Karger, 2003) In a flow 

network G, the following conditions are equivalent: 

1. A flow f is a maximum flow. 

2. The residual network Gf has no augmenting paths. 

3. | f | = c(S) for some cut S. 

These conditions imply that the value of the maximum flow is equal to the value of 

the minimum s-t cut: maxf | f | = minS c(S), where f is a flow and S is a s-t cut .              

 

Proof: We show that each condition implies the other two. 

 

      1 ⇒ 2:  If there is an augmenting path in Gf , then we previously argued that we 

can push additional flow along that path, so f was not a maximum flow. 1 ⇒ 2 is the 

contrapositive of this statement. 

       2 ⇒ 3:   If the residual network Gf has no augmenting paths, s and t must be 

disconnected. Let S = {vertices reachable from s in Gf }. Since t is not reachable, the 

set S describes a s-t cut.  
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Figure 3.14: Network Gf  is disconnected. The set S contains all the nodes that are 

reachable from s. 

 

By construction, all edges (v,w) crossing the cut have residual capacity 0. This means 

in the original network G, these edges have f(v,w) = c(v,w). Therefore,                                                                      

| f | = f (S) = c(S). 

    3 ⇒ 1:  If for some cut S, | f | = c(S), we know f must be a maximum flow. 

Otherwise, we would have a flow g with | g | > c(S), contradicting Lemma 3.3. 

From (1) and (3), we know that the maximum flow cannot be less than the value of 

the minimum cut, because for some S, | f | = c(S) and c(S) is at least as big as the 

minimum cut value. Lemma 3.3 tells us that the maximum flow can not be greater 

than the minimum cut value. Therefore, the maximum flow value and the minimum 

cut value are the same.                                                                                                  ■ 

 

Ford-Fulkerson Algorithm 

 

The Ford-Fulkerson algorithm solves the problem of finding a maximum flow for a 

given network. The description of the algorithm is as follows: 

 

1. Start with f (v,w) = 0. 

2. Find an augmenting path from s to t in Gf (using, for example, a depth first search 

or similar algorithms). 

3. Use the augmenting path found in the previous step to increase the flow. 

4. Repeat until there are no more augmenting paths in Gf . 

 

If the capacities are all integers, then the running time is O(m|f |). This is true because 

finding an augmenting path and updating the flow takes O(m) time, and every 

augmenting path we find must increase the flow by an integer that is at least 1. In 

general, if we have integral capacities, then our solution satisfies an integrality 

property: there exists an integral maximal flow. This happens because every 

augmenting path increases flows by an integer amount. 
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For example, There are a bunch of junctions (nodes in the graph) and a bunch of 

pipes (edges in the graph) connecting the junction. The pipe will only allow water to 

flow one way (the graph is directed). Each pipe has also has a capacity (the weight of 

the edge), representing the maximum amount of water that can flow through the pipe. 

Finally, we pour an infinite amount of water into the source vertex. The problem is to 

find the maximum flow of the graph - the maximum amount of water that will flow 

to the target. Below is an example of a network flow graph: 

 
                                       

Figure 3.15 : A simple network flow graph. There are currently no water flowing. 

It is fairly easy to see that the maximum flow in the above figure is 6.  

 

We can flow 2 units of water from s → a → t,  2 units of water from s → b → a → t, 

and 2 units of water from s → b → t. This gives a flow of 6 and since all incoming 

edge to the sink are saturated, this is indeed the maximum flow. Note that in the 

example, not all pipe are saturated with water. 

 

For Ford Fulkerson Method, it was easy to see the solution in the above example, 

but how do we find the solution in general? One idea is to keep finding path from s 

to t along pipes which still has some capacities remaining and push as much flow 

from s to t as possible. We will then terminate once we can‟t find any more path. 

This idea seem to work since it is exactly how we found the maximum flow in the 

example. However, there is one problem - we cannot guarantee which path we‟ll find 

first. In fact, if we picked the wrong path, the whole algorithm will go wrong. For 

example, what happens if the first path we found was s → b → a → t. If we push as 

much flow as possible, then we end up with the following: 
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            Figure 3.16 : We have pushed 3 flow along the path s → b → a → t. 

Now we have run into a problem: our only options left are to push 1 unit of water 

along the path s → a → t and 1 unit of water along s → b → t. After that, we won‟t 

be able to find any more path from s to t. Yet, we have only found 5 flow, which is 

not the maximum flow. Thus, the idea is not optimal since it depends on how we 

picked our path. While we can try to find a ”good” path-picking algorithm, it would 

be nice if the algorithm is not dependent on the paths we chose. 

A crucial observation is that there is actually another path from s to t other than the 

two that we mentioned above! Suppose we redirect 2 units of water from b → a → t 

to b → t, this will decrease the amount of water running through the pipe (a, t) to 0. 

Now we have a path from s → a → t in which we can flow 2 units of water. The 

graph now looks as follows: 

 

 
(a)                                                           (b) 

 

 

Figure 3.17 : (a) The bolded edge indicate which pipe has their flow adjusted.(b) The 

dashed edges are the edges we added in the the residual graph. The capacity of the 

dashed edge is the same as the amount of water carried by the solid edge in the 

opposite direction. 
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It is now easy to see that we can push 1 unit of water along s → b → a → t to obtain 

the maximum flow of 6. If we carefully study the above figure, what we have 

essentially done is to flow 2 unit of water along s → a, and then push back 2 unit of 

water from a → b, and finally redirect the pushed back flow along b → t to the 

target. So the key to completing the algorithm is the idea of pushing back flow if we 

have x units of water flowing in the pipe (u,v), then we can pretend there is a pipe 

(v,u) with capacity x when we are trying to find a path from s to t. 

 

This is the concept of residual graph. The residual graph of a network flow is 

essentially the network graph except that for every edge (u, v) that currently carries x 

unit of water, there is an edge (v, u) with capacity x in the residual graph. The 

following figure shows the residual graph after finding our first path in Figure 3.11 

(b).       

 

3.2.4 Transportation Problem 

One of the most important and successful applications of quantitative analysis to 

solving business problems has been in the physical distribution of products, 

commonly referred to as transportation problems. Basically, the purpose is to 

minimize the cost of shipping goods from one location to another so that needs of 

each arrival area met and every shipping location operates within its capacity. (Reeb, 

J. and Leavengood, S., 2002). The problem was formalized by the French 

mathematician Gaspard Monge in 1781. In the 1920s A.N. Tolstoi was one of the 

first to study the transportation problem mathematically. In 1930, in the collection 

Transportation Planning Volume I for the National Commissariat of Transportation 

of the Soviet Union, he published a paper "Methods of Finding the Minimal 

Kilometrage in Cargo-transportation in space" (Schrijver, A., 2003). 

Transportation problems deal with the determination of a minimum-cost plan for 

transporting a commodity from a number of sources to a number of destinations. To 

be more specific, let there be m sources (or origins) that produce the commodity and 

n destinations (or targets) that demand the commodity. At the i-th source,                    

i = 1, 2, … ,m, there are si units of the commodity available. The demand at the j-th 

destination,  j = 1, 2, … , n,  is denoted by dj. The cost of transporting one unit of the 

http://en.wikipedia.org/wiki/France
http://en.wikipedia.org/wiki/Mathematician
http://en.wikipedia.org/wiki/Gaspard_Monge
http://en.wikipedia.org/wiki/1781
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commodity from the i-th source to the j-th destination is cij . Let xij, 1 ≤ i ≤  m;           

1 ≤  j ≤ n, be the numbers of the commodity that are being transported from the i-th 

source to the j-th destination. Problem is to determine those xij that will minimize the 

overall transportation cost (Hiller, F.S. and Lieberman, G.J.,1995).  

 

 

Figure 3.18: Transportation Problem 

 

We note that at the i-th source, we have the i-th source equation 

                                     
1

n

ij i

j

x s


 ,          1 ≤ i ≤  m, 

while at the j-th destination, we have the j-th destination equation 

                                      
1

m

ij j

i

x d


 ,             1 ≤  j ≤ n. 

 

Notice that if the total demand equals the total supply, then we have the following 

balanced transportation equation: 

 

                               
1 1 1 1 1 1

m m n n m n

i ij ij j

i i j j i j

s x x d
     

      . 

 

and the model is said to be balanced. 

 

 

In the case of an unbalanced model, i.e. the total demand is not equal to the total 

supply, we can always add dummy source or dummy destination to complement the 
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difference. In the following, we only consider balanced transportation models. They 

can be written as the following linear programming problem: 

 

 

minimize  
1 1

m n

ij ij

i j

c x
 

  

                         
1

n

ij i

j

x s


    1 ≤ i ≤  m, 

subject to            
1

m

ij j

i

x d


      1 ≤  j ≤ n ,  

                             xij ≥ 0          1 ≤ i ≤  m  1 ≤  j ≤ n , 

 

where 
1 1

m n

i j

i j

s d
 

  . 

 

Notice that there are mn variables but only m+n equations. 

 

The transportation table: 

 

                        

 

 

 

 

 

 

 

The North – West Corner Rule 

The North-West corner rule is a method for computing a basic feasible solution of a 

transportation problem where the basic variables are selected from the North West 

corner. Steps involved in this method are as follows (Reeb, J. and Leavengood, S., 

2002): 

c11 c12  …  … c1n         

 c21 c22  …  … c2n 

 … …  …  … … 

 cm1 cm2  …  … cmn 

s1 

s2 

… 

sm 

supply  D1  D2  Dn    … 

 S1 

 S2 

 … 

  Sm 

d1 d2 dn … requirement 
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Step 1: The first assignment is made in the cell occupying the upper left-hand (North 

West) corner of the transportation table. The maximum feasible amount is allocated 

there, i.e; x11 = min(s1, d1) . 

Step 2: If d1 > s1, the capacity of origin (source) S1 is exhausted but the requirement 

at D1 is not satisfied. So move downs to the second row, and make the second 

allocation: 

x21 = min ( s2  , d1 – x11) in the cell (2,1). 

If   s1  >  d1,  allocate  x12 =  min ( s1 – x11, d2) in the cell (1,2) . 

Continue this until all the requirements and supplies are satisfied.   

For example, the North – West Corner method solution is as follows. 

 

 

 

 

 

 

 

                             Figure 3.19: The North – West Corner Rule (a) 

 

 

 

 

 

 

 

                              

                               Figure 3.20: The North – West Corner Rule (b) 

 

 D1 D2 D3 Supply 

S1 
7 5 4 20 

S2 
6 2 6 10 

Demand 8 8 14  

 D1 D2 D3 supply 

S1 

7 

     8 

5 

    8 

4 

       4 
   20  12    4   0 

S2 

6 2 6 

     10 
      10    0 

Demand     8     0     8     0   14   10    0  
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Now all requirements have been satisfied and hence an initial basic feasible solution 

to the transportation problem has been obtained by North –West Corner rule. Since 

the allocated cells do not form a loop, the feasible solution is non-degenerate. Total 

transportation cost with this allocation is: 

7 8 5 8 4 4 10 6 172z         . 
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CHAPTER 4 

LOGISTICS and TRANSPORTATION 

     The operation of transportation determines the efficiency of moving products. The 

progress in techniques and management principles improves the moving load, 

delivery speed, service quality, operation costs, the usage of facilities and energy 

saving. Transportation takes a crucial part in the manipulation of logistic. Reviewing 

the current condition, a strong system needs a clear frame of logistics and a proper 

transport implements and techniques to link the producing procedures. The objective 

of this chapter is to define logistics and the role of transportation in logistics. 

 

4.1 Logistics 

Logistics is the science of planning, organizing and managing activities that 

provide goods or services (MDC, LogLink / Logistics World, 1997). It is the 

management of the flow of goods and services between the point of origin and the 

point of consumption in order to meet the requirements of customers. Logistics is 

now an important part of the supply chain for many businesses and seems a modern 

concept.  Logistics involves the integration of information, transportation, inventory, 

warehousing, material handling, and packaging, and often security.  

The Council of Supply Chain Management Professionals (CSCMP) has defined 

logistics as “…that part of Supply Chain Management that plans, implements, and 

controls the efficient, effective forward and reverse flow and storage of goods, 

services and related information between the point of origin and the point of 

consumption in order to meet customers' requirements.” (Tseng, Y.,Yue, W.L. and  

Taylor, M., 2005). 

4.2 History of Logistics 

 

Logistics was initially a military activity concerned with getting soldiers and 

munitions to the battlefront in time for flight, but it is now seen as an integral part of 

the modern production process. The main background of its development is that the 

recession of America in the 1950s caused the industrial to place importance on goods 

circulations. The term, logistics, was initially developed in the context of military 

http://en.wikipedia.org/wiki/Good_(economics)
http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Inventory
http://en.wikipedia.org/wiki/Warehousing
http://en.wikipedia.org/wiki/Packaging
http://en.wikipedia.org/wiki/Security
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activities in the late 18th and early 19th centuries and it launched from the military 

logistics of World War II. The probable origin of the term is the Greek logistikos, 

meaning „skilled in calculating‟ (BTRE, 2001). Military definitions typically 

incorporate the supply, movement and quartering of troops in a set. And now, a 

number of researches were taken and made logistics applications from military 

activities to business activities. Business logistics was not an academic subject until 

the 1960s. A key element of logistics, the trade-off between transport and inventory 

costs, was formally recognized in economics at least as early as the mid-1880s 

(BTRE, 2001). 

  

The further tendency of logistics in the early 21st century is logistics alliance, 

Third Party Logistics (3PL) and globalised logistics. Third-party logistics (3PL) 

involves using external organizations to execute logistics activities that have 

traditionally been performed within an organization itself (Baziotopoulos, 2008). 

According to this definition, third-party logistics includes any form of outsourcing of 

logistics activities previously performed in-house. If, for example, a company with 

its own warehousing facilities decides to employ external transportation, this would 

be an example of third-party logistics. Logistics is an emerging business area in 

many countries. Logistics circulation is an essential of business activities and 

sustaining competitiveness, however, to conduct and manage a large company is cost 

consuming and not economic. Therefore, alliance of international industries could 

save working costs and cooperation with 3PL could specialize in logistics area 

(Proceedings of the Eastern Asia Society for Transportation Studies, 2005). 

 

 Military Logistics 

 

   In military science, maintaining one's supply lines while disrupting those of the 

enemy is a crucial some would say the most crucial element of military strategy, 

since an armed force without resources and transportation is defenseless. The defeat 

of the British in the American War of Independence and the defeat of the Axis in the 

African theatre of World War II are attributed to logistical failure. The historical 

leaders Hannibal Barca, Alexander the Great, and the Duke of Wellington are 

considered to have been logistical geniuses. Militaries have a significant need for 

logistics solutions, and so have developed advanced implementations. Integrated 

http://en.wikipedia.org/wiki/Military_strategy
http://en.wikipedia.org/wiki/American_War_of_Independence
http://en.wikipedia.org/wiki/World_War_II
http://en.wikipedia.org/wiki/Hannibal_Barca
http://en.wikipedia.org/wiki/Alexander_the_Great
http://en.wikipedia.org/wiki/Arthur_Wellesley,_1st_Duke_of_Wellington
http://en.wikipedia.org/wiki/Integrated_Logistics_Support
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Logistics Support (ILS) is a discipline used in military industries to ensure an easily 

supportable system with a robust customer service (logistic) concept at the lowest 

cost and in line with (often high) reliability, availability, maintainability and other 

requirements as defined for the project. In military logistics, logistics officers 

manage how and when to move resources to the places they are needed (Chang, 

Y.H.,1998). 

 

Business Logistics 

Logistics as a business concept evolved in the 1950s due to the increasing 

complexity of supplying businesses with materials and shipping out products in an 

increasingly globalized supply chain, leading to a call for experts called supply chain 

logisticians. Business logistics can be defined as "having the right item in the right 

quantity at the right time at the right place for the right price in the right condition to 

the right customer", and is the science of process and incorporates all industry 

sectors. In business, logistics may have either internal focus, or external focus 

covering the flow and storage of materials from point of origin to point of 

consumption. The main functions of a qualified logistician include inventory 

management, purchasing, transportation, warehousing, consultation and the 

organizing and planning of these activities. Logisticians combine a professional 

knowledge of each of these functions to coordinate resources in an organization. 

There are two fundamentally different forms of logistics: one optimizes a steady flow 

of material through a network of transport links and storage nodes; the other 

coordinates a sequence of resources to carry out some project. 

 

4.3  Logistics  and  Industry 

Logisticians work in virtually every industry in the business world, including: 

Aerospace, Airlines, Auto Industry, Clothing & Apparel, Courier & Messaging, 

Engineering, Food & Grocery, Forestry, Freight Forwarding, Government, Hotel 

and Hospitality, International Trade, Military and National Defence, Natural Gas, 

Public Transportation, Oil, Railways, Shipping, etc. 

 

http://en.wikipedia.org/wiki/Military_logistics
http://en.wikipedia.org/wiki/Logistics_Officer
http://en.wikipedia.org/wiki/Management
http://en.wikipedia.org/wiki/Inventory_management
http://en.wikipedia.org/wiki/Inventory_management
http://en.wikipedia.org/wiki/Purchasing
http://en.wikipedia.org/wiki/Transportation
http://en.wikipedia.org/wiki/Warehousing
http://en.wikipedia.org/wiki/Planning
http://en.wikipedia.org/wiki/Transport
http://en.wikipedia.org/wiki/Sequence
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4.4 Transportation  Planning  in Logistics 

Transport or transportation is the movement of people and goods from one location 

to another. Transport is performed by various modes, such as air, rail, road, water, 

cable, pipeline and space. The field can be divided into infrastructure, vehicles, and 

operations. Transport is important since it enables trade between peoples, which in 

turn establishes civilizations. Transport infrastructure consists of the fixed 

installations necessary for transport, and may be roads, railways, airways, waterways, 

canals and pipelines, and terminals such as airports, railway stations, bus stations, 

warehouses, trucking terminals, refueling depots (including fueling docks and fuel 

stations), and seaports. Terminals may be used both for interchange of passengers 

and cargo and for maintenance. Vehicles traveling on these networks may include 

automobiles, bicycles, buses, trains, trucks, people, helicopters, and aircraft.(from 

Wikipedia, “Transport,” http://en.wikipedia.org/wiki/Transportation). 

 

Logistics is concerned with the efficient flow of raw materials, of work in process 

inventory, and of finished goods from supplier to customer. In addition to 

transportation, logistics entails inventory control, warehousing, materials handling, 

order processing, and related information activities involved in the flow of products.  

 

The globalization of business has increased the need for global supply chains that 

arelonger, more complex, and inherently costlier. Businesses will seek logistics 

service suppliers who can meet their global logistics needs. This development will 

spur the growth of global third-party logistics (3PL) providers who provide a full 

portfolio of logistics services, including transportation. It also will encourage the 

development of modern and efficient transport infrastructures to minimize the cost of 

transport operations on major trade routes. These infrastructures include right of way, 

intermodal facilities, and communications links for all modes. Pull processes require 

fast, frequent, and reliable transportation systems with shipment visibility. This 

requirement has fueled the growth of time-sensitive transport alternatives such as air 

freight and priority ground transport. Transport suppliers must be able to provide 

shipment visibility by adopting mobile communication, e-commerce, vehicle status, 

and other Technologies (Fair, M.L. and Williams, E.W, 1981). 

 

 

http://en.wikipedia.org/wiki/Road
http://en.wikipedia.org/wiki/Railway
http://en.wikipedia.org/wiki/Airway_(aviation)
http://en.wikipedia.org/wiki/Waterway
http://en.wikipedia.org/wiki/Canal
http://en.wikipedia.org/wiki/Pipeline_transport
http://en.wikipedia.org/wiki/Airport
http://en.wikipedia.org/wiki/Train_station
http://en.wikipedia.org/wiki/Bus_station
http://en.wikipedia.org/wiki/Warehouse
http://en.wikipedia.org/wiki/Fuel_station
http://en.wikipedia.org/wiki/Fuel_station
http://en.wikipedia.org/wiki/Seaport
http://en.wikipedia.org/wiki/Automobile
http://en.wikipedia.org/wiki/Bicycles
http://en.wikipedia.org/wiki/Buses
http://en.wikipedia.org/wiki/Train
http://en.wikipedia.org/wiki/Truck
http://en.wikipedia.org/wiki/Pedestrian
http://en.wikipedia.org/wiki/Helicopter
http://en.wikipedia.org/wiki/Fixed-wing_aircraft


48 
 

Maritime Logistics 

 

Maritime industry plays an important role in international freight. It can provide a 

cheap and high carrying capacity conveyance for consumers. Therefore, it has a vital 

position in the transportation of particular goods, such as crude oil and grains. Its 

disadvantage is that it needs longer transport time and its schedule is strongly 

affected by the weather factors. To save costs and enhance competitiveness, current 

maritime logistics firms tend to use largescaled ships and cooperative operation 

techniques. The operation of maritime transport industry can be divided into three 

main types. Liner shipping, the business is based on the same ships, routes, price, and 

regular voyages. Tramp shipping, the characters of this kind of shipping are irregular 

transport price, unsteady transport routes, and schedule. Industry shipping, the main 

purpose of industry shipping is to ensure the supply of raw materials.  

 

 
 

                          Figure 4.1 : The role of transportation in logistics 

  

 

 

Air Freight Logistics 

 

Air freight logistics is necessary for many industries and services to complete their 

supply chain and functions. It provides the delivery with speed, lower risk of 

damage, security, flexibility, accessibility and good frequency for regular 

destinations. Reynolds-Feighan (2001) said air freight logistics is selected „when the 
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value per unit weight of shipments is relatively high and the speed of delivery is an 

important factor‟. The characteristics of air freight logistics are that: (1) airplanes and 

airports are separated. Therefore, the industries only need to prepare planes for 

operation; (2) it allows to speed delivery at far destinations; (3) air freight transport is 

not affected by landforms (Reynolds-Feighan, 2001). 

 

Land Logistics 

 

Land logistics is a very important link in logistics activities. It extends the delivery 

services for air and maritime transport from airports and seaports. The most positive 

characteristic of land logistics is the high accessibility level in land areas. The main 

transport modes of land logistics are railway transport, road freight transport and 

pipeline transport. Railway transport has advantages like high carrying capacity, 

lower influence by weather conditions, and lower energy consumption while 

disadvantages as high cost of essential facilities, difficult and expensive 

maintenance, lack of elasticity of urgent demands, and time consumption in 

organizing railway carriages. Road freight transport has advantages as cheaper 

investment funds, high accessibility, mobility and availability. Its disadvantages are 

low capacity, lower safety, and slow speed. The advantages of pipeline transport are 

high capacity, less effect by weather conditions, cheaper operation fee, and 

continuous conveyance; the disadvantages are expensive infrastructures, harder 

supervision, goods specialization, and regular maintenance needs (Tilanus, B., 1997).                 

Transportation systems are commonly represented using networks as an analogy 

for their structure and flows. Transport networks belong to the wider category of 

spatial networks. Transport networks are better understood by the usage level (e.g. 

number of passengers, tons, vehicles, capacity) than by their sole topology based on 

a binary state (i.e. presence or absence of links). Inequalities between locations can 

often be measured by the quantity of links between nodes and the related revenues 

generated by traffic flows.  

The efficiency of a network can be measured through graph theory and network 

analysis. These methods rest on the principle that the efficiency of a network 

depends partially on the lay-out of nodes and links. Obviously some network 

structures have a higher degree of accessibility than others, but careful consideration 

must be given to the basic relationship between the revenue and costs of specific 

transport networks.  

http://people.hofstra.edu/geotrans/eng/ch1en/conc1en/costrevenuenetwork.html
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CHAPTER 5 

 

APPLICATIONS OF GRAPH THEORY IN LOGISTICS 
 

Transportation is a critical part of any global logistics effort because of the long 

distances that can separate a firm from its customers. A transportation system can be 

inbound and outbound. A transportation system must fit within other logistics 

activities. Historically, national governments have exercised tight economics control 

over transport organizations, either through direct company ownership or through 

laws intended to regulate the way those businesses were run. This governmental 

involvement in the business of transportation is gradually waning as nations move to 

privatize state-owned businesses and deregulate privately held firms. For the logistics 

manager, the competitive nature of goods movement today means greater 

opportunities for obtaining better service and / or lower costs for transport providers. 

The five primary modes of transportation are rail, road, pipeline, water and air. Each 

has different economic and service characteristics that are summarized in the 

following table (see figure 5.1). 

 

 

   Rail  Road Water  Air Pipeline 

Price Low High Very  low Very high Very low 

Speed Slow Fast Very slow Very fast Slow 

Door Sometimes Yes Sometimes No Sometimes 

Reliability Medium Medium Low Very high Very high 

Packing needs High Medium High Low Nil 

Risk of loss and 

damage 
High Medium Medium Low Very low 

Flexibility Low High Low Very low Very low 

Environmental 

impact 
Low High Low Medium Low 

 
       

                            Figure 5.1 : Economics and service characteristics 

 

The transportation industry facilitates the movement of goods for the purposes of 

trade, production and consumption. Good transportation systems are often described 

as satisfying several quality factors, such as cost, time and length. The relationships 

among the elements are often associated with linear transport routes or networks.  
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The usual representation is that network junctions are represented as nodes and 

routes between them are represented by arcs (links) as used in planar graphs. 

 

Example 5.1: (The Shortest Path Problem) A gold company should carry some 

gold stocks from Bergama to stores in İzmir. One of its current job is to move gold 

stocks by using shortest routes. 

 

 

 

                                            Figure 5.2: Map of İzmir 
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Node Node City City Distance(km) 

v1 v2 Bergama Dikili 29 

v1 v3 Bergama Kınık 19 

v1 v4 Bergama Aliağa 47 

v4 v5 Aliağa Foça 34 

v4 v6 Aliağa Menemen 26 

v5 v6 Foça Menemen 36 

v6 v7 Menemen Çiğli 17 

v6 v8 Menemen Karşıyaka 36 

v7 v8 Çiğli Karşıyaka 24 

v8 v9 Karşıyaka Bayraklı 9 

v8 v10 Karşıyaka Bornova 13 

v9 v10 Bayraklı Bornova 6 

v9 v11 Bayraklı Konak 9 

v10 v11 Bornova Konak 13 

v10 v15 Bornova Buca 14 

v10 v16 Bornova Kemalpaşa 29 

v11 v12 Konak Balçova 9 

v11 v14 Konak Gaziemir 14 

v11 v15 Konak Buca 3 

v11 v18 Konak Karabağlar 23 

v12 v13 Balçova Narlıdere 14 

v12 v18 Balçova Karabağlar 10 

v13 v17 Narlıdere Güzelbahçe 18 

v13 v18 Narlıdere Karabağlar 20 

v14 v15 Gaziemir Buca 14 

v14 v18 Gaziemir Karabağlar 16 

v14 v23 Gaziemir Menderes 12 

v15 v16 Buca Kemalpaşa 30 

v15 v23 Buca Menderes 26 

v15 v24 Buca Torbalı 52 

v16 v24 Kemalpaşa Torbalı 33 

v16 v25 Kemalpaşa Bayındır 54 

v17 v18 Güzelbahçe Karabağlar 35 

v17 v19 Güzelbahçe Urla 16 

v17 v22 Güzelbahçe Seferihisar 22 

v17 v23 Güzelbahçe Menderes 45 

v18 v23 Karabağlar Menderes 26 

v19 v20 Urla Karaburun 66 

v19 v21 Urla Çeşme 56 

v19 v22 Urla Seferihisar 19 

v22 v23 Seferihisar Menderes 39 

v23 v24 Menderes Torbalı 25 

v23 v30 Menderes Selçuk 60 

v24 v25 Torbalı Bayındır 43 

v24 v29 Torbalı Tire 42 

v24 v30 Torbalı Selçuk 41 
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Node Node City City Distance(km) 

v25 v26 Bayındır Ödemiş 38 

v25 v29 Bayındır Tire 23 

v26 v27 Ödemiş Kiraz 29 

v26 v28 Ödemiş Beydağ 30 

v26 v29 Ödemiş Tire 37 

v27 v28 Kiraz Beydağ 17 

v29 v30 Tire Selçuk 41 

 

Figure 5.3: Distances of districts in İzmir 

 

 

 
                            Figure 5.4: A map of İzmir is converted into a graph 
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Dijkstra‟s algorithm is used on this map for finding the shortest routes. The solution 

is: 

                         Figure 5.5: Application of the shortest path problem  
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From Bergama Path Distance(km) 

to Dikili Bergama-Dikili 29 

to Kınık Bergama-Kınık 19 

to Aliağa Bergama-Aliağa 47 

to Foça Bergama-Aliağa-Foça 81 

to Menemen Bergama-Aliağa-Menemen 73 

to Çiğli Bergama-Aliağa-Menemen-Çiğli 90 

to Karşıyaka Bergama-Aliağa-Menemen-Çiğli-Karşıyaka 109 

to Bayraklı Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı 

118 

to Bornova Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova 

122 

to Konak Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak 

127 

to Balçova Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova 

136 

to Narlıdere Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere 

150 

to Gaziemir Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir 

141 

to Buca Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Buca 

130 

to Kemalpaşa Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa 

151 

to Güzelbahçe Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe 

168 

to Karabağlar Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Karabağlar 

146 

to Urla Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe-

Urla 

184 

to Karaburun Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe-

Urla-Karaburun 

250 

to Çeşme Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe-

Urla-Çeşme 

240 

to Seferihisar Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Balçova-Narlıdere-Güzelbahçe-

Seferihisar 

190 

to Menderes Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir-Menderes 

153 

to Torbalı Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir-Menderes-Torbalı 

178 

to Bayındır Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa-Bayındır 

205 

to Ödemiş Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa-Bayındır-Ödemiş 

243 
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From Bergama Path Distance (km) 

to Kiraz Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa-Bayındır-Ödemiş-Kiraz 

272 

to Beydağ Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bornova-Kemalpaşa-Bayındır-Ödemiş-Beydağ 

273 

to Tire Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir-Menderes-Torbalı-

Tire 

220 

to Selçuk Bergama-Aliağa-Menemen-Çiğli-Karşıyaka-

Bayraklı-Konak-Gaziemir-Menderes-Selçuk 

213 

 

Figure 5.6: Shortest Routes  

Example 5.2:(Maximum Flow Problem) The BMZ Company is a European 

manufacturer of luxury automobiles. Its exports to the United States are particularly 

important. BMZ cars are becoming especially popular in California, so it is 

particularly important to keep the Los Angeles center well supplied with replacement 

parts for repairing these cars. BMZ needs to execute a plan quickly for shipping as 

much as possible from the main factory in Stuttgart, Germany to the distribution 

center in Los Angeles over the next month. The limiting factor on how much can be 

shipped is the limited capacity of the company‟s distribution network.How many 

units should be sent through each shipping lane to maximize the total units flowing 

from Stuttgart to Los Angeles?  

 

Figure 5.7: Application of Maximum Flow Problem (a) 
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                             Figure 5.8: Application of Maximum Flow Problem (b) 

 

The problem is solved by using Ford Fulkerson algorithm. First agumenting path is 

ST-RO-NY-LA, second is ST-BO-NY-LA, third is ST-BO-NO-LA, and final 

agumenting path is ST-LI-NO-LA. The solution is represented: 

 

 

 
 

Figure 5.9: Application of Maximum Flow Problem (c) 
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From To Flow Capacity Node Net Flow 

Stuttgart Rotterdam 50 50 Stuttgart 150 

Stuttgart Bordeaux 70 70 Rotterdam 0 

Stuttgart Lisbon 30 40 Bordeaux 0 

Rotterdam New York 50 60 Lisbon 0 

Bordeaux New York 30 40 New York 0 

Bordeaux New Orleans 40 50 New Orleans 0 

Lisbon New Orleans 30 30 Los Angeles -150 

New York Los Angeles 80 80   

New Orleans Los Angeles 70 70   

      

 Maximum 

Flow 

150    

             

               Figure 5.10: Application of Maximum Flow Problem (d) 

 

Example 5.3: (Transportation Problem) A Medical Supply company produces 

catheters in packs at three production facilities. The company ships the packs from 

the production facilities to four warehouses. The packs are distributed directly to 

hospitals from the warehouses. The table is shown the costs per pack to truck to the 

four warehouses. 

 

 

Figure 5.11: Application of Transportation Problem (a) 

 

Capacity                            Demand 

Ankara  100                       Adana  150 

İzmir     300                       Kayseri 100 

İstanbul 200                       Konya   200 

                                           Trabzon 150 
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The problem is solved by using North-West Corner method. The solution is 

represented: 

 

 
 

Figure 5.12: Application of Transportation Problem (b) 

 

 

 

 
 

Figure 5.13: Application of Transportation Problem (c) 

 

The previous table show the process of satisfying all constraints and allows us to  

begin with a starting feasible solution. Multiply the quantity in each cell by the cost.
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                       Figure 5.14: Application of Transportation Problem (d) 

 

The solution is represented by a graph like this: 

                      

Figure 5.15: Application of Transportation Problem (e) 
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CHAPTER 6 

CONCLUSION 

In this thesis, we have solved three related problems in logistics. First, given a 

network where the speed of the connection between every two components is known, 

we can find the fastest (shortest) possible connection from one component to another 

by applying Dijkstra‟s algorithm to corresponding graph. Second, given a network 

where there is a limit to how much traffic can pass over each connection between 

components, we can use the Ford- Fulkerson algorithm to determine a flow function 

that gives us the maximum possible traffic between one component and another. 

Third one is transportation problem. This type of problem is known as distribution or 

transportation problem in which the key idea is to minimize the cost or the time of 

transportation by using North-West Corner method. Finally, transportation in 

logistics is modeled and examined by applying network problems and their 

algorithms. 
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GLOSSARY 

 

 

adjacent  
 

Two vertices of a graph G are said to be adjacent if there exists an edge of G 

joining the two vertices. 

 

arcs      
The lines connecting the nodes in a network. 

 

 

bipartite  
 

A graph is bipartite if its vertices can be partitioned into two disjoint subsets 

U and V such that each edge connects a vertex from U to one from V. A 

bipartite graph is a complete bipartite graph if every vertex in U is 

connected to every vertex in V. If U has n elements and V has m, then we 

denote the resulting complete bipartite graph by Kn,m.  

 

 

cardinality 

 

The number of elements in a set is called its cardinality. 

 

 

complete graph  
 

A complete graph with n vertices (denoted Kn) is a graph with n vertices in 

which each vertex is connected to each of the others (with one edge between 

each pair of vertices). Here are the first five complete graphs:  

                                                                 

  

complete bipartite 

A complete bipartite graph is a bipartite graph in which each vertex in  V1  is 

joined to each vertex in  V2  by a unique edge. If  V1  has  r  vertices 

and  V2  has  s  vertices then the corresponding complete bipartite graph is 

denoted  Kr,s. 

 

component 

 

A subgraph H of a graph G is called a component of G if H is a maximally 

connected subgraph of G. 
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connected  
 

For vertices u and v of a graph G, u is said to be connected to v if G contains 

a u - v path. The graph G is called a connected graph if the vertices u and v 

are connected for any pair u ,v ∈ V (G). 

 

 

 

cycle 
            A cycle is a walk of length n ≥ 3 in which the begin and end-vertices, are the 

same, but in which no other vertices repeat. A graph consisting of a single 

cycle of  length n is so called and denoted Cn. 

 

 

degree  
 

The degree (or valence) of a vertex is the number of edge ends at that vertex. 

For example, in this graph all of the vertices have degree three.  

In a digraph (directed graph) the degree is usually divided into the in-degree 

and the out-degree (whose sum is the degree of the vertex in the underlying 

undirected graph).  

 

digraph  

A digraph (or a directed graph) is a graph in which the edges are directed. 

(Formally: a digraph is a (usually finite) set of vertices V and set of ordered 

pairs (a,b) (where a, b are in V) called edges. The vertex a is the initial 

vertex of the edge and b the terminal vertex.  

 

 

disconnected 

 

 A graph that is not connected is said to be disconnected. 

 

 

edge 

An edge is a 2 - element subset of the vertex set of a graph. Edges are 

indicated by inter-connecting lines between vertices in graphical 

representations of a graph. 

 

 

 

edge set 

 

The set E(G), comprised of all the edges of a graph G, is called the edge set 

of the graph. 
 

 

http://www.utm.edu/departments/math/graph/glossary.html#digraph
http://www.utm.edu/departments/math/graph/glossary.html#in-degree
http://www.utm.edu/departments/math/graph/glossary.html#out-degree
http://www.utm.edu/departments/math/graph/glossary.html#graph
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end- vertex 

             

 If the degree of a vertex is 1, then it is called an end-vertex. 
 

 

Eulerian graph 

   

A connected graph is Eulerian if it contains a closed trail that includes every 

edge; such a trail is an Eulerian trail. 

 

 

flow capacity 

 

The maximum flow for an arc of the network. The flow capacity in one 

direction may not equal the flow capacity in the reserve direction. 
 

 

graph  
 

Informally, a graph is a finite set of dots called vertices (or nodes) connected 

by links called edges (or arcs). More formally: a simple graph is a (usually 

finite) set of vertices V and set of unordered pairs of distinct elements of V 

called edges.  

 

Not all graphs are simple. Sometimes a pair of vertices are connected by 

multiple edge yielding a multigraph. At times vertices are even connected to 

themselves by a edge called a loop. Finally, edges can also be given a 

direction yielding a directed graph (or digraph).  

 

 

Hamiltonian graph 

 

A connected graph is Hamiltonian if it contains a cycle that includes every 

vertex; such a cycle is a Hamiltonian cycle. 

 

 

incident 
  

A vertex v and edge e of a graph G is said to be incident, if e joins v to 

another vertex in G. 

 

 

 

in-degree  
 

The in-degree of a vertex v is the number of edges with v as their terminal 

vertex.  

 

 

 

 

http://www.utm.edu/departments/math/graph/glossary.html#multigraph
http://www.utm.edu/departments/math/graph/glossary.html#loop
http://www.utm.edu/departments/math/graph/glossary.html#digraph
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induced subgraph  

 

A subgraph H of a graph G is said to be induced if, for any pair of vertices x 

and y of H, xy is an edge of H if and only if xy is an edge of G. In other 

words, H is an induced subgraph of G if it has the most edges that appear in 

G over the same vertex set. If H is chosen based on a vertex subset S of V(G), 

then H can be written as G[S] and is said to be induced by S 

 

 

 

isolated  
 

A vertex of degree zero (with no edges connected) is isolated.  

 

 

 

isomorphic  

 

Two graphs G and H are said to be isomorphic, denoted by G ~ H, if there is 

a one-to-one correspondence, called an isomorphism, between the vertices of 

the graph such that two vertices are adjacent in G if and only if their 

corresponding vertices are adjacent in H. 

 

 

length  
 

For the length of a path see path.  

 

 

loop 
 

A loop is an edge that connects a vertex to itself.  

 

 

 

maximal flow 

 

The maximum amount of flow that can enter and exist a network system 

during a given period of time. 

 

 

 

multiple 

 

A set of arcs are multiple, or parallel, if they share the same head and the 

same tail. A pair of arcs are anti-parallel if one's head/tail is the other's 

tail/head. 

 

 

 

http://www.utm.edu/departments/math/graph/glossary.html#degree
http://www.utm.edu/departments/math/graph/glossary.html#path
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multiple edge 

 

An edge such that there is another edge with the same endvertices; antonyms: 

simple edge. The multiplicity of an edge is the number of multiple edges 

sharing the same endvertices; the multiplicity of a graph, the maximum 

multiplicity of its edges. 

 

 

multigraph  
 

             A multigraph is a graph with multiple edges between the same vertices . 

 

 

network  

 

A weighted graph, possibly directed or undirected, possibly containing 

special vertices (nodes), such as source or sink. 

 

 

node  
       

             A synonym for vertex. 

 

 

oriented graph  

 

A graph that contains only arcs. When stated without any qualification, a 

graph is almost always assumed to be undirected. Also, a digraph is usually 

assumed to contain no undirected edges. 

 

 

out-degree 

  

The out-degree of a vertex v is the number of edges with v as their initial 

vertex. 

 

 

 

path  
A walk in which no vertex is repeated is called a path. A graph solely 

consisting of a path of order n is so called and denoted Pn. 

 

 

 

 

planar  
A graph is planar if it can be drawn on a plane so that the edges intersect only 

at the vertices.  
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pseudograph  
 

Informally, a pseudograph is a graph with multiple edges (or loops) between 

the same vertices (or the same vertex). Formally: a pseudograph is a set V of 

vertices along, a set E of edges, and a function f from E to {{u,v}|u,v in V}. 

(The function f shows which vertices are connected by which edge.) An edge 

is a loop if f(e) = {u} for some vertex u in V.  

 

shortest route 

 

Shortest path between two nodes in a network. 

 

size   

The cardinality of the edge set of a graph G is called the size of G. 

 

 

source  

A vertex of a network with in-degree of zero; see also target. 

 

 

spanning tree  

A spanning subgraph that is a tree. Every graph has a spanning forest. But 

only a connected graph has a spanning tree. 

 

subgraph 

A graph  H  is a subgraph of a graph  G   if  V(H)  V(G)  and every edge 

of  H   is an edge of  H.  We write   H  G   to mean  H   is a subgraph of  G. 

 

target  

A vertex of a network with out-degree of zero; see also source. 

trail 

A trail is a walk in which all the edges are distinct. 

 

 

transportation problem 

 

A network flow problem that often involves minimizig the cost of shipping 

goods from a set of orgins to a set of destinations; it can be formulated and 

solved as a linear program by including a variable for each arc and a 

constraint for each node. 

 

 

http://en.wiktionary.org/w/index.php?title=spanning_tree&action=edit&redlink=1
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tree   
            A connected graph with no cycles. 

 

 

undirected  

 

A graph in which each edge symbolizes an unordered, transitive relationship 

between two nodes. Such edges are rendered as plain lines or arcs. 

 

vertex 

 

 A vertex is a combinatorial element in terms of which a graph is defined.  

Vertices are indicated by nodes in the graphical representation of a graph. 

 

 

vertex set 

  

             The set comprised of all vertices of a graph G, is called the vertex set of G. 

 

 

walk  

A walk in a graph G is an alternating sequence of incident vertices and edges. 

The number of edges in the walk defines its length, while the number of 

vertices defines its order. 

 

 

weighted  

Weighted edges symbolize relationships between nodes which are considered 

to have some value, for instance, distance or lag time. Such edges are usually 

annotated by a number or letter placed beside the edge. Weighted nodes also 

have some value; this must be distinguished from identification. 

 

weighted graph  

A graph that associates a label (weight) with every edge in the graph. 

Weights are usually real numbers. They may be restricted to rational numbers 

or integers. Certain algorithms require further restrictions on weights; for 

instance, the Dijkstra algorithm works properly only for positive weights. 

 

 

 

 

http://en.wiktionary.org/wiki/real_number
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