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I�TRODUCTIO� 

 

 

     Games can be used to model some conflicting interests or to model the worst type 

of incorrect behaviour of a system. It is assumed that the incorrect system uses an 

intelligent strategy to try to prevent us from reaching our target. 

     Various games on graphs have been considered among the most intensively 

studied is the two–player coloring game. In 1991, Bodlaender (Bodlaender, 1991) 

introduced the game–coloring of graphs. Let G be a graph and X = {1, 2, . . ., k} be a 

set of colors. In the coloring game, Player 1 and Player 2 make moves alternatively 

with Player 1 moving first. Each feasible move consists of choosing an uncolored 

vertex, and coloring it with a color from X, so that adjacent vertices get distinct 

colors. The game ends as soon as one of the two players can no longer execute any 

feasible move. Player 1 wins if all the vertices of G are colored, otherwise Player 2 

wins.  

     The edge version of the game coloring of graphs is defined similarly and has first 

been studied by Cai and Zhu (Cai and Zhu, 2001). 

      This thesis aims to review literature about the game coloring and edge game 

coloring of graphs. Game chromatic number and game chromatic index of graphs are 

taken into consideration and various theorems in the literature are explained.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

 
CHAPTER 1 

 

PRELIMI�ARIES 

 

 
      In this chapter, we provide the necessary background and motivation for this 

study on the game–coloring of graphs. We start in Section 1.1 by giving some 

definitions of standard graph-theoretical terms used throughout the remainder of the 

thesis. We next define common families of graph in graph theory in Section 1.2 

Then, in Section 1.3 we introduce the graph operations.   

 
1.1 Graphs 

 
     A graph G = (V, E) consists of two sets: a non-empty finite set V and a finite set 

E. The elements of V are called vertices (or points or nodes) and the elements of E 

are called edges (or lines). Each edge is identified with a pair of vertices. The set V 

(G) is called the vertex set of G, and the set E(G) is called the edge set of E(G) 

(Balakrishnan and Ranganathan, 2000). Each edge is identified with a pair of 

vertices. If the edges of a graph G are identified with ordered pairs of vertices, then 

G is called a directed graph. Otherwise G is called an undirected graph (Wilson, 

1996).  

     The cardinality of the vertex set of a graph G is called the order of G and is 

commonly denoted by n(G), or more simply by n when the graph under 

consideration is clear; while the cardinality of its edge set is the size of G and is often 

denoted by m(G) or m. A graph with no edges is called an empty graph. A graph 

with no vertices (and hence no edges) is called a null graph (Wilson, 1996).  

     Graphs are finite or infinite according to their order; however the graphs we 

consider are all finite. If a graph allows more than one edge (but yet a finite number) 

between the same pair of vertices in a graph, the resulting structure is a multi-graph. 

Such edges are called parallel or multiple edges. An edge that joins a single 

endpoint to itself is known as a loop. Graphs that allow parallel edges and loops are 

called pseudographs. A simple graph is a graph with no parallel edges and loops 

(Balakrishnan and Ranganathan, 2000). A graph G is planar if there exists a drawing 

of G in the plane in which no two edges intersect in a point other than a vertex of G 

(Wilson, 1996). 



 3 

      An edge is said to be incident on its end vertices. Two vertices are adjacent if 

they are the end vertices of an edge. The neighborhood of v, �(v), is the set of 

vertices adjacent to v. If two edges have a common end vertex, then these edges are 

said to be adjacent (Wilson, 1996). 

      Let G be a graph and v ∈  V. The number of edges incident at v is called the 

degree of the vertex v in G and denoted by deg(v). A loop at v is to be counted twice 

in computing the degree of v. A vertex of degree 0 is called an isolated vertex. A 

graph G is regular if all the vertices of G are of equal degree. If every vertex of G 

has degree r, then G is called r-regular. 

δ (G) = min{deg(v) | v ∈  V }denotes the minimum degree of G. Similarly, 

∆ (G) = max{deg(v) | v ∈  V }denotes the maximum degree of G (Balakrishnan and 

Ranganathan, 2000). 

     A graph H is called a subgraph of G if V (H) ⊆  V (G) and E (H) ⊆  E(G). A 

subgraph H of G is said to be an induced subgraph of G if each edge of G having its 

endpoints in V (H) is also an edge of H. A subgraph H of G is a spanning subgraph 

of G, if V (H) = V (G) (Balakrishnan and Ranganathan, 2000). 

 

1.2   Common Families of Graphs 

 

     A simple graph G is said to be complete if every pair of distinct vertices of G are 

adjacent in G. It is denoted by Kn (Balakrishnan and Ranganathan, 2000).  

      A bipartite graph G is a graph whose vertex–set V can be partitioned into two 

subsets U and W, such that each edge of G has one endpoint in U and one endpoint in 

W. The pair U, W is called a vertex bipartition of G, and U and W are called the 

bipartition subsets (Wilson, 1996).  

      A complete bipartite graph is a simple bipartite graph such that every vertex 

in one of the bipartition subsets is joined to every vertex in the other bipartition 

subset. Any complete bipartite graph that has m vertices in one of its bipartition 

subsets and n vertices in the other is denoted by Km,n (Wilson, 1996). A complete 

bipartite graph of the form K1,n is called a star (Balakrishnan and Ranganathan, 

2000). A walk in a simple graph G is a sequence v0 e1 v1... vk – 1 en vn of vertices and 

distinct edges such that consecutive vertices in the sequence are adjacent. The walk 

is closed if v0 = vn and is open otherwise. A path is a walk with no repeated vertex. 

Pn denotes a path on n vertices. The length of a walk or path is its number of edges.        
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      A cycle is a closed walk of length at least three in which the vertices are distinct 

except the first and the last. Cn denotes a cycle on n vertices. A cycle is odd or even 

according as its length is odd or even. The graph obtained from Cn by joining each 

vertex to a new vertex v is called wheel. Wn denotes a wheel on n + 1 vertices. 

     A graph is said to be acyclic if it has no cycles. A tree is a connected acyclic 

graph (Balakrishnan and Ranganathan, 2000). 

   

1.3  Graph Operations  

 

       Operations on graphs produce new graphs from old ones. They may be separated 

into the following major categories. 

 

1.3.1 Unary operations  

         Unary operations create a new graph from the old one. 

  

       1.3.1.1 Elementary operations 

 

        These are sometimes called "editing operations" on graphs. They create a new 

graph from the original one by a simple, local change, such as addition or deletion of 

a vertex or an edge, merging and splitting of vertices, edge contraction, etc. 

       Vertex Removal: If vi is a vertex of a graph G = (V, E), then G − vi is the 

induced subgraph of G on the vertex set V − vi; that is, G − vi is the graph obtained 

after removing from G the vertex vi and all the edges incident on vi (Wilson, 1996). 

         Edge Removal: If ei is an edge of a graph G = (V, E), then G − ei is the 

subgraph of G that results after removing from G the edge ei. Note that the end 

vertices of ei are not removed from G (Wilson, 1996). 

 

1.3.1.2 Advanced operations 

 

       The complement G  of a simple graph G is the simple graph with vertex set V 

(G) defined by )(GEuv∈  if and only if )(GEuv∉ (Wilson, 1996).  

        Power of graph: The k-th power G
k
 of a graph G is a supergraph formed by 

adding an edge between all pairs of vertices of G with distance at most k. The second 

power of a graph is also called its square (http://en.wikipedia.org/ wiki/ Graph_ 

operations). 
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        Line graph: Given a graph G, its line graph L(G) is a graph such that each 

vertex of L(G) represents an edge of G; and two vertices of L(G) are adjacent if and 

only if their corresponding edges share a common endpoint ("are adjacent") in G 

(http://en.wikipedia.org/wiki/Graph_operations).  

 

 

 

 

 

 

 

             Graph G                                     Vertices in L(G) constructed from edges in G 

 

 

 

 

      

  Added edges in L(G)                                                  The line graph L(G) 

                             Figure 1.1: The line graph L (G) 

    

1.3.2 Binary operations 

      Binary operations create a new graph from two initial graphs G1(V1, E1) and 

G2(V2, E2): 

      The union of two graphs is formed by taking the union of the vertices and edges 

of the graphs. Thus the union of two graphs is always disconnected (Balakrishnan 

and Ranganathan, 2000). 
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        The join G + H of the graph G and H is obtained from the graph union G + H 

by adding an edge between each vertex of G and each vertex of H (Balakrishnan and 

Ranganathan, 2000). 

      The Cartesian product G = G1×G2 has V (G1) × V (G2), and two vertices (u1, u2) 

and (v1, v2) of G are adjacent if and only if either u1 = u2 and u2v2 ∈  E(G2) or u2 = v2 

and u1v1 ∈  E(G1). A convenient way of drawing G1 × G2 is first to place a copy of 

G2 at each vertex of G1 and then to join corresponding vertices of G2 in those copies 

of G2 placed at adjacent vertices of G1 (Wilson, 1996).  

. 

 

 

 

 

 

 

 

 

 

                        Figure 1.2: The Cartesian product of graphs 
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CHAPTER 2 

 

THE GAME CHROMATIC I�DEX 

 

      The edge version of the game coloring of graphs is defined similarly and has first 

been studied by Cai and Zhu (Cai and Zhu, 2001), Alice (A) and Bob (B), move 

alternately. A move consists in coloring an uncolored edge of G with a color from X 

so that adjacent edges are not colored with the same color. The game ends when no 

more move is possible. Alice wins if every edge is colored at the end of the game, 

otherwise Bob wins (Andres, 2005). 

     A graph G is called k–game-colorable if Alice has a winning strategy for |X| = k 

and the smallest number k such that Alice has a winning strategy with k colors in 

edge game coloring G is called the game chromatic index of G, denoted by '

gχ (G) 

(Lam, Shiu and Xu, 1991). 

     To be precise, the game chromatic index may depend on who is to make the first 

move. It is generally assumed that Alice moves first, but this requirement is 

irrelevant for the trees with 6≥∆ (Dinski and Zhu, 1999).   

 

Theorem 2.1 (Lam, Shiu and Xu, 1991): Chromatic index of a graph G is a lower 

bound of the game chromatic index of G. 

 

                                'χ (G) ≤ '

gχ (G)                                                                                       

 

 

Theorem 2.2 (Lam, Shiu and Xu, 1991): Each edge is adjacent to at most  2∆ (G) – 

2 distinct edges, where ∆ (G) denotes the maximum degree of G. So 2∆ (G)– 1 is a 

trivial upper bound of '

gχ (G). 

 

                        ∆ (G) ≤ '

gχ (G) ≤ 2 ∆(G) – 1              
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2.1    Game Chromatic Index Of Some Graphs 

 

Theorem 2.1.1 (Lam, Shiu and Xu, 1991): If Pn is a path then '

gχ (Pn) = 3 when   

n ≥ 5. 

 

Theorem 2.1.2 (Lam, Shiu and Xu, 1991): If Cn is a cycle then '

gχ (Cn ) = 3. 

 

Theorem 2.1.3 (Lam, Shiu and Xu, 1991): If K1,n is a star then '

gχ (K1,n) = n. 

 

Theorem 2.1.4 (Lam, Shiu and Xu, 1991): If Wn is a wheel then '

gχ (W3) = 5,  

'

gχ (Wn) = n + 1 when n ≥ 4. 

 

Proof: 
'

gχ (W3) = 5 can be verified directly. 

      Suppose 4n ≥ . We shall call an edge joining the center to a vertex of the circle a 

spoke. The end vertex of a spoke lying on Cn is called its end. An edge joining the 

ends of two spokes is called a rim. A bare spoke is uncolored and have no colored 

rim incident with it. 

      It is enough to show that Player 1 can color all spokes with n + 1 colors when 

4n ≥ . Any rim is incident with two spokes and two other rims. Hence n + 1 ≥  5 

assumes that there will be feasible color for any rim after all spokes are colored. Let 

ck denote the k-th color introduced during the game. Player 1 plans to color r spokes 

with r distinct colors, for 2nr1 −≤≤ . Initially, he colors an arbitrarily chosen 

spoke with color c1. Suppose r – 1 spokes have been colored with r – 1 colors when 

it is Player 2’s turn, where 2nr2 −≤≤ , so there are at least 3 uncolored spokes. 

      If Player 2 colors a spoke, he would be helping Player 1 to accomplish his goal. 

If Player 2 colors a rim, he can at his best prevent at most 2 of the uncolored spokes 

from being colored with cr by Player 1, but there are at least 3 uncolored spokes. 

     When Player 1 colors the (n – 2) the spoke, he should ensure that no bare spokes 

are next to each other afterwards. This can be done by choosing to color a bare spoke 

if there are 2 next to each other, and by choosing to color the middle one if there are 

three of them next to each other. With this precaution, at best, Player 2 can color the 

rim incident with one of the 2 remaining uncolored spokes with cn-1. Nevertheless, 
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Player 1 can color the other one with cn-1. So no matter what Player 2 does next, 

Player 1 can color the last uncolored spoke with cn or cn+1. 

      If Player 2 chooses to color the (n – 2) – th spoke with cn-2, Player 1 can simply 

color one of the 2 uncolored spokes with cn-1. Any move by Player 2 cannot prevent. 

Player 1 from coloring the last uncolored spoke with cn or cn+1.                                 � 

 

Theorem 2.1.5 (Lam, Shiu and Xu, 1991):  

            
'

gχ (T) ≤ ∆ (T) + 2 for each tree T, if  ∆ ≥ 3.  

 

Proof: We give a winning strategy for Player 1 using ∆ (T) + 2 colors. 

     Initially, Player 1 chooses an arbitrary edge e = v0 v1 of T, where degT(v0) = 1, and 

assigns a color to it. Let T * = {e}. Henceforth, T is regarded as a diagraph with v0 as 

its root. 

     Suppose that Player 2 has just moved by coloring an edge e1. Let P the directed 

path from v0 to e1 in T, and let e
*
 be the last edge P has in common with T 

*
. We 

update T 
*
 to  T 

* ∪ P, i.e., T 
*
: = T 

* ∪ {P}. 

     If e
*
 is uncolored, then we assign a feasible color to e

*
. If e

*
 is colored and T 

* 

contains an uncolored edge f, then assign a feasible color to f. Otherwise, we color 

any edge f adjacent to same edges of T 
*
 and let T 

*
: = T 

* ∪ {f}. 

     Suppose f = 
→

uv  is the last edge of the directed path in T from v0 to v. If at most 

one arc out of v has been colored, then the total number of colored arcs incident with 

f is at most )(G∆ . As soon as a second outgoing arc of v has been colored, Player 1 

will color f unless it has already been colored beforehand. At this moment, at most  

∆(G) + 2 available colors. Player 1 can always find a feasible color for f.                 � 

 

Theorem 2.1.6 (Erdös, Faigle and Kern, 1993): For any ∆ ≥ 2 there exists a tree 

with game chromatic index equal to ∆ + 1. 

 

Proof: It suffices to exhibit a tree T = T ∆  such that Alice has no winning strategy for 

T if the number of colors is k = ∆ . For ∆  = 2 this is trivial: Take any sufficiently 

long path. (If B is move first, a path with at least 5 edges is needed) 
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      For  3≥∆  we let T = T ∆  be the unique rooted tree of height 2 with +∆ 1 nodes 

of degree ∆  and ∆ (∆ –1) leaves. Thus the root v is incident with ∆  “base edges” 

and each base edge in turn is adjacent to ∆  –1 leaf edges. 

     For ∆  = 3 the claim is straightforward to check. (B can create a “critical edge” 

after two moves of A, no matter who starts). The case 4≥∆  can be solved similarly 

as follows. In his first moves B colors base edges in such a way that (after his move) 

each of the remaining uncolored base edges has only uncolored adjacent leaf edges. 

He proceeds this way as long as (after his move) there are still (at least) two such 

uncolored base edges left. Then A will have last in two further steps as in case∆  = 3.     

                                                                                                                                      �                                                                                                                          

     

Theorem 2.1.7 (Cai and Zhu, 2001): If F is a forest of maximum degree 3, then 

'

gχ (F) ≤ 4.  

 

Proof: Let F be a forest of maximum degree 3. For convenience, we shall assume 

that each vertex of F either has degree 1 or has degree 3. The strategy we give here 

for Alice can be easily adopted to apply to those forests with degree 2 vertices. We 

shall prove that if the color set is {1, 2, 3, 4}, then Alice has a winning strategy. 

     We need to define a few terms. Let F be a forest with some edges (properly)–

colored by colors from {1, 2, 3, 4}. We say an edge e of H is safe if either e is 

colored, or at least three of the edges incident to e are colored, and two of them are 

colored with the same color. We define a c-block B of H to be a maximal subtree of 

F such that each safe edge of B is leaf-edge of B. Intuitively, the c-blocks of a 

partially colored forest could be obtained by cutting, each connected component 

becomes a c-block. Note that each safe edge belongs to two c-blocks, and each other 

edge belongs to one c-block.  

     In the process of the game, the edges of F are successively colored. At each stage, 

the forest F is partially colored forest. For that partially colored forest, we have a 

family of c-blocks. When another edge is colored the Family of c-blocks is changed. 

It is obvious that each time a new edge is colored, some old c-block may break into 

two or three new c-blocks. So the c-blocks become smaller and smaller, and 

eventually, when all the edges are colored, each c-blocks is a star. 

     An important observation is that when an edge e is being colored, it only affect 

the edges in the c-block at the previous stage that contains e. In other words, we may 
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regard different c-blocks of the forest F as disjoint subtrees, and consider each of the 

c-blocks separately.    

     Another observation is that if an uncolored edge is a safe edge, then it belongs to 

two c-blocks. However, one of the c-blocks is a star K1,3. 

     We shall prove by induction that Alice has a strategy for the game so that at any 

stage, after her move (and before Bob takes his next move), each c-block B of F has 

the following property: 

       (∗): B contains at most 3 colored edges, and that no uncolored edge is incident to 

three edges colored with distinct colors. 

     Initially, this is certainly true. 

     Suppose this is the case at a certain stage, i.e., after Alice finished her move, the 

partially colored forest has property (∗). Then Bob color an edge, say e, with color j. 

We shall show that Alice can choose an uncolored edge and a suitable color for that 

edge so that after she colors the chosen edge with that color, each c-block of the 

resulting partially colored forest has property (∗). We shall only describe Alice’s 

strategy, and leave to the readers to verify that the resulting partially colored forest 

does have the required property. 

     If e was not a safe edge before Bob colors it, then e belonged to a single c-block. 

If the edge e was a safe edge before Bob colors it, then e belonged to two c-blocks, 

however, one of the c-block is a star, and hence Alice need not to B, that contains the 

edge e. If B contains only one colored edge. Then after Bob colors e, B breaks into 

two c-blocks, and each of the two c-blocks has at most two colored edges. In this 

case, Alice can easily find a suitable edge and color it with a suitable color, so that 

the resulting new c-blocks have property (∗). We omit the details. 

      Assume that B has two colored edges. After Bob colors e, B breaks into two or 

three new c-blocks (B breaks into three new c-blocks only if an uncolored edge 

becomes a safe edge), say ,...B,B '

2

'

1 . It is easy to see that at most one new c-block 

contains three colored edges. 

     If each new c-block contains at most two colored edges, then again it is easy for 

Alice to find a suitable edge and color it with a suitable color, so that the resulting 

new c-blocks have property (∗). 

     Assume there is one c-block, say '

1B , contains three colored edges. If the three 

colored edges have a common end vertex, then it is again trivial. If two of the 
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colored edges have a common end vertex, then Alice colors the third edge incident to 

that vertex with any legal color. Thus we assume that no two of the three colored 

edges have a common end vertex. If the three colored edges are as shown in Fig. 2. 

1(a), where the thick edges denote the colored edges, and y,x  denote colors, then 

Alice color edge 'e  with color y. In case x = y, then Alice color 'e with any legal 

color. Otherwise the three colored edges are as shown in Fig. 2. 1 (b), where e3  is 

not adjacent to 'e , and either 1e  or 2e  (or both) is not adjacent to 'e . In this case, 

Alice color the indicated edge 'e  with the color of 3e , or 1e  if the color of 3e  is not 

legal for  'e . 

 

 

                      

                                                                      

 

       

                                                 Figure 2.1:   

 

     Finally, we consider the case that B contains three colored edge. After Bob colors 

the edge e, B breaks into two or three new c-blocks. Again, at most one new c-block 

contains more than two colored edges. If each of the new blocks contains at most 

three colored edges, then Alice use the same strategy as described in the previous 

case. Assume now that one of the new c-blocks contains four colored edges. If there 

is one colored edge which has distance ≥  2 to each of the other three colored edges, 

then Alice simply consider the other three colored edges, and use the rules described 

in the previous paragraph. However, in Fig.2.1(b), there are three edges which could 

be the edge 'e . By carefully choosing that edge (among the three possible choices), 

Alice can make sure that in the resulting partially colored forest, each new c-block 

has at most three colored edges. 

     Assume that none of the four colored edges has distance ≥  2 to every other 

colored edges in '

1B . 

     If there is an edge which has distance ≥  1 to each of the other three colored 

edges, then it must be as depicted in Fig. 2.2 (a). If the three edges 43 e,e  and *e have 
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a common end vertex and 432 e,e,e  are colored with three distinct colors, then Alice 

color the edge ''e  with the color of 3e  or 4e , whichever is legal. In this case, after 

coloring ''e , the edge e
*
  becomes a safe edge, and will seperate the colored edges 

into two different blocks. Otherwise, Alice color the edge 'e  with the color of e2 (or 

in case e1 and e2 are colored the same color, then color 'e  with any legal color.) In 

this case, after coloring 'e , the edge between e1 and e2 become a safe edge, and will 

seperate the colored edges into two different blocks.  

     Assume now that each of the colored edges is adjacent to another colored edge. 

Then the colored edges are as depicted in Fig. 2.2 (b) or Fig. 2.2(c). In Fig.2.2(c), 

Alice colors the indicated edge 'e  with color x. In Fig. 2(b), we note that the 

indicated edge 'e  is not adjacent to  3e  and 4e , because if so, before Bob’s move, 'e  

is adjacent to three colored edges, and by the induction hypothesis, two of the edges 

are colored the same color. 

 

 

 

 

 

                                        

 

Figure 2.2 

 

     Therefore 'e  would have been a safe edge before Bob’s move. Now Alice 

colors 'e  with color u or v, whichever is different from x and y. This completes the 

proof of the Theorem.                                                                         �                                                                                                                                 

 

      Let G = (V, E) be a finite graph and let L be a linear order on the vertex set V.    

For a vertex ,Vx∈  the back degree of x relative to L is defined as 

.}inand:{ LyxExyVy >∈∈  The back degree of L is then the maximum back 

degree of vertices relative to L. The graph G = (V, E) is said to be k – degenerate if 

there is a linear order L on V that has back degree k (Andres, 2007). 
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Theorem 2.1.8 (Bartnicki and Grytczuk, 2008): Let G be a graph whose edges can 

be partitioned into at most k – forests. Then  

 

                           '

gχ (G) ≤  ∆ (G) + 3k – 1. 

 

Proof: Suppose D = (V,E) is a directed graph. For a vertex Vx∈ , let E
+
(x) denote 

the sets of edges out–going from x, and let E
– 
(x) be the set of edges in-coming to x. 

     Let D be a directed graph obtained by orienting the edges of G so that kD ≤∆+ )( . 

Such orientation is clearly possible by the assumption on arboricity of G. We shall 

describe a strategy for Alice guaranteeing that at any moment of the game, for each 

uncolored (oriented) edge xye =  there are at most 3k – 1 colored edges incident x 

with. Since there are at most −∆ 1 colored edges incident with y, there will always 

be a free color for e. 

     Suppose the edges of D are made of fluorescent lamps which are glowing when 

activated. Only Alice can activate the edges, and activated edges keep glowing till 

the end of the play. Bob can see which edges are glowing, but this will not help him 

too much. Alice applies the following “jumping rules” leading her to an edge she 

finally colors: 

 

     1. From an edge xy Alice can jump only to the set E
+
(y) 

     2. Alice never jumps to a colored edge. 

     3. Each time Alice jumps into a non-glowing edge, she activates it. 

     4. If Alice jumps into a glowing edge, she colors it and stops. 

     5. If Alice has jumped to an edge xy and cannot make a further jump, she colors 

xy and stops.  

 

     Notice that if Alice jumps into some edges and continues jumping accordingly to 

the rules (1)-(5), she must eventually stop and color an edge. In her first turn Alice 

jumps into any edge and continues jumping till she colors an edge. Now, suppose 

Bob has just colored an edge xy. If xy is glowing then Alice jumps into any 

uncolored edge and continues jumping until she colors an edge. If xy is not glowing 

then Alice activates it and jumps to any edge in the set E
+
(y), provided there is at 

least one uncolored edge there, and continues jumping till she colors an edge. If 
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E
+
(y) has no uncolored edges, Alice again starts jumping from any other uncolored 

edge in D until she colors an edge. 

     Notice that after Alice’s move only glowing edges can be colored, while after 

Bob’s move there can be at most one colored non-glowing edge. Thus to prove the 

assertion it suffices to bound the number of glowing edges at the tail of any 

uncolored edge xy. Accordingly to the jumping rules it is clear that Alice can jump to 

the same edge xv at most twice (first time she activates it, second time she colors it). 

Hence, for each glowing edge xv in the set E
+
(x) there can be at most two glowing 

edges in the set E
–
(x) from which Alice could have jumped to xv. In the worst case, 

when each edge in E
+
(x) is colored (except xy) and xy glows, this gives a total of  

k + 2 (k – 1) + 1 = 3k – 1 glowing edges around x. The proof is complete.                �             

 

       The arboricity Arb(G) of a graph G is the minimum number of forests that can 

cover the edges of G. Arb(G) = max{e(H)/(v(H)–1): H⊂G}. Therefore if Arb (G)= k, 

then for any subgraph H of G, the average degree of the vertices of H is less than 2k, 

and hence contains a vertex of degree ≤  2k – 1. It follows that G is (2k – 1) –

degenerate (Cai and Zhu, 2001). 

 

Theorem 2.1.9 (Cai and Zhu, 2001):  

           If G has arboricity k, then ( )G'

gχ  = 4k6 −+∆ . 

 

     The smallest size of a color set C with which Alice has a winning strategy in the 

game played on G is called game chromatic index of G and denoted by 
'

g A
χ  for the 

first game and 
'

gB
χ  for the second game (Hochstättler, Andres and Schallück, 

2010).In the first game, Alice has the first move, in the second game, Bob begins. 

 

Theorem 2.1.10 (Hochstättler, Andres and Schallück, 2010):  Let Wn be the  

n – wheel. Then  

 

              a) '

Ag
χ (Wn) = n if  6n ≥ . 

 

              b)  '

Bg
χ (Wn) = n if  3n ≥ . 
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     By easy calculations, one observes '

Ag
χ (W3) = 5, '

Ag
χ (W4), and '

Ag
χ (W5) = 6, 

Therefore by Theorem 2.1.4 the problem of determining the game chromatic index of 

wheels is completely solved. In particular, for large wheels, the game chromatic 

index equals to the trivial lower bound n for the game chromatic index. 

 

Proof (a):  We describe a winning strategy for Alice for the first game played on Wn, 

6n ≥ , with n colors. Here the situation is more complex since Alice has the 

disadvantage of the first move. However, Alice tries to act much in the way as in the 

strategy of the previous section. 

      Again, we number the spokes si and the rim edges ri cyclically in such a way that 

si is adjacent to ri+1 and ri+2 where we take the incides modulo n, so that the spoke si 

and the rim edge ri are independent for any i = 0, . . . , n – 1, since 3n ≥ . During the 

game, Alice will keep in mind one special index i0 and possibly change the special 

index several times. We denote 
oi

s  by s and 
oi
r  by r. 

      Alice’s strategy is two-fold. The first part of Alice’s strategy will consists of the 

first n – 3 moves of Alice and the first n – 4 moves of Bob. The second part concern 

the end-game of coloring the last seven edges. 

      In her first move, Alice chooses an index as special index and colors the spoke s. 

In the next n – 4 moves, she reacts on Bob’s play in the following way: If Bob colors 

a spoke ssi ≠  or a rim edge rri ≠ , Alice answers by a matching move. If Bob 

colors r with a color c, Alice chooses a new special index i0, so that 
oi

s  is uncolored 

and not adjacent to the old r, and colors 
oi

s  with c if c was a new color before Bob’s 

move, otherwise with a new color. Note that there is such an index i0, since the color 

c at rim r can block at most two spokes, but before. Alice plays her move there are 

still at least four uncolored spokes. By playing in this way, after Alice’s k – th move, 

exactly k colors are used for spokes and at most k – 1 colors are used for rim edges, 

and the set of colors of the rim edges is a subset of the colors of the spokes. At that 

moment, there are three uncolored spokes and four uncolored rim edges, and, for any 

i, if the rim edge ri is colored, then the spoke si is colored, too. 

      In the end-game, Alice has to avoid the situation that the last two uncolored 

spokes are blocked by a new color on the rim edge adjacent to both spokes or that the 

last uncolored spoke is blocked by a new color. 
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Proof (b): We describe a winning strategy for Alice for the second game played on 

Wn, 3n ≥ , with n colors. We number the spokes si and the rim edges ri cyclically in 

such a way that si is adjacent to ri+1 and ri+2 where we take the indices modulo n. 

Therefore the spoke si and the rim edge ri are independent for any i = 0, . . . , n – 1, 

since 3n ≥ . 

      Alice’s strategy is that after each of her moves, for any i, either si and ri are 

colored both, or none of them is colored. She achieves this goal by matching moves. 

In a matching move, if Bob colors ri (respectively si) with a new color, then Alice 

colors its partner si (respectively ri) with the same colors, and if Bob colors ri with a 

color which has already been used before, then Alice colors si with a new color.     

      Note that Bob cannot a spoke with an old color, since by this strategy the set of 

colors of the rim edges is a subset of the set of colors the spokes. After Alice’s k-th 

move, exactly k colors are used for spokes. Thus Alice wins.    
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CHAPTER 3 

 

THE GAME CHROMATIC �UMBER 

            

       The game chromatic number was introduced by Bodlaender in 1991 

(Bodlaender, 1991). Let G = (V, E) be a graph, and let C be a set of k colors. 

Consider the following game in which two players Alice and Bob take turns coloring 

the vertices of G with k colors. Each move consists of choosing an uncolored vertex 

of the graph and assigning to it a color from {1, . . . , k} so that resulting coloring is 

proper, i.e, adjacent vertices get different colors. Alice wins if all the vertices of G 

are eventually colored Bob wins if at some point in the game the current partial 

coloring cannot be extended to a complete coloring of G, i.e, there is an uncolored 

vertex such that each of the k colors appears at least once in its neighborhood. We 

assume that Alice goes first (Chou, Wang and Zhu, 2000). 

      The game chromatic number of a graph G = (V,E), denoted by gχ (G), is the least 

number of a color set C for which Alice has a winning strategy in coloring G. This 

parameter is well-defined, since it is easy to see that Alice always wins if the number 

of colors is larger than the maximum degree of G (Bohman, Frieze and Sudakov, 

2008). 

     

Theorem 3.1 (Bodlaender, 1991): gχ (T) ≤ 5 if T is a tree. 

Faigle and Kern improved Bodlaender’s bound for trees. 

 

Theorem 3.2 (Faigle and Kern, 1993): If T is a tree, then gχ (T) ≤ 4. 

 

Proof: We will give a winning strategy for the coloring game described in the 

introduction using only 4 colors. 

     Initially, Player I chooses an arbitrary vertex r of T, which will, henceforth, be 

called the root, and assigns some color to it. During the whole game, Player I 

maintains a subtree T0 of T that contains all the vertices colored so far. Player I 

initializes T0 = {r}. 

     Suppose now that Player II has just moved by coloring vertex v. Let P be the 

(unique) directed path from r to v in T and let u be the last vertex P has in common 

with T0.  
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      Then Player I does the following: 

 

   (1)   Update T0 : = T0 ∪  P. 

   (2)   If u is uncolored, assign a feasible color to u. 

   (3)   If u is colored and T0 contains an uncolored vertex 0Tv∈ , assign a feasible    

          color to v. 

    (4)  If all vertices in T0 are colored, color any vertex v adjacent to T0 and update  

         T0 : = T0 ∪  {v}. 

 

     It is clear that this strategy of Player I guarantees each player the existence of an 

uncolored vertex with at most 3 colored neighbors until the whole tree is colored.   �   

                                                                                                                                                     

Theorem 3.3 (Dinski and Zhu, 1999): The game chromatic number of a partial k – 

tree is most (k+1) (k+2). In particular, a series – paralel graph has game chromatic 

number at most 12. 

 

Example: 

                                               

 

                                                  

  

 

 

 

                                               

                                           

                                 Figure 3.1 

 

     Consider the planar graph shown in Figure 3.1 This graph has game chromatic 

number 6. To see that the game chromatic number is at least 6, here is a winning 

strategy for Bob if the set X of colors is {1, 2, 3, 4, 5}. Note that for each j = 1, 2, ..., 

6, the two–element set {aj, bj} is a dominating set, i.e., every other node in the graph 

is adjacent to at least one of these two nodes. Each time Alice colors a node from  

{aj, bj}, say with color c, Bob responds by assigning color c to the other node in this 

set. It follows that c cannot be used by either player to color any other node in the 
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graph. We leave it as an exercise to show that the game chromatic number is at most 

6 (Kierstead and Trotter, 1992). 

 

Theorem 3.4 (Chen, Schelp and Shreve, 1997):   

          Let P denote the Petersen graph then gχ (P) =  4. 

 

3.1    Game Chromatic �umber Of Cartesian Product Graphs  

                  
       In 2007, Bartnicki, Bresăr, Grytczuk, Kovsě, Miechowicz, and Peterin studied 

the game chromatic number for the Cartesian product G × H of two graphs G and H 

(Bartnicki, Bresăr, Grytczuk, Kovsě, Miechowicz, and Peterin, 2007). They showed 

that the game chromatic number is not bounded over the family of Cartesian products 

of two complete bipartite graphs. Their result implies that the game chromatic 

number gχ (G × H) is in general not bounded from above by a function of gχ (G) 

and gχ (H). Bartnicki et al. Also determined the exact values of gχ (P2 × Pn), gχ (P2 

× Cn), and gχ (P2× Kn), where Pn, Cn, Kn denote the path graph, the cycle graph, and 

the complete graph on n vertices respectively.  

        The Cartesian product of graphs, given two graphs G and H, their Cartesian 

product G × H is the graph with vertex set V(G) × V(H), where two vertices (u1, v1) 

and (u2, v2) are adjacent if and only if either u1 = u2 and v1 = v2 and u1u2 ∈  E(G),  

v1 v2 ∈  E(H). The graphs G and H are called factor graphs of G × H. Note that the 

Cartesian product operation is both commutative and associative up to isomorphism. 

Given a vertex ( )HVv∈ , the subgraph Gv of G × H induced by {(u,v): u∈V(G)} is 

called a G – fibers; H – fibers are defined similarly (Sia, 2009).     

        More recently, in 2008, Zhu found a bound for the game chromatic number of 

the Cartesian product graph G × H in terms of the game coloring number and acyclic 

chromatic number of G and of H. Defining gχ ( G × H ) = sup{ gχ (G × H): G∈G, 

H∈H }, Zhu’s result implies that gχ (F  ×F ) ≤  10 and  gχ (P   × P ) ≤  105.  
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          Let  K1,n and Wn denote the star graph and wheel graph on n + 1 vertices 

respectively, and let Km,n denote the complete bipartite graph with parts of size m and 

n. In this section, we obtain exact values for the game chromatic number of 

additional Cartesian product graphs, namely the graphs K1,n × Pn , K1,n × Cn , P2 × 

Wn, and P2× Km,n (Sia, 2009). 

      The values of the game chromatic numbers gχ (P2 × Pn), gχ (P2 × Cn), and gχ (P2 

× Kn), determined by Bartnicki et al. are equal to the trivial upper bounds obtained 

by considering the maximum vertex degree of the Cartesian product graph for the 

graphs K1,n × Pn, K1,n × Cn, P2 × Wn, however, we require a stronger upper bound, 

which is provided by the game coloring number of those graphs. This graph invariant 

is defined as follows. Suppose that Alice is completely color – blind: she cannot 

distinguish between any two colors. To accommodate Alice’s disability, Alice and 

Bob modify the rules of the coloring game as follows. The players fix a positive 

integer k and, instead of coloring vertices, simply mark an unmarked vertex each 

turn. Bob wins if at some time some unmarked vertex has k marked neighbours, 

while Alice wins if this never occurs (Sia, 2009).           

    

Theorem 3.1.1 (Grytczuk, Bartnicki, Bresar and Kovse, 2008):  Let n be a 

positive integer. Then 

                                    

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


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Proof. The result is clear for n = 1 where we have K2 × P1 = K2. For n = 2 we have 

K2 × P2 = C4 and again everything is clear. For n = 3, K2 × P3 has two vertices of 

degree 3 and after the second move of Alice both vertices are colored. Since all 

remaining vertices have degree 2, the result is clear also for n = 3. 

    Assume n ≥ 4. Denote the vertices of the two fibers of Pn with v1, v2, ... ,  vn,  and 

.'n
'

2

'

1 v,...,v,v Suppose that only three colors {1, 2, 3} are available. By symmetry there 

are only two different cases for Alice's first move. If Alice starts in a vertex of degree 

3 say v2 with color 1, Bob responds with color 2 on the vertex '

3v . After Alice's next 
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move, at least one of v3 and '

2v  remains uncolored. Thus if v3 remains uncolored, Bob 

colors v4 with 3 and v3 cannot be colored anymore (with these three colors). 

Otherwise '

2v  remains uncolored and Bob colors '

1v  with color 3 and '

2v  cannot be 

colored anymore. 

     Suppose Alice starts in a vertex of degree 2, say v1, with color 1. Then Bob colors 

'

3v  with 1. Note that Bob can force Alice to be the first to color a vertex from the set 

}{ 32

'

2

'

1 v,v,v,vP = because there is even number of vertices vi and '

iv  for i ≥ 4, and it 

is Alice's turn. Also the color 1 cannot be used on the vertices of P anymore. Vertices 

of P induce a path on four vertices. Since χg (P4) = 3, and only colors 2 and 3 may be 

used in P, we infer that Bob wins the game. By the trivial upper bound, the proof is 

complete.                                                                                                                      �           

                                                                                                                                  

Theorem 3.1.2(Grytczuk, Bartnicki, Bresar and Kovse, 2008):  

          For an integer   n ≥ 3,  χg (K2 × C4) = 4. 

 

Proof.  Denote the vertices of the one fibers of Pn with v1, v2, ... ,  vn,  and 

.'n
'

2

'

1 v,...,v,v Suppose that only three colors {1, 2, 3} are available. By symmetry there 

is only one possibility for Alice's first move, say v2 with color 1. For n ≥ 5 Bob 

responds on  '

3v  with 2 and Alice cannot deal with threats on both v3 and '

2v , so Bob 

forces fourth color in his next move. For n = 4 this strategy does not work, since 

Alice can color v1 with 3 in her second move. But K2 × C4 = Q3 = K4, 4 × M (M-

perfect matching), hence χg (K2 × C4) = 4 as well. For n = 3 Bob responds on '

3v with 

1, what forces Alice to use a new color and Bob easily wins the game. By the trivial 

upper bound, the proof is complete.                                                                            �                                        

                                                                                                                                                                             

Theorem 3.1.3(Grytczuk, Bartnicki, Bresar and Kovse, 2008):  

        For a positive integer n, gχ (K2 × Kn) = n + 1. 

 

Proof: For n = 1, 2 the result is clear. We describe a winning strategy for Bob with n 

colors for 3n ≥ . In this first n – 2 moves Bob applies the following rules: (1) he 

always colors a vertex in the opposite fiber of Kn with the same color to the color 

used previously by Alice; (2) if possible he colors a vertex whose unique neighbour 
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in the opposite Kn – fiber has been already colored. According to condition (1) of this 

strategy Alice is forced to use a new color in each her move, so after n – 2 moves 

exactly n – 2 colors will be used. Condition (2) guarantees that after n – 2 moves of 

each player all four uncolored vertices induce connected subgraph (either path P4 or 

cycle C4). Moreover Alice has to start the game on one of the four remaining vertices 

with only two last remaining colors. In both cases (P4 or C4) Bob wins the game by 

coloring the eligible vertex with last color. By the trivial upper bound, the proof is 

complete.                                                                                                                     �                            

 

Proposition 3.1.1 (Guan and Zhu, 1999): Suppose that G = (V, E) is a graph with  

E = E1 ∪E2. Let G1 = (V, E1) and G2 = (V, E2). Then 

( ) ( ) ( )21ggg GGcolcolG ∆+≤≤χ . 

 

Proof: Alice plays according to the optimal strategy for G1, so that at any point in the 

game any unmarked vertex has at most ( ) ( )21g GGcol ∆+−1  marked neighbors.     �                                          

        

Theorem 3.1.4 (Sia, 2009): For any Cartesian product graph G × H, we have  

               gχ (G × H) ≤  gcol (G × H) ≤  
( )

( )Hcolg ∆+







C

HV

G .  

 

Proof: In Proposition 3.1.1, set G1 to be the union of all G – fibers and G2 to be the 

union of all the F – fibers.                                                                     �                                                                                                                        

        

      For ease of future reference, we note that for arbitrary positive integer and n, we 

have ( ) 2colg =
=C
l

1i nS  and ( ) 4colg ≤
=C
l

1i nW . These bounds are attained by having 

Alice always mark the center vertex of the Sn – or Wn – fiber that Bob last played in, 

if it is unmarked.  

       Before stating our results, we introduce some final definitions and notational 

conventions. Suppose that Alice and Bob play the coloring game with k colors. We 

say that there is a threat to an uncolored vertex v if there are k – 1 colors in the 

neighborhood of v, and it is possible to color a vertex adjacent to v with the last 

color, so that all k colors would then appear in the neighborhood of v. The threat to 
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the vertex v is said to be blocked it v is subsequently assigned a color, or it is no 

longer possible for v to have all k colors in its neighborhood. We shall also use the 

convention that color numbers are only used to differentiate distinct colors, and 

should not be regarded as ascribed to particular colors. For example, if only colors 1 

and 2 have been used so far and we introduce a new color, color 3, then color 3 can 

refer to any color that is not the same as color 1 or color 2. Finally, we label figures 

in the following manner: vertices are labeled in the form “color (player, turn),” with 

the information in parentheses being omitted if the same configuration can be 

attained in multiple ways. A pair of asterisks indicates that Alice cannot block the 

threats to both vertices marked with asterisks in her next turn, so that Bob wins. 

          

Proposition 3.1.2 (Sia, 2009): Let m and n be positive integers with 2m ≥ . Then 

 

                         gχ ( K1,m × P1) = 2; 

                         gχ ( K1,m × P2) = 3; 

          gχ ( K1,m  × Cn)  = gχ ( K1,m × Pn) = 4 for 3n ≥ .  

 

Proof: The result is clear for the graphs K1,m × P1 and K1,m × P2. For 3n ≥ , we 

obtain the upper bounds gχ ( K1,m × Pn) ≤ 4 and gχ ( K1,m × Cn) ≤ 4 by taking G = 

K1,m and H = Pn or Cn in Theorem 3.2.1. It remains to show that Bob can win with 

three or fewer colors whenever 3n ≥ . Observe that if Bob can force a subgraph of 

the form shown in Fig. 3.2 after his first turn, then he wins after his second turn, 

since Alice cannot block the threats to both the vertices marked with asterisks. It is 

easy to see that this can always be done for graphs of the form K1,m × Cn , 3n ≥ . For 

graphs of the form K1,m × Pn, Bob cannot create this configuration after his first turn 

only if Alice makes her first move (say color 1) in the center vertex of one of the two 

“side” K1,m –fibers (see Fig.3.3), or if n = 3 and Alice plays in a noncentral vertex of 

the middle K1,m–fiber. Suppose that  4n ≥ , so that we are in the former case. Bob 

should respond by playing color 2 in the center vertex of the K1,m–fiber at a distance 

2 away from Alice. This forces Alice to play color 3 in the unique vertex adjacent to 

both colored vertices, since this is the only way to block the threat to that vertex. Bob 
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then plays color 3 as shown in Fig. 3.3.Alice cannot block the threats to both the 

vertices marked with asterisks, so Bob wins.        

       Finally, we are left with the graph K1,m × P3. The case analysis in Fig.3.4 shows 

that Bob wins 3 colors. 

 

 

 

 

 

 

Figure 3.2: The configuration that Bob attempts to achieve after his first turn. 

 

 

 

 

 

 

 

 

Figure 3.3: Bob’s winning strategy for K1,m × Pn , 4n ≥ . (The graph above is K1,2  

× P5) 
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Figure 3.4: Bob’s winning strategy for K1,m × P3 . The top nine cases show Bob’s 

strategy when play is confined to a K1,2 × P3 subgraph, while the bottom two cases 

illustrate Bob’s strategy when play is not confined to a K1,2 × P3 subgraph. A dagger 

(†) indicates that if Alice does not color that vertex on her specified turn, then Bob 

can play such that that vertex is adjacent to 3 distinct colors after his turn. In the 

bottom-right diagram, Alice either plays color 1 in the vertex marked with a flat (b), 

or any color in a vertex marked with a sharp (#) on her second turn.  

 

 

Proposition 3.1.3 [21]: For any integer 9n ≥ , gχ (P2 × Wn ) = 5. 

 

Proof. First, we show that Bob has a winning strategy with four or fewer colors. We 

give Bob’s winning strategy when there are exactly four colors; it will be easy to see 

that Bob can win using the same starting moves (and replacing color 4 by color 3, if 

necessary) when there are fewer than four colors. Denote the vertices of one Wn–

fiber by ,v,...,v,v,v n210  with v0 being the center vertex and n21 v,...,v,v  the n-cycle, 
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and denote the corresponding vertices of the other fiber by .v,...,v,v,v
'

n

'

2

'

1

'

0  Bob 

should respond to Alice’s first move in such a way that we may assume without loss 

of generality that v0 has color 1 and 
'

1v  has color 2. If Alice responds with color 3 in 

'

0v , then Bob plays color 4 in v2. Alice cannot block the threats to both v1 and 
'

2v , so 

Bob wins. 

     Now suppose that Alice responds to Bob’s first move by playing in some vertex 

that is not 
'

0v . We may suppose without loss of generality that Alice plays in one of  

[ ] [ ] .v,...v,v,...,v,v,v
'

n

'

22n12n1nn1 ++−  If Alice plays in v1 or vn, then Bob responds with 

color 3 in 
'

4v , as shown in Fig.3.5. This forces Alice to play color 4 in 
'

0v ; 

otherwise, Bob would win on his next turn by playing color 4 in one of the 
'

iv . Bob 

then replies with color 2 in v5, creating threats to 4v  and 
'

5v . Alice cannot block both 

these threats, so Bob wins. On the other hand, if Alice does not play in 1v  or nv , then 

Bob responds with color 3 in 
'

2v , as shown in Fig.3.6 As before, this forces Alice to 

play color 4 in 
'

0v . Bob then replies with color 2 in v3, creating threats to 2v  and 
'

3v . 

Once again, Alice cannot block both these threats, so Bob wins. Note that we have 

used the fact that 9n ≥  here, so that Alice’s move on her second turn does not affect 

Bob’s ability to threaten Alice after her third turn. 

       Finally, the upper bound gχ (Pn × Wn) ≤  5 follows from taking G = Wn and  

H = P2.                                                                                            � 

   

           

 

 

 

 

 

 

 

Figure 3.5: Bob’s strategy if Alice plays in v1  or  vn. Vertices of the form vi are 

labeled by a small i, while vertices of the form '

iv  are labeled by a small 'i . 
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              Figure 3.6: Bob’s strategy if Alice does not play in v1  or  vn. 

 

                                                                                                                              

Theorem 3.1.5( Grytczuk, Bartnicki, Bresar and Kovse, 2008): Let n be an 

arbitrary natural number. Then there exist natural numbers k and m such that  

gχ (Kk,k × Km,n) > n. 

 

3.2 Variation of the Game Chromatic �umber 

 

      In this section, we introduced variation of the game chromatic number. We 

started the game coloring number then d – relaxed game chromatic number. The d – 

relaxed game chromatic number is a mixture of the concept of the coloring game and 

the concept of relaxed coloring of graphs. We next examined the relationship 

between acyclic game chromatic number and hereditary game chromatic number. 

Then, we introduced the relationship between acyclic chromatic number and 

chromatic number of oriented. Finally, we introduced incidence game chromatic 

number. 

 

3.2.1.    The Game Coloring �umber 

 

      The concept of the game coloring number of a graph was first formally defined 

and investigated by Zhu (Zhu, 1999). The game coloring number, which gives an 

upper bound for the game chromatic number. It is defined through a two-person 

game as follows: two person, say Alice and Bob alternately select vertices of G, to 

form a linear ordering L of the vertices of G, so that x ≤ y in L if x is selected before 

y. The back degree of a vertex x with respect to L is the number of neighbours of x 

which precedes x in L, and the back degree of L is the maximum of the back degrees 

of the vertices of G with respect to L. Alice’s goal is to minimize the back degree of 

L and Bob’s goal is to maximize it. The game coloring number colg(G) of G is equal 
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to k + 1, where k is the back degree of L when both Alice and Bob use their optimal 

strategies in playing the game (Chou, Wang and Zhu, 2000). 

     It is easy to see that  ( ) ( )GcolG gg ≤χ  for any graph G. And the argument that 

shows that  ( ) ( )GcolG gg ≤χ  also shows that  ( ) ( )GcolG g

)d(

g ≤χ . For any forest T, 

( ) ( ) 4TcolT gg ≤≤χ ; for every partial k-tree graph G, ( ) ( ) 2k3GcolG gg +≤≤χ ; etc 

(Chou, Wang and Zhu, 2000). 

     

3.2.2   d – Relaxed Game Chromatic �umber  

 

      The d–relaxed game chromatic number of a graph is another variation of the 

chromatic number of a graph. Suppose d ≥ 0 is an integer. In a d–relaxed game 

coloring (played on a graph G with color set C), a color Ci∈  is legal for an 

uncolored vertex )(GVx∈  if by coloring x  with color i , each vertex of color i  is 

adjacent to at most d vertices of color i(d). The d–relaxed game chromatic number 

)(G)d(

gχ of G is the least cardinality of a color set C for which Alice has a winning 

strategy for the d–relaxed coloring game played on G with color set C. If G is a 

forest and d≥1 then 3G)d(

g ≤χ )( (Chou, Wang and Zhu, 2000). 

       The concept of the relaxed coloring game is a mixture of the concept of the 

coloring game and the concept of relaxed coloring (also called improper coloring or 

defective coloring) of graphs. Given two integers k ≥  1 and d ≥  0, a graph G is 

called (k ,d)–colorable if its vertices can be colored with k colors in such a way that 

each vertex is adjacent to at most d vertices with the same color as itself (Chou, 

Wang and Zhu, 2000). 

        The relaxed game chromatic number, besides the fact that ( ) ( )GcolG g

)d(

g ≤χ , it 

is not clear whether the game coloring number can be used to derive better upper 

bounds for ( )G)d(gχ  when d≥1. For example, given an integer k≥1, it is unknown if 

there exists an integer d such that for any graph G with ( ) ( ) 1kG,kGcol )d(

gg −≤χ≤  

(Chou, Wang and Zhu, 2000). 
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3.2.3  Acyclic Game Chromatic �umber  

 

         The acyclic chromatic number of a graph was introduced by Grünbaum. It was 

conjectured by Grünbaum, and proved by Borodin, that the maximum acyclic 

chromatic number of a planar graph is equal to 5 (Dinski and Zhu, 1999). 

        The acyclic chromatic number of a graph is another variation of the chromatic 

number of a graph. Suppose G = (V, E) is a graph. The acyclic chromatic number of 

G, denoted by ),(Gaχ  is the least number t so that the vertices of G, can be colored 

by t colors in such a way that each color class is an independent set, and the subgraph 

of G induced by any two color classes is acyclic, i.e., the union of every two color 

classes induced a forest (Dinski and Zhu, 1999). 

  

Theorem 3.2.1 (Dinski and Zhu, 1999): Let G be a graph. If k,Ga ≤χ )(  then 

1)( )( +≤χ kkGg .  

 

3.2.4  Hereditary Game Chromatic �umber 

 

       The hereditary game chromatic number of G, denoted by ),(Ghgχ  as the 

maximum of the game chromatic numbers of its subgraphs, i.e. (Dinski and Zhu, 

1999),  

               G}.ofsubgraphsaisH :)(max{)( g HGhg χ=χ       

   

        It follows from the definition that )()( g GGhg χ≥χ  for any graph G. Since the 

acyclic chromatic number of a graph is a monotonic parameter, Theorem 3.2.1 can 

be strengthened to the following: 

 

Theorem 3.2.2(Dinski and Zhu, 1999):  If 1)()(then ,)( hg +≤χ≤χ kkGkGa .  

      Thus if a class of graphs have bounded acyclic number, then they also have 

bounded hereditary game chromatic number. It seems that the converse is also true, 

i.e., a class of graphs of bounded hereditary chromatic number, may also have 

bounded acyclic chromatic number.  
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3.2.5  Oriented Game Chromatic �umber 

 

       The oriented chromatic number of a graph is another variation of chromatic 

number of graphs. Suppose 
→

G  is an oriented graph. Then the oriented chromatic 

number )(
→

χ Go  of 
→

G  is the least number t such that the vertices of 
→

G  can be colored 

by t colors in such a way that each color class is an independent set, and for any two 

color classes, say U and 'U , all the edges are in the same direction, i.e., either all the 

edges are from U to 'U , or all the edges from 'U  to U (Chou, Wang and Zhu, 2000). 

The oriented chromatic number )(Goχ of an undirected graph G is the maximum of 

)(
→

χ Go among all the orientations 
→

G  of G (Dinski and Zhu, 1999). 

 

Theorem 3.2.3 (Dinski and Zhu, 1999): If a graph G has oriented chromatic 

number k, then 

      

                        1)2(k2k)( 1-k1-k +≤χ Gg . 

 

      The relationship between acyclic chromatic number and chromatic number of 

oriented as follows:      

 

 

Theorem 3.2.4 (Dinski and Zhu, 1999): If a graph G has acyclic chromatic number 

k, then  

                           
 1 -k 2k)( ≤χ Go .  

 

 

Theorem 3.2.5 (Dinski and Zhu, 1999): If a graph G has oriented chromatic 

number k, then  

 

                             12)(
+++≤χ klog3

a
2kkG .  
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3.2.6  Incidence Game Chromatic �umber    

 

        This is a competitive version of the incidence coloring number introduced by 

Brualdi and Massey (Andres, 2007). 

        Let G = (V, E) be a graph with vertex set V and edge set E. The set of incidences 

of G is defined as 

 

              I = {(v, e) ∈V × E | v is incident with e}.  

 

       Two distinct incidences (v, e), (w, f) ∈   I are adjacent if (v, f) ∈   I or (w, e) ∈  I. 

This means in particular, if either v = w or e = f, then the incidences (v, e) and (w, f) 

are adjacent.  

       Consider the following game which is played on I with a color set C. Two 

players, Alice and Bob, alternately color an incidence with a color from C in such a 

way that incidences that are adjacent receive distinct colors. The game ends when 

this is not possible any more. Alice wins if every incidence is colored at the end of 

the game, otherwise Bob wins. The smallest number of colors, so that Alice has a 

winning strategy for the game played on I, is called incidence game chromatic 

number ıg(G) of G (Andres, 2007).  

 

Theorem 3.2.6 (Andres, 2007): Let Ck be the cycle with k vertices, then  ıg (Ck) = 5 

for k ≥ 7. 
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