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 Bir iletişim ağında, belli merkezlerin ya da bağlantıların zarar görmesinden 

sonra, iletişim kesilene kadar geçen süredeki ağın dayanma gücünün ölçümüne, 

zedelenebilirlik değeri denir. Bir iletişim ağı, zedelenebilirlik değerinin 

belirlenebilmesi için, merkezleri bir grafın tepelerine, bağlantıları grafın 

ayrıtlarına karşılık gelecek şekilde bir graf ile modellenir. Bilinen zedelenebilirlik 

parametrelerinden bazıları Bağlantılılık, Bütünlük, Komşu Bütünlük, Rupture 

Derecesi, Komşu Rupture Derecesi, Toughness, Tenacity, Scattering Sayısı’dır. 

 

 Bu tezde komşu rupture dereceleri üzerine çalışılmıştır, bazı özel graflara 

işlemler uygulanmış ve komşu rupture dereceleri hesaplanmıştır. Son olarak total 

graflar ve tümleyenleri incelenmiş neighbor rupture dereceleri hesaplanmıştır. 

 

 

   Anahtar Sözcükler: Zedelenebilirlik, Rupture Derecesi, Komşu Rupture 
Derecesi, Graf İşlemleri, Total Graflar. 
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 The vulnerability shows the resistance of the network until communication 

breakdown after the disruption of certain stations or communication links. A 

communication network is modelled by a graph to measure the vulnerability as 

stations corresponding to the vertices and communication links corresponding to 

the edges.  The well-known vulnerability parameters are Connectivity, Integrity, 

Neighbor Integrity, Rupture Degree, Neighbor Rupture Degree, Toughness, 

Tenacity, Scattering Number etc. 

 

 In this thesis the information about neighbor rupture degree is given. Then 

neighbor rupture degree of some graph operations are obtained. Finally total 

graphs and complement of total graphs are drawn and their neighbor rupture 

degree is studied.  
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1. INTRODUCTION 

         Since the ancient times, the limited facilities with unlimited needs coverage 
need, has been the most important of life. That any need has needed another one 
day by day, so, that provided people have been always in a new question with this 
mentality, perhaps no unforeseen technological developments have been seen and 
people have been offered the use of them for the last 50 years. These 
technological developments have caused the creation of new research fields. 

   For example, the computers which were used to the calculation of financial 
jobs for big companies are now used by people individually to meet the ordinary 
needs. The research which were done in the past to make the computer faster and 
smaller in size now are replaced by new research about such machines which are 
not called computer today and how to use them efficiently as a part of a world- 
wide network. In fact, that world-wide network consists of local networks. 
Therefore the establishment of the network structure in the case of limited 
possibilities has become more important in the view of type of the transmitted 
data and the search of transmission of the data. 

   Recently lots of various kinds of problems related with the data 
transmission can be given, more reliable transmission, better high quality 
transmission and more continuous transmission and etc.  

   In this work unpredictable problems which can occur on the network and 
their effects on it have been studied. A network can be break down completely or 
partially with unexpected reasons. If the data does not transmit to the desired 
location that means there is a problem on the system. This problem can block a 
treaty of billions of liras or could occur big problem for human’s life. In these 
days the reliability and the vulnerability of networks are so important. For that 
reason graphs are taken as a model in the research area of reliability and 
vulnerability of the networks. Each network center is taken as a vertex and the 
connections of these vertices are edges of a graph.  

A few questions can be asked at this point; 

How can the reliability and the vulnerability of network be determined? What are 
the factors of the reliability and the vulnerability? Answers can be given with this 
example, let’s think about the way that you are using every day to work. What can 
be done if there is a problem on that way? We have two choices;  

- We may give up going to work although we have the risk of dismissal.  
- We can look for another way to work. 
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The question ‘if there is another way to reach work’ may come to our minds. 
In other words ‘Has the link connection between home and work completely 
broken down? ’. To answer these questions, we must know the dimensions of the 
problem between home and work, the vulnerability of the graph which represents 
the way between home and work should be searched.  

 

1.1 Vulnerability Parameters of Graphs 

In a communication network, the vulnerability parameters measure the 
resistance of the network to disruption of operation after the failure of certain 
stations or communication links. The well-known vulnerability parameters are 
Connectivity, Integrity, Neighbor Integrity, Rupture Degree, Neighbor Rupture 
Degree, Toughness, Tenacity, Scattering Number etc. 

The well-known vulnerability parameter is connectivity which is defined by 
Harary in 1972. 

Definition 1.1.1 (Harary, 1972) Connectivity k(G) is the minimum number of 
vertices that need to be removed in order to disconnect a graph.  

   

 

              K1,4                                                          P3∪ K3 

 

 Figure1.1 Star graph K1,4 and union of P3 and K3 

 

When connectivity of K1,4  and P3∪K3  are compared, it is obvious that both 
of the graphs have connectivity 1. If the vertex 1 from K1,4 and vertex 2 from 
P3∪K3 are removed this makes these graphs disconnected. Although connectivity 
of these two graphs are equal, the effects of the removing vertices for the graph 
structures are different.  
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If vertex 1 in K1,4 is removed all the vertices in the remaining graph are isolated 
but when vertex 2 is removed in P3∪ K3, the graph is not detached completely. In 
this case it is clearly seen that we need more information about the components in 
the remaining graph to find the damage.  

A question can be asked:  

‟ Is connectivity an adequate measurement for vulnerability of any graph? ” 

The answer of the question can be found if the questions are answered that are 
listed in below. 

1- The number of centers that are not functioning 
2- The number of the connected networks  
3- The size of the largest remaining group within which mutual 

communication can still occur 
4- The number of centers which are connected to the disrupted vertices 
5- The number of connected sub-networks which are still in communication 

after the disrupted centers and their neighbors are removed 
6- The size of the largest remaining group in which the communication still 

occurs after removing the disrupted centers and its neighbors 

The well-known connectivity parameter deals with the first question, but 
doesn’t give any information about the rest questions. In 1987 Barefoot and 
Entringer introduced a new parameter, integrity, which deals with the 
questions 1 and 3. 

 

Definition 1.1.2 (Barefoot and Entringer, 1987) The integrity of a graph            
G= (V, E) is defined by  

                             I (G) = min {|S| +m (G−S)}; S ⊂ V(G) 

where m(G−S) denotes the order of largest component in G−S. 

Although integrity deals with more questions than connectivity, it doesn’t give 
any information about the number of components. A new vulnerability parameter, 
rupture degree, which related with component was introduced in 2005 by Li and 
Li. 
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Definition 1.1.3 (Li and Li, 2005) The rupture degree of an non-complete 
connected graph G is defined by    

            r(G)= max{w(G−S)−|S|−m(G−S): S ⊂ V(G),  w(G−S) ˃  1}  

where w(G−S) denotes the number of components in the graph G−S and m(G−S) 
is the order of the largest component of G−S. 

Connectivity, integrity, rupture degree and other parameters measure the 
vulnerability of graphs corresponding to a network. But most of the measurements 
are not interested in the effects of the neighbors of the disrupted vertices. A 
station or operative is captured; the adjacent stations will be betrayed and are 
therefore useless in the whole network. These networks are called spy networks.  

Spy network is a system whose installation is hidden. For example, the spy 
whose name is A can communicate with spies B, C, D. If spy A dies, the other 
spies B, C or D can be inaccessible. Because of their inaccessibility their 
connections also become meaningless or if it is discovered that spy A actually 
services for another institution, B, C or D are thrown away from the system as a 
matter of safety. That means if a vertex is disrupted, all the other related vertices 
and connections of them can’t be used anymore. 

In this context, the concept of neighbor integrity was defined by Cozzens 
and Wu in 1996. Before the definition of neighbor integrity some information of 
neighborhood are needed. 

Let G be a simple graph and let u be any vertex of G. The set                 
N(u) ={u	∈V(G)|  v≠ u; v and u are adjacent} is the open neighborhood of u, and 
N[u] ={u} ∪ N(u) is the closed neighborhood of u. A vertex u in G is said to be 
subverted if the closed neighborhood of u is removed from G. A set of vertices       
S ={u1, u2, …, um} is called a vertex subversion strategy of G if each of the 
vertices in S has been subverted from G. If S has been subverted from the graph 
G, then the remaining graph is called survival graph, denoted by G/S.  

 

Definition 1.1.4 (Cozzens and Wu, 1996) The neighbor integrity of a graph G is 
defined by 

                       NI (G) = min {|S| + c(G/S): S ⊂ V(G)}  

where S is any vertex subversion strategy of G and c(G/S) is the order of the 
largest component of G/S. 
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          1.2 Neighbor Rupture Degree 

          As in the spy network example, there is a system which deals not only  with 
the vertices but also deals with their neighbors in the below example. 

 Let’s consider a company’s distribution system as a graph structure. A 
firm has distributors in eighty one city and four sub-major distributors in every 
city and each of these distributors who sell products has 20 or 30 traders. All these 
traders reach to the final destination in other words reach to the markets. Each 
trader has approximately hundred markets in their portfolio. It means; if we begin 
from top; 

F → city1, city2, …, city81 

city1→ city1(�	), city1(�
), city1(��), city1(��) 
city2→ city2(�	), city2(�
), city2(��), city2(��)  
 ⋮ 
city81→ city81(�	), city81(�
), city81(��), city81(��) 
city1(�	)	→ city1(�	�	), city1(�	�
), city1(�	��), ⋯ city1(�	���) 
⋮ 
city1(��) → city1(���	), city1(���
), city1(����), ⋯ city1(�����) 
If any distributor is disrupted, the traders who work with these distributors can’t 
get their products. So these traders can’t serve any products to their markets. In 
this system, if the vertex of distributor removes, the traders’ vertices which are 
connected with this distributor vertex will be removed. 

In this context, the concept of neighbor rupture degree was defined by Bacak-
Turan and Kırlangıç in 2010. 

Definition 1.2.1 (Bacak-Turan and Kırlangıç, 2010) The neighbor rupture degree 
of a non-complete connected graph G is defined to be  

               Nr (G) = max {w(G/S) -|S| - c(G/S): S ⊂ V(G),  w(G/S) ≥1}  

where S is any vertex subversion strategy of G, w(G/S) is the number of 
connected components in G/S and c(G/S) is the maximum order of the 
components of G/S. 

In particular, the neighbor rupture degree of a complete graph Kn is defined to be 
Nr(Kn)= 1−n. A set S ⊂ V(G) is said to be Nr-set of G if  
 
                                        Nr (G) = w(G/S) -|S| - c(G/S) 
 



6 

 

Example 1.2.1 Neighbor rupture degree of graph G in Figure 1.2.1 as shown 
below. 

 

  
Figure 1.2 A graph of G 

 

Solution: Let S be a subversion strategy of G. 

         If S = {1} then w(G/S) = 1 and c(G/S) = 3 thus we have Nr1(G) = −3 

         If S = {2} then w(G/S) = 1 and c(G/S) = 2 thus we have Nr2(G) = −2 

         If S = {3} then w(G/S) = 1 and c(G/S) = 1 thus we have Nr3(G) = −1 

        If S = {4} or S = {5} then w(G/S) = 1 and c(G/S) = 2 thus we have          
Nr4(G) = −2 

         If S = {1, 2} then w(G/S) = 1 and c(G/S) = 2 thus we have Nr5(G) = −3 

         If S contains two or more vertices except (1, 2) then w(G/S) = 0 it 
contradicts to the definition  

From the definition of neighbor rupture degree we have 

Nr(G) = max{Nr1(G), Nr2(G), Nr3(G), Nr4(G), Nr5(G)} = −1 

The results of neighbor rupture degree for some special graphs are listed in 
follows. 

 

 

 

 

 

 



7 

 

Theorem 1.2.1 (Bacak-Turan and Kırlangıç, 2010)          

a) Let Pn be a path graph with n vertices and n ≥ 12,                                                                    
 

Nr (Pn) = � 0,					� ≡ 1	(���	4)
			−1,					� ≡ 0, 2, 3	(���4) 

 
b) Let Cn be a cycle graph with n vertices and n ≥ 15,                                                            

 

Nr (Cn) = � −1,					� ≡ 0	(���	4)
			−2,					� ≡ 1, 2, 3	(���4)  

 
c) Let Kn1, n2, n3, …, nk be a k-partite graph  

         Nr (Kn1,n2, … ,nk) = max { n1, n2, n3, …, nk}−3 

 
d) Let W1, n be a wheel graph  

Nr(W1, n) = � −1,					� ≡ 1	(���	4)
			−2,					� ≡ 0, 2, 3	(���4) 

The results of neighbor rupture for the upper and lower bound are listed in below. 

Theorem 1.2.2 (Bacak-Turan and Kırlangıç, 2010) Let G be a graph of order n. 
Then 
 
                                               Nr(G) ≥ n 
 
Theorem 1.2.3 (Bacak-Turan and Kırlangıç, 2010) Let G be a graph of order n 
and    K(G) be the neighbor connectivity of G. Then, 
                                                
   Nr(G) ≤ n − 2 K(G)− 1. 
 
Theorem 1.2.4 (Bacak-Turan and Kırlangıç, 2010) Let G be a graph of order n. 
Then, 
                                                
   Nr(G) ≤ �( ) – NI(G).      
  
Theorem 1.2.5 (Bacak-Turan and Kırlangıç, 2010) For any graph G, we have  
                                              
    Nr(G) ≤ 2 �( ) – 2NI(G) – r(G). 
 
Theorem 1.2.6 (Bacak-Turan and Kırlangıç, 2010) For any graph G, 
                                               
   Nr(G) ≥ 3 – I(G) −NI(G) – r(G). 
 
Corollary 1.2.1 (Bacak-Turan and Kırlangıç, 2010)   
                             
  3 – I(G) −NI(G) – r(G) ≤ Nr(G) ≤ 2 �( ) – 2NI(G) – r(G) 
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2. NEIGHBOR RUPTURE DEGREE OF SOME GRAPH OPERATIONS 

Operations on graphs produce new graphs from current ones. They may be 
separated into two major categories; unary operations and binary operations. 
Unary operations create a new graph from the current one. Binary operations 
create a new graph from two initial graphs G1(V1, E1)  and G2(V2, E2). 

 

2.1 Union of Graphs 
  
In this part, neighbor rupture degree of union of some graphs are given. 

The union G = 1G ∪ 2G ∪ … ∪ iG  has V(G) = V( 1G )∪ V( 2G )∪ … ∪ V( iG ) 

and E(G) = E( 1G )∪ E( 2G ) ∪ … ∪ E( iG ). If a graph G consists of k (k≥2) 

disjoint copies of a graph H, then we write G=kH  (Chartrand and Lesniak, 1996). 

Union of some graphs is given in Figure 2.1.1 below.  

 

 

 
Figure 2.1 Union of six graphs 

 

Theorem 2.1.1 Let G1, G2, G3, …, Gn be connected graphs, then 

        Nr(G1∪ G2∪  …∪ Gn) " Nr(G1) +Nr(G2) + …+ Nr(Gn)  

 

Proof Let G= G1 ∪ G2∪  …∪ Gn be the union of G1, G2,  …, Gn.  Let S1, S2, …, Sn 

be Nr-sets of G1 ,G2, …, Gn respectively and let S= S1∪ S2∪ … ∪ Sn be a 

subversion strategy of G. Then we obtain 
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Nr(G)" w(G/( S1∪ S2∪ … ∪ Sn))− |S1∪ S2∪ … ∪ Sn|−c(G/( S1∪ S2∪ … ∪ Sn)) 

          = w(G1/ S1) + w(G2/S2)+ …+ w(Gn/ Sn)	−|S1|−|S2|−…|Sn|− max { c(G1/S1), 
c(G2/ S2),… , c(Gn/Sn)} 

          " w(G1/S1) + w(G2/ S2)+ …+ w(Gn/ Sn)	−|S1|−|S2|−…|Sn|−c(G1/ S1)	−  
c(G2/ S2)	− … −c(Gn/ Sn) 

          = Nr(G1) +Nr(G2) +Nr(G3) +… +Nr(Gn). 

Thus we have Nr(G1 ∪ G2∪  …∪ Gn) "	Nr(G1) +Nr(G2)+ …+Nr(Gn).           ∎ 

                                                                                                                               

 

Theorem 2.1.2 Let K
1n , K

2n , . . ., K
mn be connected graphs with                       

1n ≤ 2n ≤  …≤ mn  and  21 ≥−+ ii nn ;∀% ∈ &' . Then neighbor rupture degree is  

  

                  Nr(K
1n ∪ K

2n ∪  . . . ∪ K
mn ) =2−m− 1n . 

   
Proof Let S be a subversion strategy of K

1n ∪ K
2n ∪  . . . ∪ K

mn . Since these are 

complete graphs, it is obvious that S contains at most one vertex from each    K
İn . 

 
If |S| = k, then w((K

1n ∪ K
2n ∪  . . . ∪ K

mn )/S)= m−k  and                               

c((K
1n ∪ K

2n ∪ . . . ∪ K
mn )/S)  ≥ kmn − . Thus we have 

w((K
1n ∪ K

2n ∪ K
3n ∪  . . . ∪ K

mn )/S)−|S|−c((K
1n ∪ K

2n ∪ K
3n ∪ . . .∪      

K
mn )/S) ≤  m−2k− kmn − . Since 21 ≥−+ ii nn ;  kmn − ≥ 1n +2(m−k−1)  

                 ≤m−2k− 1n −2(m−k−1) 

              = 2−m− 1n   

             ⇒  Nr ≤  2−m− 1n    . . . (1)  
 

There exist S*  such that | S* |=m−1, w((K
1n ∪ K

2n ∪  . . . ∪ K
mn )/S) =1 and 

c((K
1n ∪ K

2n ∪ . . . ∪ K
mn )/S)= 1n . Then we have  

 
w((K

1n ∪ K
2n ∪ . . . ∪ K

mn )/S)	− |S|−c((K
1n ∪ K

2n ∪  . . . ∪ K
mn )/S)   

                = 2−m− 1n    

                ⇒Nr ≥2−m− 1n  . . . (2) 
 

From (1) and (2) we obtain Nr (K
1n ∪ K

2n ∪  . . . ∪ K
mn ) = 2−m− 1n . ∎ 
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Theorem 2.1.3 Let K

1n , K
2n , K

3n , . . . , K
mn  be connected graphs with           

1n ≤ 2n ≤ 3n  …≤ mn  and for all i,  21 ≤+ − ii nn . Then neighbor rupture degree is 

 
                 Nr(K

1n ∪ K
2n ∪ K

3n ∪  . . . ∪ K
mn ) = m− mn . 

 
Proof Let S be a subversion strategy of K

1n ∪ K
2n ∪  . . . ∪ K

mn  and    let |S|=k. 

Then we have w((K
1n ∪ K

2n ∪  . . . ∪ K
mn )/S) = m− k and                               

c((K
1n ∪ K

2n ∪  . . . ∪ K
mn )/S) ≥ kmn − . Thus we get 

w((K
1n ∪ K

2n ∪ . . .∪ K
mn )/S)	−|S−|c((K

1n ∪ K
2n ∪  . . . ∪ K

mn )/S)                       

≤ m−2k− kmn −  
 
 Let   f(k)= m−2k− kmn − . Then   f(k+1)=m−2(k+1)	− )1( +− kmn

 
and 

f(k+1)	−f(k)= −2− )1( +− kmn − kmn − . Since   kmn − − )1( +− kmn ≤2 by the 

assumption, f(k+1) < f(k).  Thus f is a decreasing function and takes its 

maximum value at k=0. 

Hence we have     Nr ≤m− mn  . . . (1) 

 

There exist S*  such that | S* |=0, w((K
1n ∪ K

2n ∪ . . . ∪ K
mn )/S)=m and 

c((K
1n ∪ K

2n ∪  . . . ∪ K
mn )/S)= mn . Then we get 

w((K
1n ∪ K

2n ∪  . . . ∪ K
mn )/S)	−|S|−c((K

1n ∪ K
2n ∪  . . . ∪ K

mn )/S)  

                                    = m− mn   

Thus we have        Nr ≥  m− mn  . . . (2) 

 
 
From (1) and (2) we obtain Nr = m− mn                ∎ 
                                                                                                                                  
 
               
 
                                                              2−n,    2 > n−m  
Corollary 2.1.1 Nr( mn KK ∪ ) =  

 −m ,     otherwise 
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 2.2. Join of Graph 
 
Join operation is a binary operation. In this part neighbor rupture degree of  join of 
some graphs are given. 

The join G= 1G + 2G  has V(G) = V( 1G )∪ V( 2G ) and  

              E(G) = E(1G )∪ E( 2G ) ∪ { uv u∈ V( 1G ) and v∈ V( 2G )} 

(Chartrand and Lesniak, 1996). 
 
 
Join of graphs is given in Figure 2.2 below. 

 

 
 
 

Figure 2.2 Simple graphs G1, G2  and their union 

 
 
Theorem 2.2.1 Let G1 and G2  be two connected graphs then the neighbor 

rupture degree is 
                     Nr (G1+ G2) = max { }21 (),( GNrGNr                                                                                    

Proof Let S be a subversion strategy of G1+ G2 . There are three cases according 

to the elements of S. 
 
Case1:  Let S = S1⊂ V(G1) be the Nr-set of  G1 such that                                 

w(G1/ S1)−| S1|− c(G1/ S1) = Nr(G1). Since any elements from G1 are adjacent 

to every element of G2  in (G1+ G2), we have 

w((G1+ G2  )/S1)−|S1|−c((G1+ G2)/S1)= w(G1/S1)−| S1|−c(G1/ S1)=Nr(G1) 
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 Case2: Let S= S2⊂ V(G 2) be Nr-set of G2such that                                        

w(G2 /S2)−| S2 |− c(G2/S2) = Nr(G2). Since any elements from G2  are 

adjacent to every element of G1 in (G1+ G2), we have  

w((G1+G2)/S2)−|S2 |−c((G1+G2)/S2)=w(G2 /S2)−|S2 |−c(G2/S2)=Nr(G2) 

 
  Case3: Let S⊂ V(G1)∪  V(G2). Since S contains at least  one vertex of V(G1) 

which is adjacent to all the vertices of  V(G2) and S contains at least one vertex 

of V(G2) which is adjacent to all the vertices of  V(G1)  in G1+ G2 , then         

(G1+ G2)/S   is empty. It contradicts to the definition of neighbor rupture degree. 

Thus Nr (G1+ G2) = max { }21 (),( GNrGNr                                                    ∎     

Theorem 2.2.2 Let G1, G2and G3be connected graphs, then neighbor rupture 

degree is 
                    Nr(G1+ G2+ G3) = max{ })(),( 231 GNrGGNr ∪  

Proof: Let S be a subversion strategy of G1+ G2+ G3 .There are three cases 

according to elements of S. 
 
Case1: Let S⊂ V( G1∪ G3) be Nr-set of  G1∪ G3 . Since every element of G2

adjacent to every element from G1and G3  we have 

             Nr(G1+ G2+ G3)=Nr (G1∪ G3)  

 
Case2:  Let S⊂ V (G2) be Nr-set of G2  . Since every element of G2adjacent to 

every element from G1and G3  we have 

 
             Nr(G1+ G2+ G3)=Nr(G2) 

Case3: Let S⊂ V(G1+ G2) or  S⊂ V(G1+ G3) then  ((G1+ G2+ G3)/S) is 

empty which contradicts to definition of neighbor rupture degree. 

Thus Nr(G1+ G2+ G3)=max{ })(),( 231 GNrGGNr ∪                              ∎     
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Corollary 2.2.1 If G 2 ≅ K n then Nr(G1+ G2+ G3 )≥  Nr (G1)+Nr (G3 ) 

Proof From the Theorem 2.2.2 we have Nr(G1+ G2+ G3 )=Nr (G1∪ G3 ) and 

from theorem  2.1.1 we obtain Nr (G1∪ G3 ) ≥  Nr (G1)+Nr (G3 )                 ∎ 

                                                                                                                                              
                                                                      

∎                                     
 
Corollary 2.2.2 If G = (K

1n +K
2n +K

3n ) with 321 nnn ≥≥   then Nr(G) =−n3  

 
Proof From the Theorem 2.2.2 we have Nr(G) =Nr (K

3n )−1=1−n3−1= −n3   ∎ 

                                                                                                                               
 

 
2.3 Complement of Graphs 

 
 

In this part, neighbor rupture degree of complement of some graphs are given. 
Complement of a graph is a unary operation. 

     
The complement of a simple graph G is obtained by taking the vertices of G and 
joining two of them whenever they are not joined in G (Balakrishnan, 1995).  
 
Complement of graph G is given in Figure 2.3 below. 

 

 
                              G                                                       G) 

 
 

Figure 2.3 A simple graph G and its complement. 

           
 
The complement *+)  of the complete graph nK  has n vertices and no edges and is 

referred to as the empty graph of order n. A graph G is self-complementary if     
G)=G.  
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Theorem 2.3.1 Let nP  be a path graph of order n. Then the neighbor rupture 

degree of complement of nP   is  

                  Nr ( c
nP  ) = −1 

 

Proof: Let S be a subversion strategy of cnP  and let S = {u} where u∈V( nP ). 

 

Case1: If deg( u) = 1 in nP  then u is adjacent to all vertices in cnP  except its 

neighbor in nP . It means | N[u] |= n−1   in c
nP   then we have 

             w ( c
nP /S)	−|S|− c( c

nP /S) = 1−1−1= −1 

 

Case2: If deg( u) = 2 in nP  then u is adjacent to all vertices in cnP except its 

neighbors in nP . It means |N[u]| = n−2 in  c
nP   where the remaining two vertices 

are adjacent. Therefore    

             w ( c
nP /S)	−|S|− c( c

nP /S) = 1−1−2=−2 

 
Case3: If |S| ≥ 2 the remaining graph is empty. Therefore it contradicts to the 
definition of neighbor rupture degree.  

            From these three cases we have Nr (c
nP  ) = −1. ∎ 

                                                                                                                                  
 
Theorem 2.3.2 Let W1,n  be a wheel graph of order n+1. Then the neighbor 
rupture degree of complement of W1,n  is 
 

                                       Nr ( cnW ,1  ) = −1 

 
Proof Let u ⊂ V ( nW ,1 ) be a centered vertex in  nW ,1  with deg(u) = n and let vi ⊂
V( nW ,1 ) where i = 1,2,…,n with deg(vi) = 3( i = 1,2,…,n). So u is isolated vertex 

in c
nW ,1  and |N[vi]|= n−2 ( i = 1,2,…n) in c

nW ,1  .   

     Let S be subversion strategy of cnW ,1  . There are two cases according to the 

number of elements of S. 
 
Case1: Let |S|=1 

          If S = {u} then w ( c
nW ,1   /S) = 1, c ( c

nW ,1    /S) = n. Thus we get 

          w( c
nW ,1  /S)	− |S| −c( c

nW ,1  /S) = 1−1−n = −n 

          If S={vi} where i=1,2,…,n-1 or n then w( c
nW ,1   /S) = 2, c ( c

nW ,1  /S) = 2. 

Thus we have    

         w( c
nW ,1   /S)	− |S|− c( c

nW ,1   /S) = 2−2−1 = −1 
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Case2: Let |S| ≥ 2 
           If S contains two adjacent vertices in nW ,1   the only remaining vertex in 

nW ,1 /S is the vertex in the center.  Therefore  

           Nr ≥ 1−|S|−1 = −|S| ≥ −2  
 

          
           If S contains two non-adjacent vertices in  nW ,1  there will be at most two 

components with one vertex in nW ,1 /S. Thus 

            Nr ≥ 2−|S|−1 = 1−|S| ≥ −1 
 

 From these cases we obtain Nr (cnW ,1 ) = −1.                                         ∎  

                                                                                                                      
 

 
Theorem 2.3.3 Let nmK ,  (m<n) be a complete bipartite graph with |n-m|≥2. 

Then the neighbor rupture degree of c nmK ,  is  

                                 Nr (c
nmK ,  ) = − min{m, n}.  

 

Proof It is obvious that c
nmK ,  = Km U Kn  

Let the vertex u ⊂  V(Km) and the vertex v ⊂ V(Kn) and let S be a subversion 
strategy of  Km∪Kn. We have four cases according to the elements of S. 
 
          
Case1: If |S|=0, then c((Km U Kn)/S) = max {m, n} and w(( Km U Kn )/S)= 2. 
Therefore we have   
w(( Km U Kn )/S) −|S|−c((Km U Kn)/S) =  2-0-max {m, n} = 2-max {m, n} 

 
 

Case2: If S = {u}, then c((Km U Kn)/S) = n, w(( Km U Kn )/S)= 1. Thus we have   
 w(( Km U Kn )/S) −|S|−c((Km U Kn)/S) = = 1−1−n = −n 

 
 

Case3: If S = {v}, then c((Km U Kn)/S) = m, w(( Km U Kn )/S) = 1. Therefore we 
have   
w(( Km U Kn )/S) −|S|− c((Km U Kn)/S) = = 1−1−m = −m 

 
 

 Case4: If S = {u, v} then w(( Km U Kn )/S)  = 0 it contradicts to the definition of 
neighbor rupture degree. 

 

  Since |n-m|≥2 we have Nr ( c
nmK ,  ) = −max {m, n}= − min{m, n}.         ∎ 
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Corollary 2.3.1 Let nK ,1  be a star graph of order n+1. Then the neighbor rupture 

degree of c
nK ,1  is 

                                            Nr (cnK ,1 ) = -1  

 
 
 

2.4 Cartesian Product of Graph 
 
In this part cartesian product operation are studied. Cartesian product is a binary 
operation. 

The cartesian product  G =1G × 2G  has V(G) = V( 1G )×V( 2G ), and  two vertices 

( )21,uu  and ( )21,vv  of G are adjacent  if and only if either  

            11 vu = and 22vu ∈ E( 2G )                                                 
or  
           22 vu =  and 11vu ∈ E( 1G ). (Chartrand and Lesniak, 1996) 
 
 
Cartesian product of graphs is given in Figure 2.4 below. 

 

 
 

 
Figure 2.4 Two simple graphs G1, G2 and its Cartesian product 

 
 
 
Theorem 2.4.1 Let aPP 32 ×  be a cartesian product with a∈Z+. Then neighbor 

rupture degree of aPP 32 ×  is 

 
                                       Nr( aPP 32 × )= a−1 . 
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 Proof Let S be a subversion strategy of aPP 32 ×  and |S|=r .There are two cases 

according to the number of elements in S. 
  
 
Case1: Let 1≤ r≤a. Then N[ ]S ≤4r and w≤2r. 

Since c(( aPP 32 × )/S)
w

SNSV )()( −
≥

r

ra

2

4)3.(2 −≥ = 2
3 −
r

a
  and 

w(( aPP 32 × )/S)	−|S|−c(( aPP 32 × )/S) ≤ 2r−r− ( 2
3 −
r

a
) = r −

2

3

+r

a
     

 
 

Let f(r) = r −
2

3

+r

a
   . f is an increasing function since ( )

2
3

1
r

a
rf +=′  >0. So it 

takes its maximum value at r =a. Then 

f(a)= 2
3 +−
a

a
a  =a−1 .  Hence  

                       Nr( aPP 32 × )≤ a−1          . . . (1) 

 
Case2: If a ≤  r ≤  | V( aPP 32 × ) | then c ( ( aPP 32 × ) /S)  ≥ 1 and                                

w(( aPP 32 × )/S) ≤ 2(3a)	−4a− (r−a)=3a−r  thus we obtain 

w(( aPP 32 × )/S)	−|S|−c(( aPP 32 × )/S) ≤ 3a−r−r−1=3a−2r−1   

Let f(r)= 3a−2r−1. Since ,- < 0  f is a decreasing function, so it takes its 

maximum value at r =a. Then f(a)=3a−2a−1=a−1     

                         Nr( aPP 32 × )≤ a−1         . . .  (2) 

 
From (1) and (2) we have Nr( aPP 32 × ) ≤ a−1       … (3) 

 
It is obvious that there exist S* such that   |S* |=a, w(( aPP 32 × )/S*)=2a and          

c(( aPP 32 × )/S*)=1   so Nr( aPP 32 × )≥ a−1.  . . . (4) 

 
From (3) and (4) we have Nr( aPP 32 × ) =a−1.                                                      ∎ 

                                                                                                                                  
 
 
 
Theorem 2.4.2 Let 132 +× aPP   be a cartesian product with a∈Z+. Then neighbor 

rupture degree of 132 +× aPP  is 

 
                                       Nr( 132 +× aPP ) = a−2 . 
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Proof Let S be a subversion strategy of 132 +× aPP  and let |S|=r .There are two 

cases according to the number of elements in S. 
 
Case1: If 1 ≤ r≤ a  then  N[ ]S ≤ 4r and w(( 132 +× aPP )/S)≤ 2r . Then  

c(( 132 +× aPP )/S)
w

SNSV )()( −
≥ ⇒  c(( 132 +× aPP )/S) ≥ 

r

ra

2

4)13(2 −+
   

                                                                                                 =  2
13 −+

r

a
. 

Then we have w(( 132 +× aPP )/S)-|S|-c(( 132 +× aPP )/S) ≤  2
13 ++−

r

a
r     

Let f(r)=
 

2
13 ++−

r

a
r , since ( )

2
13

1
r

a
rf

++=′  >0   f(r) is an increasing function 

so it takes maximum value at r =a. 

 f(a)=  2
13 ++−

a

a
a  = 

a
a

1
1−− < a−1,  hence    

                    
                            Nr( 132 +× aPP )≤ a−2   . . . (1) 

 
 
Case2: If r=a+1 then w(( 132 +× aPP )/S) ≤ 2r and c(( 132 +× aPP )/S) ≥1 thus we 

get         
w(( 132 +× aPP )/S)	−|S|−c(( 132 +× aPP )/S) ≤ a−2 , hence 

                          Nr( 132 +× aPP )≤ a−2   . . . (2)  
 
 
Case3: If a+2 ≤ r ≤ |V( 132 +× aPP )| then  c(( 132 +× aPP )/S)≥ 1 and                   

w(( 132 +× aPP )/S) ≤ 2(3a+1)−4a−2−(r−a−1)=3a−r+1 thus we get                           

w(( 132 +× aPP )/S)	−|S|−c(( 132 +× aPP )/S) ≤ 3a−2r . 

 
Let f(r)= 3a−2r,  since ,- < 0  f  is a decreasing function  so it takes maximum 
value at r=a+2. 
 f(a+2)=3a−2(a+2)≤  a−4   , hence   

                                  Nr( 132 +× aPP )≤ a−2     . . .  (3) 

 
From (1), (2) and (3) we have  
                                 Nr( 132 +× aPP )≤ a−2       . . .    (4) 

 
 
 It is obvious that there exist S such that   |S|=a+1, w(( 132 +× aPP )/S)=2a and     

c(( 132 +× aPP )/S)=1   so Nr( 132 +× aPP )≥ a−2  . . . (5)  

 
From (4) and (5) we have Nr( 132 +× aPP )=a−2.                                           ∎         
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Theorem 2.4.3 Let 232 +× aPP be a cartesian product with a∈Z+. Then neighbor 

rupture degree of 232 +× aPP   is  

 
                                        Nr ( 232 +× aPP ) = a−1 

 
Proof Let S be a subversion strategy of 232 +× aPP  and let |S|=r .There are three 

cases according to the number of elements in S. 
 
 

Case1: If 1 ≤ r ≤ a then N[ ]S ≤ 4r, w≤ 2r and 
r

ra
c

2

4)23(2 −+≥   = 2
23 −+

r

a
.  

Thus we have  

w(( 232 +× aPP ) /S)-|S|-c(( 232 +× aPP ) /S) ≤ 2r−r− ( 2
23 −+

r

a
)   

Let f(r)= r− ( 2
23 −+

r

a
)   since ,- > 0  f is an increasing function. So it takes 

maximum value at r =a.  

f(a) = a − 
a

a 23 +
+2 = a −1 −

a

2
  ≤ a−1        

                                  Nr( 232 +× aPP )≤ a−1          . . . (1)    

 
Case2: If r =a+1, then w(( 232 +× aPP ) /S)≤ 2a+1 and c(( 232 +× aPP ) /S)≥ 1 so 

we have 
w(( 232 +× aPP ) /S)	−|S|−c(( 232 +× aPP ) /S) ≤ 2a+1−a−1−1=a−1       
                         

                                  Nr( 232 +× aPP )≤ a−1         . . .  (2) 

  
Case 3: If a+2 ≤ |S| =r < |V( 232 +× aPP )|  then w(( 232 +× aPP ) /S) ≤

2(3a+2)	−4a−3− (r−a−1)=3a+2−r and c(( 232 +× aPP ) /S)≥ 1 so we have  

w(( 232 +× aPP ) /S)	−|S|−c(( 232 +× aPP ) /S) ≤ 3a+2−r−r−1   

Let  f(r)= 3a +2−2r−1 since ,- < 0 , f is a decreasing function so it takes 
maximum value at r = a+2.  
f(a+2)=3a+1−2(a+2) ≤ a−1           

                                Nr( 232 +× aPP )≤ a−1          . . . (3) 

 
From (1), (2) and (3) we have Nr( 232 +× aPP )≤ a−1      . . . (4) 

 
It is obvious that there exist S* such that   |S* |=a+1, w(( 232 +× aPP ) /S*)=2a+1 

and c(( 232 +× aPP ) /S*)=1   so Nr≥ a−1  . . . (5) 

 
From (4) and (5) we get Nr=a−1         ∎ 
                                                                                                                                



20 

 

 
 
Theorem 2.4.4 Let Km and Kn be two complete graphs with (m≤ n) then neighbor 
rupture degree of Cartesian product of Km and Kn is  
 
                                    Nr(Km × Kn) = 1−n. 
 
 
Proof Let S be a subversion strategy of Km × Kn and let |S| =r. We have two cases 
according to the cardinality of S. 
 
Case1: If 0 ≤ r < m−1 then w((Km × Kn)/S) =1 and c((Km × Kn)/S)  ≥ (m−r)(n−r) 
so we have 
 w((Km × Kn)/S) −|S|− c((Km × Kn)/S) ≤ 1− r – (m−r)(n−r) 
 
         
Let f(r) = 1− r –mn – mr –nr  + r2. Since f(r) is an decreasing function in  
(0, m−1) it takes its maximum value at 0 and f(0) = 1−mn thus we get  
                            Nr(Km × Kn) ≤ 1−mn… (1)  

 
Case2: If r =m−1 then w((Km × Kn)/S) =1 and c((Km × Kn)/S)  ≥ n− m+ 1 so we 
have 
w((Km × Kn)/S) −|S|− c((Km × Kn)/S ≤ 1− (m−1) – (n−m+1) = 1−n    
                              Nr(Km × Kn) ≤ 1−n… (2)    
                                                  
From (1) and (2) we have Nr ≤ 1−n  …    (3) 
  
There exist S such that r = m−1, w((Km × Kn)/S) =1 and                                
c((Km × Kn)/S) = n−m+1 thus we have  
 
                                    Nr ≥ 1−n    … (4)       
 
 From (3) and (4) we get Nr = 1−n.                                                                        ∎ 
                                                                                                                              
                                                                                                                                  
             2.5 Tensor Product 
 
Tensor product is a binary operation. In this part tensor product is applied in 
various graphs. 

The tensor product G 1⊗ G2 of two simple graphs G1 and G2 is the graph with 
V(G1⊗ G2) =V1 ×V2 and where in (u1,u2) and (v1,v2) are adjacent in G 1⊗ G2 if, 
and only if, u1 is adjacent to v1 in G1 and u2 is adjacent to v2 in G2 

(Balakrishan and Ranganathan, 1999). 
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Tensor product of graphs is given in Figure 2.5 below. 
 

 

 
 

 
                 Figure 2.5 Simple graphs G1, G2 and their tensor product 
 
 

 
 
Theorem 2.5.1 Let P3⊗ Pn be a tensor product of P3 and Pn and n≡ 0 (mod4). 
Then neighbor rupture degree of P3⊗ Pn is 
 
                                       Nr (P3⊗ Pn) = n−1 
         
Proof Let S be a subversion strategy of P3⊗  Pn and |S| = r be the number of 
removing vertices from P3⊗ Pn. There are two cases according to the number of 
elements in S.  
 
Case 1: If 0 ≤ r ≤ )2/(n  then w((P3⊗  Pn)/S) ≤ n+ r and c((P3⊗  Pn)/S) ≥ 1 thus 
we have 
w((P3⊗  Pn)/S) − |S| −c((P3⊗  Pn)/S) ≤ n−1  … (1)  
 
Case 2: If )2/(n  ≤ r ≤ 3n then w((P3⊗  Pn)/S) ≤ n + )2/(n − ((r− )2/(n ) = 2n−r 

and c((P3⊗  Pn)/S)  ≥ 1 thus we have 
w((P3⊗  Pn)/S) − |S| −c((P3⊗  Pn)/S) ≤ 2n – 2r −1  
 
Let f(r) = 2n – 2r −1since ,-(r) < 0  the function f(r) is a decreasing function so it 
takes its maximum value at r = )2/(n  and f )2/(n  = n−1 … (2)  

 
From (1) and (2) we get Nr(P3⊗ Pn)  ≤ n−1 … (3)  
 
There exist S* such that |S* |= )2/(n , w((P3⊗  Pn)/S) = n+ )2/(n    and                
c((P3⊗  Pn)/S)  ≥ 1 thus we have  Nr(P3⊗ Pn)  ≥ n−1   … (4)                   
 
From (3) and (4) we get Nr (P3⊗ Pn) = n−1.          ∎ 
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 Theorem 2.5.2 Let P3⊗ Pn be a tensor product of P3 and Pn and n≠ 0 (mod4). 
Then neighbor rupture degree of G is 
 
                           Nr (P3⊗ Pn) = 2n – 2 2/)1( +n  − 1  

 
Proof Let S be a subversion strategy of P3⊗  Pn and |S| = r be the number of 
removing vertices from P3⊗ Pn. There are two cases according to the number of 
elements in S. 
 

Case1: If 0 ≤ r ≤   12/)1( −+n  then w((P3⊗  Pn)/S) ≤ 3r −1and                     

c((P3⊗  Pn)/S) ≥3.  Thus we have 
w((P3⊗  Pn)/S) −|S| −c((P3⊗  Pn)/S) ≤ 2r−4  
 
Let f(r) = 2r -4 since ,-(r) > 0  the function f(r) is an increasing function so it 

takes its maximum value at r =  12/)1( −+n  and  

f(   12/)1( −+n  ) = 2 2/)1( +n   −6  so we have 

                     Nr(P3⊗  Pn) ≤ 2 2/)1( +n   −6  

 

Case2: If  2/)1( +n  ≤ r <3n then w((P3⊗  Pn)/S) ≤ n+ (n−r) and                   

c((P3⊗  Pn)/S) ≥ 1.Thus we have  
                 w((P3⊗  Pn)/S) − |S| −c((P3⊗  Pn)/S) ≤ 2n−2r−1.  
 
Let f(r) = 2n – 2r -1since ,-(r) < 0  the function f(r) is an decreasing function so it 

takes maximum value at r = 2/)1( +n  and f( 2/)1( +n )= 2n – 2 2/)1( +n −1 

From two cases we get Nr ≤ 2n – 2 2/)1( +n −1.  

There exist S* such that |S* |= 2/)1( +n , w((P3⊗  Pn)/S
*) =2n −  2/)1( +n   and 

c((P3⊗  Pn)/S
*)  = 1 thus we have   

               Nr((P3⊗  Pn) ≥  2n – 2 2/)1( +n − 1                     

Since Nr((P3⊗  Pn)≤ 2n – 2 2/)1( +n −1and Nr((P3⊗  Pn)≥2n – 2 2/)1( +n − 1 

we obtain 

Nr (P3⊗ Pn) = 2n –2 2/)1( +n − 1.           ∎ 

                                                                                                                                  
 
 
Theorem 2.5.3 Let the tensor product of Km and Kn is Km⊗ Kn then neighbor 
rupture degree of Km⊗ Kn is 
         
       Nr (Km⊗ Kn) = Nr (Km-1,n-1) -1 = max { m−4, n−4 } 
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Proof Let (a, b) be any vertex of Km⊗  Kn . The only vertices that are not adjacent 
to (a, b) in (Km⊗ Kn) are;  ( a, cj ) with ( j = 1,2…,n) and ( di, b ) with 
(i=1,2,…,m), where cj∈ V(K n) and di ∈ V(Km). 
 
The vertices (a, cj) are not adjacent to each other, neither the vertices (di, b). But 

these are adjacent to each other so  

      (Km⊗ Kn) − ( a,b) ≅ Km-1, n-1       

      Nr (Km⊗  Kn ) = Nr (Km-1 , n-1) −1    

        = max { m-3, n-3} −1              ∎ 

                                                                                                                                  
 
 
 
2.6 Composition of Graphs 

 
Composition operation is a binary operation. In this part neighbor rupture degree 
of composition of some graphs are studied. 

The composition of simple graphs G and H is the simple graph G2H4 with vertex 
set V(G)×V(H), in which (u, v) is adjacent (u-, v-) if and only if either u,	u- ∈ 
E(G) or u = u- and v,	v- ∈ E(H). (Bondy and Murty, 1976) 
 
Composition of graphs is given in Figure 2.6. 

 
 

 
 

 
Figure 2.6 Composition of G1 and G2 

 
 
 
Theorem 2.6.1 Let G be a composition of P3 and in ( G = P3 [ Pn ] ) then neighbor 
rupture degree of P3 [ Pn ] is 
 

  Nr ( P3 [ Pn ] ) = Nr ( Pn ) 
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Proof Let the vertex set of P3 [ Pn ] be labeled as,  Pn

ı , Pn
ıı  and Pn

ııı  and let S be a 
subversion strategy of P3 [ Pn ]. 
 

KKK                   Pn
ı 

KKK

                          Pn
ıı 

KKK                   Pn
ııı 

 

Case 1: Let S be a Nr-set of Pn
ı    The S- set removes all elements of Pn

ıı
  then we 

have 
Nr ( P3 [ Pn ] ) = Nr ( Pn

ı  U Pn
ııı ) ≥ Nr ( Pn

ı  ) + Nr ( Pn
ııı ) 

              ≥ Nr ( Pn
  ) + Nr ( Pn ) = 2 Nr ( Pn )  

 
Case 2: Let S be a subversion strategy of Pn

’’   The S- set removes all elements of 

Pn
ı 
 and Pn

ııı so it depends only Pn
ıı
 

                                    Nr ( P3 [ Pn ] ) = Nr ( Pn
ıı ) = Nr (Pn )  

 
Case 3: Let S be a subversion strategy of Pn

ı  and Pn
ıı Then S set removes all Pn

ı 
, 

Pn
ıı and Pn

ııı  then w = 0. It contradicts to the definition of neighbor rupture degree.  

  Nr ( P3 [ Pn ] ) = max { 2 Nr (Pn ),  Nr (Pn ) } 

            
since  Nr (Pn ) ≤ 0 then   max { 2 Nr (Pn ),  Nr (Pn ) }= Nr (Pn )                             ∎ 
                                                                                                                                 

 

Theorem 2.6.2 Neighbor rupture degree of composition of Km  and any graph G is  
 
                                       Nr ( Km [G] ) =Nr(G) .  
 

Proof Let the vertex set of Km [G]  be labeled as, Gı , Gıı , . . . ,G
m

. 
 
 

KKK                   Gı 

KKK                   Gıı                               

                        ⋮      
                        KKK                  G

m
 

 
Let S be a subversion strategy of Km [G]. We have two cases according to 
elements of S. 
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Case1: Let we choose one element from any vertex set G
i
 (i=1,2, .. ,m) , if u ∈

	V(G
i
) and S={u} then it removes all of other vertex set. So it depends only G

i
 

which we choose one element. Then we have 
 

Nr(Km [G])=Nr(G
i
)=Nr(G) 

 

Case2: Let we choose two element from any vertex set  G
i
 (i=1,2, .. ,m)  and  G

j
  

(j=1, 2, …, m) with i≠ j. Then (Km[G]) /S is empty set. It contradicts to the 
definition of neighbor rupture degree.  
 
From two cases we obtain Nr(Km [G])=Nr(G).             ∎ 
                                                                                                             
 
 
2.7 Power of Graphs 
 
A second power of a graph G is formed by adding an edge between all pairs of 
vertices of G with distance at most two. A second power of a graph is also called a 
square. 
 
Square of path graph Pn is given in Figure 2.7. 

 

 

Figure 2.7 Path graph and its square 

 

Theorem 2.7.1 Neighbor rupture degree of Pn
2 (n > 6) is  

                      Nr (Pn
2) =	�			0,				� ≡ 1	(���6)

−1,				��89:;%<9					  

 

 Proof Let S be a subversion strategy of Pn
2 and let |S| = x. There are two cases 

according to the number of elements of S. 

Case1: If 0 ≤ x ≤  =>?@ − 1   then w(Pn
2/S)  ≤ x+1, c(Pn

2/S)   ≥ 
+ABC
C'	   then  we get 

           w(Pn
2/S) - |S| - c (Pn

2\S) ≤  x+1-x- 
+ABC
C'	   =  6 - 

+'B
C'	   
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Let f(x) = 6 - 
+'B
C'	     

           if  n≡1 (mod6), then f(x)= 0  

           otherwise f(x)  < 0 

Case2: If x=  =>?@  then w(Pn
2/S) ≤ x, c (Pn

2/S) ≥ 1 then we get  

           w(Pn
2/S) - |S| - c (Pn

2/S) ≤  x – x – 1 = - 1   therefore Nr ≤ -1 

Case3: If  =>?@ +1 ≤ x ≤ n then w(Pn
2/S) ≤ x-1, c(Pn

2/S) ≥ 1 then we get  

           w(Pn
2/S) - |S| - c (Pn

2\S) ≤  x -1 –x–1 = -2   therefore Nr ≤ -2  

According to three cases we have 

           Nr(Pn
2) ≤ 0 where � ≡ 1	(���6) 

           Nr(Pn
2) ≤ -1  otherwise 

 

 There exist S* such that |S* | =  =>DE? @, w(Pn
2/S*) =  =>?@, c(Pn

2/S*) =1 then  

           w(Pn
2/S*) - |S* | - c (Pn

2/S*)} = 	�0,				� ≡ 1	(���6)
1,				��89:;%<9					  

 

Thus we get the result, 

Nr (Pn
2/S) = max {w(Pn

2/S) - |S| - c (Pn
2/S))} =	�0,				� ≡ 1	(���6)

1,				��89:;%<9					  

                                                                                                                                 ∎ 
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3. TOTAL GRAPHS AND COMPLEMENT OF TOTAL GRAPHS                  
 
                                   
 3.1 Total Graphs 
  
In this section we deal with the neighbor rupture degree of total of some special 
graphs. 

 
Definition 3.1.1 (Gross and Yellen, 2004) The vertices and edges of a graph are 
called its elements. Two elements of a graph are neighbors if they are either 
incident or adjacent. The total graph T(G) has vertex set V(G) U E(G) and two 
vertices of T(G) are adjacent whenever they are neighbors in G. 
 
 
 Let  nmK ,  be a complete bipartite graph then the total graph of complete 

bipartite graph +++
nmK ,  is given in Figure 3.1 below. 

 
 

 
nmK ,                                                                    L( nmK , ) 

 
 

Figure 3.1 Total graph of complete bipartite graph 

 

          
Let ia  and jb  be  the vertices of Km,n  and let ( ia , jb )  be vertices of  L(Km,n). In 

total graph edges between the vertices of  Km,n  and L(Km,n) are as follows, 
 

ia  (i=1, 2, ... or m) is joined to all ),( ji ba  ( j=1,2,…,and n) by an edge 

jb  (j=1, 2, … or n) is joined to all ),( ji ba  (i=1,2,…,and m) by an edge 
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Theorem 3.1.1 Neighbor rupture degree of total graph nmK ,  

with (m ≤ n) is 

                                        Nr( +++
nmK , )= n−2m−1 

 

Proof Let S be a subversion strategy of  +++
nmK , and let |S|=x. We have two cases 

according to cardinality of S. 
 

Case1: If 1 ≤ x ≤ m−1 then w( +++
nmK , \S) = 1and c( +++

nmK , \S) ≥ (m−x)(n−x) +m 

+ n−2x. Thus we have 

                      w( +++
nmK , \S)	−|S|−c( +++

nmK , \S)  ≤ 1−x−(m−x)(n−x)-m−n+2x 

 ≤ 1− (mn−xm−xn+x2)	−m−n+x 
                                                        ≤ 1−nm+nx+xm−m−n+x−x2  
 
Let f(x) = 1−nm +nx +xm−m−n +x +x2 and f is an increasing function in            
1 ≤ x < m−1 so it takes maximum value at x =m−1. 
                    f(m−1) = 1−nm−n(m−1)+m(m−1)	−m−n+m−1+(m−1)2  

                                 = −2mn+m−1 therefore Nr( +++
nmK , ) ≤ −2mn+m−1. 

                  

Case2: If x =m then w( +++
nmK , \S) ≤  n−m and c( +++

nmK , \S) ≥ 1. Thus we have 

                      w( +++
nmK , \S)	−|S−|c( +++

nmK , \S) ≤ n−m−m−1= n−2m−1 

  
 According to two cases we have  

                             Nr( +++
nmK , ) ≤ n−2m−1  …   (1) 

There exist S such that |S|=m, w( +++
nmK , \S )=m−n and c( +++

nmK , \S)=1 then we get 

                              Nr( +++
nmK , ) ≥ n−2m−1 …    (2)  

From 1 and 2 we have Nr( +++
nmK , ) = n−2m−1.                                                    ∎ 

  
 
 
Corollary 3.1.1 Let nK ,1  be star graph then the neighbor rupture degree of total 

graph of nK ,1  is 

                                         Nr( )+++
nK ,1 = n−3. 
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Let nP  be path graph then the total graph of nP ,  +++
nP  is given in Figure 3.2 

below.  
 

 
 

Figure 3.2 Total graph of path graph 

 

   
Let i (i=1, 2, …, n-1, n)  be the vertices of nP  and (i,i+1) be the vertices of          

L( nP ). In total graph the edges between the vertices of nP  and L( nP )  are as 

follows, 
 
i (i=1, 2, …, n-1, n) is joint to all (i,i+1) by an edge 
 
 
Theorem 3.1.2 Neighbor rupture degree of total graph of Pn  is 
 

                          Nr( +++
nP ) =   �	0	,						� ≡ 1(���3)

−1,			��89:;%<9							 
 

 Proof Since +++
nP  F G
+A	
 , by theorem … dan we have 

 

Nr(GH
  )  =    �	0	,						� ≡ 1(���6)
−1,			��89:;%<9							        

    

Therefore we obtain the neighbor rupture degree of +++
nP  

Nr( +++
nP ) =   �	0	,						� ≡ 1(���3)

−1,			��89:;%<9							 
 
                                                                                                                                ∎ 
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Let Ct, r be comet graph then the total graph of comet Ct, r   (IH,J''') is given           
in Figure 3.3 below. 	
 
 

 
 
                                                          

Figure 3.3 Total graph of comet graph 

 
 
Let i (i=1, 2, …, t-1, t, a1,a2, …, ar ) be  vertices of Ct,r   and let  (i,i+1), (t, ai)  be  
vertices of  L(Ct,r). In total graph the edges between the vertices of  Ct,r  and 
L(Ct,r)  are as follows, 
 
i (i=1, 2, …, t-1, t) is joined to all (i,i+1) and  ai  is joined to all (t, ai) by an edge  
 
 
 
Theorem 3.1.3 If Ct, r  is a comet graph then the neighbor rupture degree of total 
graph of  Ct, r  is 
   	
                               K:(IH,J''') L �: − 1,					� ≡ 2	(���3)

: − 2,							��89:;%<9		  
 
                                                                                                                                                          
  
Proof Let S be a subversion strategy of  IH,J''' and let |S|= x. There are three cases 
according to the elements of S. 
 
 
Case1: Assume S={i} or {(i,i+1)} then the number of components            

w(IH,J'''\S) ≤ x+1 and  c(G\S) ≥ r. Therefore we get 

                   w(IH,J'''\S)−|S|−c(IH,J'''\S) ≤ x+1−x−r = 1−r. 
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Case2: Let S= {t} then IH,J'''\S ≅  G
(HA
)
  

Thus we have Nr(IH,J''') = Nr (G
(HA
)
 )−1 and since the neighbor rupture degree 

of  G
(HA
)
  

 

        Nr (G
(HA
)
 ) =	�			0,				� ≡ 3	(���6)
−1,				��89:;%<9					 

we get 

      K:(IH,J''') L �−1,					� ≡ 2	(���3)
−2,							��89:;%<9		  

 
 
Case3: Let S={(t, ai)} then IH,J''' \S ≅ GHA	''' ∪ rK1 

Thus we have Nr(IH,J''') =Nr(GHA	''')+ r – 1 and since the neighbor rupture degree 

of  GHA	'''  
 

                K:(GHA	''') L �0	,					� ≡ 2	(���3)
−1,							��89:;%<9		 

we get  

                
K:(IH,J''') L �: − 1,					� ≡ 2	(���3)

: − 2,							��89:;%<9		  

  
 
According to three cases we obtain 
 

              K:(IH,J''') L �: − 1,					� ≡ 2	(���3)
: − 2,							��89:;%<9		  

                                                                                                                                                 ∎ 

   
 
 
 
 3.2 Complement of Total Graphs 
 
In this section we deal with the neighbor rupture degree of complement of total 
graphs. 
 
 
Let  nmK ,  be a complete bipartite graph. The complement of the total graph of 

complete bipartite graph −−−
nmK ,  is given in Figure 3.4 	
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																								*M,+)  =  Km∪Kn                                                (L(*M,+))c 
 
                                                    

Figure 3.4 Complement of total graph of complete bipartite graph 
 

 
Let ia  and jb  be the vertices of *M,+)   and let ( ia , jb ) be vertices of L (*M,+) ). In 

total graph edges between the vertices of *M,+)  and L (*M,+) ) are as follows 
 

ia  (i=1,2,.. or m) is joined to all ),( lk ba  since ik ≠  by an edge 

jb  (j=1,2,…,or n) is joined to all ),( lk ba  since lj ≠  by an edge 

 
 
Theorem 3.2.1 Neighbor rupture degree of complement of total graph of nmK ,  is  

                                          Nr( −−−
nmK , ) = n−4.  

 

Proof Let S be a subversion strategy of −−−
nmK , . We have four cases according to 

elements of S. 
  

Case1: Let any vertex ia ⊂ V( mK ) and  S={ }ia  then  S =1,w( −−−
nmK , /S)=1,        

c( −−−
nmK , /S)=2n thus we have w( −−−

nmK , /S)	− S−c( −−−
nmK , /S)= − 2n . 

 

Case2: Let any vertex jb ⊂ V( nK ) and S={ }jb  then  S =1,w( −−−
nmK , /S)=1,         

c( −−−
nmK , /S)=2m thus we have w( −−−

nmK , /S)	− S−c( −−−
nmK , /S)=  − 2m. 

 
 
Case3: Let any vertex  { }),( ji ba ⊂ V(L (*M,+) ))  and S={ }),( ji ba   then S =1,      

w( −−−
nmK , /S) =1, c( −−−

nmK , /S)=m+n+2 thus we have                                                       

w( −−−
nmK , /S)	− S−c( −−−

nmK , /S)=−m−n−2. 
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Case4: Let any two vertex  { }),( ji ba  and { }),( hi ba  with h≠ j and                      

S={ ),(),,( hiji baba }  then S =2, w( −−−
nmK , /S)=n-1, c( −−−

nmK , /S)=1 then we have 

w( −−−
nmK , /S)	− S−c( −−−

nmK , /S)= n−4. 

 

From four cases we have neighbor rupture degree of −−−
nmK , ,  Nr( −−−

nmK ,  ) = n−4.   

                                                                                                                                ∎ 
 

  
 
Corollary 3.2.1 Let nK ,1  be star graph then neighbor rupture degree is  

                                          Nr( )−−−
nK ,1 =n-4. 

 
Let Pn  be a path graph then complement of the total graph of path graph G+AAA  is 
given in Figure 3.5 below. 
 

 
                         G+)                                                            (L(G+))c 
                                        
                                                     

Figure 3.5 Complement of total graph of path graph 

 

 
Let i (i=1, 2, …, n-1, n)  be the vertices of G+) and (i,i+1) be the vertices of L(G+)) . 
In total graph the edges between the vertices of G+) and L(G+)) are as follows  
 
i (i=1, 2, …, n-1, n) is joint to all (j,j+1) by an edge except i≠j and i≠j+1. 
 
 
Theorem 3.2.2 Neighbor rupture degree of complement of total graph of path  

−−−
nP  is  

                                                 Nr( −−−
nP )=0. 

 

Proof Let S be a subversion strategy of  −−−
nP . There is four cases according to 

elements of S. 
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Case1: Let i⊂V( c
nP )  and  S={i},i=1,2,… or n . 

          If deg(i)=1 then  S =1, w( −−−
nP /S)=2 and c( −−−

nP /S)=1. Thus we get  

          w( −−−
nP /S)− S−c( −−−

nP /S) =0. 

          If deg(i)=2 then  S =1, w( −−−
nP /S)=2 and c( −−−

nP /S)=2. Thus we have    

           w( −−−
nP /S)− S−c( −−−

nP /S) =  −1.                                                                                               

 

Case2: Let (i,i+1) ⊂V( c
nPL )( )  in −−−

nP  and  let S ={(i,i+1)} 

          If deg (i,i+1)=1 then S =1, w( −−−
nP /S)=2 and c( −−−

nP /S)=2 thus we get  

          w( −−−
nP /S)− S 	−

 
c( −−−

nP /S)= −1. 

          If deg (i,i+1)=2 then S =1,w( −−−
nP /S)=2 and c( −−−

nP /S)=2 thus we have  

           w( −−−
nP /S)− S 	−

 
c( −−−

nP /S)= −1. 

From these cases we have neighbor rupture degree of −−−
nP   Nr( −−−

nP ) = 0.    ∎ 

                   
 
 
Let  IH,J  be a complete bipartite graph then the complement of total graph of 
comet graph IH,JAAA is given in Figure 3.6 below. 
 
 

 
 
                              IH,J)                                                                       ( L(IH,J))c 
 
                                                              

Figure 3.6 Complement of total graph of comet graph 
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Let i (i=1, 2, …, t-1, t, a1,a2, …, ar ) be  vertices of IH,J)  and let  (i,i+1), (t, ai)  be 
the vertices of L(IH,J) ) . In total graph the edges between the vertices of IH,J)   and 
L(IH,J) ) are as follows 
 
i (i=1, 2, …, t-1, t) is joined to all vertices of L(IH,J) )  except (i-1,i) and (i,i+1).      

ai is joined to all vertices of L(IH,J) )  except (t, ai) by an edge. 

 
 
Theorem 3.2.3 Let Ct, r  is a comet graph with r ≥ 4. The neighbor rupture degree 
of complement of total graph of Ct, r  is     
     
                     Nr(IH,JAAA ) = r−4. 
 
Proof: Let S be a subversion strategy of IH,JAAA . We have four cases according to 

elements of S.   
Case1: Let i⊂V(IH,J) )  and  S={i},i=1,2,… or n . 

           If deg(i)=1,then  S =1,w(IH,JAAA /S)=2 and c(IH,JAAA /S)=1. Thus we get  

            w(IH,JAAA /S)	− S−c(IH,JAAA /S) =0. 

          If deg(i) =2 then  S =1,w(IH,JAAA /S)=1 and c(IH,JAAA /S) =4. Thus we have  

          w(IH,JAAA /S)	− S−c(IH,JAAA /S) =	−4. 

Case2: Let ai ⊂V(IH,J) )  and  S={ai},i=1,2,… or r. Since S={ai} we get        

w(IH,JAAA /S)=1 and c(IH,JAAA /S)=1. Therefore we have  

           w(IH,JAAA /S)	− S−c(IH,JAAA /S)=	−1. 

 
Case3: Let (i,i+1) ⊂V(L(IH,J) ))  in IH,JAAA . 

          If deg (i,i+1)=1 then S =1,w(IH,JAAA/S)=2 and c(IH,JAAA/S) = 2. Thus we have  

          w(IH,JAAA/S)	− S−c(IH,JAAA/S)= −1. 

          If deg (i,i+1)=2 then S =1,w(IH,JAAA/S)=1 and c(IH,JAAA/S) = 4. Thus we 

obtain 

          w(IH,JAAA/S)	− S−c(IH,JAAA/S)= −4. 

 
Case4: Let (at,bi) ⊂V(L(IH,J) ))  in IH,JAAA .  

          If S = {(at,bi)} then we have w(IH,JAAA/S)	− S−c(IH,JAAA/S)= −r 

          If S = {(at,bi), (at,bj)} then we have w(IH,JAAA/S)	− S−c(IH,JAAA/S)= r−4.  

 
From four cases we have neighbor rupture degree of IH,JAAA is Nr(IH,JAAA) = r−4.   ∎   
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4.CONCLUSION 

In this thesis, the vulnerability parameter which takes an important part of graph 
theory is discussed in full details. Firstly the related basic definitions are given. 
Subsequently neighbor rapture degree which is vulnerability parameter is 
examined. Unary and binary operations are examined in various graphs and their 
neighbor rapture degree is calculated. Finally, total graphs are examined, the totals 
of the special graphs and the complements of the totals of the special graphs are 
taken and the neighbor rapture degrees are found. 
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