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Bir iletisim aginda, belli merkezlerin ya da baglantilarin zarar gérmesinden
sonra, iletisim kesilene kadar gecen siiredeki agin dayanma giiciiniin 6l¢iimiine,
zedelenebilirlik degeri denir. Bir iletisim ag1, zedelenebilirlik degerinin
belirlenebilmesi icin, merkezleri bir grafin tepelerine, baglantilar1 grafin
ayritlarina karsilik gelecek sekilde bir graf ile modellenir. Bilinen zedelenebilirlik
parametrelerinden bazilar1 Baglantililik, Biitiinlilk, Komsu Biitiinliik, Rupture

Derecesi, Komsu Rupture Derecesi, Toughness, Tenacity, Scattering Sayis1’dir.

Bu tezde komsu rupture dereceleri iizerine ¢alisilmistir, baz1 6zel graflara
islemler uygulanmis ve komsu rupture dereceleri hesaplanmistir. Son olarak total

graflar ve tlimleyenleri incelenmis neighbor rupture dereceleri hesaplanmistir.

Anahtar Sozciikler: Zedelenebilirlik, Rupture Derecesi, Komsu Rupture
Derecesi, Graf Islemleri, Total Graflar.
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ABSTRACT

VULNERABILITY PARAMETERS ON GRAPH OPERATIONS

KANDILCI, Saadet

Thesis Adviser: Assist. Prof. Dr. Refet POLAT
Second Adviser: Assist. Prof. Dr. Goksen BACAK TURAN

The vulnerability shows the resistance of the network until communication
breakdown after the disruption of certain stations or communication links. A
communication network is modelled by a graph to measure the vulnerability as
stations corresponding to the vertices and communication links corresponding to
the edges. The well-known vulnerability parameters are Connectivity, Integrity,
Neighbor Integrity, Rupture Degree, Neighbor Rupture Degree, Toughness,

Tenacity, Scattering Number etc.

In this thesis the information about neighbor rupture degree is given. Then
neighbor rupture degree of some graph operations are obtained. Finally total
graphs and complement of total graphs are drawn and their neighbor rupture

degree is studied.

Keywords: Vulnerability, Rupture Degree, Neighbor Rupture Degree, Graph
Operations, Total Graphs.



TESEKKUR / ACKNOWLEDGEMENTS

Yiiksek lisans tezimi hazirlarken bana rehberlik eden ve destegini eksik
etmeyen danigman hocam Sayin Yrd. Dog. Dr. Refet POLAT’a, bu tez calismasi
boyunca bilgi ve deneyimlerini esirgemeyen yardimci danisman hocam Sayin
Yrd. Dog¢. Dr. Goksen BACAK TURAN’a, tezin bi¢imlenmesinde degerli
katkilarint aldigim Sayin Dr. Mehmet KURT a, hazirlik asamasinda yardime1 olan

basta annem olmak {izere tiim sevdiklerime tesekkiirii bir borg bilirim.

Saadet KANDILCI



Xi

ICINDEKILER

TABLE OF CONTENTS
Page
OZET ottt v
ABSTRACT ..o vii
TESEKKUR/ ACKNOWLEDGEMENTS .......c.oiuiiiiiiiiiiiiieeieieieen ix
SEKILLER DIiZINi/ INDEX OF FIGURES ........ccccoiviiiiiiiiiiiiiiieii, XV
L INTRODUCTION ...t e 1
1.1 Vulnerability Parameters of graphs ... 2
1.2 Neighbor Rupture Degree .........coooviiiiiiiiii e 5

2 NEIGHBOR RUPTURE DEGREE OF SOME GRAPH OPERATIONS 8

2.1 Union of Graphs .....oooviiiiiiii e 8
2.2J0in Of Graphs.....ooviiiiii i 11
2.3 Complement of Graphs ..........ccooiiiiiiiiiiiiiii e, 13
2.4 Cartesian Product of Graphs.............ooooiiiiiiiiiiii e, 16
2.5 Tensor Product of Graphs..............coooiiiiiiiiiiiiiiiii e, 20

2.6 Composition of Graphs ...........cccoviiiiiiiiiiiiiii .23

2.7 Power of Graphs ......oooviiiii i 25
3 TOTAL GRAPHS AND COMPLEMENT OF TOTAL GRAPHS ...... 27

3.1 Total Graphs .....c.ouoieiniii i 27

3.2 Complement of Total Graphs ..............cooiiiiiiiiiiiiiii 31
4 CONCLUSION ..ot e, 36

KAYNAKLAR /BIBLIOGRAPHY ..o 37



XV

INDEX OF FIGURE

Figure

Page
Figurel.1 Star graph K; 4 and union of Psand K5 ..., 2
Figure 1.2 A graph of G ..o, 6
Figure 2.1 Union of SiX @raphs .......c.coviiiiiiiiiii e 8
Figure 2.2 Simple graphs G, G, and their union ....................coo 11
Figure 2.3 A simple graph G and its complement ...................ccoeviiiinnnnn... 13
Figure 2.4 Two simple graphs G, G, and its Cartesian product ................... 16
Figure 2.5 Simple graphs Gj, G; and their tensor product ........................... 21
Figure 2.6 Composition of Gy and G ......oooviiiiiiiiiiiiiiiiiiieeee 23
Figure 2.7 Path graph and its SqUAare ..............coooviiiiiiiiiiiiiii e 25
Figure 3.1 Total graph of complete bipartite graph ..................cooviiiinnn. 27
Figure 3.2 Total graph of path graph ................. 29
Figure 3.3 Total graph of comet graph ... 30
Figure 3.4 Complement of total graph of complete bipartite graph ................ 32
Figure 3.5 Complement of total graph of path graph ....................co. 33

Figure 3.6 Complement of total graph of comet graph .............................. 34



1. INTRODUCTION

Since the ancient times, the limited fdes with unlimited needs coverage
need, has been the most important of life. Thatreegd has needed another one
day by day, so, that provided people have beenyalwaa new question with this
mentality, perhaps no unforeseen technological ldpw@ents have been seen and
people have been offered the use of them for tle % years. These
technological developments have caused the creatioew research fields.

For example, the computers which were useddadtculation of financial
jobs for big companies are now used by people iddally to meet the ordinary
needs. The research which were done in the pastke the computer faster and
smaller in size now are replaced by new researoltaduch machines which are
not called computer today and how to use themieffity as a part of a world-
wide network. In fact, that world-wide network c@sts of local networks.
Therefore the establishment of the network strectur the case of limited
possibilities has become more important in the vadwype of the transmitted
data and the search of transmission of the data.

Recently lots of various kinds of problems rethtwith the data
transmission can be given, more reliable transwomssibetter high quality
transmission and more continuous transmission tnd e

In this work unpredictable problems which carcwcoon the network and
their effects on it have been studied. A networnk lba break down completely or
partially with unexpected reasons. If the data deettransmit to the desired
location that means there is a problem on the systdis problem can block a
treaty of billions of liras or could occur big ptetm for human’s life. In these
days the reliability and the vulnerability of netks are so important. For that
reasongraphs are taken as a model in the research area ofbitgliaand
vulnerability of the networks. Each network centetaken as a vertex and the
connections of these vertices are edges of a graph.

A few questions can be asked at this point;

How can the reliability and the vulnerability oftm@rk be determined? What are
the factors of the reliability and the vulneralyiitAnswers can be given with this
example, let’s think about the way that you areg®very day to work. What can
be done if there is a problem on that way? We bhawechoices;

- We may give up going to work although we have tble of dismissal.
- We can look for another way to work.



The question ‘if there is another way to reach warky come to our minds.
In other words ‘Has the link connection between Boamd work completely
broken down? ’. To answer these questions, we kn@t the dimensions of the
problem between home and work, the vulnerabilityhaf graph which represents
the way between home and work should be searched.

1.1 Vulnerability Parameters of Graphs

In a communication network, the vulnerability paesders measure the
resistance of the network to disruption of operat&dter the failure of certain
stations or communication links. The well-known neHability parameters are
Connectivity, Integrity, Neighbor Integrity, RuptumbDegree, Neighbor Rupture
Degree, Toughness, Tenacity, Scattering Number etc.

The well-known vulnerability parameter is conneityivwhich is defined by
Harary in 1972.

Definition 1.1.1 Harary, 1972)Connectivity k(G) is the minimum number of
vertices that need to be removed in order to disecha graph.
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K4 3PKs3

Figurel.1l Star graphil and union of Pand K

When connectivity of K4 andP;UK3 are compared, it is obvious that both
of the graphs have connectivity 1. If the vertetrdm K;4and vertex 2 from
P3sUK3 are removed this makes these graphs disconngdtedugh connectivity
of these two graphs are equal, the effects of éheoving vertices for the graph
structures are different.



If vertex 1 in K 4 is removed all the vertices in the remaining grapd isolated
but when vertex 2 is removed iUWPK3, the graph is not detached completely. In
this case it is clearly seen that we need morenmdtion about the components in
the remaining graph to find the damage.

A question can be asked:
“ Is connectivity an adequate measurement for vabikty of any graph? ”

The answer of the question can be found if the tipres are answered that are
listed in below.

1- The number of centers that are not functioning

2- The number of the connected networks

3- The size of the largest remaining group within Jahianutual
communication can still occur

4- The number of centers which are connected to treiglied vertices

5- The number of connected sub-networks which arkistdommunication
after the disrupted centers and their neighborseam®ved

6- The size of the largest remaining group in whiok tommunication still
occurs after removing the disrupted centers anaeitghbors

The well-known connectivity parameter deals witk first question, but
doesn’t give any information about the rest questidn 1987 Barefoot and
Entringer introduced a new parameter, integrity,iclvhdeals with the
questions 1 and 3.

Definition 1.1.2 (Barefoot and Entringer, 1987Jhe integrity of a graph
G= (V, E) is defined by

I (G) = min {|S| +Mm{&)}; Sc V(G)
where m(G-S) denotes the order of largest component-+#8G

Although integrity deals with more questions thammectivity, it doesn’t give
any information about the number of componentsed mulnerability parameter,
rupture degree, which related with component wasdiced in 2005 by Li and
Li.



Definition 1.1.3 (Li and Li, 2005) The rupture degree of an non-ptate
connected graph G is defined by

1(G)= max{w(G-S)—|SFm(G-S): Sc V(G), W(G-S)> 1}

where w(G-S) denotes the number of components in the grap8 énd m(G-S)
is the order of the largest component of&

Connectivity, integrity, rupture degree and othargmeters measure the
vulnerability of graphs corresponding to a netwdkt most of the measurements
are not interested in the effects of the neighlwirshe disrupted vertices. A
station or operative is captured; the adjaceniostatwill be betrayed and are
therefore useless in the whole network. These nésnare callegpy networks

Spy network is a system whose installation is hiddkr example, the spy
whose name is A can communicate with spies B, Cif Bpy A dies, the other
spies B, C or D can be inaccessible. Because af thaccessibility their
connections also become meaningless or if it isodsred that spy A actually
services for another institution, B, C or D areothin away from the system as a
matter of safety. That means if a vertex is digdptll the other related vertices
and connections of them can’t be used anymore.

In this context, the concept of neighbor integuitss defined by Cozzens
and Wu in 1996. Before the definition of neighbotegrity some information of
neighborhood are needed.

Let G be a simple graph and let be any vertex ofG. The set
N(u) ={ueV(G)| v+ u; v and u are adjacent} is the open neighborhood ahd
N[u] ={u} U N(u) is the closed neighborhood of u. A vertex G is said to be
subverted if the closed neighborhooduwos removed from G. A set of vertices
S ={uy, W, ..., U} is called a vertex subversion strategy @&fif each of the
vertices inS has been subverted fro@& If Shas been subverted from the graph
G, then the remaining graph is called survival grajg@moted bys/S

Definition 1.1.4 (Cozzens and Wu, 1996) The neighbor integrity gfaph G is
defined by

NI (G) = min {|S| + ¢c(G/Fc V(G)}

where S is any vertex subversion strategy of G &@&lS) is the order of the
largest component of G/S.



1.2 Neighbor Rupture Degree

As in the spy network example, there system which deals not only with
the vertices but also deals with their neighborthebelow example.

Let's consider a company’s distribution systemaagraph structure. A
firm has distributors in eighty one city and fowbsmajor distributors in every
city and each of these distributors who sell presihas 20 or 30 traders. All these
traders reach to the final destination in otherdsoreach to the markets. Each
trader has approximately hundred markets in thaitfgio. It means; if we begin
from top;

F — cityl, city2, ..., city81
cityl- cityl(d,), cityl(d,), cityl(ds), cityl(d,)

city2— city2(d,), city2(d,), city2(ds), City2(d,)

city81- city81(d,), city81(d,), city81(d;), city81(d,)

cityl(d,) — cityl(d,t;), Cityl(d,t;), Cityl(d ts), --- Cityl(d,tso)

cityl(d,) — cityl(daty), Cityl(d,ty), Cityl(dyts), -+ Cityl(datso)

If any distributor is disrupted, the traders whorkvavith these distributors can’t
get their products. So these traders can’t seryepapducts to their markets. In
this system, if the vertex of distributor removés traders’ vertices which are
connected with this distributor vertex will be revad.

In this context, the concept of neighbor rupturgrde was defined by Bacak-
Turan and Kirlangi¢ in 2010.

Definition 1.2.1 (Bacak-Turan and Kirlangic¢, 2010) The neighbor utptdegree
of a non-complete connected graph G is definecto b

Nr (G) = max {w(G/S) -|S| - ¢(G/®c V(G), w(G/S)>1}

where S is any vertex subversion strategy of G, /@[ds the number of
connected components in G/S and c(G/S) is the marinorder of the
components of G/S.

In particular, the neighbor rupture degree of a plete graph Kis defined to be
Nr(K,)=1—-n. A set Sc V(G) is said to b&r-setof G if

Nr (G) =@fS) -|S| - ¢(G/S)



Example 1.2.1Neighbor rupture degree of graph G in Figure laslshown
below.

L
[ ]

Figure 1.2 A graph of G

Solution:Let S be a subversion strategy of G.
If S = {1} then w(G/S) = 1 and c(G/S) tus we have N(G) =—3
If S = {2} then w(G/S) = 1 and c(G/S) tlus we have N(G) =—2
If S = {3} then w(G/S) = 1 and c(G/S) tHus we have N(G) =—1

If S = {4} or S = {5} then w(G/S) = 1 and(@/S) = 2 thus we have
Nry(G) =-2

If S ={1, 2} then w(G/S) = 1 and c(G/SP=thus we have MN(G) =—-3

If S contains two or more vertices excépt 2) then w(G/S) = 0 it
contradicts to the definition

From the definition of neighbor rupture degree \agéeh
Nr(G) = max{Nn(G), Nrx(G), Nr3(G), Nii(G), Ni5(G)} = -1

The results of neighbor rupture degree for someigp@raphs are listed in
follows.



Theorem 1.2.1(Bacak-Turan and Kirlangig, 2010)

a) Let B, be a path graph with n vertices and

2~

12,

_ 0, n=1(mod4)
NI (Pr) ‘{ ~1, n=0,23 (mod4)

b) Let C, be a cycle graph with n vertices and & 15,

-1, n=0(mod4)

Nr (Cr) ={ —2, n=1,2,3 (mod4)

C) Let Kni, n2 n3, .. ndoe a k-partite graph

eey

Nr (Kinz, ... .nd = max{ ng, mp, ng, ..., N}—3

d) Let W; ,be a wheel graph
(-1, n=1(mod4)
Nr(W1, ) ‘{ —2, n=0,23 (mod4)
The results of neighbor rupture for the upper aweker bound are listed in below.

Theorem 1.2.2(Bacak-Turan and Kirlangic, 2010) Let G be a grapbrder n.
Then

Np(&Sn

Theorem 1.2.3(Bacak-Turan and Kirlangi¢, 2010) Let G be a graplorder n
and K(G) be the neighbor connectivity of G. Then,

Nr(G)< n— 2 K(G)- 1.

Theorem 1.2.4(Bacak-Turan and Kirlangic, 2010) Let G be a grapbrder n.
Then,

Nr(G)< a(G) - NI(G).
Theorem 1.2.5(Bacak-Turan and Kirlangic, 2010) For any graphvé have
Nr(G)< 2 a(G) - 2NI(G) - r(G).
Theorem 1.2.6(Bacak-Turan and Kirlangi¢, 2010) For any graph G,
Nr(G)> 3- I(G) —NI(G) - 1(G).
Corollary 1.2.1 (Bacak-Turan and Kirlangi¢, 2010)

3-1(G) =NI(G) - (G) < NI(G) < 2 2(G) - 2NI(G) - 1(G)



2. NEIGHBOR RUPTURE DEGREE OF SOME GRAPH OPERATIONS

Operations on graphs produce new graphs from duwaees. They may be
separated into two major categories; unary operstiand binary operations.
Unary operations create a new graph from the ctumee. Binary operations
create a new graph from two initial graphg\@G, E1) and G(V2, E).

2.1Union of Graphs

In this part, neighbor rupture degree of unionarhe graphs are given.

The union G =G0 Gy, 0...0 G, has V(G) = VG)OV(Gy)O...0OV(G,)
and E(G) = EG)0E(Gy)D...0E(G,). If a graph G consists of k £2)
disjoint copies of a graph H, then we write G=kB8hértrand and Lesniak, 1996).

Union of some graphs is given in Figure 2.1.1 below

2K1 U3K2 U K1’3

Figure 2.1 Union of six graphs

Theorem 2.1.1Let G, G, G;, ..., G, be connected graphs, then

Nr(GO G0 ...0Gy) = Nr(Gy) +Nr(Gp) + ...+ Nr(Gy)

Proof Let G= GO G0 ...0 G, be the union of &G, ..., G, Let S, S, ..., S
be Nr-sets of & G, ..., G, respectively and let S=,:85,0...0S, be a
subversion strategy of G. Then we obtain



NF(G)= W(G/( S.U S0 ... U S))— S0 S0 ... 0 Si|—¢(GI(S U S0 ... 0'Sy)

=W(G §) + W(GCIS)+ ...+ WG/ S) —[S]=[S]—...[S|— max{ c(G/S),
(G S),... , C(GISH)}

2 WG/S) + W& )t ...+ WG/ S) —[S-IS)-...[Sil-c(G/ &) -
(Gl &)~ ... —¢(G/ &)

= Nr(@) +Nr(Gy) +Nr(Gg) +... +Nr(G,).
Thus we have Nr(@1 G,0 ...0 Gp) = Nr(Gy) +Nr(Gp)+ ...+Nr(G,). [ ]

Theorem 2.1.2 Let K, Kp, . . ., Kp be connected graphs with
Mm<ny< ..<Nmand Nj+1— N 22;vi € Z* . Then neighbor rupture degree is

Nr(Kn OKp O...0Kp )=2-m—n.

Proof Let S be a subversion strategy ofKIKy O ...[0Kp . Since these are

complete graphs, it is obvious that S contains@gtrone vertex from each K

If |S|] = k, then W((K]l O an o . . . OKp)S)= m-k and
¢((Kn, OKp, O...0Kp )IS) = Nm-k. Thus we have
W(Knp OKp OKp O ... OKp JSISEe((Ky OKp OKp O. . .0

Kn JS)< m=2k—nNm-k - Sincenj+1 —Nj 22; Nmpm—k 2 m+2(m—k—1)
<m—2k—n —2(m—k-1)

=Zm-n
= Nr<2-m-m ...(1)

There exist S such that | §|:m—1, W((Knl O an O ...0Kp)S)=1and
c((Kn OKp, O...0Kp )/S)=n. Then we have

W((Kn UKp U...0Knp )S)—ISke((Kp UKy O ... 0Kp )iS)

=Zm—m
=Nr22-m—-m ... (2)

From (1) and (2) we obtain Nr (,IﬁDKn2 O...0Kp)=2-m—-m. =
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Theorem 2.1.3Let K, Ky , K, . .., Ky be connected graphs with

Mm<no<ng..<nyandforalli, Nj+1 —Nj<2. Then neighbor rupture degree is
Nr(ky OKp OKp O...0Kp )=m=nn.

Proof Let S be a subversion strategy ohKU K 0O ... UKp and let[S|=k.
Then we have W((lﬁl OK nt . . . 0O K n, )JS) = m k and
c((Kn UKp O ...0Kp )/S)=Nm-k. Thus we get

W(Knp UKp O. . .OKp )JS)—IS—[c((Kn UKp O . . . UKy )S)
< mM—2Kk— Nm-k

Let f(k)= m-2k—nm—k . Then f(k+1)=m-2(k+1)—Nnm-(k+1) and
f(k+1) —f(k)= —2—Nm-(k+1) =Pm-k - Since Nk —Nm-(k+1) <2 by the
assumption, f(k+1) < f(k). Thus f is a decreasinmdtion and takes its

maximum value at k=0.
Hence we have Nem—np, ... (1)

There exist S such that | §|:O, W((Knl OK n O...0 Kp )/S)=m and
C((I(n1 U an g ...0Oo Kn )/S): nm. Then we get
W((Knp UKp U ... UKy JS)=ISke((Kp UKp U ... UKp )S)

:-Frnm
Thus we have NeE m—nNm ... (2)
From (1) and (2) we obtain Nr =-Any, [ ]

2n, 2>npm
Corollary 2.1.1Nr(Ky O Kp) =
—m, otherwise
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2.2.Join of Graph

Join operation is a binary operation. In this peighbor rupture degree of join of
some graphs are given.

The join G=G;+G» has V(G) = VG1) O V(G») and
E(G) = EG) O E(Go) O{ U\:1 uldl V(Gp) and V1 V(G2)}
(Chartrand and Lesniak, 1996).

Join of graphs is given in Figure 2.2 below.

G G G+ G

Figure 2.2 Simple graphs{G G2 and their union

Theorem 2.2.1Let G; and G, be two connected graphs then the neighbor

rupture degree is
Nr (G+ G3) = max{Nr(Gy), Nr(Gy}

Proof Let S be a subversion strategy of 3G . There are three cases according
to the elements of S.

Casel Let S = §0V(Gq1) be the Nr-set of ¢ such that
wW(G1/ S1)—| S1|— c(G1/ S1) = Nr(Gy). Since any elements fromyGre adjacent
to every element of G in (G1+ G»), we have

W((G1+ G2 )IS1)—[S1|—c((G1+ G2)/S1)= W(G1/S1)—| S1|-c(G1/ S1)=Nr(G1)
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Case2 Let S= S0V(G2) be Nr-set of Gsuch that
W(G2/S2)—| So|— ¢(G2/Sp) = Nr(Gp). Since any elements from Gare
adjacent to every element of & (G1+ G»), we have

W((G1+G2)/S2)—[S2[-c((G1+G2)/S2)=W(G2/S2)—|S2|-c(G2/S2)=Nr(G>)

Case3 Let SUV(G1)O V(G2). Since S contains at least one vertex of WG
which is adjacent to all the vertices of V4{and S contains at least one vertex
of V(G2) which is adjacent to all the vertices of WG in G1+ Go, then

(G1+ Go)/S is empty. It contradicts to the definitionr@fighbor rupture degree.

Thus Nr (G+ G2) = max{Nr(G;),Nr(Gy} |

Theorem 2.2.2Let G1, Goand Ggbe connected graphs, then neighbor rupture

degree is
Nr(G+ Go+ G3) = max{Nr(Gy 0 Gg), Nr(Go)}

Proof: Let S be a subversion strategy of5Go+ Gg3.There are three cases
according to elements of S.

Casel:Let SOV(G10G3) be Nr-set of G G3. Since every element of 45
adjacent to every element from §ndG3 we have

Nr(G+ G2+ G3)=Nr (G1 U G3)
Case2: Let SOV (G) be Nr-set of G . Since every element of £adjacent to
every element from gandG3 we have

Nr(G+ G+ G3)=Nr(Gy)

Case3:Let SOV(G1+ Go) or SOV(G1+ G3) then ((G+ Go+ G3)/S) is

empty which contradicts to definition of neighbapture degree.
Thus Nr(Gy+ G+ G3)=max{Nr(G; 0 G3),Nr(G)} n



13

Corollary 2.2.11f G  OK  then Nr(G+ G2+ G3)= Nr (G)+Nr (G3)
Proof From the Theorem 2.2.2 we have Nj(Go+ G3)=Nr (G100 Gg3) and

from theorem 2.1.1 we obtain Nr {G G3) = Nr (G1)+Nr (G3) ]

n
Corollary 2.2.21f G = (K +Kpn +Kn Jwith M 2np 2n3 then Nr(G) =n3

Proof From the Theorem 2.2.2 we have Nr(G) =Ni(K—1=1-n3—1=-n3 =

2.3Complement of Graphs

In this part, neighbor rupture degree of complenoéisbome graphs are given.
Complement of a graph is a unary operation.

The complement of a simple graph G is obtainedaling the vertices of G and
joining two of them whenever they are not joinedsiiBalakrishnan, 1995).

Complement of graph G is given in Figure 2.3 below.

Figure 2.3 A simple graph G and its complement.

The complemenk,; of the complete grapK,, has n vertices and no edges and is
referred to as the empty graph of order n. A grépis self-complementary if
G¢=G.
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Theorem 2.3.1Let B, be a path graph of order n. Then the neighborurapt
degree of complement df, is

Nr gy )=-1
Proof: Let S be a subversion strategyl?ﬁ and let S = {u} whereaV(R,).

Casel:If deg(u) = 1 inB, then u is adjacent to all vertices I?hc except its
neighbor inF,. It means | N[u] |=A1 in Prf then we have
w Py /S)—IS| (RS /S) = 1-1-1=-1

Case2:If deg( u) = 2 irB, then u is adjacent to all vertices I?hcexcept its

neighbors inPF,. It means |N[u]| =R2 in PnC where the remaining two vertices
are adjacent. Therefore

w @y /S)—|Sk (RS /S) = 1-1-2=-2

Case3:If [S|> 2 the remaining graph is empty. Therefore it caditts to the
definition of neighbor rupture degree.

From these three cases we haveR§r ) =—1. m

Theorem 2.3.2Let W;, be a wheel graph of order n+1. Then the neighbor
rupture degree of complement of Wis

NV, ) = -1

Proof Let u 0V (W ) be a centered vertex iw , with deg(u) = n and let i/
V(W) where i =1,2,...,n with deg{v= 3(i=1,2,...,n). So u is isolated vertex

in Wln and [N[v]|=n—2 (i=1,2,...n) |rWl

Let S be subversion strategwan . There are two cases according to the

n-

number of elements of S.

Casel:Let |S|=1
If S = {u} then wwfn IS)=1,c an /S) = n. Thus we get
wQan /S)— |S|—c(wfn /S) = +-1-n=-n
If S={y} where i=1,2,...,n-1 or n then ‘an IS)=2,¢ an IS) = 2.

Thus we have
W fn IS)— |S} c(Van IS)=2-2—1=-1
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Case2:Let |Sp 2
If S contains two adjacent vertices\ilh, the only remaining vertex in

Wy n/S is the vertex in the center. Therefore
Nr> 1—-|S}1 =—|S|> -2

If S contains two non-adjacent verticesW , there will be at most two
components with one vertex W /S. Thus
N> 2—|SH1 = 1-|S|> -1

From these cases we obtain IW&) =-1. [ ]

Theorem 2.3.3Let Ky n (m<n) be a complete bipartite graph with |r=i@]
Then the neighbor rupture degreelqﬁm is

N n ) =— min{m, n}.

Proof It is obvious thatK §, n = Km U K

Let the vertex ull V(K) and the vertex V1V(Kp) and let S be a subversion
strategy of I UK, We have four cases according to the elements of S.

Casel:If |S|=0, then c((k U Kn)/S) = max {m, n} and w(( kK U K, )/S)= 2.
Therefore we have
W(( Km U Ky )/S) —[SFc((Km U Kp)/S) = 2-0-max {m, n} = 2-max {m, n}

Case2:If S = {u}, then c((Kn U Kp)/S) = n, w(( Ky U K, )/S)= 1. Thus we have
W(( Knm U K, )/S) —|SFc((Km U Kp)/S) == E+1-n=—-n

Case3:If S = {v}, then c((Ky U Kn)/S) = m, w(( K, U K;, )/S) = 1. Therefore we
have
W(( Km U Kn )/S) =|SE ¢((Km U Kn)/S) = = =-1—-m = —m

Case4:If S = {u, v} then w(( Ky U Ky )/S) = 0 it contradicts to the definition of
neighborrupture degree.

Since |n-n&2 we have Nr Kr?n,n ) = —max {m, n}=— min{m, n}. [
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Corollary 2.3.1 Let Ky, be a star graph of order n+1. Then the neighbuture

degree ofon is

Nn(fn) =-1

2.4 Cartesian Product of Graph

In this part cartesian product operation are studizartesian product is a binary
operation.

The cartesian product GGz x Go has V(G) = VG1)xV(G2), and two vertices
(ul,uz) and (vl,vz) of G are adjacent if and only if either

W =viandusvo O E(Go)
or

us =vo andwuvq 0 E(Gy). (Chartrand and Lesniak, 1996)

Cartesian product of graphs is given in Figurelizibw.

G Gy G x Gy

Figure 2.4 Two simple graphs; G5, and its Cartesian product

Theorem 2.4.1LetP> x P35 be a cartesian product witilZ*. Then neighbor
rupture degree oPy x Py, is

NFp  Pg)= a1
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Proof Let S be a subversion strategy IBf X P33 and |S|=r .There are two cases
according to the number of elements in S.

Casel:Let 1<r<a. Then I\[S] <4r and we2r.
S)| —|IN(S -
Since c(@y xPy)is) =V SITINGI, 260 -4r _3a
w

2r r
W(( P2 % P3q)/S) ~IS-c((P2 % P3a)/S) < 2r—r— (2_2) - r_r3Ta2

-2 and

Let f(r) = r——iaz . f is an increasing function sincie’(r):1+3—;l >0. So it
r

r
takes its maximum value at a=Then

f(a):a—ST:+2 =a—1. Hence

NP x Pyg)<a—1 .. (1)
Case2:If a < r < | V(PbxPgg) | then ¢ ( PpXxP3) /S) =21 and
w(( P> xP35)/S) <2(3a) —4a— (r—a)=3a—r thus we obtain

W(( P2 X P33)/S) —|S}t-c((P2 X P33)/S) <3a—r—r—1=3a—2r-1
Let f(r)= 3a—2r—1. Sincef’' <0 f is a decreasing function, so it takes its

maximum value at r& Then f(a)=3—2a—1=a—1
Nr(P> xPyg)<a-1 ... (2)
From (1) and (2) we have N X P3g)<a—1 .. (3)

It is obvious that there exist Such that [$=a, w((P> xP3,)/S)=2a and
c((PrxP33)/S)=1 so NrP, xP3g)2a—1. ... (4)

From (3) and (4) we have N x P35) =a—1. [

Theorem 2.4.2Let P, xP3541 be a cartesian product witilZ*. Then neighbor
rupture degree oP> X P3541 is

NPp X P3a+1) =a—2.
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Proof Let S be a subversion strategy B X P33+1 and let |S|=r .There are two
cases according to the number of elements in S.

Casel:if 1<r<a then I\[S] <4r and w((P> xP35+1)/S)<2r . Then

c((P2xPa+1)IS) = w = c((Pp X P3g41)/S)> W

3a+l
r
3a+l

2.

Then we have W X P3g+1)/S)-|S|-c(® *P3g+1)/S) < r - +2
3a+l 3a+l
2

r

Let f(r)=r - +2, since f '(r):1+ >0 f(r) is an increasing function

so it takes maximum value at a=
3a+1

+2 = a—1—1<a—1, hence
a

f(a= a-

NR> X Pap)sa—2 ... (1)

Case2:If r=a+1 then w([P> X P35+1)/S) < 2r and c(P X P35+1)/S) >1 thus we
get
W((P2 % P3a+1)/S) —ISI-c((P2 X F3a+1)/S) < a—2 , hence

NI(P2 xPoeg)sa-2 ... (2)

Case3: If at+t2 <r <|V(PyxP3a41) then (P xP3a41)/S)=21  and
W((P>xP3a41)/S)  <2(3a+l)-4a—2—(r—a—1)=3a—-r+1 thus we get
W(( P2 X P3341)/S) —|SFc((P2 X P3a+1)/S) <3a—2r.

Let f(r)= 3a—2r, sincef’ <0 f is a decreasing function so it takes maximum

value at ra+2.
f(at2)=3a—2(a+2)< a—4 , hence

Nr(Py xPsa4)sa—-2 ... (3)
From (1), (2) and (3) we have
NE, x P3g41)<a-2 . 4
It is obvious that there exist S such that g%}5 w((P> xP353+1)/S)=2a and
C((P2 X P334+1)/S)=1 0 NrPs xPsa41)2a-2 ... (5)

From (4) and (5) we have Ni#p x P3541)=a—2. |
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Theorem 2.4.3Let P> X P3g4obe a cartesian product wittil@". Then neighbor
rupture degree d¥ X P3540 is

NP xP3a+2) =a—1

Proof Let S be a subversion strategy I8f X P354+2 and let |S|=r .There are three
cases according to the number of elements in S.

23a+2)-4r _3a+2

Casellf 1<sr<athen I\[S] <4r, ws2randc2 > 2.
r r
Thus we have
3a+2
W((P2 % P3a+2) /S)-IS|-c(B2 % P3a+2) /S) <2r—r— ( -2)
3a+2 . , . : . : .
Let f(r)= r— ( -2) sincef’ > 0 fis an increasing function. So it takes

maximum value at r&
3a+2
f(a) =a—

+2=a-1 _E <a—-1
a
Nr(P X P342)<a-1 .. (1)

Case2:If r =a+1, then w(® X P33+2) /S)<2a+1 and c(( xP33+2) /S)=1 so
we have

W((P2 X Psa12) 1S) —ISHC((P2 X Psas) 1S) <2a+1-a—1-1=a-1
NI (P xPaae)sa—1 ... (2)

Case 3:If at2 <|S| =r < |V® xP3z+2)] then w(® xP3z42) /S) <
2(3a+2) —4a—3— (r—a—1)=3at+2—r and c((P® xP354+2) /S)=1 so we have

W(( P> X P3a12) 1S)—|Sk-c((Po X Pag+2) /S) <3at2—r—r—1

Let f(r)= 3a +2—-2r—-1 sincef’' <0 , f is a decreasing function so it takes

maximum value at r a+2.
f(a+t2)=3a+1-2(a+2) <a—-1

Nr(P> xP3g40)<a-1 ... (3)

From (1), (2) and (3) we have N#§ xP3340)<a—1 ... (4)

It is obvious that there exist Such that [$=a+1, w((P> X P3gq+2) /S)=2a+1
and c((P> X P3a+2) /S)=1 soNea-1 ... (5)

From (4) and (5) we get N&=1 ]
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Theorem 2.4.4Let K, and K, be two complete graphs with fm) then neighbor
rupture degree of Cartesian product gf &d K, is

Nrgkx Kyp) = 1—n.

Proof Let S be a subversion strategy aof K K,and let |S| =r. We have two cases
according to the cardinality of S.

Casel:df 0 <r <m-1 then w((ky X Kp)/S)=1 and c((k, X Kp)/S) > (m—r)(n—r)
so we have
W((Km X Kp)/S) =[S} c((Km X Kp)/S)< 1= r — (m=r)(n—T)

Let f(r) = 1— r —mn — mr —nr + Since f(r) is an decreasing function in
(0, m=1) it takes its maximum value at 0 and f(0)=min thus we get
Nr(Kx Kp) < 1-mn... (1)

Case2:If r =m—1 then w((K, x K,)/S)=1 and c((K, x K,)/S) > n— m+ 1 so we
have
W((Km X Kp)/S) —|SF c((Km X Kp)/S<1— (m—1) — (—m+1) = -n

NrKx Kn) <1-n... (2)

From (1) and (2) we have Nr1—n ... (3)

There exist S such that r = -+, w({(Kn x Ky)/S) =1 and
c((Km X Kp)/S) = n-m+1 thus we have

Nri-n ... (4)

From (3) and (4) we get Nr =h. [

2.5 Tensor Product

Tensor product is a binary operation. In this gartsor product is applied in
various graphs.

The tensor product G G, of two simple graphs Gand G is the graph with
V(G100 Gy) =V1 XV, and where in (Wup) and (M,v2) are adjacent in G G if,
and only if, y is adjacent to vin G; and y is adjacent towyin G,

(Balakrishan and Ranganathan, 1999).
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Tensor product of graphs is given in Figure 2.Dbel

/N XK

Gy G G @ &y

Figure 2.5 Simple graphg G, and their tensor product

Theorem 2.5.1Let P;[J P, be a tensor product osRnd Pn and: 0 (mod4).
Then neighbor rupture degree QfPP, is

NrdB P, = n—1

Proof Let S be a subversion strategy offP P, and |S| = r be the number of
removing vertices from 471 P,,. There are two cases according to the number of
elements in S.

Case 1:If 0 <r< (n/2) then w((RO P,)/S)< n+r and c((RO Pn)/S)> 1 thus
we have
w((PsO P)IS)— |S|—c((PsO0 P)/IS)<n-1 ... (1)

Case 2iIf (n/2) <r<3nthen w((R P)/S)<n+(n/2)— (r—(n/2)) = 2n-r
and c((RO P,)/S) > 1 thus we have
w((Ps0 Py)/S)— |S|—c((Ps00 Pn)/S)< 2n —2r-1

Let f(r) = 2n — 2r—1sincef'(r) < 0 the function f(r) is a decreasing functemit
takes its maximum value at (r/2) and f(n/2) = n—1 ... (2)

From (1) and (2) we get Nri{P1P)) <n-1 ... (3)

There exist S such that [3=(n/2), w((PsO P)/S) = n+(n/2) and
c((PsO0 Py)/S) > 1 thus we have NrgP1Py) >n—1 ... (4)

From (3) and (4) we get Nr {P] P,) = n—1. |
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Theorem 2.5.2Let Ps[] P, be a tensor product o;Rnd Pn and+# 0 (mod4).
Then neighbor rupture degree of G is

Nrg1P)=2n-4(n+1)/2] -1

Proof Let S be a subversion strategy offP P, and |S| = r be the number of
removing vertices from 4§21 P,. There are two cases according to the number of
elements in S.

Casel: If 0 < r < Rn+1)/2—\—1 then w((BRO P)/S) < 3r —1land

c((PsO0 P,)/S)>3. Thus we have
w((P:O Pn)/S) —[S|—c((PsO0 Pn)/S)<2r—4

Let f(r) = 2r -4 sincef’(r) > 0 the function f(r) is an increasing functigo it
takes its maximum value at f én+1)/2]-1 and

f([(n+1/2]-1)=2[(n+1)/2] —6 so we have
Nr@d Py <2[(n+1)/2] -6

Case2: If Rn+1)/2—\ < r <3n then w((RO PY/S) < n+ (n-r) and

c((PsO Py)/S)> 1.Thus we have
w((PO P)/S)— [S|—c((PsO0 Pn)/S)< 2n—2r—-1.

Let f(r) = 2n — 2r -1sincg’(r) < 0 the function f(r) is an decreasing funotio it
takes maximum value at { én+1)/2] and f((n+1)/2])=2n - 4 (n+1/2]-1

From two cases we get Nr2n — 4 (n+1)/2]-1.
There exist Ssuch that [§=[(n+1)/2], w((P;s00 P)/S) =2n—[(n+1)/2] and
c((Ps00 P)/S) =1 thus we have

Nr((BO Py > 2n-4(n+1)/2]-1

Since Nr((RO Py)<2n - j_(n + 1)/2—|—1and Nr((RO Pn)>2n - j_(n + 1)/2—|— 1
we obtain

Nr (Ps(1Py) =2n -4 (n+1)/2]|- 1. n

Theorem 2.5.3Let the tensor product of Kand K, is K[ K, then neighbor
rupture degree of KK, is

Nr (Kn Kp) = Nr (Kp-10-9 -1 = max { m-4, n-4}
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Proof Let (a, b) be any vertex of K1 K. The only vertices that are not adjacent
to (a, b) in (knUK,) are; (a, c) with (j = 1,2...,n) and (idb ) with
(i=1,2,...,m), wherej€ V(K,) and d € V(Kn).

The vertices (a,jrare not adjacent to each other, neither theoest(g, b). But
these are adjacent to each other so

(KmOKp) = (a,b)= Kn-1, n1

Nr (Knl Kp) =Nr (Kn1,n1) —1

= max { m-3, n-3}-1 [

2.6 Composition of Graphs

Composition operation is a binary operation. Irs thart neighbor rupture degree
of composition of some graphs are studied.

The composition of simple graphs G and H is theptengraph GH] with vertex
set V(GXV(H), in which (u, v) is adjacentu(,v') if and only if either un’ €
E(G) oru =u’' and vv' € E(H). (Bondy and Murty, 1976)

Composition of graphs is given in Figure 2.6.

G c, GG,

Figure 2.6 Composition of (and G

Theorem 2.6.1Let G be a composition of;Rnd in (G = B[ P,] ) then neighbor
rupture degree offp P,] is

Nr(Rs[Pa])=Nr(R)
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Proof Let the vertex set of#f P,] be labeled as, P, P,' and R" and let S be a
subversion strategy okPP,].

Case liLet S be a Nr-set of P The S- set removes all elements gf Ehen we
have
Nr (Ps[Pa])=Nr (R UP")>Nr (R )+Nr(R")
er(P”)"'Nr(%):ZNr(I?])

Case 2:Let S be a subversion strategy @f PThe S- set removes all elements of
P, and R" so it depends only,P
Nr gPP.]) =Nr (R") =Nr (R)

Case 3:Let S be a subversion strategy @f &1d R" Then S set removes al}'P
P,' and R" then w = 0. It contradicts to the definition of giebor rupture degree.
Nr (B[ Pa])=max{2Nr(R), Nr(R)}

since Nr (R)<0then max {2 Nr (P, Nr(R) }=Nr (Pn) ]

Theorem 2.6.2Neighbor rupture degree of composition ¢f End any graph G is
Nr (KG] ) =Nr(G) .

Proof Let the vertex set of K[G] be labeled as, 'GG", . .. ,Gm.

Let S be a subversion strategy of, KG]. We have two cases according to
elements of S.
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i .
Casel:Let we choose one element from any vertex se{i€l,2, .. ,m) , if ue

V(G') and S={u} then it removes all of other vertex.s®0 it depends only G
which we choose one element. Then we have

Nr(Km[G])=Nr(G | )=Nr(G)

Case2:Let we choose two element from any vertex sét(i@l,z, ..,m) and é
(=1, 2, ..., m) with #j. Then (Kq[G]) /S is empty set. It contradicts to the
definition of neighbor rupture degree.

From two cases we obtain Ni{KG])=Nr(G). ]

2.7Power of Graphs

A second power of a graph G is formeddnding an edge between all pairs of
vertices ofG with distance at most two. #econd poweof a graph is also called a
square.

Square of path graph, % given in Figure 2.7.

1 2 3 i 5 %E w& n
P,?

Figure 2.7 Path graph and its square

Theorem 2.7.1Neighbor rupture degree of’Rn > 6) is

_( 0, n=1(mod6)
Nr (F) = { —1, otherwise

Proof Let S be a subversion strategy @f Bnd let |S| = x. There are two cases
according to the number of elements of S.

Casel: If0<x< [2] =1 then w(R/S) <x+1, c(R%/S) 2% then we get

W(RYS) - S| - ¢ (F\S) < x+1-x-22% = g .22

x+1 x+1
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n+5

Let f(x) =6 -——
if 1l (mod6), then f(x)=0
otherwise f(x) <0
Case2: If x= [g] then W(RY/S)< x, ¢ (R%/S)> 1 then we get
W(RYS) - |S| - ¢ (BIS)< x—x—1=-1 therefore Nr-1
Case3: If [2] +1< x < n then w(R%/S)< x-1, c(R?/S)> 1 then we get
W(RYS) - |S] - ¢ (F\S)< x -1 —x—1 =-2 therefore Nr-2
According to three cases we have
Nr(R?) < 0 wheren = 1 (mod6)

Nr(R?) < -1 otherwise

There exist Ssuch that [$= [2X], w(R,%S) = [2], c(R/S) =1 then

0, n=1(mod6)

w(RS) - IS] - ¢ (RS} = {1 otherwise

Thus we get the result,

0, n=1(mod6)

NI (Py/S) = max {w(R7/S) - IS| - ¢ (F/S))} = { 1, otherwise
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3. TOTAL GRAPHS AND COMPLEMENT OF TOTAL GRAPHS

3.1 Total Graphs

In this section we deal with the neighbor ruptuegrée of total of some special
graphs.

Definition 3.1.1 (Gross and Yellen, 2004)he vertices and edges of a graph are
called its elements. Two elements of a graph aighbers if they are either
incident or adjacent. Thetal graphT(G) has vertex set V(GY E(G) and two
vertices of T(Gare adjacent whenever they are neighbors.in G

Let Kmn be a complete bipartite graph then the total graprcomplete

bipartite grathrJ{]j’nJr is given in Figure 3.1 below.

Figure 3.1 Total graph of complete bipartite graph

Let a; andbj be the vertices dfm, and let & ,bj) be vertices ofL(Km,q. In
total graph edges between the verticeXgf, andL(Kn ) are as follows,

g (i=1, 2, ... or m) is joined to allj,bj) (j=1,2,...,and n) by an edge
bj (=1, 2, ... or n) is joined to allg; ,bj) (i=1,2,...,and m) by an edge
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Theorem 3.1.1Neighbor rupture degree of total graghy, n with (m<n) is
N{(&fn"h): n—2m-1

Proof Let S be a subversion strategy ﬁﬁ]j’nJ’ and let |S|=x. We have two cases
according to cardinality of S.

Casel:lf 1 <x < m—1 then W(Kf{fn"L \S) = land cK,TfnJ' \S) > (m—x)(n—Xx) +m

+ n—2x. Thus we have
WKrJﬁ,JrnJr \S) —[St-c( KF{]’J}]+ \S) < 1—x—(m—x)(N—X)-Mm—n+2x
< 1— (MN—=Xm—xn+x%) —m—n+x
< 1—nM+NX+XmM-m—n+x—x2

Let f(x) = 1-nm +nx +xm-m—n +x +¥ and f is an increasing function in
1<x <m-1 so it takes maximum value at x =th.
f(ir1) = I-nm—n(m—1)+m(m-1) —m—n+m—1+(m—1)

=2mn+m-1 therefore Nr((rT],J’nJ’) < -=-2mn+m-1.

Case2:If x =m then W(KF{{},+ \S)< n—m and cd(ﬁqfnJ' \S)> 1. Thus we have

+++

WK mn \S) —I1S—le(Km \S)< n—m—m—1= n—2m—1

According to two cases we have
+++

NKm'n )S n—-2m-1 ... (1)
There exist S such that |S|=m, ,+n+ \S )=m-n and cQ(rJ{fn"L \S)=1 then we get
NKmn )>n-2m-1... (2)

From 1 and 2 we have NK(,%TnJr) =n—2m-1. ]

Corollary 3.1.1 Let K1, be star graph then the neighbor rupture degreetalf
graph ofKq p is

+++

n ): n—3.
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Let B, be path graph then the total graph Ry, PrT t

below.

is given in Figure 3.2

*—eo —9o
12 23 34 n-1,n

P’." L(R)

Figure 3.2 Total graph of path graph

Let i (i=1, 2, ..., n-1, n) be the vertices & and (i,i+1) be the vertices of
L(P,). In total graph the edges between the vertice®pfand L(R,) are as
follows,

i (i=1, 2, ..., n-1, n) is joint to all (i,i+1) by amdge

Theorem 3.1.2Neighbor rupture degree of total graphPafis

0, n=1(mod3)
—1, otherwise

NRy ) = |

+++

Proof Since P, ~ P%,_,, by theorem ... dan we have

0, n=1(mod6)

2 —

Nr(Pe ) = {—1, otherwise

Therefore we obtain the neighbor rupture degrel‘e’n*(’ﬂ’Jr
+++, _ (0, mn=1(mod3)

Nr(Pny ") = {—1, otherwise
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+++

Let C;, ; be comet graph then the total graph of co@et (C/; ") is given
in Figure 3.3 below.

Cr_r L(Ct,r)

Figure 3.3 Total graph of comet graph

Leti (i=1, 2, ..., t-1, ta; &, ..., @) be vertices oC;, and let (i,i+1), (ta) be
vertices of LCi,). In total graph the edges between the verticesGpf and
L(C;,) are as follows,

i(i=1, 2, ..., t-1, t) is joined to all (i,i+1) and; is joined to all (ta) by an edge

Theorem 3.1.3If C; ; is a comet graph then the neighbor rupture degfeetal
graph of G | is

r—1, t=2(mod3)

4y
Nr(Cer™) = {r — 2, otherwise

Proof Let S be a subversion strategy 6f, " and let [S|= x. There are three cases
according to the elements of S.

Casel: Assume S={i} or {(i,i+1)} then the number of compents
w(CH\S)<x+1 and c(G\S} r. Therefore we get
W, \S)—|Skc(C/\S) < x+1-x—r = 1.
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Case2:Let S= {t} thenC/f"\S= P, ,
Thus we have NC{"*) = Nr (Pf,_»))—1 and since the neighbor rupture degree

_( 0, t=3(mod6)
NI 32 = {—1, otherwise
we get

Nr(CH™) = {—1' t = 2 (mod3)

-2, otherwise

Case3:Let S={(t, &)} then ;7" \S= pH** U 1K,
Thus we have NC/F*) =Nr(P#% )+ r — 1 and since the neighbor rupture degree
of Pt

t = 2 (mod3)

0
+++y )Y
Nr(Pe=1™) = {—1, otherwise

we get
r—1, t=2(mod3)

4y
Nr(Cer™) = {r — 2, otherwise

According to three cases we obtain

r—1, t=2(mod3)

FHEy
Nr(Cer™) = {r —2, otherwise

3.2 Complement of Total Graphs

In this section we deal with the neighbor ruptuegreée of complement of total
graphs.

Let Kmn be a complete bipartite graph. The complemertt@tstal graph of

complete bipartite grapK =~ is given in Figure 3.4
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K& o = KnUK, Kk n)°

Figure 3.4 Complement of total graph of complefgabtite graph

Let a; andbj be the vertices oy, , and let @,bj) be vertices of LKy, »). In
total graph edges between the verticekpf, and L (K7, ,,) are as follows

g (i=1,2,.. or m) is joined to alfax,by ¥yincek Zi by an edge
bj (j=1,2,...,0r n) is joined to alfay,b }ince j #| by an edge

Theorem 3.2.1Neighbor rupture degree of complement of total grapKy, p, is

N((‘n'n ) =n—4.

Proof Let S be a subversion strategy f, , . We have four cases according to
elements of S.

Casel:Let any vertexaj OV(Kp) and  S¥a} then [S=1,w(Kmn /9)=1,
c(Kmn /S)=2n thus we have i{m y /S) —|§ —c(Kmpn /S)=— 2n.

Case2: Let any vertexbj OV(Kp) and S:{bj} then [S=1,w(Kmn /9=1,
c(Kmn /S)=2m thus we have Wm n /S) —|S—c(Kmn /S)= — 2m.
Case3:Let any vertex {(ai,bj )} OV(L (Kyn) and S-{(ai,bj )} then |s|:1,

W(Kmn /9) =1, c(Kmn /S)=m+n+2 thus we have

w(Kmn /9) =8 —c(Kmn /S)=—m—n—2.
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Case4: Let any two vertex {(ai,bj)} and {(a,b,)} with hzj and
s={(a.b,).(a,b,)} then [3=2, w(Kmn /9)=n-1, c(Kmn, /S)=1 then we have
W(Kmn /S) =S —c(Kmyn /S)= n—4.

From four cases we have neighbor rupture degrd€h , Nr(Kmyy ) = n—4.
n

Corollary 3.2.1 Let K1 , be star graph then neighbor rupture degree is
ia_):n-4.

Let P, be a path graph then complement of the totallgcdath grapt®, =~ is
given in Figure 3.5 below.

Figure 3.5 Complement of total graph of path graph

Leti (i=1, 2, ..., n-1, n) be the verticesRff and (i,i+1) be the vertices of Bf) .
In total graph the edges between the verticd? aind LE¢) are as follows

i (=1, 2, ..., n-1, n) is joint to all (j,j+1) by a&dge except4] and &j+1.

Theorem 3.2.2Neighbor rupture degree of complement of total brap path

P, is

(Wn )=0.

Proof Let S be a subversion strategy &, . There is four cases according to
elements of S.



34

Casel:LetiOV(PS) and S={i},i=1,2,... orn.

If deg(i)=1 then|§=1, w(R, "~ /S)=2 and cB, ~~ /S)=1. Thus we get

WPy~ /S)-|§—c(Py T /S) =0.

If deg(i)=2 then|§=1, w(P, ~~ /S)=2 and cB, ~~ /S)=2. Thus we have

WP, IS)y-|§—c(Py T /S) = —1.

Case2:Let (i,i+1) OV(L(P,)®) in P, ™~ and let S ={(i,i+1)}
If deg (i,i+1)=1 therf5|:1, w(P, /S)=2 and cp, /S)=2 thus we get

WP, /Sy-|S — c(Py T /S)=—1.
If deg (i,i+1)=2 thef§=1,w(P; ~~/S)=2 and cPy "~
WP~ /Sy-|S — c(Py T /S)=—1.

From these cases we have neighbor rupture degreg of Nr(R, )=0. m

/S)=2 thus we have

Let C., be a complete bipartite graph then the compleroénotal graph of

comet graplC;,~~ is given in Figure 3.6 below.

tar tax tas t.ac

Cer (LC:r))°

Figure 3.6 Complement of total graph of comet graph
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Leti (i1, 2, ..., t-1, tay @, ..., @) be vertices of’{, and let (i,i+1), (ta) be
the vertices of L{¢,) . In total graph the edges between the vertiée&'p and
L(C¢,) are as follows

i (i=1, 2, ..., t-1, t) is joined to all vertices b{Cf,) except (i-1,i) and (i,i+1).
a;is joined to all vertices of IG¢,) except (ta) by an edge.

Theorem 3.2.3Let C; ; is a comet graph with> 4. The neighbor rupture degree
of complement of total graph & ; is

NG~ ) =r—4.

Proof: Let S be a subversion strategy@f-— . We have four cases according to
elements of S.
Casel:LetillV(C{,) and S={i},i=1,2,... orn.

If deg(i)=1,then§=1,w(C;;~ /S)=2 and o/~ /S)=1. Thus we get

wC;,~ 1S)—|S/—c(Ci 1S) =0.
If deg(i) =2 then|§ =1,w(C;, ™ /S)=1 and of;, ~ /S) =4. Thus we have
Wi~ IS)—|S —c(C ™ /S) =—4.

Case2: Let a UV(C{,) and S={&,=1,2,... or r. Since S={& we get
w(Cg;~ /S)=1 and of;, ~ /S)=1. Therefore we have
WCr IS)— |9 —c(Cqr ™ I1S)=—1.

Case3:Let (i,i+1) UV(L(Cf,)) inCer™ .
If deg (i,i+1)=1 the|f5| =1,w(C¢, ~/S)=2 and of;, ~/S) = 2. Thus we have

Wi 1S)— |9 —c(CirmIS)=—1.
If deg (i,i+1)=2 thenS|=1,w(C;;"/S)=1 and of;;/S) = 4. Thus we

obtain
WCi1S)—|S —c(CrrmIS)=—4.

Case4d:Let (a,b) LUV(L(CE,)) inCey™ .
If S = {(ab)} then we have wg;,~/S)—|S —c(C;, /S)=—r
If S = {(ab), (a.)} then we have wg;,;~/S)— | —c(C;;~/S)= 4.

From four cases we have neighbor rupture degrég,of is Nr(C;, ) =r—4. =
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4.CONCLUSION

In this thesis, the vulnerability parameter whiakels an important part of graph
theory is discussed in full details. Firstly théated basic definitions are given.
Subsequently neighbor rapture degree which is vabikty parameter is
examined. Unary and binary operations are exanimedrious graphs and their
neighbor rapture degree is calculated. Finallygltgtaphs are examined, the totals
of the special graphs and the complements of tiadstof the special graphs are
taken and the neighbor rapture degrees are found.
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